Reference Manual

MT-SICS Interface Command Set

for Automated Precision Weigh Modules

Table of Contents

1	Conf	iguration tool	5
2	Intro	duction	6
	2.1	Command formats	7
		2.1.1 Language conventions	7
		2.1.2 Response formats	8
		2.1.2.1 Format of responses with weight value	8
		2.1.2.2 Format of responses without weight value	g
		2.1.3 Error messages	10
		2.1.3.1 Command-specific error messages	
		2.1.3.2 General error messages	11
		2.1.3.3 Specific error messages on weight response	11
		2.1.4 Specific error messages on weight response	
	2.2	Tips for programmers	14
3	Com	mands and Responses	16
•	••••	@ – Cancel	16
		A01 – Percent weighing: Reference in %	17
		A02 – Sample identification for samples in weighing application	18
		A03 – Sample name for samples in weighing application	19
		A06 - Dynamic Weighing: Dynamic Behavior	20
		Alo – Nominal, +Tolerance, -Tolerance	21
		A30 – Internal loads	22
		C – Cancel all commands	23
		CO – Adjustment setting	24
		C1 – Start adjustment according to current settings	26
		C2 – Start adjustment with external weight	28
		C3 – Start adjustment with built-in weight	30
		C4 – Standard / initial adjustment	31
		C5 – Enabling/disabling step control	33
		C6 – Customer linearization and sensitivity adjustment	34
		C7 – Customer standard calibration	37
		C8 – Sensitivity adjustment	40
		C9 – Scale placement sensitivity adjustment	43
		COM – Parameters of the serial interfaces	46
		CW02 - Time for weighing	48
		CW03 - Triggered weight value	50
		CW11 - Check weighing: Weight calculation mode	51
		D – Write text to display	52
		DAT – Date	53
		DATI – Date and Time	54
		DIN – Configuration for digital inputs	55
		DIS – Digital input status	56
		DOS – Digital output status.	57
		DOT – Configuration for digital outputs	58
		DOTC – Configurable digital outputs – Weight monitor	59
		DW – Show weight	61
		E01 – Current system error state	62
		E02 – Weighing device errors and warnings	63
		EO3 – Current system errors and warnings	65
		ECHO – Echo Mode	66
		FO1 – Automatic prefilling configuration	69
		FO2 – Material filling duration configuration.	70
		FO3 – Automatic refilling configuration	71
		FO4 – Target weight configuration	72
			1 4

F05 – Optimization function configuration	
FO6 – Weight monitor function configuration	75
F07 – Time monitor function configuration	77
F08 – Filling statistics	79
F09 – Filling application status	80
F10 – Control filling	82
F11 – Report filling state	84
F12 – Filling stability criteria configuration	85
F13 – Filling phase configuration	
F14 – Automatic tare configuration	
F15 – Digital output function configuration	
F16 – Emptying function configuration	
FCUT – Filter characteristics (cut-off frequency)	
FCUT2 - Filter cut-off frequency of alternative weight path	93
FSET – Reset all settings to factory defaults	
IO – Currently available MT-SICS commands	
11 – MT-SICS level and level versions	
I2 – Device data (Type and capacity)	
I3 – Software version number and type definition number	
I4 – Serial number	
I5 – Software material number	
110 – Device identification	
III – Model designation	
114 – Device information	
I15 – Uptime	
116 – Date of next service.	
I21 – Revision of assortment type tolerances	
I26 – Operating mode after restart	
I27 – Change history from parameter settings	
I29 – Filter configuration	
I32 – Voltage monitoring	
I43 – Selectable units for host unit	
I44 – Selectable units for display unit	
I45 – Selectable environment filter settings	
I46 – Selectable weighing modes.	
I47 – Switch-on range	
148 – Initial zero range	
ISO – Remaining weighing ranges	
I51 – Power-on time	
I52 – Auto zero activation settings.	
I53 – Ipv4 runtime network configuration information	
I54 – Adjustment loads.	
I55 – Menu version	
I56 – Scaled weight ramp value.	
I59 – Get initial zero information	
I62 – Timeout	
I65 – Total operating time	
I66 – Total load weighed	
I67 – Total number of weighings	
I69 – Service provider address ASCII	
I71 – One time adjustment status.	
I73 – Sign Off	
I73 – Sign On I74 – GEO code at point of calibration - HighRes	
I75 – GEO code at point of use - HighRes	
I76 – Total number of voltage exceeds	
I77 – Total number of load cycles	
178 – Zero deviation	
	1-10

I79 – Total number of zero deviation exceeds	
I80 – Total number of temperature exceeds	
I81 – Temperature gradient	147
182 - Total number of temperature gradient exceeds	
I83 – Software identification	
1100 – Active stability criteria	
1101 - Humidity value	152
K – Keys control.	153
LST – Current user settings	156
M01 – Weighing mode	157
M02 – Environment condition	158
MO3 – Auto zero function	159
M17 – ProFACT: Single time criteria	
M18 – ProFACT/FACT: Temperature criterion	
M19 – Adjustment weight.	
M20 – Test weight.	
M21 – Unit	
M22 – Custom unit definitions	
M23 – Readability, 1d/xd.	
M27 – Adjustment history	
M28 – Temperature value	
M29 – Weighing value release	
M31 – Operating mode after restart	
M32 – ProFACT: Time criteria	
M33 – ProFACT: Day of the week	
M34 – MinWeigh: Method.	
M35 – Zeroing mode at startup.	
M38 – Selective parameter reset	
M39 – SmartTrac: Graphic	
M43 – Custom unit	
M44 – Command executed after startup response	
M45 – Electrical termination of RS422/ RS485 data lines	
M47 – Frequently changed test weight settings	
M48 – Infrequently changed test weight settings	
M49 – Permanent tare mode	
M66 – GWP: Certified test weight settings	
M60 – Gwr . Cernied lesi weight senings	
M67 – Timeout M68 – Behavior of serial interfaces	
M69 – Ipv4 network configuration mode	
M70 – Ipv4 host address and netmask for static configuration	
M71 – Ipv4 default gateway address.	
M72 – Ipv4 DNS server address	
M89 – Interface command set	
M103 – RS422/485 driver mode.	
M109 – IPv4 device managed network configuration setting	
M110 – Change display resolution.	
M111 – SAI Cyclic data format activation	
M116 – Ignore Industrial Ethernet initial module parametrization	
M117 – TCP Port number configuration	
M118 – Fieldbus network stack type configuration	
M119 - Byte order mode for automation	
M124 – Power supply for daisy chain	
MOD – Various user modes	
MONH – Monitor on interface	
NID – Node Identification (for network protocols)	
NID2 – Device node ID	
PROT – Protocol mode	220

Index		279
5.1	Framed protocol	276
Appen		276
What i	if?	275
	ZI – Zero immediately	274
	ZC – Zero or zero immediately after timeout	
	Z – Zero	272
	WMCF – Configuration of the weight monitoring functions	
	USTB – User defined stability criteria	268
	UPD – Update rate of SIR and SIRU output on the host interface	
	TST5 – Module test with built-in weights (scale placement sensitivity test)	265
	TST3 – Test with built-in weight	
	TST2 – Test with external weight	
	TST1 – Test according to current settings	
	TSTO – Query/set test function settings	
	TIM – Time	
	TI – Tare immediately	
	TC – Tare or tare immediately after timeout	
	TA – Tale weight value TAC – Clear tare weight value	
	TA – Tare weight value	
	SUM – Stable weight value in display unit and MinWeigh information T – Tare	
	SUM Stable weight value in display unit	
	ST – Stable weight value on pressing (Transfer) key	
	change	
	SRU – Send stable weight value with currently displayed unit and repeat on any weight	717
	SR – Send stable weight value and repeat on any weight change	245
	change	
	SNRU – Send stable weight value with currently displayed unit and repeat on stable weight	
	SNR – Send stable weight value and repeat on stable weight change	241
	SIX1 – Current gross, net and tare values	
	SIUM – Weight value in display unit and MinWeigh information immediately	
	SIU – Weight value in display unit immediately	
	SIS – Send netweight value with actual unit and weighing status	
	SIRU – Weight value in display unit immediately and repeat	233
	SIR – Weight value immediately and repeat	
	SIMS - Store weight immediately	
	SIMRC - Recall and clear stored weight value	
	SIMR - Recall stored weight value	
	SIMC - Clear stored weight value	
	SIC2 – HighRes weight value with CRC16 immediately	
	SIC1 – Weight value with CRC16 immediately	
	SI – Weight value immediately	
	SC – Send stable weight value or dynamic value after timeout	
	S – Stable weight value	
	RDB – Readability	
	R01 – Restart device	221

4

4

5

1 Configuration tool

METTLER TOLEDO recommends APW-Link[™] as a configuration tool

APW-Link[™] is a Windows based software.

Features

- Configuration Tree for easy commissioning and parameterization
- Multiple, selectable languages
- Terminal with free configurable buttons
- Automatic baud rate search
- Connection over RS232, USB to RS232 converter and Ethernet TCP/IP possible
- Weight Display with Zeroing and Taring button
- Graph Display with zoom function and x-y Data
- Backup / Restore feature
- Supports all APW weigh modules
- Supported operating systems: Windows XP Professional SP3; Windows 7 Professional / Enterprise / Ultimate; Windows 8 / 8.1 – Professional / Enterprise; Windows Server 2003 / 2010

Download

▶ http://www.mt.com/apw-link APW-Link™ is free of charge but requires a registration before download.

2 Introduction

Real weighing applications have very wide-ranging requirements which can at some cases necessitate weighing up to several hundred tons and at some applications the demanded readability could be very fine, sometimes as low as one micro-gram. METTLER TOLEDO offers an extensive range of weighing devices in order to fulfill these versatile requirements. These weighing devices provide a simple interface for a quick integration with control systems. This integration is further facilitated by standardized commands which enable certain functions and operations. Throughout this document, the term "weigh module" is used to cover also the term "(weighing) bridge" which is operated without any terminal. The term "balance" denotes a weighing device in combination with a terminal.

Version number of the MT-SICS

Each level of the MT-SICS has its own version number which can be requested with the command "I1" from level 0. You can use the command "I1" via the interface to request the MT-SICS level and MT-SICS versions implemented on your weigh module.

Data interface at weigh module

Settings of the interface such as baud rate, number of data bits, parity, handshake protocols and connector pin assignment are described in the Reference Manual of the optional interface and the peripheral instrument or cable in question.

Data exchange with the weigh module

Each command received by the balance via the data interface is acknowledged by a response of the weigh module or balance to the initial device.

Commands and balance responses are data strings with a fixed format, and will be described in detail in the commands.

The existing commands that are available can be called up using the IO command.

i Note

Some of the commands work only via the built-in RS232 interface.

2.1 Command formats

Commands sent to the weigh module/balance comprise one or more characters of the ASCII character set. Here, the following must be noted:

	Enter commands only in uppercase. Nevertheless, units have to be capitalized properly.
u	The possible parameters of the command must be separated from one another and from the command name by a space (ASCII 32 dec.).
"text"	The possible input for "text" is a sequence of characters (8-bit ASCII character set from 32 dec. to 255 dec.).
CR LF	Each command must be closed by C_RL_F (ASCII 13 dec., 10 dec.). The characters C_RL_F , which can be inputted using the Enter or Return key of most entry keypads, are not listed in this description every time, but it is essential they be included for communication with the weigh module/balance.

2.1.1 Language conventions

Throughout this manual, the following conventions are used for command and response syntax:

< >	Triangle brackets indicate that you must specify a value for the enclosed parameter. The brackets are not sent with the command string.				
[]	Square brackets indicate that the enclosed expression is optional and can be omitted. The brackets are not sent with the command string.				
ab	Intervals or ranges are represented using the "dot-dot" notation indicating the set of numbers from a to b including a and b.				
$\mathbf{\Lambda}$	Commands sent to the weigh module/balance.				
1	Response of the weigh module/balance.				

Example

Command to balance which writes Hello into the balance display:

$\mathbf{\Lambda}$	D_"Hello"	The quotation marks " " must be inserted in the entry
$\mathbf{\Lambda}$	D_A	Command executed successfully

The command terminator $C_R L_F$ is not shown.

2.1.2 Response formats

All responses sent by the weigh module/balance to the transmitter to acknowledge the received command have one of the following formats:

- Response with weight value
- Response without weight value
- Error message

2.1.2.1 Format of responses with weight value

Syntax

A general description of the response with weight value is the following.

<id></id>	<status></status>	<weightvalue></weightvalue>	<unit></unit>	C _R	$L_{\rm F}$
1-2 characters	1 character	10 characters	1-5 characters		
CHUIUCIEIS	CITUTUCIEI		CITUTUCIEIS		

Parameters

Name	Туре	Values	Meaning
<id></id>	String		Response identification, refers to the invoking command
	Blank		Space (ASCII 32 dec.)
<status></status>	Character	S	Stable weight value
		M	Stable weight value, but below minimal weight ([SIUM – Weight value in display unit and MinWeigh information immediately » Page 238] and [SUM – Stable weight value in display unit and MinWeigh information » Page 251] only)
		D	Unstable ("D" for D ynamic) weight value
		N	Unstable weight value, below minimal weight ([SIUM – Weight value in display unit and MinWeigh information immediately » Page 238] and [SUM – Stable weight value in display unit and MinWeigh information » Page 251] only)
<weightvalue></weightvalue>	Float		 Weighing result; shown as a number with 10 characters (after a blank/space!), including decimal point, and minus sign (-) directly in front of the first digit if the value is negative. The weight value appears right aligned. Preceding zeros are not shown except for the zero to the left of the decimal point. With METTLER TOLEDO DeltaRange balances, outside the fine range the last decimal place is shown as a space.
<unit></unit>	String		Weight unit as actually set under host unit
C _R	Byte		Carriage return (ASCII 13 dec.)
L _F	Byte		Line feed (ASCII 10 dec.)

Example

Response with stable weight value of 14.256 g:

$\mathbf{\Lambda}$	S	Request a stable weight value.
↑	S_S14.256_g	

2.1.2.2 Format of responses without weight value

Syntax

A general description of the response without weight value is the following:

<id></id>	<status></status>	Parameters	C _R	\mathbf{L}_{F}
1-5	1			
characters	character			

Parameters

Name	Туре	Values	Meaning
<id></id>	String		Response identification, refers to the invoking command
	Blank		Space (ASCII 32 dec.)
<status></status>	Character	A	Command executed successfully
		В	Command not yet terminated, additional responses following
Parameters			Command-dependent response code
C _R	Byte		Carriage return (ASCII 13 dec.)
L _F	Byte		Line feed (ASCII 10 dec.)

Examples

Set the update rate to 20 weight values per second:

$\mathbf{\Lambda}$	UPD_20	
$\mathbf{\Lambda}$	UPD_A	Command executed successfully.

Query the actual update rate:

$\mathbf{\Lambda}$	UPD	
1	UPD_A_18.3	Update rate is set to 18.3 values per second.

2.1.3 Error messages

2.1.3.1 Command-specific error messages

Syntax

A general description of the response without weight value is the following:

<id></id>	.	<status></status>	C_{R}	\mathbb{L}_{F}
1-5		1		
characters		character		

Parameters

Name	Туре	Values	Meaning
<id></id>	String		Response identification, refers to the invoking command
	Blank		Space (ASCII 32 dec.)
<status></status>	Character	+	Weigh module or balance is in overload range (weighing range exceeded)
		-	Weigh module or balance is in underload range (e.g. weighing pan is not in place)
		L	Logical error (e.g. parameter not allowed)
		I	Internal error (e.g. balance not ready yet)
C _R	Byte		Carriage return (ASCII 13 dec.)
L _F	Byte		Line feed (ASCII 10 dec.)

Examples

Trial to set the update rate to 20 weight values per second:

$\mathbf{\Lambda}$	UPD_290	Update rate accidentally set to 290.
↑		Command not executed successfully; parameters is outside valid range.

Response while weigh module or balance is in overload range:

$\mathbf{\Lambda}$	SI	Request a weight value immediately.
↑	S_+	Overload; no weight value available.

2.1.3.2 General error messages

Syntax

There are three different error messages:

<id></id>	C _R	\mathbb{L}_{F}	
2 characters			

Parameters

Name	Туре	Values	Meaning
<id></id>	String	ES	Syntax error: The weigh module/balance has not recognized the received command or the command is not allowed
		ET	Transmission error: The weigh module/balance has received a "faulty" command, e.g. owing to a parity error or interface break
		EL	Logical error: The weigh module/balance can not execute the received command
C _R	Byte		Carriage return (ASCII 13 dec.)
$L_{\rm F}$	Byte		Line feed (ASCII 10 dec.)

Examples

Trial to set the update rate to 20 weight values per second:

$\mathbf{\Lambda}$	UPD_290	Update accidentally set to 290.
↑		Command not executed succesfully, parameters are outside valid range.

Response while weigh module is in overload:

$\mathbf{\Lambda}$	SI	Send current weight value.
↑	S_+	Overload; no weigh value available

2.1.3.3 Specific error messages on weight response

Description

If any error is detected in the system, it is no longer possible to get a weight value. In this case the weight value is overwritten with an error number and trigger code.

We recommend contacting your METTLER TOLEDO representative if any error occurs.

Syntax

The error message has the same format as the weight value (10 characters) and starts always with s_s_.

S_S		Error		<errornumber></errornumber>	<errortrigger></errortrigger>	C _R	$L_{\rm F}$
	1-2 spaces			1-2 characters	1 character		
	Total 10 characters (same as weight value) - Filled with spaces on the beginning						

Parameters

Name	Туре	Values	Meaning
<errornumber></errornumber>	Integer	1	Boot error
		2	Brand error
		3	Checksum error
		9	Option fail
		10	EEPROM error
		11	Device mismatch
		12	Hot plug out
		14	Weigh module / electronic mismatch
		15	Adjustment needed
<errortrigger></errortrigger>	String	b	Error from electronics (weigh module, balance)
		t	Error from terminal
C _R	Byte		Carriage return (ASCII 13 dec.)
L _F	Byte		Line feed (ASCII 10 dec.)

$\mathbf{\Lambda}$	SI	Send current weight value.
1	S_SError_10b	EERPOM error on the electronic unit occurred! Check if every thing is connected correctly. If any error occurs after power restart, contact your METTLER TOLEDO representative.
$\mathbf{\Psi}$	SIR	Send current weight value at intervals.
个	S_SError_1t	Boot error on the terminal occurred! If any error occurs after power restart, contact your METTLER TOLEDO representative.

2.1.4 Specific error messages on weight response

Description

If any error is detected in the system, it is no longer possible to get a weight value. In this case the weight value is overwritten with an error number and trigger code.

We recommend contacting your METTLER TOLEDO representative if any error occurs.

Syntax

The error message has the same format as the weight value (10 characters) and starts always with s_s_.

S_S			Error	<errornumber></errornumber>	<errortrigger></errortrigger>	C _R	$L_{\rm F}$
		1-2 spaces		1-2 characters	1 character		
	Total 10 characters (same as weight value) - Filled with spaces on the beginning						

Parameters

Name	Туре	Values	Meaning
<errornumber></errornumber>	Integer	1	Boot error
		2	Brand error
		3	Checksum error
		9	Option fail
		10	EEPROM error
		11	Device mismatch
		12	Hot plug out
		14	Weight module / electronic mismatch
		15	Adjustment needed
<errortrigger></errortrigger>	String	b	Error from electronics (weigh module)
		t	Error from terminal
C _R	Byte		Carriage return (ASCII 13 dec.)
$L_{\rm F}$	Byte		Line feed (ASCII 10 dec.)

$\mathbf{\Lambda}$	SI	Send current weight value.
1	S_SError_10b	EERPOM error on the electronic unit occurred! Check if every thing is connected correctly. If any error occurs after power restart, contact your METTLER TOLEDO representative.
$\mathbf{\Lambda}$	SIR	Send current weight value at intervals.
1	S_SError_lt	Boot error on the terminal occurred! If any error occurs after power restart, contact your METTLER TOLEDO representative.

2.2 Tips for programmers

Overview of command of specific models

This reference manual covers the MT-SICS commands for weigh modules/balances. As the weigh modules/ balances can differ based on model and software version, not all the MT-SICS level 2 and 3 commands are usable on every model. We therefore recommend using the IO command to get an overview of all commands that are supported by a particular balance.

Planning the use of MT-SICS commands

Investigations of various applications have shown that the vast majority of all system solutions can be handled with the commands of MT-SICS level 0 and 1. This means for you: if you restrict yourself to the commands of MT-SICS level 0 and 1, you can expand your system with additional weigh modules, balances from METTLER TOLEDO without having to change your application programs.

Setup with / without terminal

Use the same setup during configuration and later use: If you intend to use the weigh module without the terminal, the configuration has to be done without terminal as well. Due to the system's architecture, the storage behavioral of configurations is different whether the terminal is attached to the bridge or not: With a terminal attached, configuration is stored in the terminal's memory; without a terminal attached, the bridge's memory is used. Removing a terminal after configuration means to remove the configuration and activation the bridge's (default) configuration. Adding a terminal after configuration means overriding the configuration with the one stored within the terminal.

Command and response

You can improve the dependability of your application software by having your program evaluate the response of the weigh module/balance to a command. The response is the acknowledgement that the weigh module/ balance has received the command.

Cancel

To be able to start from a determined state, when establishing the communication between weigh module/ balance and system, you should send a cancel command to the weigh module/balance, **see** [@ - Cancel >Page 16] or [C - Cancel all commands > Page 23]. When the balance or system is switched on or off, faulty characters can be received or sent.

Parameter values after switching the weigh module/balance on/off

The commands of the standard command are saved on the permanent memory of the weigh module/balance. This means that all values changed via the interface are saved when the weigh module/balance is switched off.

Several commands in succession

If several commands are sent in succession without waiting for the corresponding responses, it is possible that the weigh module/balance confuses the sequence of command processing or ignores entire commands.

METTLER TOLEDO DeltaRange balances and weigh modules

If the fine range of DeltaRange balances has been exceeded at the time of transmission, the weigh module/ balance sends a weight value as balance response in which the tenth character is a space.

Update rate and timeout

The update rate for repeated commands and the duration of the timeout (time-limit function) depend on the weigh module/balance type; **see** technical data of the weigh module/balance in question.

Carriage Return, Line Feed

Depending on the platform, C_RL_F is not just a "new line" (Java: "newLine()" or C/C++ "\n"):

Platform	'New Line'
DOS/Windows	C _R L _F
Macintosh	C _R
Unix	L _F

Nevertheless, all commands have to be closed by a C_RL_F (dec: 13, 10; hex: OD, OA) which corresponds to "ENTER" in most human machine interfaces.

Quotation marks ""

Quotation marks included in the command must always be entered. If a quotation mark is located within the string, it may be attained by a backslash ():

$\mathbf{\Lambda}$	D_"place 4\"filter!"	
$\mathbf{\Lambda}$	D_A	Balance display: place 4" filter!

Weight unit of weight value - host unit

It is always essential to consider the weight unit that is to be used to display weighing results. Depending on where the results are output, the weigh modules/balances offer the possibility of selecting a particular unit **see** [M21 – Unit \blacktriangleright Page 165]. This enables the displayed unit and info unit to be shown on the terminal. Host unit is used to output the weighing results via an interface (host) on the basis of MT-SICS commands. The weight values and the displayed unit can only be output by means of the su commands.

Digit [d]

A digit refers to the smallest numerical increment a weigh module, balance can display – this is also referred to as the weigh modules/balance's readability. E.g. a WX205 has five decimal places; its digit is 0.01 mg. The digit is sometimes used as a generic unit.

Binary coded multiple selections

Some parameters that allow multiple selections are binary coded: Each possible selection is represented by one bit, the corresponding parameter equals to the decimal interpretation.

Selection 8	Selection 7	Selection 6	Selection 5	Selection 4	Selection 3	Selection 2	Selection 1	Parameter
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0255
2 ⁷ = 128	$2^6 = 64$	2 ⁵ = 32	2 ⁴ = 16	2 ³ = 8	2 ² = 4	2 ¹ = 2	2 [°] = 1	$\sum_{i=1}^{8} Selection_{i} \cdot 2^{i-1}$

Responses may easily be interpreted by converting the decimal number to binary again.

3 Commands and Responses

@ - Cancel

Description

Terminates processes such as zero, tare, calibration and testing etc.. If the device is in standby mode, it is turned on.

@ can be used to achieve the same effect as disconnecting and reconnecting the power supply, which empties the volatile memories. The purpose of this command is to initiate a command sequence.

Syntax

Command

6	<u>6</u>	Resets the weigh module/balance to the condition
		found after switching on, but without a zero setting being performed.
	K	bollig pollolitiou.

Response

I	[4_A_" <snr>"</snr>	Serial number is emitted; the weigh module/balance is
		ready for operation.

Comments

- All commands awaiting responses are cancelled.
- Key control is set to the default setting K_1.
- The tare memory is not reset to zero.
- If the balance is on standby, it is switched on.
- The cancel command is always executed.
- The emitted serial number corresponds to the serial number of the terminal (if one is present), see [14 > Page 100].

Example

$\mathbf{\Lambda}$	0	Cancel
↑	I4_A_"B021002593"	Weigh module or balance is "reset", its serial number is B021002593.

See also

A01 – Percent weighing: Reference in %

Description

Use this command to set or query the reference value for percent weighing. For querying to take place, a reference value must have been saved beforehand (A01 or function key or).

Syntax

Commands

	Query of the reference for the percent weighing appli- cation.
A01_ <reference></reference>	Set the reference for the percent weighing application.

Responses

A01_A_ <reference></reference>	Reference for the percent weighing application is set.
A01_B A01_A	Start to set the reference (waiting for stable weight) Command understood and executed successfully.
A01_I	Command understood but currently not executable.
A01_L	Command understood but not executable (e.g. percent weighing application is not active or parameter is incorrect) or no reference value present.
A01_E	Setting reference aborted (not stable, over- or underload, abort key,).

Parameter

Name	Туре	Values	Meaning
<reference></reference>	Float		Reference for the percent weighing application in $\%$; must be greater than zero.

