Crystallization & Precipitation | Definition, Steps, Equipment

Crystallization and Precipitation

Optimize Crystal Size, Yield and Purity with Crystallization Equipment

Call for Quote

crystallization in pharmaceutical industry
crystallization in pharmaceutical industry
crystal size distribution in crystallization
crystal size distribution in crystallization
crystallization industrial process
crystallization solvent quality

crystallization metastable zone
crystallization techniques
crystallization optimal cooling

automated lab reactors for crystallization
Particle Characterization tools for crystallization
in situ spectroscopy instruments for crystallization
Crystallizations with Dynochem

Applications

Application Guide to Crystallization Development and Scale-up

Optimization of Crystal Properties and Process Performance

Scientist recrystallize high value chemical compounds to obtain a crystal product with desired physical properties at optimal process efficiency. Seven steps are required to design the ideal recrystallization process from choosing the right solvent to obtaining a dry crystal product. This recrystallization guide explains step-by-step the procedure of developing a recrystallization process. It explains what information is required at each stage of recrystallization and outlines how to control critical process parameter

Solubility and Metastable Zone Width (mzw) Determination
The Building Blocks of Crystallization

Solubility curves are commonly used to illustrate the relationship between solubility, temperature, and solvent type. By plotting temperature vs. solubility, scientists can create the framework needed to develop the desired crystallization process. Once an appropriate solvent is chosen, the solubility curve becomes a critical tool for the development of an effective crystallization process.

Supersaturation
The Driving Force For Crystallization

Supersaturation occurs when a solution contains more solute than should be possible thermodynamically, given the conditions of the system. Supersaturation is considered a major driver for crystallization

Measure Crystal Size Distribution
Improve Crystallization with Inline Particle Size, Shape, and Count Measurement

In-process probe-based technologies are applied to track particle size and shape changes at full concentration with no dilution or extraction necessary. By tracking the rate and degree of change to particles and crystals in real time, the correct process parameters for crystallization performance can be optimized.

Crystallization Seeding Protocol
Design and Optimize Seeding Protocol for Improved Batch Consistency

Seeding is one of the most critical steps in optimizing crystallization behavior. When designing a seeding strategy, parameters such as: seed size, seed loading (mass), and seed addition temperature must be considered. These parameters are generally optimized based on process kinetics and the desired final particle properties, and must remain consistent during scale-up and technology transfer.

Oiling Out in Crystallization
Detect And Avoid Oiling Out (Liquid-Liquid Phase Separation)

Liquid-Liquid phase separation, or oiling out, is an often difficult to detect particle mechanism that can occur during crystallization processes. Learn more.

Particle Engineering and Wet Milling
Control Particle Size With High Shear Wet Milling

Milling of dry powders can cause significant yield losses and can generate dust, creating health and safety hazards. In response to this, wet milling produces particles with a specifically designed size distribution. It is now common to employ high shear wet milling to break large primary crystals and agglomerates into fine particles.

Anti-Solvent Addition on Supersaturation
How Solvent Addition Can Control Crystal Size and Count

In an antisolvent crystallization, the solvent addition rate, addition location and mixing impact local supersaturation in a vessel or pipeline. Scientists and engineers modify crystal size and count by adjusting antisolvent addition protocol and the level of supersaturation.

Temperature Effects Crystallization Size and Shape
Supersaturation Control Optimizes Crystal Size and Shape

Crystallization kinetics are characterized in terms of two dominant processes, nucleation kinetics and growth kinetics, occurring during crystallization from solution. Nucleation kinetics describe the rate of formation of a stable nuclei. Growth kinetics define the rate at which a stable nuclei grows to a macroscopic crystal. Advanced techniques offer temperature control to modify supersaturation and crystal size and shape.

Temperature Effects Crystallization Size and Shape
Scaling-Up Agitation, Dosing, and Crystallization

Changing the scale or mixing conditions in a crystallizer can directly impact the kinetics of the crystallization process and the final crystal size. Heat and mass transfer effects are important to consider for cooling and antisolvent systems respectively, where temperature or concentration gradients can produce inhomogeneity in the prevailing level of supersaturation.

Chemical Process Development & Scale-Up
Creating Safe, Efficient Processes from Lab to Plant

Chemical Process Development and Scale-Up guides the development of a commercially important molecule from synthesis in the lab to large scale manufacture of a quality product.

Chemical Reaction Kinetics
Understanding Reaction Rates and Factors That Affect Them

Chemical reaction kinetics, also known as reaction kinetics, reflect rates of chemical reactions. Learn how reaction kinetic studies provide enhanced insight into reaction mechanisms.

Polymorphism Chemistry
Understand Polymorphism and the Impact of Process Parameters

Polymorphism chemistry is a common phenomenon with many crystalline solids in the pharmaceutical and fine chemical industries. Scientists deliberately crystallize a desired polymorph to improve isolation properties, help overcome downstream process challenges, increase bioavailability or to prevent patent conflicts. Identifying polymorphic and morphological transformations in situ and in real time eliminates unexpected process upset, out of specification product and costly reprocessing of material.

protein crystallization
Create Structured, Ordered Lattices for Complex Macromolecules

Protein crystallization is the act and method of creating structured, ordered lattices for often-complex macromolecules.

Recover Lactose With High Yield and Scalable Process

Lactose crystallization is an industrial practice to separate lactose from whey solutions via controlled crystallization.

