晶析の原理と沈殿 | メトラー・トレド

晶析操作

結晶化や晶析プロセスを解析しより高度なプロセス開発を実現

晶析とは
晶析と沈殿

晶析のタイプ
晶析の課題
晶析プロセスの設計
晶析の冷却速度

アプリケーション

晶析プロセスの開発とスケールアップのアプリケーションガイド

Polymorphism Identification and Control
Understand Polymorphism and the Impact of Process Parameters

Polymorphism is a common phenomenon with many crystalline solids in the pharmaceutical and fine chemical industry. Scientists deliberately crystallize a desired polymorph to improve isolation properties, help overcome downstream process challenges, increase bioavailability or to prevent patent conflicts. Identifying polymorphic and morphological transformations in-situ and in real time eliminates unexpected process upset, out of specification product and costly reprocessing of material.

結晶特性とプロセスパフォーマンスの最適化

科学者は高価な化合物を再晶析化して、目的の物理特性を持つ結晶生成物を最適なプロセス効率性によって取得します。 最適な溶媒の選択から乾燥した結晶生成物の取得まで、適切な再晶析プロセスの設計には7つのステップが必要になります。 この再晶析ガイドでは、再晶析プロセスを進める手順を段階ごとに説明しています。 再晶析の各ステージでどのような情報が必要かについて解説し、重要なプロセスパラメータの制御方法についての概要も述べます。

Solubility and Metastable Zone Width (mzw) Determination
晶析の構成要素

溶解度曲線は一般的に溶解度、温度、溶媒の種類の関係性を示すのに用いられます。温度と溶解度の関係性をグラフにすることで、科学者は求める晶析プロセスの開発に必要なフレームワークを作成できます。適切な溶媒を選定すると、溶解度曲線は効果的な晶析プロセスの開発にとって不可欠なツールとなります。

Crystal Nucleation and Growth
結晶の核生成や成長の原動力

科学者や技術者は、プロセス中の過飽和レベルを注意深く調整することにより、晶析プロセスを制御できます。過飽和は晶析の核生成や成長の原動力であり、最終的な結晶粒度分布を絶対的に決定付けます。

Measure Crystal Size Distribution
粒度、形状、個数のインライン測定による晶析の改善

インプロセスのプローブベース技術ではサンプリングや希釈を行なう必要がなく、原液濃度で粒度や形状の変化を追跡するために利用されます。粒子や結晶に生じる変化の速度や程度をリアルタイム追跡することで、晶析性能のプロセスパラメータを最適化できます。

晶析における種晶添加プロトコール
バッチ間差を改善するための種晶添加プロトコールの設計と最適化

種晶添加は、晶析挙動の最適化における最も重要なステップの1つです。種晶添加戦略を設計する場合は、種晶サイズ、種晶の量(質量)、種晶添加温度などのパラメータを考慮する必要があります。これらのパラメータは、通常はプロセス速度と希望する最終的な粒子特性に基づいて最適化され、スケールアップや技術移転の際には一貫性を維持しなければなりません。

Particle Engineering and Wet Milling
高せん断湿式粉砕における粒子サイズのコントロール

乾式粉砕は大きな収率損失を引き起こす可能性があり、粉塵が発生することから健康や安全の危険も考えられます。これに対して、湿式粉砕は必要に応じて設計された粒度分布の粒子を製造することができます。微小な粒子の中の大きな一次結晶や凝集を破壊するために高せん断湿式粉砕が用いられることが現在一般的です。

貧溶媒の滴下による過飽和
溶媒滴下による結晶サイズと個数の制御方法

貧溶媒晶析では、溶媒の滴下速度、滴下場所、攪拌が、容器やパイプライン内部での局所的過飽和に影響を与えます。科学者やエンジニアは、貧溶媒滴下プロトコルおよび過飽和度を調整することで結晶サイズと個数を変更しています。