Comments

- This command can only be used when the application "Percent weighing" is started. For details on available applications and how the activate them, **see** M25 and M26.
- Use the su commands for percent weighing. Otherwise, the results will be displayed in the set unit unless the host unit is changed to % using [M21 ▶ Page 165].

$\mathbf{\Lambda}$	A01_100.00	Set the reference for percent weighing to 100.00%.
Υ	A01_B	Reference is set, waiting for stable weight.
1	A01_A	The reference for percent weighing is set to 100.00%.

A02 – Sample identification for samples in weighing application

Description

Use A02 to set or query an identification of a sample in weighing application.

Syntax

Commands

A02	Query the identifications of a sample of the weighing application.
A02_ <index></index>	Query the sample number of the weighing application.
A02_ <index>_<"Identification"></index>	Set the sample number and identification of the weighing application.

Responses

A02_B_ <index>_<"Identification"> A02_B</index>	Query the identifications of a sample of the weighing application.
A02_A_ <index>_<"Identification"></index>	
A02_A	Command understood and executed successfully.
A02_I	Command understood but currently not executable.
A02_L	Command understood but not executable (e.g. weighing application is not active or parameter is incorrect).

Parameters

Name	Туре	Values	Meaning
<index></index>	Integer	1 n	Sample number (n is product dependent)
<"Identification">	String	Max 60 chars	Identification of the sample

Comment

This command only applies to the "Weighing" application. For details on available applications and how the activate them, **see** M25 and M26.

1	A02	Query the identifications of a sample of the weighing application.
$\mathbf{\Lambda}$	A02_B_1_"12345"	The identification of sample 1 is "12345".
↑	A02_B_2_"AAA-67890"	The identification of sample 2 is "AAA-67890".
↑	A02_A_3_""	No identification for sample 3 (empty string).
$\mathbf{\Lambda}$	A02_1_"98765"	Set the identification 1 to "98765".
1	A02_A	The identification 1 is set to "98765".

A03 – Sample name for samples in weighing application

Description

Use A03 to assign an individual name to sample IDs, or query the current name.

Syntax

Commands

A03	Query the IDs name of the weighing application.
A03_ <no></no>	Query of specific ID.
A03_ <no>_<"ID"></no>	Set the ID name of the weighing application.

Responses

A03_B_ <no>_<"ID"> A03_B_<no>_<"ID"> A03_A_<no>_<"ID"></no></no></no>	All existing ID names of the weighing application.
A03_A	Command understood and executed successfully.
A03_I	Command understood but currently not executable.
A03_L	Command understood but not executable (e.g. weighing application is not active or parameter is incorrect).

Parameters

Name	Туре	Values	Meaning
<no></no>	Integer	1 n	Number of weighing ID name
<"ID">	String	Max 24 chars	String of weighing ID name

Comment

This command applies to the "Weighing" application. For details on available applications and how the activate them, **see** M25 and M26.

$\mathbf{\Lambda}$	A03	Query the IDs name of the weighing application.
Υ	A03_B_1_"Batch"	Name of ID1 is "Batch".
↑	A03_B_2_"Lot"	Name of ID2 is "Lot".
↑	A03_A_3_""	Name of ID3 name is empty.
\mathbf{h}	A03_2	Query the second ID name of the weighing appli- cation.
↑	A03_A_2_"Lot"	Name of second ID is "Lot".
$\mathbf{\Lambda}$	A03_1_"Batch"	Set the ID1 name to "Batch".
↑	A03_A	Name of ID1 is set.

A06 - Dynamic Weighing: Dynamic Behavior

Description

Reads or writes weighing filter for the dynamic weighing application.

Syntax

Commands

A06	Query the parameters from the device.
A06_ <behavior></behavior>	Set the parameters to the device.

Responses

A06_A_ <behavior></behavior>	Current behavior of the device.
A06_A	Command understood and executed successfully.
	Command understood but not executable, e.g. dynamic weighing application is not active or parameter is incorrect.

Parameters

Name	Туре	Values	Meaning
<behavior></behavior>	Integer	1 2 3	Stable, suitable for relatively stable weighing objects Standard, suitable for normal weighing objects Unstable, suitable for unstable weighing objects

Initial values

•	\mathbf{h}	A06	Query the parameters from the device.
,	↑	A06_A_1	The initial behavior of the dynamic weighing appli- cation is "Stable".

Comment

This command can only be used when the application Dynamic Weighing is started.

$\mathbf{\Lambda}$	A06	Query the parameters from the device.
↑	A06_A_2	The behavior is "Standard".
\mathbf{h}	A06_1	Set the weighing filter for the Dynamic Weighing appli- cation to "Stable".
↑	A06_A	Command understood and executed successfully.

A10 – Nominal, +Tolerance, -Tolerance

Description

Use A10 to enter the nominal values, inc. +/- tolerances, or query the current values. As soon as you have specified the values, the SmartTrac changes and displays the graphic weighing-in aid.

Syntax

Commands

A10	Query of the nominal value, + tolerance, - tolerance.
A10_ <no>_<value>_<unit></unit></value></no>	Set the nominal value, + tolerance, - tolerance.

Responses

A10_B_0_ <value>_<unit> A10_B_1_<value>_<unit> A10_A_2_<value>_<unit></unit></value></unit></value></unit></value>	Query of the nominal value, + tolerance, - tolerance.
A10_A	Command understood and executed successfully.
A10_I	Command understood but currently not executable.
A10_L	Command understood but not executable.

Parameters

Name	Туре	Values	Meaning
<no></no>	Integer	0	Nominal value
		1	+ tolerance
		2	- tolerance
<value></value>	Float		Nominal value
<unit></unit>	String	Max 5 chars	Weight unit, % with +/- tolerances possible

Comments

- The values will be output differently depending on the application. For details on available applications and how the activate them, **see** M25 and M26.
- Specified nominal and tolerance values must be reset manually:
 - A10_0_0_g

A10_1_2.5_%

A10_2_2.5_%

- As soon as you have specified the values, the SmartTrac switches to the graphic weighing-in aid.
- Weight and percentage values are rounded, as is the case with values entered manually.

$\mathbf{\Lambda}$	A10	Query of the nominal value, + tolerance, - tolerance.
↑	A10_B_0_100.12_g	Current setting is nominal value 100.12 g, + tolerance
↑	A10_B_1_5.25_g	is 5.25 g and - tolerance is 7.6%.
1	A10_A_2_7.6_%	
$\mathbf{\Psi}$	A10_0_100.12_g	Set the nominal value to 100.12 g.
1	A10_A	The nominal value is set 100.12 g.

A30 – Internal loads

Description

Use A30 to request status of internal loads. This command is used to inquire how many internal weights are available in the balance and its status.

Syntax

Commands

A30	Query of quantity and status of the internal loads.
A30_ <qty></qty>	Place internal load.

Responses

A30_A_Qty_Stat	Quantity and status of the internal loads.
A30_I	Command understood but currently not executable.
	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<qty></qty>	Integer		Number of internal loads
		0	No load placed
		1	Total load placed
		2	First partial load placed
		3	Second partial load placed
<stat></stat>	Integer		Status of built-in weights
		0	No load placed
	1	Total load placed	
		2	First partial load placed
		3	Second partial load placed
		8	Error
		9	Not determined (not in defined end position)

Comment

The number of internal loads depends on the balance model.

Examples

$\mathbf{\Lambda}$	A30	Query of quantity and status of the internal loads.
$\mathbf{\Lambda}$	A30_A_1_0	There is only one internal load which is currently not
		placed.

Control of internal loads

$\mathbf{\Lambda}$	A30_1	Place total internal load.
$\mathbf{\Lambda}$	A30_A	The load is placed.

C – Cancel all commands

Description

Cancel all running commands.

Syntax

Command

-	
C	
0	

Responses

С_В	The cancel running command has been started.
C_A	Command understood and executed successfully.

Comments

- This command has a similar functionality as the command [@ Cancel ▶ Page 16] but responds with a well defined answer and does not fully reset the device.
- This command is executed always immediately.
- This command cancels all active and pending interface commands correctly and in a safe way on the interface where cancel was requested. This command does not cancel any commands or procedures that are not triggered by a SICS command.
- The command ${\rm c}$ responses with ${\rm c_A}$ after all active and pending interface commands have been terminated.
- This command is typically used for repeating commands such as [SIR Weight value immediately and repeat > Page 232] and for adjustment commands triggering a procedure.
- New procedures/command requests can be initiated right after a C_A.

Example

$\mathbf{\Lambda}$	С	Cancel running commands.
$\mathbf{\Lambda}$	С_В	Cancel running started.
1	C_A	Command understood and executed successfully.

Command-specific error responses

Response

C_E_ <error> Current error code.</error>
--

Parameter of command-specific error

Name	Туре	Values	Meaning
<error></error>	Integer	0	Error while canceling

CO – Adjustment setting

Description

This command queries and sets the type of adjustment. Additional commands are required to actually trigger and to define the weight for external adjustment.

Syntax

Commands

СО	Query of the current adjustment setting.
C0_ <mode>_<weighttype></weighttype></mode>	Set the adjustment setting.

Responses

C0_A_ <mode>_<weighttype>_<"WeightValue_ Unit"></weighttype></mode>	Weight value and unit specify the value of the weight for an external adjustment requested from the user via the display, see [C1 – Start adjustment according to current settings > Page 26]. The unit corresponds to the factory setting of host unit, e.g. gram (g) with standard balances or carat (ct) with carat balances respectively. With internal adjustment, neither weight value nor unit appears.
CO_I	Command understood but currently not executable (balance is currently executing another command, e.g., taring).
CO_A	Adjustment setting set successfully.
CO_L	Command understood but not executable (incorrect parameter; certified version of the balance).

Parameters

Name	Туре	Values	Meaning
<mode></mode>	Integer	0	Mode = Manual The adjustment can only be triggered manually A change in the ambient conditions has no influence on the initiation of the calibration procedure
		1	Mode = Auto, status display "AutoCal" or "Cal" not activated When a considerable change in the ambient conditions is determined, the status display "AutoCal" or "Cal" will be activated; this means the balance will ask for adjustment
		2	Mode = Auto, status display "AutoCal" or "Cal" flashes The sensors built into the balance have determined a considerable change in the ambient conditions. The balance requests an adjustment or at least a test, see [TST ▶ Page 259] x commands
<weighttype></weighttype>	Integer	0	Built-in weight (factory setting)
		1	External weight
<2WeightValue">	String		Weight values specify the value of the weight for an external calibration requested from the user via the display or interface, see [C1 – Start adjustment according to current settings ▶ Page 26].
<"Unit">	String		The unit corresponds to the factory setting of host unit, e.g. gram (g)

Comments

- Setting <Mode> = 1 and <Weight> = 0 corresponds to the menu setting "ProFACT" / "FACT" under "Adjust/ Test".
- [C2 Start adjustment with external weight > Page 28] is independent of co.
- The value of the external weight can be changed in the menu of the balance under "Adjust/Test ", see Reference Manual or with [M19 > Page 163].
- Use [C1 > Page 26] to start an adjustment defined with co.
- co must be reset manually; [@ Cancel ▶ Page 16] has no effect.
- Check remaining ranges with [I50 Remaining weighing ranges > Page 120] command.
- The parameters are not stored permanently.

Examples

\mathbf{A}	C0	Query of the current status and setting of the adjustment.
1	C0_A_2_1_"100.000_g"	Current setting of mode is "Auto". The ambient conditions of the balance have changed so much that the balance requests an adjustment ($ = 2$) with the external weight ($ = 1$). The adjustment is initiated with the command [C1 – Start adjustment according to current settings \triangleright Page 26] and requires a weight of 100.000 g.
↑	C2	Start external adjustment, see responses of [C2 – Start adjustment with external weight ▶ Page 28].
1	C0	Query of the current status and setting of the adjustment.
1	C0_A_3_1_"100.000_g"	Adjustment started.
1	C0	Query of the current status and setting of the adjustment.
↑	C0_A_4_1_"100.000_g"	Adjustment successfully executed.
$\mathbf{\Lambda}$	C0_0_1	Set adjustment setting to manual and external.
↑	CO_A	Adjustment setting set.

See also

C1 – Start adjustment according to current settings

Description

 ${\tt c1}$ is used to trigger an adjustment as defined using the ${\tt c0}$ command.

Syntax

Command

C1	Start the adjustment according to the current setting,
	see [C0 ▶ Page 24].

First Responses

The adjustment procedure has been started. Wait for second response see Comments.
Command understood but currently not executable (balance is currently executing another command). No further response follows.
Command understood but not executable (e.g. approved version of the balance). No further response follows.

Further Responses

C1_<"WeightValue_Unit">	Weight request with external adjustment.
C1_A	Command understood and executed successfully.
Cl_I	The adjustment was aborted as, e.g. stability not
	attained or the procedure was aborted with the C key.

Parameters

Name	Туре	Values	Meaning
<"WeightValue">	String		Weight values specify the value of the weight for a sensitivity adjustment requested from the user via the display or interface
<"Unit">	String		The unit corresponds to the definition unit, e.g. gram (g)

Comments

- Commands sent to the balance during the adjustment operation are not processed and responded to in the appropriate manner until the adjustment is at an end.
- Use @ or C to abort a running adjustment.
- The value of the external adjustment weight needed for adjustment must be set accordingly by an [M19 > Page 163] command.
- Check remaining ranges with [I50 Remaining weighing ranges > Page 120] command.

$\mathbf{\Lambda}$	C1	Start the adjustment according to the current setting.
↑	C1_B	Adjustment operation started.
↑	C1_"0.00_g"	Prompt to unload the balance.
↑	C1_"2000.00_g"	Prompt to load the adjustment weight of 2000.00 g.
1	C1_"0.00_g"	Prompt to unload the balance.
↑	C1_A	Adjustment completed successfully.

See also

C2 – Start adjustment with external weight

Description

Regardless of the [CO – Adjustment setting ▶ Page 24] setting, c2 carries out external adjustment with the reference weight defined in [M19 – Adjustment weight ▶ Page 163].

Syntax

Command

C2	Start the external adjustment. Query of the current
	weight used by means of the [M19 – Adjustment
	weight ▶ Page 163] command.

First Responses

C2_B	The adjustment procedure has been started.
C2_I	Command understood but currently not executable (balance is currently executing another command). No second response follows.
C2_L	Command understood but not executable (e.g. adjustment with an external weight is not admissible, certified version of the balance). No second response follows.

Further Responses

C2_<"WeightValue>_ <unit"></unit">	Prompt to unload or load the balance.
C2_A	Command understood and executed successfully.
C2_I	The adjustment was aborted as, e.g. stability not
	attained or the procedure was aborted with the C key.

Parameters

Name	Туре	Values	Meaning
<"WeightValue">	Float		Weight values specify the value of the weight for a sensitivity adjustment requested from the user via the display or interface
<"Unit">	String		The unit corresponds to the definition unit, e.g. gram (g)

Comments

- Commands sent to the balance during the adjustment operation are not processed and responded to in the appropriate manner until the adjustment is at an end.
- Use [@ Cancel > Page 16] or [C Cancel all commands > Page 23] to abort a running adjustment.
- The value of the external adjustment weight needed for adjustment must be set accordingly by an [M19 ▶ Page 163] command.
- Check remaining ranges with [I50 Remaining weighing ranges ▶ Page 120] command.

$\mathbf{\Lambda}$	C2	Start the external adjustment.
↑	C2_B	Adjustment operation started.
↑	C2_"0.00_g"	Prompt to unload the balance.
↑	C2_"2000.00_g"	Prompt to load adjustment weight 2000.00 g.
↑	C2_"0.00_g"	Prompt to unload the balance.
↑	C2_A	Adjustment completed successfully.

See also

C3 – Start adjustment with built-in weight

Description

You can use c3 to start an internal adjustment procedure.

Syntax

Command

00

Start the internal adjustment.

First Responses

The adjustment procedure has been started. Wait for second response.
Adjustment can not be performed at present as another operation is taking place. No second response follows.
Adjustment operation not possible (e.g., no internal weight). No second response follows.

Further Responses

C3_A	Adjustment has been completed successfully.
	The adjustment was aborted as, e.g., stability not attained or the procedure was aborted with the C key.

Comments

- Commands sent to the balance during the adjustment operation are not processed and responded to in the appropriate manner until the adjustment is at an end.
- Use [@ Cancel > Page 16] or [C Cancel all commands > Page 23] to abort a running adjustment.
- Check remaining ranges with [I50 Remaining weighing ranges > Page 120] command.

Example

$\mathbf{\Lambda}$	C3	Start the internal adjustment.
$\mathbf{\Lambda}$	СЗ_В	Adjustment operation started.
$\mathbf{\Lambda}$	C3_A	Adjustment completed successfully.

See also

C4 – Standard / initial adjustment

Description

An initial adjustment is a procedure that determines a new adjustment factor between the built-in weight used for internal adjustment and the external weight defined by the [M19 - Adjustment weight > Page 163] command. All internal adjustments following this procedure will show the same weighing results as if the adjustment were done with the external weight. The initial adjustment thus allows tuning of the internal adjustment of several weigh modules to one external weight standard.

Syntax

Command

First Desnenses

First Responses	
C4_B	Initial adjustment procedure has been started. Wait for second response.
C4_I	Initial adjustment cannot be performed at present because another operation is taking place (e.g., zero setting or taring), or the current weight value is outside the permissible range.
C4_L	Command understood but not executable (parameter not allowed). No second response follows.

Further Responses

C4_<"WeightValue">_<"Unit">	Prompt to unload or load the weighing module.
C4_A	The adjustment has been completed successfully.
C4_I	The adjustment procedure was aborted because, e.g., the stability needed for this operation was not achieved within the timeout limit, or a wrong weight was loaded.

Parameters

Name	Туре	Values	Meaning
<"WeightValue">	Float		Weight values specify the value of the weight for a sensitivity adjustment requested from the user via the display or interface
<"Unit">	String		The unit corresponds to the definition unit, e.g., gram (g)

Comments

- In order to perform an initial adjustment, the actual load seen by the weight module must be within plus/ minus (2 g + 1% of weighing capacity) relative to the load when the weight module was switched on.
- The criterion that must be fulfilled to reach stability for initial adjustment depends on the type of the weigh module and cannot be changed.
- The timeout may be set using the M67 command.
- The value of the external adjustment weight needed for initial adjustment must be set accordingly by an M19 command if preload exists.
- The new factor determined by the initial adjustment procedure will be reset to the adjustment factor evaluated in the factory when the FSET_0 or FSET_1 command is performed. With FSET_2, the initial calibration by the user is retained.
- Check remaining ranges with [I50 Remaining weighing ranges > Page 120] command.

$\mathbf{\Lambda}$	C4	Start the internal adjustment.
1	C4_B	Adjustment operation started.
1	C4_"100.0000_g"	Prompt to load weight of 100.0000 g used for initial adjustment.
1	C4_"0.0000_g"	Prompt to unload the module.
1	C4_A	Adjustment completed successfully.

C5 – Enabling/disabling step control

Description

Use c5 to enable and disable step control (user interaction) during the adjustment procedures triggered by the adjustment commands c6 - c8.

Syntax

Commands

C5	Query the status of the step control.
C5_ <status></status>	Enable / disable the step control.

Responses

C5_A_ <status></status>	Current status of the step control.
C5_A	Command understood and executed successfully.
C5_I	Command understood but currently not executable.
C5_L	Command understood but not executable (incorrect parameter).

Parameter

Name	Туре	Values	Meaning
<status> Integer</status>	0	Step control is turned off (all adjustment procedures run without user interaction)	
		1	Step control is turned on (all adjustment procedures which support step control need a user confirmation when the weight is placed on the pan)

Comments

- Adjustment methods using built-in weights and adjustment commands without parameter 'Method' will ignore the state of c5 and only work without step control.
- Use the command 162 to read out the timeout for user interaction.

Example

$\mathbf{\Lambda}$	C5	Query the status of the step control.
↑	C5_A_1	Step control is enabled.

See also

C6 – Customer linearization and sensitivity adjustment

Description

Use c6 to start the adjustment of the customer linearization. With these measurement values also an adjustment of the customer sensitivity scaling is done.

Syntax

Commands

C6	Request the whole list of available methods.
C6_ <method></method>	Execute the command with or without the step control C5.
C6_ <method>_<load></load></method>	Execute the command with or without the step control c5 and with the parameter <load>.</load>

Responses

C6_B_ <method></method>	Current list of available methods.
C6_A_ <method></method>	
C6_B C6_B_ <index>_<state>_<wgtstate>_ <"LoadInstruction">_<"ValueHostUnit"></wgtstate></state></index>	Content of a specific method without step control C5_0.
C6_B_ <index>_<state>_<wgtstate>_ <"LoadInstruction">_<"ValueHostUnit"></wgtstate></state></index>	
 C6_B_ <index>_<state>_<wgtstate>_ <"LoadInstruction">_<"DevPerMille"> C6_A</wgtstate></state></index>	
C6_B C6_C_ <index>_<state>_<wgtstate>_ <"LoadInstruction">_<"ValueHostUnit"> C6_C C6_B_<index>_<state>_<wgtstate>_ <"LoadInstruction">_<"ValueHostUnit"> C6_C_<index>_<state>_<wgtstate>_ <"LoadInstruction">_<"ValueHostUnit"> C6_B_<index>_<state>_<wgtstate>_ <"LoadInstruction">_<"ValueHostUnit"> C6_B_<index>_<state>_<wgtstate>_ <"LoadInstruction">_<"DevPerMille"> C6_A</wgtstate></state></index></wgtstate></state></index></wgtstate></state></index></wgtstate></state></index></wgtstate></state></index>	Content of a specific method with step control c5_1.
C6_E_ <error></error>	Error occurred during the adjustment.
C6_A	Command understood and executed successfully.
C6_I	Command understood but currently not executable.
C6_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<method></method>	Integer	0, 2	0: use default method of the adjustment (=2) 2: Adjustment with external weights
<load></load>	Float		Calibration load in the host unit (default using the M19 value).
			Load used in step control ('Execute c6_c Load') modifies the required weight value of the actual adjustment state
<index></index>	Integer		Step number of the procedure
<state></state>	Char	R, D or C	Actual state of the adjustment process
			R = requesting external weight
			D = waiting for stability
			C = calibration deviation (procedure is finished, corrected calibration deviation is given in parameter "DevPerMille")
<wgtstate></wgtstate>	Char	+, -, 0	Actual weight state
			+ load is above tolerances
			- load is below tolerances
			o (small omega) load is within tolerances
<"LoadInstruction">	String		Instruction, which load to place on the pan
			String with the load combination to place on the pan separated by "+". The string contains as many numbers as different loads are used in the procedure
			"O" = do not place the load "1" = place load 1 "1+2" = place load 1 and load 2 "0+2" = only place load 2
<"ValueHostUnit">	String		Load information of the actual adjustment state (weight and host unit)
<"DevPerMille">	String		Deviation of the measured calibration load (before adjustment) relative to the exact calibration load in per mille (‰). Value is rounded to the resolution of the finest range
<error></error>	Integer	1, 2, 3,	Parameter showing the source of the error
		4, 5	0: Timeout
			1: Cancel
			2: Built-in weight not supported
			3: Adjustment not available (e.g. adjustment is unknow or disabled)
			4: Calibration or adjustment load error (e.g. adjustment load is too light or too heavy)
			5: Busy (e.g. another adjustment is already running)

Comments

- The parameter <Load> and also the load value corrected with step control are tested against range definitions. A logic error (L) is returned for values violating the range definitions.
- The procedure can be canceled by command c.

Examples

LAU	Inpres	
$\mathbf{\Psi}$	C6	Request the whole list of available methods
↑	C6_B_0 C6_A_2	Methods 0 and 2 are available. Other methods are not implemented
$\mathbf{\Lambda}$	C6_2	Start the linearization adjustment method 2 (without step control c5_0.
↑	C6_B C6_B_0_R"0+0"_"0.00_g" C6_B_0_D_0_"0+0"_"00.00_g" C6_B_1_R"1+0"_"200.00_g" C6_B_1_D_0_"1+0"_"" C6_B_2_R"1+2"_"400.00_g" C6_B_2_D_0_"1+2"_"0.23" C6_A	Linearization adjustment is started Request weight for first step. Capture weight of first step. Request weight of second step (ext. load L1). Capture weight of third step. Request weight of third step (ext. load L1+L2). Capture weight of third step. Corrected calibration deviation in per mille (‰). Linearization adjustment finished.
\mathbf{h}	C6_2_400	Start linearization adjustment method 2 with step control c5_1.
↑	C6_B C6_C_0_R"0+0"_"0.00_g"	Linearization adjustment is started. Request weight for first step (ext. & int. unload).
Υ	C6_C	User confirms placed weight.
1	C6_B_0_D_0_"0+0"_"" C6_C_1_R"1+0"_"200.00_g"	Capture weight of first step. Request weight for second step (ext. load L1).
1	C6_C_220.00	User changes requested weight value.
1	C6_C_1_R"1+0"_"220.00_g"	Request weight for second step (ext. load L1).
Υ	C6_C	User confirms placed weight.
↑	C6_B_1_D_0_"1+0"_"" C6_C_2_R"1+2"_"400.00_g"	Capture weight of second step. Request weight for third step (ext. load L1+L2).
1	C6_C	User confirms placed weight.
1	C6_B_2_D_0_"1+2"_"" C6_B_2_C_0_"1+2"_"0.23" C6_A	Capture weight of third step. Corrected calibration deviation in per mille (‰) . Linearization adjustment finished.
$\mathbf{\Lambda}$	C6_2_400	Start linearization adjustment (method 2).
1	C6_B C6_C_0_R"0+0"_"0.00_g"	Linearization adjustment is started. Request weight for first step (ext. & int. unload).
↑	C6_E_0	Timeout error response.

See also

- ${\mathscr O}\$ C5 Enabling/disabling step control \blacktriangleright Page 33

C7 – Customer standard calibration

Start the adjustment of the customer standard calibration which defines the exact weight value of the built-in weights.

