Software User Guide

	April 2017
	MK-PB-0102-AC Rev C
	DCN 3029
<image/>	
Comparison of the second	
	Рин и села -

iC Process for FBRM[™] 4.4

Real-Time Monitoring of Particle Systems

© 2017 Mettler-Toledo AutoChem, Inc. All world rights reserved. Printed in the USA. No part of this publication may be stored in a retrieval system, transmitted, or reproduced in any way, including but not limited to photocopy, photograph, magnetic or other record, without the prior written permission of METTLER TOLEDO AutoChem, Inc. 6 April 2017

ParticleTrack[™], FBRM[®], iC Process[™] for FBRM[®], iC FBRM[™], iC PVM[™], and PVM[®] are trademarks or registered trademarks of Mettler-Toledo AutoChem, Inc.

Kalrez® and Viton® are registered trademarks of E.I. du Pont Nemours and Company. Tri-Clamp® and Tri-Clover® are registered trademarks of Alfa Laval, Inc. Microsoft®, Windows 7®, Windows Server 2008®, and Windows 8.1® are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. Acrobat® is a registered trademark of Adobe Systems, Inc. All other brand and product names are trademarks or registered trademarks of their respective owners.

Address comments to: Mettler-Toledo AutoChem, Inc. 7075 Samuel Morse Drive Columbia, MD 21046 Tel: + 1 866.333.6822 Fax: +1 410.910.8600 www.mt.com/icprocess For technical support, contact: AutoChemCustomerCare@mt.com

The information in this publication is provided for reference only. All information contained in this publication is believed to be correct and complete. METTLER TOLEDO AutoChem, Inc., shall not be liable for errors contained herein nor for incidental or consequential damages in connection with the furnishing, performance, or use of this material. All product specifications, as well as the information contained in this publication, are subject to change without notice.

METTLER TOLEDO AutoChem Inc. makes no warranty of any kind with regard to this manual, including but not limited to the implied warranties of merchantability and fitness for a particular purpose.

In conformance with the European Directive 2012/19/EU on Waste from Electrical and Electronic Equipment (WEEE), this device may not be disposed of in domestic waste. This also applies to countries outside the EU, per their specific requirements.

Please dispose of this product in accordance with local regulations at the collecting point specified for electrical and electronic equipment.

If you have any questions please contact the responsible authority or the distributor from which you purchased this device.

Should this device be passed onto other parties for private or professional use, the content of this regulation must also be related.

Thank you for your contribution to environmental protection.

Contents

Chapter 1	Introduction	
	About ParticleTrack	7
	Software Upgrades	8
	Training Programs	8
	• •	
	Service and Technical Assistance	8
Chapter 2	Getting Started	
	Getting Started Checklist	9
	Three Roles for iC Process for FBRM Users	9
	iC Process for FBRM Software Overview	10
	iC Process for FBRM Client	-
	iC Process for FBRM Server	
	FBRM Server	11
	Introducing iC Process for FBRM User Interface	12
Chapter 3	Implementing iC Process for FBRM	
	Logging In (if applicable)	15
	Introducing iC Process for FBRM	15
	iC Process for FBRM Home Page	
	Adding a Process Instrument	17
	Configuring a Process Instrument	17
	Specifying Archive Folder Location (required)	
	Establishing General Instrument Settings	
	Instrument Settings Tab Details	20
	Developing a Method	23
	Creating a Method	23
	Selecting a Template	
	Viewing and Editing Method Settings	
	Approving a Method	
	Deleting a Method	
	Generating a Method Report	
	More About Method Parameters and Settings	36
	Template Contents	
	Tracking Method Changes	
	Common Method Parameters	
	Additional Tabs on Main Instrument Page	40

Chapter 4 Operating iC Process for FBRM

Launching iC Process for FBRM	41
Logging In (if applicable)	41
A Sample Workflow	42
Selecting Pre-Configured Instrument	42
Viewing Instrument Status on Home Page	
Viewing Preventive Maintenance Reminders	
Selecting a Method	44
Managing a Run	44
Starting a Continuous Run	
Starting a Batch Run	45
Pausing a Run	
Stopping a Run	
Viewing Options on the Main Page	46
Viewing Trends	
Viewing Distributions	
Saving Reference Distribution	
Viewing Large Values (Trends)	
Viewing Instrument Submenu Options	55
Viewing Configuration	
Viewing Methods	
Service Submenu (unavailable)	
Viewing and Generating Reports	58

Chapter 5 Validating/Calibrating an Instrument

Procedures	3
Viewing Reports through Reports Menu6	4

Chapter 6 Managing iC Process for FBRM

Managing References	79
Maintaining Archive Folders	81
Responding to Service Reminders	81
About System Calibration	81
Activating Licenses	81
Software License, Subscription, and CSMs	81
Chord Selection Model	
Viewing Instrument Diagnostics	83
Sending System Log File	84
Managing Probe Cleanliness	84
Deleting an Instrument	85

Chapter 7 Using Service Mode in iC Process for FBRM

Introducing Service Mode	87
Two Ways to Enter Service Mode Two Types of Service Tests	
Running Service Tests	
Overview Tab	
Trends Tab	
Diagnostics Tab	
Distributions Tab	
Large Values Tab	
Alarm Limits Tab	
Test Results Tab	
Reporting Service Test Results	95
Ending Service Mode	97
Service Reminders	97
About Calibration Tests	97

Chapter 8 Using iC FBRM Software

Modbus Block Summary

User Interface Mapping Screen

Starting iC FBRM Software	100
Introducing the iC FBRM 'Process' Task Pane	101
Using the Process Task Pane	101
Connecting to Server	
Connecting to ParticleTrack or FBRM Process Instrument	
Monitoring iC Process Data In iC FBRM	103
Importing iC Process Data in iC FBRM	104
Importing iC Process Trends to an iC FBRM Result Set	106

Appendix A	Modbus DCS with iC Process for FBRM	107
	Mapping Each Register for iC Process	107
	Coils (1–10000)	
	Discrete Inputs (10001–20000)	
	Holding Registers (40001–50000)	110

Appendix B	OPC UA Server with iC Process for FBRM	113
	Facts About OPC UA	113
	Address Space (Data Model)	113
	Data Model for iC Process for FBRM	114
	Sample Client Code Using Data Model	117
Appendix C	WITSML with iC Process for FBRM	119

Completing the WITSML Interface Settings Tab	119
Associating Curve Definitions with Trends	120
WITSML Alarm Conditions	121

112 112

Appendix D	Alarms and Messages	123
	Example 1—Trend Outside Limits	123
	Example 2—Incompatible Template for Method	124
	Example 3—Maintenance Reminders	125
	Error Messages	125
	Software Errors and Messages	125
Appendix E	Glossary and Workflow Illustrations	127
Appendix E	Glossary and Workflow Illustrations General Terms	127 127
Appendix E		
Appendix E	General Terms	127
Appendix E	General Terms FBRM Software Terms	127 127
Appendix E	General Terms FBRM Software Terms ParticleTrack and FBRM Hardware Terms	127 127 130 131

Index

133

1

Introduction

The iC Process[™] for FBRM® web application is the software that defines, controls, and reports data captured from a ParticleTrack G600 or ParticleTrack E25 instrument that is a dedicated industrial process monitoring system. The software controls the instrument as it tracks critical particle system characterization distributions in real time using in situ, Focused Beam Reflectance Measurement (FBRM) technology.

The iC Process for FBRM software connects to the ParticleTrack field unit to enable instrument configuration, monitoring of real-time process data and information, and post-processing reporting. Only authorized users can change the FBRM instrument configuration in iC Process and approve process methods based on templates provided with the software.

Note: iC FBRM 4.4 is a separate, optional software program that is recommended for advanced analysis and creation of customized templates for method development. A 'Process' task pane in iC FBRM enables a particle scientist to analyze iC Process for FBRM data from a PC or laptop.

If you are viewing this document electronically, click any blue-colored link to go to the related information and instructions.

Should you have questions that are not addressed in this document, please contact your local METTLER TOLEDO office or our Customer Care Department using the information under "Service and Technical Assistance" on page 8.

Related Documents

The following publications are related to the use of iC Process with ParticleTrack G600 or ParticleTrack E25 instruments. Software documents are in the iC Process for FBRM Documentation Portfolio that is installed on the control computer desktop.

- "iC Process for FBRM 4.4 Install Guide for Administrators"
- Quick Reference—"For Operators of iC Process for FBRM"

A Hardware Documentation Portfolio ships with each FBRM instrument and includes hardware manual and hardware documents. The latest portfolios can be downloaded from the AutoChem Customer Community website (<u>https://community.autochem.mt.com</u>).

About ParticleTrack

All ParticleTrack instruments feature the latest FBRM technology and provide the ability to measure the rate and degree of change in particle and droplet systems with precision and sensitivity at full process concentration. ParticleTrack instruments, in addition to FBRM

measurement technology, also feature onboard Smart Chip technology for storage of critical calibration and system configuration information. This provides better security and traceability in experimental and process FBRM data.

Earlier versions of G600 (FBRM G600 systems) may be compatible with iC **Note:** Process for FBRM with a ParticleTrack ACIO hardware upgrade. Contact METTLER TOLEDO for upgrade information (page 8).

Software Upgrades

When applicable, software upgrades are available for iCare subscribers at no additional charge. When a new release or service pack is available, all iCare subscribers with a valid subscription will be notified via email so they can download the installer from the AutoChem Community website, https://community.autochem.mt.com. Access to the site requires a password that you can request from the home page. You can also contact Customer Care or your METTLER TOLEDO Technology and Applications Consultant (TAC) using the information under "Service and Technical Assistance".

Non-iCare subscribers may request a quote for an upgrade by contacting their local salesperson or Customer Care.

Training Programs

Training for the hardware and software is available through the users' website (see link above) and through your METTLER TOLEDO TAC. Use the contact information under "Service and Technical Assistance" on page 8.

Service and Technical Assistance

METTLER TOLEDO has offices around the world. Contact the Mettler-Toledo AutoChem, Inc. headquarters in the USA for technical support or service. To arrange for specific application assistance from a METTLER TOLEDO Technology and Applications Consultant or to schedule service from a METTLER TOLEDO FSE, or for general for assistance, contact CustomerCare through the email or toll-free number below.

Mettler-Toledo AutoChem, Inc.	Tel: + 1.410.910.8500
(Columbia, MD headquarters)	Fax: +1.410.910.8600
http://www.mt.com/iCProcess	Email: <u>AutoChemCustomerCare@mt.com</u>
http://www.mt.com/FBRM	Toll Free: +1.866.333.6822

Getting Started

This chapter provides a checklist of prerequisites that must be complete before implementation of the ParticleTrack process instrument and iC Process for FBRM software.

The instructions in this chapter assume the iC Process for FBRM instrument is already installed by a qualified METTLER TOLEDO Field Service Engineer (FSE). The iC Process for FBRM software should already be installed and, if required by your IT department, iC Process for FBRM user groups created with the authorized users assigned to the appropriate group (see page 9).

Getting Started Checklist

The following table lists the prerequisite actions that must already have been completed before using iC Process for FBRM software:

	Task	Performed by:	Reference Document
1	Install iC Process web application Server	IT personnel and METTLER TOLEDO engineer	
2	(optional) Set up iC Process for FBRM user groups and security according to your organization's SOP	IT personnel	"iC Process for FBRM 4.4 Install Guide for Administrators"
3	Create iC Process for FBRM archive file folder	IT personnel, or iC Process for FBRM Technician or Administrator	
4	Establish Client URL.	IT personnel	"iC Process for FBRM 4.4 Install Guide for Administrators" Default is http://localhost/ when control computer and server are on the same PC.
5	Install FBRM instrument	METTLER TOLEDO engineer	Hardware manual, ServicePac installation document (IPac StarterPac, or, if purchased, the iPac QualityPac document)

Table 2-1 Getting Started Checklist

Review the basic terminology in Appendix E, "Glossary and Workflow Illustrations" that is used throughout this guide and in the software.

Three Roles for iC Process for FBRM Users

iC Process for FBRM is designed with three roles to control user permissions.

- Administrator (all permissions)
- Operator (process operation and calibration validation permissions)

Technician (testing and servicing)

The role associated with a user login by your IT department determines the actions that user can perform.

By default, iC Process for FBRM security grants all roles to all users. As required, your IT department can associate user logins with one or more of Note: the three roles. (Refer to "iC Process for FBRM 4.4 Install Guide for Administrators" for detailed instructions.)

The following table lists the specific task that can be performed by each user role:

Table 2-2 User Roles and Permissions				
Permissions	Link	Administrator	Operator	Technician
Chapter 4, "Operating iC Process for FBRM"				
Select a method	page 44	✓	 ✓ 	
Start a batch/run		✓	 ✓ 	
Stop a batch/run	page 44	✓	 ✓ 	
Pause a run	puge 44	✓	 ✓ 	
Resume a run		✓	 ✓ 	
Capture a reference distribution during a run	page 53	✓	 ✓ 	✓
Create a report		✓	 ✓ 	✓
Run calibration validation	page 63	✓	 ✓ 	✓
Capture reference distributions during calibration validation	puge 03	✓	 ✓ 	✓
Chapter 7, "Using Service Mode in iC Process for FBRM"				
Capture reference distributions during calibration	page 65	✓		√
Perform service tests		~		~
Enter service mode	page 87	~		✓
Exit service mode		~		~
Chapter 3, "Implementing iC Process for FBRM"				
Add an instrument	page 17	~		✓
Delete an instrument		✓		✓
Configure an instrument	page 17	~		~
Manage reference distributions for an instrument	page 79	~		~
View instrument diagnostics		~		~
Run system calibration	page 70	~		✓
Create a method		~		
Manage methods		~		
Select reference distributions to use in methods	page 30	✓		
	1			1

iC Process for FBRM Software Overview

iC Process for FBRM software includes three components installed by a single installation program.

~

✓

Approve a method

Unapprove a method

iC Process for FBRM Client

The iC Process for FBRM Client is the user interface for real-time monitoring with ParticleTrack process analytical instruments. iC Process for FBRM Client can be run on the same computer as the iC Process for FBRM Server, or it can be launched on any computer that can access the iC Process for FBRM server through the Internet or LAN.

iC Process for FBRM Server

In most cases, your IT personnel install the iC Process for FBRM server on a computer that is connected directly to the FBRM process instrument. This service communicates to the FBRM Server service for data acquisition and to external control systems using Modbus, OPC UA, and WITSML communication protocols.

FBRM Server

This component is automatically installed on the same PC as the iC Process for FBRM server. The FBRM Server operates the ParticleTrack process instrument and manages the real-time data collection.

Introducing iC Process for FBRM User Interface

The iC Process for FBRM user interface is a webpage in a browser and consists of:

- Left navigation menu,
- Title (instrument name and status),
- Main display, and
- Toolbar.

For many menu options, the main webpage includes individual tabs that display different views related to the main page.

Ø IC Process™	ParticleTrack Probe stopped Title (Instrument Name - Status)			
Home	🖿 🔤 🌇 Method: 📼 Toolbar			
ParticleTrack Probe	Trends Diagnostics Distributions Large Values Tabs			
Configuration				
Methods				
References				
Reports				
Calibration				
Service				
Licensing	Male diseters			
Left navigation menu Administrator AM\kammer-1	Main display			
METTLER TOLEDO	L			

Figure 2-1 iC Process webpage parts

After an Administrator or Technician completes the initial implementation of instrument configuration and method creation/approval, an Operator can select an approved method, start a batch or continuous run, and begin monitoring a particle or droplet system. Instructions begin under "Launching iC Process for FBRM" on page 41.

Figure 2-2 shows the main instrument display during a batch run and identifies additional parts of the user interface that are common in daily operation.



Figure 2-2 iC Process main instrument display—labeled

Left Navigation Menu—Provides instrument selection and a submenu of options. When you select an instrument, the name expands to show the submenu options.

Instrument Submenu—Lists options for Configuration, Methods, References, Reports, Calibration, and Service.

Toolbar—Provides selection options for starting, pausing, or stopping batch or continuous process methods with the selected instrument as well as selecting the method. To start a batch run, name the batch and start/stop it from the toolbar. The toolbar also tracks the count of distribution samples measured.

Main Display—Shows the main content such as trends (default view), distributions, and a Large Values display of current trend values. The main display is based on the submenu selection and, if applicable, the selected tab. Figure 2-2 shows three tabs on main display that change the views among Trends, Distributions, and Large Values options. An additional tab (Diagnostics) appears to users logged in with the Administrator or Technician role.

Tab Views—Separates related information into individual 'tabs' so a user can quickly select the desired view information or settings. Tabs in Figure 2-2 show real-time process data.

Time Window—Enables selection of discrete time segments of trends up to 24 hours in a single view (on Trends tab and Diagnostics tab only). Use the scroll bar to the left of the Window selection button to view data as far as back as10 days.

Implementing iC Process for FBRM

This chapter provides comprehensive instructions on the initial implementation of the iC Process for FBRM software. Steps include adding and configuring an FBRM instrument, defining methods, and approving the methods for use in batch and continuous processes. These are basically one-time setup activities except for method adjustment or new method development.

This chapter is intended for users with the Administrator or Technician role.

Notes:

- For details about permissions for each role, refer to Chapter 2, "Getting Started" on page 9.
- For illustrations of the overall process, refer to "Workflow Illustrations" on page 131.

Access the iC Process for FBRM software on the control computer by opening a Microsoff[®] Internet Explorer[®] window and specifying the web application URL. If the client and server are on the same computer, simply click the iC Process for FBRM icon on the desktop.

Logging In (if applicable)

A login may be required based on how iC Process for FBRM was installed and on how your IT department implements user authentication. If a login prompt appears, enter your network login ID and password.

Introducing iC Process for FBRM

An Administrator or Technician completes the initial configuration of an instrument in iC Process for FBRM to prepare the ParticleTrack instrument for monitoring particle and droplet systems. As an introduction, the following section helps you become familiar with the Home page. An introduction to the instrument main page is on page 12. If you are already familiar with the user interface, skip this section and go to "Adding a Process Instrument" on page 17.

iC Process for FBRM Home Page

The Home page identifies the logged-in user and user role. It also provides the following information and functions:

Left navigation menu—Home page and Licensing are the only options that appear before an instrument has been added. The licensing function is described under "Activating Licenses" on page 81.

Add new instrument—Instructions begin on page 17.

iC Process Version-Identifies the software release.

Send System Logs—Instructions are on page 84.

(-) (-) (-) http://local	host//#/Home 🔎 - 물이 🔒 🛠 🏵
6 Home	×
Ø iC Process™	Welcome <user's id="" login=""> , you are currently logged on as an Administrator</user's>
Home	
Licensing	Add new instrument
	<enter name=""></enter>
	ParticleTrack E25 Instrument 💌
	Add Instrument
Administrator <user's id="" login=""></user's>	iC Process Version: 4.4.15.0
METTLER TOLEDO	Send System Logs The archive should include log files from the last 1 day •

Figure 3-1 iC Process for FBRM Home page—BEFORE instrument added

The 'add' function only appears before an instrument is added. After an instrument has been added, the Home page displays the instrument status box and the name of the instrument appears in the left navigation menu (Figure 4-2 on page 43).

Adding a Process Instrument

An FBRM instrument should already be added and configured as part of the system installation process. However, instructions are repeated here for reference.

1. On the iC Process for FBRM Home page, enter a unique name for the new instrument in the Add new instrument box.

Add new instrument		
<enter name=""></enter>		
ParticleTrack E25 Instrument 🔹		
Add Instrument		

Figure 3-2 Add new instrument

2. Select the type of ParticleTrack instrument from the drop-down list.

ParticleTrack E25 Instrument 🔹	
ParticleTrack E25 Instrument	
ParticleTrack G600/G600 Ex Instrument	

Figure 3-3 Instrument type selection list

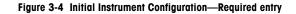
ParticleTrack is the brand name for all instruments manufactured after January 1, 2013 featuring FBRM technology. ParticleTrack instruments include onboard Smart Chip technology for storage of critical calibration and system configuration information.

3. Click Add Instrument.

When you add an instrument, the Configuration page—Instrument Settings tab appears automatically to enable setting one or more required fields and reviewing the settings.

Configuring a Process Instrument

When an Administrator or Technician adds a process instrument, the Instrument Configuration page appears. The initial implementation step is to configure that instrument. The top section of the Instrument Configuration page contains general settings and action buttons for the configuration. Details and instructions are in the following sections:


- "Specifying Archive Folder Location (required)"
- "Establishing General Instrument Settings" on page 19
- "Instrument Settings Tab Details" on page 20

Specifying Archive Folder Location (required)

The **Archive folder location** is a required entry for all instruments. It is the location where all files from iC Process for FBRM continuous and batch run are saved. Also saved in the folder is an auto-generated daily report of trend charts for each statistic defined in the method.

The required folder location should be established during software installation and entered on the Instrument Configuration page after an instrument is added to iC Process for FBRM.

<instrument name=""> : Instrument Configuration</instrument>		
Archive folder location:	Archive folder cannot be empty.	
☑ Simulation 🔘 Batch Mode 💿 Continuous Mode		
Save Reset		

1. Type the full path where the batch or continuous process files will be saved as iC FBRM experiment files (*.icFBRM).

Archive f	iolder re	quirements
-----------	-----------	------------

Note:	Archive folder must already exist on the computer where the iC Process for FBRM server is installed.

Administrator must have 'write' access to the Archive folder.

You cannot Save the instrument configuration until the archive location for process files is established.

About archive file format—Archived files have the .icFbrm extension so they can be opened in iC FBRM software for review and analysis, as well as used for creation of new customized templates for process methods.

About archive file size—Maximum archive experiment file size is 10,800 measurements. The 10,800 file size translates to the following approximate amount of run time in an archive, based on measurement interval:

Amount of Run Time in Archive File	When Sample (Measurement) Interval is
Up to 30 hours	10 seconds
Up to 90 hours	30 seconds
1 week	1 minute

Table 3-1 Archive File Related to Sample Interval

If a process run or batch exceeds 10,800 measurements, the system creates multiple archive files for the same 'batch.'

About archive file names—Archive files from the same continuous run or batch run have the same name, but a different time stamp.

• Time stamp is in 24-hour clock format.

 File Name Prefix—The file name prefix will be one of the following, depending on the processing mode:

For Batch mode, the Batch name becomes the prefix for the archive file name. Refer to "Starting a Batch Run" on page 45 to see where batch name entry occurs.

```
[Batch Name]_2012-10-11_16-52.icFBRM
```

For Continuous mode, the Method name is the prefix.

[2012-10-11_16-40.icFBRM]

For Continuous mode processing, the date/time is always in the file name.

Establishing General Instrument Settings

The Configuration page has two tabs of configuration information—Instrument Settings and WITSML Interface Settings.

WITSML is a specialized communication protocol for drilling rigs and
 Note: offshore platforms. Please refer to Appendix C for configuration instructions on how to complete the WITSML Interface Settings tab.

This section describes Instrument Settings. Since most configuration settings are automatically transferred from the instrument, the key setting is whether the instrument will be processing in batch or continuous mode.

1. Select **Configuration** from the left navigation submenu for a selected instrument.

See Instrument Configuration Page			
Ø iC Process™	ParticleTrack Probe : Instrument Configuration		
	Archive folder location: C:\ParticleTrack Probe\Archive		
Home			
ParticleTrack Probe	Simulation OBatch Mode OContinuous Mode		
Configuration	Save Reset		
Methods	Instrument Settings WITSML Interface Settings		
References			

Figure 3-5 Configuration page—General settings

The field highlighted yellow was required when the instrument was initially added to the system and should already be filled in (see "Specifying Archive Folder Location (required)" on page 18).

Check one of the fields highlighted green to define the type of particle system processing (batch or continuous). By default, the instrument is in Continuous processing mode.

Verify Simulation is Not Checked

By default the Simulation check box in Instrument Configuration should be unchecked when the control computer is connected to an instrument. The Simulation option is only for systems that do not have an instrument connected.

Note: Clear this check box when you connect to a ParticleTrack instrument.

Configure for Batch Mode or Continuous Mode

- Continuous Mode—By default, the software processes particle and droplet systems in continuous mode, meaning an online instrument is continually collecting data until a user clicks the Stop button.
- Batch Mode—To set the instrument to process in batches, select Batch mode. When an Operator clicks the Start button, the instrument begins continuous processing and the Batch Start/Stop buttons appear in the instrument toolbar, along with a Name text box. When an Operator clicks the Batch Start button, an official batch begins (page 45). The batch ends when the Operator clicks the Batch Stop button. Refer also to the glossary on page 127.

Archive data between batches

This field only appears if you select Batch mode.

Archive folder location:	C:\ParticleTrack Probe\Archive	
Simulation 💿 Bate	ch Mode 🛛 Continuous Mode	
Archive data between batches		
Save Reset		

Figure 3-6 Configuration page—General settings (batch mode)

- Unchecked—The system only creates archive files for batches. The archive will not include data collected before or after a batch.
- Checked—The system creates an archive file that includes the data collected before, after, and between batches in addition to the regular batch archive. In other words, archive files will be created from the time the instrument is started to the time it is stopped.
- 2. Save the general settings and proceed to "Developing a Method" on page 23.

Instrument Settings Tab Details

All ParticleTrack instrument settings are stored in the instrument as set at the factory and by the METTLER TOLEDO Field Service Engineer (FSE) during installation. Stored configuration information transfers directly to the Instrument Settings tab (Figure 3-7) from the connected instrument.

IC Process™	G600 : Instrument Co	onfiguration				
me	Archive folder location.	C:\ParticleTrack]		
Configuration	Save Reset					
Methods References	Instrument Settings WIT	SML Interface S	settings *	Pre-set at facto	ry	
Reports	Instrument		;	Probe		
Calibration	Name:	G600		Probe diamete	r: 19 r	nm •
Service	Instrument type:	ParticleTrack G	600/G600 Ex	Scan circle diamete	r: 5	mm
choing	* Unit serial number:	SIMULATED		CP	1: 10	
	Scan speed:	2	meters/sec	CP	2: 1	
	Available chord	Macro V. 1.	1.11	CP	3: 0	
	selection models:	Primary V.	1.1.11	Modbus		
	* Maintenance			Modbus slave ID:	0	
	Last preventive maintenance on:	10/22/2012	15	Hold last value:	No	• 0
	Last successfully calibrated on:	1/1/0001				
Administrator	Last successfully validated on:	1/1/0001				

Figure 3-7 Configuration—Instrument Settings tab

Details about Each Setting

The upcoming section describes each field on the Instrument Settings tab. Separate tables correspond to the parts of the page—Instrument, Maintenance, Probe, and Modbus.

Instrument

 Table 3-2 describes each field in the Instrument section of the Instrument Settings tab.

 Table 3-2 Configuration Settings—Instrument

Field Name	Description
Name	The name created when an Administrator added the instrument to iC Process for FBRM cannot be changed. To change the name, you must delete the instrument and add it again with a new name.
Instrument Type	The type of instrument selected when the instrument was added to the software appears by default: ParticleTrack G600 or ParticleTrack E25 . The field can be edited, so you can add information such as the probe model for G600 instruments (P, R, T, X) or Ex for G600.

Table 3-2 Configuration Settings—Instrument (continued)

Field Name	Description
Scan Speed (m/sec)	Determines how many meters per second the instrument scans the particle system. Scan speed is instrument specific and the standard for each instrument appears by default. If optional scan speeds have been purchased, the instrument firmware will include the speed for the given instrument. Standard speed is bold in the following list: ParticleTrack G600—2 or 4 ParticleTrack E25—2
Available Chord Selection Models	Displays the CSMs available for ParticleTrack instruments. The selection comes from the template selected for a given method (see "Selecting a Template" on page 24).

