Synthèse organométallique | Analyse de chimie organométallique

Synthèse et chimie organométallique

Comprendre et contrôler les composés organométalliques

Synthèse organométallique

Composés organométalliques

Outils permettant d'optimiser les réactions de synthèse
EasyMax LowTemp

Applications

Réactions de lithiation et d'organolithiens
Réactifs clés pour la synthèse de molécules complexes

Les réactions de lithiation et d'organolithiens sont essentielles dans le développement de composés pharmaceutiques complexes ; les composés organolithiens servent également d'initiateurs dans certaines réactions de polymérisation.

Déroulement réactionnel
Compréhension fondamentale des réactions chimiques et des facteurs qui les affectent

Les mécanismes réactionnels correspondent aux étapes successives au niveau moléculaire qui ont lieu lors d'une réaction chimique. Bien qu'ils ne puissent pas être prouvés, les mécanismes réactionnels donnent lieu à des hypothèses fondées sur l'expérimentation empirique et la déduction. La spectroscopie FTIR in situ fournit des informations pour étayer ces hypothèses.

Contrôler les isocyanates résiduels
Technologie analytique de procédé pour les mesures continues des isocyanates résiduels

Les isocyanates sont les éléments essentiels des polymères hautes performances à base de polyuréthane qui constituent les revêtements, les mousses, les adhésifs, les élastomères et les matériaux d'isolation. Les problèmes liés à une surexposition aux isocyanates résiduels ont entraîné une réduction des seuils de ces composés dans les nouveaux produits. Les méthodes d'analyse traditionnelles pour mesurer les concentrations d'isocyanates résiduels en effectuant des prélèvements et des analyses hors ligne présentent des difficultés. La surveillance in situ avec technologie analytique de procédé résout ces difficultés et garantit aux fabricants et aux formulateurs le respect des critères de qualité, des normes de sécurité du personnel et des réglementations environnementales.

Mesurer les réactions de polymérisation
Méthodes et techniques pour développer la chimie des polymères de synthèse

Les mesures des réactions de polymérisation sont essentielles pour produire un matériau qui répond à des exigences ciblées, notamment afin de garantir une compréhension immédiate, des résultats précis et reproductibles, ainsi qu'une sécurité renforcée.

Profilage des impuretés des réactions chimiques
Stratégies de développement de procédés automatisés pour les chimistes

Le profilage des impuretés a pour objectif d'identifier et de quantifier ensuite les composants spécifiques présents à de faibles niveaux, généralement inférieurs à 1 % et idéalement, à 0,1 %.

Études de la cinétique des réactions chimiques
Étude de la vitesse des réactions chimiques et mesure de la cinétique en ligne

Les études de la cinétique des réactions chimiques in situ permettent de mieux comprendre le mécanisme et le déroulement des réactions en décrivant la dépendance entre les concentrations des composants de réaction en temps réel. Les données obtenues tout au long d'une réaction permettent de calculer des lois gouvernant le taux de réaction grâce à un nombre réduit d'expériences, en raison de la nature exhaustive des données.L'analyse cinétique de la progression de la réaction (RPKA) utilise des données in situ dans des concentrations synthétiquement pertinentes et capture des données tout au long de l'expérience pour veiller à ce que le comportement de réaction complet puisse être décrit avec exactitude.

Chimie en flux, notions et avantages - suivi des données en temps réel
Améliorer la sécurité, la qualité et le rendement, réduire la durée de cycle

La chimie en flux continu permet de réaliser des étapes exothermiques qui sont impossibles avec les réacteurs standards. De plus, les améliorations apportées à la conception des réacteurs à flux continu multiplient les possibilités de réaction, qui sont limitées dans les réacteurs classiques. Cela permet généralement d'améliorer la qualité des produits et d'optimiser le rendement.  Associée à la technologie analytique de procédé (PAT), la chimie en flux permet d'analyser, d'optimiser et d'extrapoler rapidement une réaction chimique.

Contrôle de procédé pour les réactions exothermiques
Comprendre et contrôler le développement de la réaction de Grignard, extrapoler avec la technologie analytique de procédé

Les réactions chimiques exothermiques présentent des risques inhérents, particulièrement au cours de l'extrapolation. Ces risques incluent les problèmes de sécurité comme une pression excessive, une décharge de contenu, les explosions, une dégradation du rendement de produit ou de sa pureté due à une hausse rapide de la température.  Par exemple, un contrôle inadéquat des réactions de Grignard pose des problèmes de sécurité associés à l'accumulation de l'halogénure organique qui, s'il n'est pas détecté, peut avoir des conséquences graves et entraîner un emballement réactionnel.

