Übersättigungskristallisation | METTLER TOLEDO

Entwicklung von Übersättigung und Kristallisation

Die treibende Kraft für Keimbildung und Wachstum von Kristallen

Übersättigung von Kristallisationsprozessen
Die Bedeutung der Übersättigung für Keimbildung und Wachstum von Kristallen
Kristallkeimbildung und Wachstum
Leitfaden zur Kristallisationsentwicklung
Kristallisationstechnologie
Überwachung und Steuerung von Übersättigung bei der Kristallisation
Kristallisation mit Übersättigungskontrolle
Entwicklung von Kristallisationsprozessen

Applikationen

Anwendungen zur treibenden Kraft für die Keimbildung und das Wachstum von Kristallen

Polymorphe Umwandlung
Grundlegendes zu Polymorphie und den Auswirkungen von Prozessparametern

Polymorphie ist ein häufiges Phänomen vieler kristalliner Feststoffe in der Pharma- und feinchemischen Industrie. Wissenschaftler kristallisieren bewusst ein gewünschtes Polymorph, um die Eigenschaften bei der Isolierung zu verbessern, Herausforderungen bei nachgelagerten Prozessen zu überwinden, die Bioverfügbarkeit zu erhöhen oder Patentkonflikte zu vermeiden. Durch die Identifikation polymorpher und morphologischer Transformationen in situ und in Echtzeit werden unerwartete Prozessprobleme, nicht konforme Produkte und kostspielige Wiederaufbereitungen von Material vermieden.

Optimierung von Kristalleigenschaften und der Prozessleistung

Wissenschaftler rekristallisieren hochwertige chemische Verbindungen, um ein Kristallprodukt mit den gewünschten physikalischen Eigenschaften bei optimaler Prozesseffizienz zu erzeugen. Es sind sieben Schritte erforderlich, um den idealen Rekristallisationsprozess zu entwerfen. Dieser reicht von der Auswahl des richtigen Lösungsmittels bis zum Erhalt eines trockenen Kristallprodukts. Dieser Rekristallisationsleitfaden erklärt Schritt für Schritt, wie ein Rekristallisationsprozess entwickelt wird. Es wird erläutert, welche Informationen auf welcher Ebene der Rekristallisation erforderlich sind und wie wesentliche Prozessparameter gesteuert werden können.

Solubility and Metastable Zone Width (mzw) Determination
Die Bausteine der Kristallisation

Löslichkeitskurven werden häufig eingesetzt, um das Verhältnis von Löslichkeit, Temperatur und Lösungsmittelart darzustellen. Durch Auftragen der Temperatur gegen die Löslichkeit können Wissenschaftler den Parameterraum erstellen, den sie zur Entwicklung des gewünschten Kristallisationsprozesses benötigen. Sobald ein geeignetes Lösungsmittel ausgewählt ist, wird die Löslichkeitskurve zu einem wichtigen Instrument für die Entwicklung eines effizienten Kristallisationsprozesses.

Crystal Nucleation and Growth
Die treibende Kraft für Keimbildung und Wachstum von Kristallen

Wissenschaftler und Ingenieure können Kristallisationsprozesse kontrollieren, indem sie den Grad der Übersättigung während des Prozesses vorsichtig anpassen. Die Übersättigung ist die treibende Kraft für die Keimbildung und das Wachstum der Kristallisation und bestimmt schliesslich die finale Kristallgrössenverteilung.

Measure Crystal Size Distribution
Verbesserung der Kristallisation mittels Inline-Messung der Partikelgrösse und -form sowie der Anzahl

In-Process sondenbasierte Technologien werden eingesetzt, um Partikelgrössen und Formänderungen bei voller Konzentration ohne erforderliche Verdünnung oder Aufbereitung nachzuverfolgen. Durch die Verfolgung der Rate und des Änderungsgrades von Partikeln und Kristallen in Echtzeit können die korrekten Prozessparameter für die Kristallisationsleistung optimiert werden.

Impfprotokoll für Kristallisationsprozesse
Design und Optimierung eines Seeding-Protokolls für eine verbesserte Batch-Konsistenz

Das Impfen ist einer der kritischsten Schritte bei der Optimierung des Kristallisationsverhaltens. Bei der Entwicklung einer Impfstrategie sind zahlreiche Parameter zu berücksichtigen, z. B. die Impfkristallgröße, Impfmenge (Masse) und Temperatur bei der Zugabe der Impfung. Diese Parameter werden in der Regel gemäß der Prozesskinetik und den gewünschten abschließenden Partikeleigenschaften optimiert und müssen während des Scale-Ups und Technologietransfers konsistent bleiben.

