Les spectromètres infrarouge in situ ReactIR fournissent des données complètes et en temps réel sur les réactions ✔️Performances et fiabilité ✔️One Click Analytics ✔️Solutions du laboratoire à l'usine

ReactIR est prêt !

Le spectroscope FTIR ReactIR est adapté à un large éventail de produits chimiques répondant aux critères suivants : molécule sensible aux infrarouges, solution ou émanations de gaz, concentration supérieure à ~0,1 %. Parmi les applications courantes de spectroscopie FTIR figurent :

Reaction Insight from Every Experiment

Reaction Insight from Every Experiment

HPLC is a valuable workhorse in your lab, but what really happens between samples?

ReactIR Citation List

ReactIR Citation List

FTIR Spectroscopy Journal Publications

ReactIR Brochure

Reaction Analysis and PAT Tools

ReactIR From Research to Manufacturing

Monitoring of Reaction Mechanisms

Monitoring Reaction Mechanisms Inline

Guide to Inline Monitoring of Reaction Mechanisms

La spectroscopie FTIR dans les publications récentes

Les mesures continues par spectroscopie infrarouge sont utilisées pour obtenir des profils de réaction et calculer ainsi les vitesses de réaction. Une liste de publications issues de revues à comité de lecture porte sur les applications innovantes et prometteuses de la spectroscopie FTIR in situ.  Les chercheurs du secteur académique et industriel emploient la spectrométrie FTIR infrarouge moyen in situ pour obtenir des informations exhaustives et des données expérimentales enrichissantes pour leurs recherches.

  • Liu, J., Sato, Y., Yang, F., Kukor, A. J., & Hein, J. E. (2022). An Adaptive Auto‐Synthesizer using Online PAT Feedback to Flexibly Perform a Multistep Reaction. Chemistry–Methods, 2(8). doi.org/10.1002/cmtd.202200009
  • Malig, T. C., Kumar, A., & Kurita, K. L. (2022). Online and In Situ Monitoring of the Exchange, Transmetalation, and Cross-Coupling of a Negishi Reaction. Organic Process Research & Development, 26(5), 1514–1519. doi: org/10.1021/acs.oprd.2c00081
  • Naserifar, S., Kuijpers, P. F., Wojno, S., Kádár, R., Bernin, D., & Hasani, M. (2022). In situ monitoring of cellulose etherification in solution: probing the impact of solvent composition on the synthesis of 3-allyloxy-2-hydroxypropyl-cellulose in aqueous hydroxide systems. Polymer Chemistry, 13(28), 4111–4123. doi.org/10.1039/d2py00231k
  • Talicska, C. N., O’Connell, E. C., Ward, H. W., Diaz, A. R., Hardink, M. A., Foley, D. A., Connolly, D., Girard, K. P., & Ljubicic, T. (2022). Process analytical technology (PAT): applications to flow processes for active pharmaceutical ingredient (API) development. Reaction Chemistry & Engineering, 7(6), 1419–1428. doi.org/10.1039/d2re00004k 
  • Wei, B., Sharland, J. C., Blackmond, D. G., Musaev, D. G., & Davies, H. M. L. (2022). In Situ Kinetic Studies of Rh(II)-Catalyzed C–H Functionalization to Achieve High Catalyst Turnover Numbers. ACS Catalysis, 12(21), 13400–13410. doi.org/10.1021/acscatal.2c04115
  • Foth, P. J., Malig, T. C., Yu, H., Bolduc, T. G., Hein, J. E., & Sammis, G. M. (2020). Halide-Accelerated Acyl Fluoride Formation Using Sulfuryl Fluoride. Organic Letters, 22(16), 6682–6686. doi.org/10.1021/acs.orglett.0c02566
  • Hu, C., Shores, B. T., Derech, R. A., Testa, C. J., Hermant, P., Wu, W., Shvedova, K., Ramnath, A., Al Ismaili, L. Q., Su, Q., Sayin, R., Born, S. C., Takizawa, B., O’Connor, T. F., Yang, X., Ramanujam, S., & Mascia, S. (2020). Continuous reactive crystallization of an API in PFR-CSTR cascade with in-line PATs. Reaction Chemistry & Engineering, 5(10), 1950–1962. doi.org/10.1039/d0re00216j