Chemical Synthesis | Lab Instruments, Automation

Chemical Synthesis

Producing Quality, Economically-Viable Molecules

Spectrometers for Chemical Synthesis

Aplikace

Synthetic Organic Chemistry Applications

Control Residual Isocyanate
Process Analytical Technology for Continuous Measurement of NCO

Isocyanates are critical building blocks for high performance polyurethane-based polymers that make up coatings, foams, adhesives, elastomers, and insulation. Concerns over exposure to residual isocyanates led to new limits for residual isocyanates in new products. Traditional analytical methods for measuring the residual isocyanate (NCO) concentration using offline sampling and analysis raise concerns. In situ monitoring with process analytical technology addresses these challenges and enables manufacturers and formulators to ensure that product quality specifications, personnel safety, and environmental regulations are met.

Measuring Polymerization Reactions
Komplexní porozumění kinetice pro vývoj chemie syntetických polymerů

Měření a pochopení polymeračních reakcí, mechanismů, kinetiky, reakčních poměrů a aktivačních energií přimělo výzkumníky zavést in situ infračervenou spektroskopii coby rutinní techniku pro získávání komplexních a informačně bohatých dat, která se využívají k pokročení ve výzkumu v kratším časovém rámci.

Impurity Profiling of Chemical Reactions
Automated Drug Development Strategies for Chemists

Knowledge of impurity kinetics and mechanism of formation is important in determining reaction end-point in chemical and process development studies. Accurate, reproducible, and representative reactions samples are necessary for these studies.

Chemical Reaction Kinetics Studies
Study Chemical Reaction Rates and Measure Kinetics Inline

In situ chemical reaction kinetics studies provide an improved understanding of reaction mechanism and pathway by providing concentration dependences of reacting components in real-time. Continuous data over the course of a reaction allows for the calculation of rate laws with fewer experiments due to the comprehensive nature of the data.  Reaction Progression Kinetics Analysis (RPKA) uses in situ data under synthetically relevant concentrations and captures information throughout the whole experiment ensuring that the complete reaction behavior can be accurately described.

Průtoková chemie
Zvýšení bezpečnosti, zkrácení trvání cyklu, zvýšení kvality a výnosu

Průtoková chemie (občas taky nazývaná chemie laminárního toku, mikrochemie nebo chemie kontinuálního toku) otevírá možnosti využití exotermických syntetizačních kroků, které nejsou u dávkových reaktorů možné, a nový rozvoj v oblasti konstrukce průtokových reaktorů umožňuje využití alternativních reakcí, které jsou u dávkových směsných reaktorů omezeny. Výsledkem tak může být vyšší kvalita produktů a vyšší výnos.  V kombinaci s procesní analytickou technologií (PAT) umožňuje průtoková chemie rychlé provedení analýzy, optimalizace a převedení chemické reakce do praxe.

Grignard Reaction Mechanisms
Understand and Control Exothermic Events

Grignard reactions are one of the most important reaction classes in organic chemistry. Grignard reactions are useful for forming carbon-carbon bonds. Grignard reactions form alcohols from ketones and aldehydes, as well as react with other chemicals to form a myriad of useful compounds. Grignard reactions are performed using a Grignard reagent, which is typically a alkyl-, aryl- or vinyl- organomagnesium halide compound. To ensure optimization and safety of Grignard reactions in research, development and production, in situ monitoring and understanding reaction heat flow is important.

Hydrogenation Reactions
Bezpečné monitorování reakcí při zvýšené teplotě a tlaku

Hydrogenační reakce se široce používají při výrobě velkoobjemových a jemných chemikálií pro redukci vícenásobných vazeb na jednoduché. Katalyzátory se obvykle používají na podporu těchto reakcí, přičemž reakční teplota, tlak, zatížení substrátu, zatížení katalyzátoru a intenzita míchání společně působí na absorpci plynného vodíku a celkový výkon reakce. Důkladné pochopení této intenzivní reakce je důležité a PAT technologie, jako je in situ FTIR, kalorimetrie a automatické in situ vzorkování na podporu analýzy HPLC zajišťují bezpečné, optimalizované a dobře charakterizované chemické procesy.