Syntax

Commands

C7	Request the whole list of available methods.
C7_ <method></method>	Execute the command with or without the step control C5.
	Execute the command with or without the step control c5 and with the optional parameter <load>.</load>

Responses

C7_B_ <method></method>	Current list of available methods.
C7_A_ <method></method>	
C7_B C7_B_ <index>_<state>_<wgtstate>_ <"LoadInstruction">_<"ValueHostUnit"> C7_B_<index>_<state>_<wgtstate>_ <"LoadInstruction">_<"ValueHostUnit"> C7_A</wgtstate></state></index></wgtstate></state></index>	Execute the command without step control c5_0 and with optional parameter <load>.</load>
C7_B C7_C_ <index>_<state>_<wgtstate>_ <"LoadInstruction">_<"ValueHostUnit"> C7_C C7_B_<index>_<state>_<wgtstate>_ <"LoadInstruction">_<"ValueHostUnit"> C7_C_<index>_<state>_<wgtstate>_ <"LoadInstruction">_<"ValueHostUnit"> C7_C_<load> C7_C_<load> C7_C_<index>_<state>_<wgtstate>_ <"LoadInstruction">_<"ValueHostUnit"> C7_C_<load> C7_C_<index>_<state>_<wgtstate>_ <"LoadInstruction">_<"ValueHostUnit"> C7_C_<index>_<state>_<wgtstate>_ <"LoadInstruction">_<"ValueHostUnit"> C7_C_<index>_<state>_<wgtstate>_ <"LoadInstruction">_<"ValueHostUnit"> C7_C</wgtstate></state></index></wgtstate></state></index></wgtstate></state></index></load></wgtstate></state></index></load></load></wgtstate></state></index></wgtstate></state></index></wgtstate></state></index>	Execute the command with step control c5_1 and with modifying a required weight value of one state during the adjustment. The state which is corrected is displayed again and must be confirmed by the operator.
C7_A	Command understood and executed successfully.
C7_I	Command understood but currently not executable (balance is currently executing another command). No second response follows.
C7_L	Command understood but not executable (incorrect parameter)

Parameters

Name	Туре	Values	Meaning
<method></method>	Integer	0 2	List of available methods (model dependent)
		0	Use default method of the adjustment
		1 or 2	Method 1: For direct force translation (without lever arms)
			Method 2: For hybrid force translation (with lever arms)
<load></load>	Float		Calibration load in the definition unit (default using the M19 value)
			Load used in step control (Execute C5_C_Load) modifies the required weight value of the actual adjustment state
<index></index>	Integer		Step number of the procedure
<state></state>	Char	R or D	Actual state of the adjustment process
			R = requesting external weight
			D = waiting for stability
<wgtstate></wgtstate>	Char	+, -, 0	Actual weight state:
			+ load is above tolerances
			- load is below tolerances
			o (small omega) load is within tolerances
<"LoadInstruction">	instruction"> String	0	Instruction, which load to place on the pan
			String with the load combination to place on the pan separated by "+". The string contains as many numbers as different loads are used in the procedure. If the actual step uses built-in weights, the string will be empty.
			• "0" = do not place the load
			• "1" = place load 1
			 "1+2" = place load 1 and load 2
			 "0+2" = only place load 2
<"ValueHostUnit">	String		Load information of the actual adjustment state (weight and host unit)
<error></error>	Integer	1, 2, 3,	Parameter showing the source of the error
		4, 5	0: Timeout
			1: Cancel
			2: Built-in weight not supported
			3: Adjustment not available (e.g. adjustment is unknow or disabled)
			4: Calibration or adjustment load error (e.g. adjustment load is too light or too heavy)
			5: Busy (e.g. another adjustment is already running)

Comments

- The standard adjustment determines the exact weight of the internal load. Therefore the external adjustment load must be known exactly.
- If step control is enabled, the states which require external loads must be confirmed, the others are running automatically.
- The parameter <Load> and also the load value corrected with step control are tested against range definitions. A logic error (L) is returned for values violating the range definitions.
- The procedure can be canceled by command c.
- This command is equivalent to C4.

Examples

	•	
$\mathbf{\Lambda}$	С7	Request the whole list of available methods.
Υ	C7_B_0	Methods 0 and 1 are available. Other methods are not
	C7_A_1	implemented or disabled.
¥	C7_1_400	Start the standard calibration procedure (method 1), without step control (automatic recognition of placed weights).
1	C7_B C7_B_0_R"0"_"0.00_g" C7_B_0_D_0_"0"_"" C7_B_1_D_0_"_"_"" C7_B_2_D_0_"_"_"400.00_g" C7_B_3_R"1"_"400.00_g" C7_B_3_D_0_"1"_"0.00g" C7_B_4_R_+_"0"_"0.00g" C7_B_4_D_0_"0"_"" C7_B_5_D_0_"_"_"" C7_B_5_D_0_"_"_"" C7_A_6_D_0_"_"_"" C7_A_6_D_0_"_"_""	Standard calibration is started. Request weight for first step (ext. & int. unload). Capture weight of first step. Capture weight of second step (int. push). Capture weight of third step (int. unload). Request weight for fourth step (ext. load L1). Capture weight of fourth step. Request weight for fifth step (ext. unload). Capture weight of fifth step. Capture weight of sixth step (int. load). Capture weight of seventh step (int. unload). Standard calibration finished.
$\mathbf{\Lambda}$	C7_1_400	Start the standard calibration procedure (method 1), with step control (user interaction).
↑	C7_B C7_C_0_R"0"_"0.00_g"	Standard calibration is started. Request weight for first step (ext. & int. unload).
↑	C7_C	User confirms placed weight.
1	C7_B_0_D_o_"0"_"" C7_B_1_D_o_"_"_"" C7_B_2_D_o_"_"_"" C7_C_3_R"1"_"400.00_g"	Capture weight of first step. Capture weight of second step (int. push). Capture weight of third step (int. unload). Request weight for fourth step (ext. load L1).
Υ	C7_C	User confirms placed weight.
↑	C7_B_3_D_0_"1"_"" C7_C_4_R_+_"0"_"0.00_g"	Capture weight of fourth step. Request weight for fifth step (ext. unload).
↑	C7_C	User confirms placed weight.
1	C7_B_4_D_0_"0"_"" C7_B_5_D_0_"_"_"" C7_B_6_D_0_"_"_"" C7_A	Capture weight of fifth step. Capture weight of sixth step (int. load). Capture weight of seventh step (int. unload). Standard calibration finished.

See also

C8 – Sensitivity adjustment

Description

Use C8 to start the customer adjustment of the sensitivity scaling (internal and external).

Syntax

Commands

C8	Request the whole list of available methods.
C8_ <method></method>	Execute the command with or without the step control C5.
C8_ <method>_<load></load></method>	Execute the command with optional parameter <pre></pre>

Responses

C8_B_ <method></method>	Current list of available methods.
C8_A_ <method></method>	
С8_В	Content of a specific method.
C8_B_ <index>_<state>_<wgtstate>_</wgtstate></state></index>	
<"LoadInstruction">_<"ValueHostUnit">	
C8_B_ <index>_<state>_<wgtstate>_</wgtstate></state></index>	
<"LoadInstruction">_<"ValueHostUnit">	
C8_B_ <index>_<state>_<wgtstate>_</wgtstate></state></index>	
<"LoadInstruction">_<"DevPerMille">	
C8_A	
C8_A	Command understood and executed successfully.
C8_I	Command understood but currently not executable
	(balance is currently executing another command).
	No second response follows.
C8_L	Command understood but not executable (incorrect
_	parameter).

Parameters

Name	Туре	Values	Meaning
<method></method>	Integer	0, 1 or 2	0: use default method of the adjustment
			1: internal adjustment
			2: external adjustment
<load></load>	Float		Calibration load in the host unit. The parameter 'Load' is optional; by default the parameter <load> is preset by the device using the M19 definition</load>
			Load used in step control (Execute C8_C_Load) modifies the required weight value of the actual adjustment state
<index></index>	Integer		Step number of the procedure
<state></state>	Char	R, D or C	Actual state of the adjustment process
			R = requesting external weight
			D = waiting for stability
			C = calibration deviation (procedure is finished, corrected calibration deviation is given in parameter "DevPerMille")

Name	Туре	Values	Meaning
<wgtstate></wgtstate>	Char	+, -, 0	Actual weight state:
			+ load is above tolerances
			- load is below tolerances
			o (small omega) load is within tolerances
<"LoadInstruction">	String	0	Instruction, which load to place on the pan
			String with the load combination to place on the pan separated by "+". The string contains as many numbers as different loads are used in the procedure. If the actual step uses internal weights, the string will be empty • "O" = do not place the load • "1" = place load 1
			 "1+2" = place load 1 and load 2
			 "0+2" = only place load 2
<"ValueHostUnit">	String		Load information of the actual adjustment state (weight and host unit)
<"DevPerMille">	String		Deviation of the measured calibration load (before adjustment) relative to the exact calibration load in per mille (‰). Value is rounded to the resolution of the finest range
<error></error>	Integer	1, 2, 3,	Parameter showing the source of the error
		4, 5	0: Timeout
			1: Cancel
			2: Built-in weight not supported
			3: Adjustment not available (e.g. adjustment is unknow or disabled)
			4: Calibration or adjustment load error (e.g. adjustment load is too light or too heavy)
			5: Busy (e.g. another adjustment is already running)

Comments

- The parameter 'Load' and also the load value corrected with step control are tested against range definitions. A logic error (L) is returned for values violating the range definitions.
- This command accepts always two parameters also if the third parameter has no functionality in the triggered method. In this case, the third parameter is ignored by the command and does not respond a logic error (L).
- The procedure can be canceled by command C.
- External weight values must be exactly known.
- This command is equivalent to C2 and C3 (depending on the parameter method)

Examples

$\mathbf{\Lambda}$	C8	Request the whole list of available methods.
1	C8_B_0 C8_A_1 C8_A_2	Methods 0, 1 and 2 are available. Other methods are not implemented.
¥	C8_1	Start the internal sensitivity adjustment procedure (method 1)
^	C8_B C8_B_0_R""_"_"0.00_g" C8_B_0_D_0_"0"_"" C8_B_1_D_0_"_"_"" C8_B_2_D_0_"_"_"" C8_B_3_D_0_"1"_"" C8_B_4_D_0_"0"_"0.23" C8_A	Sensitivity adjustment is started. Request weight for first step (ext. & int. unload). Capture weight of first step. Capture weight of second step (int. push). Capture weight of third step (int. unload). Capture weight of fourth step (int. load L1). Capture weight of fifth step (int. unload). Corrected calibration deviation in per mille (‰). Sensitivity adjustment finished.
¥	C8_2_400	Start the external sensitivity adjustment procedure (method 2), without step control (automatic recog- nition of placed weights).
↑	C8_B C8_B_0_R"0"_"0.00_g" C8_B_0_D_0_"0"_"" C8_B_1_R"1"_"400.00_g" C8_B_1_D_0_"1"_"0.23" C8_A	Sensitivity adjustment is started. Request weight for first step (ext. & int. unload). Capture weight of first step. Request weight for second step (ext. load L1). Capture weight of second step. Corrected calibration deviation in per mille (‰). Sensitivity adjustment finished.
$\mathbf{\Lambda}$	C82_400	Start the external sensitivity adjustment procedure (method 2), with step control (user interaction).
1	C8_B C8_C_0_R"0"_"0.00_g"	Sensitivity adjustment is started. Request weight for first step (ext. & int. unload).
1	C8_C	User confirms placed weight.
↑	C8_B_0_D_0_"0"_"" C8_C_1_R"1"_"400.00_g"	Capture weight of first step. Request weight for second step (ext. load L1).
1	C8_C	User confirms placed weight.
1	C8_B_1_D_0_"1"_"" C8_B_1_C_0_"1"_"0.23" C8_A	Capture weight of second step. Corrected calibration deviation in per mille (‰). Sensitivity adjustment finished.
$\mathbf{\Lambda}$	C8_2_400	Start the external sensitivity adjustment procedure (method 2).
1	C8_B C8_C_0_R"0"_"0.00_g"	Sensitivity adjustment is started. Request weight for first step (ext. & int. unload).
Λ	C8_E_0	Timeout error response.

See also

- ${\mathscr O}\$ C Cancel all commands \blacktriangleright Page 23

C9 – Scale placement sensitivity adjustment

Description

Start the adjustment of the scale placement sensitivity scaling. If this adjustment is used, make sure to trigger it before any subsequent adjustment in the signal processing chain since it does not reset subsequent signal processing parameters!

This command is only available for weigh modules with external lever system that is not part of the factory adjustment of the load cell. For this kind of weigh modules, this command replaces the factory standard adjustment by service technician.

Syntax

Commands

С9	Request the whole list of available methods.
C9_ <method></method>	Execute the command according to a predefined method.

Responses

Current list of available methods.
Content of a specific method.
Command understood and executed successfully.
· · ·
Command understood but currently not executable.
Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<method></method>	Integer	0, 1 or 2	Method = 0: use default method of the adjustment. If default method is not defined, method 1 or method 2 is used, depending on the availability of built-in weights
<index></index>	Integer		Step number of the procedure
<state></state>	Char	R, D or C	Actual state of the adjustment process
			R = requesting external weight
			D = waiting for stability
			C = sensitivity deviation (procedure is finished, corrected sensitivity deviation is given in parameter "DevPerMille")
<wgtstate></wgtstate>	Char	+, -, 0	Actual weight state:
			+ load is above tolerances
			- load is below tolerances
			o (small omega) load is within tolerances

Name	Туре	Values	Meaning
<"LoadInstruction">	String		Instruction, which load to place on the pan
			String with the load combination to place on the pan separated by "+". The string contains as many numbers as different loads are used in the procedure. If the actual step uses built-in weights, the string will be empty
			Examples for two loads
			"0+0" = do not place the load
			"1+0" = place load 1
			"1+2" = place load 1 and load 2
			"0+2" = only place load 2
			Examples for four loads:
			"0+0+0" = do not place the load
			"1+0+0+0" = place load 1
			"1+2+0+0" = place load 1 and load 2
			"0+2+0+0" = only place load 2
			"1+2+3+4" = place load 1, load 2, load 3 and load 4
<"ValueHostUnit">	String		Load information of the actual adjustment state (weight and unit) in host units (M21) with the maximum displayed decimal places
<"DevPerMille">	String		Deviation of the measured calibration load (before adjustment) relative to the exact calibration load in per mille (‰). Value is rounded to the resolution of the finest range
<error></error>	Integer	1, 2, 3,	Parameter showing the source of the error
		4, 5	0: Timeout
			1: Cancel
			2: Built-in weight not supported
			3: Adjustment not available (e.g. adjustment is unknow or disabled)
			4: Calibration or adjustment load error (e.g. adjustment load is too light or too heavy)
			5: Busy (e.g. another adjustment is already running)

Comments

This command is used to perform a sensitivity adjustment. This operation performs a sensitivity adjustment without modifying the adjustment parameters of subsequent signal processing blocks. This is needed; when the linearity and the sensitivity of an external lever system are corrected with scaling blocks later in the signal processing chain (e.g., scale production adjustment).

- Method 1 of this command is an internal sensitivity adjustment. This adjustment does not reset block parameters of following SP blocks! Therefore be sure to trigger this adjustment before any adjustment of subsequent SP blocks. Otherwise do not use this adjustment!
- This adjustment can be canceled by the command c.

$\mathbf{\Lambda}$	С9	Request the whole list of available methods.
1	С9_В_0	Methods 0 and 1 are available. Other methods are not
	C9_A_1	implemented or have been disabled.
$\mathbf{1}$	C9_1	Start the internal sensitivity adjustment procedure (method 1).
↑	C9_B C9_B_0_R""_"0.00_g" C9_B_0_D_0_"0"_"" C9_B_1_D_0_"_"_"" C9_B_2_D_0_"1"_"" C9_B_3_D_0_"1"_"" C9_B_4_D_0_"0"_"0.23" C9_A	Sensitivity adjustment is started. Request weight for first step (ext. & int. unload). Capture weight of first step. Capture weight of second step (int. push). Capture weight of third step (int. unload). Capture weight of fourth step (int. load L1). Capture weight of fifth step (int. unload). Corrected calibration deviation in per mille (‰). Sensitivity adjustment finished.

COM – Parameters of the serial interfaces

Description

You can use this command to define the connection parameters of the serial interfaces (e.g. RS232, RS422).

Syntax

Commands

СОМ	Query of the existing interface settings.
COM_ <port>_<baud>_<bit>_<hs></hs></bit></baud></port>	Set parameters of the specified interface to desired
	values.

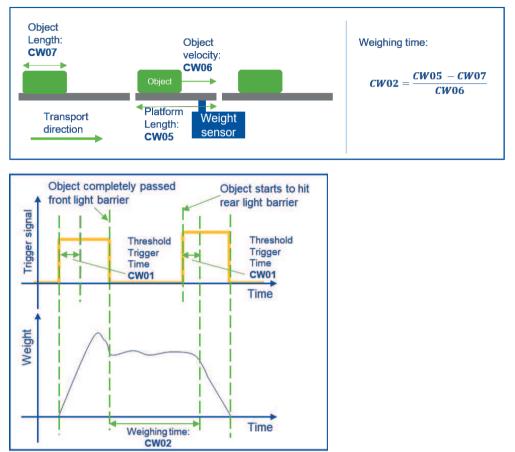
Responses

COM_B_ <port>_<baud>_<bit>_<hs> COM_A_<port>_<baud>_<bit>_<hs></hs></bit></baud></port></hs></bit></baud></port>	Current communication parameters.
COM_A	Command executed successfully.
COM_I	Command understood but not executable (e.g. update rate is too high for the selected baud rate, see comments).
COM_L	Command understood but not executable (e.g. parameter incorrect).

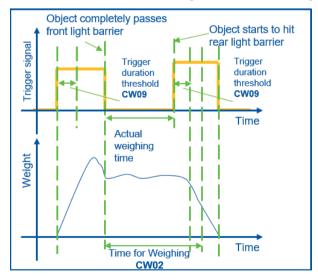
Parameters

Name	Туре	Values	Meaning
<port></port>	Integer	0	Built-in RS232 interface
		1	Built-in RS422 interface
<baud></baud>	Integer	0	150 baud
		1	300 baud
		2	600 baud
		3	1200 baud
		4	2400 baud
		5	4800 baud
		6	9600 baud (factory setting)
		7	19200 baud
		8	38400 baud
<bit></bit>	Integer		Bits / Parity / Stop bits
		0	7 / Even / 1
		1	7 / Odd / 1
		2	7 / None / 1
		3	8 / None / 1 (factory setting)
		4	7 / Even / 2
		5	7 / Odd / 2
		6	7 / None / 2
		7	8 / None / 2
<hs></hs>	Integer	0	No handshake (factory setting)
		1	Software handshake (Xoff – Xon controlled protocol)
		2	Hardware handshake (CTS – RTS controlled protocol)

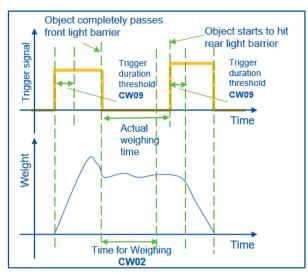
Comments


- Command only available without a connected terminal.
- If an option is present in the system, the host is automatically assigned to that interface and the COM command is not available anymore.
- The answer is returned with the current settings, the settings are changed afterwards.
- No values other than those specified must be used; otherwise, uncontrollable settings may result.
- When adjusting the values, the connection parameters of the connected communication partner must also be adjusted. Otherwise, it will not be possible to establish any further communication.
- It is recommended to check the parity bit in the communication of the weighing device with the control system (PLC) in order to see whether there is any error in the transmission.
- Transmission errors might become more likely as the baud rate of the communication is increased.

\mathbf{A}	СОМ	Send current settings for interface parameters for all present interfaces.
1	COM_B_0_6_3_0	RS232 is set to 9600 baud, 8 bits, no parity, 1 stop bit, no handshake.
\mathbf{h}	COM_0_8_3_0	Setting the parameters for the serial interface to 38400 baud, 8 data bits, no parity, 1 stop bit, no handshake.
1	COM_A	Parameters successfully set to desired values.


CW02 - Time for weighing

Use CW02 to set the weighing time for check weighing.


• If the value is zero (CW02 0), the weighing time will be calculated as follows:

• If the value is not zero and longer than the actual weighing time, then the actual weighing time will be used.

• If the value is not zero and shorter than the actual weighing time, then

Syntax

Commands

CW02	Query the parameters from the device.
CW02_ <time></time>	Set the parameters to the device.

Responses

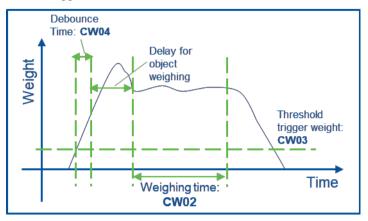
CW02_A_ <time></time>	Current behavior of the device.
CW02_A	Command understood and executed successfully.
CW02_L	Command understood but not executable.
	E.g. ProGage: minimum weighing time less than 100 ms.

Parameters

Name	Туре	Values	Meaning
<time></time>	unsigned	0	Weighing time is calculated
	16 bits	>0	Weighing time in ms

Initial values

$\mathbf{\Lambda}$	CW02	Query the parameters from the device.
↑	CW02_A_0	Weighing time is calculated.


Comment

Due to the check weighing algorithm of ProGage, the minimum weighing time must be greater than 100 ms.

$\mathbf{\Lambda}$	CW02	Query the parameters from the device.
$\mathbf{\uparrow}$	CW02_A_200	The current weighing time is set to 200 ms.
$\mathbf{\Psi}$	CW02_300	Set the weighing time to 300 ms.
1	CW02_A	Command understood and executed successfully.

CW03 - Triggered weight value

Use the CW03 command to set the weight threshold to trigger the weighing process in trigger mode "No external trigger".

Syntax

Commands

CW03	Query the parameters from the device.
CW03_ <weight></weight>	Set the parameters to the device.

Responses

CW03_A_ <weight></weight>	Current threshold.
CW03_A	Command understood and executed successfully.

Parameters

Name	Туре	Values	Meaning
<weight></weight>		1 display step capacity of the device	Weight value treshold

Initial values

Product dependent, typically 10 % of capacity.

$\mathbf{\Lambda}$	CW03	Query the parameters from the device.
↑	CW03_A_300.0	The current threshold triggered weight is set to 300 g.
$\mathbf{\Lambda}$	CW03_200	Set the threshold weight to 200 g.
↑	CW03_A	Command understood and executed successfully.

CW11 - Check weighing: Weight calculation mode

Use CW11 to get/set the weight calculation mode in the weighing process in case of trigger mode "Weight trigger, no external trigger".

Syntax

Commands

CW11	Query the parameters from the device.
CW11_ <mode></mode>	Set the parameters to the device.

Responses

CW11_A_ <mode></mode>	Current weight calculation mode.
CW11_A	Command understood and executed successfully.

Parameters

Name	Туре	Values	Meaning
<mode></mode>	integer	0 1 2	Raising Falling Other trigger

Initial values

Commands

CW11	Query the parameters from the device.
CW11_A_0	Calculation mode = Raising edge

Comments

- This parameter makes sense only when CWO1 is "Weight trigger, no external trigger (i.e. light-barriers to detect the weighing object)".
- For weight calculation mode 2, the command in he software used is product dependent. E.g., command SIMS is used for product SPG23C.

$\mathbf{\Lambda}$	CW11	Query the parameters from the device.
1	CW11_A_0	Calculation mode = Raising edge
$\mathbf{\Lambda}$	✓ CW11_1 Set calculation mode to raising edge.	
1	CW11_A	Command understood and executed successfully.

D – Write text to display

Description

Use $\mbox{$\scriptstyle D$}$ to write text to the balance display.

Syntax

Command

	Write toxt into the balance display
D. < "Text">	Write text into the balance display.

Responses

D_A	Command understood and executed successfully: Text appears left-aligned in the balance display marked by a symbol, e.g., *.
D_I	Command understood but currently not executable.
D_L	Command understood but not executable (incorrect parameter or balance with no display).

Parameter

Name	Туре	Values	Meaning
<text></text>	String		Text on the balance display

Comments

• A symbol in the display, e.g., * indicates that the balance is not displaying a weight value.

• The maximum number of characters of "text" visible in the display depends on the balance type. If the maximum number of characters is exceeded, the text disappears on the right side.

• Quotation marks can be displayed as indicated in chapter 1.1.3.

$\mathbf{\Lambda}$	D_"HELLO"	Write HELLO into the balance display.
↑	D_A	The full text HELLO appears in the balance display.
$\mathbf{\Lambda}$	D_" "	Clear the balance display.
1	D_A	Balance display cleared, marked by a symbol, e.g.*.

DAT – Date

Description

Set or query the balance system date.

Syntax

Commands

DAT	Query of the current date of the balance.
DAT_ <day>_<month>_<year></year></month></day>	Set the date of the balance.

Responses

DAT_A_ <day>_<month>_<year></year></month></day>	Current date of the balance.
DAT_A	Command understood and executed successfully.
DAT_I	Command understood but currently not executable (balance is currently executing another command).
DAT_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<day></day>	Integer	01 31	Day
<month></month>	Integer	01 12	Month
<year></year>	Integer	2020	Year
		2099	The accepted range of years is depending on platform/ product

Example

$\mathbf{\Lambda}$	DAT	Query of the current date of the balance.
Υ	DAT_A_01_10_2021	The date of the balance is 1st October 2021.

See also

DATI – Date and Time

Description

Set or query the balance system date and time in a single action.

Syntax

Commands

DATI	Query of the current date and time of the balance.
DATI_ <year>_<month>_<day> _<hour>_<minute>_<second></second></minute></hour></day></month></year>	Set the date and time of the balance.

Responses

DATI_A_ <year>_<month>_<day> _<hour>_<minute>_<second></second></minute></hour></day></month></year>	Current date and time of the balance.
DATI_A	Command understood and executed successfully.
DATI_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<year></year>	Integer		Year
			The accepted range of years is depending on platform/ product
<month></month>	Integer	01 12	Month
<day></day>	Integer	01 31	Day, valid date only
<hour></hour>	Integer	00 23	Hour
<minute></minute>	Integer	00 59	Minute
<second></second>	Integer	00 59	Second

Examples

$\mathbf{\Lambda}$	DATI	Query of the current date and time of the balance.
1	DATI_A_2021_11_30_22_45_56	The date and time of the balance is 30th November 2021, 22:45:56.
¥	DATI_2021_11_30_22_45_56	Sets the date and time of the balance to 30th November 2021, 22:45:56
1	DATI_A	Command understood and executed successfully.

