Process Control for Exothermic Reactions - METTLER TOLEDO

Process Control for Exothermic Reactions

Understand and Control Grignard Reaction Development and Scale-up With Process Analytical Technology

Tracking Reaction Initiation to Avoid Excessive Accumulation
Control Heat Release with PAT
PAT in Exothermic Chemistry
In Situ Reaction Monitoring

Applications

Applications Related to Process Control for Exothermic Reactions

Control Residual Isocyanate
Process Analytical Technology for Continuous Measurement of NCO

Isocyanates are critical building blocks for high performance polyurethane-based polymers that make up coatings, foams, adhesives, elastomers, and insulation. Concerns over exposure to residual isocyanates led to new limits for residual isocyanates in new products. Traditional analytical methods for measuring the residual isocyanate (NCO) concentration using offline sampling and analysis raise concerns. In situ monitoring with process analytical technology addresses these challenges and enables manufacturers and formulators to ensure that product quality specifications, personnel safety, and environmental regulations are met.

Measuring Polymerization Reactions
Comprehensive Understanding of Kinetics to Develop Synthetic Polymer Chemistry

Measuring and understanding polymerization reactions, mechanisms, kinetics, reactivity ratios, and activation energies lead researchers to employ in situ infrared spectroscopy as a routine technique to gain comprehensive, information-rich data that is used to advance research in a shorter time frame.

Impurity Profiling of Chemical Reactions
Continuous Automated Reaction Sampling Improves Productivity and Understanding for Chemists

Knowledge of impurity kinetics and mechanism of formation is important in determining reaction end-point in chemical and process development studies. Accurate, reproducible, and representative reactions samples are necessary for these studies.

Chemical Reaction Kinetics Studies
Study Chemical Reaction Rates and Measure Kinetics Inline

In situ chemical reaction kinetics studies provide an improved understanding of reaction mechanism and pathway by providing concentration dependences of reacting components in real-time. Continuous data over the course of a reaction allows for the calculation of rate laws with fewer experiments due to the comprehensive nature of the data.  Reaction Progression Kinetics Analysis (RPKA) uses in situ data under synthetically relevant concentrations and captures information throughout the whole experiment ensuring that the complete reaction behavior can be accurately described.

Flow Chemistry
Improve Safety, Reduce Cycle Time, Increase Quality and Yield

Continuous flow chemistry opens options with exothermic synthetic steps that are not possible in batch reactors, and new developments in flow reactor design provide alternatives for reactions that are mixing limited in batch reactors. This can often result in better product quality and higher yield.  When coupled with Process Analytical Technology (PAT), flow chemistry allows for rapid analysis, optimization, and scale-up of a chemical reaction.

Process Control for Exothermic Reactions
Understand and Control Grignard Reaction Development and Scale-up With Process Analytical Technology

Exothermic chemical reactions pose inherent risks, especially during scale-up. Risks include safety hazards, such as excessive pressure, contents discharge, or explosion, as well as product yield and purity degradation associated with any sharp temperature rise.  For example, inadequate control of Grignard reactions introduces safety concerns associated with the accumulation of the organic halide which, if undetected, can result in a catastrophic event leading to a runaway reaction.

Hydrogenation Reactions
Understand and Optimize Effects of Process Parameters on Hydrogenation Reactions

Studying hydrogenation reactions requires informed decisions to optimize the process in the laboratory and ensure it is repeatable on scale up. Continuous, real-time reaction measurements are applied to gain deep, fundamental process understanding. This is applied to make faster decisions to reduce the number of experiments and the time to scale-up the process; to increase selectivity/yield from almost instantaneous feedback on the direction of the reaction; to reduce cycle time and improve yield by determining the ideal endpoint by stopping a reaction at a specific time point and avoiding the risk of a byproduct formation.

Highly Reactive Chemistries
Scale-Up and Optimize Highly Reactive Chemistries

Highly reactive chemistry is a terminology used to describe chemical reactions that are particularly challenging to handle and develop due to the potentially hazardous and/or energetic nature of the reactants, intermediates and products that are present during synthesis. These chemistries often involve highly exothermic reactions which require specialized equipment or extreme operating conditions (such as low temperature) to ensure adequate control. Ensuring safe operating conditions, minimizing human exposure, and gaining the maximum amount of information from each experiment are key factors in successfully designing and scaling-up highly reactive chemistries.