Highly Reactive Chemistries
Scale-Up and Optimize Highly Reactive Chemistries

Highly reactive chemistry is a terminology used to describe chemical reactions that are particularly challenging to handle and develop due to the potentially hazardous and/or energetic nature of the reactants, intermediates and products that are present during synthesis. These chemistries often involve highly exothermic reactions which require specialized equipment or extreme operating conditions (such as low temperature) to ensure adequate control. Ensuring safe operating conditions, minimizing human exposure, and gaining the maximum amount of information from each experiment are key factors in successfully designing and scaling-up highly reactive chemistries.

High Pressure Reactions
Understand and Characterize High Pressure Reactions Under Challenging Sampling Conditions

Many processes require reactions to be run under high pressure. Working under pressure is challenging and collecting samples for offline analysis is difficult and time consuming. A change in pressure could affect reaction rate, conversion and mechanism as well as other process parameters plus sensitivity to oxygen, water, and associated safety issues are common problems.

Hydroformylation or Oxo Synthesis/Process
Understand Catalyst Activity

Hydroformylation, or oxo synthesis/process, is important for the production of olefins to aldehydes and aldehydes from alkenes. Hydroformylation reactions are performed at high pressure and can be challenging to sample due to the extreme reaction conditions, as well as the toxic, flammable, and reactive raw materials and reagents.

Catalytic Reactions
Accelerate Chemical Reactions With a Catalyst

Catalysts create an alternative path to increase the speed and outcome of a reaction, so a thorough understanding of the reaction kinetics is important. Not only does that provide information about the rate of the reaction, but also provides insight into the mechanism of the reaction. There are two types of catalytic reactions: heterogeneous and homogeneous. Heterogeneous is when the catalyst and reactant exist in two different phases. Homogeneous is when the catalyst and the reactant are in the same phase..

synthesis reactions
Providing Important Molecules for Research, Industry, and Commerce

One of the four major classes of chemical reactions, synthesis reactions are represented by important examples in organic synthesis, catalyzed chemistry, polymerizations and inorganic/organometallic chemistry. In the simplest case, a synthesis reaction occurs when two molecules combine to form a third, more complex product molecule. Often, synthesis reactions are more complex and require a thorough understanding of the kinetics and mechanisms of the underlying chemistry, as well as carefully controlled reaction conditions.

Návrh experimentů (DoE)
Statistický přístup k optimalizaci reakcí

Návrh experimentů (DoE) vyžaduje provedení experimentů za kontrolovaných a reprodukovatelných podmínek v optimalizaci chemické reakce. Reaktory pro chemickou syntézu jsou navrženy tak, aby pomáhaly s návrhem experimentů a poskytovaly vysoce kvalitní data.

Understand the structure of individual molecules and composition of molecular mixtures

Fourier Transform Infrared (FTIR) Spectroscopy For Real-Time Monitoring Of Chemical Reactions

Fundamental Understanding of Chemical Reactions and Factors Affecting Them

Reaction mechanisms describe the successive steps at the molecular level that take place in a chemical reaction. Reaction mechanisms cannot be proven, but rather postulated based on empirical experimentation and deduction. In situ FTIR spectroscopy provides information to support reaction mechanisms hypotheses.

Organometallic Synthesis
Organometallic Chemistry Analysis

Organometallic Synthesis, or Organometallic Chemistry, refers to the process of creating organometallic compounds, and is among the most actively researched areas in chemistry. Organometallic compounds are frequently used in fine chemical syntheses and to catalyze reactions. In situ Infrared and Raman spectroscopy are among the most powerful analytical methods for the study of organometallic compounds and syntheses.

Ensure Yield, Purity, and Cost Objectives

Oligonucleotide synthesis is the chemical process by which nucleotides are specifically linked to form a desired sequenced product. The repetitive cyclic nature of the synthesis used in producing these biopolymers requires careful control of reaction variables, as well as step-wise reaction tracking and purity assurance to ensure that the desired sequence is attained. PAT methodology supports the development and production of these important biomolecules.