温度が結晶のサイズと形状に与える影響
過飽和制御による結晶サイズと形状の最適化

冷却プロファイルは、過飽和と晶析速度に大きな影響を与えます。最適な結晶の成長と核化のバランスが得られるように、結晶の表面積に合わせてプロセス温度を最適化します。高度な温度コントロールにより過飽和を制御することで結晶サイズや形状を変化させることができます。

温度が結晶サイズと形状に与える影響
撹拌、試薬添加、晶析のスケールアップ

晶析装置のスケールや混合条件を変更すると、晶析プロセスの反応速度や最終的な結晶サイズに直接影響を及ぼす可能性があります。 熱や物質移動の影響は、冷却システムおよび貧溶媒システムでそれぞれ考慮することが重要です。このようなシステムでは、温度や濃度勾配により過飽和度に不均等性が生じる可能性があるからです。

化学プロセス開発とスケールアップ
堅牢性が高く持続可能な化学プロセスを設計し、パイロットプラントおよび実生産へのスケールアップを迅速化

堅牢性が高く持続可能な化学プロセスを設計し、パイロットプラントおよび実生産へのスケールアップを迅速化

反応速度論解析
化学反応の速度論解析と反応速度のインライン測定

in situの反応速度論解析では、反応成分の濃度依存性をリアルタイムで示すことにより、反応機構と反応経路の理解を深めることができます。反応開始から終点までの連続的なデータを使用することで、より少ない実験回数で速度論解析を実施することができます。 RPKA(Reaction Progression Kinetics Analysis)では、いくつかの濃度でのin situデータを使用し、実験全体の情報を捕捉することで、完全な反応挙動を正確に記述できます。

Polymorphism Identification and Control

Polymorphism is a common phenomenon with many crystalline solids in the pharmaceutical and fine chemical industry. Scientists deliberately crystallize a desired polymorph to improve isolation properties, help overcome downstream process challenges, increase bioavailability or to prevent patent conflicts. Identifying polymorphic and morphological transformations in-situ and in real time eliminates unexpected process upset, out of specification product and costly reprocessing of material.

科学者は高価な化合物を再晶析化して、目的の物理特性を持つ結晶生成物を最適なプロセス効率性によって取得します。 最適な溶媒の選択から乾燥した結晶生成物の取得まで、適切な再晶析プロセスの設計には7つのステップが必要になります。 この再晶析ガイドでは、再晶析プロセスを進める手順を段階ごとに説明しています。 再晶析の各ステージでどのような情報が必要かについて解説し、重要なプロセスパラメータの制御方法についての概要も述べます。

Solubility and Metastable Zone Width (mzw) Determination

溶解度曲線は一般的に溶解度、温度、溶媒の種類の関係性を示すのに用いられます。温度と溶解度の関係性をグラフにすることで、科学者は求める晶析プロセスの開発に必要なフレームワークを作成できます。適切な溶媒を選定すると、溶解度曲線は効果的な晶析プロセスの開発にとって不可欠なツールとなります。

Crystal Nucleation and Growth

科学者や技術者は、プロセス中の過飽和レベルを注意深く調整することにより、晶析プロセスを制御できます。過飽和は晶析の核生成や成長の原動力であり、最終的な結晶粒度分布を絶対的に決定付けます。

Measure Crystal Size Distribution

インプロセスのプローブベース技術ではサンプリングや希釈を行なう必要がなく、原液濃度で粒度や形状の変化を追跡するために利用されます。粒子や結晶に生じる変化の速度や程度をリアルタイム追跡することで、晶析性能のプロセスパラメータを最適化できます。

晶析における種晶添加プロトコール

種晶添加は、晶析挙動の最適化における最も重要なステップの1つです。種晶添加戦略を設計する場合は、種晶サイズ、種晶の量(質量)、種晶添加温度などのパラメータを考慮する必要があります。これらのパラメータは、通常はプロセス速度と希望する最終的な粒子特性に基づいて最適化され、スケールアップや技術移転の際には一貫性を維持しなければなりません。

Particle Engineering and Wet Milling

乾式粉砕は大きな収率損失を引き起こす可能性があり、粉塵が発生することから健康や安全の危険も考えられます。これに対して、湿式粉砕は必要に応じて設計された粒度分布の粒子を製造することができます。微小な粒子の中の大きな一次結晶や凝集を破壊するために高せん断湿式粉砕が用いられることが現在一般的です。

