A supersaturação é gerada reduzindo a solubilidade do produto em uma solução, geralmente por resfriamento ou adição de um antissolvente. A taxa na qual a solução é resfriada ou na qual o antissolvente é adicionado influencia diretamente no nível de supersaturação.
Neste exemplo, as soluções subsaturadas de ácido benzoico em misturas de etanol e água são preparadas e a água é adicionada a uma taxa fixa de 0,1 g/s e 0,2 g/s, respectivamente, em uma temperatura fixa de 25 °C. A concentração do líquido é medida em tempo real com Espectroscopia no Infravermelho por Transformada de Fourier in situ. Na figura à direita, é exibida a curva de solubilidade do ácido benzoico em misturas de etanol e água com perfis de superdessaturação para cada experimento. O perfil de superdessaturação mostra que a solução inicia na região subsaturada. Conforme água é acrescentada, o processo ultrapassa a curva de solubilidade e entra na região supersaturada. A concentração do líquido diminui no momento da nucleação de cristais e fica próxima à curva de solubilidade. No final do período de adição de antissolvente, a concentração de líquido cai para a curva de solubilidade. Quando o antissolvente é adicionado na taxa mais rápida, o nível de supersaturação é mais alto durante o processo devido a um acúmulo que não pôde ser aliviado rápido o suficiente por meio do crescimento e da nucleação de cristais.
Neste experimento, a alteração dos parâmetros do processo e supersaturação influenciam tanto no tamanho como na forma do cristal. Imagens capturadas com tecnologia PVM (ParticleView) ao final de cada experimento ilustram esse ponto (exibido à direita). A taxa de adição lenta produz placas alongadas, bem formadas e grandes, enquanto a taxa de adição rápida produz agulhas finas que se aglomeram imediatamente. Esse resultado mostra que por meio da alteração da supersaturação em um sistema de cristalização, é possível modificar o tamanho, a forma e o nível de aglomeração de cristais. Isso também demonstra a importância de entender e controlar o nível de supersaturação predominante.
Esse exemplo simples ilustra um princípio essencial:
Controlar as taxas de adição de antissolvente para controlar o tamanho do cristal é bem compreendido e estabelecido em princípios científicos sólidos. No entanto, o desenvolvimento e o aprimoramento do processo de cristalização eficaz e baseada em evidências são mais sutis. Por exemplo, gerar uma supersaturação em uma taxa rápida pode levar à criação de impurezas indesejadas na forma de fases de óleo transientes (a) ou formas polifórmicas indesejadas (b). De maneira semelhante, em uma tentativa de gerar cristais grandes, o tempo de ciclo não pode sempre ser sacrificado, o que significa que taxas de resfriamento ou de adição de antissolvente extremamente lentas não são possíveis.
Um método é apresentado para facilitar o uso livre de calibração de espectros ATR-FTIR in situ para a produção e o controle de trajetórias de supersaturação qualitativas.
Operações unitárias de cristalização oferecem a oportunidade exclusiva de direcionar e controlar uma distribuição otimizada do tamanho e da forma dos cristais para:
O polimorfismo é um fenômeno comum com muitos sólidos cristalinos na indústria farmacêutica e de química fina. Os cientistas cristalizam deliberadamente um polimorfo desejado para melhorar as propriedades de isolamento, ajudar a superar os desafios do processo nas etapas posteriores, aumentar a biodisponibilidade ou evitar conflitos de patentes. A identificação de transformações polimórficas e morfológicas in situ e em tempo real elimina a perturbação inesperada do processo, o produto fora da especificação e o caro reprocessamento de material.
O cientista recristaliza compostos químicos de alto valor para obter um produto de cristal com as propriedades físicas desejadas a uma eficiência de processo excelente. Sete etapas são necessárias para elaborar o processo ideal de recristalização, desde a escolha do solvente correto à obtenção de um produto de cristal seco. Este guia de recristalização explica passo a passo o procedimento de desenvolvimento do processo de recristalização. Ele explica quais informações são necessárias em cada etapa de recristalização e define como controlar parâmetros críticos de processo
As curvas de solubilidade são geralmente empregadas para ilustrar a relação entre solubilidade, temperatura e tipo de solvente. Ao representar a solubilidade em relação à temperatura com um gráfico, os cientistas podem criar o quadro necessário para desenvolver o processo de cristalização desejado. Depois que um líquido de solvente apropriado é escolhido, a curva de solubilidade torna-se uma ferramenta indispensável para o desenvolvimento de um processo de cristalização eficaz.
Os cientistas e engenheiros obtêm o controle dos processos de cristalização, controlando minuciosamente o nível de supersaturação durante o processo. A supersaturação é a força impulsora da nucleação e do crescimento da cristalização e acaba por determinar a distribuição final de tamanho dos cristais.
As tecnologias baseadas em sonda, internas ao processo, são aplicadas para controlar as alterações no tamanho e na forma das partículas em concentração total, sem a necessidade de qualquer diluição ou extração. Controlando a taxa e o grau de alteração de partículas e cristais em tempo real, é possível otimizar os parâmetros corretos do processo para o desempenho da cristalização.
A semeadura é uma das etapas mais importantes na otimização do comportamento da cristalização. Ao desenvolver uma estratégia de semeadura, é preciso considerar parâmetros como tamanho de semente, carregamento de sementes (massa) e temperatura durante a adição de sementes. Esses parâmetros são geralmente otimizados com base na cinética do processo e nas propriedades desejadas da partícula final, e devem permanecer consistentes durante o aumento de escala e a transferência de tecnologia.
A separação de fases líquido-líquido, ou efeito oiling out, é um mecanismo de partículas frequentemente difícil de detectar que pode ocorrer durante processos de Cristalização. Saiba mais.