See also

⊘ DAT – Date ▶ Page 53

DIN – Configuration for digital inputs

Description

Set or query the configuration for the digital inputs.

Syntax

Commands

DIN	Query of the configuration for the digital inputs.
DIN_ <input/> _<"Command">_ <transi- tion>_<interface></interface></transi- 	Set the configuration for the digital input.

Responses

-	
DIN_B_ <input/> _<"Command">_ <transition>_<interface></interface></transition>	Current configuration for the digital input.
DIN_B DIN_A_ <input/> _<"Command">_ <transition>_<interface></interface></transition>	
DIN_A	Command understood and executed successfully.
DIN_I	Command understood but currently not executable.
DIN_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<input/>	Integer	1 n	Number of digital input
<"Command">	String	max. 64 chars	MT-SICS command
<transition></transition>	Integer	0: rising edge	Transition of the input signal
		1: falling edge	
<interface></interface>	integer	0 n	Number of Interface, Interface number, see [COM > Page 46]

Comments

- Only one event can be programmed on each digital input.
- Nonsense "Command" leads to an ${\tt ES}$ on the specified interface.

$\mathbf{\Lambda}$	DIN	Query the current configuration for the digital input.
1	DIN_A_2_"SI"_1_1	The command "s1" will be executed on the interface 1
		by falling edge on digital input number 2.

DIS – Digital input status

Description

Use DIS to ask the actual status of the digital input ports. The number of input ports is dependent on the product model type.

Syntax

Commands

DIS	Query the status of all available input ports.
DIS_ <input/>	Query the status of a specific input port.

Responses

DIS_B_ <input/> _ <status></status>	Current status for all available input ports.
DIS_B DIS_A_ <input/> _ <status></status>	
DIS_A_ <input/> _ <status></status>	Current status of a specific input port.
DIS_I	Command understood but currently not executable.
DIS_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<input/>	Integer	1 n	Number of the input port
<status></status>	Boolean	0: off 1: on	Status of the input port

Comments

- This command returns the Boolean status of the queried input port(s).
- If the product has no physical input ports, this command returns the status of the logical input ports.

Examples

$\mathbf{\Psi}$	DIS	Query the status of all available input ports.
↑	DIS_B_1_1	Current status for all available input ports.
	DIS_B_2_1	
	DIS_A_3_1	
$\mathbf{\Psi}$	DIS_1	Query the status of the input port-1.
↑	DIS_A_1_1	Current status of the input port-1 is "1".

See also

DOS – Digital output status

Description

Use DOS to ask the actual status of the digital output ports. The number of output ports is dependent on the product model type.

Syntax

Commands

DOS	Query the status of all available output ports.
DOS_ <output></output>	Query the status of a specific output port.

Responses

DOS_B_ <output>_<status></status></output>	Current status for all available output ports.
DOS_B DOS_A_ <output>_<status></status></output>	
DOS_A_ <output>_<status></status></output>	Current status of a specific output port.
DOS_I	Command understood but currently not executable.
DOS_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<output></output>	Integer	1 n	Number of the output port
<status></status>	Boolean	0: off 1: on	Status of the output port

Comments

- This command returns the boolean status of the queried output port(s).
- If the product has no physical output ports, this command returns the status of the logical output ports.

Examples

$\mathbf{\Lambda}$	DOS	Query the status of all available output ports.
1	DOS_B_1_0	Current status for all available output ports.
	DOS_B_2_0	
	DOS_B_3_0	
	DOS_B_4_0	
	DOS_A_5_0	
$\mathbf{\Lambda}$	DOS_1	Query the status of the output port-1.
1	DOS_A_1_0	Current status of the output port-1 is "O".

See also

DOT – Configuration for digital outputs

Description

Set or query the configuration for the digital outputs.

Syntax

Commands

	Query of the current configuration for the digital outputs.
DOT_ <output>_<duration>_<delay></delay></duration></output>	Set the configuration for the digital outputs.

Responses

DOT_B_ <output>_<duration>_<delay></delay></duration></output>	Current configuration for the digital output.
DOT_B	
DOT_A_ <output>_<duration>_<delay></delay></duration></output>	
DOT_A	Command understood and executed successfully.
DOT_I	Command understood but currently not executable.
DOT_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<output></output>	Integer	1 n	Number of digital output
<duration></duration>	String	10 65535 ms	Duration time in ms
<delay></delay>	Integer	0 65535 ms	Delay time in ms

Comments

- Only one event can be programmed on each digital output.
- The timing resolution: duration and delay are rounded up to the system resolution (usually 8 or 10 ms).

Example

$\mathbf{\Lambda}$	DOT	Query the current configuration for the digital output.
1	DOT_A_2_500_100	The digital output number 2 will increase the voltage for a duration of 500 ms with a delay of 100 ms. Digital outputs can be set with the commands: [DOTC ▶ Page 59], DOTP and [WMCF ▶ Page 270].

See also

- ⊘ DOTC Configurable digital outputs Weight monitor ▶ Page 59

DOTC – Configurable digital outputs – Weight monitor

Description

Use DOTC for weight monitoring functionality for dosing or check weighing application. Benefit is that this function works without a PC or PLC.

Syntax

Commands

DOTC	Query of the current configuration for the weight monitor.
DOTC_ <output>_<active></active></output>	Set the configuration for the weight monitor.
DOTC_ <output>_<active>_<interface>_ <targetvalue>_<targetunit>_<tol->_ <tolunit>_<tol+>_<tolunit>_<state></state></tolunit></tol+></tolunit></tol-></targetunit></targetvalue></interface></active></output>	Set the configuration for the weight monitor.

Responses

DOTC_B_ <output>_<active></active></output>	Current configuration for the weight monitor.
DOTC_B	
DOTC_A_ <output>_<active></active></output>	
DOTC_B_ <output>_<active>_<interface>_<- TargetValue>_<targetunit>_<tol->_ <tolunit>_<tol+>_<tolunit>_<state></state></tolunit></tol+></tolunit></tol-></targetunit></interface></active></output>	Current configuration for the weight monitor.
DOTC_B	
DOTC_A_ <output>_<active>_<interface>_<-</interface></active></output>	
TargetValue>_ <targetunit>_<tol->_</tol-></targetunit>	
<tolunit>_<tol+>_<tolunit>_<state></state></tolunit></tol+></tolunit>	
DOTC_A	Command understood and executed successfully.
DOTC_I	Command understood but currently not executable.
DOTC_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<output></output>	Integer	1 n	Number of digital output
<active></active>	Boolean	1 = on	Command on DOT (n) active
		0 = off	
<interface></interface>	Integer	0 n	Observed interface, Interface number, see [COM ▶ Page 46]
<targetvalue></targetvalue>	Float		Target value
<targetunit></targetunit>	String		Target unit, only available units permitted
<tol-> <tol+></tol+></tol->	Float		Tolerance
<tolunit></tolunit>	String		Tolerance unit, available units and % permitted
<state></state>	String	S = only stable values	Trigger for the value state
		D = only dynamic values	
		A = all values, S and D	

Comments

- Digital output must be available.
- Only one command DOTC(n), DOTP(n) or [WMCF ▶ Page 270] can be configured for the same digital output.
- Duration and delay from the digital output must be defined with the command [DOT > Page 58].
- Target value will be rounded to the defined resolution from the load cell.
- Target unit only allowed units are permitted.
- The weight value monitoring function works only with a weight value command (e.g. SI, SIR).
- The update rate depends on the defined UPD rate.
- Tol- and Tol+ defined as % reference to the target value.
- Only allowed units are permitted, see [M21 > Page 165].

Examples

$\mathbf{\Lambda}$	DOTC_2	Query the current configuration for the weight monitor on the second digital output (DOT_2).
1	DOTC_A_2_1_0_100_g_5_%_10_g_S	DOT_2 will be set on every stable weight value on Interface 0 between 100 g $-$ 5 $\%$ +10 g.
\mathbf{A}	DOTC_3_1_1_300_g_5_mg_1_g_A	Set the following configuration for the third digital output (DOT_3): DOT_3 will be set on every value (stable and unstable) on Interface 1 between 300 g -5 mg +1 g.
↑	DOTC_A	Command understood and executed successfully.
↓	DOTC_1_0	Deactivate DOTC on digital output 1 (DOT_1). Other settings like interface, TargetValue, will be unchanged.
↑	DOTC_A	Command understood and executed successfully.
$\mathbf{\Lambda}$	DOTC_1_1	Activate DOTC on digital output 1 (DOT_1). Old settings will be used or default if newer defined.
↑	DOTC_A	Command understood and executed successfully.

See also

⊘ DOT – Configuration for digital outputs ▶ Page 58

DW - Show weight

Description

Resets the display after using the $_{\rm D}$ command. Then the deivice display shows the current weight value and unit.

Syntax

Command

Responses

	Command understood and executed successfully: Main display shows the current weight value.
DW_I	Command understood but currently not executable.

Comment

DW resets the balance display following a [D ▶ Page 52] command.

Example

$\mathbf{\Lambda}$	DW	Switch the main display to weight mode.
$\mathbf{\Lambda}$	DW_A	Main display shows the current weight value.

See also

 ${\mathscr O}~$ D – Write text to display \blacktriangleright Page 52

E01 – Current system error state

Description

This command queries severe and fatal system errors.

Syntax

Command

_		
ſ	DO1	
	EOT	Query of the current system error state.

Responses

E01_ <errorcode>_<"ErrorMessage"></errorcode>	Current error code and message.
E01_I	Command understood but currently not executable.

Parameters

Name	Туре	Values	Meaning
<errorcode></errorcode>	Integer	0	No error
		4	EEPROM error
		5	Wrong cell data
		6	No standard calibration
		7	Program memory defect
		9	Temperature sensor defect
		16	Wrong load cell brand
		17	Wrong type data set
		100	Memory full
		101	Battery backup lost
<"ErrorMessage">	String	128 chars	Error text message in UTF-8

Comments

- UTF-8 is ASCII compatible if only the code of the first 127 characters is used.
- The ErrorMessage is language dependent and can be switched by M15.
- The error code and message will change as soon as the device detects an other state i.e. after a restart or reset.
- If the device is able to detect multiple error s in parallel then only the most critical error (lowest error number) is stated.

$\mathbf{\Lambda}$	E01	Query of the current system error state.
1	Е01_101_"БАТАРЕЯ_СЕЛА _ПРОВЕРЬ_ДАТУ_И_ВРЕМЯ"	The last device error is "BATTERY BACKUP LOST - CHECK DATE TIME SETTINGS". The selected language is Russian.

E02 – Weighing device errors and warnings

Description

Use E02 to ask the active errors and warnings of the weighing device. The list of the errors and warnings is always product-specific.

Syntax

Command

E02	Query active errors and warnings of the weighing
	device.

Responses

E02_ <errorcode></errorcode>	Weighing device returns the error code.
E02_I	Command understood but currently not executable.

Parameter

Name	Туре	Values	Meaning
<errorcode></errorcode>	Bit set (32 bits)	$ErrorCode = \sum 2^{Bit}$	Error code including all device errors and warnings

Comments

• This command returns the error code of the weighing device which is a combination of bits for active errors and warnings. Error code of the device is calculated according to the following formula, where bits represent the respective warnings and error conditions:

$ErrorCode = \sum 2^{Bit}$

• The list of errors and warnings is always product-specific. Refer to the corresponding user manual of the product for a complete list of device errors and warnings.

The bits for the warning and error conditions are explained in the table below. SLP85xD load cells are taken as example:

Bit	Error Code	Meaning	Error / Warning Condition	Weighing Response	
0	10	Non-volatile data memory error (EEPROM)	Error during read/write process	Send the error code instead of the weight value	
1	102	Zero drift error	Zero drift (actual zero compared to user calibrated zero) > 10% of maximum capacity	Example: s_s_102	
2	103	Supply voltage error	Supply voltage > 33V		
3	104	PCBA temperature error	PCBA (main board) temperature > 80 °C		

Bit	Error Code	Meaning	Error / Warning Condition	Weighing Response
4	200	Measuring sensor temperature warning	Temperature of the measuring sensor is out of the compensated range [-10 °C 40 °C]	Send weight value Example: s_s_10_g
5	201	Measuring sensor temperature gradient warning	Temperature change of the measuring sensor is out of tolerance $(\Delta T / \Delta t > 0.5 \ ^{\circ}C / 60 \ s)$	
6	202	PCBA temperature warning	70 °C < PCBA (main board) temperature < 80 °C	
7	203	Supply voltage warning	Supply voltage is out of tolerances [10V 30V]	
8	204	Zero drift warning	1% of max. cap. < zero drift (actual zero compared to user calibrated zero) < 10% of max. cap.	
9	205	Load cell overload	Weight value > Maximum capacity	
11	0	Reserved for future use	None	
 31				

Examples

\mathbf{h}	E02	Query active errors and warnings of the weighing device.
↑	E02_A_8	PCBA (main board) temperature is higher than 80 °C.
		Device returns the error code 104 to weight request commands.
\mathbf{A}	E02	Query active errors and warnings of the weighing device.
1	$E02_A_{102} (2^6 + 2^7)$	PCBA (main board) temperature is higher than 70 °C and supply voltage is out of tolerances.

See also

 ${\mathscr O}~$ EO3 – Current system errors and warnings \blacktriangleright Page 65

E03 – Current system errors and warnings

Description

Use E03 to ask the current errors and warnings of the weighing device together with the error code and the error message.

Syntax

Command

E03	Query current errors and warnings of the weighing
	device.

Responses

	Weighing device returns the error code and the error message.
E03_I	Command understood but currently not executable.

Parameters

Name	Туре	Values	Meaning
<index></index>	Integer	0 31	Index for the error code and message
<code></code>	Integer	0	No error
		10	Non-volatile data memory error (EEPROM)
		102	Zero drift error
		103	Supply voltage error
		104	PCBA temperature error
		200	Measuring sensor temperature warning
		201	Measuring sensor temperature gradient warning
		202	PCBA temperature warning
		203	Supply voltage warning
		204	Zero drift warning
		205	Load cell overload
<message></message>	String	128 chars	Error text message in UTF-8

Comment

UTF-8 is ASCII compatible if only the code of the first 127 characters is used.

Examples

$\mathbf{\Lambda}$	E03	Query current errors and warnings of the weighing device.
1	E03_A_0_0_"No error"	Weighing device returns the error code and the error message.
\mathbf{h}	E03	Query current errors and warnings of the weighing device.
1	E03_B_0_104_"PCBA temperature error"	Weighing device returns active error codes and corre- sponding messages.
	E03_A_1_203_"Supply voltage warning"	

See also

ECHO – Echo Mode

Description

This command puts the MT-SICS device into one of several echo modes. There are modes to echo everything that is received, to send back a received line repeatedly, or to drop everything that is received. Each mode can be used to test a different aspect of the communication channel. E.g. to test the performance of the send and receive directions or the reliability of the communication channel, MT-SICS client and MT-SICS server. The echo mode does not execute any function on the device itself. To exit the echo mode an escape command needs to be sent to the device. After exiting the echo mode the number of received and sent octets are replied so the client can calculate the throughput or verify that no data was dropped.

Note

APW-Link does not offer the option to enter ASCII control characters (e.g. escape command). In order to use the ECHO command, use a terminal program with the ability to send ASCII control characters (e.g. escape command) to send the escape command.

Syntax

Commands

ECHO_ <mode></mode>	Start echo mode.
	Any sequence of printable characters (modes 0-2) or bytes (mode 3) to be echoed.
<esc></esc>	Exit echo mode.

Responses

ECHO_C	Echo mode started.
<any></any>	Any sequence of printable characters (modes 0-2) or bytes (mode 3) echoed.
<eol>ECHO_A_<receivedcount>_<sentcount></sentcount></receivedcount></eol>	Number of received counts and sent counts between the ECHO_C response and the ESC command.

Parameter

Name	Туре	Range	Meaning
<mode></mode>	Integer		Echo mode
		0	Start text based drop mode (server drops all the data)
		1	Start text based echo mode (server echoes all the data immediately)
		2	Start text based echo mode repeatedly (server echoes the received line repeatedly)
		3	Start binary echo mode (server echoes all the data immediately
<any></any>	Bytes		Any sequence of printable characters (modes 0-2) or bytes (mode 3) to be echoed
<esc></esc>	SC> Escape 27 _{DEC} / 1B _{HEX}	Exit echo mode	
	character		Note that an extra $<$ EOL $>$ is added when acknowledging with ECHO_A to ensure that the response starts with a new line.
<receivedcount></receivedcount>	Integer		Number of received counts between the ECHO_C response and the <esc> command.</esc>
<sentcount></sentcount>	Integer		Number of sent counts between the ${\tt ECHO_C}$ response and the ${\tt }$ command.

Example 1

Start the text based drop mode. In this mode all the sent data is discarded by the MT-SICS server. Then exit the echo mode and resume normal MT-SICS operation.

$\mathbf{\Lambda}$	ECHO_0	Start echo mode.
★ ECHO_C Command understood and		Command understood and executed successfully.
$\mathbf{\Lambda}$	This data is dropped.	Send text.
$\mathbf{\Lambda}$		
$\mathbf{\Lambda}$	<esc></esc>	Exit echo mode.
↑	<eol>ECHO_A_23_0</eol>	23 received counts, 0 sent counts

Example 2

Start the text based echo mode and request the echo of a Base64 encoded sequence of bytes. Then exit the echo mode and resume normal MT-SICS operation.

$\mathbf{\Lambda}$	ECHO_1	Start echo mode.
↑	ECHO_C	Command understood and executed successfully.
$\mathbf{\Lambda}$	Let's echo something!	Send text.
1	Let's echo something!	The device immediately echoes the sequence of bytes.
$\mathbf{\Lambda}$	<esc></esc>	Exit echo mode.
1	<eol>ECHO_A_23_23</eol>	23 received counts, 23 sent counts

Example 3

Start the text based echo mode and request the echo of a Base64 encoded sequence of bytes repeatingly. Then exit the echo mode and resume normal MT-SICS operation. Before exiting the echo mode, the last line shall be completely responded.

$\mathbf{\Lambda}$	ECHO_2	Start echo mode.
↑	ECHO_C	Command understood and executed successfully.
$\mathbf{\Lambda}$	Let's echo something! <eol></eol>	Send text.
1	Let's echo something! <eol> Let's echo something!<eol> Let's echo something!<eol> </eol></eol></eol>	The device immediately starts echoing the sequence of bytes until an <eol> is received. Then it continues to send the same line repeatedly, including <eol>.</eol></eol>
$\mathbf{\Lambda}$	<esc></esc>	Exit echo mode.
1	<eol>ECHO_A_23_59248</eol>	23 received counts, 59248 sent counts (2576 lines are responded)

Comments

- The text based echo modes echo all printable characters. Printable characters are 0x20...0x7E, 0x80... 0xFF and the <EOL> sequence. Thus, UCS and UTF encoded Unicode characters are also echoed. All other characters are not echoed, i.e. suppressed. All suppressed characters are not counted and must not be used.
- The binary echo mode echoes all characters except the escape character 0x1B which is used to terminate the echo mode. It is not guaranteed that all characters can be sent or echoed. Depending on the used interface or flow control settings some characters may be consumed by the driver stack (e.g. XON, XOFF). All characters which make it through the driver stack are counted and echoed.
- The device will stay in the echo mode until an escape character is sent or until the device is restarted.
- The repeating echo mode is useful to test the reliability of MT-SICS clients while continuously receiving. Experience has shown that continuously receiving may be challenging for PC applications in at least two cases:
 - Performing time consuming operations, e.g. accessing a file on a network drive, while continuously
 receiving. The application or the underlying communication infrastructure may struggle to properly
 continue receiving data while the time consuming operation is ongoing. This e.g. is the case if the time
 consuming operation is performed on the main thread, i.e. that thread which is responsible to update
 the user inferface.
 - Exiting the application while continuously receiving. The application or the underlying communication infrastructure may struggle to properly shut down all communication related parts during exiting. This e.g. is the case if the underlying communication infrastructure is running on a separate thread, which might be stopped too late, and will then still try to forward data to the main thread.
- In the repeating echo mode, the length of the buffered sequence is limited to the device capabilites, e.g. 64 or 120 bytes. If the written sequence is too long, the device shall truncate the excessive bytes. It is device dependent whether the beginning or the end of the sequence is truncated.
- The drop mode is useful to test the performance and reliability of the MT-SICS servers when continuously receiving data. With the drop mode the received data is just discarded and the maximum throughput can be achieved. Otherwise it is hard to achieve the maximum throughput because the command handler is the bottleneck and blocks incoming data (e.g. using flow control).
- The binary echo mode is useful to check if a communication interface is capable of handling binary data.

F01 – Automatic prefilling configuration

Description

Use FO1 to activate or deactivate the prefilling process, to assign digital outputs to the prefilling process and to set the prefilling duration.

Syntax

Commands

	Query the current configuration for automatic prefilling function.
F01_ <active>_<outputon>_<duration></duration></outputon></active>	Set the configuration for the automatic prefilling function.

Responses

F01_A_ <active>_<outputon>_<duration></duration></outputon></active>	Current configuration for automatic prefilling function.
F01_A	Command understood and executed successfully.
F01_I	Command understood but currently not executable.
F01_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<active></active>	Boolean	0: off 1: on	Activate / deactivate the prefilling function
<outputon></outputon>	Bit set (8 bits)	$OutputOn = \sum_{output \text{ ports on}} 2^{Bit}$	Set of digital outputs which will remain high during prefilling
<duration></duration>	Float	0 65535 ms	Prefilling duration

Comments

- Target of the prefilling is to start the filling process with a low speed in order to avoid the foaming of the liquid in-side the container.
- <OutputOn> defines which output ports are assigned to the prefilling process. This parameter is calculated as a bit set. See the table below for the definition of the bit set:

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
Output-8	Output-7	Output-6	Output-5	Output-4	Output-3	Output-2	Output-1

1	F01	Query the current configuration for automatic prefilling function.
1	F01_A_1_12_500	Prefilling is activated and the digital outputs 3 and 4 are assigned to this process $(2^2 + 2^3 = 12)$. This process will last for 500 ms.
$\mathbf{\Lambda}$	F01_1_5_100	Activate prefilling with the digital outputs 3 and 1 $(5 = 2^2 + 2^0)$ and a duration of 100 ms.
1	F01_A	Command understood and executed successfully.

F02 – Material filling duration configuration

Description

Use F02 to configure the material filling duration for filling applications. This is the waiting time in order to capture the filling material in the air after all filling valves are shut.

Syntax

Commands

F02	Query the current configuration for material filling duration.
F02_ <duration></duration>	Set the configuration for the material filling duration.

Responses

F02_A_ <duration></duration>	Current configuration for material filling duration.
F02_A	Command understood and executed successfully.
F02_I	Command understood but currently not executable.
F02_L	Command understood but not executable (incorrect parameter).

Parameter

Name	Туре	Values	Meaning
<duration></duration>	Float	0 65535 ms	Material filling duration

Comment

Target of the material filling duration is to wait for the filling material that is still in the air after all filling valves are closed and to capture this material inside the container.

\mathbf{A}	F02	Query the current configuration for material filling duration.
1	F02_A_400	Material filling duration is configured as 400 ms.
$\mathbf{\Lambda}$	F02_200	Set material filling duration to 200 ms.
1	F02_A	Command understood and executed successfully.

F03 – Automatic refilling configuration

Description

Use F03 to activate or deactivate the refilling function. It automatically sets the selected output port for a time calculated by the optimization function.

Syntax

Commands

	Query the current configuration for the automatic refilling function.
F03_ <active></active>	Activate or deactivate the automatic refilling function.

Responses

F03_A_ <active></active>	Current status of automatic refilling function.
F03_A	Command understood and executed successfully.
F03_I	Command understood but currently not executable.
F03_L	Command understood but not executable (incorrect parameter).

Parameter

Name	Туре	Values	Meaning
<active></active>	Boolean	0: off 1: on	Activate / deactivate the automatic refilling function

Comments

- Target of the automatic refilling function is to fill the container up to the target weight automatically, in case the actual final weight is less than the target reference weight.
- For the refilling function, the output port(s) is/are selected automatically which is/are connected to the valve(s) that control(s) the final part of the filling process (fine filling).

The selected output port(s) will be activated and it/they will remain high for certain duration.

Examples

1	F03	Query the current configuration for automatic refilling function.
$\mathbf{\Lambda}$	F03_A_0	Automatic refilling function is not active.
$\mathbf{\Lambda}$	F03_1	Activate the automatic refilling function.
1	F03_A	Command understood and executed successfully.

See also

F04 – Target weight configuration

Description

Use F04 to set a target reference weight for the filling application.

Syntax

Commands

F04	Query the reference target weight.
F04_ <targetweight>_<unit>_<negtolp>_ <postolp></postolp></negtolp></unit></targetweight>	Configure the reference target weight.

Responses

F04_A_ <targetweight>_<unit>_<negtolp>_ <postolp></postolp></negtolp></unit></targetweight>	Current configuration of the target weight.
F04_A	Command understood and executed successfully.
F04_I	Command understood but currently not executable.
F04_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<targetweight></targetweight>	Float		Reference target weight
<unit></unit>	String	g, mg or ug	Unit of the reference target weight
<negtolp></negtolp>	Float	00	Negative tolerance limit given as percentage of <pre><targetweight></targetweight></pre>
<postolp></postolp>	Float	00	Positive tolerance limit given as percentage of <pre><targetweight></targetweight></pre>

Comments

- Actual final weight is compared to reference target weight to determine the success of the filling application.
- Optimization- and refilling functions do their calculations based on the target weight.
- Filling function is deactivated if the target weight is configured as F04_0.

Examples

$\mathbf{\Lambda}$	F04	Query the reference target weight.
1	F04_A_1000_g_1_2	Reference target weight is configured as 1000 g with negative tolerance limit of 1% (- 10 g) and positive tolerance limit of 2% (+ 20 g).
≁	F04_2000_g_5_5	Define the reference target weight as 2000 g with negative and positive tolerance limits of 5% $(\pm 100 \text{ g})$.
1	F04_A	Command understood and executed successfully.