Réactions d'hydrogénation
Comprendre et optimiser les effets des paramètres de procédé sur les réactions d'hydrogénation

L'étude des réactions d'hydrogénation implique de prendre des décisions avisées afin d'optimiser le procédé en laboratoire et de garantir sa répétabilité lors de son extrapolation. Des mesures continues de la réaction en temps réel permettent d'améliorer la compréhension fondamentale du procédé. Ces mesures permettent ainsi de prendre des décisions plus rapidement afin de réduire le nombre d'expériences et le délai d'extrapolation du procédé ; d'améliorer la sélectivité/le rendement grâce aux informations quasi instantanées sur la direction de la réaction ; de réduire la durée du cycle et d'améliorer le rendement en déterminant le point final idéal en arrêtant la réaction à un moment précis et en évitant le risque de formation de produits dérivés.

Chimie hautement réactive
Mise à l'échelle et optimisation de procédés chimiques hautement réactifs

La chimie hautement réactive est un terme se rapportant aux réactions chimiques particulièrement difficiles à générer et à gérer en raison des risques potentiels et/ou à la nature énergétique des réactifs, des intermédiaires et des produits de la synthèse. Ces composés chimiques impliquent souvent de fortes réactions exothermiques nécessitant un équipement spécialisé ou des conditions extrêmes de manipulation (comme des températures basses) pour assurer un contrôle adéquat. Assurer la sécurité des opérations, réduire l'exposition humaine et recueillir un maximum d'informations à chaque expérience : tels sont les facteurs clés dans la conception et la mise à l'échelle de procédés efficaces de chimie hautement réactive.

High Pressure Reactions
Understand and Characterize High Pressure Reactions Under Challenging Sampling Conditions

Many processes require reactions to be run under high pressure. Working under pressure is challenging and collecting samples for offline analysis is difficult and time consuming. A change in pressure could affect reaction rate, conversion and mechanism as well as other process parameters plus sensitivity to oxygen, water, and associated safety issues are common problems.

Hydroformylation ou procédé oxo
Comprendre les mécanismes clés et améliorer les procédés catalytiques

Hydroformylation, ou procédé oxo, procédés catalytiques qui synthétisent des aldéhydes à partir d'alcènes. Les aldéhydes qui en résultent constituent la matière première de nombreux autres composés organiques utiles.

Halogenation Reactions
Key Syntheses in Pharmaceutical and Polymer Chemistry

Halogenation occurs when one of more fluorine, chlorine, bromine, or iodine atoms replace one or more hydrogen atoms in an organic compound. Depending on the specific halogen, the nature of the substrate molecule and overall reaction conditions, halogenation reactions can be very energetic and follow different pathways. For this reason, understanding these reactions from a kinetics and thermodynamic perspective is critical to ensuring yield, quality and safety of the process.

Réactions catalytiques
Accélérer les réactions chimiques avec un catalyseur

Les catalyseurs sont une méthode alternative permettant d'augmenter la vitesse et l'ampleur d'une réaction. Une parfaite compréhension de la cinétique de réaction est donc essentielle. Vous obtenez ainsi des informations sur la vitesse de réaction, mais aussi sur le mécanisme de cette dernière. Il existe deux types de réaction catalytique : réaction homogène et hétérogène. La réaction est dite hétérogène lorsque le catalyseur et le réactif sont présents dans deux phases différentes. La réaction est dite homogène lorsque le catalyseur et le réactif sont présents dans la même phase.

réactions de synthèse
Fournir des molécules essentielles à la recherche, à l'industrie et au commerce

Les réactions de synthèse, qui constituent l'une des quatre principales catégories de réactions chimiques, comptent des exemples importants en synthèse organique, en chimie catalytique, en chimie inorganique/organométallique et en chimie de polymérisation. Dans le cas le plus simple, une réaction de synthèse se produit lorsque deux molécules se combinent pour en former une troisième, plus complexe. Mais souvent, les réactions de synthèse ne sont pas aussi simples et requièrent une compréhension approfondie de la cinétique et des mécanismes chimiques sous-jacents, ainsi que des conditions de réaction contrôlées avec précision.

Plans d'expérimentation
Une approche statistique de l'optimisation des réactions

Un plan d'expérimentation implique de réaliser des expériences dans des conditions contrôlées et reproductibles en vue d'optimiser les procédés chimiques. Les réacteurs de synthèse chimique sont conçus pour effectuer des analyses dans le cadre du plan d'expérimentation afin de garantir la qualité des données.