Particle Engineering and Wet Milling
Control Particle Size With High Shear Wet Milling

Milling of dry powders can cause significant yield losses and can generate dust, creating health and safety hazards. In response to this, wet milling produces particles with a specifically designed size distribution. It is now common to employ high shear wet milling to break large primary crystals and agglomerates into fine particles.

Anti-Lösungsmittelzugabe bei Übersättigung
Wie durch Lösungsmittelzugabe die Kristallgrösse und -anzahl kontrolliert werden kann

Bei einer Anti-Lösungsmittel-Kristallisation wirken sich die Lösungsmittelzugaberate, der Zugabeort und die Mischung auf die lokale Übersättigung in einem Gefäss oder einer Pipeline aus. Wissenschaftler und Ingenieure ändern die Kristallgrösse und -anzahl durch Anpassung des Anti-Lösungsmittelzugabeprotokolls und des Übersättigungsniveaus.

Der Einfluss der Temperatur auf Kristallisationsgröße und -form
Übersättigungskontrolle zur Optimierung von Kristallgröße und -form

Das Abkühlprofil hat einen grossen Einfluss auf die Übersättigung und die Kristallisationskinetik. Die Prozesstemperatur ist optimiert, um die Oberfläche der Kristalle für ein optimales Wachstum gegenüber der Keimbildung anzupassen.Modernste Techniken bieten eine Temperaturregelung zur Änderung der Übersättigung und der Kristallgröße und -form.

Der Einfluss der Temperatur auf Kristallisationsgröße und -form
Skalierung von Rühr-, Dosier- und Kristallisationsverfahren

Eine veränderte Skalierung oder wechselnde Mischbedingungen in einem Kristallisator können sich direkt auf die Kinetik des Kristallisationsverfahrens und die Endgröße der Kristalle auswirken. Die Auswirkungen der Wärme- und Massenübertragung spielen eine erheblich Rolle für Kühl- und Anti-Solventien-Systeme, bei denen Temperatur- und Konzentrationsgradienten zu einer Inhomogenität im vorwiegenden Übersättigungsniveau führen können.

Chemische Prozessentwicklung und Scale-up
Design robuster und nachhaltiger chemischer Prozesse für einen beschleunigten Transfer auf Pilotanlagen und in die Produktion

Design robuster und nachhaltiger chemischer Prozesse für den beschleunigten Transfer auf Pilotanlagen und die Produktionsebene

Diagramme zur Bestimmung der Reaktionskinetik
Untersuchung der Geschwindigkeit chemischer Reaktionen und Inline-Messung der Reaktionskinetik

In-situ-Studien zur Kinetik chemischer Reaktionen verbessern das Verständnis von Reaktionsmechanismen und -pfaden durch die Echtzeit-Erfassung der Konzentrationsabhängigkeiten zwischen reagierenden Komponenten. Durch kontinuierliche Datenerfassung während der Reaktion können Geschwindigkeitsgleichungen aufgrund der aussagekräftigen Daten mit weniger Versuchen berechnet werden. Bei der kinetischen Analyse des Reaktionsverlaufs (Reaction Progression Kinetics Analysis, RPKA) werden In-situ-Daten unter synthetisch relevanten Konzentrationen verwendet und Informationen während des gesamten Versuchs erfasst. Dadurch wird eine genaue Beschreibung des gesamten Reaktionsverhaltens gewährleistet.

Polymorphe Umwandlung

Polymorphie ist ein häufiges Phänomen vieler kristalliner Feststoffe in der Pharma- und feinchemischen Industrie. Wissenschaftler kristallisieren bewusst ein gewünschtes Polymorph, um die Eigenschaften bei der Isolierung zu verbessern, Herausforderungen bei nachgelagerten Prozessen zu überwinden, die Bioverfügbarkeit zu erhöhen oder Patentkonflikte zu vermeiden. Durch die Identifikation polymorpher und morphologischer Transformationen in situ und in Echtzeit werden unerwartete Prozessprobleme, nicht konforme Produkte und kostspielige Wiederaufbereitungen von Material vermieden.