See also

- ${\mathscr O}\ \mbox{F05}-\mbox{Optimization function configuration} \ \mbox{Page 73}$

F05 – Optimization function configuration

Description

Use F05 to activate or deactivate the optimization function and configure the optimization method and its degree. Optimization function is used to reconfigure the cut-off points for the valves automatically in case of a mismatch between the reference target weight and the actual final weight.

Syntax

Commands

F05	Query the configuration of the optimization function.
F05_ <active>_<method>_<degree></degree></method></active>	Configure the optimization function.

Responses

F05_A_ <active>_<method>_<degree></degree></method></active>	Current configuration of the optimization function.
F05_A	Command understood and executed successfully.
F05_I	Command understood but currently not executable.
F05_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<active></active>	Boolean	0: off 1: on	Activate / deactivate the optimization function
<method></method>	<method> Integer</method>	1	Feedback optimization-1
		2	Feedback optimization-2
		3	Feed forward optimization
		4	Both method 1 and 3
		5	Both method 2 and 3
<degree></degree>	Integer	1	High optimization degree
		2	Medium optimization degree
		3	Low optimization degree

Comments

- Optimization function has the purpose of reconfiguring the cut-off points within the actual or subsequent filling cycle such that the actual final weight stays within tolerances in shortest filling time.
- Different methods for the optimization are explained below:

Method-1

In this method, the biggest cut-off point is optimized according to the deviation from the target weight. All other cut-off points are reconfigured according to the optimization step of the biggest cut-off point.

With this method, actual filling weight is optimized based on the deviation from the reference target weight.

Method-2

In this method, all cut-off points are optimized according to the biggest cut-off point such that the filling time is reduced as much as possible.

With this method, all cut-off points are brought closer to the biggest cut-off point, thus total filling time is reduced.

Method-3

This method can be used, if there is a variable (not constant) flow rate from one or all of the filling valves. In this case, the average value of the variable flow rate over the last 10 filling cycles is calculated and the biggest cut-off point is optimized based on this value.

Method-4

Set both method 1 and method 3.

Method-5

Set both method 2 and method 3.

• You can refer to the operating instructions of the SLP85xD load cells for more details regarding optimization calculations.

Examples

$\mathbf{\Lambda}$	F05	Query the status of the optimization function.
1	F05_A_1_1_1	Optimization function is activated with feedback optimization-1 and high optimization degree.
↓	F05_1_2_3	Activate the optimization function with feedback optimization-2 and low optimization degree.
↑	F05_A	Command understood and executed successfully.

See also

 \mathscr{P} F13 – Filling phase configuration > Page 86

F06 – Weight monitor function configuration

Description

Use F06 to configure the weight monitor function. This function can be configured to monitor the filling process based on weight increase.

Syntax

Commands

F06	Query the current configuration for weight monitor function.
F06_ <n></n>	Query the current configuration for a certain normal filling process.
F06_ <n>_<active>_<delta>_<unit></unit></delta></active></n>	Set the configuration for weight monitor function.

Responses

-	
F06_B_ <n>_<active>_<delta>_<unit> F06_B F06_A_<n>_Active>_<delta>_<unit></unit></delta></n></unit></delta></active></n>	Current configuration for weight monitor function.
F06_A_ <n>_Active>_<delta>_<unit></unit></delta></n>	Current configuration for a certain normal filling process,
F06_A	Command understood and executed successfully.
FO6_I	Command understood but currently not executable.
F06_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<n></n>	Integer	1 5	Number of the normal filling process which will be monitored with this function
<active></active>	Boolean	0: off 1: on	Activate / deactivate the weight monitor function
<delta></delta>	Float		The difference between the filling characteristic curve and monitor characteristic curve
<unit></unit>	String	g, mg	Unit of the parameter <delta></delta>

Comments

- When activated, this function builds a monitor curve which sets the lower limit for the actual filling curve. If the actual filling curve goes below the monitor curve, this implies that there is an error in the filling application. This error is interpreted as bag/bottle breakage.
- If this error occurs, following steps are taken:
 - Remaining filling process is stopped
 - Error bit for the bag/bottle breakage is set, see command [F09 Filling application status > Page 80]
 - Set the output I/O port if configured as "Alarm" message
- After the error condition is removed, filling process can be continued with the F10_2 command.
- You can refer to the operating instructions of the SLP85xD load cells for more details regarding the definition of the weight monitor function.

Examples

$\mathbf{\Lambda}$	F06	Query the current configuration for weight monitor function.
1	F06_B_1_1_1_g F06_B_2_1_1_g F06_B_3_1_1_g F06_B_4_1_1_g F06_A_5_1_1_g	Weight monitor function is activated for all filling phases and follows the characteristic filling curve with a delta parameter of 1 g.
$\mathbf{\Lambda}$	F06_2	Query the current configuration for 2 nd filling phase.
1	F06_A_2_1_1_g	Filling monitor function is activated for the 2 nd filling phase and follows the actual filling curve with a distance of 1 g.
or		
1	F06_A_2_0_1_g	Weight monitor function is deactivated for 2 nd filling phase.

See also

F07 – Time monitor function configuration

Description

Use F07 to configure the weight monitor function. This function can be configured to monitor the filling process based on time.

Syntax

Commands

F07	Query the current configuration for time monitor function.
F07_ <n></n>	Query the current configuration for a certain cut-off point.
F07_ <n>_<active>_<tout></tout></active></n>	Set the configuration for time monitor function.

Responses

F07_B_ <n>_<active>_<tout> F07_B F07_A_<n>_Active>_<tout></tout></n></tout></active></n>	Current configuration for time monitor function.
F07_A_ <n>_Active>_<tout></tout></n>	Current configuration for a certain cut-off point.
F07_A	Command understood and executed successfully.
F07_I	Command understood but currently not executable.
F07_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<n></n>	Integer	1 5	Number of the cut-off point
<active></active>	Boolean	0: off 1: on	Activate / deactivate the time monitor function
<tout></tout>	Float		Time-out duration for the selected cut-off point given in seconds

Comments

- This type of monitor function can be used to monitor whether filling material is filled continuously. If filling is interrupted, it can be understood based on the timeout parameters at which filling phase the problem has occurred.
- If one of the timeout parameters is exceeded, remaining filling process is stopped and the corresponding error bit is set <TOUTN>, see command [F09 Filling application status ▶ Page 80]. This error is interpreted as the interruption of the filling material.
- After the error condition is removed, filling process can be continued with the F10_2 command.
- You can refer to the operating instructions of the SLP85xD load cells for more details regarding the definition of the time monitor function.

Examples

1	F07	Query the current configuration for time monitor function.
↑	F07_B_1_1_1.5 F07_B_2_1_2.5 F07_B_3_0_0 F07_B_4_0_0 F07_A_5_0_0	Time monitor function is activated with the timeout durations of 1.5 s for cut-off point-1 and 2.5 s for the cut-off point-2. Time monitor function is not activated for the cut-off points 3, 4 and 5.
1	F07_1_1_2	Activate the time monitor function for the 1st cut-off point with a timeout duration of 2 s.
↑	F07_A	Command understood and executed successfully.
or		
$\mathbf{\Lambda}$	F07_2	Query the current configuration for 2 nd cut-off point.
↑	F07_A_2_0_0.0	Time monitor function is deactivated for 2 nd cut-off point.

See also

FO8 – Filling statistics

Description

Use F08 to query or reset the statistics of the filling application.

Syntax

Commands

F08	Query the statistics for the filling application.
F08_0	Reset the statistics for the filling application.

Responses

F08_A_ <mean>_<std>_<sum>_<count>_ <actualweight>_<unit>_<totaltime></totaltime></unit></actualweight></count></sum></std></mean>	Current statistics for the filling application.
F08_A	Command understood and executed successfully.
F08_I	Command understood but currently not executable.
F08_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<mean></mean>	Float		Mean value of all actual filling results
<std></std>	Float		Standard deviation of all actual filling results
<sum></sum>	Float		Accumulated weight value of all previous filling cycles
<count></count>	Float		Number of total filling cycles
<actualweight></actualweight>	Float		Last filling result recorded by the load cell
<unit></unit>	String	g, mg, µg	Unit of the weight parameters
<totaltime></totaltime>	Float		Last total filling time recorded by the load cell. Unit given in seconds (s)

Comments

- Filling statistics are calculated by the load cell on a continuous basis, until it is reset by the user with the $F08_0$ command.
- Only successful filling cycles are reflected in the statistics which are not interrupted by manual intervention or aborted due to an error.

Examples

$\mathbf{\Lambda}$	F08	Query the statistics for the filling application.
1	F08_A_1000.050_1.5_1000000.050_ 1000_1000.100_g_4.050	Mean weight value of the filled containers is 1000.050 g with a standard deviation of 1.5 g, and the accumulated weight value of all previous filling cycles is 1000.050 kg. In total, 1000 filling cycles have elapsed.
		Last filling cycle resulted with 1000.100 g as the final weight and 4.050 seconds as the filling time.
$\mathbf{\Lambda}$	F08_0	Reset the filling statistics.
1	F08_A	Command understood and executed successfully.

F09 – Filling application status

Description

Use F09 to query the status of the filling application.

Syntax

Command

F09	Query the status of the filling application.

Responses

F09_A_ <status></status>	Current status of the filling application.
F09_A	Command understood and executed successfully.
F09_I	Command understood but currently not executable.

Parameter

Name	Туре	Values	Meaning
<status></status>	Bit Set	$Status = \sum_{status bit on} 2^{Bit}$	Status of the filling application calculated as bit set
			Refer to the table under the comments for the definition of the individual bits

Comments

• Filling application status is calculated as a bit set according to the following table:

Bit	Designation	Status / Error Condition	
0	General Status Bit	Set if any other bit is 1	
1	TareWeight+	Set if container weight > upper limit for tare weight	
2	TareWeight-	Set if container weight < lower limit for tare weight	
3	TOUT1	Set if filling time until 1 st cut-off point > timeout parameter-1	
4	TOUT2	Set if filling time until 2 nd cut-off point > timeout parameter-2	
5	TOUT3	Set if filling time until 3 rd cut-off point > timeout parameter-3	
6	TOUT4	Set if filling time until 4 th cut-off point > timeout parameter-4	
7	TOUT5	Set if filling time until 4 th cut-off point > timeout parameter-5	
8	Bag/Bottle Breakage	Set if the weight value of the actual filling curve < weight value of the monitor characteristic curve	
9	TOL-	Set if the final filling weight < lower tolerance limit of target weight	
10	TOL+	Set if the final filling weight > upper tolerance limit of target weight	
11	EMPTY	Remains high during the emptying process, see command [F16 – Emptying function configuration > Page 91]	
12	READY	Set once final filling weight is determined and reset once a new container is placed	
13	RESERVED		
14	RESERVED		
15	RESERVED		

• The general status bit is set automatically if one of the error bits (Bit-1 to Bit-10) is set.

• Filling application is stopped automatically, if one of the error bits (Bit-1 to Bit-8) is set.

The values in this register are reset automatically once run or abort command, see command [F10 – Control filling > Page 82] is received by the weighing device.

• The status bits (READY & EMPTY) can be monitored by the control system to check when it is the right time to place a new empty container on the weighing platform after a filling cycle is finished.

Example

$\mathbf{\Lambda}$	F09	Query the statistics for the filling application.
Ϯ	F09_A_97	Following conditions are met; (97 = 1100001B):
		• Timeout for 3th cut-off point is reached.
		• Timeout for 4th cut-off point is reached.

See also

F10 – Control filling

Description

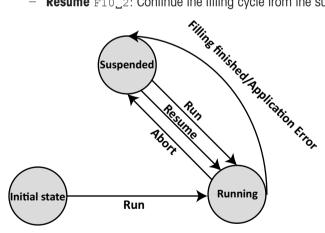
Use F10 to control the state of the filling application.

Syntax

Command

F10. <action></action>	Change the status of the filling control.
I I O C (NO CION)	

Responses


F10_A_ <action></action>	Status of the filling control is changed.
F10_A	Command understood and executed successfully.
F10_I	Command understood but currently not executable.
F10_L	Command understood but not executable (incorrect parameter).

Parameter

Name	Туре	Values	Meaning
<action></action>	Integer	0	Run the filling application
		1	Abort the filling application
		2	Resume the filling application

Comments

- After power-on, the device enters into initial state. Based on the state of the device, different filling control commands are possible:
 - **Run** F10_0: Start the filling cycle from the initial or suspended state, and clear all the filling application status F09. That means that a new filling cycle will start.
 - Abort F10_1: Cancel or interrupt the filling cycle when in the running state.
 - **Resume** F10_2: Continue the filling cycle from the suspended state.

- Once the filling cycle is finished or there are application errors, device enters into the suspended state.
- Under suspended status, user can send **Resume** F10_2 command to continue the unfinished filling cycle, or send the **Run** F10_0 command to start a new filling cycle. Main difference between the "Resume" and "Run" commands is that "Run" command will clear all the filling application status F09, whereas the "Resume" command doesn't change the content of the filling application status.
- If the device is in the suspended status and user wants to start a new filling process, it only needs to send the "Run" command. It is not necessary to return from the "Suspended" status to the "Initial" State.

Example

•	Ł	F10_0	Run the filling application.
	↑	F10_A	Command understood and executed successfully.

See also

F11 – Report filling state

Description

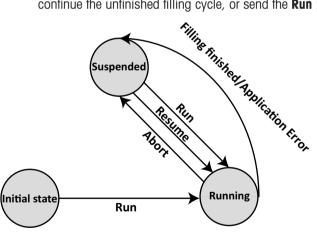
Use F11 to query the current state of the filling application.

Syntax

Command

F11	Query the current state of the filling application.

Responses


F11_A_ <state></state>	Current state of the filling application.
F11_I	Command understood but currently not executable.
F11_L	Command understood but not executable (incorrect
	parameter).

Parameter

Name	Туре	Values	Meaning
<state></state>	Integer	0	Initial state
		1	Running
		2	Suspended / Finished

Comments

- Use F11 to query the state of the filling machine before sending the filling control command F10.
- Following states are possible:
 - Initial state: After power-on, the device enters into initial state.
 - Running state: Filling application is running.
 - Suspended / Finished state: Once the filling cycle is finished or there are application errors, device enters into the suspended state. Under suspended status, user can send Resume F10_2 command to continue the unfinished filling cycle, or send the Run F10_0 command to start a new filling cycle.

Example

$\mathbf{\Lambda}$	F11	Query the current state of the filling application.
$\mathbf{\Lambda}$	F11_1	Filling application is running.

See also

F12 – Filling stability criteria configuration

Description

Use F12 to define the stability criteria for the final control weighing of the filled material.

Syntax

Commands

F12	Query the stability criteria for the final control weighing.
F12_ <tol>_<obsertimeout>_ <stabtimeout></stabtimeout></obsertimeout></tol>	Define the stability criteria for the final control weighing.

Responses

F12_A_ <tol>_<obsertimeout>_ <stabtimeout></stabtimeout></obsertimeout></tol>	Current configuration of the stability criteria for the final control weighing.
F12_A	Command understood and executed successfully.
F12_I	Command understood but currently not executable.
F12_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<tol></tol>	Float	0.1 1000	Tolerance in digits (smallest weight increment) within which the value must stay to be regarded as stable
<obsertimeout></obsertimeout>	Float	0 32535	Observation time in milliseconds during which the value must stay within tolerance in order to be regarded as stable
<stabtimeout></stabtimeout>	Float	0 32535	Stabilization timeout in milliseconds. If this duration is reached during control weighing, last measured value will be taken as the final weight result, regardless from the fulfillment of the stabilization criteria

Comment

During stabilization timeout <StabTimeOut>, actual weight is tested for stability. If the stability condition is met, that means if the actual weight value stays within <Tol> for the duration of <ObserTimeOut>, this is determined as the filling result, even if the stabilization timeout <StabTimeOut> has not yet expired. In any case, the last weight value will be taken as the filling result when the stabilization timeout <StabTimeOut> has expired.

Examples

$\mathbf{\Lambda}$	F12	Query the stability criteria for the final control weighing.
1	F12_A_1.0_200_1000	Final weight has to stay within 1 digit for the duration of 200 ms in order to be regarded as stable. Last measured value will be taken as the filling result after 1000 ms has expired since the start of control weighing.
↓	F12_5.0_300_500	Set stability criteria as follows: Final weight has to stay within 5 digits for 300 ms in order to be regarded as stable. However, last measured value will be taken as the filling result if 500 ms expires without a stable weight value being detected.
1	F12_A	Command understood and executed successfully.

F13 – Filling phase configuration

Description

Use F13 to set the configuration for different filling phases. Up to 5 different filling phases can be configured.

Syntax

Commands

F13	Query the configuration for the filling phases.
F13_ <n></n>	Query the current configuration for a specific filling phase.
F13_ <n>_<active>_<outputon>_<weight- N>_<unit>_<lockdurationn></lockdurationn></unit></weight- </outputon></active></n>	Set the configuration for a specific filling phase.

Responses

<pre>F13_B_<n>_<active>_<outputon>_ <weightn>_<unit>_<lockdurationn> F13_A_<n>_<active>_<outputon>_ <weightn>_<unit>_<lockdurationn></lockdurationn></unit></weightn></outputon></active></n></lockdurationn></unit></weightn></outputon></active></n></pre>	Current configuration for the filling phases.
F13_A_ <n>_<active>_<outputon>_ <weightn>_<unit>_<lockdurationn></lockdurationn></unit></weightn></outputon></active></n>	Current configuration for a specific filling phase.
F13_A	Command understood and executed successfully.
F13_I	Command understood but currently not executable.
F13_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<n></n>	Integer	1 5	Number of the filling phase
<active></active>	Boolean	0: off 1: on	Activate / deactivate selected filling phase
<outputon></outputon>	Bit set	$OutputOn = \sum_{output \ ports \ on} 2^{Bit}$	Set of the digital outputs which will remain high during the selected filling phase
<weightn></weightn>	Float		Upper limit value (cut-off point) for the selected filling phase
<unit></unit>	String	g, mg, ug	Available units for the cut-off point
<lockdurationn></lockdurationn>	Float	0 65535	Lock-out duration given in milliseconds

Comments

- Filling phases can be configured with an upper limit value (cut-off point) and lock-out duration. User can assign to each filling phase a set of output ports. Assigned output port(s) will remain high (logic 1) until the upper limit value (cut-off point) and they will be reset (logic 0) if the upper limit value (cut-off point) has been exceeded.
- Filling phases must be defined in correct sequence $(1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5)$.
- Lock-out duration is defined as the time duration which prevents current filling phase from being cut off prematurely as a result of peak loads (overshoot).

Example

$\mathbf{\Lambda}$	F13	Query the configuration for the filling phases.
↑	F13_B_1_1_3_500.0_g_250 F13_B_2_1_6_850.0_g_100 F13_B_3_0_0_0.0_g_0 F13_B_4_0_0_0.0_g_0 F13_B_5_0_0.0_g_0	Filling phase-1 is activated and is controlled by output ports 1 and 2 (3=00011B) which will remain high until 500 g is measured by the load cell. After filling phase-1 is activated, a lock-out time of 250 ms will be introduced where monitored weight values are not allowed to change the filling phase.
		Filling phase-2 is activated and is controlled by output ports 2 and 3 (6=00110B) which will remain high between 500 g and 850 g. After filling phase-2 is activated (at 500 g), a lock-out time of 100 ms will be introduced where monitored weight values are not allowed to change the filling phase.
		All other normal filling processes are not activated.

F14 – Automatic tare configuration

Description

Use F14 to configure the automatic tare function.

Syntax

Commands

F14	Query the configuration for the automatic tare function.
F14_ <active>_<weight>_<unit>_ <lowtolp>_<upptolp>_<delay></delay></upptolp></lowtolp></unit></weight></active>	Set the configuration for the automatic tare function.

Responses

F14_A_ <active>_<weight>_<unit>_ <lowtolp>_<upptolp>_<delay></delay></upptolp></lowtolp></unit></weight></active>	Current configuration for the automatic tare function.
F14_A	Command understood and executed successfully.
F14_I	Command understood but currently not executable.
F14_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<active></active>	Boolean	0: off 1: on	Activate / deactivate automatic tare function
<weight></weight>	Float		Expected weight of the container
<unit></unit>	String	g, mg, ug	Available units for the expected container weight
<lowtolp></lowtolp>	Float	00	Lower tolerance limit for the tare weight given as $\%$ of the expected container weight
<upptolp></upptolp>	Float	00	Upper tolerance limit for the tare weight given as % of the expected container weight
<delay></delay>	Float	0 65535	Introduced delay for the automatic tare function given in milliseconds

Comments

- Automatic tare function can be activated if the expected container weight is known.
- If the actual container weight is less than the lower tolerance limit of the expected container weight, "TareWeight-" bit is set in the filling application status register, see command [F09 – Filling application status ▶ Page 80] and the filling application is stopped.
- If the actual container weight is more than the upper tolerance limit of the expected container weight, "TareWeight+" bit is set in the filling application status register, see command [F09 – Filling application status > Page 80] and the filling application is stopped.

Example

$\mathbf{\Lambda}$	F14	Query the configuration for the automatic tare function.
1	F14_A_1_50.0_g_2.0_1.0_500	Automatic tare function is activated. Container weight has to be between 49 g (50 g $- 2\%$) and 50.5 g (50 g $+ 1\%$) in order to be accepted. 500 ms delay is introduced after the entry of the start trigger to perform tare.

See also

F15 – Digital output function configuration

Description

Use F15 to assign roles to digital output ports.

Syntax

Commands

F15	Query the roles of all digital output ports.
F15_ <output>_<function></function></output>	Query the role of a specific digital output port.

Responses

F15_B_ <output>_<function> </function></output>	Current assigned roles for all output ports.
F15_A_ <output>_<function></function></output>	
F15_A_ <output>_<function></function></output>	Current assigned role for a specific output port.
F15_A	Command understood and executed successfully.
F15_I	Command understood but currently not executable.
F15_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<output></output>	Integer	1 5	Number of the digital output port
<function></function>	Integer	0	No function
		1	Ready Signal
		2	Empty Signal
		3	Alarm Signal
		4	Valve Control

Comments

- Only a single function can be assigned to each output port.
- Same function can be assigned to multiple output ports except the alarm function. If one output is set to "Alarm" function, another output which is already set to "Alarm" will be set to "No function" automatically, because only one output can be set as alarm.
- If the role of one output port is set or changed for the "Valve" function, then all the settings for the commands F01, F03 and F13 must be checked for consistency.
- The values that these functions can take are given in the table below:

Function	Condition for "O"	Condition for "1"
NoFunction	Always	Never
Ready Signal	By default	"READY" bit is set, see command [F09 – Filling application status ▶ Page 80]
Empty Signal	By default	"EMPTY" bit is set, see command [F09 – Filling application status ▶ Page 80]
Alarm Signal	By default	"General Status Bit" bit is set, see command [F09 – Filling appli- cation status ▶ Page 80]
Valve Control	By default	Based on the status of the filling application, see command [F01 – Automatic prefilling configuration > Page 69], [F03 – Automatic refilling configuration > Page 71], [F13 – Filling phase configu- ration > Page 86]

Example

$\mathbf{\Psi}$	F15	Query the roles of all digital output ports.
1	F15_B_1_1	Following functions are assigned to the digital output
	F15_B_2_2	ports:
	F15_B_3_3	Output-1: "Ready Signal".
	F15_B_4_4	Output-2: "Empty Signal".
	F15_A_5_4	• Output-3: "Alarm Signal".
		Output-4 and Output-5: "Valve Control".

See also

- ${\mathscr O} \ \mbox{ F01}-\mbox{Automatic prefilling configuration } \ \mbox{Page 69}$

F16 – Emptying function configuration

Description

Use F16 to set the durations for the emptying and zeroing functions.

Syntax

Commands

F16	Query the status for the emptying and zeroing functions.
F16_ <active>_<emptyduration>_ <zeroduration></zeroduration></emptyduration></active>	Set the durations for the emptying and zeroing functions.

Responses

F16_A_ <active>_<emptyduration>_ <zeroduration></zeroduration></emptyduration></active>	Current status for the emptying and zeroing functions.
F16_A	Command understood and executed successfully.
F16_I	Command understood but currently not executable.
F16_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<active></active>	Boolean	0: off 1: on	Activate/deactivate emptying and zeroing functions
<emptyduration></emptyduration>	Float	0 to 65535	Bottle/container unloading time in milliseconds during which the "Empty" signal is active
<zeroduration></zeroduration>	Float	0 to 65535	Waiting time after the bottle/container is removed, before sending the zero command to the load cell

Comments

- During the EmptyDuration>, the "Empty" signal is active, and indicates that the bottle/container is being removed from the platform of the weighing device.
- After the EmptyDuration>, if the filling process is controlled by gross weight, then the application must wait for the <zeroDuration> to send the zero command in order to keep the filling accuracy; if the filling process is controlled by the net weight, this process is skipped.

Example

1		Query the status for the emptying and zeroing functions.
1	F16_A_1_500_1000	Emptying and zeroing functions are activated. Current configured <emptyduration> is 500 ms, and the <zeroduration> is 1000 ms.</zeroduration></emptyduration>

See also

FCUT – Filter characteristics (cut-off frequency)

Description

Use ${\tt FCUT}$ to set the cut-off frequency of the fixed filter.

Syntax

Commands

FCUT	Query cut-off frequency.
FCUT_ <frequency></frequency>	Set cut-off frequency.

Responses

FCUT_A_ <frequency></frequency>	Current cut-off frequency.
FCUT_A	Command understood and executed successfully.
FCUT_I	Command understood but currently not executable.
FCUT_L	Command understood but not executable (incorrect parameter).