Probe

Table 3-3 Configuration Settings—Probe

Field Name	Description					
Probe Diameter	Probe diameter is pre-set at the factory for all ParticleTrack instruments. ParticleTrack G600—19 or 25 mm ParticleTrack E25—25 mm					
Scan Circle Diameter						
CP1	Calibration tuning parameters set during system calibration procedure. Do not adjust these settings unless directed by a METTLER TOLEDO engineer.					
CP2						
CP3						

Maintenance

Table 3-4 Configuration Settings—Maintenance

Field Name	Description
Last preventive maintenance on:	By default, the date the instrument was tested at the factory appears in this field. A METTLER TOLEDO FSE resets the reminder after completing Preventive Maintenance service by entering a new date in this field and saving the configuration. The software displays a reminder message on the Home page with the date that the next Preventive Service is due.
Last successfully calibrated on:	This date resets each time the System Calibration process is performed.
Last successfully validated on:	This date resets each time the Calibration Validation procedure is performed on the instrument and the result is 'Pass.'

Maintenance reminders appear on the Home page (see "Example 3—Maintenance Reminders" on page 125).

Modbus

Table 3-5 Configuration Settings—Modbus

Field Name	Description
Modbus Slave ID	iC Process for FBRM can be a Modbus TCP/IP slave that communicates with your Distributed Control System (DCS) operating as a Modbus TCP/IP master. To activate communication via Modbus TCP/IP, change this to a unique number between 1–254 that identifies the specific instrument. The Modbus master will need the control server IP address and Slave ID to communicate with the FBRM instrument. Default (0) indicates no Modbus communication is configured. See Appendix A on page 107 for details.
Hold Last Value	Modbus input register values (trend values and diagnostic values) are typically updated at every measurement whenever the instrument is online and every five minutes when stopped. However, if the instrument is paused and the software has been configured to Hold Last Value, the software continues to return the last value before the instrument was paused.

After initial addition of an instrument and completion of the required Instrument Settings, the last implementation task is developing one or more methods for use during processing.

Developing a Method

Before the iC Process for FBRM can be used to collect particle or droplet system data, an Administrator must create and approve executable methods for the instrument. A method is essentially an SOP for the FBRM instrument that defines the instrument and measurement configuration to ensure consistent data collection, display, recording, and reporting. An operator simply executes the method when ready to monitor a batch or continuous process. If multiple methods exist, the operator selects the appropriate method based on the SOP.

Templates: Methods are easily created through the use of templates, which provide default settings for the measurement configuration. A template is a predefined or customized experiment file from iC FBRM that defines:

- Data treatments, and
- Statistical and diagnostic trends using,
- A specific Chord Selection Model.

A template may also include:

- Reference Distributions (a Target and multiple References), and
- Y-axis range for trend graphs.

Default templates—iC Process for FBRM software includes default templates (refer to "Template Selection Tables" on page 25).

Custom templates—An advanced iC FBRM software user can develop iC FBRM experiments for use in iC Process web application method development. A custom template should be copied to the appropriate folder to be used in iC Process for FBRM (see Figure 3-12).

Creating a Method

1. Select **Methods** from the left navigation instrument submenu.

Figure 3-8 Methods selected from instrument submenu

2. In the "Create method from an experiment or template" section, click Select Template.

6 Methods Page						
Ø iC Process™	ParticleTrack Probe : Methods					
Home	Create a method from an experiment or template					
ParticleTrack Probe	Select Template					
Configuration	Method name: Name					
Methods	Create Method					
References	er cate Heuroa					

Figure 3-9 Methods main page—Select template

Selecting a Template

- Select a template from those provided with iC Process for iC Process for FBRM. Depending on how iC Process for FBRM was installed, method template selection will be by one of the following procedures:
 - Click Select Template and choose one of the templates provided with iC Process for FBRM for the currently configured instrument. Refer to "Template Selection Tables" on page 25 for information on each template for a specified instrument.
 - If the Select Template drop-down list is empty, navigate to the Templates file installed with the iC Process for FBRM software. The folder location is: Windows 7 and 8: C:\ProgramData\METTLER TOLEDO\iC Process for FBRM\4.4\Templates
 - a. Select the Experiment Templates subfolder.

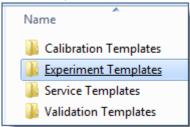


Figure 3-10 Experiment Templates subfolder

b. Select the folder for the currently configured instrument.

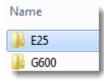


Figure 3-11 Instrument subfolder

c. Choose a template for the method. To decide on a template, refer to the "Template Selection Tables" section for the currently configured instrument.

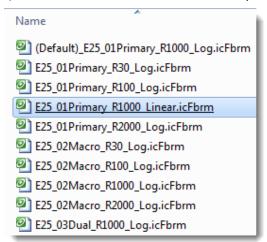


Figure 3-12 Experiment templates for a selected instrument

2. After choosing a template, continue to step 3 on page 26.

Template Selection Tables

Use the upcoming tables to select the best template for method development based on the type of ParticleTrack instrument, anticipated particle/droplet size, and the distribution CSM (including a dual option). In addition to the CSM, the distribution display has one of the following options:

- Logarithmic—This is the standard presentation of FBRM distribution data to optimize the display. Typical particle and droplet applications use this display.
- Linear—Only use this display for special applications, as directed by your METTLER TOLEDO Technology and Applications Consultant (TAC).

Template names are in the following format:

Instrument Model_CSM_Range_ChannelGroupingSpacing_ScanSpeed

(250 Hz Scan Speed only appears in G600, 4 meters per second template)

ParticleTrack G600 Templates for Method Development (2 m/sec)

Table 3-6 Provided Templates (ParticleTrack G600)

Template (*.icFbrm)	сѕм	Measurement Range (microns)	e Distribution Display	
(Default)_G600_01Primary_R1000_Log		0–1000		
G600_01Primary_R30_Log		0–30	Logarithmic	
G600_01Primary_R100_Log	Primary	0–100		
G600_01Primary_R1000_Linear		0–1000	Linear (special)	
G600_01Primary_R2000_Log		0–2000		
G600_02Macro_R30_Log		0–30		
G600_02Macro_R100_Log	Macro	0–100	Logarithmic	
G600_02Macro_R1000_Log		0–1000	Logannin	
G600_02Macro_R2000_Log		0–2000		
G600_03Dual_R1000_Log	Both CSMs	0–1000]	

ParticleTrack G600 Templates for Method Development (4 m/sec)

Template (*.icFbrm)	сѕм	Measurement Range (microns)	Distribution Display	
(Default)_G600_01Primary_R1000_Log_250Hz		0–1000		
G600_01Primary_R30_Log_250Hz		0–30	Logarithmic	
G600_01Primary_R100_Log_250Hz	Primary	0–100		
G600_01Primary_R1000_Linear_250Hz		0–1000	Linear (special)	
G600_01Primary_R2000_Log_250Hz		0–2000		
G600_02Macro_R30_Log_250Hz		0–30		
G600_02Macro_R100_Log_250Hz	Macro	0–100	Logarithmic	
G600_02Macro_R1000_Log_250Hz		0–1000	Logammine	
G600_02Macro_R2000_Log_250Hz		0–2000		
G600_03Dual_R1000_Log_250Hz	Both CSMs	0–1000		

Table 3-7 Provided Templates (ParticleTrack G600—4 m/sec Scan Speed))

ParticleTrack E25 Templates for Method Development

Table 3-8 Provided Templates (ParticleTrack E25)

Template Name (*.icFbrm)	сѕм	Measurement Range (microns)	Distribution Display	
(Default)_E25_01Primary_R1000_Log		0–1000	Logarithmic	
E25_01Primary_R30_Log		0–30		
E25_01Primary_R100_Log	Primary	0–100		
E25_01Primary_R1000_Linear		0–1000	Linear (special)	
E25_01Primary_R2000_Log		0–2000		
E25_02Macro_R30_Log		0–30		
E25_02Macro_R100_Log	Macro	0–100	- Logarithmic	
E25_02Macro_R1000_Log		0–1000	Loguinninc	
E25_02Macro_R2000_Log		0–2000		
E25_03Dual_R1000_Log	Both CSMs	0–1000		

3. In the **Method name** box, modify the default name, if desired. Provide a unique name that identifies the method.

Figure 3-13 Methods main page—Template selected and renamed

4. Click Create Method.

The Overview tab for the newly created method appears and the method is added to the main Methods list (Figure 3-14).

ParticleTrack Probe : Met	hods							
Create a method from an e	xperiment	t or template						
Select Tem	plate							
Method name: Name								
Create Me	thod							
Methods			1					
Name	Approved	Approved By	Approval Time	Compatible				
(Default)_E25_01Prim_R1000_Log	× .	AM\kammer-1	9/28/2012 2:01:48 PM	×	Edit	Unapprove	Report	Delete
E25_02Macro_R1000_Process A15				×	Edit	Approve	Report	Delete
E25_02Macro_R30_Log				×	Edit	Approve	Report	Delete

Figure 3-14 Methods list—Main page

The list identifies which methods are approved along with the date/time and login name of the person who last approved a method.

The Method Name and the **Edit** button are links to the Method details page (described under "Viewing and Editing Method Settings" on page 28)

5. At this point, you can click **Approve** to make the method available for continuous or batch process runs.

Method Compatibility

- 1. Verify compatibility between the selected template and the instrument configuration settings. A check mark in the Compatible column indicates that the key details from the template agree with the Instrument Configuration settings.
 - If a check mark appears, Chord Selection Model requirements are verified (read note below).
 - If a check mark does not appear, verify the template selection and choose a compatible template.
- Review the method details and complete the necessary settings for trend alarm high and low limits, optional external outputs (such as to a Modbus DCS, OPC UA, or WITSML trend curves.). Instructions begin in the next section.

Compatibility is required between the Method and the instrument Configuration. If compatibility does not exist, a message appears on the Method configuration page. A red system notification message appears in certain conditions, however, these conditions do not make the template and method incompatible. Instead, overrides occur, as follows:

Note: Template contains multiple Chord Selection Models—System notifies you that the method will only use the CSM selected for display in the template.

IMPORTANT!—If a template is tagged as incompatible with the instrument configuration, it can still be saved, but not run. Only approved and compatible methods appear to the Operator for use in a batch or continuous process.

Viewing and Editing Method Settings

When a new method is added, the method page (Overview tab) appears automatically for viewing and editing method options. The new method also appears in the list on the main Methods page (Figure 3-14). Choose a method from the list to view or edit details.

- Methods remain unapproved until an Administrator releases them for use by an Operator.
- Notes: Settings cannot be modified for Approved methods. The user must unapprove a method to make changes. See page 35.
 - Method deletion steps are on page 36.
- 1. From the Methods list on the main Methods page (Figure 3-13), click the name of the one to view or edit.

The Overview tab displays information about the method template. Additional method development details are separated into six tabs of information shown below.

```
Overview Reference Trends External Output External Input History
```

```
Figure 3-15 View/edit tabs for a selected method
```

General Settings and Actions for a Method

The top section of the page for a selected method includes general settings and three action buttons—**Approve/Unapprove**, **Report**, **Save Changes**. The general settings come from the template, but can be modified during method development.

ParticleTrack Probe: E25_02Macro_R1000_Process A15	E25_02Macro_R1000_Process A15	Save Changes
Sample interval: 10 seconds		Approve Report
Averaging type: None 🔻		
Stuck Particle Correction Enabled		

Figure 3-16 Method development—General settings

General settings are defined below and discussed in detail under "Developing a Method".

2. "Sample Interval" on page 37—Accept the default from the iC FBRM template or adjust the interval for the method, depending on the particle or droplet system in production.

The Sample Interval is the number of seconds, minutes, or hours between each FBRM measurement. The interval from the iC FBRM experiment template appears by default.

- **3.** "Averaging Type" on page 38—Accept the default from the template or select the Averaging option that best meets the requirements for the particle or droplet system in production. Averaging is a statistical data treatment that should be used with caution.
- **4.** "Stuck Particle Correction" on page 40—Accept the default from the template or disable the mathematical correction.

Overview Tab

The Overview tab (Figure 3-17) lists the settings from the imported template, as they were defined in iC FBRM—For example: Statistics and Chord Selection Models (CSMs).

🟉 Method Configuration Pag		ir labr Or
Ø iC Process™	ParticleTrack Probe: E25_02Macro_R1000_Process A15	Save Changes
Home	Sample interval: 10 seconds	Approve Report
ParticleTrack Probe		
Configuration	Averaging type: None	
Methods	Stuck Particle Correction Enabled	
References	Overview Reference Trends External Output External Input History	
Reports	Method Configuration:	
Calibration	Instrument Type: ParticleTrack E25 Sample Interval: 10 seconds	
Service	Averaging Type: None Channel Grouping Bin Spacing: Log	
Licensing	Number of Bins: 100 Channel Grouping Range: 1 - 1000 microns Scan Speed: 2 m/s Weighting Type: No Weight Stuck Particle Correction Enabled: True Chord Selection Model(s): Macro V. 1.1.11 Statistic(s): Median, No Wt Mean, Sqr Wt counts, No Wt, 10-50 counts, No Wt, 10-50 counts, No Wt, 10-50 counts, No Wt, 250-1000 Detection Count (counts) Fouling Index (%) Stuck Particle Correction (%) Std deviation, No Wt ChiSquare, No Wt	
Administrator	Percentile c, (10), No Wt	
AM\kammer-1	Percentile c, (25), No Wt Percentile c, (75), No Wt	
METTLER TOLEDO	Percentile c, (90), No Wt	

Figure 3-17 Methods—Overview tab

1. Review the summary of the method definitions on the Overview tab.

The summary is for information only—no edits can be made from this tab. Data Treatments, Statistics, Reference and Target Distributions can be defined in the iC FBRM template experiment used to create the method. Method configuration also comes from the template, but some editing can be done in the method's general settings (described starting on page 28)

- Accept the default Sample interval, Averaging type, and Stuck Particle Correction settings, or edit using the information in "More About Method Parameters and Settings" on page 36.
- 3. Click Save Changes and proceed to the Trends tab.

Reference Tab

Use the Reference tab to select the Target Distribution that represents a set point.

Other distributions are representative particle or droplet distributions from historical data for the method and particle/droplet system.

When an Operator selects a method that includes Target and/or Reference distributions, these will appear on the Distributions tab during continuous or batch processing.

Reference distributions can also come from real-time captures during
 Note: processing when a user clicks Save As Reference on the Distributions tab.
 Distributions appropriate for the method appear in the selection list.

If the template imported for the method includes reference and target distributions, they will appear in the selection drop-down lists (Figure 3-18). Otherwise, the selections are blank until references are saved during real-time processing.

🟉 Method Configuration Page	
Ø iC Process™	ParticleTrack Probe: E25_02Macro_R1000_Process A15 E25_02Macro_R1000_Process A15 Save Changes
Home	Sample interval: 10 seconds Report
ParticleTrack Probe	Averaging type: None T
Configuration	House +
Methods	Stuck Particle Correction Enabled
References	Overview Reference Trends External Output External Input History
Reports	Select Reference Distributions to use in the Method:
Calibration	Target Distribution:
Service	Reference Distribution:
Licensing	
Administrator	Reference Distribution:
AM\kammer-1	
METTLER TOLEDO	

Figure 3-18 Methods—Reference tab

- 1. Accept the Target Distribution and Reference Distribution(s) that came in with the template, if applicable. If the template did not include a specified target, a user-defined custom template can be created in iC FBRM and imported for a new method.
- 2. To select a Target and a Reference Distribution from those collected during real-time processing, click the down-arrow next to the type of distribution and choose the one to display to the operator during processing.
- **3.** To select a second Reference Distribution, click the down-arrow in the second Reference Distributions selection list and choose the distribution to display to the operator during processing.
- 4. Click **Save Changes** or proceed to view/edit the method information and settings on one of the tabs, described in the upcoming sections.

Trends Tab

An iC Process for FBRM method includes a list of statistical trends. This list is derived from the statistics defined in the iC FBRM template that was imported for the method. For each trend listed, you can specify the low and high alarm limits that display during processing. The Trends tab also enables limits to the Y-axis scale on the trend graph.

Ø IC Process™	ParticleTrack Probe: (Default)_E25_	01Prim_R100	0_Log		(De	fault)_E25_01P	rim_R1000_Log Save Changes
Home	Sample interval: 10 seconds						Approve Report
ParticleTrack Probe							
Configuration	Averaging type: None +						
Methods	Stuck Particle Correction Enabled						
References		Output Externa	Input Histo	rv.			
Reports	Output Trends			0.001			
Calibration	Name	Units	Low Alarm	High Alarm	Y Axis Min	Y Axis Max	Use Y Axis Limits
Service	Median, No Wt (Primary)	microns	NaN	NaN	0	1	
Licensing	Mean, Sqr Wt (Primary)	microns	NaN	NaN	0	1	
	counts, No Wt, <10 (Primary)	counts (fines)	NaN	NaN	0	1	
	counts, No Wt, 10-50 (Primary)	counts (fines)	NaN	NaN	0	1	
	counts, No Wt, 50-250 (Primary)	counts	NaN	NaN	0	1	
	counts, No Wt, 250-1000 (Primary)	counts	NaN	NaN	0	1	
	Detection Count (counts) (Primary)	counts	NaN	NaN	0	1	
	Fouling Index (%) (Primary)	96	NaN	NaN	0	1	
	Stuck Particle Correction (%) (Primary)	96	NaN	NaN	0	1	
	Std deviation, No Wt (Primary)	microns	NaN	NaN	0	1	
	ChiSquare, No Wt (Primary)	unitless	NaN	NaN	0	1	
	Percentile c, (10), No Wt (Primary)	microns	NaN	NaN	0	1	
Administrator	Percentile c, (25), No Wt (Primary)	microns	NaN	NaN	0	1	
AM\kammer-1	Percentile c, (75), No Wt (Primary)	microns	NaN	NaN	0	1	
METTLER TOLEDO	Percentile c, (90), No Wt (Primary)	microns	NaN	NaN	0	1	

Figure 3-19 Methods—Trends tab

Use the following steps to establish or edit alarm limits or the y-axis range for each trend in the method:

- 1. For an unapproved method, select the Trends tab. If necessary, click **Unapprove** to enable changes to the trend settings.
- 2. Establish alarm limits for one or more trends, as needed.

Low Alarm—Enter the lowest acceptable value for a trend, in the units shown.

High Alarm—Enter the highest acceptable value for the trend.

Dashed horizontal lines display at these limits on the Trends tab during processing. Dashed line color matches the legend color of the selected statistic. By viewing the trend graph or the Large Value display, an Operator can observe that trends representing the particle or droplet system are within limits.

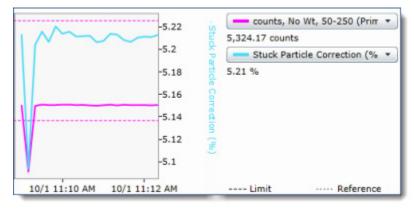


Figure 3-20 Dashed line for Limit

If a trend falls outside the limits for five consecutive samples, an alarm condition occurs. A red alarm message displays in an alarm panel to the left of the main display. The instrument name also changes to red at the top of the main display area and the trend box

changes to red on the Large Values tab. If the alarm condition corrects itself for five consecutive samples, the alarm message stops displaying.

3. Accept the default settings, or change the Y-Axis settings.

Note:

By default, the system automatically scales the trend graph to the data. However, the system will use the y-axis limits defined in the method if they are enabled. If y-axis limits are specified in a template for a trend, the system will use these limits as the default settings in the method.

Note: Templates provided with the system do not include y-axis limits.

4. Click **Save Changes**, or if you are ready to approve the method for use by Operators, click **Approve** and the changes will be automatically saved.

External Output Tab

Use this tab to assign iC Process for FBRM trends to an external source. Modbus registers or OPC UA variables can be mapped to trends. If WITSML was set up in instrument configuration (see Appendix C), a WITSML column also appears on the External Output tab.

The Trend Mapping drop-down list shows the trends statistics from the Trends tab (see page 31). Trends can include values for key particle system components as well as the high and low limit for that value.

2 IC Process™	Particle Ir	ack Probe:	E25_0	2Macro_R1000	_Process A15	E25_02	Macro_R1000_Process A15	Save Changes	
Home	Sample inte	erval: 10 se	conds					Approve Report	
ParticleTrack Probe			_						
Configuration	Averaging t	ype: None	*						
Methods	Stuck Pa	article Correct	ion Enable	ed					
References	Overview	Reference	Trends	External Output	External Input	History			
Reports	Index	Modbus Re	gisters	OPC Name	Trend Mappi	ing			
Calibration	1	40001:400	02	ProcessVariable	1 not mapp	ed *)		
Service	2	40003:40004		ProcessVariable	2 not mapp	ed *			
Licensing	3	40005:400	06	ProcessVariable	3 not mapp	ed			
	4	40007:400	08	ProcessVariable	4 Median, No	Wt (Macr	o) : Value		
	5	40009:400	10	ProcessVariable	> .		o) : LoAlarm		
	6	40011:400	12	ProcessVariable	5	Median, No Wt (Macro) : Hialarm			
	7	40013:400	14	ProcessVariable	7	Mean, Sqr Wt (Macro) : Value Mean, Sqr Wt (Macro) : LoAlarm			
	8	40015:400	16	ProcessVariable	Mean, Sqr V Mean, Sqr V				
	9	40017:400	18	ProcessVariable	0		(Macro) : Value		
	10	40019:400	20	ProcessVariable	10		(Macro) : LoAlarm		
	11	40021:400	22	ProcessVariable			(Macro) : Hialarm		
Administrator	12	40023:400	24	ProcessVariable	12 counts, No 1	Wt, 10-50) (Macro) : Value		
1	13	40025:400	26	ProcessVariable	13 counts No.	NE 10-50	(Macro) : LoAlarm		

Figure 3-21 Methods—External Output tab

Use the following steps to establish or edit trend mapping for your external source:

- 1. For an unapproved method, select the External Output tab. If necessary, click **Unapprove** to enable changes to the output settings.
- 2. In the Trend Mapping column, click in the field and select the trend to be mapped as ProcessVariable1 (ProcessVariable1 is featured in Figure 3-21).
 - For Modbus, the Modbus Registers column shows the corresponding registers for the trend.
 - For OPC UA, the trend name is in the OPC address space in the "ProcessVariable#. Name" address and the value is in the "ProcessVariable#" address. When you map an OPC variable to a trend, the name and value become external output to the OPC UA server.
 - If WITSML is set up, a WITSML Curve column lists the curve names predefined in the WITSML server for the given well and wellbore (refer to Appendix C).

3. Click Save Changes.

Figure 3-22 shows the External Output tab after several process variables have been mapped to Modbus registers and OPC Variables.

Overview	Reference	Trends	External Output	External Input	History			
Index	Modbus Re	gisters	OPC Name	Trend Mapp	ing			
1	40001:400	002	ProcessVariable	1 Median, No	Wt (Macro) : Value	٠		
2	40003:40004		ProcessVariable	2 Mean, Sqr 1	Mean, Sqr Wt (Macro) : Value			
3	40005:40006		ProcessVariable	3 counts, No	Wt, <10 (Macro) : Value	*		
4	40007:400	800	ProcessVariable	4 counts, No	Wt, <10 (Macro) : LoAlarm	•		
5	40009:40010		ProcessVariable	5 Mean, Sqr	Wt (Macro) : Hialarm	٠		
6	40011:400)12	ProcessVariable	6 not mapp	oed	٠		

Figure 3-22 External Output after mapping (Modbus Registers)

Appendix A, "Modbus DCS with iC Process for FBRM", Appendix B, "OPC UA Server with iC Process for FBRM", and Appendix C, "WITSML with iC Process for FBRM" provide details about the external output options.

4. Click **Approve** to make this an official method that Operators can select to start a process run.

External Input Tab

This tab is for future use.

Index	Variable Name		Modbus Registers	OPC Name	
-------	---------------	--	------------------	----------	--

Figure 3-23 Methods—External Input tab

History Tab

The History tab displays a complete audit log of the changes to a specific method. There are no user settings on this page, but you can view and print a report of the audit log showing method revisions.

🖉 Method Configuration Pag	
Ø iC Process™	ParticleTrack Probe: (Default)_E25_01Prim_R1000_L0g (Default)_E25_01Prim_R1000_Log Save Changes
Home ParticleTrack Probe	Sample interval: 10 seconds Approve Report
Configuration	Averaging type: None
Methods	Stuck Particle Correction Enabled
References	Overview Reference Trends External Output External Input History
Reports	Version 1 approved by AM\kammer-1 on 9/26/2012 8:58:40 AM
Calibration	Method first approved.
Service	Version 2 approved by AM\kammer-1 on 9/26/2012 9:19:15 AM
Licensing	Max trend range changed from 1 to 10 for trend Median, No Wt (Primary)
Administrator	Min trend range changed from 0 to 5 for trend Median, No Wt (Primary)
AM\kammer-1	Version 3 approved by AM\kammer-1 on 9/26/2012 9:21:11 AM
METTLER TOLEDO	Use trend range limits changed from False to True for trend Median, No Wt (Primary)

Figure 3-24 Methods—History tab

Approving a Method

Approved and compatible methods appear in the drop-down list that Operators select from when they are ready to start a batch or continuous process.

ParticleTrack Probe Service (SIM	ULATED)
Method: Start Time: Sample Co	(Delault) E25 UIPhin RIUUU Log
Trends Diagnostics Distributions Larg	e Values

Figure 3-25 Method selection on main instrument page

An Administrator can approve a method from the main Methods page or from the edit/view page of a selected method, as follows:

- 1. Select Methods from the left navigation submenu for a specific instrument.
- 2. Locate the unapproved method from the main Methods page and follow one of the steps below:
 - Click **Approve** next to the method name.

 Select an unapproved method from the list to view/edit the definition.
 If you selected a method to view/edit, review the settings (see "Viewing and Editing Method Settings") and click **Approve** in the top section of the view/edit page.

Deleting a Method

Only unapproved methods can be deleted. The buttons toggle between approve and unapprove.

- 1. Locate the method to be deleted from the main Methods list (Figure 3-26).
- 2. Make sure the method is not currently available for use. If necessary, click the **Unapprove** button to change the status to unapproved.

Methods								
Name	Approved	Approved By	Approval Time	Compatible				
(Default)_E25_01Prim_R1000_Log	×	AM\kammer-1	9/28/2012 2:01:48 PM	×	Edit	Unapprove	Report	Delete
E25_02Macro_R1000_Process A15	×	AM\kammer-1	9/27/2012 2:27:52 PM	×	Edit	Unapprove	Report	Delete
E25_02Macro_R30_Log				×	Edit	Approve	Report	Delete

Figure 3-26 Methods main page—Delete a selected method

3. Click Delete for the selected method.

Generating a Method Report

From the Methods page (Figure 3-26), select an approved method to be reported and click **Report**. The report describes the sampling interval, alarm limits, a summary of the Data Treatments, External Outputs, and method configuration, plus the method approval history.

More About Method Parameters and Settings

After template selection, a method can be immediately approved and used in a batch or continuous process. However there are many common parameters and settings in methods that an Administrator can adjust according to the particle or droplet system or process. This section provides facts about methods along with details about common parameters and settings.

Template Contents

The following information from a template becomes part of the method. This information represents potential processing steps to convert the particle and droplet system data into valuable information for tracking particle initiation, nucleation, and end point.

Data Treatments—Averaging parameters *, Channel Grouping: Number of bins, Resolution, Range of microns, Linear or Logarithmic spacing of bins, Enable Stuck Particle Correction)

User-specified statistical trends—These statistics are available on the Trends tab.

Reference Distributions—Distributions pinned in iC FBRM software and saved as references, plus the type of weighting for the distributions.

Target distribution—The software uses the distribution identified as the target to calculate the %Deviation statistic.

Managing Distributions—An Administrator manages the reference distributions collected during real-time processing and calibration/validation testing on the Configuration > Reference Distributions tab (see "Managing References" on page 79).

Y-Axis settings—The y-axis scale can be set in an iC FBRM experiment that is used as a method template. If a user-customized template with y-axis settings is used for a method, the y-axis settings will become the default in the Method's Trends tab, as described below.