For Key Reactions in Organic Chemistry

Alkylation is the process by when an alkyl group is added to a substrate molecule. There are many different alkylating reagents and types of alkylating reactions, and thus it is a widely used technique in organic chemistry. Alkylation is important for manufacturing in the petroleum and commodity chemicals industries, as well as in medicine, since many chemotherapy drugs are alkylating agents. The breadth of reaction types, conditions, and the economic importance of alkylation necessitates thorough understanding, control, and monitoring of alkylation reactions.

Control Residual Isocyanate

Isocyanates are critical building blocks for high performance polyurethane-based polymers that make up coatings, foams, adhesives, elastomers, and insulation. Concerns over exposure to residual isocyanates led to new limits for residual isocyanates in new products. Traditional analytical methods for measuring the residual isocyanate (NCO) concentration using offline sampling and analysis raise concerns. In situ monitoring with process analytical technology addresses these challenges and enables manufacturers and formulators to ensure that product quality specifications, personnel safety, and environmental regulations are met.

Measuring Polymerization Reactions

Měření a pochopení polymeračních reakcí, mechanismů, kinetiky, reakčních poměrů a aktivačních energií přimělo výzkumníky zavést in situ infračervenou spektroskopii coby rutinní techniku pro získávání komplexních a informačně bohatých dat, která se využívají k pokročení ve výzkumu v kratším časovém rámci.

Impurity Profiling of Chemical Reactions

Knowledge of impurity kinetics and mechanism of formation is important in determining reaction end-point in chemical and process development studies. Accurate, reproducible, and representative reactions samples are necessary for these studies.

Chemical Reaction Kinetics Studies

In situ chemical reaction kinetics studies provide an improved understanding of reaction mechanism and pathway by providing concentration dependences of reacting components in real-time. Continuous data over the course of a reaction allows for the calculation of rate laws with fewer experiments due to the comprehensive nature of the data.  Reaction Progression Kinetics Analysis (RPKA) uses in situ data under synthetically relevant concentrations and captures information throughout the whole experiment ensuring that the complete reaction behavior can be accurately described.

Průtoková chemie

Průtoková chemie (občas taky nazývaná chemie laminárního toku, mikrochemie nebo chemie kontinuálního toku) otevírá možnosti využití exotermických syntetizačních kroků, které nejsou u dávkových reaktorů možné, a nový rozvoj v oblasti konstrukce průtokových reaktorů umožňuje využití alternativních reakcí, které jsou u dávkových směsných reaktorů omezeny. Výsledkem tak může být vyšší kvalita produktů a vyšší výnos.  V kombinaci s procesní analytickou technologií (PAT) umožňuje průtoková chemie rychlé provedení analýzy, optimalizace a převedení chemické reakce do praxe.

Grignard Reaction Mechanisms

Grignard reactions are one of the most important reaction classes in organic chemistry. Grignard reactions are useful for forming carbon-carbon bonds. Grignard reactions form alcohols from ketones and aldehydes, as well as react with other chemicals to form a myriad of useful compounds. Grignard reactions are performed using a Grignard reagent, which is typically a alkyl-, aryl- or vinyl- organomagnesium halide compound. To ensure optimization and safety of Grignard reactions in research, development and production, in situ monitoring and understanding reaction heat flow is important.

Hydrogenation Reactions

Hydrogenační reakce se široce používají při výrobě velkoobjemových a jemných chemikálií pro redukci vícenásobných vazeb na jednoduché. Katalyzátory se obvykle používají na podporu těchto reakcí, přičemž reakční teplota, tlak, zatížení substrátu, zatížení katalyzátoru a intenzita míchání společně působí na absorpci plynného vodíku a celkový výkon reakce. Důkladné pochopení této intenzivní reakce je důležité a PAT technologie, jako je in situ FTIR, kalorimetrie a automatické in situ vzorkování na podporu analýzy HPLC zajišťují bezpečné, optimalizované a dobře charakterizované chemické procesy.