Parameter

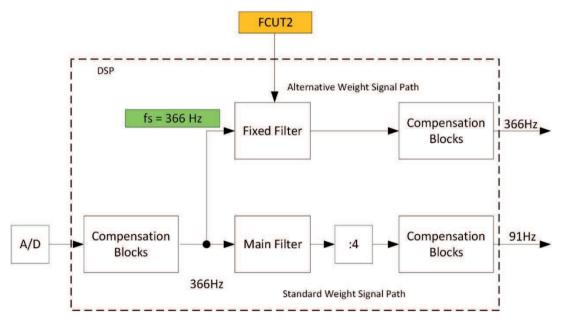
Name	Туре	Values	Meaning
<frequency></frequency>	Float	0 or < 0.001 Hz	not active (M02 active)
		0.001 Hz - 20.0 Hz	Cut-off frequency

Comments

- To use the command FCUT you have to set MO1 to 2 and <Frequency> \geq 0.001 Hz.
- If FCUT is activated (<Frequency> \geq 0.001 Hz), it will override any settings for ambient conditions (MO2) in sensor mode.

Examples

$\mathbf{\Lambda}$	FCUT	Query actual cut-off frequency.
$\mathbf{\Lambda}$	FCUT_A_0.1	Actual cut-off frequency is 0.1 Hz.
1	M01_2	Change weighing mode to sensor mode to enable FCUT.
↑	M01_A	Command understood and executed successfully.
↑	FCUT_3.0	Set cut-off frequency to 3.0 Hz.
↑	FCUT_A	Command understood and executed successfully.


See also

FCUT2 - Filter cut-off frequency of alternative weight path

Description

Set the cut-off frequency of the fixed filter in the alterntive signal path.

The following picture is a simplified block diagram of signal processing containing a standard an an alternative signal path (taken from product WMF). "fs" is defined as the sampling frequency of the input samples of the fixed filter.

Syntax

Commands

FCUT2	Query the parameters from the device.
FCUT2_ <frequency></frequency>	Set the parameters to the device.
FCUT2_0	Reset frequency to factory default.

Responses

FCUT2_A_ <frequency></frequency>	Current filter cut-off frequency of the device.
FCUT2_A	Command understood and executed successfully.
	Command understood but not executable, e.g. value out of the allowed range.

Parameters

Name	Туре	Values	Meaning
<frequency></frequency>	Float	0 to f_{max}	Cut-off frequency in Hz.
	32 bits		O = code to reset the frequency to factory default.
			f _{max} is product dependent.

Initial values

$\mathbf{\Lambda}$	FCUT2	Query the parameters from the device.
1		The initial value is equal to the factory default and defined by the product.

Comments

- FCUT2 is only available when the SAI block format is set to "APW 8 block format" (see [M111 > Page 207]).
- Alternative weight path also known as "fast weight path" or "dosing path".

Examples

$\mathbf{\Lambda}$	FCUT2	Query the parameters from the device.
1	FCUT2_A_0.1	The cut-off frequency on the alternative weight path is 0.1 Hz.
$\mathbf{\Lambda}$	FCUT2_11.0	Set the cut-off frequency to 11 Hz.
↑	FCUT2_A	Command understood and executed successfully.
$\mathbf{\Lambda}$	FCUT2_0	Reset the cut-off frequency to factory default.
↑	FCUT2_A	Command understood and executed successfully.

FSET – Reset all settings to factory defaults

Description

Use FSET to reset all settings to factory defaults.

Syntax

Command

FSET_ <exclusion></exclusion>	Resets all user and interface settings as well as the
	customer calibration to factory settings.

Responses

FSET_A	Command understood and executed successfully.
FSET_L	Command understood but not executable (incorrect
	parameter).

Parameters

Name	Туре	Values	Meaning
<exclusion></exclusion>	Integer	0	Communication parameters are not reset
	1	Resets all settings	
	2	Communication parameters and adjustment (CO, C1, C2, C3 and C4) are not reset	

Comments

- The FSET command cannot be canceled by @.
- All user settings except date (DAT) and time ([TIM ▶ Page 258]) are reset to factory values.
- In case resetting of the interface parameters is included (FSET_1), the answer is returned with the current interface settings and the interface parameters are reset afterwards.
- After the response FSET_A, the weigh module restarts and issues [14 > Page 100] when it's ready again.
- See COPT command to reset all settings on the optional interface.

Example

$\mathbf{\Lambda}$	FSET_1	Reset all settings to factory values.
Υ	FSET_A	Command understood and executed successfully.
$\mathbf{\Lambda}$	I4_A_"B123456789"	Restart, 14 shows the serial number: B123456789.

See also

IO – Currently available MT-SICS commands

Description

The 10 command lists all commands implemented in the present software.

All commands are listed first in level then in alphabetical order - even though levels are not supported anymore the Syntax of this command hasn't changed.

Syntax

Command

IO	Send list of all implemented MT-SICS commands.
Responses	
<pre>I0_B_<level>_<"Command"> I0_B_<level>_<"Command"> I0_B</level></level></pre>	Number of the MT-SICS level where the command belongs to 2nd (next) command implemented.
 I0_A_ <level>_<"Command"></level>	Last command implemented.
IO_I	Command understood but currently not executable

(balance is currently executing another command).

Parameters

Name	Туре	Values	Meaning
<level></level>	Integer	0	MT-SICS level O (Basic set)
		1	MT-SICS level 1 (Elementary commands)
		2	MT-SICS level 2 (Extended command list)
		3	MT-SICS level 3 (Application specific command set)
<"Command">	String		MT-SICS command

Comments

- If a terminal and a weigh module, weighing platform are being used, the command list of the terminal is output. If only a weigh module, platform is being used, the command list of the weigh module, platform is shown.
- If IO lists commands that cannot be found in the manual, these are reserved commands "for internal use" or "for future use", and should not be used or altered in any way.

Example

$\mathbf{\Psi}$	IO	Send list of commands.
↑	I0_B_0_"I0"	Level O command IO implemented.
↑	I0_B	
↑	I0_B_0_"0"	Level 0 command @ (cancel) implemented.
1	I0_B_1_"D"	Level 1 command D implemented.
↑	I0_B	
↑	I0_A_3_"SM4"	Level 3 command SM4 implemented.

See also

I1 – MT-SICS level and level versions

Description

Query MT-SICS level and versions.

Syntax

Command

I1 II	Query of MT-SICS level and MT-SICS versions.
Responses	
I1_A_<"Level">_<"V0">_<"V1">_<"V2">_ <"V3">	Current MT-SICS level and MT-SICS versions.

Command understood but currently not executable.

Parameters

I1_I

Name	Туре	Values	Meaning
<level></level>	String	0	MT-SICS level 0
		01	MT-SICS level 0 and 1
		012	MT-SICS level 0, 1 and 2
		03	MT-SICS level 0 and 3
		013	MT-SICS level 0, 1 and 3
		0123	MT-SICS level 0, 1, 2, and 3
		3	Device-specific with MT-SICS level 3
<"V0"> <"V"3">	String		MT-SICS versions of the related level (0 to 3)

Comment

The command I14 provides more comprehensive and detailed information.

Example

$\mathbf{\Lambda}$	Il	Query the current MT-SICS level and version.
1	I1_A_"0123"_"2.00"_"2.20"_"1.00"_ "1.50"	Level 0-3 is implemented and the according version numbers are shown.

See also

I2 – Device data (Type and capacity)

Description

Use I2 to query the device data (type), including the weighing capacity. The response is output as a single string.

Syntax

Command

- 1		
	T 2	
		Query of the balance data.

Responses

I2_A_<"Type>_ <capacity>_<unit"></unit"></capacity>	Balance type and capacity.
	Command understood but currently not executable (balance is currently executing another command, e.g. taring).

Parameters

Name	Туре	Values	Meaning
<"Type">	String		Type of balance or weigh module
<"Capacity">	String		Capacity of balance or weigh module
<"Unit">	String		Weight unit

Comments

- With DeltaRange balances, the last decimal place is available only in the fine range.
- The number of characters of "text" depends on the balance type and capacity.

Example

$\mathbf{\Lambda}$	12	Query of the balance data.
↑	I2_A_"WMS404C-L_WMS-Bridge_ 410.0090_g"	Balance type and capacity.

See also

I3 – Software version number and type definition number

Description

Provides the software version number and the type definition number.

Syntax

Command

I3	Query of the balance software version and type
	definition number.

Responses

I3_A_<"Software_TDNR">	Balance software version and type definition number.
	Command understood but currently not executable (balance is currently executing another command, e.g. taring).

Parameters

Name	Туре	Values	Meaning
<"Software TDNR">	String		Software version number and type definition number (TDNR)

Comments

- Only the software version of the terminal software is issued.
- If no terminal is present, the bridge software is issued instead.
- More detailed information is available with I14.

Example

$\mathbf{1}$	13	Query of the software version number(s) and type definition number.
↑	I3_A_"2.10_10.28.0.493.142"	2.10: Software version number.
		10.28.0.493.142: Type definition. number

See also

14 – Serial number

Description

Use I4 to query the serial number of the balance terminal.

Syntax

Command

I4	Query of the serial number.

Responses

I4_A_<"SerialNumber">	Serial number.
	Command not understood, not executable at present Command understood but currently not executable (balance is currently executing another command, e.g. initial zero setting).

Parameter

Name	Туре	Values	Meaning
<"SerialNumber">	String		Serial number

Comments

- The serial number agrees with that on the model plate and is different for every balance.
- The serial number can be used, for example, as a device address in a network solution.
- The balance response to 14 appears unsolicitedly after switching on and after the cancel command @.
- More detailed information is available with I14.
- Only the serial number of the terminal is issued.
- If no terminal is present, the serial number of the bridge is issued instead.

Example

$\mathbf{\Lambda}$	I4	Query of the serial number.
↑	I4_A_"B021002593"	The serial number is "B021002593".

See also

15 – Software material number

Description

Use 15 to query the software material number (SW-ID).

Syntax

Command

]	15	Query of the software material number and index.

Responses

I5_A_<"Software">	Software material number and index.
	Command understood but currently not executable (balance is currently executing another command).

Parameter

Name	Туре	Values	Meaning
<"Software">	String		Software material number and index

Comments

- The SW-ID is unique for every Software. It consists of a 8 digit number and an alphabetic character as an index
- More detailed information is available with 114.
- Only the SW-ID of the terminal is issued.
- If no terminal is present, the SW-ID of the bridge is issued instead.

Example

$\mathbf{\Lambda}$	15	Query of the software material number and index.
$\mathbf{\Lambda}$	I5_A_"12121306C"	12121306C: Software material number and index.

See also

I10 – Device identification

Description

Use IIO to query or define the balance identification (balance ID). This allows an individual name to be assigned to a balance.

Syntax

Commands

I10	Query of the current balance ID.
I10_<"ID">	Set the balance ID.

Responses

I10_A_<"ID">	Current balance ID.
I10_A	Command understood and executed successfully.
I10_I	Command understood but currently not executable (balance is currently executing another command).
IlO_L	Command not executed as the balance ID is too long (max. 20 characters).

Parameter

Name	Туре	Values	Meaning
<"ID">	String	5 20 chars	Balance or weigh module identification

Comments

• A sequence of maximum 20 alphanumeric characters are possible as <ID>.

• The set balance ID is retained even after the cancel command @.

Example

$\mathbf{\Lambda}$	IlO	Query of the current balance ID.
$\mathbf{\Lambda}$	I10_A_"My_Balance"	The balance ID is "My Balance".

I11 – Model designation

Description

This command is used to output the model designation.

Syntax

Command

III Query of the current balance or weigh module type.		
	I11	Query of the current balance or weigh module type.

Responses

I11_A_<"Model">	Current balance or weigh module type.
	Type can not be transferred at present as another
	operation is taking place.

Parameter

Name	Туре	Values	Meaning
<"Model">	String	Max 20 chars	Balance or weigh module type

Comments

• A sequence of maximum 20 alphanumeric characters is possible as <model>.

- The following abbreviations used in model designations are relevant to MT-SICS:
 - DR = Delta Range.
 - DU = Dual Range.
 - /M, /A = Approved balance or weigh module.

Example

$\mathbf{\Lambda}$	I11	Query of the current weigh module type.
1	I11_A_"WMS404C-L/10"	The weigh module is an "WMS404C-L/10".

I14 – Device information

Description

This command is used to output detailed information about the device. All components – including optional accessories – are taken into account and the associated data is output.

Syntax

Command

Responses

I14_A_ <no>_<index>_<"Info"></index></no>	Current balance information.
I14_I	Command understood but currently not executable.
	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<no></no>	Integer	0	Instrument configuration
		1	Instrument description
		2	SW-identification number
		3	SW version
		4	Serial number
		5	TDNR number
<index></index>	Integer		Index of instrument module
<"Info"> S	String	<bridge></bridge>	Weighing bridge information corresponding to $<\!\!\operatorname{No}\!\!>$
		<terminal></terminal>	Balance terminal information corresponding to $<\!\!\operatorname{No}\!\!>$
		<option></option>	Balance option information corresponding to <no></no>
		<balance></balance>	Balance information corresponding to <no></no>
		<printer></printer>	Printer information corresponding to <no></no>
		<second Display></second 	Second Display information corresponding to $<\!\!\operatorname{No}\!\!>$

Comments

- The response to the query of instrument configuration can comprise one or more lines (compact balances, bridges with/without terminal etc.)
- The description of an option is the language-independent product name, e.g. "RS232-Option".
- If there are several modules of the same kind, the descriptions have an appendix, comprising of a hyphen and a number. Examples: <option-1>, <option-2>.

Examples

$\mathbf{\Lambda}$	I14_0	Query of the current balance information.
Τ	I14_B_0_1_"Bridge"	Bridge.
Υ	I14_B_0_2_"Terminal"	Terminal.
↑	I14_A_0_3_"Option"	Option.
$\mathbf{\Lambda}$	114_1	Query of the current instrument descriptions.
Τ	I14_B_1_1_"X205T"	Bridge is a "X205T".
Υ	I14_B_1_2_"PAT"	Excellence Plus Terminal.
↑	I14_A_1_3_"RS232_Option"	RS232 Option.
$\mathbf{\Lambda}$	I14_2	Query of the current Software identification numbers.
↑	I14_B_2_1_"11670123A"	Software identification number of the bridge is "11680123A".
↑	I14_B_2_2_"11670456B"	Software identification number of the terminal is "11680456B".
1	I14_A_2_3_"11670789B"	Software identification number of the option is "11680789B".
$\mathbf{\Lambda}$	I14 _ 3	Query of the current software versions.
Υ	I14_B_3_1_"4.23"	Version of the bridge software is "4.23".
Υ	I14_B_3_2_"4.10"	Version of the terminal software is "4.10".
↑	I14_A_3_3_"1.01"	Version of the RS232 option software is "1.01".
$\mathbf{\Lambda}$	I14_4	Query of the serial numbers.
1	I14_B_4_1_"0123456789"	Serial number of the bridge is "0123456789".
1	I14_B_4_2_"1234567890"	Serial number of the terminal is "1234567890".
↑	I14_A_4_3_"2345678901"	Serial number of the RS232 option is "2345678901".
$\mathbf{\Lambda}$	I14 _ 5	Query of the type definition numbers.
Υ	I14_B_5_1_"1.2.3.4.5"	Type definition number of the bridge is "1.2.3.4.5".
Ϯ	I14_B_5_2_"1.2.3.4.5"	Type definition number of the terminal is "1.2.3.4.5".
1	I14_A_5_3_"1.2.3.4.5"	Type definition number of the RS232 option is "1.2.3.4.5".

I15 – Uptime

Description

Delivers the uptime; the period during which the device program is executing since start or restart or reset.

Syntax

Command

I15	Query the uptime.

Responses

I15_A_ <minutes></minutes>	Time in minutes since uptime, accuracy +/-5%.
I15_I	Uptime can not be transferred at present as another
	operation is taking place.

Parameter

Name	Туре	Values	Meaning
<minutes></minutes>	String		Uptime (in minutes) since start or restart or reset

Example

$\mathbf{\Lambda}$	I15	Query the uptime.
$\mathbf{\Lambda}$	I15_A_123014	The balance program is executed approx.
		123014 minutes (since start or restart or reset).

I16 – Date of next service

Description

You can use II6 to query the date when the balance is next due to be serviced.

Syntax

Command

I16	Query the date of next service.

Responses

I16_A_ <day>_<month>_<year></year></month></day>	Current date of next service.
I16_I	Date of next service can not be transferred at present
	as another operation is taking place.

Parameters

Name	Туре	Values	Meaning
<day></day>	Integer	01 31	Day
<month></month>	Integer	01 12	Month
<year></year>	Integer	2000 2099	Year

$\mathbf{\Lambda}$	Il6	Query the date of next service.
↑	I16_A_19_07_2011	Date of next service is July 19, 2011.

I21 – Revision of assortment type tolerances

Description

Use ${\tt I21}$ to query the revision of assortment type tolerances.

Syntax

Command

т 2 1	Query the revision of genertment type telerances
	Query the revision of assortment type tolerances.

Responses

I21_A_<"Revision">	Revision of assortment type tolerances.
I21_I	Balance type can not be transferred at present as
	another operation is taking place.

Parameter

Name	Туре	Values	Meaning
<"Revision">	String	7 30 chars	Revision

$\mathbf{\Lambda}$	121	Query the revision of assortment type tolerances.
1	I21_A_"5678"	The revision is "5678".

126 – Operating mode after restart

Description

Use 126 to query the operating mode.

Syntax

Command

I26	Query of the operating mode.

Responses

I26_A_ <mode></mode>	Operating mode.
I26_I	Operating mode can not be transferred at present as
	another operation is taking place.

Parameter

Name	Туре	Values	Meaning
<mode></mode>	Integer	0	User mode
		1	Production mode
		2	Service mode
		3	Diagnostic mode

$\mathbf{\Lambda}$	I26	Query of the operating mode.
$\mathbf{\Lambda}$	I26_A_0	Operation mode is: user mode.

I27 – Change history from parameter settings

Description

Use 127 to query the change history from the parameter settings.

Syntax

Command

I27

Responses

I27_B_ <no>_<day>_<mon- th>_<year>_<hour>_<min- ute>_<"Name">_<"ID">_<"What">_ <"Old">_<"New"></min- </hour></year></mon- </day></no>	Get change history.
I27_B I27_A_ <no>_<day>_<month>_<year>_<hour>_ <minute>_<"Name">_<"ID">_<"What">_<"Old" >_ <"New"></minute></hour></year></month></day></no>	
I27_A	No data, empty change history.
I27_I	Command understood but currently not executable.

Query the change history.

Parameters

Name	Туре	Values	Meaning
<no></no>	Integer	1 n	Change number (n is product dependent)
<day></day>	Integer	1 31	Day on which the parameter has been changed
<month></month>	Integer	1 12	Month on which the parameter has been changed
<year></year>	Integer	2000 2099	Year on which the parameter has been changed
<hour></hour>	Integer	0 23	Hour on which the parameter has been changed
<minute></minute>	String	0 59	Minute on which the parameter has been changed
<"Name">	String		User name
<"ID">	String		Identification
<"What">	String		Title of changed parameter
<"01d">	String		Old value
<"New">	String		New value

$\mathbf{\Lambda}$	I27	Query change history.
1	I27_B_1_12_12_2009_12_00_"User_1"_ "1"_"Number_of_users"_"User_6_0ff"_ "User_6_0n"	Last change: Number of users -> User 6 from off to on.
1	I27_A_2_01_12_2009_10_22_"User_1"_ "1"_"PasswChange_Date"_"0ff"_ "On"	Password change date from off to on.

I29 – Filter configuration

Description

Query actual filter configuration.

Syntax

Command

	I29	Query filter configuration.
--	-----	-----------------------------

Responses

I29_A_ <weighingmode>_<environment></environment></weighingmode>	Current filter configuration.
129 _ I	Command understood but currently not executable.

Parameters

Name	Туре	Values	Meaning
<weighingmode></weighingmode>	Integer	0	Normal weighing / Universal
		1	Dosing
		2	Sensor mode
		3	Check weighing
	4	Dynamic weighing	
<environment></environment>	invironment> Integer	0	Very stable
		1	Stable
		2	Standard
		3	Unstable
	4	Very unstable	

Comment

See [M01 ▶ Page 157] and [M02 ▶ Page 158] to change filter settings.

Example

$\mathbf{\Lambda}$	129	Query of the current state of the level sensor.
1	I29_A_0_2	The actual filter setting is: Normal weighing /
		Standard.

See also

132 – Voltage monitoring

Description

132 returns the scaled reading from the voltage monitoring channels in volt. The number of channels is product specific.

Syntax

Commands

I32	Request the voltage of all channels.
I32_ <channel></channel>	Request the voltage of a specific channel.

Responses

I32_B_ <channel>_<voltage> I32_B I32_A_<channel>_<voltage></voltage></channel></voltage></channel>	Current voltage values for all channels.
I32_A_ <channel>_<voltage></voltage></channel>	Current voltage value for a specific channel.
I32_I	Command understood but currently not executable.
I32_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<channel></channel>	Integer	0 to N	ID of available voltage monitor channel
			Range of values: 0 highest available voltage monitor channel
<voltage></voltage>	Float		Voltage of the voltage monitoring channel, in Volt

Comments

- By this command, the ADC information is made accessible for diagnostic and service purpose.
- If no voltage monitor channel is configured, the command I32 is not available and will not be shown in the command list like I0.

$\mathbf{\Lambda}$	132	Request the voltage of all configured voltage monitor channels.
↑	I32_B_0_1.1988465E1 I32_B_1_1.1679084E1 I32_B_21.2217906E1 I32_B_3_3.9961543E0 I32_A_4_1.5718208E0	There are five voltage monitor channels available Channel-0: 11.988 V. Channel-1: 11.679 V. Channel-2: -1.222 V. Channel-3: 4 V. Channel-4: 1.572 V.

143 – Selectable units for host unit

Description

Returns the selectable units for host unit. This command is used for the terminal menu to display the selectable items only.

Syntax

Command

I43	Query the selectable units for host unit.
Deenenee	

Responses

I43_A_ <units>_<actunit>_ <factory></factory></actunit></units>	Selectable units for host unit.
I43_I	Command understood but currently not executable.
I43_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<units></units>	Bit set		Sum value of selectable units, calculated in accordance with the following formula
			$Environments = \sum_{Selectable EnvironmentIndexs} 2^{EnvironmentIndex}$
			Units is set to 0. In this case the menu item 'select unit' is not shown. The definition unit will be used as the only available unit
<actunit></actunit>	Integer	-1 … max. unit index	Actual unit for host unit. This parameter is read from M21_0
<factory></factory>	Integer	-1 … max. unit index	Factory setting for host unit

Examples

\mathbf{h}	I43	Given the balance supports only "g" as unit 1 then the answer for this command is:
↑	I43_A_1_0_0	This is because the index for "g" is 0 and $2^0 = 1$.
\mathbf{A}	I43	Given the balance supports "g", "kg", "mg" and "ct" as display unit then the answer for this command is:
1	I43_A_43_3_0	The actual unit is "mg", the factory setting is "g" and the possible units are "g", "kg", "mg" and "ct".
		The indexes for the units mentioned before are 0, 1, 3 and 5 and so the sum is $2^{0} + 2^{1} + 2^{3} + 2^{5} = 43$.

See also

144 – Selectable units for display unit

Description

Returns the selectable units for display unit. This command is used for the terminal menu to display the selectable items only.

Syntax

Command

144	Query the selectable units for display unit.
Responses	

I44_A_ <units>_<actunit>_ <factory></factory></actunit></units>	Selectable units for display unit.
I44_I	Command understood but currently not executable.
I44_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<units></units>	Bit set		Sum value of selectable units, calculated in accordance with the following formula
			$Environments = \sum_{Selectable EnvironmentIndexs} 2^{EnvironmentIndex}$
			Units is set to 0. In this case the menu item 'select unit' is not shown. The definition unit will be used as the only available unit
<actunit></actunit>	Integer	-1 max. unit index	Actual unit for display unit. This parameter is read from M21_0
<factory></factory>	Integer	-1 … max. unit index	Factory setting for host unit

Examples

1	I44	Given the balance supports only "g" as info unit then the answer for this command is:
1	I44_A_1_0_0	This is because the index for "g" is 0 and $2^0 = 1$.
\mathbf{h}	I44	Given the balance supports "g", "kg", "mg" and "ct" as info unit then the answer for this command is:
1	I44_A_43_3_0	The actual unit is "mg", the factory setting is "g" and the possible units are "g", "kg", "mg" and "ct".
		The indexes for the units mentioned before are 0, 1, 3 and 5 and so the sum is $2^0 + 2^1 + 2^3 + 2^5 = 43$.

See also

145 – Selectable environment filter settings

Description

This command returns the selectable environment filter settings for use in the device menu. The device application must know which items are selectable in order to display them correctly.

Syntax

Command

Image: 145 Query the environment filter settings.

Responses

-	
I45_A_ <environments>_<actenvt>_ <factory></factory></actenvt></environments>	Selectable environment filter settings.
I45_I	Command understood but currently not executable.
I45_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<environments></environments>	Bit set		List of supported environmental conditions. Sum value of selectable units, calculated in accordance with the following formula $Environments = \sum 2^{EnvironmentIndex}$
			$Environments = \sum_{Selectable Environment Indexes} Z$
			Environment Index: in accordance with the table defined under comments
<actenvt></actenvt>	Integer	1 5	Actual environment setting. This parameter is read from M02
<factory></factory>	Integer	1 5	Environment factory setting

Comment

Available environment parameters are given in the table below:

ID	Environmental condition
0	Very stable
1	Stable
2	Standard
3	Unstable
4	Very unstable
5	Automatic

Examples

$\mathbf{\Lambda}$	I45	Query the environment filter settings.
↑	I45_A_14_1_2	Available environment modes: Stable, Standard and Unstable $(14 = 2^1 + 2^2 + 2^3)$ Actual value: Stable (1) Factory preset: Standard (2).
$\mathbf{\Lambda}$	I45	Query the selectable units for host unit.
1	I45_A_4_2_2	Available environment modes: Standard $(4 = 2^2)$ Actual value: Standard (2) Factory preset: Standard (2).

See also

146 – Selectable weighing modes

Description

This command returns the selectable weighing modes for use in the device menu. The device application must know which items are selectable in order to display them correctly.