Y Axis Min—Y-axis starting range for the trend data 'Use y-axis limits' is enabled. **Y Axis Max**—Y-axis maximum range for the trend data when 'Use y-axis limits' is enabled.

Use Y Axis Limits—If checked, the system will apply the y-axis limits defined for the specific trend. If y-axis limits were defined in the template for a specific trend, the default value will be checked. Otherwise, the default value is unchecked.

Autoscaling—If y-axis limits are defined for a trend, and the trend's values extend outside the bounds of the limits, the system automatically scales the limits to include the values.

Refer to the Trends tab on page 31.

Instrument settings including scan speed and Chord Selection Model (CSM).

Tracking Method Changes

Method changes are tracked—iC Process for FBRM software retains an audit log of all changes to a method on the History tab (page 35).

- * Averaging (smoothing) Data Treatment can be adjusted as part of method definition (see "Averaging Type" on page 38).
- Note:
 - ** Reference distributions can also be identified during particle system processing (see "Saving Reference Distribution" on page 53).

Common Method Parameters

Refer to Figure E-1 on page 131 for an illustration of the type of parameters that are included in templates, along with the settings that can be adjusted in iC Process for FBRM method development. Below are the common parameters in method development and how they impact the particle system measurements during an experiment batch or production run.

"Sample Interval" on page 37

"Averaging Type" on page 38

"Stuck Particle Correction" on page 40

Sample Interval

The sample interval determines how often the system takes a measurement during a continuous or bath process run. A sample interval is defined within the selected template and

can be edited from any method development tab. During method development, an Administrator can use the default sample interval provided by the selected template, or change the interval in the 'Sample interval' text box of an unapproved method.

Ø iC Process™	ParticleTrack Probe: (Default)_E25_01Prir
Home	Sample interval: 10 seconds
ParticleTrack Probe	Averaging type: None -
Configuration	Averaging type. None +
Methods	Stuck Particle Correction Enabled
References	Overview Reference Trends External Output

Note that the instrument is continually measuring chord lengths from the particle system and tabulating them into a histogram recording the number of chord lengths measured within each channel. The sample interval simply determines how often the tabulated results are reported. A longer sample interval will permit collection of a larger sample size of particle chord lengths, and will therefore result in greater statistical stability.

Note: Recommended minimum interval is 10 seconds. Refer to Table 3-1 on page 18 for examples of how sampling interval affects archive file size.

In general, selecting an optimal sample interval should be based on consideration of three factors: process dynamics, measurement stability, and duration of the batch or continuous run. In many situations these factors will conflict, and the user must optimize based on their requirements. In most cases, process dynamics will have highest priority.

Table 3-9 Sample Interval Considerations

Factors to Consider	Shorter Sample Interval	Longer Sample Interval
Process dynamics—Sample interval should be small to ensure the true process dynamics are measured, and signal aliasing is avoided.	 Captures more data points in a given time period Better for unstable samples or processes with fast dynamics 	 Captures fewer data points in a given time period Better for stable samples or processes with slow dynamics
Impact on measurement stability—A longer sample interval will record more chord lengths per reported measurement, resulting in greater statistical precision and less measurement-to- measurement variability	 Fewer particles analyzed per measurement Measurements in low concentration systems may show significant measurement to measurement variability 	 More particles analyzed per measurement Improve measurement stability by increasing the sample interval (and increasing the statistical sample size) Too long a measurement duration may mask process dynamics
Duration of run—Long run duration, combined with a fast sample interval, will result in very large data files that can be cumbersome during data review and analysis.	More data points recorded in a given time period will increase the size of associated data files, and will require more processing power/time during analysis	Fewer data points recorded in a given time period will reduce the size of associated data files, allowing more efficient review and analysis

Averaging Type

Averaging, also referred to as a 'smoothing method,' is a statistical method to smooth out fluctuations from the measurement data—for both trends and distributions.

The averaging functions improve the statistical robustness of the real-time measurement by averaging the raw signal acquired from the hardware. Note that there is a trade-off between measurement precision and sensitivity to change. While averaging improves measurement precision, it also dampens the dynamic response of the measurement to real-time changes in the trended statistics. Caution should be used to avoid over use of averaging, which can impact measurement sensitivity and reduce the ability to detect change over time.

Each template provides a default setting for Averaging; however the default setting can be optimized and overwritten by an administrator during method development. There are three Averaging types available during method development.

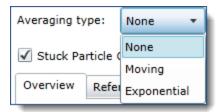


Figure 3-28 Averaging options

- **None**—Displays real time measurement, with no averaging function applied.
- Moving—Uses a cumulative moving average calculation based on a user-defined number of unweighted data points in the experiment. The moving average window size is an integer that defines the number of consecutive measurements from 2 to 60 that are averaged to provide the real-time data. For example, a moving average window size of 5 will display a distribution and calculated statistical trends that are the arithmetic average of the most recent raw signals for measurement and the previous four measurements. A higher moving average window size yields a smoother trend.

Averaging type:	Moving 🔹	Window Size:	5	-	> Smoother>
The Mov	ing calculation i	s as follows:			

$$V_t = \frac{1}{n} \sum_{i=0}^{n-1} X_{t-i}$$

where V_t = the calculated moving average at time **t** n = the user-defined number of unweighted data points

 X_{t-i} = the measurement data point at time t-i

Exponential—Uses an exponential (low-pass) filter to improve measurement precision. The calculation is based on all of the past data points in the experiment and it applies weighting to all of the data points used in the calculation. The weight of a given data point used in the calculation decreases exponentially with time.

Alpha is set to a value between one (no averaging) and zero (maximum smoothing). The value of alpha (α) determines the ratio of weighting applied to the most recent raw signal for measurement, while the remainder of the weighting (1 - α) is applied to the previous measurement. A lower alpha yields a smoother trend.

The Exponential calculation is as follows:

 $V_t = \alpha X_t + (1 - \alpha) V_{t-1}$

where V_t = the calculated moving average at time **t**

 V_{t-1} = the calculated exponential average at time t-1

 X_t = the measurement data point at time **t**

a = the weighting coefficient.

Stuck Particle Correction

Stuck particle correction is an advanced feature of FBRM technology to ensure that a small amount of window fouling does not affect the integrity of the data. Advanced signal processing identifies and removes the repeated chords of a particle that is stuck in the same position within the FBRM scan circle. This avoids oversampling of stuck particles and improves measurement reliability and sensitivity.

By default, stuck particle correction is enabled in all templates. During method development, click to remove the check mark if the particle or droplet systems for the given method do not require the stuck particle correction calculation.

Additional Tabs on Main Instrument Page

When any authorized user selects an instrument from the iC Process for FBRM Home page, the main display for that instrument is the Trends tab. The main display has four tabs for an Administrator or Technician and three tabs for an Operator. The Diagnostics tab only displays to Administrators and Technicians.

Trends Diagnostics Distributions Large Values

If you are an Operator, refer to "Viewing Options on the Main Page" starting on page 46.

If you are an Administrator or Technician, the same four tabs appear when the instrument is online or when it is in service mode. Refer to the information in the following sections based on whether you are considering online results or service mode results:

- Online Trends, Diagnostics, Distributions and Large Values—Refer to page 46 from the perspective of the instrument running a batch or continuous process.
- Service mode Trends, Diagnostics, Distributions, and Large Values—Refer to "Running Service Tests" on page 89 for details from the service perspective. The Diagnostics tab is described "Diagnostics Tab" on page 91.

The Diagnostics tab that appears on an instrument main page reports
 Note: diagnostic values while the instrument is running a process. Diagnostics in the service mode reflect values from running instrument service tests.

Operating iC Process for FBRM

iC Process for FBRM software enables direct control and monitoring of the ParticleTrack G600 or ParticleTrack E25 instrument. This chapter provides comprehensive instructions for an Operator on how to use the iC Process for FBRM to monitor continuous or batch particle or droplet processes in production. Before an Operator can start a run, an Administrator or Technician must have completed the initial implementation described in Chapter 3.

This chapter is primarily intended for users with the Operator role. Administrators can also perform the actions in this chapter.

Notes:

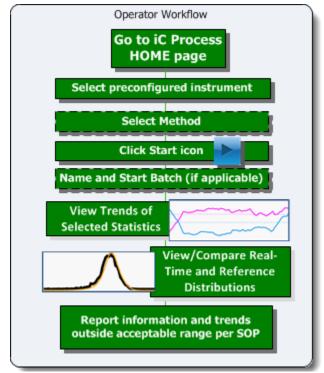
- For details about permissions for each role, refer to Chapter 2, "Getting Started" on page 9.
- For an introduction to the user interface, refer to page 12.
- Refer to the "QuickRef: For Operators of iC Process for FBRM" in the documentation portfolio.

Launching iC Process for FBRM

Access the iC Process software on the control computer by one of the following procedures:

Desktop icon—If the client and iC Process for FBRM server are on the same PC, double-click the desktop icon on the control computer desktop.

Internet Explorer—If the client is on a remote PC, access iC Process for FBRM, as follows:


- 1. Open the Internet Explorer browser.
- In the address bar, enter the web application URL provided by your IT department. The URL entry is case sensitive. It will be in the following format: http://<computer name>/

Replace **<computer name>** with the name of the control computer where iC Process for FBRM is installed.

Logging In (if applicable)

A login may be required based on how iC Process was installed and on how your IT department implemented user authentication. If a login prompt appears, enter your network login ID and password.

A Sample Workflow

Controlled by your Standard Operating Procedure (SOP), the workflow for an iC Process Operator would generally follow the sample below.

Selecting Pre-Configured Instrument

The current instrument controlled by iC Process appears on the Home page (launch page of the iC Process Web application) along with the current instrument status. Figure 4-2 shows a sample Home page. The first software step to monitor your particle and droplet system is to select the instrument by one of two methods:

- Click the instrument name in the left navigation menu, or
- Click anywhere inside the instrument status box from the main display.

Figure 4-1 Sample of Operator workflow

🏉 Home		
Ø iC Process™	Welcome <user id="" login=""> , you are currently logged on as an Administrat</user>	or
Home	ParticleTrack Probe	
ParticleTrack Probe	Batch	
Licensing	No Communication	
	Stopped	
	Online	
	Paused	
	Service	
	Batch Active	
	Maintenance Reminders: Calibration Validation Due 10/4/2015 Preventive Service Due 10/2/2015	
	Delete Instrument	
Administrator <user id="" login=""></user>	iC Process Version: 4.4.15.0	
METTLER TOLEDO	Send System Logs The archive should include log files from the last 1 day *	

Figure 4-2 Home page example

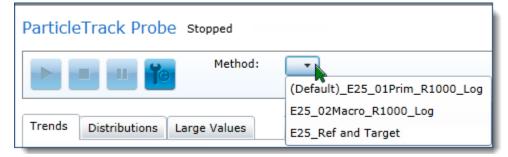
Viewing Instrument Status on Home Page

The Home page indicates instrument status. Figure 4-2 shows an instrument that is online, meaning it is actively collecting measurements in batch mode.

Table 4-1 Instrument Status

Status	Description
No Communication	Instrument is not currently collecting data, or executing a run, or publishing data to the designated archive location or an external client such as Modbus, OPC UA, or to a WITSML server. When in this status:
	 Check that FBRM Server is running. Check the power connection to the control computer. Check the communications connection between the control computer and the instrument.
	IMPORTANT: If the software loses communication with the instrument, the system continually tries to reestablish the connection. If a run is in progress when communication is lost, the system attempts to continue executing the current method and run after communication is reestablished.
Stopped	Instrument communication is established, but instrument is not in service mode and there is no method running.

Table 4-1 Instrument Status (continued)


Status	Description
Online	Instrument is actively collecting data and publishing data to an external client such as Modbus or OPC UA, or a WITSML server. This is the active state for Continuous processing Batch Active —The system is in batch mode and running.
Paused	Operator has paused the process. The system is collecting data and executing a run, but not publishing data to an external client such as Modbus or OPC UA, or to a WITSML server.
Service	Technician has put the instrument in service mode to collect data for tests. When in service mode, the instrument does not publish data to an external client such as Modbus or OPC UA, or to a WITSML server.

Viewing Preventive Maintenance Reminders

The Home page also shows regular preventive maintenance reminders (Figure 4-2) that prompt you to validate instrument calibration or schedule a preventive maintenance visit. When a reminder appears, contact your Administrator according to your SOP. More information about maintenance reminders is under "Example 3—Maintenance Reminders" on page 125.

Selecting a Method

After selecting the FBRM instrument, select a method applicable to the particle or droplet system in production. This action activates the buttons to the left that enable you to manage a run. Only compatible methods approved by an Administrator appear in the selection list.

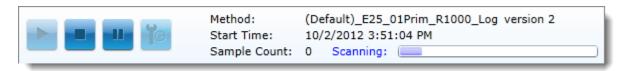
- 1. On the main instrument page, click the Method drop-down button (Figure 4-3).
- 2. Select the method to use for the batch or continuous run.

Follow your SOP or check with the Administrator about the method appropriate for the particle or droplet system to be processed.

The Start/Resume action button changes to enabled (see Figure 4-4).

Managing a Run

After selecting a method, the next step is to start a run to monitor a particle or droplet system. This action places the instrument online. Data collection, publishing, and archiving begin. There are two types of runs that you can start in iC Process—continuous or batch.


- In Continuous run mode, the system continually collects distribution measurements based on the selected method.
- In Batch run mode, the system operates in the same manner as a continuous run mode, but data is marked by a batch name, start command, and a stop command from an Operator or external system.

Starting a Continuous Run

1. Click the Start icon from the toolbar.

2. The instrument begins measuring the particle or droplet system in continuous mode.

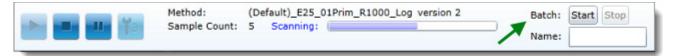


Figure 4-5 Run (in progress)

Starting a Batch Run

If batch runs are desired for the process, an Administrator configures the instrument to batch mode so the batch options (Start/Stop buttons, Name field) appear on the right side of the toolbar (Figure 4-6) after processing is started.

- 1. Click the Start icon (Figure 4-4) from the main toolbar. This places the instrument in a continuous run mode, with an option to start a batch at any time.
- If your SOP calls for specific batch names, enter the name first, and then click Batch Start. Otherwise, click the Batch Start button and leave the Name blank to begin batch with a system-generated name.

Figure 4-6 Naming and starting a batch run

After a batch starts, the heading bar changes to green and the batch is now actively scanning and collecting data. The instrument is in the "Batch ACTIVE" status.

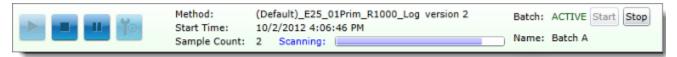
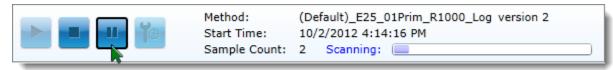



Figure 4-7 Batch ACTIVE

Pausing a Run

When you pause a run (see Pause icon in Figure 4-8), the instrument continues to collect measurements without publishing it to external Modbus, OPC UA, or WITSML clients. To see how a paused run appears in the Trend tab display, refer to "Background Color Indicates Instrument State" on page 51.

Figure 4-8 Pausing a run

Stopping a Run

To stop a batch or continuous run, click the Stop icon in the toolbar:



Figure 4-9 Stopping a run

Viewing Options on the Main Page

After instrument selection, the Trends tab appears by default. When a particle system process is running, select among the other tabs on the main page—Distributions or Large Values— as needed.

Trends	Distributions	Large Values
Figure	4-10 Main display	tabs for Operators

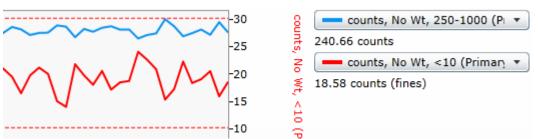
If a user with the Administrator or Technician role views the main instrument page, an additional tab for Diagnostics appears.

Viewing Trends

The Trends tab appears as the main iC Process window after you select the instrument. When the instrument is online, trend values from the real-time data acquisition are plotted for each data point over time. The trends appear in three stacked graphs—each with two selected statistics defined in the method. A selection list enables you to change the currently selected trend statistics paired in each of the three stacked graphs.

To select from available trends, follow the steps below.

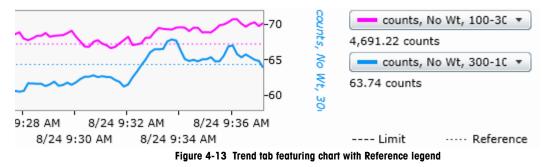
- 1. For an active run, allow several measurements to be taken.
- On the Trends tab, click the statistic selection arrow to the right of a trend graph to see a list of available statistics. Each available statistical trend in the list shows the name of the CSM used to calculate the statistic in parentheses.
- 3. Select the statistical trend to display.


In some cases, you can view the statistic values based on the selected Chord Selection Model (CSM) used to calculate the distribution. The type of calculation appears in parentheses after the Trend name.

Trends with Alarm Limits

Figure 4-11 shows the stacked graphs from the Trends tab. The second graph includes horizontal, **dashed** lines that show the high and low limits for one of the statistics. The color of the line matches the color of the statistic for ease of reference.

Figure 4-11 Trends tab example



Below is a close-up featuring the **dashed** line of alarm limits.

Figure 4-12 Close-up of Trends tab featuring graph with alarm limits (dashed lines)

Trends with Target References

A **dotted** horizontal line represents a statistical value calculated for the target distribution. The example in Figure 4-13 shows a **dotted** line in the same color as the statistic that indicates the Target Reference value.

Setting the Time Window

Two days are accessible in the Trends window. Use the scroll bar below the instrument main display to move the time window and look back at recent trends. You can use the Time Window options to change the period of time that appears in the Trends main display.

- Select a shorter period of time to see a close-up view of the most recent trends.
- Select a longer period of time to compress the trend view and see a broader time period.
- 1. Click the down arrow next to 'Window' to display the selection box
- 2. Select an option ranging from 15 minutes to 24 hours.

Figure 4-14 Time Window options

The main display changes to show the new time period and automatically scales the trend to show the selected range in the chart. For example, compare the trend view in a 15-minute window (top) to the 30-minute window (bottom) in Figure 4-15.

Figure 4-15 Time window comparison-15 minutes to 30 minutes

3. Use the scroll bar along the bottom of the main display to move back and forth within the two days of particle or droplet system data that appears in the view.

Viewing Details in Stacked Trend Graphs

Move the mouse cursor over any one of the trend graphs and the cursor changes to a vertical reader bar. Detailed data appears to the right of the bar. The data display is interactive and changes in all three stacked trends graphs as you move the cursor.

Figure 4-16 Reader bar in stacked trend view

The information includes details about the statistic, such as the counts or particle measurement in microns at a specific date and time.

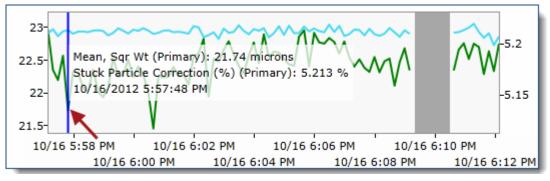


Figure 4-17 Reader bar in stacked trend graphs—Close-up

Viewing Alarm Conditions

The iC Process Web application displays alarm messages in red. For example, if the fouling index is included in the user-specified trend statistics and its trend values exceed the limit set in the method for five consecutive measurements, the name of the instrument changes to red and an alarm box appears to the left of the main display. Also, the corresponding box in the Large Values display changes from green to red.

Appendix D, "Alarms and Messages" starting on page 123 describes the types of messages that can appear along with sample displays.

Viewing Batch Start and Stop Markers

If running a batch process, vertical lines indicate when the batch started and stopped (Figure 4-18).

- Batch started (vertical green dashed line)
- Batch ended (vertical red dashed line)

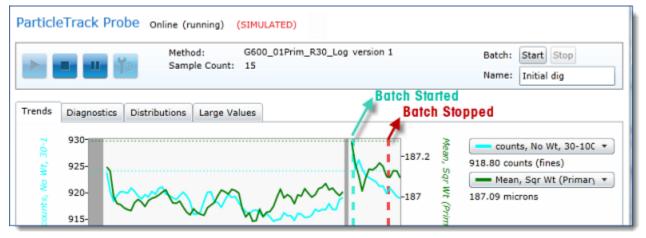


Figure 4-18 Batch start/stop indicators on trend chart

Background Color Indicates Instrument State

As you observe the main display, notice the background can be in three shades of gray. Below are some examples shown in Figure 4-19.

- The instrument is running continuous or batch processing (pale gray background)
- The instrument was offline (dark gray background)
- Data publishing was paused (medium gray background)

Figure 4-19 Grey band indications on trend chart

Viewing Distributions

The Distributions tab shows the real-time distribution from the FBRM instrument measurements. In addition, the tab includes any of the following types of reference distributions:

- Most recent distribution
- Target Distribution defined for the method
- Up to two Reference Distributions defined for the method
- Latest reference distribution captured for the current run

The real-time distribution is black and bold. Target and Reference Distributions appear in color.

Distribution counts automatically update for each measurement, along the time stamp. The formula used for calculation appears in parentheses. Distribution calculations can be Primary or Macro CSM.

When a Target Distribution exists, you can click the **Show % target** check box above the statistical values table (Figure 4-20) to display the percentage difference compared to the target distribution after each statistic.

The Y-axis shows counts by bin and the X-axis shows particle dimensions in microns (µm).

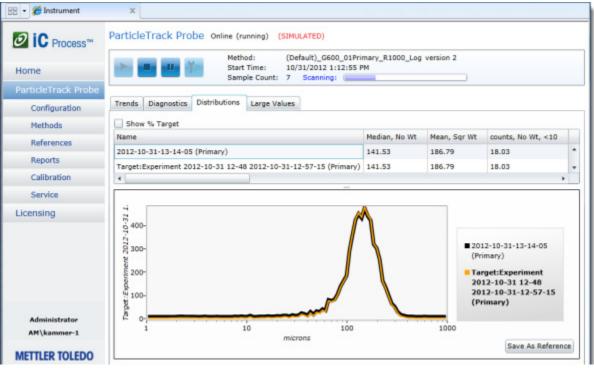


Figure 4-20 Distributions view

Saving Reference Distribution

During a processing run, an operator can save the current live distribution as a reference. Only one reference distribution is saved for a run, so the most recently saved distribution is the one.

- 1. During a batch or continuous run, select the Distributions tab.
- 2. Observe the current distribution. When desirable, click the Save as Reference button on the bottom right side of the window. The system saves the selected distribution. The live distribution is always bold and black. The reference distributions are in a color. Figure 4-21 shows the message that appears after you save a distribution as a reference.)

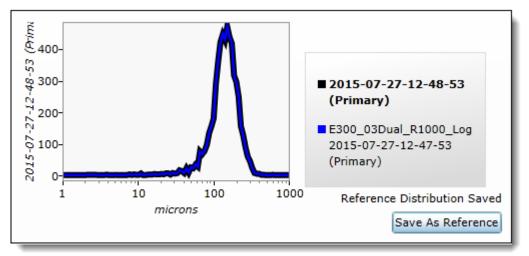


Figure 4-21 Saving a reference distribution during a live run

A user with the Administrator role can choose an applicable reference distribution in the Methods > Select a method > Reference tab (page 30).

All captured distributions for an instrument can be managed by an Administrator or Technician on the Configuration > Reference Distributions tab (page 79).

Viewing Large Values (Trends)

For ease of viewing, the current value for each trend selected on the Trends tab appears in large blocks on the Large Values tab. The size of the blocks changes dynamically based on the number of trends and the size of the Internet Explorer window. Large values are green when the current trend values are within the alarm limits specified in the method.



Figure 4-22 Large Values example—With one value outside of limits

- When the instrument is online, an arrow indicates a trend value that is increasing or decreasing.
 - Display changes to red if a trend value rises above or falls below alarm limits defined by an Administrator in the method (see page 123).

Viewing Instrument Submenu Options

The left navigation has three menu items—Home, Instrument main page, and Licensing. Submenu options appear under the Instrument main page. The majority of your time as an operator is spent on the instrument main page. However, most submenu options can be viewed and the Reports and the Calibration check options can be used as they apply to your Standard Operating Procedure (SOP).

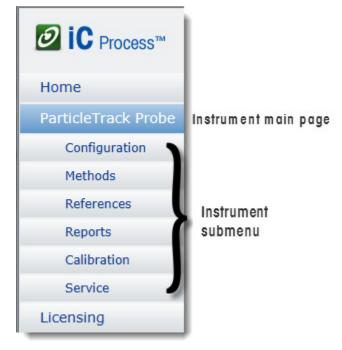


Figure 4-23 Instrument submenu on left navigation menu

Viewing Configuration

Instrument configuration has already been defined during initial implementation, however you can select this option and view the details about instrument settings and WITSML settings, if applicable.

Instrument Settings Tab

Instrument settings are disabled and display for reference only.

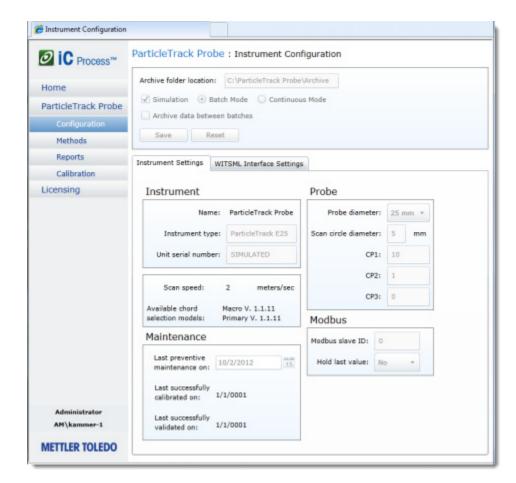


Figure 4-24 Configuration submenu example—Operator's view of Instrument Settings

WITSML Interface Settings Tab

If an Administrator has set up Wellsite Information Transfer Standard Markup Language (WITSML), for communication to a drilling site, configuration settings are disabled and appear for reference only.

Viewing Methods

Methods for running processes on an instrument have already been defined during initial implementation, however you can select this option and view the details. Only approved and compatible methods appear in the selection list on the main instrument page. If you select a method, the details appear on the Overview tab:

Home	Sample inte	erval: 10 se	econds				
ParticleTrack Probe Configuration	Averaging t	ype: None	Ŧ				
Methods	Stuck Pa	article Correct	tion Enable	ed			
References	Overview	Reference	Trends	External Output	External Input	History	
Reports	Method Cor	-	ti da Tanada	CC00/CC00 F			
Calibration	Sample I	nterval: 10 s	seconds	G600/G600 Ex			
Service		g Type: Non Grouping Bin		Log			
Licensing	Channel of Scan Spe Weightin Stuck Par Chord Se Primary Statistic(Median Mean, S counts, counts, counts, counts, Detecti Fouling Stuck P	, No Wt Sqr Wt No Wt, <10 No Wt, 20-2 No Wt, 50-2 No Wt, 250- on Count (co Index (%) Particle Corre- riation, No W	Veight on Enable (s): 0 50 1000 unts) ction (%)				
		are, No Wt	- 14/4				
AM\kammer-1		tile c, (10), N tile c, (25), N					

Figure 4-25 Method—Overview tab for a selected method

The remaining tabs of method information are available, for information only.

Service Submenu (unavailable)

The Service submenu is not available if a run is in progress or the current user does not have permission to run any of the tests. If you click **Service** while service mode is not available, the following message appears:

C Instrument Service	
Ø IC Process™	ParticleTrack Probe : Service Enter Service Mode Instrument services are available when the instrument is in service mode
Home	and the current user has the required privileges to run tests.
ParticleTrack Probe	
Configuration	
Methods	
References	
Reports	
Calibration	
Service	
Licensing	
METTLER TOLEDO	

Figure 4-26 Service submenu—No Operator access

Viewing and Generating Reports

Generate reports, as needed, according to your Standard Operating Procedure (SOP). Figure 4-27 shows an example of the Reports main page. The page lists reports run on the system during batch and continuous processing. Service and calibration validation test reports also appear in the list (see example list on page 64). Click a Test report name to view it.