Understand the structure of individual molecules and composition of molecular mixtures

Fourier Transform Infrared (FTIR) Spectroscopy For Real-Time Monitoring Of Chemical Reactions

Synthèse organométallique
Comprendre et contrôler les composés organométalliques

La synthèse organométallique, ou chimie organométallique, définit le processus de création de composés organométalliques. Elle figure parmi les principaux domaines de recherche en chimie. Les composés organométalliques sont fréquemment utilisés pour la synthèse de produits chimiques fins et pour les réactions catalysées. Les spectroscopies raman et infrarouge in situ figurent parmi les méthodes d'analyse les plus performantes pour étudier les composés et les synthèses organométalliques.

Synthèse d'oligonucléotide
Atteindre les objectifs de rendement, de pureté et de coût

La synthèse d'oligonucléotide désigne le processus chimique par lequel les nucléotides sont liés spécifiquement afin de constituer un produit présentant la séquence souhaitée.

Qu'est-ce que l'alkylation ?
Pour les réactions clés en chimie organique

L'alkylation est le procédé par lequel un groupe d'alkyles est ajouté à une molécule de substrat. L'alkylation est une technique très répandue en chimie organique.

Époxydes
Groupes fonctionnels clés pour la synthèse des polymères et des composés pharmaceutiques

Cette page décrit ce que sont les époxydes, comment ils sont synthétisés et la technologie permettant de suivre la progression de la réaction, y compris la cinétique et les mécanismes clés.

Key C-C Bond-Forming Reactions in Molecular Synthesis

The Suzuki and related cross-coupling reactions use transition metal catalysts, such as palladium complexes, to form C-C bonds between alkyl and aryl halides with various organic compounds. These catalyzed reactions are widely used methods to efficiently increase molecular complexity in pharmaceutical, polymer, and natural product syntheses. PAT technology is used to investigate cross-coupled reactions with regard to kinetics, mechanisms, thermodynamics, and the effect of reaction variables on performance and safety.

Functionalization of Carbon Bonds

C-H bond activation is a series of mechanistic processes by which stable carbon-hydrogen bonds in organic compounds are cleaved.

Réactions de lithiation et d'organolithiens

Les réactions de lithiation et d'organolithiens sont essentielles dans le développement de composés pharmaceutiques complexes ; les composés organolithiens servent également d'initiateurs dans certaines réactions de polymérisation.

Déroulement réactionnel

Les mécanismes réactionnels correspondent aux étapes successives au niveau moléculaire qui ont lieu lors d'une réaction chimique. Bien qu'ils ne puissent pas être prouvés, les mécanismes réactionnels donnent lieu à des hypothèses fondées sur l'expérimentation empirique et la déduction. La spectroscopie FTIR in situ fournit des informations pour étayer ces hypothèses.

Contrôler les isocyanates résiduels

Les isocyanates sont les éléments essentiels des polymères hautes performances à base de polyuréthane qui constituent les revêtements, les mousses, les adhésifs, les élastomères et les matériaux d'isolation. Les problèmes liés à une surexposition aux isocyanates résiduels ont entraîné une réduction des seuils de ces composés dans les nouveaux produits. Les méthodes d'analyse traditionnelles pour mesurer les concentrations d'isocyanates résiduels en effectuant des prélèvements et des analyses hors ligne présentent des difficultés. La surveillance in situ avec technologie analytique de procédé résout ces difficultés et garantit aux fabricants et aux formulateurs le respect des critères de qualité, des normes de sécurité du personnel et des réglementations environnementales.

Mesurer les réactions de polymérisation

Les mesures des réactions de polymérisation sont essentielles pour produire un matériau qui répond à des exigences ciblées, notamment afin de garantir une compréhension immédiate, des résultats précis et reproductibles, ainsi qu'une sécurité renforcée.

Profilage des impuretés des réactions chimiques

Le profilage des impuretés a pour objectif d'identifier et de quantifier ensuite les composants spécifiques présents à de faibles niveaux, généralement inférieurs à 1 % et idéalement, à 0,1 %.

Études de la cinétique des réactions chimiques

Les études de la cinétique des réactions chimiques in situ permettent de mieux comprendre le mécanisme et le déroulement des réactions en décrivant la dépendance entre les concentrations des composants de réaction en temps réel. Les données obtenues tout au long d'une réaction permettent de calculer des lois gouvernant le taux de réaction grâce à un nombre réduit d'expériences, en raison de la nature exhaustive des données.L'analyse cinétique de la progression de la réaction (RPKA) utilise des données in situ dans des concentrations synthétiquement pertinentes et capture des données tout au long de l'expérience pour veiller à ce que le comportement de réaction complet puisse être décrit avec exactitude.