Milling of dry powders can cause significant yield losses and can generate dust, creating health and safety hazards. In response to this, wet milling produces particles with a specifically designed size distribution. It is now common to employ high shear wet milling to break large primary crystals and agglomerates into fine particles.
Em uma cristalização de antissolvente, a taxa de adição de antissolvente, o local da adição e a mistura afetam a supersaturação local em um recipiente ou tubulação. Cientistas e engenheiros modificam o tamanho e a contagem de cristais por meio do ajuste do protocolo de adição de antissolvente e do nível de supersaturação.
O perfil de resfriamento tem um grande impacto na supersaturação e na cinética da cristalização. A temperatura do processo é otimizada para corresponder à área de superfície de cristais a fim de obter o crescimento ideal em comparação à nucleação. Técnicas avançadas oferecem controle de temperatura para modificar a supersaturação e o tamanho e a forma de cristais.
Mudar a escala ou as condições de agitação em um cristalizador pode afetar diretamente a cinética do processo de cristalização e o tamanho do cristal final. Efeitos de transferência de calor e massa devem ser considerados para sistemas de resfriamento e antissolvente, respectivamente, em que a temperatura ou os gradientes de concentração podem produzir falta de homogeneidade no nível de supersaturação predominante.
A cristalização de proteínas é o ato e o método de criação de retículos estruturados e organizados para macromoléculas frequentemente complexas.
Lactose crystallization is an industrial practice to separate lactose from whey solutions via controlled crystallization.
O polimorfismo é um fenômeno comum com muitos sólidos cristalinos na indústria farmacêutica e de química fina. Os cientistas cristalizam deliberadamente um polimorfo desejado para melhorar as propriedades de isolamento, ajudar a superar os desafios do processo nas etapas posteriores, aumentar a biodisponibilidade ou evitar conflitos de patentes. A identificação de transformações polimórficas e morfológicas in situ e em tempo real elimina a perturbação inesperada do processo, o produto fora da especificação e o caro reprocessamento de material.
O cientista recristaliza compostos químicos de alto valor para obter um produto de cristal com as propriedades físicas desejadas a uma eficiência de processo excelente. Sete etapas são necessárias para elaborar o processo ideal de recristalização, desde a escolha do solvente correto à obtenção de um produto de cristal seco. Este guia de recristalização explica passo a passo o procedimento de desenvolvimento do processo de recristalização. Ele explica quais informações são necessárias em cada etapa de recristalização e define como controlar parâmetros críticos de processo
As curvas de solubilidade são geralmente empregadas para ilustrar a relação entre solubilidade, temperatura e tipo de solvente. Ao representar a solubilidade em relação à temperatura com um gráfico, os cientistas podem criar o quadro necessário para desenvolver o processo de cristalização desejado. Depois que um líquido de solvente apropriado é escolhido, a curva de solubilidade torna-se uma ferramenta indispensável para o desenvolvimento de um processo de cristalização eficaz.
Os cientistas e engenheiros obtêm o controle dos processos de cristalização, controlando minuciosamente o nível de supersaturação durante o processo. A supersaturação é a força impulsora da nucleação e do crescimento da cristalização e acaba por determinar a distribuição final de tamanho dos cristais.
As tecnologias baseadas em sonda, internas ao processo, são aplicadas para controlar as alterações no tamanho e na forma das partículas em concentração total, sem a necessidade de qualquer diluição ou extração. Controlando a taxa e o grau de alteração de partículas e cristais em tempo real, é possível otimizar os parâmetros corretos do processo para o desempenho da cristalização.
A semeadura é uma das etapas mais importantes na otimização do comportamento da cristalização. Ao desenvolver uma estratégia de semeadura, é preciso considerar parâmetros como tamanho de semente, carregamento de sementes (massa) e temperatura durante a adição de sementes. Esses parâmetros são geralmente otimizados com base na cinética do processo e nas propriedades desejadas da partícula final, e devem permanecer consistentes durante o aumento de escala e a transferência de tecnologia.
A separação de fases líquido-líquido, ou efeito oiling out, é um mecanismo de partículas frequentemente difícil de detectar que pode ocorrer durante processos de Cristalização. Saiba mais.
Milling of dry powders can cause significant yield losses and can generate dust, creating health and safety hazards. In response to this, wet milling produces particles with a specifically designed size distribution. It is now common to employ high shear wet milling to break large primary crystals and agglomerates into fine particles.
Em uma cristalização de antissolvente, a taxa de adição de antissolvente, o local da adição e a mistura afetam a supersaturação local em um recipiente ou tubulação. Cientistas e engenheiros modificam o tamanho e a contagem de cristais por meio do ajuste do protocolo de adição de antissolvente e do nível de supersaturação.
O perfil de resfriamento tem um grande impacto na supersaturação e na cinética da cristalização. A temperatura do processo é otimizada para corresponder à área de superfície de cristais a fim de obter o crescimento ideal em comparação à nucleação. Técnicas avançadas oferecem controle de temperatura para modificar a supersaturação e o tamanho e a forma de cristais.
Mudar a escala ou as condições de agitação em um cristalizador pode afetar diretamente a cinética do processo de cristalização e o tamanho do cristal final. Efeitos de transferência de calor e massa devem ser considerados para sistemas de resfriamento e antissolvente, respectivamente, em que a temperatura ou os gradientes de concentração podem produzir falta de homogeneidade no nível de supersaturação predominante.
A cristalização de proteínas é o ato e o método de criação de retículos estruturados e organizados para macromoléculas frequentemente complexas.
Lactose crystallization is an industrial practice to separate lactose from whey solutions via controlled crystallization.