Ø IC Process™	ParticleTrac	k Probe : Reports	View Report
Home	Time Period:	•	▼ View Report
ParticleTrack Probe	Test	Date	
Configuration	Service Test	10/3/2012 4:15:00 PM	
Methods	Service Test	10/3/2012 4:36:00 PM	
	Service Test	10/4/2012 12:01:00 PM	
References	Validation Test	10/3/2012 4:07:00 PM	
Reports	Validation Test	10/4/2012 4:16:00 PM	
Calibration			
Service			
Licensing			
Administrator AM\kammer-1			
METTLER TOLEDO			

Figure 4-27 Reports main page—Batch report selection menu expanded

Viewing a Batch Report

If batches have been run, a report exists for each batch that has started and completed in the last ten days. To view a report, follow the steps below.

1. Click the down arrow next the Batch field and select a report from the list.

 Click View Report on the main Reports page to display the selected report in .XPS format. A new browser windows opens where you can view, save, or print the report.

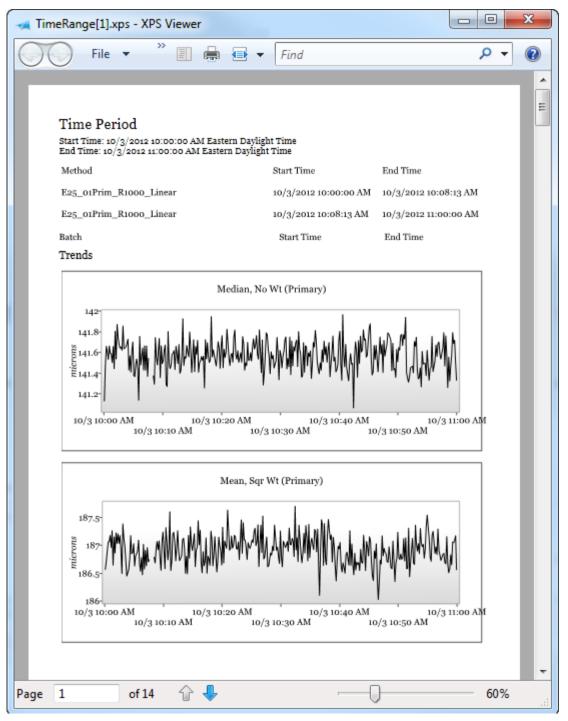


Figure 4-28 Report sample—Batch

In addition to information on the batch start and end times, method, and trend graphs, the report includes:

- Method
- Data Summary table

- Instrument configuration
- Messages generated

Generating a Time Period Report

To generate a report on a continuous or batch run, specify the time period to include in the report, as follows:

ParticleTra	ick Probe :	Reports		
Batch:	•	·		View Report
Time Period:	10/3/2012	• 11 AM •	4 Hours 💌	View Report
	↑ Date	Starting Hour	† Duration	

Figure 4-29 Reports—Time Period parameters

- 1. Select a date from the Time Period drop-down list.
- 2. Choose the starting hour from the second drop-down list.
- **3.** From the third drop-down list, set the report duration by selecting the number of hours the report is to cover.

4. Click **View Report** to display the report in .XPS format. A new browser windows opens where you can view, save, or print the report.

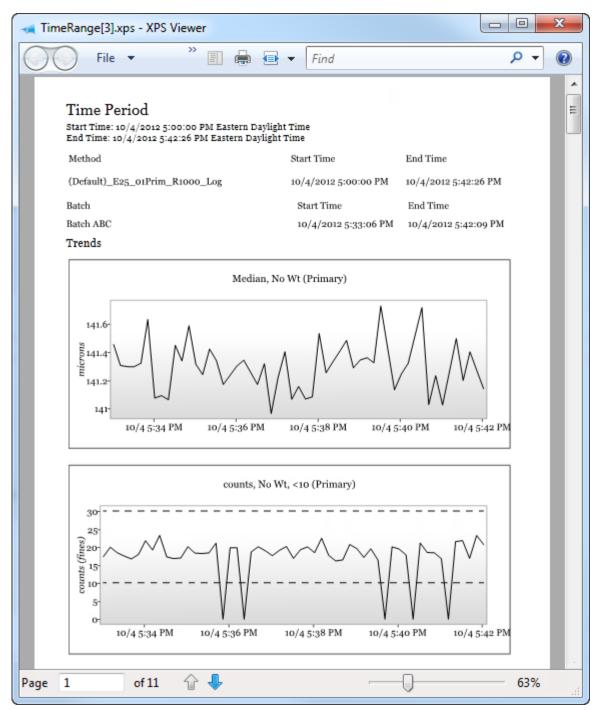


Figure 4-30 Report sample—Time Period

Validating/Calibrating an Instrument

The Calibration menu option in iC Process for FBRM provides an easy way to check instrument calibration (Calibration Validation) for all supported instruments. The process involves immersing the probe in a reference sample slurry for comparison to measurements that are traceable to factory reference instruments.

Checking calibration can be a periodic task performed by an iC Process for FBRM user, as directed by a Standard Operating Procedure (SOP). All user roles in iC Process for FBRM can perform a calibration validation, however only an Administrator or Technician can perform a System Calibration.

Note: With annual Preventive Maintenance service, an Field Service Engineer (FSE) checks instrument calibration and re-calibrates, if necessary.

For ParticleTrack G600 instruments, which have an accessible micrometer, a System Calibration feature is included to enable re-calibration of the instrument focal point setting, if necessary. ParticleTrack E25 instruments do not have an accessible micrometer and can only be calibrated by an FSE. Contact METTLER TOLEDO using one of the numbers on page 8.

Prerequisite—The instrument must not be currently running a process

- If the instrument is available for calibration validation testing, the Calibration page appears when you select 'Calibration.'
- If a batch or continuous process is running, calibration validation cannot be run. The following message appears.

ParticleTrack Probe : Calibration (running)

Instrument calibration is available when the instrument is communicating, but not running.

Figure 5-1 Message—Calibration validation cannot be performed

Stop the process by clicking the Stop icon on the main instrument display page:

Figure 5-2 Stop icon on main instrument page

Procedures

This chapter includes procedure documents (embedded in the upcoming pages) on how to check calibration and perform a calibration, where applicable.

MK-PB-0109-AC Calibration Validation in iC Process for FBRM (page 65)

If the Calibration Validation test fails:

ParticleTrack G600—Perform the System Calibration procedure from the following document:

MK-PB-0110-AC System Calibration in iC Process for FBRM (page 70)

ParticleTrack E25—Please contact METTLER TOLEDO using information on page 8.

Viewing Reports through Reports Menu

After validation or calibration procedure been run in iC Process for FBRM, the most recent Calibration Validation and System Calibration report can be viewed from the Calibration pages. However, to view earlier System Calibration reports, select Reports from the left navigation menu.

	G600 : Repor	ts	View Report
Home	Test	Date	
G600	Calibration Test	10/22/2012 4:12:00 PM	
Configuration	Calibration Test	10/22/2012 4:53:00 PM	
_	Validation Test	10/23/2012 9:42:00 AM	
Methods			
References			
Reports			

Figure 5-3 Reports—System Calibration and Calibration Validation

Calibration Validation in iC Process[™] for FBRM[®]

Checking instrument calibration is a periodic procedure to ensure consistent and repeatable instrument measurements.

iC Process for FBRM software guides you through the validation process and provides complete reporting for the instruments listed below:

Instrument	Calibration Validation Procedure				
ParticleTrack™ G600 / G600Ex ParticleTrack™ E25	PVC (Polyvinyl Chloride) Reference Sample Comparison				

Table 1—Instruments That Use This Procedure

METTLER TOLEDO recommends the procedure be done at regular intervals—monthly or quarterly—or if the instrument is dropped or relocated.

If the calibration validation for ParticleTrack G600 instrument indicates the instrument requires calibration, follow the System Calibration Procedure (MK-PB-0110-AC) in the Hardware Documentation Portfolio. For ParticleTrack E25 instruments, please contact METTLER TOLEDO.

Required Items

- Fixed Beaker Stand (FBS)—Accessory with mixer used to validate instrument calibration. The FBS holds the reference sample in a reproducible setup for repeatable measurements.
- Reference sample—Original or Replacement slurry of PVC (polyvinyl chloride). The sample should be white in color (no contaminants) and it should not be removed from its original beaker.
- Target distribution file—An iC FBRM experiment reference data file associated with the reference sample. This file contains the target distribution.
- Instrument-specific template An iC Process for FBRM experiment file for calibration validation. The file is automatically selected in the software for the currently-configured instrument.

About Target Distribution File and Sample

Two types of target distribution file and sample exist. An original target distribution file is generated from the customer instrument. A replacement is generated from the factory-standard reference instrument.

The target distribution file name identifies whether the file and the associated reference sample are the originals or replacements. Below are examples of the file name with sample ID along with **Table 2** that explains each part of the name.

SN16123-G600-P-2-145622-02.icFbrm (Original file based on serial number of customer instrument)

REF-G600-P-2-145622-02.icFbrm (Replacement file based on factory reference instrument)

File Prefix	Serial Number	Туре	Chord Selection Model (CSM)	Scan Speed	Reference Sample ID	Format
SN-Original Sample	16123	G600	P=Primary	2	#######################################	.icFbrm
REF -Replacement Sample		G600	P=Primary	2	#######################################	.icFbrm

Table 2—Target Distribution File Name (Original and Replacement)

MK-PB-0109-AC Rev C DCN 2769

February 2016 1 of 6 METTLER TOLEDO

Figure 1—Target distribution file and PVC reference sample beaker

Steps to Validate Instrument Calibration

The Calibration Validation steps in iC Process for FBRM software are: A. Warm Up Hardware, B. Set Calibration Validation Parameters, C. Start Validation Test, D. Check Pass/Fail Results, and E. Final Steps.

A. Warm Up Hardware

- 1. Turn on the ParticleTrack instrument and allow it to warm up. The probe should be running for a minimum of 30 minutes before acquiring measurements.
- 2. Start the iC Process for FBRM software.

B. Set Calibration Validation Parameters

- 1. From the iC Process for FBRM Home page, select the instrument.
- 2. Select Calibration from instrument submenu in the left navigation menu.
- 3. Verify the test selection—Test: Calibration Validation.
- 4. Complete the following required Calibration Validation Parameters:

Instrument Calibration	×						
Ø iC Process™	ParticleTrack : Calibration						
Home	Test: Calibration Validation 🔻	View Latest Report Start Test Stop Test					
ParticleTrack	Calibration Validation Parameters	nplate: CalibrationValidation G600 -					
Configuration							
Methods	Original Sample Tar	get Distribution:					
References	Replacement Sample Number of Measurements: 15						
Reports	Other (User Specified Pass Criteria)						
Calibration	Overview Trends Diagnostics Distributions La	arge Values Pass Limits Test Results					
Service							

Figure 2—Calibration Validation (Required parameters)

- a. Reference Sample ID—Enter the ID number from the label on the reference sample beaker.
- b. Target Distribution—Click Load and locate the reference file that was provided with the reference sample that will be used during this test.
- c. Select the appropriate reference sample type:
 - **Original Sample**—PVC sample shipped with the instrument that was used to calibrate the instrument at the factory.
 - Replacement Sample—PVC sample ordered after the original has been used 10 times or after a year, whichever comes first.
 - **Other**—If a reference sample other than PVC will be used, select this option and describe the sample in the Material text box that appears.

aterial:

The software includes pass/fail criteria for the PVC samples. However when selecting the 'Other' option, you must supply the passing criteria for the validation test. Select the 'Pass Limits' tab and enter the high and low limit values for the validation statistics (see "Check Pass/Fail Results" on page 4).

2 of 6

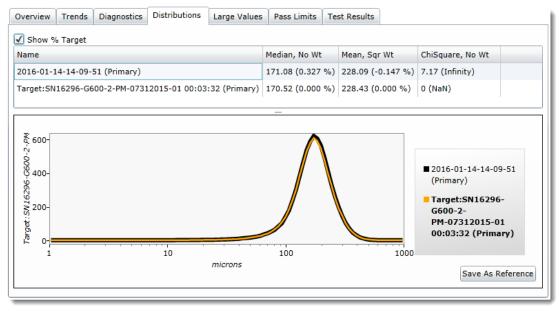
Calibration Validation Procedure in

- d. **Template**—The software program automatically loads the template for the hardware type.
 - **Note:** If you selected 'Other' for the Reference Sample, create a customized template from an iC FBRM experiment and use it for the calibration validation.
- e. **Number of Measurements**—Accept the recommended default (15) or set the number of measurements to be taken for the validation test, if you are using a reference sample other than PVC.
- **5.** After cleaning the probe, place the reference sample (original or replacement) in the FBS and check the reference sample as follows.
 - a. Ensure it is white in color and free of contaminants.
 - b. Ensure liquid level is 300 mL.

If necessary, add distilled water to the sample to achieve the 300 mL total volume.

6. Turn on the mixer, set the speed to 400 rpm and allow five minutes for the sample to disperse.

C. Start Validation Test


1. Click Start Test. (The button becomes enabled after the required parameters have been entered.)

Overview Tab—Provides non-editable information on the currently configured instrument and the Calibration Validation template selected for the current test.

Trends Tab—Displays trend charts for the statistics defined in the Calibration Validation template, as the test runs.

Diagnostics Tab—Displays instrument diagnostic trends during the test.

Distributions Tab—Displays the live distribution as a bold black line during the test. The Target Distribution from the Target Distribution file appears in orange. The name of the Chord Selection Model (CSM) appears in parentheses after the live and target distribution names.

Figure 3—Distributions (% of Target)

Large Values Tab—Displays current statistics from the Trends tab automatically as large values for ease of reading from a distance.

MK-PB-0109-AC Rev C DCN 2769 3 of 6 METTLER TOLEDO Pass Limits Tab—(Figure 4) This shows the passing criteria for the test.

- Where Original/Replacement Sample being used, the criteria is auto defined and read-only.
- Where 'Other' sample is being used, the criteria is user defined.

Ø iC Process™	ParticleT	ParticleTrack : Calibration									
Home	Test: Calibra	Test: Calibration Validation The last completed calibration validation passed at 1/14/2016 2:11 PM. Stor Test Stor Test									
ParticleTrack	Calibration	n Validatio	n Parameters								
Configuration	Reference Sample ID: 07312015-0)1	Temp	late:		CalibrationVal	idation G600		•
Methods	 Original Sample 				Target Distribution:			SN16296-G600-2-PM-07312015-01 00:03:32 •			• Load.
References	O Replacement Sample				Number of Measurements:			: 15			
Reports	Other (U	ria)									
Calibration	Overview	Trends	Diagnostics	Distributions	Larg	je Values	Pass Limits	Test Result	is		
Service	Statistic			Low Limit Va	alue	High Lin	nit Value				
Licensing	Median, N	lo Wt (Pr	imary)	-3 %		3 %					
Administrator AM\carrigy-1	Mean, Sqr Wt (Primary)		-4 %								
	ChiSquare	e, No Wt	(Primary)	0		150					

Figure 4—Pass Limits (Percentage variation from template for each statistic)

D. Check Pass/Fail Results

1. To view the results of a validation, select the Test Results tab.

While the test is running, the Current Value appears for comparison to the Pass Criteria. When the test stops, the Pass/Fail column identifies the result as "Pass" or "Fail."

Instrument Calibration	×										
Ø iC Process™	ParticleT	ParticleTrack : Calibration (running)									
Home	Test: Calibra	est: Calibration Validation 🔹 3 of 15 measurements taken. View Latest Report Start Test Stop Test									
ParticleTrack	- Calibration	n Validatio	n Parameters								7
Configuration	Reference Sample ID: 07312015-01			01	Template:		CalibrationValida	tion G600	Ŧ		
-	 Original Sample 				Target Distribution: SN16296-G			N16296-G600-2-PM-07312015-01 00:03:32 💌		Load	
Methods	Replacement Sample				Number of Measurements: 15						
References	Replacement Sample Replacements. 15										
Reports	Other (l	Jser Speci	fied Pass Crite	ria)							
Calibration	Overview	Trends	Diagnostics	Distributions	Large Values	Pass Limits	Test Results				
Service	Statistic			Units	Pass Criteri	а	Measured Values		Current Value	P	ass/Fail
Licensing	Median, N	lo Wt (Pri	mary)	microns	±3% (165.	40 - 175.6	53) 170.90 - 171.30		0.35% (171.12)		n progress
Administrator	Mean, Sq	r Wt (Prin	nary)	microns	±4% (219.	29 - 237.5	7) 227.57 - 228.17		-0.11% (228.1	7) II	n progress
AM\carrigy-1	ChiSquare	e, No Wt	(Primary)	unitless	< 150.00		10.74 - 25.94		10.74	I	n progress
METTLER TOLEDO											

Figure 5—Calibration Validation (Test Results tab, in progress)

for FBRM[®]

Calibration Validation Procedure in iC Process

- 2. Observe the Pass/Fail results (Figure 6).
 - If the values from the 15th measurement are within the Pass Criteria range, the instrument passes the calibration validation test and Pass appears in the Pass/Fail column.

2 iC Process™	ParticleTrack : Calibration											
Home	Test: Calibr	Test: Calibration Validation The last completed calibration validation passed at 1/14/2016 View Latest Report Start Test Stop Test Stop Test										
ParticleTrack	- Calibration	n Validatio	n Parameters									
Configuration	Reference Sample ID: 07312015-01			Template:	С	alibrationValida	tion G600	•				
Methods	Original Sample			Target Distribut	ion: S	SN16296-G600-2-PM-07312015-01 00:03:32 -			Load			
References	Replacement Sample				Number of Measurements: 15							
Reports	Other (I	Other (User Specified Pass Criteria)										
Calibration	Overview	Trends	Diagnostics	Distributions	Large Values	Pass Limits	Test Results]				
Service	Statistic			Units	Pass Criteria		Measured Values		Current Value	Pass	/Fail	
Licensing	Median, No Wt (Primary) microns		microns	±3% (165.40 - 175.4		3) 170.81 - 171.20		0.36% (171.12) PAS	S		
Administrator AM\carrigy-1			microns	±4% (219.29 - 237.) 227.92 - 228.62		-0.14% (228.1	1) PAS	s		
	ChiSquare, No Wt (Primary) unitless		< 150.00		7.04 - 26.38		8.37	PAS	S			
METTLER TOLEDO	Chisquare	e, 110 111										

- Figure 6—Test Results (Pass)
- If the values from the 15th measurement are not within the Pass Criteria range, Fail appears in the Pass/Fail column. An instructional message appears at the top of the page.
- **3.** If the Calibration Validation test passes, proceed to view and distribute the report per your SOP. Then, complete section E. Final Steps on page 6.

If the Calibration Validation test fails:

• ParticleTrack G600: Perform the System Calibration using the instructions in Hardware Documentation Portfolio. Then, repeat this Calibration Validation.

If, after the System Calibration has been performed and the Calibration Validation has been repeated, the parameters are still outside the specified limits, contact a METTLER TOLEDO Technology and Applications Consultant.

- ParticleTrack E25: Please contact METTLER TOLEDO.
- Click View Latest Report to see the most recent calibration validation results report form (Figure 7). Save or print the report per SOP.

	Valie	dation Re	port			Instrument:
Templani: Calibration/Validation to form Time: UrA40016 200732 PM creat AMnoaming-1 creation and the second second second industries Totaling - Particial Track C industries Tania Number: Sama a la foregle 30n - 07332005-00 Sample 10n - 0750	E Duracion: 1 800,15800 Ex 6 800x8			R TOLED	0	bimment gas Arachitek (2000) 6 Um sand many 1040 Manuel 1041 Manuel 1041 Manuel 1041 Participation (2000) Participation (2000)
arget Distribution: SN28298-G Jumber of Measurements: 15	800-2-044-073	12015-01 00-05	37			Brothument Type: ParticleTrack G600/G600 Ex
Validation Results: PASS						Duration: 1 hour Sample Internal: 13 seconds
Name	Lines	Pass Criteria	Measured Values	Last Value	Paul Fail	Averaging Type: Moving Window San: 10
Median No Wi Primaral	microre		170.81 - 171.20	171.12	PASS	Channel Grouping Bin Spacing: Log Number of Binz: 100
Maan, Spr Wt (Itrimany)	microne		222.80 - 228.62	228.11	PASS	Channel Grouping Range: 1 - 1000 microns Scan Speed 2 mics
Chiliquare, No Wit (Primary)	unitiess	< 110.00	7.04-28.38	8.57	PAST	Weighting Type. No Weight Stuck Particle Correction Enabled: False
Reference Distributions						Chord Selection Model(): Promey V. 1.1.11
	00	03.32 (Primar)	8			Statisticijo Modian, No Wt (Primery) Maan, Sgr Wd (Primery) ChSiguan, No Wt (Primery)
400- 500- 400- 300- 200- 300- 300- 3	10	mirrora			1000	
Thursday, January 34, 2016		1/2				Thursday, January 14, 2006 2/2

Figure 7—Calibration Validation report

After the Calibration Validation test is complete, perform the following post-test procedures:

- 1. Turn off the mixer and allow the reference sample to settle.
- 2. Gently remove the sample beaker using a repeated up and down motion. This will maintain integrity of the sample by removing PVC adhering to the probe and impeller.
- 3. It is recommended to put a few drops (<0.5 g) of bleach in the PVC sample after each use to prevent biogrowth.
- 4. Record the date used on the label (Figure 8).

	ME	TTLER		TOLED	00
File ID (Primary)	3 % Wt. ate 07/2 = SN16	Concent 24/2015	ratio 0-P-2	n	-02
	Dates I	Jsed:			
12	3	4.	5	i	
67	8	9	10)	
Replace sampl whic		10 th use (omes fin		e year,	

Figure 8—Example of PVC Reference Sample label

 After its tenth use or one year (whichever comes first), the PVC Reference Sample should be replaced. Contact your local METTLER TOLEDO representative to request a new sample before the sample reaches its end of life.

Calibration Validation Procedure in iC ProcessTM for FBRM®

6 of 6

System Calibration in iC Process™ for FBRM®

If the Calibration Validation procedure (MK-PB-0109-AC) indicates the instrument is out of specification, perform this System Calibration procedure.

Instrument	System Calibration Procedure
ParticleTrack™ G600 / G600Ex	Micrometer Adjustment

Table 1—Instrument That Uses This Procedure

The System Calibration procedure sets the Standard Focal Position relative to the probe window. The measured statistic **Counts < 20 microns (no weighting)** reaches a maximum value when the focal position is located at the Window Reference Position. A factory-specified adjustment is then applied to the Window Reference Position, resulting in the Standard Focal Position.

Required Items

To satisfy consistent reproducibility of precise system calibration, the procedure must be performed as documented, using the materials listed.

- Fixed Beaker Stand (FBS)—Accessory used to position the probe for system calibration with the window facing down.
- **Dry-Erase Black Marker**—While most black dry-erasable markers will do, it is best to use the marker provided by METTLER TOLEDO to ensure measurement-to-measurement consistency.
- Instrument-specific template—An iC Process for FBRM experiment file for system calibration. The file is automatically selected in the software for the currently-configured instrument.

About Reading/Adjusting the Micrometer

The micrometer on the probe adjusts the focal position. Each mark equals 10 microns (10 μ m).

The reference mark engraved on the probe head indicates where to read the current micrometer position. Depending on the instrument, the micrometer can be one of two styles—in line with the probe head (with a protective sleeve, **Figure 1A**), or at the end of the probe head (with a protective cap, **Figure 1B**).

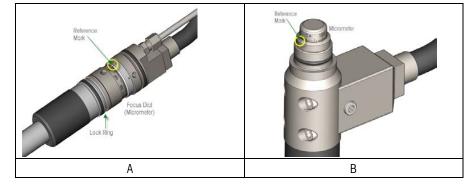


Figure 1—Micrometer (two styles)

- Turning the micrometer clockwise moves the focal point farther into the slurry (positive distance).
- Turning the micrometer counterclockwise moves the focal point back into the probe (negative distance).

MK-PB-0110-AC Rev B DCN 2769

Note: To eliminate the effects of hysteresis, always reach the desired micrometer position clockwise. If you pass the desired micrometer position, move the micrometer counterclockwise at least 50 microns (5 marked increments) and then find the correct point by moving the micrometer clockwise.

Steps to Perform System Calibration

System Calibration steps in iC Process for FBRM are:

- A. Warm Up Hardware
- B. Prepare the Probe
- C. Set Up System Calibration Test
- D. Locate Window Reference Position
- E. Adjust /Set Micrometer to Standard Focal Position
- F. Clean Probe Window and Repeat Calibration Validation
- G. View System Calibration Results

A. Warm Up Hardware

- 1. Turn on the ParticleTrack instrument and allow it to warm up. The probe should be running for a minimum of 30 minutes before acquiring measurements.
- 2. Start the iC Process for FBRM software.

B. Prepare the Probe

- 1. Using the dry erase marker provided with the instrument, coat the surface of the clean, dry probe window with a uniform, thick layer of ink.
- 2. Allow two minutes for the ink to dry.
- 3. Insert the probe in the FBS.
- 4. Remove the protective cover from the probe micrometer. Depending on the probe design, remove the cap or slide down the cover and unscrew the locking ring.

C. Set Up System Calibration Test

- 1. In iC Process for FBRM, select the instrument from the Home page.
- 2. Click Calibration from the instrument submenu in the left navigation menu.
- 3. Click the Test selection button and choose System Calibration.

2 of 7

Complete the required Initial micrometer position entry (for example +20) identified by the red border in Figure 2.

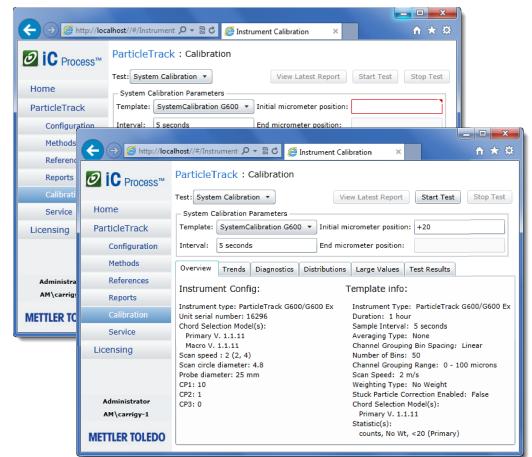


Figure 2—System Calibration (required parameter)

D. Locate Window Reference Position

The System Calibration procedure involves initial micrometer adjustments followed by refined adjustments. The procedure takes approximately 25 minutes and should flow from initial to refined, without interruption. If an interruption occurs, you must clean the probe, coat it with marker, wait two minutes, and start over from step 1 of the initial micrometer adjustments.

Note: The goal is to determine the micrometer positon that yields the maximum value for the Counts < 20 microns (no weighting) statistic.

Perform Initial Micrometer Adjustments

System calibration procedure starts with large initial adjustments (20-micron increments) to quickly reach the first approximation of the final focal position.

MK-PB-0110-AC Rev B DCN 2769 3 of 7 METTLER TOLEDO

- 1. Make the initial adjustment by turning the micrometer dial to approximately the $-100 \,\mu m$ position.
- 2. Click Start Test.
- **3.** Click the Trends tab and observe the particle counts in the graph. The value for each measurement also appears to the right of the graph. Wait until at least five measurements have been acquired.