貧溶媒の滴下による過飽和

貧溶媒晶析では、溶媒の滴下速度、滴下場所、攪拌が、容器やパイプライン内部での局所的過飽和に影響を与えます。科学者やエンジニアは、貧溶媒滴下プロトコルおよび過飽和度を調整することで結晶サイズと個数を変更しています。

温度が結晶のサイズと形状に与える影響

冷却プロファイルは、過飽和と晶析速度に大きな影響を与えます。最適な結晶の成長と核化のバランスが得られるように、結晶の表面積に合わせてプロセス温度を最適化します。高度な温度コントロールにより過飽和を制御することで結晶サイズや形状を変化させることができます。

温度が結晶サイズと形状に与える影響

晶析装置のスケールや混合条件を変更すると、晶析プロセスの反応速度や最終的な結晶サイズに直接影響を及ぼす可能性があります。 熱や物質移動の影響は、冷却システムおよび貧溶媒システムでそれぞれ考慮することが重要です。このようなシステムでは、温度や濃度勾配により過飽和度に不均等性が生じる可能性があるからです。

化学プロセス開発とスケールアップ

堅牢性が高く持続可能な化学プロセスを設計し、パイロットプラントおよび実生産へのスケールアップを迅速化

反応速度論解析

in situの反応速度論解析では、反応成分の濃度依存性をリアルタイムで示すことにより、反応機構と反応経路の理解を深めることができます。反応開始から終点までの連続的なデータを使用することで、より少ない実験回数で速度論解析を実施することができます。 RPKA(Reaction Progression Kinetics Analysis)では、いくつかの濃度でのin situデータを使用し、実験全体の情報を捕捉することで、完全な反応挙動を正確に記述できます。

関連文書

晶析と沈殿のケーススタディ

ホワイトペーパー

シンプルな画像分析を使用して晶析を最適化する方法(日本語版)
不必要な保持時間を迅速に把握し、冷却速度が結晶成長と核生成にどのように影響するかを判断することで、中間体の晶析サイクル時間を60%短縮しています。
In Situ顕微鏡を使用した晶析工程の理解(日本語版)
In Situ顕微鏡により、晶析工程をありのままに観察し、綿密に理解できるようになります。新しく発行されたホワイトペーパーでは、業界をリードする化学企業各社が、より迅速に晶析過程を理解するために従来のオフライン法に代わるこの技術をどのように使用しているかをご紹介しています。
効果的な晶析プロセス開発
晶析プロセスの品質は、最終製品の品質に大きく影響します。このホワイトペーパー(技術資料)では、晶析の基礎について説明し、高品質の晶析プロセスを設計するためのガイド(日本語版)を提供します。
結晶粒度分布を制御する戦略(日本語版)
このホワイトペーパーでは、プロセス開発と製造において結晶粒度分布を最適化する戦略について説明します。
工業晶析の改善(日本語版)
化学産業において、工業晶析は分離と精製を行う重要なステップです。 この技術資料は、製品の品質と生産性を向上させるために、晶析を理解、最適化、制御する方法を説明しています。
晶析における種晶添加の新しい検討法(日本語版)
晶析における種晶添加の新しい検討法は、種晶添加条件を決定するための優れた実験手法をご紹介するとともに、種晶添加プロトコルを導入する際に考慮すべきパラメータについて詳述します。
実験室から工場へ - バッチ晶析スケールアップガイド(日本語版)
晶析のリアルタイムモニタリングは、プロセス開発の迅速化とスケールアップの最適化に役立ちます。本稿では晶析工程をリアルタイムでモニタリングした事例を取り上げ、その利点を検証します。
晶析プロセスのベストプラクティス (日本語版)
このホワイトペーパーでは、重要な晶析パラメータである「温度プロファイル」、「添加速度」、「シードによる純度、ろ過率、バッチの再現性向上」を最適化するための手法を示しています。無料の日本語版ホワイトペーパーで詳しくご覧ください。
インライン粒子特性評価のベストプラクティス(日本語版)
凝集は一般的な分離技術であり、凝集剤の性能は粒度分布によって異なります。新しいホワイトペーパーは、インライン粒子特性評価技術を使用した凝集体のリアルタイムの変化の追跡方法を説明します。