High Pressure Reactions
Understand and Characterize High Pressure Reactions Under Challenging Sampling Conditions

Many processes require reactions to be run under high pressure. Working under pressure is challenging and collecting samples for offline analysis is difficult and time consuming. A change in pressure could affect reaction rate, conversion and mechanism as well as other process parameters plus sensitivity to oxygen, water, and associated safety issues are common problems.

Hydroformylation or Oxo Synthesis/Process
Understand Catalyst Activity

Hydroformylation, or oxo synthesis/process, is important for the production of olefins to aldehydes and aldehydes from alkenes. Hydroformylation reactions are performed at high pressure and can be challenging to sample due to the extreme reaction conditions, as well as the toxic, flammable, and reactive raw materials and reagents.

Catalytic Reactions
Accelerate Chemical Reactions With a Catalyst

Catalysts create an alternative path to increase the speed and outcome of a reaction, so a thorough understanding of the reaction kinetics is important. Not only does that provide information about the rate of the reaction, but also provides insight into the mechanism of the reaction. There are two types of catalytic reactions: heterogeneous and homogeneous. Heterogeneous is when the catalyst and reactant exist in two different phases. Homogeneous is when the catalyst and the reactant are in the same phase..

Providing Important Molecules for Research, Industry, and Commerce

One of the four major classes of chemical reactions, synthesis reactions are represented by many important examples in organic synthesis, catalyzed chemistry, polymerizations and inorganic/organometallic chemistry. In the simplest case, a synthesis reaction occurs when two molecules combine to form a third, more complex product molecule. In most cases, synthesis reactions are more complex and often require a thorough understanding of the kinetics and mechanism of the underlying chemistry as well as carefully controlled reaction conditions.

Design of Experiments (DoE)
A Statistical Approach to Reaction Optimization

Design of Experiments (DoE) requires experiments to be conducted under well-controlled and reproducible conditions in chemical process optimization. Chemical synthesis reactors are designed to perform DoE investigations ensuring high quality data.

Control Residual Isocyanate

Isocyanates are critical building blocks for high performance polyurethane-based polymers that make up coatings, foams, adhesives, elastomers, and insulation. Concerns over exposure to residual isocyanates led to new limits for residual isocyanates in new products. Traditional analytical methods for measuring the residual isocyanate (NCO) concentration using offline sampling and analysis raise concerns. In situ monitoring with process analytical technology addresses these challenges and enables manufacturers and formulators to ensure that product quality specifications, personnel safety, and environmental regulations are met.

Measuring Polymerization Reactions

Measuring and understanding polymerization reactions, mechanisms, kinetics, reactivity ratios, and activation energies lead researchers to employ in situ infrared spectroscopy as a routine technique to gain comprehensive, information-rich data that is used to advance research in a shorter time frame.

Impurity Profiling of Chemical Reactions

Knowledge of impurity kinetics and mechanism of formation is important in determining reaction end-point in chemical and process development studies. Accurate, reproducible, and representative reactions samples are necessary for these studies.

Chemical Reaction Kinetics Studies

In situ chemical reaction kinetics studies provide an improved understanding of reaction mechanism and pathway by providing concentration dependences of reacting components in real-time. Continuous data over the course of a reaction allows for the calculation of rate laws with fewer experiments due to the comprehensive nature of the data.  Reaction Progression Kinetics Analysis (RPKA) uses in situ data under synthetically relevant concentrations and captures information throughout the whole experiment ensuring that the complete reaction behavior can be accurately described.

Flow Chemistry

Continuous flow chemistry opens options with exothermic synthetic steps that are not possible in batch reactors, and new developments in flow reactor design provide alternatives for reactions that are mixing limited in batch reactors. This can often result in better product quality and higher yield.  When coupled with Process Analytical Technology (PAT), flow chemistry allows for rapid analysis, optimization, and scale-up of a chemical reaction.