Syntax

Command

146	Query the weighing mode settings.	
-----	-----------------------------------	--

Responses

I46_A_ <modes>_<actmode>_<factory></factory></actmode></modes>	Current selectable weighing mode settings.
I46_I	Command understood but currently not executable.
I46_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<modes></modes>	Bit set		Sum value of weighing modes. The sum calculated in accordance with the following formula:
			$Modes = \sum_{SelectableWeighingModes} 2^{Weighing mode}$
			Mode index: in accordance with the table defined under comments
<actmode></actmode>	Integer	1 20	Actual weighing mode setting. This parameter is read from MO1
<factory></factory>	Integer	1 20	Weighing mode factory setting

Comment

Available weighing mode parameters are given in the table below:

ID	Environmental condition
0	Normal weighing
1	Dosing
2	Fixed filter
3	Absolute weighing
4	Dynamic weighing
6	Raw weight values / No filter

Example

$\mathbf{\Lambda}$	I46	Query the weighing mode settings.
1	I46_A_3_1_0	Only normal weighing and dosing $(3 = 2^0 + 2^1)$ can
		be selected in the menu.
		The current setting is dosing (1) and factory setting is
		normal weighing (0).

See also

MO1 – Weighing mode ▶ Page 157

147 – Switch-on range

Description

This command reads the upper and lower bound of the switch-on range. The switch-on range is defined relatively to the production zero point.

Syntax

Command

		I47	Query switch-on range.
--	--	-----	------------------------

Responses

```
I47_A_<Min>_<Max>_<Unit> Switch-on range.
```

Parameters

Name	Туре	Values	Meaning
<min></min>	Float		Lower bound of the switch-on range in the host unit
<max></max>	Float		Upper bound of the switch-on range in the host unit
<unit></unit>	String		The unit used for this command is the host unit
			The unit can be selected by using the M21 command

Comment

Min and max value are formatted with the finest resolution.

$\mathbf{\Lambda}$	I47	Query the switch-on range
$\mathbf{\Lambda}$	I47_A2_18_g	The device can make the switch-on operation within
		-2 g and +18 g around the production zero value

148 – Initial zero range

Description

This command reads the upper and lower bound of the initial zero range. The initial zero range is defined relatively to the production zero point.

Syntax

Command

I48 Query initial zero range.

Responses

I48_A_ <min>_<max>_<unit></unit></max></min>	Initial zero range.
I48_I	Command understood but currently not executable.
I48_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<min></min>	Float		Lower bound of the initial zero range in the host unit
<max></max>	Float		Upper bound of the initial zero range in the host unit
<unit></unit>	String		The unit used for this command is the host unit
	(ASCII)		The unit can be selected by using the M21 command

Comment

Min and max value are formatted with the finest resolution.

Example

$\mathbf{\Lambda}$	I48	Query the initial zero range
1	I48_A2_18_g	The device can make the initial zero operation within
		-2 g and +18 g around the production zero value

See also

150 – Remaining weighing ranges

Description

You can use 150 to query the remaining weighing ranges.

Syntax

Command

150	Query of the remaining weighing ranges.
Responses	

I50_B_ <rangeno>_<range>_<unit></unit></range></rangeno>	List of remaining weighing ranges.
I50_B	
I50_A_ <rangeno>_<range>_<unit></unit></range></rangeno>	
ISO_L	Command understood but not executable (incorrect or no parameter).
I50_I	Command understood but currently not executable.

Parameters

Name	Туре	Values	Meaning
<rangeno></rangeno>	Integer	0	Remaining maximum weighing range
		1	Remaining range in which internal or initial adjustment are still possible
	2	Remaining range in which external adjustment is still possible	
<range></range>	Float		This number indicates the remaining range. A value with a preceding negative sign indicates the amount by which the range is exceeded
<unit></unit>	String		Returns the range in the currently set weight unit

Comments

- The range values relate to the sum of all loads on the weighing platform (pre, tare, net load) and are to be understood as reference values. If a range is shown as being exceeded, the preload, or possibly only the tare or net load, can be reduced.
- If there is no built-in weight available, the remaining range (value 1) is zero.
- The remaining range in which an external adjustment is still possible depends on the setting of M19.

Example

$\mathbf{\Lambda}$	I50	Query of the current state of the level sensor
↑	I50_B_0535.141_kg I50_B_118.973_kg	With the given preload, a remaining weighing range of about 535 kg is available.
	I50_A_2335.465_kg	An internal adjustment by the user is not possible because the total load of approximately 19 kg is too heavy. An external adjustment is still possible up to a further additional load of 335 kg.

See also

I51 – Power-on time

Description

Delivers the power-on time; the period during which the device is powered including short interruptions (e.g. power, restart etc.) with negligible impact on thermal model of the device.

Syntax

Command

151	Query of the power-on time.
Deenenee	

Responses

I51_A_ <days>_<houre>_<minutes>_ <seconds></seconds></minutes></houre></days>	Power-on time data.
I51_I	Command understood but currently not executable.

Parameters

Name	Туре	Values	Meaning
<days></days>	Integer	0 65535	Power-on time days
<houre></houre>	Integer	0 23	Power-on time hours
<minutes></minutes>	Integer	0 59	Power-on time minutes
<seconds></seconds>	Integer	0 59	Power-on time seconds

Comment

The power-on time is counted up as long as the microprocessor has power. The power-on time is zero after a power loss. The power-on time is not touched by a restart or reset of the microprocessor. To handle the restart or reset effects, the time information is stored immediately before the restart or reset function is executed.

$\mathbf{\Lambda}$	151	Query the power-on time data.
1	I51_A_1456_17_3_37	The power-on time is 1456 days 17 hours 3 minutes and 37 seconds.

152 – Auto zero activation settings

Description

This command reads the activation settings for the auto zero feature.

Syntax

Command

	Query the auto zero activation settings.
102	Query the auto zero activation settings.

Responses

I52_A_ <activation></activation>	Initial auto zero activation.
I52_I	Command understood but currently not executable.
I52_L	Command understood but not executable (incorrect parameter).

Parameter

Name	Туре	Values	Meaning	
<activation></activation>	Integer	0 3	Identification for the au	to zero activation settings.
				or auto zero switched on/off ging of the auto zero on/off 3
			Auto zero function	Changing by MO3
		0	Switched off	Prohibited
		1	Switched on	Prohibited
		2	Switched off	Permitted
		3	Switched on	Permitted

Comment

In OIML R 76-1 [19], this feature is called "zero-tracking".

Examples

$\mathbf{\Lambda}$	152	Query the auto zero activation settings.
1	I52_A_1	The auto zero function is enabled, and cannot be altered by the M03 command.
$\mathbf{\Lambda}$	152	Query the auto zero activation settings.
1	I52_A_3	The auto zero function is enabled, and can be altered by the ${\tt M03}$ command.

See also

MO3 – Auto zero function ▶ Page 159

153 – Ipv4 runtime network configuration information

Description

This command will return information entries for each lpv4 based network interface that is currently configured in the network stack of the weigh module. The command is similar to the "ipconfig" command on Windows. The information is based on the settings that are currently operational in the network stack. The information might change after a factory reset. The IP configuration of an application is defined as follows:

- Host IP Address, see M70
- Netmask, see M70
- optional item: Default Gateway Address, see M71
- optional item: Domain Name Service (DNS-) Server Address, see M72

IP configuration can either be set manually, **see** M70) or obtained from a DHCP server, **see** M69). For the case that DHCP server becomes unavailable (due to network problems, crash,..) a fallback IP adress must be configured. Such a fallback configuration can either be given manually, **see** M70) or by "AutoIP" (this feature will assign an IP without contacting a server, as on Windows PCs). However, AutoIP is not a real use case.

The IP settings made by above mentioned M-commands are stored in non-volatile memory. The settings only take effect after a reboot.

Syntax

Commands

153	Query the runtime network configuration information.
I53_ <index></index>	Query the network interface index.

Responses

<pre>I53_B_<index>_<"Name">_<state>_<"MAC">_ <dhcp>_<autoip>_<"Host">_<"Netmask">_ <"DefaultGateway">_<"DNSServer"> I53_B_<index>_<"Name">_<state>_<"MAC">_ <dhcp>_<autoip>_<"Host">_<"Netmask">_ <"DefaultGateway">_<"DNSServer"> I53_A_<index>_<"Name">_<state>_<"MAC">_ <dhcp>_<autoip>_<"Host">_<"Netmask">_ <dhcp>_<autoip>_<"Host">_<state>_<"MAC">_ <dhcp>_<autoip>_<"Name">_<state>_<"MAC">_ <dhcp>_<autoip>_<"Host">_<state>_<"MAC">_ <dhcp>_<autoip>_<"Host">_<"Netmask">_ <dhcp>_<autoip>_<"Host">_<"Netmask">_ <"DefaultGateway">_<"DNSServer"></autoip></dhcp></autoip></dhcp></state></autoip></dhcp></state></autoip></dhcp></state></autoip></dhcp></autoip></dhcp></state></index></autoip></dhcp></state></index></autoip></dhcp></state></index></pre>	Current runtime network configuration information.
I53_A	Command understood and executed successfully.
I53_I	Command understood but currently not executable (no network interfaces present in the system).
I53_L	Command understood but not executable (no network interfaces with index "1" present in the system).

Parameters

Name	Туре	Values	Meaning
<index></index>	Integer	0 or n	Network interface index
		0	1 st network interface
		n	n +1 th network interface
<"Name">	String		Name of the network interface
<state></state>	Integer	0 2	State of the network interface
		0	Disabled (down)
		1	Enabled but media disconnected
		2	Enabled and connected
<"MAC">	String	Max 17 chars	MAC address of the network interface. Must be in format "00:00:00:00:00:00"

Name	Туре	Values	Meaning
<dhcp></dhcp>	Boolean	0 1	DHCP enabled or disabled
		0	DHCP disabled
		1	DHCP enabled
<autoip></autoip>	Boolean	0 1	AutoIP enabled or disabled
		0	AutoIP disabled
		1	AutoIP enabled
<"Host">	String	Max 15 chars	Ipv4 address (dot-decimal notation) of the device on the given network interface
<"Netmask">	String	Max 15 chars	Ipv4 netmask (dot-decimal notation) on the given network interface
<"DefaultGateway">	String	Max 15 chars	Ipv4 default gateway (default router) address (dot- decimal notation) on the given network interface
<"DNSServer">	String	Max 15 chars	Ipv4 address (dot-decimal notation) of the DNS (Domain Name Service) server on the given network interface

Comment

Before setting an IP configuration on a device (manually or by setting a fallback IP configuration in the DHCP case), the responsible person (e.g. from the IT department) for the network where the device will be connected to has to be contacted to work out a valid IP configuration for the device.

$\mathbf{\Lambda}$	153	Query the runtime network configuration information.
	<pre>I53_B_0_"eth0"_2_ "11:22:33:44:55:66"_1_1_"10.0.0.2"_ "255.255.255.0"_"10.0.0.1"_ "10.0.0.1" I53_B_1_"eth1"_1_ "aa:bb:cc:dd:ee:ff"_1_1_ "192.168.0.2"_"255.255.255.0"_ "0.0.0.0"_"192.168.0.1" I53_A_2_"wifi0"_0_ "aa:00:cc:11:ee:22"_1_1_ "172.24.225.100"_"255.255.254.0"_ "172.24.225.1"_"172.24.225.2"</pre>	The network interface "ethO" is fully configured and operational. The network interface "eth1" is disconnected from the cable and no default gateway is configured. The network interface "wifiO" is currently disabled. All network interfaces do have DHCP and AutoIP enabled.
$\mathbf{\Lambda}$	153_1_0	Query the settings from network interfaces 1.
1	I53_B_1_"eth1"_1_ "aa:bb:cc:dd:ee:ff"_1_1_ "192.168.0.2"_"255.255.255.0"_ "0.0.0.0"_"192.168.0.1"	The network interface 1 "eth1" is disconnected from the cable and no default gateway is configured.

154 – Adjustment loads

Description

This command queries the weight increment for external adjustments. If the increment is bigger than 0, the weighing device can be adjusted by a defined range of external adjustment weights. This is called VariCal.

Syntax

Command

	IS	54	Query the weight increment for external adjustments.
--	----	----	--

Responses

I54_A_ <min>_<max>_<increment></increment></max></min>	Adjustment loads.
I54_I	Command understood but currently not executable.
	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<min></min>	Float		Smallest load in the definition unit
<max></max>	Float		Biggest load in the definition unit
<increment></increment>	Float		Load increment in the definition unit. Starting with the smallest load, the intermediate loads are defined in increments of the Increment parameter

$\mathbf{\Lambda}$	154	Query the weight increment for external adjustments.
↑		In the case of external adjustment, the loads for selection are 1000 g, 1750 g, 2500 g and 3000 g.

155 – Menu version

Description

This command queries the menu version of the device SW.

Syntax

Commands

155	Query the menu version.
I55_A	Set the menu version.

Responses

I55_A_ <version></version>	Current menu version.
I55_I	Command understood but currently not executable.
155_L	Command understood but not executable (incorrect parameter).

Parameter

Name	Туре	Values	Meaning
<version></version>	Integer	0 n	Menu version (n is product dependent)

Comments

• The menu structure consists of menu item, menu item value range and menu item level.

• The menu version is model dependent.

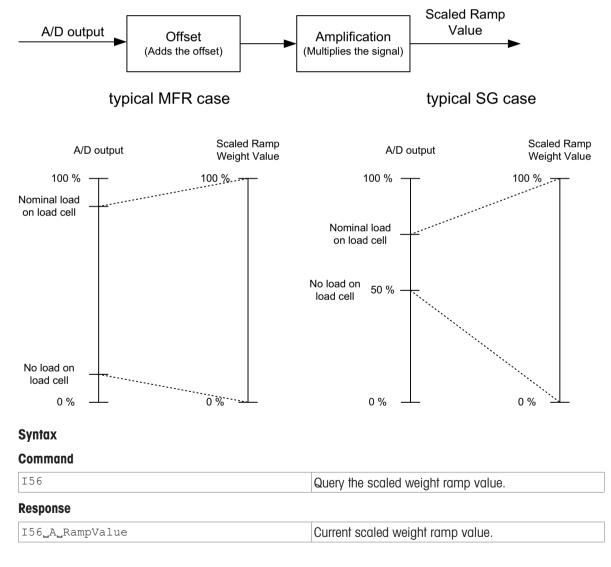
$\mathbf{\Lambda}$	155	Query the menu version.
$\mathbf{\Lambda}$	I55_A_3	The menu version is 3.

156 – Scaled weight ramp value

Description

This command is used to read the scaled weight ramp value. It is used for error diagnosis in the field, where it is very useful for locating an error in a weighing system. The scaled weight ramp value is defined as follows:

The value indicates the deflection of a digital load cell. It represents the deflection without any additional structures like for example weighing pans.


The value neither has a relation to the final weighing value nor is it processed by the Signal Processing or the Post Processing.

For both, strain gage and MFR weighing systems, a scaled weight ramp value of 0% represents no load on the digital load cell and a scaled weight ramp value of 100% means that nominal load is applied on the digital load cell.

In order to accomplish this, a scaled weight ramp value generator is introduced, consisting of an offset block and an amplification block. These blocks are needed to scale the A/D converter output signal.

The scaled weight ramp value is not restricted to the range of 0% to 100%. For example if one accidentally connects a load cell with a higher sensitivity than the formerly connected, then the scaled weight ramp value may be greater than 100% unless the configuration of the scaled weight ramp value generator is changed.

The configuration of the scaled weight ramp value generator shall be written at the end of the production and is the same per assortment type.

Parameter

Name	Туре	Values	Meaning
RampValue	Float		Scaled weight ramp value in percent, with one digit after the decimal point

Comment

This command is used to display the menu item named "Ramp value" in the service menu of the pegaFOOD terminals.

Example

$\mathbf{\Lambda}$	I56	Query the scaled weight ramp value.
↑	I56_A_56.3	The scaled weight ramp value is 56.3%.

See also

159 – Get initial zero information

Description

If a weighing device is starting up it is supposed to perform an initial zero operation before any weight values can be obtained from the device. If someone wants to obtain weight values before the initial zero operation has been successfully performed the device refuses to send weight values. In order to successfully perform the initial zero operation the load on the weight receptor must be within the switch on range limits. In the case where the initial zero operation can't be performed successfully the user gets no information if the switch on range limits are exceeded or not. This command is used to determine if currently an initial zero operation is in progress and if the switch on range limits are exceeded or not.

Syntax

Command

159	Query the initial zero information.

Kesponse

I59_A_ <initzero>_<loadstate></loadstate></initzero>	Current Initial information.
--	------------------------------

Parameters

Name	Туре	Values	Meaning
<initzero></initzero>	Integer	0 2	Indicates whether an initial zero operation is in progress or not
		0	Undefined e.g. If initial zero operation not started
		1	Initial zero operation in progress
		2	Initial zero operation done
<loadstate></loadstate>	Integer	+	Load above upper switch on range limit
		-	Load below lower switch on range limit
		S	Load within switch on range limits and stable
		D	Load within switch on range limits and unstable
		0	Undefined – If the parameter "InitZero" equals to 0 or 2 the parameter "LoadState" always equals to undefined

Comment

If a zero value and an initial zero value has been saved with the [M35 > Page 178] command the initial zero value is restored from the saved initial zero value. The answer in this case will be 159_A_2_0.

$\mathbf{\Lambda}$	I59	Query the initial zero information.
1	I59_A_1_+	The initial zero operation is in progress and the load is above the upper switch on range limit.
$\mathbf{\Lambda}$	I59	Query the initial zero information.
1	159_A_1	The initial zero operation is in progress and the load is below the lower switch on range limit.
$\mathbf{\Lambda}$	I59	Query the initial zero information.
1	159_A_1_D	The initial zero operation is in progress, the load is within the switch on range limits and unstable.
$\mathbf{\Lambda}$	I59	Query the initial zero information.
↑	I59_A_0_0	The initial zero state is undefined.
$\mathbf{\Lambda}$	I59	Query the initial zero information.
↑	I59_A_2_0	The initial zero operation has been successfully performed.

162 – Timeout

Description

This command is used to read the timeout settings for the weight recording and for the service command step control c_5 .

Syntax

Command

I62	Query the whole list of entries.
I62_ <index></index>	Query a single entry of the list.

Responses

I62_B_ <index>_<time></time></index>	List of all timeout entries.
I62_B	
I62_A_ <index>_<time></time></index>	
I62_A_ <index>_<time></time></index>	Entry for a single timeout parameter.
I62_I	Command understood but currently not executable.
I62_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<index></index>	Integer	0	Weight recording
		1	Step control C5
<time></time>	Integer	0 120 (Index: 0)	Maximum waiting time for the stability flag and for the signal being within range
		0 65535 (Index: 1)	Maximum waiting time for the user input in service command step control C5

Comment

The parameter weight recording time also be can set with M67.

Example

$\mathbf{\Lambda}$	162	Query the whole list of entries.
↑	I62_B_0_20	The timeout for weight recording is 20 seconds.
	I62_A_1_1000	The timeout for step control is 1000 seconds.

See also

165 – Total operating time

Description

This command reads the device total operation time.

Syntax

Command

ſ		
	165	Overy of total operating time
	100	

Responses

		Current operating time.	
	I65_I	Command understood but currently not executable.	

Parameters

Name	Туре	Values	Meaning
<day></day>	Integer		Operating time days
<hour></hour>	Integer	0 23	Operating time hours

Comment

Every full minute the microprocessor is running will be counted as operating time. This is also done during standby.

$\mathbf{\Lambda}$	I65	Query of total operating time.
$\mathbf{\Lambda}$	I65_A_456_3	Device has been in operation for 456 days and
		3 hours.

166 – Total load weighed

Description

This command reads the device total load weighed. Every weight in all modes is counted.

Syntax

Command

ſ	TEE	Over aftered lead weighted
	100	Query of total load weighed.

Responses

I66_A_ <totalweight>_<unit> (</unit></totalweight>		Current total load weighed.	
	I66_I	Command understood but currently not executable.	

Parameters

Name	Туре	Values	Meaning
<totalweight></totalweight>	Float		Total of all loads weighed in the definition unit
<unit></unit>	String		Definition unit

Comments

- The total load is increased every time an active MT-SICS [SNR ▶ Page 241] command with no preset value would send a stable weight.
- All values are added as absolute values.
- The number of significant digits is the same as for MT-SICS [SNR ▶ Page 241] command in the definition unit.

Example

$\mathbf{\Lambda}$	166	Query of total load weighed.
$\mathbf{\Lambda}$	I66_A_4455.41592_g	The total load weighed is 4455.41592 g.

See also

167 – Total number of weighings

Description

This command reads the device total number of weighings. Every weighing in all modes is counted.

Syntax

Command

Query of total number of weighings
 adely of fold fidilities of weighings.

Responses

I67_A_ <weighingno></weighingno>	Current number of weighings.	
I67_I	Command understood but currently not executable.	

Parameter

Name	Туре	Values	Meaning
<weighingno></weighingno>	Integer		Number of weighings

Comment

The total number of weighings is increased every time an active MT-SICS [SNR ▶ Page 241] command with no preset value would send a stable weight.

Example

$\mathbf{\Lambda}$	I67	Query of total number of weig	Query of total number of weighings.	
Υ	I67_A_1234	A_1234 The total number of weighing	is 1234.	

See also

169 – Service provider address ASCII

Description

Address and phone number of service provider. Only printable ASCII characters are admissible.

Syntax

Commands

I69	Query the address and phone number of service provider.
I69_ <line>_<"Text"></line>	Query the text from line.

Responses

I69_B_0_<"Text">	Current text of line 0.
I69_B_1_<"Text">	Current text of line 1.
I69_B_2_<"Text">	Current text of line 2.
I69_B_3_<"Text">	Current text of line 3.
I69_B_4_<"Text">	Current text of line 4.
I69_B_5_<"Text">	Current text of line 5.
I69_B_6_<"Text">	Current text of line 6.
I69_A_7_<"Text">	Current text of line 7.
I69_A_No_<"Text">	Current text of line No.
I69_I	Command understood but currently not executable.

Parameters

Name	Туре	Values	Meaning
<line></line>	Integer	0 7	Text line number
<"Text">	String	Max 40 chars	Service provider address information

$\mathbf{\Lambda}$	169	Query the address and phone number of service provider.
↑	I69_B_0_"Mettler-Toledo_GmbH"	The text of line 0 is "Mettler-Toledo GmbH".
↑	I69_B_1_"Im_Langacher_44"	The text of line 1 is "Im Langacher".
↑	I69_B_2_"8606_Greifensee"	The text of line 2 is "8606 Greifensee".
↑	I69_B_3_"044_944_45_45"	The text of line 3 is "044 944 45 45".
↑	I69_B_4_""	The text of line 4 is not defined.
↑	I69_B_5_""	The text of line 5 is not defined.
↑	I69_B_6_""	The text of line 6 is not defined.
↑	I69_A_7_""	The text of line 7 is not defined.
$\mathbf{\Lambda}$	I69_2	Query the text from line 2.
↑	I69_A_2_"8606_Greifensee"	The text of line 2 is "8606 Greifensee".

171 – One time adjustment status

Description

Read out the one-time adjustment configuration and the one-time adjustment counter.

Syntax

Command

171	Querv one time adjustment status.

Responses

[I71_A_ <mode>_<maxcount>_<currentcounter></currentcounter></maxcount></mode>	Query the status of the one-time adjustment.
I71_I	Command understood but currently not executable.
I71_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<mode></mode>	Integer	0 2	Mode of the scale placement GEO calibration adjustment
		0	Disabled
		1	Enabled
		2	Counting (permitted, but with restriction of the possible number of calibration)
<maxcount></maxcount>	Integer		Maximal allowed number of execution times in counting mode. If MaxCount = 0 the scale placement GEO calibration adjustment is disabled. If MaxCount is equal or greater than CurrentCounter, the scale placement GEO calibration adjustment is disabled
<currentcounter></currentcounter>	Integer		Current number of successful executions of the scale placement GEO calibration adjustment. Only the number of executions by command c10_1 is counted

Command

• Use case: the terminal must decide, whether the user should be forced to trigger the GEO adjustment or not.

$\mathbf{\Lambda}$	I71	Query the status of the one-time adjustment.
↑	I71_A_2_1_1	The scale placement GEO calibration adjustment is in counting mode, allowing one execution of the command c10_1 and it has been executed once. The command c10_1 will return an I response if it is triggered again.

173 – Sign Off

Description

If activated, this command is sent automatically when the device is switched off. To switch off the device, either use the command PWR or press the button OFF.

Syntax

Command

1773	Quant aign off
11/3	ω UPV SIGN OT

Responses

I73_A_<"SerialNumber">	Serial number.
I73_I	Command understood but currently not executable.
	Command understood but not executable (incorrect parameter).

Parameter

Name	Туре	Values	Meaning
<"SerialNumber">	String		Device serial number

Command

• Command is needed to notify calibry about a device switch-off by the user.

$\mathbf{\Lambda}$	I73	Query sign off.
1	I73_A_"B314201995"	Serial number.
\mathbf{h}	PWR_0	Power off with 173 deactivated (pre-condition device is on).
↑	PWR_A	The device is in standby mode.
\mathbf{h}	PWR_0	Power off with 173 activated (pre-condition device is on).
↑	PWR_A	The device is in standby mode.
	I73_A_"B314201995"	· · ·

174 – GEO code at point of calibration - HighRes

Description

This command returns the high resolution GEO code at point of calibration(GCcalHR).

Syntax

Command

1 1 / 4	Query the GEO code value at point of calibration.
- / -	

Responses

I74_A_ <geocode></geocode>	Get the GEO code.
I74_I	Command understood but currently not executable.
I74_L	Command understood but not executable (incorrect parameter).

Parameter

Name	Туре	Values	Meaning
<geocode></geocode>	Float	-1.0 31.0	High resolution GEO code at point of calibration

$\mathbf{\Lambda}$	I74	Query the GEO code value at point of calibration.
↑	I74_A_15.1	The GEO code at point of calibration is 15.1.

175 – GEO code at point of use - HighRes

Description

This command returns the high resolution GEO code at point of use (GCuseHR).