()) //locz	alhost//#/InstrumentCalibrations/ParticleTrack 🛛 🖓 👻 🖉 🖉 Instrum	nent Calibration ×
Ø iC Process™	ParticleTrack : Calibration (running)	
Home	Test: System Calibration 🔻 15 measurements taken.	View Latest Report Start Test Stop Test
ParticleTrack	System Calibration Parameters Template: SystemCalibration G600 v Initial micrometer position:	120
Configuration Methods		-80
References	counts, No Wt, <20 (Primary) L	tics Distributions Large Values Test Results
Reports Calibration	₩ ₩ 100000-	10 counts, No Wt, <21 •
Service	2	16,427.09 counts (fines) -5 None
Licensing	50000- 	
	10- 5-	10 None v -5 None v
	0	-5 None -
Administrator AM\carrigy-1		14 3:54 PM 1/14 3:58 PM 1/14 4:02 PM PM 1/14 3:56 PM 1/14 4:00 PM Limit ····· Reference
METTLER TOLEDO	4	Window: 15 Minutes

Figure 3—System Calibration (Trends tab)

Note: During calibration, expect a counts, No Wt, <20 error until counts at the window exceed 75

- **4.** Rotate the micrometer clockwise to increase the micrometer position by 20 microns (two marked increments).
- 5. Observe the trend graph and wait for at least five more measurements.
- **Note:** An initial adjustment may not show a significant change, however with subsequent micrometer adjustments, the trend graph should begin to show a series of step change increases until a maximum (peak) value is reached, followed by step change decreases.
- 6. If a clear step change increase appears in the trend graph, enter the current micrometer position in the 'End micrometer position' text box.

4 of 7

7. Repeat steps 4 – 6 until the trend value has reached a clear maximum (peak) value and has begun to decrease with each micrometer adjustment.

← → Ø http://loc	alhost//#/InstrumentCalibrations/f 🔎 👻 🗟 🦉 Instrument Calibration 🛛 🗙 🤹
Ø iC Process™	ParticleTrack : Calibration (running)
Home	Test: System Calibration * 60 measurements taken. View Latest Report Start Test Stop Test
ParticleTrack Configuration Methods	System Calibration Parameters Template: SystemCalibration G600 v Initial micrometer position: +20 Interval: 5 seconds End micrometer position: 0
References	Overview Trends Diagnostics Distributions Large Values Test Results
Reports Calibration Service Licensing	100000- 02 50000- 05 50000- 0 10 10 10 10 75,882.31 counts (fines) None ▼
	10 5- 0 10 None • 5 None •
Administrator	10 5- 0
AM\carrigy-1	1/14 3:54 PM 1/14 3:58 PM 1/14 4:02 PM 1/14 4:06 PM 1/14 3:56 PM 1/14 4:00 PM 1/14 4:04 PM Limit ····· Reference
METTLER TOLEDO	Window: 15 Minutes

Figure 4—Step increase in trend with micrometer adjustments

8. Note the micrometer position at the maximum location in the trended statistic graph before the trend began to decrease. The final value recorded in the End micrometer position text box should be the first micrometer setting that resulted in the maximum trend value.

Perform Refined Micrometer Adjustments

The next phase of system calibration changes to refined (5-micron increments) micrometer adjustments.

- 1. To begin refined adjustments, rotate the micrometer counterclockwise 50 microns back from the first maximum value attained in the initial adjustments (step 8 above).
- 2. Rotate the micrometer clockwise to increase the micrometer position by 5 microns (one-half of 1 marked increment).
- 3. Wait for at least five measurements and observe the overall change in the trend graph.
- If a step change increase is clearly observed in the trend value, record the current micrometer position in the End micrometer position text box (Figure 5).
- 5. Repeat steps 2–4 and adjust the micrometer position by 5 micron increments until a clear maximum value has been shown and the trend value begins to decrease. The final value recorded in the End micrometer position text box should be the first micrometer setting that resulted in the maximum trend value.

Note: This is the Window Reference Position.

Note: If counts fluctuate, resulting in multiple peaks, recoat the window with the Dry Erase Marker and repeat the refined micrometer adjustments from step 1.

MK-PB-0110-AC Rev B DCN 2769 5 of 7 METTLER TOLEDO After finding the Window Reference Position, set the micrometer to the Standard Focal Position by making the factory-specified adjustment to the Window Reference Position specified below.

- 1. Turn the micrometer counterclockwise 50 microns back from the Window Reference Position.
- 2. Calculate the Standard Focal Position based on the required factory-specified adjustment of + 20 microns applied to the Window Reference Position.

For example, if the Window Reference Position is +5 microns, then the Standard Focal Position is +25 microns.

- **3.** Gradually move the micrometer clockwise toward the calculated Standard Focal Position.
- 4. For ParticleTrack G600 probes with the inline micrometer, hold the focus ring (Figure 1A) and carefully tighten the locking nut against it. Monitor the counts while doing this to ensure there is no shift in the focal position. Then, reattach the micrometer protective sleeve.

ParticleTrack G600 probes with the micrometer at the end of the probe head (**Figure 1B**) do not require a locking step—simply reattach the micrometer protective cap.

- 5. The probe is now calibrated to the Standard Focal Position.
- 6. Update the End micrometer position (Figure 5).

	alhost//#/InstrumentCalit 🔎 🗝 🔯 💋	Instrument Calibration	×	<u> </u>	
Ø iC Process™	ParticleTrack : Calibration				
Home	Test: System Calibration 🔹	View Lates	t Report Si	tart Test Stop Test	
ParticleTrack Configuration Methods	System Calibration Parameters Template: SystemCalibration G600 Interval: 5 seconds	 Initial micrometer positio End micrometer position: 			
References	Overview Trends Diagnostics E	Distributions Large Values	Test Results		
Reports	Statistics U	Units Measured \	/alues	Current Value	
Calibration	counts, No Wt, <20 (Primary)	ounts (fines) 8.04 - 81,3	06.83		
Service					

Figure 5—System Calibration (Entering end micrometer position)

Standard Focal Position Repeatability

All measurements of the Standard Focal Position should be within a range of ± 5 microns (that is, ± 0.005 mm or one-half of an increment on the rotating dial). However, due to inconsistencies in ink application, you should not expect actual counts achieved to be the same each time. Contact a METTLER TOLEDO Technology and Applications Consultant if there is a greater than ± 5 micron discrepancy.

F. Clean Probe Window and Repeat Calibration Validation

- 1. Wipe any residual dry erase marker from the probe window. Use a solvent such as IPA or acetone and a Kimwipe[®] to clean the window. Rinse off residual solvent with DI water and dry with a Kimwipe.
- 2. Repeat the Calibration Validation (MK-PB-0109-AC) to confirm the calibration.

76

6 of 7

G. View System Calibration Results

Calibration results can be viewed from two locations on the System Calibration page—by clicking the Test Results tab or the **View Latest Report** button.

View Results During or After the Test

Click the Test Results tab to observe the range of measured values. During the test, the real-time Current Value also appears on the Test Results tab as well as on the Trends tab. After the test is stopped, only the Measured Values appear on this tab.

View System Calibration Report

To view, print, or save the most recent System Calibration report, click **View Latest Report** from the top of the Calibration page. **Figure 6** shows page one of the reports. Page two summarizes the instrument configuration and the template settings.

$(\Rightarrow) (\Rightarrow)$	lttp://localhost//Server/Instr 🔎	🝷 🖒 🏉 localhost		×	☆ 🖈
	C Template: SystemCalibration G600 Start Time: 1/14/2016 4:02:43 PM Dura User: AM/carrigy-1 Instrument Type: ParticleTrack G600/G60 Instrument Serial Number: 16296 Probe Serial Number: Same as above Initial Micrometer Position: 20 End Micrometer Position: 25		METTLE	R TOLEDO	1
	Statistics Results Name		Units	Measured Values 8.04 - 81,106.83	
	Thursday, January 14, 2016	1/2			

Figure 6—System Calibration Report (page 1 of 2)

The most recent Calibration Validation and System Calibration report is available from the Calibration pages. However, to view earlier System Calibration reports, select Reports from the left navigation menu in iC Process for FBRM.

MK-PB-0110-AC Rev B DCN 2769 7 of 7 METTLER TOLEDO

Managing iC Process for FBRM

This chapter provides information on periodic tasks that an Administrator performs after implementation and daily use to manage and maintain the iC Process for FBRM software.

- This chapter is intended for users with the Administrator or Technician role.
- Note: For details about permissions for each role, refer to Chapter 2, "Getting Started" on page 9.

Managing References

During a process run, an iC Process for FBRM user can compare a real-time measured distribution to Reference Distributions. Up to three Reference Distributions, including one Target, display with the current distribution during an active run.

Reference Distributions can come from the following sources:

- Included in Template—If the template experiment selected for a method includes Reference Distributions and Target Distributions, they become part of the method. This is an effective way to load distributions that can be used to test for process consistency or batch repeatability against a set-point distribution. During processing, the Reference Distributions appear on the chart with the real-time distribution so the Operator can see changes in particle or droplet system distribution.
- Captured in real time—An iC Process for FBRM user can capture a Reference Distribution from an active run (see "Saving Reference Distribution" on page 53) or during calibration/validation tests. This provides an effective way to determine if the current process is stable or looking for real-time comparison of distributions from within the same run.

As an Administrator, a regular task is to manage the collection of Reference Distributions.

The software stores every reference distribution captured during processing on the Runtime tab of the References main page.

The software also stores every reference distribution captured during calibration validation procedures. These are organized on the Calibration tab on the References main page.

Management includes deleting unwanted distributions and naming or adding additional information that makes selection of a distribution during method development easier. An Administrator or Technician can choose up to two reference distributions and a target distribution for an applicable from this list during method creation.

1. Click **References** from the left navigation menu.

🟉 References Page				
Ø iC Process™	Probe 1@Wellsite ABC : Re	eferences		
	Runtime Calibration			
Home	Reference distributions stored on the system:			
Probe 1@Wellsite ABC	Delete Selected			
Configuration	Name	Timestamp	Details	Additional Information
Methods	Ideal Distribution-Batch 123 2	9/11/2012 3:39:31 PM	ParticleTrack E25 Instrument (Macro	Consistent Temp
References	E25_Macro_R100 2012-09-13	9/13/2012 3:37:39 PM	ParticleTrack E25 Instrument (Macro	
Reports	E25_Macro_R100 2012-09-13	9/13/2012 3:38:59 PM	ParticleTrack E25 Instrument (Macro	
Calibration				
Service				
Licensing				
Administrator				
AM\kammer-1				
METTLER TOLEDO				

Figure 6-1 Reference Distributions tab

2. Select one of the following tabs:.

Runtime—Reference distributions captured during batch or continuous processing runs **Calibration**—Reference distributions captured during Calibration Validation or System Calibration (if applicable).

- **3.** View the list of Reference Distributions captured during processing or testing and perform any of the following actions:
 - To rename a distribution, select it from the Name column and enter the desired name. The default name is the Method Name Date and CSM.
 - To delete a distribution, click the check box next to one or more to be deleted, then click Delete Selected. If a distribution is currently being used as reference in a run, it cannot be deleted.
 - To add a comment or description, type in the Additional Information column. The information can aid an Administrator when selecting a Reference Distribution for a method (page 30).

Maintaining Archive Folders

Based on your Standard Operating Procedure (SOP), include a regularly scheduled task to check the data archive drive that contains files and auto-generated daily reports. Verify the archive file locations (see instrument configuration-page 18) for adequate disk space. Back up the archive location regularly or remove and store archive files as required by your SOP.

Responding to Service Reminders

Notify METTLER TOLEDO if instrument service prompts appear for an instrument. Routine preventive service and special reminders to check the calibration appear on the Home page based on dates that are stored in the instrument Configuration (see page 125).

About System Calibration

An Operator, Administrator, or Technician can run a Calibration Validation test as part of an SOP or as part of regularly scheduled maintenance. If the Validation test does not pass, an Administrator or Technician can run a System Calibration for instruments that have a micrometer.

Instruments that do not have a micrometer (ParticleTrack E25) can only be
 Note: calibrated by a METTLER TOLEDO FSE. Contact METTLER TOLEDO by one of the methods on page 8.

Activating Licenses

Two types of licenses can be activated through the iC Process web application—(1) software licenses and (2) Chord Selection Model licenses.

These steps assume you already have an account set up on the METTLER TOLEDO AutoChem Customer Community website. If you need to create the account, go to the site and do so. Instructions are in the 'iC Process for FBRM Install Guide for Administrators' appendix under Setting Up New User Account.

Software License, Subscription, and CSMs

Activate the software license (or iCare subscription) and CSMs by copying the machine ID from the control computer, then logging on to the AutoChem Customer Community Site where you:

- Enter the license keys shipped with the instrument.
- Generate an activation code.

000			
	ost/#/LicenseManager		
Cicensing	×		
Ø IC Process™	License Manager		
Home	Installed licenses		
	Product	Info	
ParticleTrack Probe	iC Process for FBRM 4.4 Instrument	Trial expires in 15 days on 8/13/2015 Click here for more info.	
Licensing	iCare for iC Process for FBRM Instrument	Not subscribed. Click here for more info.	
	Chord Selection Model - Primary Option	Trial expires in 2 days on 7/31/2015 Click here for more info.	
	Chord Selection Model - Macro Option Trial expires in 2 days on 7/31/2015 Click here for more info.		
		C204 Copy https://community.autochem.mt.com ledo AutoChem web site using the link above. You will be prompted to log in or Once logged in, click the link 'Activate an IC or iControl License', enter the	
Administrator AM\kammer-1	3. Enter Activation Code:	Paste	
METTLER TOLEDO	4. Apply Activation Code		

Figure 6-2 License Manager in iC Process—Activating a license

- 1. Select 'Licensing' from the left navigation menu. Steps below feature the software license.
- 2. Proceed to activate the software license and CSM license, as applicable.
 - Have your License Key sheet ready.
 The sheet is a letter-sized paper certificate delivered with the system.
 - b. On the License Manager page (Figure 6-2), click Copy after step 1 to copy the machine ID to your clipboard.
 The Machine ID that you copied will be used, along with your License Key, to

generate an activation code from the Customer Community website.

- c. Click the link: <u>https://community.autochem.mt.com</u> after step 2.
- d. Obtain your Activation Code from the AutoChem Community website, as follow:
 - Enter your username and password and then click Log in.
 - Click Activate an iC or iControl License.

Figure 6-3 Customer Community site—Activate license from menu

Click **Paste** in the Machine ID row to enter the ID from the clipboard.

License Activation Procedure				
Please follow these 3 steps to activate your Licens	se:			
1. Enter Machine ID:	1DFB - 3052 Paste			
2. Enter License Key:	- Paste			
To obtain a License Key, please contact your	sales representative			
3. Generate Activation Code				
=>	Сору			

Figure 6-4 Customer Community site—License activation procedure

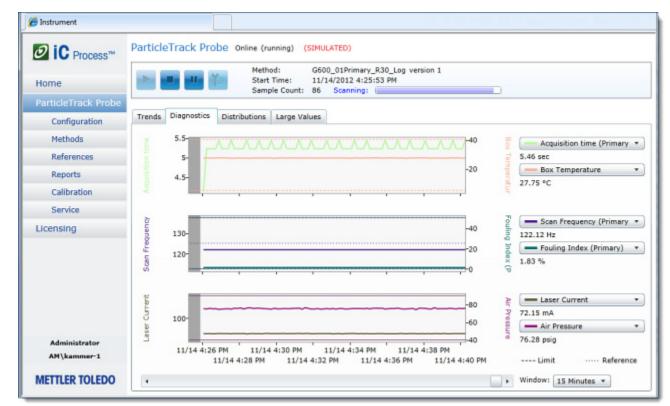
- Enter the License Key and click Paste.
- Click Generate Activation Code.
- After the code appears, click Copy next to the code to save it to the clipboard.
- 3. Return to the License Manager page in the iC Process for FBRM.
 - a. Click **Paste** after the 'Enter Activation Code' text boxes to enter the code from the clipboard.

3. Enter Activation Code:	
	Paste
4. Apply Activation Code	

Figure 6-5 License Manager in iC Process for FBRM—Activation code

b. Click Apply Activation Code to complete the activation. A confirmation dialog box appears.

Chord Selection Model


All FBRM instruments use one or two CSMs to display distributions. The choice of CSM relates to the type of particle or droplet system to be processed.

Follow the same steps, starting on page 82, to activate a CSM license. Refer to the glossary page 128 for more information on CSMs.

Viewing Instrument Diagnostics

An Administrator or Technician sees a Diagnostics tab on the main display for a selected instrument. The tab shows trend values for all instrument diagnostics.

Note: Although designed for trained field service engineers, diagnostics appear to Administrators for reference. Contact METTLER TOLEDO with any questions.

Go to "Diagnostics Tab" on page 91 for details about the Diagnostics for instrument health in service mode.

Figure 6-6 Diagnostic tab (with instrument online)

Sending System Log File

As part of system diagnostics, a METTLER TOLEDO service engineer may request that a system log file be sent for analysis. Follow the procedure below to have the software prepare a log file.

- 1. Go to the iC Process for FBRM Home page.
- 2. Accept the default time period of 1 day, or click the button to select a longer time period.
- 3. Click Send System Logs.
- 4. In the File Download window, click Save and navigate to the location.
- 5. Accept the default file name (logfiles.zip), or name the file.
- 6. Click Save.
- 7. Send the file to METTLER TOLEDO.

Managing Probe Cleanliness

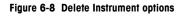
As part of SOP, periodically remove the probe from the flexible mounting and clean the probe tip by using neat acetone or IP alcohol. Rinse with clean deionized (DI) water and dry with a lint-free wipe.

Below are related window cleanliness features.

- Stuck particle correction—A Data Treatments option included in all method templates that are provided with iC Process for FBRM. The software mathematically removes data from the distribution for particles or droplets that remain stationary in the scan circle over a period of time. An Administrator can turn off the setting in a method (page 40).
- Fouling Index—A statistical trend included in all method templates that are provided with iC Process for FBRM. It provides an estimate of the percentage of the scan circle that may be covered by stationary particles. The percentage can be tracked as a trend. (Refer to the Trends tab as shown on page 46. Select Fouling Index from the trend statistics.

Deleting an Instrument

iC Process for FBRM supports one instrument connection at a time. To connect a different ParticleTrack instrument to the control computer, it is necessary to delete the currently configured instrument. Only an Administrator or Technician can delete an instrument. Deleting an instrument removes it from the iC Process for FBRM, but the archived data remains in the designated location.


- **1.** Locate the instrument selection/status box on the Home page.
- 2. Click Delete Instrument below the selection/status box.

Delete Instrument

Figure 6-7 Delete Instrument button

3. Respond to the Delete Instrument confirmation by selecting one of the options.

No, do not delete this instrument—Click to cancel the deletion action.

Yes, delete this instrument but keep the associated files—Click to remove the instrument from the Home page, but retain the following:

- Methods
- Reports (Calibration, Validation, and Service)
- Reference Distributions from calibration, validation, and process runs
- Diagnostic logs (of diagnostic trend values)

Note: Record the exact name given to the instrument. To add the instrument back at a future time, enter the exact same name. When adding the instrument later, the system will prompt you for a new Archive folder location.

Yes, delete this instrument and all associated files—Click to confirm complete deletion of instrument. Only data in the designated Archive folder location remains.

After confirmation to delete, the instrument selection/status box no longer appears on the Home page and the instrument name no longer appears in the left navigation menu. It is replaced with the 'Add new instrument' box.

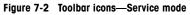
Using Service Mode in iC Process for FBRM

This chapter provides information on how to use the iC Process for FBRM Service submenu. Service mode can only be entered when the selected instrument is stopped. Service mode enables a user to run the service tests and check instrument diagnostics.

Although users with the Administrator or Technician role can access the service section, the service menu is intended for trained METTLER TOLEDO Field Service Engineers (FSEs).

Table 7-1 Service Permissions				
Permission to:	Administrator and Technician			
View instrument diagnostics	✓			
Perform service tests	✓			
Enter service mode	✓			
Exit service mode	✓			

Introducing Service Mode


iC Process for FBRM Service mode consists of a choice of service templates for the types of tests available and a tabbed display similar to the Calibration feature.

Overview	Trends	Diagnostics	Distributions	Large Values	Alarm Limits	Test Results
			Figure 7	-1 Service tabs		

Two Ways to Enter Service Mode

Service mode button on main instrument page—When an instrument is stopped, an Administrator or Technician can click the Service icon to put the instrument in service mode. When in service mode, the instrument is unvailable for processing.

Service option from the left navigation menu—As long as the instrument is Stopped, if you click Service from left navigation menu without first clicking the Service mode icon, an, Enter Service Mode button enables you to enter service mode. If a batch or continuous process is running, the button is disabled.

CInstrument Service					
Ø iC Process™	SN 0005 Service Enter Service Mode Instrument services are available when the instrument is in service mode				
Home	and the current user has the required privileges to run tests.				
SN 0005					
Configuration					
Methods					
References					
Reports					
Calibration					
Service					
Licensing METTLER TOLEDO					

Figure 7-3 Enter Service Mode button

Two Types of Service Tests

Service tests check overall instrument performance before commissioning an instrument to measure particle and droplet distributions in process. A METTLER TOLEDO FSE runs these tests at initial installation as described in the IPac Starter-Pac or IPac Quality-Pac service installation document, as applicable. An Administrator or Technician can run these tests periodically, according to SOP, to check window cleanliness and system measurement.

The initial Service page displays the Trends tab with an instrument-specific Template selection menu for the two types of tests.,

SN 0005 : Service				
Template:				
Duration: Interval:	E25 Clean Window E25 System Check With Marker			

Figure 7-4 Service template options

Clean Window—Basic check of particle or droplet counts to determine sapphire window cleanliness. This test can be run when the probe is available; that is, when it is not installed in the Flexible Mounting System.

System Check with Marker—Basic check of key instrument readings (counts). This test involves using the black marker provided with the system to coat the window and confirm that counts are within limits set in the template.

During both these tests, the instrument diagnostics can be checked to verify that the values are within specification.

Running Service Tests

The Service page includes tabbed views that enable you to view the trends, diagnostics, distributions, large values, alarm limits, and test results from service tests run on an instrument. Diagnostics differ slightly by instrument.

1. From the Service page, select the Clean Window template.

The examples in this section feature the Clean Window test for a ParticleTrack E25 system. Steps are the same for the System Check with Marker, except that the dry erase marker supplied with the instrument is applied to the sapphire window.

Ø IC Process™	SN 0005 :	Service					Ex	It Service Mode
	Template:	25 Clean Window	*					Start Test
Home	Duration: 2	hours						Stop Test
SN 0005	Interval: 2	seconds					Vie	w Latest Report
Configuration	Overview Tr	rends Diagnostics	Distributions	Large Values	Alarm Limits	Test Results		
Methods	10					-10		
References								•
Reports	5	i de la companya de l				-5		•
Calibration	0	, ,				-0		
						10		
Licensing	10					-10		•
	5	i de la companya de l				-5		*
	0					-0		
						U U		
	10					-10		•
	5	i de la companya de l				-5		•
Administrator	0					-0		
Administrator	11/18	1:18 PM 11/18 11/18 1:20 PM	1:22 PM 11/1 11/18 1:24 PM		/18 1:30 PM PM 11/18 1:	32 PM	Limit	····· Reference
METTLER TOLEDO	•					•	Window: 15 M	Minutes 💌

Figure 7-5 Service test template selection

- 2. Accept the default settings that come from the template, or adjust them as directed.
 - Duration is the length of the overall test.
 - Interval is the amount of time between measurements.

If you selected the System Check With Marker template, at this point,Note: coat the window surface with a uniform, thick layer of ink and allow it to dry for two minutes.

- 3. Click Start Test.
- 4. Observe the test in process on one or more of the tabbed views.

Examples in the following section feature the Clean Window service test, and show an alarm condition (counts No Weight High).

Overview Tab

For reference only, click the Overview tab to see template and instrument configuration details.

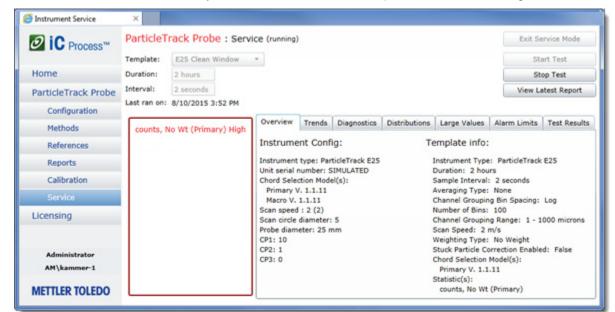


Figure 7-6 Service test— Clean Window (Overview tab)

Trends Tab

The Trends tab is the default view during service tests. Observe the trends and change the time window to see trends in 15- or 30-minute segments or 1- or 2-hour segments. If the counts fall outside the Alarm Limits set in the template, a warning message appears.

Figure 7-7 Service test—Clean Window (Tends tab)

Diagnostics Tab

The instrument diagnostics track all instrument values, six of which appear by default as set in the template. The values tracked for an instrument vary slightly among instrument types.

- The Diagnostics tab in Service mode reports instrument health while the instrument is running service tests.
- Notes:
 - Diagnostics are designed for trained field service engineers.
 The Diagnostics tab also appears to Administrators and Technicians in processing mode.

Refer to the Test Results tab (page 94) for details on the measurement units for each diagnostic along with the pass criteria. The Alarm Limits tabs include the low and high limits for each diagnostic value. Contact METTLER TOLEDO for service if diagnostics values are outside the limits (test fails).

To display another diagnostic in one of the graphs, select it from one of the two selection buttons to the right of the graph.

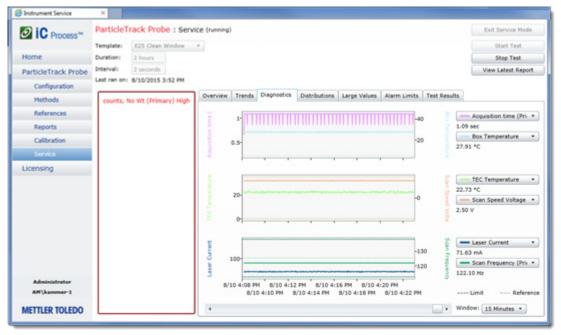


Figure 7-8 Service test—Clean Window (Diagnostics tab)

Distributions Tab

Click the Distributions tab to view the distributions graph for the current test. The counts according to the Chord Selection Model (CSM) in the template. The name of the CSM in use appears in parentheses after the distribution name.

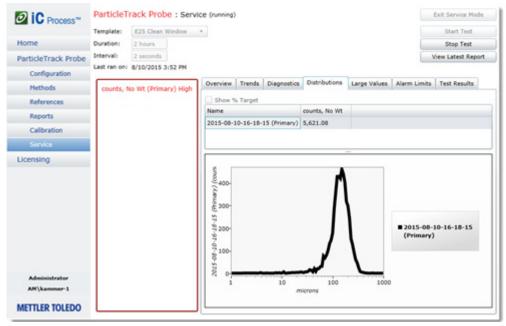


Figure 7-9 Service Test—Clean Window (Distributions tab)

Large Values Tab

Click the Large Values tab to display the counts and selected diagnostics in a size that is viewable from a distance.

∂ iC Process [™]		rack Probe : Serv	ice (running)					Exit Service Mode
	Template:	E25 Clean Window						Start Test
Home	Duration:	2 hours					-	Stop Test
ParticleTrack Probe	Interval:	2 seconds						/iew Latest Report
Configuration	Last ran on:	8/10/2015 3:52 PM						
Methods	counts, I	No Wt (Primary) High	Overview Trends	Diagnostics	Distributions	Large Values	Alarm Limits	Test Results
References								
Reports			counts, No Wt	(Primary)	Acquisition t	time (Primary)	Box Te	emperature
Calibration			5,682	.31	1.	09	2	7.83
			coun	ts	S	ec		°C
Licensing								
			TEC Tempo 22.2 °C		2.	ed Voltage 50 V	7	r Current 2.07 mA
Administrator AH\kammer-1			Scan Frequency 122.1 Hz	14				
METTLER TOLEDO								

Figure 7-10 Service test—Clean Window (Large Values tab)

Alarm Limits Tab

Click the Alarm Limits tab to view the list of values in the service test along with the Low Limit and High Limit for each statistic and diagnostic.