Chimie en flux, notions et avantages - suivi des données en temps réel

La chimie en flux continu permet de réaliser des étapes exothermiques qui sont impossibles avec les réacteurs standards. De plus, les améliorations apportées à la conception des réacteurs à flux continu multiplient les possibilités de réaction, qui sont limitées dans les réacteurs classiques. Cela permet généralement d'améliorer la qualité des produits et d'optimiser le rendement.  Associée à la technologie analytique de procédé (PAT), la chimie en flux permet d'analyser, d'optimiser et d'extrapoler rapidement une réaction chimique.

Contrôle de procédé pour les réactions exothermiques

Les réactions chimiques exothermiques présentent des risques inhérents, particulièrement au cours de l'extrapolation. Ces risques incluent les problèmes de sécurité comme une pression excessive, une décharge de contenu, les explosions, une dégradation du rendement de produit ou de sa pureté due à une hausse rapide de la température.  Par exemple, un contrôle inadéquat des réactions de Grignard pose des problèmes de sécurité associés à l'accumulation de l'halogénure organique qui, s'il n'est pas détecté, peut avoir des conséquences graves et entraîner un emballement réactionnel.

Réactions d'hydrogénation

L'étude des réactions d'hydrogénation implique de prendre des décisions avisées afin d'optimiser le procédé en laboratoire et de garantir sa répétabilité lors de son extrapolation. Des mesures continues de la réaction en temps réel permettent d'améliorer la compréhension fondamentale du procédé. Ces mesures permettent ainsi de prendre des décisions plus rapidement afin de réduire le nombre d'expériences et le délai d'extrapolation du procédé ; d'améliorer la sélectivité/le rendement grâce aux informations quasi instantanées sur la direction de la réaction ; de réduire la durée du cycle et d'améliorer le rendement en déterminant le point final idéal en arrêtant la réaction à un moment précis et en évitant le risque de formation de produits dérivés.

Chimie hautement réactive

La chimie hautement réactive est un terme se rapportant aux réactions chimiques particulièrement difficiles à générer et à gérer en raison des risques potentiels et/ou à la nature énergétique des réactifs, des intermédiaires et des produits de la synthèse. Ces composés chimiques impliquent souvent de fortes réactions exothermiques nécessitant un équipement spécialisé ou des conditions extrêmes de manipulation (comme des températures basses) pour assurer un contrôle adéquat. Assurer la sécurité des opérations, réduire l'exposition humaine et recueillir un maximum d'informations à chaque expérience : tels sont les facteurs clés dans la conception et la mise à l'échelle de procédés efficaces de chimie hautement réactive.

High Pressure Reactions

Many processes require reactions to be run under high pressure. Working under pressure is challenging and collecting samples for offline analysis is difficult and time consuming. A change in pressure could affect reaction rate, conversion and mechanism as well as other process parameters plus sensitivity to oxygen, water, and associated safety issues are common problems.

Hydroformylation ou procédé oxo

Hydroformylation, ou procédé oxo, procédés catalytiques qui synthétisent des aldéhydes à partir d'alcènes. Les aldéhydes qui en résultent constituent la matière première de nombreux autres composés organiques utiles.

Halogenation Reactions

Halogenation occurs when one of more fluorine, chlorine, bromine, or iodine atoms replace one or more hydrogen atoms in an organic compound. Depending on the specific halogen, the nature of the substrate molecule and overall reaction conditions, halogenation reactions can be very energetic and follow different pathways. For this reason, understanding these reactions from a kinetics and thermodynamic perspective is critical to ensuring yield, quality and safety of the process.

Réactions catalytiques

Les catalyseurs sont une méthode alternative permettant d'augmenter la vitesse et l'ampleur d'une réaction. Une parfaite compréhension de la cinétique de réaction est donc essentielle. Vous obtenez ainsi des informations sur la vitesse de réaction, mais aussi sur le mécanisme de cette dernière. Il existe deux types de réaction catalytique : réaction homogène et hétérogène. La réaction est dite hétérogène lorsque le catalyseur et le réactif sont présents dans deux phases différentes. La réaction est dite homogène lorsque le catalyseur et le réactif sont présents dans la même phase.

réactions de synthèse

Les réactions de synthèse, qui constituent l'une des quatre principales catégories de réactions chimiques, comptent des exemples importants en synthèse organique, en chimie catalytique, en chimie inorganique/organométallique et en chimie de polymérisation. Dans le cas le plus simple, une réaction de synthèse se produit lorsque deux molécules se combinent pour en former une troisième, plus complexe. Mais souvent, les réactions de synthèse ne sont pas aussi simples et requièrent une compréhension approfondie de la cinétique et des mécanismes chimiques sous-jacents, ainsi que des conditions de réaction contrôlées avec précision.