Wissenschaftler rekristallisieren hochwertige chemische Verbindungen, um ein Kristallprodukt mit den gewünschten physikalischen Eigenschaften bei optimaler Prozesseffizienz zu erzeugen. Es sind sieben Schritte erforderlich, um den idealen Rekristallisationsprozess zu entwerfen. Dieser reicht von der Auswahl des richtigen Lösungsmittels bis zum Erhalt eines trockenen Kristallprodukts. Dieser Rekristallisationsleitfaden erklärt Schritt für Schritt, wie ein Rekristallisationsprozess entwickelt wird. Es wird erläutert, welche Informationen auf welcher Ebene der Rekristallisation erforderlich sind und wie wesentliche Prozessparameter gesteuert werden können.

Solubility and Metastable Zone Width (mzw) Determination

Löslichkeitskurven werden häufig eingesetzt, um das Verhältnis von Löslichkeit, Temperatur und Lösungsmittelart darzustellen. Durch Auftragen der Temperatur gegen die Löslichkeit können Wissenschaftler den Parameterraum erstellen, den sie zur Entwicklung des gewünschten Kristallisationsprozesses benötigen. Sobald ein geeignetes Lösungsmittel ausgewählt ist, wird die Löslichkeitskurve zu einem wichtigen Instrument für die Entwicklung eines effizienten Kristallisationsprozesses.

Crystal Nucleation and Growth

Wissenschaftler und Ingenieure können Kristallisationsprozesse kontrollieren, indem sie den Grad der Übersättigung während des Prozesses vorsichtig anpassen. Die Übersättigung ist die treibende Kraft für die Keimbildung und das Wachstum der Kristallisation und bestimmt schliesslich die finale Kristallgrössenverteilung.

Measure Crystal Size Distribution

In-Process sondenbasierte Technologien werden eingesetzt, um Partikelgrössen und Formänderungen bei voller Konzentration ohne erforderliche Verdünnung oder Aufbereitung nachzuverfolgen. Durch die Verfolgung der Rate und des Änderungsgrades von Partikeln und Kristallen in Echtzeit können die korrekten Prozessparameter für die Kristallisationsleistung optimiert werden.

Impfprotokoll für Kristallisationsprozesse

Das Impfen ist einer der kritischsten Schritte bei der Optimierung des Kristallisationsverhaltens. Bei der Entwicklung einer Impfstrategie sind zahlreiche Parameter zu berücksichtigen, z. B. die Impfkristallgröße, Impfmenge (Masse) und Temperatur bei der Zugabe der Impfung. Diese Parameter werden in der Regel gemäß der Prozesskinetik und den gewünschten abschließenden Partikeleigenschaften optimiert und müssen während des Scale-Ups und Technologietransfers konsistent bleiben.

Particle Engineering and Wet Milling

Milling of dry powders can cause significant yield losses and can generate dust, creating health and safety hazards. In response to this, wet milling produces particles with a specifically designed size distribution. It is now common to employ high shear wet milling to break large primary crystals and agglomerates into fine particles.

Anti-Lösungsmittelzugabe bei Übersättigung

Bei einer Anti-Lösungsmittel-Kristallisation wirken sich die Lösungsmittelzugaberate, der Zugabeort und die Mischung auf die lokale Übersättigung in einem Gefäss oder einer Pipeline aus. Wissenschaftler und Ingenieure ändern die Kristallgrösse und -anzahl durch Anpassung des Anti-Lösungsmittelzugabeprotokolls und des Übersättigungsniveaus.

Der Einfluss der Temperatur auf Kristallisationsgröße und -form

Das Abkühlprofil hat einen grossen Einfluss auf die Übersättigung und die Kristallisationskinetik. Die Prozesstemperatur ist optimiert, um die Oberfläche der Kristalle für ein optimales Wachstum gegenüber der Keimbildung anzupassen.Modernste Techniken bieten eine Temperaturregelung zur Änderung der Übersättigung und der Kristallgröße und -form.

Der Einfluss der Temperatur auf Kristallisationsgröße und -form

Eine veränderte Skalierung oder wechselnde Mischbedingungen in einem Kristallisator können sich direkt auf die Kinetik des Kristallisationsverfahrens und die Endgröße der Kristalle auswirken. Die Auswirkungen der Wärme- und Massenübertragung spielen eine erheblich Rolle für Kühl- und Anti-Solventien-Systeme, bei denen Temperatur- und Konzentrationsgradienten zu einer Inhomogenität im vorwiegenden Übersättigungsniveau führen können.