Ø iC Process™	ParticleT	rack Probe : Servi	ce (running)	1						Exit Se	ervice Mode
	Template:	E25 Clean Window	*							St	art Test
Home	Duration:	2 hours								St	op Test
ParticleTrack Probe	Interval:	2 seconds								View La	atest Report
Configuration	Last ran on:	8/10/2015 3:52 PM									
Methods	counts, N	No Wt (Primary) High	Overview	Trends	Diagnostics	Distributio	ns Larg	e Values	Alarm	Limits	Test Result
References			Statistics			U	nits	Low	Limit	High	Limit
Reports			counts, N	o Wt (Pri	mary)	c	ounts	0		300	
Calibration											
Service			Diagnosti				nits	Low Li		ligh Lin	nit
Licensing			Box Temp				с	5		15	
creating			TEC Temp				с	0		5	
			Scan Spe		le	v		-3	-	3	
			Laser Cur	rent			1A	60	1	40	_
			Scan Free	quency		9	6 dev.	10	1	0	
			Fouling In	ndex		9	6	0	\$	0	_
			Effective	Duration		9	6	25	1	00	
			Detection	Count		c	ounts/sec	0	1	00000	0
			Avg Peak	Height		A	-D units	0	3	3500	
			Avg Signa	al Intensi	ty	A	-D units	0	3	500	
			Est Scan	Circle Dia	meter	9	6 dev.	100	1	00	
			Dark Area	a Standar	d Deviation	A	-D units	0	4		
			Stuck Par	ticle Corr	ection	9	6	0	1	00	
			Dark Area	Mean		۵	-D units	0	3	00	
Administrator			Algo Time	e per seg		s	ec	0	1	0	
AM\kammer-1			Scan Circ	le Diame	ter	n	m	1	1	00	
			CP1					1	1	00	

Figure 7-11 Service test—Clean Window (Alarm Limits tab)

Test Results Tab

Click the Test Results tab to view the list of values in the service test along with the pass criteria for the statistic and diagnostics at the current point in the test. While the test is running, the current value displays dynamically and the Pass/Fail label identifies those results that are outside the pass criteria.

Note: These results are designed for trained field service engineers. Contact METTLER TOLEDO with any questions.

	rack Probe : Servi														rvice Mo	-
nplate:	E25 Clean Window	*												Sta	irt Test	
ration:	2 hours												- 6	Ste	op Test	
erval:	2 seconds												6	View La	test Rep	ort
it ran on:	8/10/2015 4:52 PM															
counts. N	io Wt (Primary) High	Overview	Trends	Diagnostics	Distributio	ns La	rge Values	Alarm Limits	Test Re	sults	1					
counts, n	o in frankry rage	Statistics			Units		Pass Crite	ria	Measur	ed Va	lues	Curren	t Value	Pass/F	ail	
		counts, No Wt (Primary) counts		counts	s < 300.00		5,570.8	19 - 5	,682.31	5,671.	.27 FAIL					
							_									_
		Diagnostics Box Temperature TEC Temperature			Units	P	ass Criteria	1	Measu	red Values		Current Val	ve	Pass/Fa	jil	
				°C		5.00 -	.00 - 45.00	27.06		- 28.33		28.00		PASS		
				•0	°C	°C	<	< 35.00	21.14	4 - 24.07	22.96		PASS			
		Scan Speed Voltage		v		-3.00 - 3.00		2.45 - 2.56			2.50		PASS			
		Laser Current		mA		60.00 - 140.00		70.95 - 73.61			72.84		PASS			
		Scan Freq	uency (P	rimary)	Hz		±10% (112.5 -		137.5) 122.07 - 122.14		122.12			PASS		
	Fouling In	dex (Prin	mary)	96		< 90.00		1	1.74 - 1.86			1.86		PASS		
	Effective Duration (Primary) Detection Count (Primary)		%		2	5.00 - 100.00	3	38.31	- 57.90		56.31		PASS			
				counts/s	sec <	1,000,000.00	1	154,78	83.50 - 156	,843.00	156,127.20		PASS			
		Avg Peak	Height (Primary)	1	A-D unit	s <	3,500.00	1	278.0	7 - 280.09		278.89		PASS	
		Auge Cinna	d Intonci	(brimand)		D.unit	w 2	2 500.00		116.1	31716		316.50		nace	

Figure 7-12 Service test—Clean Window (Test Results tab)

Reporting Service Test Results

Click View Last Report to see the results from the previous Service Test.

	Servi	ce Report		
Template: E25 Clean Window Start Time: 8/10/2015 4:56:47 PM I User: AM\kammer-1	Duration: 00:2	7:30	METTLER TOL	EDO
instrument Type: ParticleTrack E25				
Instrument Name: ParticleTrack Prob				
Instrument Serial Number: SIMULAT				
Probe Serial Number: Same as above Particle System Validation: FA (instrument calibration or service is re	JL			
Table of results:				
Name	Units	Pass Criteria	Measured Values	Pass/Fail
counts, No Wt (Primary)	counts	< 300.00	5,570.89 - 5,682.31	FAIL
Hardware Diagnostics: PASS Table of results:				
Name	Units	Pass Criteria	Measured Values	Pass/Fail
Acquisition time (Primary)	sec		0.4364 - 1.09	N/A
Box Temperature	*C	5.00 - 45.00	27.06 - 28.33	PASS
TEC Temperature	°C	< 35.00	21.14 - 24.07	PASS
Scan Speed Voltage	v	-3.00 - 3.00	2.45 - 2.56	PASS
Laser Current	mA	60.00 - 140.00	70.95 - 73.61	PASS
Scan Frequency (Primary)	Hz	±10%	122.07 - 122.14	PASS
Fouling Index (Primary)	%	< 90.00	1.74 - 1.86	PASS
Effective Duration (Primary)	%	25.00 - 100.00	38.31 - 57.90	PASS
Detection Count (Primary)	counts/sec	< 1,000,000.00	154,783.50 - 156,843.00	PASS
Avg Peak Height (Primary)	A-D units	< 3,500.00	278.07 - 280.09	PASS
Avg Signal Intensity (Primary)	A-D units	< 3,500.00	216.12 - 217.15	PASS
Est Scan Circle Diameter (Primary)	mm	±100%	5.21 - 5.22	PASS
Dark Area Standard Deviation (Primary)	A-D units	< 4.00	1.35	PASS

Figure 7-13 Service—Clean Window report (page 1)

Stuck Particle Correction (Primary)	%	< 100.00	0	PASS
Dark Area Mean (Primary)	A-D units	< 300.00	173.00	PASS
Algo Time per seg (Primary)	sec	< 10.00	0.1092 - 0.1466	PASS
Scan Circle Diameter (Primary)	mm	1.00 - 100.00	5.00	PASS
CP1 (Primary)		1.00 - 100.00	10.00	PASS

Instrument:

Instrument type: ParticleTrack E25 Unit serial number: SIMULATED Primary V. 1.1.11 Macro V. 1.1.11 Scan speed: 2 m/s Scan circle diameter: 5 Probe diameter: 25 mm CP1: 10 CP2: 1 CP3: 0

Template:

Instrument Type: ParticleTrack E25 Duration: 2 hours Sample Interval: 2 seconds Averaging Type: None Channel Grouping Bin Spacing: Log Number of Bins: 100 Channel Grouping Range: 1 - 1000 microns Scan Speed: 2 m/s Weighting Type: No Weight Stuck Particle Correction Enabled: False Chord Selection Model(s): Primary V. 1.1.11 Statistic(s): counts, No Wt (Primary)

Monday, August 10, 2015

2/2

Figure 7-14 Service—Clean Window report (page 2)

If the Clean Window test results in counts above the pass criteria, a red 'FAIL' appears in the Pass/Fail column under the Pass/Fail Validation section. Counts should be below the Pass Criteria value. Clean the probe window according to the instrument hardware manual and repeat the Clean Window test.

Ending Service Mode

Normally, a service test should run for the amount of time set in the template. However you can click **Stop Test** on the Service page to end a test at any time. Perform another service test or end Service mode as follows:

1. Click Exit Service Mode.

Ø iC Process™	ParticleTr	rack Probe : Service	Exit Service Mode
	Template:	E25 Clean Window 🔻	Start Test
Home	Duration:	2 hours	Stop Test
ParticleTrack Probe	Interval:	2 seconds	View Latest Report

Figure 7-15 Exit Service Mode button

2. When the main Service page appears, click the instrument name from the left navigation menu to return to the main instrument page.

Service Reminders

The instrument Configuration includes automatic service reminders for overall instrument preventive maintenance and calibration validation. See page 22 for details about the three automatic reminders.

Last preventive maintenance on:	10/2/2012	5
Last successfully calibrated on:	1/1/0001	
Last successfully validated on:	10/3/2012	

Figure 7-16 Service reminders in instrument configuration

Reminders about service appear on the Home page as shown in Figure D-4 on page 125.

About Calibration Tests

An Operator can run a Calibration Validation test to check instrument calibration and an Administrator or Technician can perform a System Calibration on instruments that have a micrometer. Refer to Chapter 5, "".

Using iC FBRM Software

This chapter describes how to access and use the 'Process' task pane in iC FBRMIt is primarily intended for advanced users such as a process engineer who performs postprocess analysis and designs data treatments and statistical analysis in iC FBRM that will become templates for an iC Process method.

The iC FBRM[™] software system works with the iC Process[™] web application as follows:

- In iC FBRM, create custom templates to import for iC Process methods (optional).
- In iC FBRM, connect to an iC Process instrument through the 'Process' task pane to view process particle and droplet system in real time. The task pane must first be enabled by checking the 'Show iC Process task pane' option in Tools > Preferences.
- In iC FBRM, use tools to analyze iC Process web application batch and continuous run data in real time or from historical data files.

Although iC FBRM can control a ParticleTrack G600 or ParticleTrack E25, instrument in a laboratory or scale-up environment, only one software application can control the instrument at the same time, so when iC

Note: Process is the control software, iC FBRM can only view the current run through the 'Process' task pane.

When both software programs are running at the same time, iC Process will take full control of the instrument.

The 'Process' task pane provides a seamless interface to the iC Process for FBRM server. Use of the iC Process task pane and the iC FBRM software assumes that you already have a working knowledge of iC FBRM software. Please refer to the iC FBRM online Help or the "iC FBRM Software User Guide" for information. Instructions on using the iC Process web application, are under "Operating iC Process for FBRM" on page 41. Information on how to configure an instrument and define a method are in "Implementing iC Process for FBRM" on page 15.

Starting iC FBRM Software

- 1. Start the iC FBRM software by clicking a desktop icon. iC FBRM 4.4
- 2. From the Toolbox on the right side of the Start Page, click the Process task pane.

Data Treatments Deta Treatments Deta Treatments Denservers (c-Rom Reis) Include all reaction data, messare, contenserus, analysis setting. New Experiment Open Experime	Start Page ×			Toolbox 🖓
Image: Definition of the sector o				Data Treatments
Pred Transfer (Schem files) include all reaction data, messages, and analysis settings. Destribution Libraries Distribution Libraries Distribution Libraries Distribution Libraries Distribution Libraries Data to Information (D2) Da				Document Information
Image: Description of the section data, messages, and analysis settings. Image: Description of the section data, messages, and analysis settings. Image: Description of the section data, messages, and analysis settings. Image: Description of the section data, messages, and analysis settings. Image: Description of the section data, messages, and analysis settings. Image: Description of the section data, messages, and analysis settings. Image: Description of the section data, messages, and analysis settings. Image: Description of the section data, messages, and analysis settings. Image: Description of the section data, messages, and analysis settings. Image: Description of the section data, messages, and analysis settings. Image: Description of the section data, messages, and analysis settings. Image: Description of the section data, messages, and analysis settings. Image: Description of the section data, messages, and analysis settings. Image: Description of the section data, messages, and analysis settings. Image: Description of the section data, messages, and analysis settings. Image: Description of the section data, messages, and analysis settings. Image: Description of the section data, messages, and analysis settings. Image: Description of the section data, messages, and analysis settings. Image: Description of the section data, messages, and analysis settings. Image: Description of the section data, messages, and analysis settings. Image: Description of the section data, messages, and analysis settings. Image: Description of the sectin data, messages, and analysis settings.	C FBRM™	METTLER TOLE		
Experiment Permitters Experiment Permitters Result Sets Server Result Sets Server Vanues Result Sets More Information Result Sets More Information Result Sets More Information Result Sets More Information Result Sets Descretation Distribution Libraries Part Acts State to obtain the most important information (D2i) Distribution Libraries Run AutoState New Library Open Library Result Sets System Maintenance Reformance System Maintenance Configure your instrument Display Settings Recent Documents Send System Logs Permist Versure Pilores Recent Documents Send System No 182 Permist Versure Send System Logs Permist Versure Send System No 182 Permist Versure Send System Logs Recent Documents Send System No 182 Permist Versure Send System No 182 Permist Versure Send System Logs Recent Documents Send System No 182 Permist Versure Send System Logs Recent Document Versure Send System No 182 Permist Versure Send System Logs Recent Document Versur				PVM
Experiment Fesult Sets Experiment Fesult Sets Experiment Fesult Sets Experiment Open Experiment New Experiment Open Experiment New Experiment Open Experiment New Result Set Open Result Set Distribution Libraries Data to Information (D2i) Data to Information (D2i) CFBM Oaks Stat Gude New Library Open Library New Configure Instrument Display Settings Send System Logs Open Trends Ordigure Instrument Display Settings New Configure Instrument Display Settings Send System Logs Send System Logs Parcel Documents Contact Us Sender 14.17 Sender 14.17 Nower 14.17 Se	Tan		Reminders	Process
Experiment: Experiment: Conserver Beach: Static (CRead: Static) we great for comparing tend Image: Image: Static (CRead: Static) we great for comparing tend Image: Image: Static (CRead: Static) we great for comparing tend Image:		Passelt Sata		
annotations, and analysis settings. results between experiments. New Experiment Open Experiments New Experiment Open Experiments Distribution Libraries Image: Classical files/provide a shared repository Data to Information (D2i) Data to Information (D2i) Data to Information (D2i) Data to Information (D2i) Ran AutoStats to obtain the noot important information with the reset number of statistics. New Library Open Library Run AutoStats Oringure just instrument Configure just instrument Display Settings Settings Recent Documents Import Tiends Open Experiment New Library Open Library Run AutoStats Oringure instrument Display Settings Send System Loging Product Transk E000 ProbeA Import Tiends Product Tiskk E000 ProbeA	Experiment	Result Sets	69 days left to try IC FBRM 4.4 I	Server Name: localhost •
New Experiment Open Experiment New Result Set More Information Image: Distribution Libraries Image: Distribution Libraries Image: Distribution Libraries Image: Distribution Libraries Detectuon Libraries Image: Distribution Libraries Image: Distribution Libraries Image: Distribution Libraries Detectuon Libraries Image: Distribution Libraries Image: Distribution Libraries Image: Distribution Libraries New Library Open Library Run AutoStats Image: Distribution State New Library Open Library Run AutoStats Image: Distribution State New Library Open Library Run AutoStats Image: Distribution State Instrument Maintenance Image: Distribution State Image: Distribution State Configure Instrument Display Settings Send System Logs Recent Documents Image: Display Settings Send System Logs Image: Pacede Track E300 ProbeA Image: Display Settings Image: Pacede Track E300 ProbleA Image: Display Settings Image: Pacede Track E300 ProbleA<			Send log files monthly	Connect
New Expension Open Code of the State Distribution Libraries Image: State Code of the Stat			March Information	Instrument
Image: Distribution Libraries Distribution Libraries Data to Information (D2i) Data to I	New Experiment Open Experiment	New Result Set Open Result Set	More Information	Instrument: ParticleTrack Probe •
Distribution Libraries Image: Crest Data to Information (D2i) Partole Instrument Maintenance Configure Instrument Display Settings Send System Logs Partole Tack (500 ProbeA Execut Documents Display Settings Send System No 1 R2 Partole Tack (500 ProbeA Execut Documents Display Settings Send System No 1 R2 Partole Tack (500 ProbeA		-	? Guided Tour	Status: Stopped
Distribution Libraries Image: Crest Data to Information (D2i) Partole Instrument Maintenance Configure Instrument Display Settings Send System Logs Partole Tack (500 ProbeA Execut Documents Display Settings Send System No 1 R2 Partole Tack (500 ProbeA Execut Documents Display Settings Send System No 1 R2 Partole Tack (500 ProbeA		Ca	7 Using this Start Page	View
Databases (is:Database files) provide a shared repostory Run AutoStats to obtain the most important information with the sevent number of statistics. New Library Open Library Run AutoStats Instrument Maintenance Instrument Maintenance Import Trends Only Configure Instrument. Display Settings Configure Instrument Display Settings Recent Documents Import Trends Particle Track E300 ProbeA Import MK4305 Seeding No 1 R2 Particle Track E300 ProbeA Import MK4305 Seeding No 1 R2 Particle Track E300 ProbeA Import MK4305 Seeding No 1 R2 Particle Track E300 ProbeA Import MK4305 Seeding No 1 R2 Particle Track E300 ProbeA Import MK4305 Seeding No 1 R2 Particle Track E300 ProbeA Import MK4305 Seeding No 1 R2 Particle Track E300 ProbeA Import MK4305 Seeding No 1 R2 Particle Track E300 ProbeA Import MK4305 Seeding No 1 R2 Particle Track E300 ProbeA Import MK4305 Seeding No 1 R2 Particle Track E300 ProbeA Import MK4305 Seeding No 1 R2 Particle Track E300 ProbeA Import Seeding No 1 R2 Particle Track E300 ProbeA Import Seeding No 1 R2 Particle Track E300 ProbeA Import Seeding No 1 R2 Particle Track E300 ProbeA Import Seeding No 1 R2 Particle Track E300 ProbeA Import Seeding No 1 R2 Particle Track E300 ProbeA Import Seeding No 1 R2	Distribution Libraries	Data to Information (D2i)		Import
for reference databutions. New Library Open Library Run AutoStats Instrument Maintenance System Maintenance Configure lostrument. Deform preventative maintenance or troubleshooting on your instrument. Display Settings Send System Logs Perform preventative maintenance or troubleshooting on your instrument. Display Settings Send System Logs Perform preventative maintenance or troubleshooting on your instrument. Display Settings Send System Logs Perform preventative maintenance or troubleshooting on your instrument. Display Settings Send System Logs Perform preventative maintenance or troubleshooting on your instrument. Display Settings Send System Logs Perform preventative maintenance or troubleshooting on your instrument. Perform preventative maintenance Perform preventative maintenance or troubleshooting on your instrument. Display Settings Send System Logs Perform file Import Trends Perform Recent Documents Perform Recent Logs Perform Recent Logs Perform Recent Documents Perform Recent Documents Perform Recent Loss Perform Recent Documents Perform Recent Documents <td>Distribution Libraries (IcDistribs files) provide a shared repositor</td> <td>Run AutoStats to obtain the most important information with the</td> <td>C FRRM Onlose</td> <td></td>	Distribution Libraries (IcDistribs files) provide a shared repositor	Run AutoStats to obtain the most important information with the	C FRRM Onlose	
New Library Open Library Run AutoStats Image: Configure Statistics Viewer Image: Configure Statistics Vie	for reference distributions.	fewest number of statistics.	-	
Instrument Maintenance System Maintenance Import Trends Only Configure your instrument. Perform preventative maintenance or troubleshooting on your instrument and software. Import Trends Configure Instrument Display Settings Send System Logs Import Trends Recent Documents Contact Us Import Trends Particle Track E300 ProbeA Import State Gado Import State St	New Library Open Library	Run AutoStats		Start Time:
Instrument Maintenance System Maintenance Perform preventative maintenance or troubleshooting on your instrument and software. Perform preventative maintenance or troubleshooting on your instrument and software. Perform preventative maintenance or troubleshooting on your instrument. Perform preventative maintenance or troubleshooting on your instrument. Put using the Toobox Put using the Toobox<	then being open being			Duration: •
Instrument Maintenance System Maintenance Perform preventative maintenance or troubleshooting on your instrument. Configure Instrument Display Settings Send System Logs PFRM Data Analysis Webinars Recent Documents Paricle Track E300 ProbeA Proferm Preventative maintenance or troubleshooting on your Paricle Track E300 ProbeA Paricle Track E3	100 m	22		Trends Only Import
Configure your instrument. Perform preventative maintenance or troubleshooting on your instrument and software. Import Trends Configure Instrument Display Settings Send System Logs Import Trends Recent Documents Contact Us Particle Track E300 ProbeA Import Trends Import Trends Import Trends	Instrument Maintenance	Sustam Maintanance		Import from file
Configure your instrument. Perform preventative maintenance or troubleshooting on your instrument and software. Image: Configure instrument Configure Instrument Display Settings Send System Logs Image: Configure instrument Recent Documents Contact Us Particle Track E300 ProbeA Image: Configure instrument MK4305 Seeding No 1 R2 Particle Track E300 ProbeA Image: Configure instrument Image: Configure instrument Particle Track E300 ProbeA Image: Configure instrument Image: Configure instrument Particle Track E300 ProbeA Image: Configure instrument Image: Configure instrument	· Insu unient maintenance	System maintenance	? PVM Viewer	
Configure Instrument Display Settings Send System Logs Plata Treatments Recent Documents Contact Us Contact Us Particle Track E300 ProbeA Experiment 14-37 7/22/2015 12:55 PM MK4305 Seeding No 1 R2 FERM G400 7/22/2015 12:55 PM MK4305 Seeding No 1 R2 FERM G400 7/22/2015 12:55 PM MK4305 Seeding No 1 R2 FERM G400 MK4305 Seedin	Configure your instrument.		? Using the Toobax	
Recent Documents Contact Us Particle Track E300 ProbeA Experiment 14-37 7/22/2015 4 55 PM Image: MK4305 Seeding No 1 R2 FBRM G400 7/22/2015 1 2:56 PM Image: Email Support MT Community Site			? Data Treatments	
Particle Track E300 ProbeA Experiment 14-37 7/22/2015 4 55 PM MK4305 Seeding No 1 R2 F22/2015 12:55 PM MK4305 To 255 PM Mt Community Site	Configure Instrument	Display Settings Send System Logs	PBRM Data Analysis Webinars	
Particle Track E300 ProbeA Experiment 14-37 7/22/2015 4 55 PM MK4305 Seeding No 1 R2 F22/2015 12:55 PM MK4305 To 255 PM Mt Community Site				
Eperment 14-37 7/22/2015 4:58 PM FRRM G400 7/22/2015 12:56 PM MT Community Site	Recent Documents		Contact Us	
Eperiment 14-37 7/22/2015 4:58 PM FBRM G400 7/22/2015 12:56 PM MT Community Site	TING Particle Track E300 ProbeA	5 Seeding No 1 R2	Email Support	
	Experiment 14-37 FBRM	G400		
		via 12:00 PM		

Figure 8-1 Process task pane in iC FBRM Toolbox (Start Page)

Introducing the iC FBRM 'Process' Task Pane

The iC FBRM software toolbox includes a 'Process' task pane that provides connection to the iC Process web application and view/import features for the selected ParticleTrack instrument.

Toolbox 무
Data Treatments
Document Information
User-Defined Trends
PVM
Process
Server
Server Name:
Connect
Instrument
Instrument:
Status:
Current Batch:
Batch Status:
View
Import
Batch
Batch:
Trends Only Import
Import from file
Import Trends

Figure 8-2 iC FBRM 'Process' task pane

The task pane has four sections—Server, Instrument, Import, and Import from file.

Note: If the 'Process' task pane does not appear, go to Tools > Preferences and select the option to 'Show iC Process task pane.'

Using the Process Task Pane

Use the task pane to connect to, check instrument status, view real-time or batch processing data, import specific data, or import one or more trend files into a Result Set.

Connecting to Server

1. In the **Server Name** box, enter the network name of the network computer where the iC Process web application is running.

Process	
Server	
Server Name:	localhost 🔹
Connect	

Figure 8-3 iC FBRM 'Process' task pane—Connect to server

• Initial identification—Enter the network name (URL/Machine ID or IP address) for the control computer (server) where iC Process web application is running.

Note: If the iC FBRM and iC Process for FBRM are on the same computer, the server name is the PC name or 'localhost.'

- If you have already identified the server, select it from the list.
 After a successful connection, the network name will appear in a drop-down list for ease of selection the next time you want to connect.
- 2. Click Connect..

	The server PC must be running iC Process, meaning the iC Process
Note:	Service is started. By design, the service automatically starts after
	installation or after a computer restart.

Connecting to ParticleTrack or FBRM Process Instrument

1. In the Instrument section, choose the specific ParticleTrack G600 or ParticleTrack E25 instrument from the Instrument list.

Note: The instrument does not have to be online to make the connection.

Process			
Server			
Server Name: localhost 🔹			
Connect			
Instrument			
Instrument: ParticleTrack Probe			
Status: Paused			
View			

Figure 8-4 iC FBRM 'Process' task pane—Connect to instrument

2. The status of the instrument identifies it as in one of the following states:

Stopped—Instrument continuous or batch run has been stopped by an operator, administrator, or technician.

Online—Instrument is actively collecting and publishing particle or droplet system data to an external Modbus, OPC UA, or WITSML client.

If the instrument is in batch mode, the following information appears:

- Batch Status shows Running or Paused.
- Current Batch shows the batch name

Paused—Instrument is actively collecting, but not publishing data to an external client.

Service—Instrument is in service test mode to collect data for tests.

For information on the statuses that appear on the iC Process Home page, refer to Table 4-1 on page 43.

Monitoring iC Process Data In iC FBRM

Live data from an online iC Process instrument can be observed in real time in an iC FBRM experiment linked view. After you establish a connection with the iC Process server, the available instruments appear in the Instruments list. Select the instrument and observe the Status as described in step 2 on page 103. Online instruments display a green Status bar.

Instrument -	
Instrument:	ParticleTrack Probe
Status:	Online
	View

Figure 8-5 iC FBRM 'Process' task pane—Online

Below is how the status displays for a batch process:

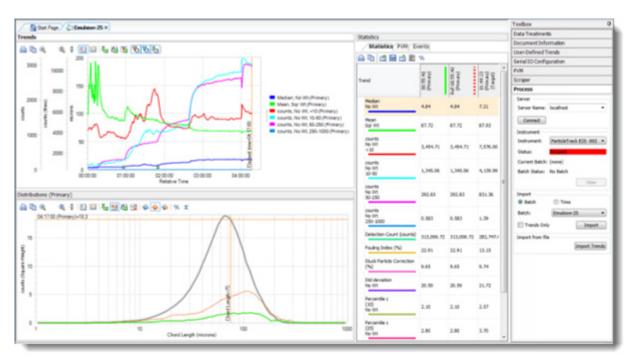

Process
Server
Server Name: localhost 🔹
Connect
Instrument
Instrument: ParticleTrack Probe
Status: Online
Current Batch: XLR 3 - Batch 65
Batch Status: Running
View

Figure 8-6 iC FBRM 'Process' task pane—Batch online

Note: A connection between the iC Process server and an instrument must first be established to view live data (see "Connecting to Server" on page 102).

Viewing Live Experiments in Real Time

Click **View** to display live data from the instrument. When the button is clicked, a new experiment is created in iC FBRM to display the live data from the instrument. The name of the experiment is based on the batch name or the continuous run date/time.

Note: The View button is only enabled for online instruments.

Figure 8-7 iC Process data in a live iC FBRM experiment

When a batch is active, the experiment will start displaying live data from the instrument as distributions are measured.

Importing iC Process Data in iC FBRM

Data from a completed iC Process batch or continuous run can be viewed in an iC FBRM experiment. To view data, a connection must be opened between the iC FBRM application and the iC Processs server (see "Connecting to Server" on page 102). Note that the instrument does not have to be online to import data.

The import process has different selection options for continuous data and batch data, as described next.

