Polymerization Reaction Measuring | Methods & Techniques in Polymer Chemistry

Polymerization Reactions

Methods and Techniques to Develop Synthetic Polymer Chemistry

Zavolejte nám pro individuální nabídku


Polymerization Reaction Definition
Types of Polymerization Reactions
Measure Polymerization Reactions
ABC Triblock Copolymer Development Case Study
ReactIR Ready
Novel Silicone Synthesis via Polymerization
SIlicone Polymerization

Technology for Understanding Polymerization Reactions
Reactors for Polymerization Reactions

Aplikace

Applications Related to Polymerization Reactions

Control Residual Isocyanate
Process Analytical Technology for Continuous Measurement of NCO

Isocyanates are critical building blocks for high performance polyurethane-based polymers that make up coatings, foams, adhesives, elastomers, and insulation. Concerns over exposure to residual isocyanates led to new limits for residual isocyanates in new products. Traditional analytical methods for measuring the residual isocyanate (NCO) concentration using offline sampling and analysis raise concerns. In situ monitoring with process analytical technology addresses these challenges and enables manufacturers and formulators to ensure that product quality specifications, personnel safety, and environmental regulations are met.

Key Syntheses in Pharmaceutical and Polymer Chemistry

Compounds containing fluorine are important in pharmaceutical and polymer industry applications. Fluorination chemistry occurs when a fluorine atom is introduced into an organic compound. The nature of the substrate molecule, the type of fluorine source and reaction conditions control the kinetics, thermodynamics and overall safety of a fluorination reaction. Fluorinations can be very energetic and specificity can be difficult to control. For this reason, understanding these reactions from a kinetics and thermodynamic perspective is critical to ensuring yield, quality and safety. For these reasons, in situ spectroscopy, automated sampling, and automated laboratory reactors are invaluable technologies for reactions that use fluorine or fluorine compounds for to perform fluorinations.

Control Residual Isocyanate

Isocyanates are critical building blocks for high performance polyurethane-based polymers that make up coatings, foams, adhesives, elastomers, and insulation. Concerns over exposure to residual isocyanates led to new limits for residual isocyanates in new products. Traditional analytical methods for measuring the residual isocyanate (NCO) concentration using offline sampling and analysis raise concerns. In situ monitoring with process analytical technology addresses these challenges and enables manufacturers and formulators to ensure that product quality specifications, personnel safety, and environmental regulations are met.

Compounds containing fluorine are important in pharmaceutical and polymer industry applications. Fluorination chemistry occurs when a fluorine atom is introduced into an organic compound. The nature of the substrate molecule, the type of fluorine source and reaction conditions control the kinetics, thermodynamics and overall safety of a fluorination reaction. Fluorinations can be very energetic and specificity can be difficult to control. For this reason, understanding these reactions from a kinetics and thermodynamic perspective is critical to ensuring yield, quality and safety. For these reasons, in situ spectroscopy, automated sampling, and automated laboratory reactors are invaluable technologies for reactions that use fluorine or fluorine compounds for to perform fluorinations.

Publikace ke stažení

Publications Related to Polymerization Reactions

On-Demand Webinars

Professor Robson Storey - University of Southern Mississippi
Real-time in situ mid-infrared monitoring of polymerization reactions involving isobutylene and styrene is the focus of this presentation. Professor R...
Polymerization Process Monitoring
This presentation discusses polymerization process monitoring and how the value of real-time in situ Fourier Transform Infrared (FTIR) spectroscopy co...
Improve Emulsion Stability
Particle or droplet size is critical to improve the stability of emulsions and liquid formulations. Ideally, scientists and engineers accelerate their...
Reakční kalorimetrie v chemickém průmyslu
Tento webinář je zaměřen na aplikace a význam mísení a reakční kalorimetrie v procesech v chemickém průmyslu. Součástí je také řada případových studií...

Additional Resources

Control Residual Isocyanate
Isocyanate are the most critical building blocks for the performance polyurethane-based polymers that make up coatings, foams, adhesives, elastomers,...
Mechanistic Insights to Reactions
Two recently published chemical reaction kinetics studies examples are introduced from researchers at Bristol-Myers Squibb, Scripps, and University of...
Heat Transport in Agitated Vessels
This application note describes how reaction calorimetry provides accurate measurement of the thermal resistances and the heat evolved from reactions...
In-situ sledování chemických reakcí
Jak zvládnout více práce s menším množstvím zdrojů: to je dlouhodobé téma pro každou chemickou vývojovou laboratoř, ve které musí výzkum rychle a s co...
Analýza velikosti částic pro optimalizaci procesů
Tato bílá kniha předkládá nejčastější přístupy k analýze velikosti částic a způsoby, jak lze tyto přístupy používat k zajištění efektivní výroby vysoc...
Studie efektivní DoE
Technika plánovaných experimentů (Design of Experiments – DoE) umožňuje souběžně zkoumat několik faktorů ve snaze identifikovat mezi nimi relevantní f...

Podobné produkty

Products for Measuring Polymerization Reactions