Plans d'expérimentation

Un plan d'expérimentation implique de réaliser des expériences dans des conditions contrôlées et reproductibles en vue d'optimiser les procédés chimiques. Les réacteurs de synthèse chimique sont conçus pour effectuer des analyses dans le cadre du plan d'expérimentation afin de garantir la qualité des données.

Fourier Transform Infrared (FTIR) Spectroscopy For Real-Time Monitoring Of Chemical Reactions

Synthèse organométallique

La synthèse organométallique, ou chimie organométallique, définit le processus de création de composés organométalliques. Elle figure parmi les principaux domaines de recherche en chimie. Les composés organométalliques sont fréquemment utilisés pour la synthèse de produits chimiques fins et pour les réactions catalysées. Les spectroscopies raman et infrarouge in situ figurent parmi les méthodes d'analyse les plus performantes pour étudier les composés et les synthèses organométalliques.

Synthèse d'oligonucléotide

La synthèse d'oligonucléotide désigne le processus chimique par lequel les nucléotides sont liés spécifiquement afin de constituer un produit présentant la séquence souhaitée.

Qu'est-ce que l'alkylation ?

L'alkylation est le procédé par lequel un groupe d'alkyles est ajouté à une molécule de substrat. L'alkylation est une technique très répandue en chimie organique.

Époxydes

Cette page décrit ce que sont les époxydes, comment ils sont synthétisés et la technologie permettant de suivre la progression de la réaction, y compris la cinétique et les mécanismes clés.

The Suzuki and related cross-coupling reactions use transition metal catalysts, such as palladium complexes, to form C-C bonds between alkyl and aryl halides with various organic compounds. These catalyzed reactions are widely used methods to efficiently increase molecular complexity in pharmaceutical, polymer, and natural product syntheses. PAT technology is used to investigate cross-coupled reactions with regard to kinetics, mechanisms, thermodynamics, and the effect of reaction variables on performance and safety.

C-H bond activation is a series of mechanistic processes by which stable carbon-hydrogen bonds in organic compounds are cleaved.

Publications

Ressources complémentaires

FTIR de procédé pour une réduction de tétrahydruroborate de sodium en toute sécurité
John O'Reilly, de Roche Irlande, présente notre système durable PAT (Process Analytical Technology) utilisant le FTIR de procédé pour effectuer une ré...
Profil des impuretés des réactions organométalliques sensibles à l'air
Les nouvelles techniques de prélèvement automatisé résolvent les défis liés au prélèvement grâce à une méthode de prélèvement en ligne d'échantillons...
Découverte et développement de réactions par la cinétique
Le professeur Ryan Baxter, de l'Université de Californie (UC-Merced), nous parle de la découverte et du développement de réactions par la cinétique. L...
Reaction Kinetics Progress Analysis Ryan Baxter
Ce web-séminaire propose une approche d'analyse graphique visant à rationaliser la cinétique inhabituelle des activations C-H. Il décrit la méthode d'...
Développement de réactions d'alkylation
Kevin Stone explique comment le département R&D en génie chimique (CERD, Chemical Engineering Research & Development) de Merck utilise les outils d'em...
Extrapolation d'une borylation de Miyaura sensible à l'oxygène
Christopher Mitchell de chez Takeda Pharmaceuticals présente l'extrapolation d'une borylation de Miyaura sensible à l'oxygène.
API Development Using Continuous Flow Technology
Presented by Dr. Frederic Buono of Boehringer-Ingelheim, this on-demand webinar reviews continuous flow process development, including general concept...
La technologie in situ pour le suivi des synthèses en continu - Partie II
FlowIR™ est présenté comme un outil analytique en ligne commode pour les synthèses chimiques en flux continu. L'instrument FTIR pour le suivi en temps...

Produits liés

Cette page n'est pas optimisée pour votre navigateur Web. Envisagez d'utiliser un autre navigateur ou mettez-le à jour avec la dernière version pour bénéficier d'une expérience optimale.