Scientist recrystallize high value chemical compounds to obtain a crystal product with desired physical properties at optimal process efficiency. Seven steps are required to design the ideal recrystallization process from choosing the right solvent to obtaining a dry crystal product. This recrystallization guide explains step-by-step the procedure of developing a recrystallization process. It explains what information is required at each stage of recrystallization and outlines how to control critical process parameter

Solubility and Metastable Zone Width (mzw) Determination

Solubility curves are commonly used to illustrate the relationship between solubility, temperature, and solvent type. By plotting temperature vs. solubility, scientists can create the framework needed to develop the desired crystallization process. Once an appropriate solvent is chosen, the solubility curve becomes a critical tool for the development of an effective crystallization process.

Supersaturation

Supersaturation occurs when a solution contains more solute than should be possible thermodynamically, given the conditions of the system. Supersaturation is considered a major driver for crystallization

Measure Crystal Size Distribution

In-process probe-based technologies are applied to track particle size and shape changes at full concentration with no dilution or extraction necessary. By tracking the rate and degree of change to particles and crystals in real time, the correct process parameters for crystallization performance can be optimized.

Crystallization Seeding Protocol

Seeding is one of the most critical steps in optimizing crystallization behavior. When designing a seeding strategy, parameters such as: seed size, seed loading (mass), and seed addition temperature must be considered. These parameters are generally optimized based on process kinetics and the desired final particle properties, and must remain consistent during scale-up and technology transfer.

Oiling Out in Crystallization

Liquid-Liquid phase separation, or oiling out, is an often difficult to detect particle mechanism that can occur during crystallization processes. Learn more.

Particle Engineering and Wet Milling

Milling of dry powders can cause significant yield losses and can generate dust, creating health and safety hazards. In response to this, wet milling produces particles with a specifically designed size distribution. It is now common to employ high shear wet milling to break large primary crystals and agglomerates into fine particles.

Anti-Solvent Addition on Supersaturation

In an antisolvent crystallization, the solvent addition rate, addition location and mixing impact local supersaturation in a vessel or pipeline. Scientists and engineers modify crystal size and count by adjusting antisolvent addition protocol and the level of supersaturation.

Temperature Effects Crystallization Size and Shape

Crystallization kinetics are characterized in terms of two dominant processes, nucleation kinetics and growth kinetics, occurring during crystallization from solution. Nucleation kinetics describe the rate of formation of a stable nuclei. Growth kinetics define the rate at which a stable nuclei grows to a macroscopic crystal. Advanced techniques offer temperature control to modify supersaturation and crystal size and shape.

Temperature Effects Crystallization Size and Shape

Changing the scale or mixing conditions in a crystallizer can directly impact the kinetics of the crystallization process and the final crystal size. Heat and mass transfer effects are important to consider for cooling and antisolvent systems respectively, where temperature or concentration gradients can produce inhomogeneity in the prevailing level of supersaturation.

Chemical Process Development & Scale-Up

Chemical Process Development and Scale-Up guides the development of a commercially important molecule from synthesis in the lab to large scale manufacture of a quality product.

Chemical Reaction Kinetics

Chemical reaction kinetics, also known as reaction kinetics, reflect rates of chemical reactions. Learn how reaction kinetic studies provide enhanced insight into reaction mechanisms.

Polymorphism Chemistry

Polymorphism chemistry is a common phenomenon with many crystalline solids in the pharmaceutical and fine chemical industries. Scientists deliberately crystallize a desired polymorph to improve isolation properties, help overcome downstream process challenges, increase bioavailability or to prevent patent conflicts. Identifying polymorphic and morphological transformations in situ and in real time eliminates unexpected process upset, out of specification product and costly reprocessing of material.

protein crystallization

Protein crystallization is the act and method of creating structured, ordered lattices for often-complex macromolecules.

Lactose crystallization is an industrial practice to separate lactose from whey solutions via controlled crystallization.

Publications

Crystallization and Precipitation Engineering Case Studies

White Papers

How to Optimize a Crystallization Step Using Simple Image Analysis
By quickly identifying unnecessary hold times and determining how cooling rate influences crystal growth and nucleation, the cycle time for an interme...
Understand Crystallization with In Situ Microscopy
Dynamic mechanisms key to understanding crystallization processes can now be observed with in situ microscopy. A white paper explains how leading chem...
Crystallization Process pdf
This white paper introduces you to the fundamentals of crystallization process development and provides guidance for the design of a high quality crys...
crystal size distribution ppt
This white paper discusses strategies to optimize crystal size distribution during process development and manufacturing.
Improve Industrial Crystallization
Industrial crystallization is an important separation and purification step in the chemical industry. A white paper shows how inline particle technol...
seeding crystallization process
Seeding is a key step in optimizing a crystallization process, ensuring a consistent filtration rate, yield, polymorphic form and particle size distri...
Scale-up of Batch Crystallization From Lab to Plant
Real-time monitoring of crystallization is shown to provide benefits leading to improved methods for process development, optimization and scale-up. T...
Best Practices For Crystallization Development
This white paper demonstrates the methodology chemists use to optimize critical crystallization parameters such as: Temperature profile Addition rates...
Particle Size Analysis for Process Optimization
This white paper introduces some of the most common particle size analysis approaches and how they can be deployed for the effective delivery of high...

Citations

Crystallization and Precipitation Citation List
Crystallization and precipitation citation list and publications
Webinars

Related Products

Technology for Crystallization Development and Scale-up