Continuous Data

To import continuous data:

1. In the Import section of the Process task pane, select Time.

Import —	
🔵 Batch	O Time
Start Date:	8/30/2010 🗸
Start Time:	2 AM 🔽
Duration:	~
Trends C	Only Import

- 2. Select the **Start Date** of the run from the list. The list shows all dates (within the last 10 days) during which data has been collected for the instrument.
- 3. Select the Start Time for the segment of the continuous run data that you want to view.
- 4. In the **Duration** list, select the number of hours of data you want to view from the start time forward, up to a maximum of 24.

Time
~
×
1 Hour 2 Hours 4 Hours
8 Hours 12 Hours
18 Hours 24 Hours

5. Click Import to display the process data from your time specification.

Data appears in a new iC FBRM experiment view where you can use the review and analysis features available in iC FBRM. Click 'Trends Only' to import trend data into a result set.

To import data from a completed batch:

1. In the Import section of the Process task pane, select Batch.

Batch:	~
Trends Only	Import

2. Select the **Batch** name from the list. The list shows all completed batches for the instrument that were started within the last ten days.

Import	
Batch	Time
Batch:	XLR 3 - Batch 65 🔹
Trends Only	Import
Import from file	
	Import Trends

3. Click **Import**. A new experiment with the selected data opens in iC FBRM. The experiment name is based on the batch name.

Importing iC Process Trends to an iC FBRM Result Set

For continuous iC Process runs, you may want to view trends for a period of time exceeding the 10,800 measurement limit on iC FBRM archive experiments. There is no such limit for iC FBRM result sets. You can use the Import Trends feature to import trends from multiple *.icFBRM experiment files into a single iC FBRM result set. This is a two-phase process, except in a configuration where the iC Process server and iC FBRM are running on the same control computer. If iC FBRM is running on the same control computer as iC Process, the iC FBRM experiment files already exist as archive files, so Phase 1 does not apply.

PHASE 1: Import iC Process data.

- 1. Follow the instructions under "Importing iC Process Data in iC FBRM" on page 104 to import specific data. Typically, you would import data one date at a time for each date during the run.
- 2. Save the experiments on your local hard drive.

PHASE 2: Import batch trends from the saved experiments.

- 1. Click Import Trends on the iC Process task pane ("Import from file" section).
- 2. Select the files containing the desired trends.
- 3. Click Open to import the trends into a new Result Set.

A

Modbus DCS with iC Process for FBRM

This appendix provides Modbus data model information to assist you in using the iC Process for FBRM with your Distributed Control System (DCS).

iC Process includes a Modbus TCP interface. In Modbus terms, iC Process acts as a "slave" in that it listens for requests from "Modbus masters" and replies to those requests.

iC Process will host a separate instance of a "Modbus slave" for each probe. When a probe is configured, the Administrator assigns a unique "slave ID", which is a number between 1 and 254. If the Administrator does not wish to host a slave for a probe, then the probe can be configured with a "slave ID" of 0 (default).

Each slave (probe) exposes a series of registers that can be written to and read from by a Modbus master. The Modbus standard defines four types of registers with specific data sizes (bit or word) and access rules (read-only or read/write).

The iC Process implementation of the Modbus interface includes supportNote: for all four types of registers, but for historical reasons, will not use registers in the 3xxxx range.

The following tables summarizes the Modbus register types, along with the data type and the type of access allowed from a "Modbus master." The table also identifies the valid addressing range for each register type, and the subset of that range that is actually supported by the iC Process implementation.

Primary Tables	Data Type	Master Access	Modbus Register Range	iC Process Register Range	Modbus Protocol Range and Packet Address Offset
Coils	Single bit	Read-Write	1–10000	1–100	0-99 (offset=1)
Discrete inputs	Single bit	Read-Only	10001-20000	10001-10100	0-99 (offset=10001)
Input Registers	16-bit word	Read-Only	30001-40000	Not used	Not used
Holding Registers	16-bit word	Read-Write	40001 and up	40001–41078	0-1076 (offset=40001)

Table A-1 Modbus Register Types (Primary Tables)

The iC Process Modbus interface is based on the TCP/IP protocol. The interface always listens on **port 502**—the standard port reserved for Modbus.

Mapping Each Register for iC Process

The master can 'command' the slave to perform a predefined action by writing a value (0 or 1) to a specific register location.

The master can do the following actions:

- Determine the current status of a probe by reading the values of specific predefined discrete register locations. This includes an operational and a fault bit for each subsystem, as well as an overall operation and fault status of all subsystems.
- Obtain measured values, lo limits, and hi limits by reading register pairs of 16-bit registers and converting the resulting value to an IEEE floating point number. The Administrator can map which value or limit is assigned to each register pair. There are 50 pairs of registers available for mapping.
- Obtain diagnostic values, each of which is also stored in a register pair and can be converted to an IEEE floating point number. The ParticleTrack G600 or ParticleTrack E25 devices support different subsets of the range of all diagnostic values.
- Provide input to a QUANT model by writing register pairs of 16-bit registers. The Administrator can map which register pair is assigned to each QUANT model input. There are 50 pairs of registers available for mapping.

The input register values (trend values and diagnostic values) are typically updated whenever the instrument is online. However, if the instrument is paused and the interface has been configured to **Hold Last Value** (see configuration setting on page 22), then the interface will continue to return the last value before the instrument was paused.

For example, assume a value is stored in a pair of holding registers 42001/42002 for a slave with a slave address of 1. The offset to the first register of the pair is (42001 - 40001 = 2000). Therefore, a Modbus request packet to read this register should specify a holding register with an address of 2000, as follows:

01	(slave address = 1)
03	(read holding registers function $code = 3$)
07	(register address = 2000) (0720 hex)
20	
00	(number of registers = 2) (0002 hex)
02	

Table A-2 Example of a Modbus Request Packet

The Modbus interface stores the value of Pi (3.14159) in holding register pair 42001/ 42002 as a means to verify that a Modbus master is correctly formatting read requests for register pairs and correctly converting the returned data into a floating point value.

Coils (1-10000)

The coils are used by the master to command the slave.

Register #	Coil Offset	Use	Explanation
1	0	Start run	Starts a new run with the currently loaded method. Method must already be loaded to the probe.
2	1	Pause run	Pauses the currently active run. Instrument must be online to pause a run.
3	2	Resume run	Resumes a paused run. Instrument must be online and paused to resume a run.
4	3	Stop run	Stops an active or paused run. Instrument must be online to stop a run.

Table A-3 Modbus Coils (1–10000)—Used by Master to Command Slave

Register #	Coil Offset	Use	Explanation
5	4	Start batch	Starts a batch, if and only if the probe is running and there is not currently a batch in progress. The name of the batch is automatically determined by iC Process
6	5	Stop batch	Stops a currently running batch. Instrument must be online with a batch running to stop a run.
7–100	6–99	unused	

The application configuration file (**iCProcessFBRMServiceHost.exe.config**) includes a setting option to require that all coils make a 0-to-1 transition in order to trigger. This option is off ('False') by default. For systems that constantly write values, change the value of this setting to '**True**' to only trigger a corresponding function on a 0-to-1 transition.

Note:

.

.

.

```
</setting>
  <setting name="ModbusCoilsTriggerOnlyOnTransition"
    serializeAs="String">
    <value>False</value>
  </setting>
```

Discrete Inputs (10001-20000)

The discrete inputs are used by the master to determine the current state of the slave.

Register #	Coil Offset	Use	Explanation			
10001	0 Heartbeat		This value toggles between 0 and 1 every second to indicate the iC Process software and Modbus slave interface are active.			
10002	1	Online Set to TRUE when the probe is online or FALS when the probe is in Service mode or offline.				
10003	2	Service	Set to TRUE if and only if the probe is in Service mode.			
10004	3	Paused	Set to TRUE when the probe is online and a run is active, but paused.			
10005	4	Batch Active	Set to TRUE when a batch is active. The value is set to TRUE even if the batch is currently paused			
10006	5	Acquisition	Set to TRUE when an acquisition is in progress (or is about to occur).			
10007	6	Communication	Set to TRUE when the instrument can communicate with the server.			
10008-10009	7–8	unused				
10010	9	System operational	Set to TRUE if none of the "fault" bits are set to TRUE—indicating there are no faults.			
10011	10	System fault	Set to TRUE if one or more of the "fault" bits are set to TRUE—indicating there is at least one faul			
10012	11	Acquisition operational	Set to TRUE when the acquisition subsystem is operational (not faulted).			

Table A-4 Modbus Discrete Inputs (10001–20000)

Register #	Coil Offset	Use	Explanation
10013	12	Acquisition fault	Set to TRUE when the acquisition subsystem is faulted.
10014	13	Diagnostics operational	Set to TRUE when the diagnostic subsystem is operational (not faulted).
10015	14	Diagnostics fault	Set to TRUE when the diagnostics subsystem is faulted.
10016	15	Server operational	Set to TRUE when the iC Process server is fully operational (not faulted).
10017	16	Server fault	Set to TRUE when the iC Process server is faulted (for example, low on disk space).
10018-10100	17–99	unused	

Table A-4 Modbus Discrete Inputs (10001–20000) (continued)

Holding Registers (40001-50000)

The holding registers are used by the master to retrieve floating point values, lo limits, and diagnostic values from the slave, and to provide QUANT model inputs to the slave.

Table A-5	Modhus	Holding		(40001-50000)
IUDIC A-J	WIDUDUS	nonunig	Keyisiels (

Register #	Holding Register Pair Offset	Use	Explanation		
40001 / 40002	0	User maps to value, lo limit, or hi limit	The pair of registers is used to store an		
40003 / 40004	2		IEEE format 32-bit floating point number. First register stores first two- bytes of the floating point value; second register stores last two bytes of the floating point value.		
40099 / 40100	98	User maps to value, lo limit, or hi limit	This is the last of the 50 pairs of registers available for the user to map a process value, lo limit, or hi limit. In all cases, the mapped value is an IEEE format 32-bit floating point number.		
40101 / 41000	100–999	unused			
41001 / 41002	1000	Box Temperature Index			
41003 / 41004	1002	TEC Temperature			
41005 / 41006	1004	Scan Speed Voltage			
41007 / 41008	1006	Laser Current			
41009 / 41010	1008	Probe Voltage			
41011 / 41012	1010	Air Pressure	For ParticleTrack G600 only		
41013 / 41014	1012	unused			
Primary					
41021 / 41022	1020	unused			
41023 / 41024	1022	unused			
41025 / 41026	1024	Stuck Particle Scan Circle Percentage Index			
41027 / 41028	1026	unused			
41029 / 41030	1028	Effective Duration			

Register #	Holding Register Pair Offset	Use	Explanation
41031 / 41032	1030	Maxima Count	
41033 / 41034	1032	Average Peak Height	
41035 / 41036	1034	Average Signal Intensity	
41037 / 41038	1036	Est Scan Circle Diameter	
41039 / 41040	1038	Dark Area Std Dev	
41041 / 41042	1040	Stuck Particle Correction	
41043 / 41044	1042	Dark Area Mean	
41045 / 41046	1044	Algo Time Per Seg	
41047 / 41048	1046	Acquisition Time	
41049 / 41050	1048	unused	
Macro	•		
41051 / 41052	1050	unused	
41053 / 41054	1052	unused	
41055 / 41056	1054	Stuck Particle Scan Circle Percentage Index	
41057 / 41058	1056	unused	
41059 / 41060	1058	Effective Duration	
41061 / 41062	1060	Maxima Count	
41063 / 41064	1062	Average Peak Height	
41065 / 41066	1064	Average Signal Intensity	
41067 / 41068	1066	Est Scan Circle Diameter	
41069 / 41070	1068	Dark Area Std Dev	
41071 / 41072	1070	Stuck Particle Correction	
41073 / 41074	1072	Dark Area Mean	
41075 / 41076	1074	Algo Time Per Seg	
41077 / 41078	1076	Acquisition Time	
41079 / 41200	1078–1199	unused	
42001 / 42002	2000	Stores the value of Pi (3.141593)	This pair of registers is used to store a known value (Pi) so a Modbus master can verify that it is correctly converting a pair of 16-bit registers into a floating point value.

Table A-5 Modbus Holding Registers (40001–50000) (continued)

Modbus Block Summary

Below is a table that lists register block numbers with descriptions:

Register Block	Register Type	Data Type	Use
1–100	Coils	Bit	Used by the master to command specific events.
10001–10100 Discrete inputs Bit Read by the master to obtain status operational and fault bits.		Read by the master to obtain status , including operational and fault bits.	
40001–40100	Input registers	IEE floating (two registers per value)	Read by the master to obtain trend values and alarm limits.
41001–41100	Input registers	IEE floating (two registers per value)	Read by the master to obtain diagnostic values.
42001–42002	Input registers	IEE floating (two registers)	Contains value of PI (3.14153) to verify that master has correct mapping/float conversion algorithm.

Table A-6 Modbus Register Block Summary

User Interface Mapping Screen

Below is a table that lists register block numbers used by an Administrator or Technician to map process variables to trends in the "External Output Tab" on page 33:

Index	Modbus Register	OPC Name	User-Selected Mapping
1	40001 / 40002	ProcessVariable 1	(combo box with selected value or limit)
2	40003 / 40004	ProcessVariable2	
3	40005 / 40006	ProcessVariable3	
4	40007 / 40008	ProcessVariable4	
5	40009 / 40010	ProcessVariable 5	
6	40011 / 40012	ProcessVariable6	
7	40013 / 40014	ProcessVariable7	
50	40099 / 40100	ProcessVariable50	

OPC UA Server with iC Process for FBRM

This appendix introduces the OPC Unified Architecture (UA) framework that iC Process for FBRM supports for process control. It provides OPC UA address space details for iC Process for FBRM along with sample code that enables the OPC UA Developer from your IT department to set up iC Process for FBRM in the OPC UA framework.

Facts About OPC UA

The iC Process OPC UA Server is an OPC UA Server embedded within iC Process for FBRM. The iC Process OPC UA Server runs within the context of the iC Process for FBRM server, not as a separate process.

By default, the server is not included (started) as part of the server. Before
 implementing the OPC UA, refer to the "iC Process for FBRM Install Guide for Administrators" for instructions on how to start the OPC UA server.

After connecting to the server, an OPC UA client can perform the following actions in iC Process for FBRM:

- Load and run an approved method
- Start, stop, pause, and resume a probe run
- Start or stop a batch run
- Optain current probe status
- Obtain diagnostic values
- Read process variables mapped within a method
- Read weighted and unweighted distributions for default and alternate CSMs

Within the iC Process Web application, an administrator maps process variables to trends for a specific method, During a batch or continuous process, the trends output to OPC UA as process variables. Refer to Chapter 3, "Implementing iC Process for FBRM" starting under "External Output Tab" on page 33.

Address Space (Data Model)

OPC UA Server is not an OPC UA ADI compliant server. That is, it does not implement the ADI address model as defined by the OPC specification for analyzer devices. It is a valid OPC UA server, and therefore, an OPC UA compliant client application (such as Opc.Ua.SampleClient.exe) can connect to and use the capabilities of the server. However, to effectively use the server, the developer of a client application needs to understand the address space (data model) of the iC Process OPC UA Server.

The OPC UA address space for iC Process for FBRM (defined in Table B-1) includes the following standard objects available within any OPC UA server:

Root Object

The root object in the address space is named 'Objects'. The 'Objects' node parents a standard 'Server' object and a 'Probes' object.

Probes Object

The 'Probes' object is the root node of the custom address space of the iC Process OPC UA Server.

The Probes object parents a folder node for each probe of each defined instrument and the folder node is named according to the instrument and probe name.

Data Model for iC Process for FBRM

The diagram in Figure B-1 shows the highest level nodes of the address space for an iC Process for FBRM system that includes two instruments, a single probe instrument named 'TestOpcInstrument' and an instrument named 'MyInstrument.' In Figure B-1, the display name, type, and unique Node ID are displayed for each node.

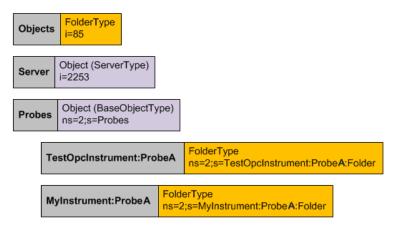


Figure B-1 Data model for iC Process OPC UA Server

Each of the probes displayed in Figure B-1 contains a series of nodes, and each node is named according to its purpose. Table B-1 defines the address space for iC Process for FBRM. The table lists the hierarchy of nodes available for each probe, including the ID for each node. The node ID is unique for each node because it is based upon the probe name.

The 'Probe Tip Temperature' diagnostic applies only to the ParticleTrack
 Note: E25 instrument and the 'Air Pressure' diagnostic applies only to the ParticleTrack G600 instrument.

Display Name	Data Type	Node ID	Write	Permissive (from user role)	Range of values
Probes	Object ns=2;s=Probes				
MyInstrument	Folder	ns=2;s=MyInstrument:ProbeA:Folder			
Probe Status	Variable (string)	ns=2;s=MyInstrument:ProbeA:ProbeStatus			Offline, Service, Paused, Online
Batch status	Variable (string)	ns=2;s=MyInstrument:ProbeA:BatchStatus			Active, Inactive
Acquisition Status	Variable (string)	ns=2;s=MyInstrument:ProbeA: AcquisitionStatus			Acquiring, Not acquiring
Acquisition Subsystem	Variable (string)	ns=2;s=MyInstrument:ProbeA: AcquisitionSubsystem			Faulted, Operational
Diagnostics Subsystem	Variable (string)	ns=2;s=MyInstrument:ProbeA: DiagnosticsSubsystem			Faulted, Operational
Server Subsystem	Variable (string)	ns=2;s=MyInstrument:ProbeA: ServerSubsystem			Faulted, Operational
Weighted Distribution (Default CSM)	Variable (YArrayltemType)	ns=2;s=MyInstrument:ProbeA: WeightedDistribution(DefaultCSM)			
Unweighted Distribution (Default CSM)	Variable (YArrayltemType)	ns=2;s=MyInstrument:ProbeA: UnweightedDistribution(DefaultCSM)			
Weighted Distribution (Alternate CSM)	Variable (YArrayltemType)	ns=2;s=MyInstrument:ProbeA: WeightedDistribution(AlternateCSM)			
Unweighted Distribution (Alternate CSM)	Variable (YArrayItemType)	ns=2;s=MyInstrument:ProbeA: UnweightedDistribution(AlternateCSM)			
Available Methods	Variable (string[])	ns=2;s=MyInstrument:ProbeA: AvailableMethods			
Run	Method	ns=2;s=MyInstrument:ProbeA:Run		Select Method	
InputArguments (For Run)	Argument (string)	ns=2;s=MyInstrument: ProbeA: Run.InputArguments	Х		
Start	Method	ns=2;s=MyInstrument:ProbeA:Start		Select Method	
Stop	Method	ns=2;s=MyInstrument:ProbeA:Stop		Select Method	
Pause	Method	ns=2;s=MyInstrument:ProbeA:Pause		Pause Run	
Resume	Method	ns=2;s=MyInstrument:ProbeA:Resume		Resume Run	
Start Batch Method		ns=2;s=MyInstrument:ProbeA:StartBatch		Start Batch	
Input Arguments (for Start Batch)	Argument (string)	ns=2;s=MyInstrument:ProbeA: StartBatch.InputArguments	Х		
Stop Batch Method		ns=2;s=MyInstrument:ProbeA:StopBatch		Stop Batch	
Diagnostics	Folder	ns=2;s=MyInstrument:ProbeA:Diagnostics			
Box Temperature	Variable (double)	ns=2;s=MyInstrument:ProbeA: Diagnostics.BoxTemperature			
TEC Temperature	Variable (double)	ns=2;s=MyInstrument:ProbeA: Diagnostics.TECTemperature			

Table B-1 OPC UA Address Space for iC Process for FBRM

Display Name	Data Type	pe Node ID		Permissive (from user role)	Range of values
Scan Speed Voltage	Variable (double)	ns=2;s=MyInstrument:ProbeA: Diagnostics.ScanSpeedVoltage			
Laser Current	Variable (double)	- ,- ,			
Probe Voltage	Variable (double)	ns=2;s=MyInstrument:ProbeA: Diagnostics.ProbeVoltaget			
Air Pressure	Variable (double)	ns=2;s=MyInstrument:ProbeA: Diagnostics.AirPressure			
Primary CSM:	. ,				
Scan Frequency (Primary)	Variable (double)	ns=2;s=MyInstrument:ProbeA: Diagnostics.ScanFrequency(Primary)			
Fouling Index (Primary)	Variable (double)	ns=2;s=MyInstrument:ProbeA: Diagnostics.FoulingIndex(Primary)			
Effective Duration (Primary)	Variable (double)	ns=2;s=MyInstrument:ProbeA: Diagnostics.EffectiveDuration(Primary)			
Detection Count (Primary)	Variable (double)	ns=2;s=MyInstrument:ProbeA: Diagnostics.DetectionCount(Primary)			
Avg Peak Height (Primary)	Variable (double)	ns=2;s=MyInstrument:ProbeA: Diagnostics.AvgPeakHeight(Primary)			
Avg Signal Intensity (Primary)	Variable (double)	ns=2;s=MyInstrument:ProbeA: Diagnostics.AvgSignalIntensity(Primary)			
Est Scan Circle Diameter (Primary)	Variable (double)	ns=2;s=MyInstrument:ProbeA: Diagnostics.EstScanCircleDiameter(Primary)			
Dark Area Standard Deviation (Primary)	Variable (double)	ns=2;s=MyInstrument:ProbeA: Diagnostics.DarkAreaStandardDeviation(Primary)			
Stuck Particle Correction (Primary)	Variable (double)	ns=2;s=MyInstrument:ProbeA: Diagnostics.StuckParticleCorrection(Primary)			
Dark Area Mean (Primary)	Variable (double)	ns=2;s=MyInstrument:ProbeA: Diagnostics.DarkAreaMean(Primary)			
Algo Time per seg Variable ns=2;s=MyInstrument:ProbeA: (Primary) (double) Diagnostics.AlgoTimeperseg(Primary)		ns=2;s=MyInstrument:ProbeA: Diagnostics.AlgoTimeperseg(Primary)			
Acquisition time (Primary)	Variable (double)	ns=2;s=MyInstrument:ProbeA: Diagnostics.Acquisitiontime(Primary)			
CP1 (Primary)	Variable (double)	ns=2;s=MyInstrument:ProbeA: Diagnostics.CP1(Primary)			
Scan Circle Diameter (Primary)	Variable (double)	ns=2;s=MyInstrument:ProbeA: Diagnostics.ScanCircleDiameter(Primary)			
Macro CSM:					
Scan Frequency (Macro)	Variable (double)	ns=2;s=MyInstrument:ProbeA: Diagnostics.ScanFrequency(Macro)			
Fouling Index (Macro)	Variable (double)	ns=2;s=MyInstrument:ProbeA: Diagnostics.FoulingIndex(Macro)			
Effective Duration (Macro)	Variable (double)	ns=2;s=MyInstrument:ProbeA:			
Detection Variable ns=2;s=Mylr		ns=2;s=MyInstrument:ProbeA: Diagnostics.DetectionCount(Macro)			
Avg Peak Height Variable (Macro) (double)		ns=2;s=MyInstrument:ProbeA: Diagnostics.AvgPeakHeight(Macro)			
Avg Signal Intensity (Macro)	Variable (double)	ns=2;s=MyInstrument:ProbeA: Diagnostics.AvgSignalIntensity(Macro)			
Est Scan Circle Diameter (Macro)	Variable (double)	ns=2;s=MyInstrument:ProbeA: Diagnostics.EstScanCircleDiameter(Macro)			

Table B-1	OPC UA Address Space for iC Process for FBRM (continued)
-----------	--

Display Name	Data Type	Node ID	Write	Permissive (from user role)	Range of values
Dark Area Standard Deviation (Macro)	Variable (double)	ns=2;s=MyInstrument:ProbeA: Diagnostics.DarkAreaStandardDeviation(Macro)			
Stuck Particle Correction (Macro)	Variable (double)	ns=2;s=MyInstrument:ProbeA: Diagnostics.StuckParticleCorrection(Macro)			
Dark Area Mean (Macro)	Variable (double)	ns=2;s=MyInstrument:ProbeA: Diagnostics.DarkAreaMean(Macro)			
Algo Time per seg (Macro)	Variable (double)	ns=2;s=MyInstrument:ProbeA: Diagnostics.AlgoTimeperseg(Macro)			
Acquisition time (Macro)	Variable (double)	ns=2;s=MyInstrument:ProbeA: Diagnostics.Acquisitiontime(Macro)			
CP1 (Macro)	Variable (double)	ns=2;s=MyInstrument:ProbeA: Diagnostics.CP1(Macro)			
Scan Circle Diameter (Macro)	Variable (double)	ns=2;s=MyInstrument:ProbeA: Diagnostics.ScanCircleDiameter(Macro)			
Method	Folder	ns=2;s=MyInstrument:ProbeA:Method			
Current Method	Variable (string)	ns=2;s=MyInstrument:ProbeA: Method.CurrentMethod			
Outputs	Folder	ns=2;s=MyInstrument:ProbeA:Method.Outputs			
ProcessVariable 1	Variable (double)	ns=2;s=MyInstrument:ProbeA: Method.Outputs.ProcessVariable1			
Name (for ProcessVariable1)	Variable (string)	ns=2;s=MyInstrument:ProbeA: Method.Outputs.ProcessVariable1.Name			
ProcessVariable2	Variable (double)	ns=2;s=MyInstrument:ProbeA: Method.Outputs.ProcessVariable2			
Name (for ProcessVariable2)	Variable (string)	ns=2;s=MyInstrument:ProbeA: Method.Outputs.ProcessVariable2.Name			
ProcessVariable50	Variable (string)	ns=2;s=MyInstrument:ProbeA: Method.Outputs.ProcessVariable50			
Name (for ProcessVariable50)	Variable (string)	ns=2;s=MyInstrument:ProbeA: Method.Outputs.ProcessVariable50.Name			

Table B-1 OPC UA Address Space for iC Process for FBRM (continued)

Sample Client Code Using Data Model

Below is a code example for reading the status of a probe. Note from the earlier discussion of the probe address space, the node ID string to fetch the probe status for ProbeA of an instrument named 'MyInstrument' is:

ns=2;s=MyInstrument:ProbeA:ProbeStatus

```
private void FetchButton_Click(object sender, EventArgs e)
{
    ProbeStatusTextBox.Text = ReadProbeValue(
        m_session, "MyInstrument:ProbeA", "ProbeStatus");
}
private static string ReadProbeValue(
        Session session, string probeName, string fieldName)
{
```

// create the collection of nodes to read (just one node in this
example.)

```
B. OPC UA Server with iC Process for FBRM
```

}

```
ReadValueIdCollection nodesToRead = new ReadValueIdCollection();
ReadValueId node = new ReadValueId
    {
        NodeId = new NodeId(String.Format(
            "ns=2;s={0}:{1}", probeName, fieldName)),
        AttributeId = Attributes.Value
    };
nodesToRead.Add(node);
// read all node values.
DataValueCollection results = null;
DiagnosticInfoCollection diagnosticInfos = null;
session.Read(
    null,
    0,
    TimestampsToReturn.Neither,
    nodesToRead,
    out results,
    out diagnosticInfos);
if (StatusCode.IsGood(results[0].StatusCode))
    return results[0].ToString();
return "Error: " + results[0].StatusCode;
```

WITSML with iC Process for FBRM

This appendix provides information on how to set up an iC Process for FBRM instrument to communicate with a Wellsite Information Transfer Standard Markup Language (WITSML) server.

Completing the WITSML Interface Settings Tab

Establish the communication through the Configuration option on the left navigation menu.

Instrument Settings	WITSML Interface Settings					
Record trend data to WITSML Log						
Server				Curve Definitions		
URL:	https://www.WITSML/server/	/abc	Curv	ve Names	Units	
Username:	jdoe		Prima	aryCurve1	counts	
Password:	rd: *******		Prim	aryCurve2	counts	
Well		Seco	ndaryCurveA	microns		
Name:	WellA		Seco	ndaryCurveB	microns	
ID:	1234567					
Wellbore	Wellbore					
Name:	8999					
ID:	7654321					
Log						
Log Name:	MTAC Prob11AWelsiteA - Tim	eLog				
Section Name:	MTAC Prob11AWelsiteA					
Verify WITSML Configuration						

Figure C-1 Instrument configuration—WITSML tab

The WITSML Interface Settings apply to the instrument and do not change for individual methods or runs.