Highly Reactive Chemistries

Highly reactive chemistry is a terminology used to describe chemical reactions that are particularly challenging to handle and develop due to the potentially hazardous and/or energetic nature of the reactants, intermediates and products that are present during synthesis. These chemistries often involve highly exothermic reactions which require specialized equipment or extreme operating conditions (such as low temperature) to ensure adequate control. Ensuring safe operating conditions, minimizing human exposure, and gaining the maximum amount of information from each experiment are key factors in successfully designing and scaling-up highly reactive chemistries.

High Pressure Reactions

Many processes require reactions to be run under high pressure. Working under pressure is challenging and collecting samples for offline analysis is difficult and time consuming. A change in pressure could affect reaction rate, conversion and mechanism as well as other process parameters plus sensitivity to oxygen, water, and associated safety issues are common problems.

Hydroformylation or Oxo Synthesis/Process

Hydroformylation, or oxo synthesis/process, is important for the production of olefins to aldehydes and aldehydes from alkenes. Hydroformylation reactions are performed at high pressure and can be challenging to sample due to the extreme reaction conditions, as well as the toxic, flammable, and reactive raw materials and reagents.

Catalytic Reactions

Catalysts create an alternative path to increase the speed and outcome of a reaction, so a thorough understanding of the reaction kinetics is important. Not only does that provide information about the rate of the reaction, but also provides insight into the mechanism of the reaction. There are two types of catalytic reactions: heterogeneous and homogeneous. Heterogeneous is when the catalyst and reactant exist in two different phases. Homogeneous is when the catalyst and the reactant are in the same phase..

synthesis reactions

One of the four major classes of chemical reactions, synthesis reactions are represented by important examples in organic synthesis, catalyzed chemistry, polymerizations and inorganic/organometallic chemistry. In the simplest case, a synthesis reaction occurs when two molecules combine to form a third, more complex product molecule. Often, synthesis reactions are more complex and require a thorough understanding of the kinetics and mechanisms of the underlying chemistry, as well as carefully controlled reaction conditions.

Návrh experimentů (DoE)

Návrh experimentů (DoE) vyžaduje provedení experimentů za kontrolovaných a reprodukovatelných podmínek v optimalizaci chemické reakce. Reaktory pro chemickou syntézu jsou navrženy tak, aby pomáhaly s návrhem experimentů a poskytovaly vysoce kvalitní data.

Fourier Transform Infrared (FTIR) Spectroscopy For Real-Time Monitoring Of Chemical Reactions

Reaction mechanisms describe the successive steps at the molecular level that take place in a chemical reaction. Reaction mechanisms cannot be proven, but rather postulated based on empirical experimentation and deduction. In situ FTIR spectroscopy provides information to support reaction mechanisms hypotheses.

Organometallic Synthesis

Organometallic Synthesis, or Organometallic Chemistry, refers to the process of creating organometallic compounds, and is among the most actively researched areas in chemistry. Organometallic compounds are frequently used in fine chemical syntheses and to catalyze reactions. In situ Infrared and Raman spectroscopy are among the most powerful analytical methods for the study of organometallic compounds and syntheses.

Oligonucleotide synthesis is the chemical process by which nucleotides are specifically linked to form a desired sequenced product. The repetitive cyclic nature of the synthesis used in producing these biopolymers requires careful control of reaction variables, as well as step-wise reaction tracking and purity assurance to ensure that the desired sequence is attained. PAT methodology supports the development and production of these important biomolecules.

Alkylation is the process by when an alkyl group is added to a substrate molecule. There are many different alkylating reagents and types of alkylating reactions, and thus it is a widely used technique in organic chemistry. Alkylation is important for manufacturing in the petroleum and commodity chemicals industries, as well as in medicine, since many chemotherapy drugs are alkylating agents. The breadth of reaction types, conditions, and the economic importance of alkylation necessitates thorough understanding, control, and monitoring of alkylation reactions.