Chemische Prozessentwicklung und Scale-up

Design robuster und nachhaltiger chemischer Prozesse für den beschleunigten Transfer auf Pilotanlagen und die Produktionsebene

Diagramme zur Bestimmung der Reaktionskinetik

In-situ-Studien zur Kinetik chemischer Reaktionen verbessern das Verständnis von Reaktionsmechanismen und -pfaden durch die Echtzeit-Erfassung der Konzentrationsabhängigkeiten zwischen reagierenden Komponenten. Durch kontinuierliche Datenerfassung während der Reaktion können Geschwindigkeitsgleichungen aufgrund der aussagekräftigen Daten mit weniger Versuchen berechnet werden. Bei der kinetischen Analyse des Reaktionsverlaufs (Reaction Progression Kinetics Analysis, RPKA) werden In-situ-Daten unter synthetisch relevanten Konzentrationen verwendet und Informationen während des gesamten Versuchs erfasst. Dadurch wird eine genaue Beschreibung des gesamten Reaktionsverhaltens gewährleistet.

Publikationen

Publikationen zur treibenden Kraft für die Keimbildung und das Wachstum von Kristallen

White Paper

Einblicke in die Kristallisation mit In-Situ-Mikroskopie
Dynamische Prozesse, die bei der Analyse von Kristallisationsvorgängen von grosser Bedeutung sind, können nun mithilfe der In-Situ-Mikroskopie beobach...
Entwicklung effektiver Kristallisationsprozesse
Die Qualität des Kristallisationsprozesses hat einen grossen Einfluss auf die Qualität des Endprodukts. In unserem neuen White Paper werden die Grundl...
Strategien zur Kontrolle der Kristallgrössenverteilung
In diesem White Paper werden Strategien zur Optimierung der Kristallgrössenverteilung bei der Prozessentwicklung und Herstellung beschrieben.
Verbesserung der industriellen Kristallisation
Die industrielle Kristallisation ist ein entscheidender Abscheidungs- und Reinigungsschritt in der chemischen Industrie. Dieses White Paper erläutert...
Impfung eines Kristallisationsprozesses
Das Impfen ist ein wichtiger Schritt zur Optimierung von Kristallisationsprozessen, um eine gleichmässige Filtrationsrate, einen kontinuierlichen Ertr...
Scale-up in der Batch-Kristallisation vom Labor in die Produktion
Die Echtzeitüberwachung der Kristallisation bietet Vorteile, die sich in verbesserte Methoden für die Verfahrensentwicklung, Optimierung und das Scale...
„Best Practises“ für die Entwicklung von Kristallisationsprozessen
Dieses Whitepaper beschreibt die Methodik von Chemikern bei der Optimierung kritischer Kristallisationsparameter
Partikelgrössenanalyse zur Prozessoptimierung
In diesem White Paper werden einige der gängigsten Methoden zur Partikelgrössenanalyse vorgestellt. Zudem wird erläutert, wie diese für die effektive...

Webinare

PAT-basierte Entwicklung kontinuierlicher Kristallisationen
Diskutiert wird eine PAT-unterstützte (Prozessanalysetechnologie) Entwicklungsmethodik, welche eine schnelle Untersuchung und Bewertung unterschiedlic...
Eliminating Micronization Using Fine Particle Crystallization
Crystal engineering is applied when the crystal size distribution is too large to meet downstream specifications. By designing the crystallization to...
Kalibrierfreie Bewertung und Kontrolle von Übersättigung für die Entwicklung und Optimierung von Kristallisationsprozessen
Die quantitative in-situ ATR-FTIR Spektroskopie für die online Bewertung der Übersättigung bei Kristallisationsprozessen wurde in der einschlägigen Li...
metastable zone width (MSZW) crystallization
The webinar focuses on a semi-quantitative method for the optimization and scale-up of hydrodynamically limited anti-solvent crystallization process....
Improving Crystallization and Precipitation
This webinar introduces case studies and highlights best practices used to overcome crystallization and precipitation challenges. The focus will be on...

Anwendungshinweise

Polymorph and Pseudo-polymorph Transition in-process monitoring of habit change
Improve purity by ensuring total polymorphic form conversion. Enhance process robustness by monitoring crystallization processes in real time. Charact...

Verwandte Produkte

Technologien zur treibenden Kraft für die Keimbildung und das Wachstum von Kristallen

Thank you for visiting www.mt.com. We have tried to optimize your experience while on the site, but we noticed that you are using an older version of a web browser. We would like to let you know that some features on the site may not be available or may not work as nicely as they would on a newer browser version. If you would like to take full advantage of the site, please update your web browser to help improve your experience while browsing www.mt.com.