Hydroformylation or Oxo Synthesis/Process - METTLER TOLEDO

Hydroformylation or Oxo Synthesis/Process

Understand Catalyst Activity

Hydroformylation, or oxo synthesis/process, is important for the production of olefins to aldehydes and aldehydes from alkenes. Hydroformylation reactions are performed at high pressure and can be challenging to sample due to the extreme reaction conditions, as well as the toxic, flammable, and reactive raw materials and reagents.

In a hydroformylation, the catalyst is typically an expensive part of the process. Air oxidation of the active species is the first step in losing the valuable metal catalyst. In some cases, converting the catalyst back to active form can be accomplished, but at a cost to production and resources.

Hydroformylation or Oxo Synthesis/Process
Hydroformylation or Oxo Synthesis/Process

The ability to monitor the catalyst for activity and selectivity is key. Real-time in situ FTIR spectroscopy (ReactIR) enables the reaction to be followed without the need for sampling. It provides in-depth knowledge about the catalyst by monitoring the metal carbonyl bands in the 2200-1900cm-1 region where few other species absorb. The H2/CO ratio also affects the amount of active catalyst. Investigating different gas ratios and environments provides the ability to gain insight into the catalyst mechanism and selectivity. Catalyst intermediates can also be observed to elucidate their impact on product yield and purity.

Applications

Applications

Nitrobenzyl reduction
Gain insights into difficult chemistryGain insights into reaction performance and variableswhen conditions prohibit or complicate extractive sampling...

Publications

White Papers

In Situ Monitoring of Chemical Reactions
'How to do more with less?' is a constant topic in chemical development laboratories as researchers need to quickly and cost-effectively deliver chemi...

On-Demand Webinars

Impact of FTIR Studies on the Understanding of Asymmetric Rhodium Catalyzed Carbenoid Reactions
The use of Fourier Transform Infrared (FTIR) spectroscopy to understand the effect of catalyst, substrate, and carbenoid precursor on the rate and eff...
Scale-up Pressure Reactions
There is an increasing demand to run reactions at elevated pressures. Due to the nature of pressure chemistry, the reaction mass typically consists of...

Related Products

 
 
 
 
 
 
 
Thank you for visiting www.mt.com. We have tried to optimize your experience while on the site, but we noticed that you are using an older version of a web browser. We would like to let you know that some features on the site may not be available or may not work as nicely as they would on a newer browser version. If you would like to take full advantage of the site, please update your web browser to help improve your experience while browsing www.mt.com.