Publikace ke stažení

Publications on Synthetic Organic Chemistry

White Papers

Nové techniky syntézy molekul
Pokroky v organické chemii umožňují výzkumným pracovníkům rozšiřovat výzkum a vývoj molekul a optimalizovat procesní podmínky. Nová bílá kniha předsta...
Chemická syntéza bez baněk s kulatým dnem
Learn how to improve your organic synthesis!This white paper discusses new methodologies for organic synthesis including how to: Cool and heat without...
Metal Catalyzed Transformations Using In Situ Spectroscopy
Kvalita mnoha experimentů, zejména v oblasti analýzy reakcí, do značné míry závisí na schopnosti stanovit přesný okamžik zahájení a dokončení reakce....
In-situ sledování chemických reakcí
Jak zvládnout více práce s menším množstvím zdrojů: to je dlouhodobé téma pro každou chemickou vývojovou laboratoř, ve které musí výzkum rychle a s co...
Bílá kniha: Procesní FTIR pro bezpečnou redukci tetrahydridoboritanem sodným
John O'Reilly z irské pobočky Roche popisuje udržitelný systém procesní analytické technologie (PAT) s využitím procesní FTIR pro bezpečný provoz zaří...
o monitoringu reakcí v reálném čase: Tandemová hydroformylace/hydrogenace
In situ monitoring mid-FTIR procesu v reálném čase vede k lepšímu porozumění aktivity a odolnosti katalyzátoru. Vědci na tokijské univerzitě používají...
Grignard Reaction Scale-up
Exothermic chemical reactions pose inherent risks – especially during scale-up. Published studies from top chemical and pharmaceutical companies show...
Rychlá analýza experimentů pro optimalizaci průběžných reakcí
Bílá kniha „Rychlá analýza experimentů pro optimalizaci průběžných chemických reakcí“ se zabývá problematikou optimalizace chemických reakcí.
3 Reaction Monitoring Case Studies
In this whitepaper, three case studies carried out at GlaxoSmithKline (GSK) demonstrate how probe-based and real-time FTIR instrumentation helped to c...
Moderní syntetická laboratoř
Tato bílá kniha je určena chemickým laboratořím a obsahuje postupy, jak rozšířit možnosti experimentů, automatizovat únavné úkony a shromažďovat kvali...
Profilování chemických reakcí: přehled
Bílá kniha „In-situ profilování reakcí: přehled literatury“ obsahuje 20 příkladů z akademických institucí, které používají in-situ FTIR spektroskopii...
Reaction Insight from Every Experiment
This paper presents five examples taken from recent journal articles in which HPLC alone was not sufficient to provide the insight scientists needed....

Webinars

Hydrogenation Under High Pressure
This presentation discusses the implementation of Fourier Transform Infrared (FTIR) reaction monitoring technology to provide knowledge and understand...
Vývoj chemických procesů ve společnosti Merck
Shane Grosser hovoří o nových nástrojích a metodách používaných v laboratoři společnosti Merck pro intenzifikaci vývoje procesů, jejichž cílem je uryc...
Reaction Kinetics Progress Analysis Ryan Baxter
This webinar explores a graphical analysis approach to rationalize unusual kinetics in C-H activations. The Reaction Progress Kinetic Analysis (RPKA)...
Hydrogenation Under High Pressure
This presentation discusses the implementation of Fourier Transform Infrared (FTIR) reaction monitoring technology to provide knowledge and understand...
DoE to Peptide Synthesis
Learn how Design of Experiments (DoE) is applied to chemical synthesis at Lonza Peptide.
New Radical Reactions Enabled by In Situ Reaction Monitoring
Presented by Professor Ryan Baxter of the University of California-Merced, this on-demand webinar discusses research that involved new radical reactio...
Process Development and Kinetic Understanding
Presented by Eric Moschetta, this on-demand webinar describes how AbbVie built a robust kinetic model to understand a late stage API process
Alkylation Reaction Development
Kevin Stone discusses how Merck Chemical Engineering Research & Development (CERD) leverages process fingerprinting tools in the development of an Alk...

Podobné produkty

Synthetic Organic Chemistry Tools

Thank you for visiting www.mt.com. We have tried to optimize your experience while on the site, but we noticed that you are using an older version of a web browser. We would like to let you know that some features on the site may not be available or may not work as nicely as they would on a newer browser version. If you would like to take full advantage of the site, please update your web browser to help improve your experience while browsing www.mt.com.