Process Control for Exothermic Reactions

Exothermic chemical reactions pose inherent risks, especially during scale-up. Risks include safety hazards, such as excessive pressure, contents discharge, or explosion, as well as product yield and purity degradation associated with any sharp temperature rise.  For example, inadequate control of Grignard reactions introduces safety concerns associated with the accumulation of the organic halide which, if undetected, can result in a catastrophic event leading to a runaway reaction.

Hydrogenation Reactions

Studying hydrogenation reactions requires informed decisions to optimize the process in the laboratory and ensure it is repeatable on scale up. Continuous, real-time reaction measurements are applied to gain deep, fundamental process understanding. This is applied to make faster decisions to reduce the number of experiments and the time to scale-up the process; to increase selectivity/yield from almost instantaneous feedback on the direction of the reaction; to reduce cycle time and improve yield by determining the ideal endpoint by stopping a reaction at a specific time point and avoiding the risk of a byproduct formation.

Highly Reactive Chemistries

Highly reactive chemistry is a terminology used to describe chemical reactions that are particularly challenging to handle and develop due to the potentially hazardous and/or energetic nature of the reactants, intermediates and products that are present during synthesis. These chemistries often involve highly exothermic reactions which require specialized equipment or extreme operating conditions (such as low temperature) to ensure adequate control. Ensuring safe operating conditions, minimizing human exposure, and gaining the maximum amount of information from each experiment are key factors in successfully designing and scaling-up highly reactive chemistries.

High Pressure Reactions

Many processes require reactions to be run under high pressure. Working under pressure is challenging and collecting samples for offline analysis is difficult and time consuming. A change in pressure could affect reaction rate, conversion and mechanism as well as other process parameters plus sensitivity to oxygen, water, and associated safety issues are common problems.

Hydroformylation or Oxo Synthesis/Process

Hydroformylation, or oxo synthesis/process, is important for the production of olefins to aldehydes and aldehydes from alkenes. Hydroformylation reactions are performed at high pressure and can be challenging to sample due to the extreme reaction conditions, as well as the toxic, flammable, and reactive raw materials and reagents.

Catalytic Reactions

Catalysts create an alternative path to increase the speed and outcome of a reaction, so a thorough understanding of the reaction kinetics is important. Not only does that provide information about the rate of the reaction, but also provides insight into the mechanism of the reaction. There are two types of catalytic reactions: heterogeneous and homogeneous. Heterogeneous is when the catalyst and reactant exist in two different phases. Homogeneous is when the catalyst and the reactant are in the same phase..

One of the four major classes of chemical reactions, synthesis reactions are represented by many important examples in organic synthesis, catalyzed chemistry, polymerizations and inorganic/organometallic chemistry. In the simplest case, a synthesis reaction occurs when two molecules combine to form a third, more complex product molecule. In most cases, synthesis reactions are more complex and often require a thorough understanding of the kinetics and mechanism of the underlying chemistry as well as carefully controlled reaction conditions.

Design of Experiments (DoE)

Design of Experiments (DoE) requires experiments to be conducted under well-controlled and reproducible conditions in chemical process optimization. Chemical synthesis reactors are designed to perform DoE investigations ensuring high quality data.

Publications

Publications Related to Process Control for Exothermic Reactions

White Papers and Guides

Grignard Reaction Scale-up
Exothermic chemical reactions pose inherent risks – especially during scale-up. Published studies from top chemical and pharmaceutical companies show...
Guide to Reaction Calorimetry
Reaction Calorimetry provides an understanding of a chemical process and is a source of safety and scale-up information. Reaction calorimeters determi...
In Situ Monitoring of Chemical Reactions
'How to do more with less?' is a constant topic in chemical development laboratories as researchers need to quickly and cost-effectively deliver chemi...

Citations

ReactIR Citation List
Continuous measurements from infrared spectroscopy are widely used for obtaining reaction profiles, which are used to calculate reaction rates. This...

Related Products

Technology Related to Process Control of Exothermic Reactions

 
 
 
 
 
 
 
Thank you for visiting www.mt.com. We have tried to optimize your experience while on the site, but we noticed that you are using an older version of a web browser. We would like to let you know that some features on the site may not be available or may not work as nicely as they would on a newer browser version. If you would like to take full advantage of the site, please update your web browser to help improve your experience while browsing www.mt.com.