引用

Crystallization and Precipitation Citation List
Crystallization and precipitation citation list and publications

ウェビナー

連続晶析の PAT ベースの設計
PAT(プロセス分析技術)はバッチ晶析と同様に様々な連続プラグフローや MSMPR 晶析の迅速な評価をすることで、プロセスの設計手法を実現を可能にします。
微小結晶の創出
結晶サイズ分布が後工程の仕様に適合しないほど大き過ぎる場合は結晶を粉砕処理する必要が発生します。晶析工程で微小な結晶をデザインすることで後工程の粉砕処理を避けることができ、収率を向上させ、エネルギー消費および粉砕がもたらす安全性の問題を低減することができます。このウェビナーでは、微小結晶を創出しつつ...
キャリブレーションフリーで過飽和を制御する
リアルタイムに過飽和をin-situ FT-IRのセンサーを使用して定量化する方法は度々文献においても定義されています。しかしながら、これらはよく構造推定や反応メカニズム解析には用いられていますが、晶析検討には組み込まれていないことが多いです。
貧溶媒晶析のスケールアップ最適化
METTLER TOLEDO 16th International Process Development Conferenceで賞を受賞したプレゼンテーションをご紹介します。このプレゼンは、PATツール(FBRM, PVM, ReactIR)と計算流体力学シミュレーションを用いたスケールアップ戦略...
Improving Crystallization and Precipitation
This webinar introduces case studies and highlights best practices used to overcome crystallization and precipitation challenges. The focus will be on...
Crystallization Image Analysis
このプレゼンテーションでは、晶析モニタリングでの画像解析の役割について説明します。
Liquid-Liquid Phase Separation
このプレゼンテーションでは、液液相分離(LLPS)またはオイリングアウトを避けるように、堅牢でスケーラブルな晶析プロセスの設計、開発の戦略について解説します。
Agglomeration & Crystallization Using Particle Measurement
このプレゼンテーションでは、in situの粒子ビジョンや各種測定ツールによるデータを、アグロメレーションと関連した粒子サイズや形状トレンドの測定にどのように使用できるかについて説明します。このようなトレンドは、溶媒の選定や攪拌速度の効果を調べ、最適な晶析プロセスパラメータを特定するために使われます...
Crystallization Scale-up Strategy Development
During this webinar, two case studies are presented to illustrate the application of tools and strategies that were utilized to understand and manage...
Wet Milling Impact on Particle Size
このプレゼンテーションでは、貧溶媒添加手法の中で新しい湿式粉砕を使用する無菌晶析の開発、スケールアップについて、理解に役立つように解説しています。この手法では、目的の物理特性が一貫して得られ、最終的な医薬製品の調合に許容範囲の均一性が生まれます。
Pharmaceutical Drug Substance Crystallization
This presentation describes the case of crystals of an Active Pharmaceutical Ingredient (API) with high propensity to float in their mother liquors, d...

アプリケーションノート

In-Process Characterization of Antisolvent Crystallization
Ensure fast and efficient scale-up by optimizing crystallization early in development. Target particle size specifications to speed up downstream proc...
Polymorph and Pseudo-polymorph Transition in-process monitoring of habit change
Improve purity by ensuring total polymorphic form conversion. Enhance process robustness by monitoring crystallization processes in real time. Charact...

関連製品

晶析プロセス開発とスケールアップに関する技術

 
 
 
 
 
 
 
Thank you for visiting www.mt.com. We have tried to optimize your experience while on the site, but we noticed that you are using an older version of a web browser. We would like to let you know that some features on the site may not be available or may not work as nicely as they would on a newer browser version. If you would like to take full advantage of the site, please update your web browser to help improve your experience while browsing www.mt.com.