Setting Wellsite Information Transfer Settings

- **1.** Go to Configuration > WITSML Interface Settings tab.
- 2. Click in the 'Record trend data to WITSML log' check box to activate the entry fields.
- **3.** Enter the identifying name and password for the trend log files that will be transferred to the WITSML server.

Server

- **a.** Enter the URL to the WITSML secure server that will receive trend log files from iC Process for FBRM.
- b. Enter the authorized Username and Password.
- 4. Enter the Well and Wellbore identifying information where the FBRM probe will collect data:

Well and Wellbore

- a. Name-Enter the official name of the well and the specific bore for that well.
- **b.** ID—Enter the official ID for the well and the specific bore for that well.
- 5. Enter the **Section Name**. The log name is automatically calculated from the section name.
- 6. **Curve Definitions**—Enter the official names of the trend curves to be monitored for the wellsite and bore, along with the units of measure (optional) for each curve.
- 7. Click Save at the top of the Instrument Configuration page to save the settings.
- 8. Click Verify WITSML Configuration to test the server, well, and wellbore entries. If the verification results in errors, recheck the official entries and verify the configuration again. If the configuration still fails verification, save the error that displays and contact the WITSML server representative.

Associating Curve Definitions with Trends

The curve definitions correspond to user-specified statistical trends in iC Process for FBRM as defined in the method. After the WITSML Interface Settings Curve Definitions were saved (step 7 above), a WITSML Curve column appears in the method's External Output tab.

Associate the curve definition to the iC Process for FBRM curve, as follows:

 Assuming that method development is complete for the wellsite process, go to the Methods > External Output tab (Figure C-2).

If method development is not yet complete, begin by creating a method for the particle or droplet process at the well site (see "Developing a Method" on page 23.)

2. On the External Output tab, look at the Trend Mapping column and select the specific iC Process for FBRM trend to associate with each WITSML Curve. (refer to "External Output Tab" described on page 33 for more information).

2 iC Process™	ParticleTr	ack Probe: (De	fault)_E25_01Prim_	_R1000_Log (0	Default)_E25_01Prim_R1000_Log Save Change
lome	Sample inte	erval: 10 seconds			Approve
ParticleTrack Probe					
Configuration	Averaging ty	ype: None	•		
Methods	✓ Stuck Pa	article Correction En	abled		
References	Overview	Reference Tren	ds External Output	External Input History	
	Index	Modbus Register	rs OPC Name	WITSML Curve	Trend Mapping
Reports	muex				riena riapping
Calibration	1	40001:40002	ProcessVariable1	PrimaryCurve1 (counts)	counts, No Wt, <10 (Primary) : Hialarm
	1 2	-	ProcessVariable1 ProcessVariable2	PrimaryCurve1 (counts) PrimaryCurve2 (counts)	
Calibration Service	1	40001:40002			counts, No Wt, <10 (Primary) : Hialarm • counts, No Wt, 250-1000 (Primary) : Value •
Calibration Service icensing	1 2	40001:40002 40003:40004	ProcessVariable2	PrimaryCurve2 (counts)	counts, No Wt, <10 (Primary) : Hialarm • counts, No Wt, 250-1000 (Primary) : Value •
Calibration	1 2 3	40001:40002 40003:40004 40005:40006	ProcessVariable2 ProcessVariable3	PrimaryCurve2 (counts) SecondaryCurveA (microns)	counts, No Wt, <10 (Primary) : Hialarm

After the WITSML Curve mapping to the iC Process for FBRM trend is configured, when a run starts, the mapped trend value uploads to the WITSML server.

WITSML Alarm Conditions

WITSML Transfer, WITSML Delay, and WITSM Data Loss alarms display a message when the alarm first activates. The detailed alarm message includes the error that caused the alarm condition. Some examples include: Cannot write to server, Message queue length exceeds 20 messages. When the alarm condition clears, another message communicates that the alarm is no longer in effect.

D

Alarms and Messages

This appendix provides information to assist you in responding to informational and error messages that can appear in the iC Process Web application. Alarms and messages display red description text. If an error alarm occurs, the instrument name also changes to red to reinforce the error condition. For diagnostic errors, the iC Process for FBRM software processes five consecutive measurements at an error condition before displaying the error. For acquisition errors, the software reports the error immediately.

Example 1—Trend Outside Limits

Figure D-1 shows the type of error display when the trend is outside the limits set by an Administrator in the method. Mouse over the trend name displayed in red to see a detailed description.

Figure D-1 Error display from alarm limits set in method

In the Large Values tab, the statistic values change from green to red.

Figure D-2 Trends outside limits—Large Values display

Example 2—Incompatible Template for Method

Figure D-3 shows the type of message that displays to an Administrator during Method creation after importing an iC FBRM template. In this example, the template scan speed is incompatible with the instrument type configured in iC Process.

Notice that the message communicates the incompatibility, but lets you know the scan speed that will be used.

Method Configuration					
Ø IC Process™	ParticleTrack Probe: (Default)_G600_01Primary_R1000_Log_250Hz (Default)_G600_01Primary_R1000_Log_250Hz Save Changes				
Home	Sample interval: 10 seconds Report				
ParticleTrack Probe	Warning: Scan speed in the template (4 m/s) is not a valid choice. Instrument configuration (2 m/s) will be used.				
Configuration	Averaging type: None *				
Methods					
References	Stuck Particle Correction Enabled				
Reports	Overview Reference Trends External Output External Input History				
Calibration	Method Configuration:				
Service	Instrument Type: ParticleTrack G600/G600 Ex Sample Interval: 10 seconds				
Licensing	Averaging Type: None Channel Grouping Bin Spacing: Log				
	Scan Speed: 4 m/s Weighting Type: No Weight Stuck Particle Correction Enabled: True Chord Selection Model(s): Primary V. 1.11 Statistic(s): Median, No Wt Mean, Sqr Wt counts, No Wt, <10 counts, No Wt, <10 counts, No Wt, <10 counts, No Wt, <0-250 counts, No Wt, 20-250 counts, No Wt, 250-1000 Detection Count (counts) Fouling Index (%) Stuck Particle Correction (%)				
Administrator	ChiSquare, No Wt				
AM\kammer-1	Percentile c, (10), No Wt Percentile c, (25), No Wt				
METTLER TOLEDO	Percentile c, (75), No Wt Percentile c, (90), No Wt				

Figure D-3 Incompatibility message during Method creation

Example 3—Maintenance Reminders

Preventive maintenance reminders appear on the Home page in the instrument status box. Common types of reminders include Calibration Validation and Preventive Service.

Calibration Validation—Prompt displays three months from the last passed test. Calibration Validation can be performed by any iC Process for FBRM user. The system updates the date when a Calibration Validation test passes.

Preventive Service—Prompt displays one year from the last METTLER TOLEDO service engineer visit. The engineer updates the visit date in Instrument Configuration. (see page 22).

ParticleTrack Probe Continuous			
No Communication			
Stopped			
Online			
Paused			
Service			
Maintenance Reminders: Calibration Validation Due 7/1/2012 Preventive Service Due 6/7/2012			

Figure D-4 Maintenance reminders on Home page

For details about maintenance reminders, refer to "Maintenance" on page 22. For details about the instrument statuses, refer to "Viewing Instrument Status on Home Page" on page 43.

Error Messages

This section describe the overall types of error messages that could display in iC Process and how to respond.

(For WITSML alarm information, see "WITSML Alarm Conditions" on page 121.)

Software Errors and Messages

Table D-1 describes the following software error message:

Archive—Alarm triggered when the system cannot create the data achive file for an instrument. Archive alarms can have a variety of causes. The alarm message identifies the cause.

Table D-1 Error Messages—Archive

Alarm Message	Resolve by:
No write access to archive folder	Check the folder location specified in instrument configuration (see page 18) and ensure that the folder properties grant "Write" access to the SYSTEM.
Disk drive is becoming full	If the disk drive for the specified archive folder location is approaching full, an Archive Fault message occurs:

Acquisition—Alarms triggered when the system cannot acquire a measurement for the process value. This type of alarm can be caused by instrument hardware failures, communication problems between instrument and software, or errors calculating the Chord Length Distribution. Mouse over the error name in red to view the reason for the failure.

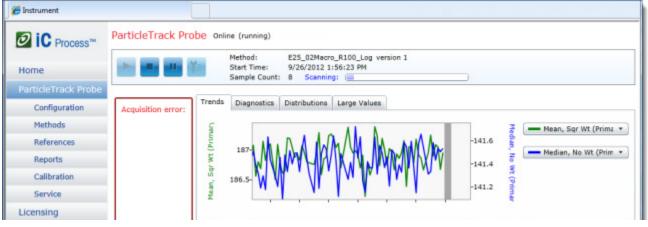


Figure D-5 Acquisition error

Alarms triggered by limits that an Administrator sets in the method can be output to external sources such as Modbus DCS, OPC UA, or WITSML. The output is based on the setup within the method on the External Outputs tab (see "External Output Tab" on page 33).

- Trend High/Low—Alarms triggered if a trend value exceeds its configured high or low limit for FIVE consecutive data samples. Trend alarms clear after the values are within tolerance for FIVE consecutive data samples/diagnostics.
- Diagnostic—Alarms triggered when the FBRM instrument falls outside factory specifications.

Glossary and Workflow Illustrations

The terms in this glossary are used throughout this guide to describe the iC Process system. Terms from iC FBRM are also included along with overall workflow illustrations.

General Terms

FBRM@—FBRM (Focused Beam Reflectance Measurement) is the technology used by the ParticleTrack[™] systems to track real-time changes in the number, shape, and dimension of particles and droplets as they naturally exist in process, without the need for off-line sampling and dilution (refer to the instrument hardware manual's Product Description chapter for details).

PVM[®]—PVM (Particle Vision and Measurement) is the technology used by the ParticleView[™] PVM systems to display real-time microscope-quality images of crystals, particles, and droplets in iC PVM software without the need for offline sampling. PVM images can be also be viewed in iC FBRM software.

Calibration Validation—A calibration validation procedure (page 65) that uses a factorysupplied calibration reference sample to determine if the instrument meets factory specifications.

System Calibration—A procedure (page 70) that sets instruments to specification through micrometer adjustment and fine-tuning of the focal position. Contact METTLER TOLEDO if calibration validation fails in instruments that do not have an accessible micrometer.

FBRM Software Terms

autostats—AutoStats is an automated analysis function tool in iC FBRM that provides the user with the most amount of information in the least number of statistics. The tool analyzes the currently open experiment or a group of selected experiments to generate an optimized statistics file (AutoStats*.icStats). The file can loaded back into the target experiments to display optimized statistical data.

batch run—A batch run is a period of data collection that requires a user to start and stop the batch. Users may enter a unique name for the batch or use a default time and date stamp.

configuration—A configuration is a collection of parameters for the hardware and software settings used to collect data. The iC Process configuration includes settings and process methods that an Administrator or Technician can adjust to suit a specific particle systems (see "Configuring a Process Instrument" on page 17).

continuous run—A continuous run is a period of data collection from the instrument when online. The start of the run is marked by a change in the method and the end is marked by either another method change or manually taking the instrument offline (stop button).

chord length—A straight line between any two points on the edge of a particle. The real-time measurement of chord lengths provides the fundamental basis of FBRM technology.

Chord Selection Model (CSM)—Advanced signal processing algorithms, only available on newer FBRM and ParticleTrack models, that convert raw FBRM signals to a chord length distribution. Specific CSMs are designed to provide enhanced sensitivity to specific properties of widely varying and often complex particle and particle structures. Below are the standard CSMs.

- Primary—CSM designed for maximum sensitivity to individual (primary) crystals, particles, and droplets.
- Macro—CSM designed for enhanced sensitivity to particle macro-structures, such as flocs and agglomerates.

count—A measure of a single chord. Each count represents a single chord with an associated chord length in microns.

Data Treatments—Options for analysis and display of FBRM particle system data. Includes the application of averaging to improve measurement-to-measurement repeatability, and the application of channel grouping to select linear or logarithmic channels for optimized resolution to the particle system changes of interest. Templates (iC FBRM experiment files) used to develop iC Process methods for batch and continuous runs include data treatments.

distribution (chord length distribution)—The grouping of chord lengths into bins (or channels) based on the measured dimension is referred to as the chord length distribution. A chord length distribution is graphed by the chord length in microns on the x-axis and the counts on the y-axis. In iC FBRM, the counts can be based on one or more statistical weighting methods and can be displayed on a count basis or normalized and displayed on a percentage basis.

- reference distribution—This is a previously recorded and saved distribution used as a comparison against other saved distributions or against the real-time distribution of chord lengths in the particle system being monitored. A reference distribution is also used to validate instrument calibration by comparing the real-time distribution to a distribution saved as the calibration reference. The calibration reference distribution is provided in a data file along with a factory-supplied calibration reference sample, so the instrument calibration can be validated by direct comparison with the factory standard reference instrument.
- target distribution—This is a reference distribution that is used for statistical comparison with the current real-time distribution or with other displayed (or pinned) distributions. The relative difference between the real-time distribution and the target distribution can be shown as a % difference for each displayed statistic. In addition, the chi square statistic uses the target distribution to calculate a measure of the overall difference between the distributions.

home—Main page of web application client. The iC Process for FBRM Home page shows the instrument configured to work with the software along with the current state of the instrument. The Home page is also where an Administrator or Technician adds or deletes an instrument.

linked views—iC FBRM software presents linked views where you can see timesynchronized displays of trends, distributions, statistics, data, and event logs. When you select an item in one view, the corresponding linked views change to reflect your selection. Refer to the iC FBRM online Help or software user guide for examples. iC FBRM users can view real time or post-process particle characterizations in iC Process by connecting to the server through the 'Process' task pane (see "Introducing the iC FBRM 'Process' Task Pane" on page 101).

tabbed views—iC Process for FBRM presents information in tabbed views in several parts of the user interface. These views separate related information into individual 'tabs' so a user can quickly select the desired view information or settings. Two examples: the main instrument display (Figure 2-2) and method development (Figure 3-17).

measurement—When operating, the ParticleTrack or FBRM system continuously measures and accumulates chord length and count data. The resulting chord length distribution data is reported and displayed by the software at a measurement interval that is specified by the user. A single measurement consists of a chord length distribution and associated statistics and diagnostic values reported at a specific point in time. Once a measurement is saved to a data file, it is referred to as a sample. A sample includes all measured data, as well as all instrument configuration information relating to the measurement.

method—A method is a collection of parameters that control how the hardware collects data and how the software converts it to information based on the particle system being analyzed (see "Developing a Method" on page 23). An Administrator can select a different distribution and adjust the Averaging (smoothing) data treatment and y-axis setting within an iC Process for FBRM method.

template—A template is a collection of settings provided with iC Process for FBRM for use in developing a method. User-defined templates can also be created from an iC FBRM experiment file. An Administrator selects a predefined template as the first step in method development. A template can be a predefined or customized iC FBRM experiment file that defines (1) data treatments, (2) statistical and diagnostic trends, and (3) the Y-axis for trends. The template includes (4) two Reference Distributions plus a Target Distribution.

software—There are two iC software products that can control FBRM process instruments. Only one control software can control the instrument at a time.

- iC Process for FBRM—Control software designed primarily for tracking particle and droplet processes in real time, with straightforward interface to existing plant DAC (data acquisition and control) systems. Common communication interface options are available including ModBus, OPC UA, and WITSML. Process methods can be developed and refined in iC FBRMnb ghbv and selected and used in iC Process for FBRM.
- iC FBRM—Control software for FBRM data acquisition and data analysis. Data is viewed in both distributions (histograms) of chord length data at a given time, and in trends that track the rate and degree of change in particle dimension, shape, and number based on statistics that are selected by the user. iC FBRM also includes customizable statistics and analysis features for advanced and expert users. iC FBRM requires a license for operation and is available in both an instrument version for inline data acquisition using ParticleTrack and FBRM systems, and an office version for off-line data analysis and reporting.

user access—The iC Process system security has three roles that can determine user access: (1) Administrator, (2) Operator, and (3) Technician. See page 9 for more information about the roles and permissions. The Technician role is intended for METTLER TOLEDO Field Service Engineers. Normally, your IT department sets up user access levels based on your organization's user logins. This setup occurs during installation, as described in the "iC Process for FBRM Install Guide for Administrators."

web application—iC Process is a web-based application that installs on a server control computer and runs as a Service. Authorized users access the iC Process client through an Internet Explorer browser.

WITSML—Wellsite Information Transfer Standard Markup Language is an optional interface to a well drilling site server for the petroleum industry.

ParticleTrack and FBRM Hardware Terms

instrument—iC Process can control a ParticleTrack G600 or ParticleTrack E25 instrument. The instrument with probe is referred to as a base or field unit. Together with the control software, the instrument is a complete system.

wetted length—The portion of the probe that may be placed in direct contact with the particle or droplet system. The wetted materials in a ParticleTrack probe consist of the probe alloy, the sapphire window, and o-rings that may be present in certain window or probe mounting designs.

probe tip—Long portion of a probe that is typically 'wetted' in the particle system. The probe tip houses and protects the probe optics, optical fibers, electric or pneumatic motor, and scanning assembly. Probe tips should not be disconnected from the probe back end.

probe back end—Portion of a probe permanently attached to the conduit that does not come in contact with the particle system.

probe window—All ParticleTrack probes measure through an optically clear sapphire window, which is inert to most process chemistry and provides a hard scratch-resistant surface. Standard probe window design includes Kalrez® o-rings to seal against leakage. Alternative probe designs for small scale, sanitary, or high-pressure applications utilize a thermo-mechanical (TM) press-fit window in which the sapphire window is permanently compressed within the probe body.

base unit—Electronics enclosure that houses the power, laser, communication, and other electronics for the probe system. In all ParticleTrack systems, the probe back end is permanently attached to the base unit by a conduit. The term 'base unit' is commonly used for systems intended for use in a laboratory fume hood or on a laboratory bench top.

field unit—A base unit designed for use in an industrial or process environment. ParticleTrack field units are typically built to 4X standards and in configurations that may include a purge/pressurization system. Field unit systems may be rated for use in hazardous environments.

purge/pressurization system—ParticleTrack ATEX and IECEx systems include a purge/ pressurization system that ensures that power to the system is only available when the enclosure is pressurized.

scan speed—The speed, in meters per second, at which the focal point of the probe scans across the particle system at the probe window. Depending on the instrument model, the scan speed is controlled at a constant rate using an electric or pneumatic motor. Some ParticleTrack models permit the use of optional scan speeds that provide alternate resolution. Higher scan speeds may provide advantages in particle systems with very high process flow rates or with very large particles. However, higher scan speeds will also reduce resolution to fine particles and droplets. Consult with your Technology and Applications Consultant for guidance in selecting an appropriate scan speed. The scan speed for ParticleTrack instruments is included with the template settings used to define a method in iC Process.

Workflow Illustrations

This section provides information and illustrations about the overall workflow to set up and monitor particle and droplet systems. It also includes an illustration of the optional workflow between iC FBRM software and iC Process for FBRM.

Workflow to Monitor Particle and Droplet Systems

The primary workflow for monitoring particle and droplet systems in production uses iC Process for FBRM software. Figure E-1 shows the workflow to monitor your particle or droplet system for the first time, along with the routine operation. Before iC Process for FBRM can be used to collect particle system data, a system Administrator must create and approve executable methods for the instrument. A method is essentially an SOP for the FBRM instrument that defines the instrument and measurement configuration to ensure consistent data collection, display, recording and reporting.

Workflow in iC Process for FBRM

In iC Process for FBRM, an Administrator creates a method based on one of the standard predefined templates supplied with the software.

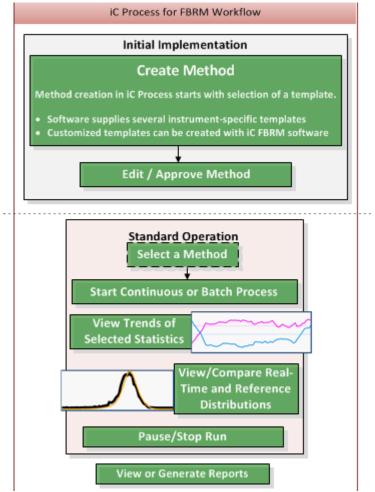


Figure E-1 Workflow—iC Process for FBRM

After method approval, an iC Process for FBRM operator controls the FBRM instrument for collection of particle information using an approved method.

Workflow between iC Process for FBRM and iC FBRM Software

iC Process for FBRM includes templates for method development created from iC FBRM experiments. iC FBRM software can optionally be used to create custom templates for process methods. The template contains instrument-specific statistics and settings that are the basis for method development. Some of the settings can be modified in the method or during processing as shown below.

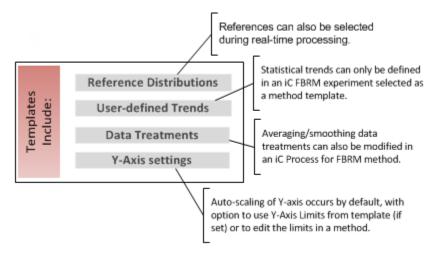


Figure E-2 Templates are iC FBRM experiments with specific settings

iC FBRM software also provides the analyst a view into the live or historical particle system trends and distributions without disturbing the current batch or continuous process run. The analyst can then perform advanced analysis on the live or historical trends and distributions that can lead to refinement of method templates.

Note: Please ensure the iC Process for FBRM server is 'Stopped' when using iC FBRM as the control software in place of iC Process for FBRM.

Index

Symbols

.icFbrm 18, 25, 26

A

adding an instrument 17 administrator periodic tasks 79–81 roles/permissions 9 alarms 123 archive entering folder location 18 folder creation 9 maintenance 81 audits of method changes/approvals 35 of template settings 29 autoscaling trends 37 averaging (smoothing) 38

B

batch compared to continuous run 44 configuring batch mode 20 reports 58 starting a batch run 45 batch active (status) 43 batch run (defined) 127 brand names 7

C

calibration validation 63–77 client 11 configuration 17–22 general settings 19 Modbus settings 22 probe settings 22 required setting 18 WITSML interface 119 configuration (defined) 127 contacting METTLER TOLEDO 8 continuous run defined 127 starting 45 stopping 46 creating a method 23 CSM activate 83 available for instrument 22 defined 128 in template selection tables 25–26

D

data files importing in iC FBRM 104 setting archive location 18 definitions 127 deleting a method 36 an instrument 85 developing a method 23 more about parameters 36 diagnostics in online mode 83 in Service mode 91 diagrams iC FBRM templates for process methods 132 operator workflow sample 42 process flow (iC Process for FBRM) 131 Distributed Control System (DCS) 107 distributions managing references 79 saving as reference 53 viewing 52

Ε

errors 123 external client Modbus 107 OPC UA 113 output trends 33 external server WITSML 119

F

FBRM instrument administering iC Process software 79–81 calibration 63–77 operating iC Process software 41–54 using iC Process for FBRM service mode 97 flowchart iC Process for FBRM workflow 131 operator workflow 42

G

glossary 127

Η

Home page 16, 42 defined 128

iC FBRM 99-106 importing iC Process for FBRM data files 104 importing trends from iC Process for FBRM 106 instrument status in 102 interoperability with iC Process for FBRM 99 Result Set 106 user-defined trends 36 user-specified statistical trends 36 workflow with iC Process for FBRM 132 iC Process for FBRM adding an instrument 17 client 11 data files 18 Home page 16, 42 initial implementation 15 instrument calibration 63 introduction to GUI 15

main display 12 method development 23 operating 41 periodic management tasks 79 reports 58 server 11 service mode 87, 87–97 software components 10 user roles 9 workflow with iC FBRM 132 input register mapping 34 instrument adding 17 brand names 7 configuring 17–22 defined 130 deleting 85 diagnostics 91 health (tests) 88-97 status 43, 102 instrument configuration general settings 19 Modbus settings 22 probe settings 22 WITSML interface 119 interoperability of iC Process for FBRM and iC FBRM 99 interval 18, 37

L

Large Values in live chemistry 54 in Service mode 92 with trends outside limits 123 linked views defined 128 example (live experiment) 104 log files 84 login (if applicable) 15, 41

Μ

main page iC Process for FBRM Home 15 iC Process for FBRM instrument 12

maintenance dates in configuration 22 dates in instrument configuration 22 reminders 44 reminders on Home page 125 managing WITSML 119 measurement interval 18, 37 messages 123 method approving 35 choosing Reference/Target Distributions 30 creating 23 defined 129 deleting 36 External Input tab 34 External Output tab 33 History tab 35 list 27 Overview tab 29 reports 36 template selection tables 25-26 Trends tab 31 viewing and editing details 28 method development 23-36 going deeper 36-40 Modbus 107 block summary 112 coils (1-10000) 108 discrete inputs (10001-20000) 109 holding registers (40001-50000) 110 mapping process variables 112 sample request packet 108 slave ID 22 types of registers 107 monitoring particle/droplet systems workflow 132

N

no communication (status) 43

0

online (status) 43, 102 OPC UA 113 operator instrument control 41–54 roles/permissions 9 output trends to Modbus registers/OPC variables 33

Ρ

ParticleTrack brand name 7 instrument selection 17 paused (status) 43, 102 preventive maintenance in configuration 22 reminders 44 probe configuration settings 22 process method development 23–36 process variables mapping 112

R

Reference Distributions defined in method 30 managing real-time 79 register types (Modbus) 107 reports 58–62 for a batch 58 for a time period 61 for calibration 64 instrument tests 88–97 method definition 36 Result Set (iC FBRM) 106

S

sample interval and archive file 18 deciding on best one 37 security user access roles 129 server 11

service 8 instrument not in service mode 58 reminders 97 running tests 89 service (status) 43, 102 service mode 87–97 simulation 20 software components described 10 defined 129 launching iC Process for FBRM 41 starting iC FBRM 100 training 8 upgrades 8 using iC FBRM 'Process' taskpane 99-106 starting a continuous run 45 starting iC FBRM software 100 status of instrument 43 of instrument through iC FBRM 103 stopped (status) 43, 102 support contacting METTLER TOLEDO 8 sending system logs 84 system calibration about 81 system log files 84

T

tab views 12 Target Distributions defined in method 30 technical assistance 8 technician roles/permissions 10 template importing into method 23 selection tables 25–26 workflow to methods 132 terminology 127 tests running (Service) 89 time period report 61 time window in trends tab 48 training 8 trends autoscaling 37 importing in iC FBRM 106 viewing diagnostics 91 viewing in active run 46 viewing in service test 90

U

upgrades 8 user access defined 129 three roles 9 user-specified trends 36 using iC Process for FBRM service mode 87

W

web application defined 130 WITSML 119 defined 130 in Instrument Configuration 19 managing 119 setup 119–121 workflow diagram for operator 42 process flow 131

Learn More with our Technical Webinar Program

Our on-demand webinars (online seminars) provide application and industry information relevant to you. These interactive presentations, provided by industry experts and our own applications team, give you an opportunity to learn more about your specific area of interest.

Topics include:

- Improving Crystallization and Precipitation Processes
- The Importance of Mixing in Process Development
- Avoiding Incidents During Scale-up
- Recent Advances in Organic Chemistry
- Calorimetry Best Practices
- Characterization of Catalytic Hydrogenations
- Plus other applications including green chemistry, organic synthesis, fermentation, high pressure chemistry and more

www.mt.com/ac-webinars

www.mt.com

For more information

Mettler-Toledo AutoChem, Inc. 7075 Samuel Morse Drive Columbia, MD 21046

Email autochem@mt.com

Subject to technical changes © 9/2015 Mettler-Toledo AutoChem, inc. MK-PB-0102-AC Rev B