Hulp nodig?
Wij willen u helpen bij het bereiken van uw doelen. Praat met onze experts.

Measure and Count Particles In-Situ and in Real Time

particle track g400

ParticleTrack G400

Study Particle Size and Count in the Laboratory

Probe-based instrument that is inserted directly into laboratory reactors to track changing particle size and count in real time at full process concentrations. Particles, particle structures and droplets are monitored continuously, as experimental conditions vary, providing scientists with the evidence required to deliver consistent particles. Lees meer

particle track g600

ParticleTrack G600/G600 Ex

For Pilot Plants and Production

A flexible mounting system allows probes to be installed in reactors or pipelines using standard flanges, dip pipes and ball valves across a wide range of temperatures and pressures. Optional purged enclosures rated to ATEX and Class I, Div 1 standards ensure instruments can be installed safely in hazardous locations. Lees meer

What is the difference between the ParticleTrack G400 and G600 models?

In short, the G400 and G600 models were designed with different process environments in mind. The ParticleTrack G400 is best suited for laboratory applications while the G600 model is best for pilot plant and plant operations. 

Unsure of which model is best for your application? Contact us today!

What is FBRM? How does it work?

what is FBRM

what is FBRM
what is FBRM

FBRM™ (Focused Beam Reflectance Measurement) is a measurement technique used for in-process particle measurement. The precise and sensitive chord length distributions (CLD) are highly responsive to changes in size, shape, or count. 

The probe is placed at an angle straight into process streams to allow particles to flow freely across the probe window where the measurement takes place. Through a system of optics, a laser beam is sent down the probe tube and narrowly focused on the sapphire window. The optics rotate at a constant rate (usually 2 m/s), which causes the beam spot to sweep through particles quickly as they pass by the window.

Individual particles or particle structures will backscatter the laser light to the detector when the concentrated beam travels through the particle system. These separate backscattered light pulses are identified, counted, and the distance across each particle is determined by multiplying the duration of each pulse by the scan speed.

The chord length, a crucial indicator of the particle's relationship to particle size, is used to determine this distance. Thousands of particles are typically counted and measured per second, enabling the real-time reporting of an accurate and very sensitive chord length distribution.

The chord length distribution charts the evolution of particle size and counts from the start to the finish of a procedure. It is possible to chart the evolution of statistics from each chord length distribution, such as counts in the fine and coarse size classes.

Kristallisatieprocessen ontwikkelen

Kristallisatieprocessen ontwikkelen

Nieuwe technologieën voor het ontwikkelen van kristallisatieprocessen

PAT for Emulsions

PAT For Emulsion Characterization

Utilizing Process Analytical Technology (PAT) to Optimize Emulsions

effectieve kristallisatie procesontwikkeling

effectieve kristallisatie procesontwikkeling

A Guide to Crystallization and Precipitation

Strategieën om de kristalgrootteverdeling te controleren

Strategieën om de kristalgrootteverdeling te controleren

geavanceerde technieken voor het optimaliseren van kristalgrootteverdeling tijdens procesontwikkeling

Improve Purification of Biological Systems

Improve Purification of Biological Systems

Inline Monitoring to Improve Purification of Biological Systems

Kristallisatie in de proceschemie

Kristallisatie in de proceschemie

Het gebruik van eenvoudige PAT-tools