Syntax

Command

¹⁷⁵ Query the GEO code value at point of use.	

Responses

I75_A_ <geocode></geocode>	Get the GEO code.
I75_I	Command understood but currently not executable.
175_L	Command understood but not executable (incorrect
	parameter).

Parameter

Name	Туре	Values	Meaning
<geocode></geocode>	Float	-1.0 31.0	High resolution GEO code at point of use

$\mathbf{\Lambda}$	175	Query the GEO code value at point of use.
↑	I75_A_12.1	The GEO code at point of use is 12.1.

176 – Total number of voltage exceeds

Description

Use 176 to query the total number of the device voltage enters the configurable voltage monitor range.

Syntax

Commands

I76	Query the status of all voltage monitoring channels.
I76_ <channel></channel>	Query the status of a certain voltage monitoring
	channel.

Responses

<pre>I76_B_<channel>_<lowerthreshold>_ <upperthreshold>_<counts> I76_B I76_A_<channel>_<lowerthreshold>_ <upperthreshold>_<counts></counts></upperthreshold></lowerthreshold></channel></counts></upperthreshold></lowerthreshold></channel></pre>	Current values of all voltage monitoring channels.
I76_A_ <channel>_<lowerthreshold>_ <upperthreshold>_<counts></counts></upperthreshold></lowerthreshold></channel>	Current values of a certain voltage monitoring channel.
I76_I	Command understood but currently not executable.
I76_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<channel></channel>	Integer	0 n	Identification for voltage monitor channel (n is product dependent)
<lowerthreshold></lowerthreshold>	Float		Lower threshold value for the voltage monitor channel
<upperthreshold></upperthreshold>	Float		Upper threshold value for the voltage monitor channel
<counts></counts>	Integer		Number of voltage values falling into defined monitor channel

Comments

- Use 176 to view the results from the voltage monitor function.
- Supply voltage of the weighing device is monitored by the voltage monitor function.
- Number of the voltage monitor channels is dependent on the model type of the product.
- The target of this function is to count the number of the voltage values which fall outside the permissible supply voltage range.

$\mathbf{\Lambda}$	I76	Query the status of all voltage monitoring channels.
1	I76_B_0_7.0_10.0_0 I76_A_1_30.0_33.0_2	Channel-O monitors the range between 7 and 10 V and there is no voltage value detected in this range. Channel-1 monitors the range between 30 and 33 V and there are 2 voltage values detected in this range.

177 – Total number of load cycles

Description

Use 177 to query total number of load cycles that are counted between predefined thresholds.

Syntax

Command

I77	Query total number of load cycles for all defined channels.
I77_ <channel></channel>	Query total number of load cycles for a specific
	channel.

Responses

I77_B_ <channel>_<lowerthreshold>_ <upperthreshold>_<counts></counts></upperthreshold></lowerthreshold></channel>	Current values for all monitor channels.
I77_B I77_A_ <channel>_<lowerthreshold>_ <upperthreshold>_<counts></counts></upperthreshold></lowerthreshold></channel>	
I77_A_ <channel>_<lowerthreshold>_ <upperthreshold>_<counts></counts></upperthreshold></lowerthreshold></channel>	Current values for a certain monitor channel.
I77_I	Command understood but currently not executable.
177_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<channel></channel>	Integer	0 to N	Identification for load cycle monitor channel
<lowerthreshold></lowerthreshold>	Float		Lower threshold value for the load cycle monitor channel defined as the percentage of the maximum capacity
<upperthreshold></upperthreshold>	Float		Upper threshold value for the load cycle monitor channel defined as the percentage of the maximum capacity
<counts></counts>	Integer		Number of load cycles detected by the defined monitor channel

Comments

- The number of channels is product specific.
- A load cycle of one monitor channel is defined as placing a weight (belonging to that channel) on the weighing device until the weight is stable, and then removing the weight from the device (leaving that channel) until the weight is stable again.

$\mathbf{1}$	177	Query total number of load cycles for all defined channels.
I77_B_1_20.0	I77_B_0_1.0_20.0_0 I77_B_1_20.0_60.0_2 I77_B_2_60.0_100.0_4	Channel-O monitors the range between 1% and 20% of maximum capacity and there is no load cycle detected in this range.
	I77_A_3_100.0_400.0_1	Channel-1 monitors the range between 20% and 60% of maximum capacity and there are 2 load cycles detected in this range.
	Channel-2 monitors the range between 60% and 100% of maximum capacity and there are 4 load cycles detected in this range.	
		Channel-3 monitors the range between 100% and 400% of maximum capacity and there is 1 load cycle detected in this range.

178 – Zero deviation

Description

Use 178 to query the zero deviation of the weighing device.

Syntax

Command

I78Query the zero deviation of the weighing device.			
	I	78	

Responses

I78_A_ <zerodeviation></zerodeviation>	Current value for the zero deviation.
I78_I	Command understood but currently not executable.
I78_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<zerodeviation></zerodeviation>	Float		Current zero deviation from the user calibrated zero value defined as the percentage of the maximum capacity

Comments

- When the weighing device accepts the zero command or the initial zero point is established, it can calculate the deviation between the actual zero value and the user calibrated zero value.
- Only the last calculated zero deviation value can be read with this command.

\mathbf{h}	178	Query the zero deviation of the weighing device.
↑	178_A_0.2	Current zero deviation is 0.2% of the maximum
		capacity.

179 – Total number of zero deviation exceeds

Description

Use 179 to query the total number of zero deviations detected by predefined monitor channels.

Syntax

Command

179	Query total number of zero deviations for all predefined channels.
I79_ <channel></channel>	Query total number of zero deviations for a specific
	channel.

Responses

I79_B_ <channel>_<lowerthreshold>_ <upperthreshold>_<counts></counts></upperthreshold></lowerthreshold></channel>	Current values for all monitor channels.
I79_B… I79_A_ <channel>_<lowerthreshold>_ <upperthreshold>_<counts></counts></upperthreshold></lowerthreshold></channel>	
I79_A_ <channel>_<lowerthreshold>_ <upperthreshold>_<counts></counts></upperthreshold></lowerthreshold></channel>	Current values for a certain monitor channel.
I79_I	Command understood but currently not executable.
179_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<channel></channel>	Integer	0 n	Identification for zero deviation monitor channel (n is product dependent)
<lowerthreshold></lowerthreshold>	Float		Lower threshold value for the zero deviation monitor channel defined as the percentage of the maximum capacity
<upperthreshold></upperthreshold>	Float		Upper threshold value for the zero deviation monitor channel defined as the percentage of the maximum capacity
<counts></counts>	Integer		Number of zero deviations detected by the defined monitor channel

Comments

- The number of channels is product specific.
- When the weighing device accepts the zero command or the initial zero point is established, it can calculate the deviation between the actual zero value and the user calibrated zero value. This value is checked by the monitor channels to increase the counter value.

1	I79	Query total number of zero deviations for all predefined channels.
1	I79_B_0_1.0_10.0_2 I79_A_1_10.0_400.0_0	Channel-O monitors the range between 1% and 10% of maximum capacity and there are 2 zero deviations detected in this range.
		Channel-1 monitors the range between 10% and 400% of maximum capacity and there are no zero deviations detected in this range.

180 – Total number of temperature exceeds

Description

Use 180 to query the total number of temperature deviations detected by predefined monitor channels.

Syntax

Command

I80	Query total number of temperature deviations for all predefined channels.
I80_ <channel></channel>	Query total number of temperature deviations for a specific channel.

Responses

I80_B_ <channel>_<sensor>_ <lowerthreshold>_<upperthreshold>_ <counts></counts></upperthreshold></lowerthreshold></sensor></channel>	Current values for all monitor channels.
<pre>I80_B I80_A_<channel>_<sensor>_ <lowerthreshold>_<upperthreshold>_ <counts></counts></upperthreshold></lowerthreshold></sensor></channel></pre>	
I80_A_ <channel>_<sensor>_ <lowerthreshold>_<upperthreshold>_ <counts></counts></upperthreshold></lowerthreshold></sensor></channel>	Current values for a certain monitor channel.
ISO_I	Command understood but currently not executable.
I80_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<channel></channel>	Integer	0 n	Index for the channel of the temperature sensor (n is product dependent)
<sensor></sensor>	Integer	0: Measuring sensor (SG) 1: PCBA (Mainboard)	Identification for the temperature sensor
<lowerthreshold></lowerthreshold>	Float		Lower threshold value for the temperature deviation monitor channel
<upperthreshold></upperthreshold>	Float		Upper threshold value for the temperature deviation monitor channel
<counts></counts>	Integer		Number of temperature deviations detected by the defined monitor channel

Comments

- The number of channels is product specific.
- Sensor-O is the temperature sensor placed close to the measuring bridge (Strain Gage) and Sensor-1 is the temperature sensor placed on the PCBA (Mainboard).
- The target of this function is to count the number of the temperature values which fall outside permissible operating temperature range. The value of the counter is increased only once when a temperature value enters into a monitor range and stays inside this range.

\mathbf{h}	180	Query total number of temperature deviations for all predefined channels.
1	I80_B_0_050.010.0_0 I80_B_1_0_40.0_80.0_1 I80_B_2_1_70.0_80.0_0	Channel-O belonging to the Sensor-O monitors the temperature range between -50°C and -10°C and there are no temperature values detected in this range.
	I80_A_3_1_80.0_100.0_0	Channel-1 belonging to the Sensor-0 monitors the temperature range between 40°C and 80°C and there is 1 temperature value detected in this range.
		. Channel-2 belonging to the Sensor-1 monitors the temperature range between 70°C and 80°C and there is no temperature value detected in this range.
		Channel-3 belonging to the Sensor-1 monitors the temperature range between 80°C and 100°C and there is no temperature value detected in this range.

I81 – Temperature gradient

Description

Use 181 to query the last calculated temperature gradient for available temperature sensors.

Syntax

Command

I81	Query the last calculated temperature gradient of all available temperature sensors.
I81_ <channel></channel>	Query the last calculated temperature gradient for a specific sensor.

Responses

<pre>I81_B_<channel>_<gradient>_<duration> I81_B</duration></gradient></channel></pre>	Current values for all available temperature sensors.
I81_A_ <channel>_<gradient>_<duration></duration></gradient></channel>	
I81_A_ <channel>_<gradient>_<duration></duration></gradient></channel>	Current values for a certain temperature sensor.
I81_I	Command understood but currently not executable.
I81_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<channel></channel>	Integer	0: Measuring sensor (SG) 1: PCBA (Mainboard)	Identification for the temperature sensor
<gradient></gradient>	Float	1. TOBA (Halliboald)	Temperature gradient given in °C
<duration></duration>	Float		Duration of the temperature gradient given in second

Comments

- Sensor-O is the temperature sensor placed close to the measuring bridge (Strain Gage) and Sensor-1 is the temperature sensor placed on the PCBA (Mainboard).
- 181 command returns the temperature change (<Gradient>) over a certain time period (<Duration >) for a selected temperature sensor (<Sensor>)
- If the duration parameter is 0, either the sensor is switched off, or the gradient value has not yet been calculated.
- Only the last calculated temperature difference is used in the gradient calculation.

$\mathbf{\Lambda}$	I81	Current values for all available temperature sensors.
1		Temperature gradient is calculated only for the temperature sensor-0 (Measuring bridge) and the result is 0.2°C temperature change measured over 60 seconds.

182 – Total number of temperature gradient exceeds

Description

Use 182 to query the total number of temperature gradient deviations detected by predefined monitor channels.

Syntax

Command

182	Query total number of temperature gradient deviations for all predefined channels.
I82_ <channel></channel>	Query total number of temperature gradient deviations
	for a specific sensor.

Responses

I82_B_ <channel>_<maxgradient>_ <duration>_<counts></counts></duration></maxgradient></channel>	Current values for all monitor channels.
I82_B I82_A_ <channel>_<maxgradient>_ <duration>_<counts></counts></duration></maxgradient></channel>	
I82_A_ <channel>_<maxgradient>_ <duration>_<counts></counts></duration></maxgradient></channel>	Current values for a certain monitor channel.
I82_I	Command understood but currently not executable.
I82_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<channel></channel>	Integer	0: Measuring sensor (SG)	Identification for the temperature sensor
		1: PCBA (Mainboard)	
<maxgradient></maxgradient>	Float		Upper threshold value for the temperature gradient monitor channel
<duration></duration>	Float		Duration of the temperature gradient given in second
<counts></counts>	Integer		Number of temperature gradients exceeding the upper threshold value

Comments

- Sensor-O is the temperature sensor placed close to the measuring bridge (Strain Gage) and Sensor-1 is the temperature sensor placed on the PCBA (Mainboard).
- If the duration parameter is 0, either the sensor is switched off, or the gradient value has not yet been calculated.
- Only the last calculated temperature difference is used in the gradient calculation.
- Counter value is not incremented during the warm-up phase of the weighing device after the power is switched-on.

$\mathbf{\Lambda}$	182	Query total number of temperature gradient deviations for all predefined channels.
1	I82_A_0_0.5_60_0	Temperature gradient is monitored only for the temperature sensor- 0 (Measuring bridge). Upper threshold value is defined as 0.5°C temperature change in 60 seconds. The gradient values measured by the sensor have not exceeded this maximum limit so far.

183 – Software identification

Description

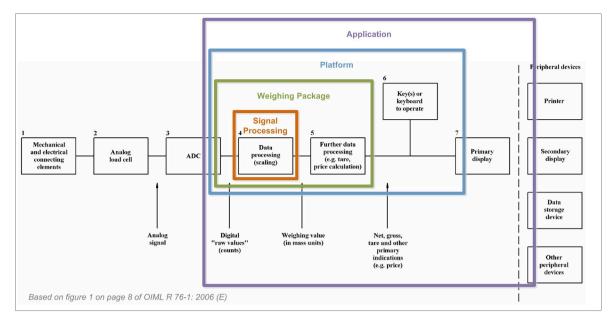
This command returns the identification of the approval relevant software modules of a weighing device.

Syntax

Command

I83	Query the identification.
I83_ <index></index>	Query the index.

Responses


<pre>I83_B_<index>_<"SW-Module">_<"Version"></index></pre>	Current list of entries.
<pre>I83_B_<index>_<"SW-Module">_<"Version"></index></pre>	
<pre>I83_B I83_A_<index>_<"SW-Module">_<"Version"></index></pre>	
I83_A_ <index>_<"SW-Module">_<"Version"></index>	Current text from index only.

Parameters

Name	Туре	Values	Meaning
<index></index>	Integer	0 255	Array index of version list entry
<"SW-Module">	String	AP, PF, WP, SP (max 30 chars)	Software module name, <new module<br="">name abbreviation> must be unique and added by the MT-SICS team.</new>
		AP	Scale terminal application software
		PF	Core system functions and configuration (e.g.: Rainbow)
		WP	Weighing package (e.g.: Rainbow)
		SP	Signal processing (e.g.: Rainbow)
<"Version">	String	Max 20 chars	Version identification

Comments

- The first line must be the application/product software version, i.e. the overall SW version.
- The number and the sequence of software modules is product dependent.
- The terminal can use the return values to show the version information required by approval documents. Solution with ICS Terminals (as an example) Test Certificate TC8039 "Software: Rainbow" requires as an essential characteristic: Software identification shown on terminal or display of complete weighing instrument in the form: Loadcell-Firmware-Version: AP:2.3.0 RB:2.2.0 WP:2.2.1 SP:1.70.33.
- The following picture emphasizes the relation between the software modules and the OIML signal path:

$\mathbf{\Lambda}$	183	Query the identification.
1	I83_B_0_"Application"_"2.3.0" I83_B_1_"Platform"_"2.2.0"	Actual entry for index 0 is: Module name "Application" with version "2.3.0".
I83_B_2_"Weighing Package"_"2.2.1" I83_A_3_"Signal Processing"_ "1.70.33"		Actual entry for index 1 is: Module name "Platform" with version "2.2.0".
	1.70.55	Actual entry for index 2 is: Module name "Weighing Package" with version "2.2.1".
		Actual entry for index 3 is: Module name "Signal Processing" with version "1.70.33".
$\mathbf{\Psi}$	183_2_0	Requests the entry for index 2 only.
1	I83_B_2_"Weighing Package"_"2.2.1"	Actual entry for index 2 is: Module name "Weighing Package" with version "2.2.1".

1100 – Active stability criteria

Description

This command returns the active stability criteria.

Syntax

Commands

I100	Reads the parameters from the device; all entries.
I100_ <fu></fu>	Reads the parameters from the device; specific entry.

Responses

<pre>I100_B_<fu>_<limit>_<time> I100_B_<fu>_<limit>_<time> I100_A_<fu>_<limit>_<time></time></limit></fu></time></limit></fu></time></limit></fu></pre>	Current configuration of the stability criteria, all entries
I100_A_ <fu>_<limit>_<time></time></limit></fu>	Current configuration of the stability criteria, specific entry
I100_I	Command understood but currently not executable.
I100_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Values	Meaning	Examples of related commands
<fu></fu>	0	Normal weighing	S, SI, SIR,
	1	Taring	T, TI,
	2	Zero setting	Z, ZI,
	3	Adjustments and tests	C1, C2, C3, C6, C7, C8, TSTx,
<limit></limit>		Stability limit in digits (smallest weight increment) within which the value must stay to be regarded as stable	
<time></time>		Stabilization timeout in milliseconds. If this duration is reached during control weighing, last measured value willObservation time in seconds during which the value must stay within tolerance in order to be regarded as stable	

$\mathbf{\Lambda}$	I100	Reads the parameters from the device; all entries.
↑	I100_B_0_1.0_0.5 I100_B_1_1.0_0.5 I100_B_2_0.5_1.0 I100_B_3_0.5_1.0	For weighing and taring the active value of the Limit / Time parameter is 1 digit / 0.5 seconds. For the other weighing functions, the active value of the Limit / Time parameter is 0.5 digits / 1 seconds.
$\mathbf{\mathbf{v}}$	I100_1	Reads the parameters from the device; specific entry. Current values for taring.
1	I100_A_1_1.0_0.5	For taring the active value of the Limit / Time parameter is 1 digit / 0.5 seconds.

1101 - Humidity value

Description

Requests the current humidity value.

Syntax

Commands

I101	Query the parameters from the device, all entries.
I101_ <no></no>	Query the parameters from the device for a specific entry.
I101_ <no></no>	Set the parameters to the device.

Responses

<pre>I101_B_<no>_<humval> I101_B_<no>_<humval> I101_A_<no>_<humval></humval></no></humval></no></humval></no></pre>	Command understood and executed successfully, all entries.
I101_A_ <no>_<humval></humval></no>	Command understood and executed successfully for a specific entry.

Parameters

Name	Туре	Values	Meaning
<no></no>	Integer	1n	Humidity sensor number n is product dependent
<humval></humval>	float 32 bits	1 100%RH	Humidity sensor value in %RH

Initial values

Initial values are product dependent.

Comment

The number of humidity sensors is product dependent.

$\mathbf{\Lambda}$	I101	Query the parameters from the device.
1	I101_A_1_46.8	The device has one humidity sensor The humidity value is 46.8 %RH.
$\mathbf{\Lambda}$	I101_2	Query the humidity value from sensor 2
↑	I101_A_2_56.3	The humidity value of sensor 2 is 46.8 %RH.

K – Keys control

Description

With the κ command, the behavior of the terminal keys may be configured: first, the κ command controls whether a key invokes its corresponding function or not and second, it configures whether an indication of which key has been pressed or released is sent to the host interface or not.

Using this functionality, an application running on a connected system (e.g. a PC or PLC) may make use of the balance terminal to interact with the balance operator.

Syntax

Command

K <mode></mode>	Set configuration.
	Jei coniguration.

Responses

K_A[_ <functionid>]</functionid>	Command understood and executed successfully.
	Mode 4: Function with <functionid> was invoked by pressing the corresponding key and executed successfully.</functionid>
K_I[_ <functionid>]</functionid>	Command understood but currently not executable (balance is actually in menu or input mode).
	Mode 4: Function with <functionid> by pressing the corresponding key, but it could not be successfully executed (e.g. calibration was aborted by user or a negative value was tared).</functionid>
K_L	Command understood but not executable (incorrect or no parameter).

Additional Responses in Mode 3:

K. <eventid>.<keyid></keyid></eventid>	Key <keyid> has issued an <eventid>.</eventid></keyid>

Additional Responses in Mode 4:

K_B_ <functionid></functionid>	Function with <functionid> was invoked and</functionid>
	started; the execution needs time to complete.

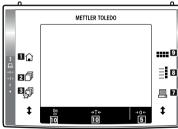
Parameters

Name	Туре	Values	Meaning
<mode></mode>	Integer	1	Functions are executed, no indications are sent (factory setting)
		2	Functions are not executed, no indications are sent
		3	Functions are not executed, indications are sent
		4	Functions are executed, indications are sent
<eventid></eventid>	Char	R	Key was pressed and held around 2 seconds
		С	Key was released (after being pressed shortly or for 2 second)
<functionid></functionid>	Integer	0	Adjustment
		1	Tare
		2	Zero
		3	Data transfer to printing device
		4 6	Reserved for future use
		7	Test
<keyid></keyid>	Integer		Indicator for pressed key

<keyid></keyid>	Integer	1	۵/۵	Home
		2	ð/ 2 .	User profile (XP/XPE balances or PWT terminal only)
		3	\$ 7/\$ \$	Settings (XP/XPE balances or PWT terminal only)
		4	reserved	
		5	→ 0←	Zero
		6	reserved	
		7	旦/旦	Transfer
		8	≣ / _/ □	Configure actual applications
		9	/==	Applications
		10	→T← /On/Off/	Tare
			ባ	On/Off

Comments

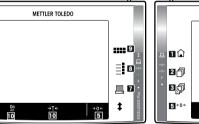
- There is no key number assigned to the door keys; therefore, no response is invoked upon pressing one of these keys.
- K_1 is the factory setting (default value). •
- κ_1 active after balance switched on and after the cancel command @.
- K_2 door function is not disabled.
- Only one κ mode is active at one time. .
- The mapping of the key numbers on the different terminals are displayed below: •

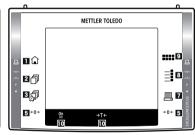

The terminal XS (SWT) is delivered with a new design and housing color since Q3/2014. You can find both the old and new designs below:

PWT terminal

PWT terminal

PWT terminal

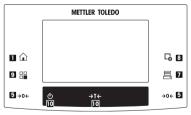




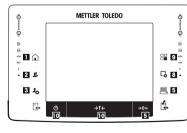
(e.g. XP Analytical Balances)

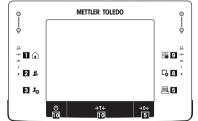
(e.g. WXTP Weigh Module)

(e.g. WXTS Weigh Module)



METTLER TOLEDO = 8 9.... 昌7 5,0€ →T← ITOI →0¢5


SWT terminal with new terminal design


(e.g. WXTS Weigh Module)

PWT terminal

(e.g. XPE Analytical Balances)

(e.g. WXTP Weigh Module)

Example

When a code with a long press is sent, new key commands will not be accepted.

\mathbf{A}	K_4	Set mode 4: when a key is pressed, execute the corre- sponding function and send the function number as a response.
$\mathbf{\Lambda}$	K_A	Command executed successfully.
$\mathbf{\Lambda}$	K_B_1	The taring function has been started \rightarrow taring active.
$\mathbf{\Lambda}$	K_A_1	Taring completed successfully.
$\mathbf{\Lambda}$	K_B_1	The taring function has been started \rightarrow taring active.
1	K_I_1	Taring not completed successfully, taring aborted (e.g. tried to tare a negative value).

LST - Current user settings

Description

Use the $_{LST}$ command to listing of general module data and current settings which can be changed by the user.

Syntax

Command

LST	Listing of general module data and current settings
	which can be changed by the user.

Responses

LST_B_I2_"WMS204-L_Standard_ 410.0090_g"	Returns the module data (header).
LST_B_I3_"1.0_1.23.4.567.890"	Returns the firmware version and the type definition number (header).
LST_B_I4_"1234567890"	Returns the serial number (header).
LST_B_C4_"0"	Returns whether an initial adjustment by the user was performed ("1") or not ("0") (header).
LST_B_Cx_"0"	Returns whether internal or external adjustment by the user was performed ("1") or not ("0") (header).
LST_B_C0_0_0	Sets the adjustment settings (calibration settings) (first command of the user settings).
LST_A_WMCF_0	Inquires the configuration of the weight monitoring function (last command of the user settings).

Comments

- The general module data are output in a five-line header ("I2" to "Cx"). This is followed by the current user settings in alphabetical sequence.
- The foregoing responses are examples. The actual responses depend on the current settings.

$\mathbf{\Lambda}$	LST	Query of the list of all current user settings.
1	LST_B_I2_"WMS204-L_410.0090_g"	Returns the module data (header).
1	LST_B_I3_"1.0_1.23.4.567.890"	Returns the firmware version and the type definition number (header).
1	LST_B_I4_"1234567890"	Returns the serial number (header).
↑	LST_B_C4_"0"	Initial adjustment information (header).
1	LST_B_Cx_"0"	Internal or external adjustment information (header).
1	LST_B_C0_0_0	First command of the user settings.
1		
↑	LST_A_WMCF_0	Last command of the user settings.

M01 – Weighing mode

Description

Use MO1 to set the weighing mode or query the current setting.

Syntax

Commands

M01	Query of the current weighing mode.
M01_ <weighingmode></weighingmode>	Set the weighing mode.

Responses

M01_A_ <weighingmode></weighingmode>	Current weighing mode.
M01_A	Command understood and executed successfully.
M01_I	Command understood but currently not executable.
M01_L	Command understood but not executable (incorrect parameter).

Parameter

Name	Туре	Values	Meaning
<weighingmode></weighingmode>	Integer	0	Normal weighing/Universal
1 2 3 6	1	Dosing	
	2	Sensor mode	
	3	Check weighing	
	6	Raw weight values / No filter	

Comments

- The parameter setting will be saved and the only way to reset the default value will be via MT-SICS or by means of a factory reset, FSET or via terminal not @.
- Use C2 to begin the adjustment procedure with the set weight.
- Please check possible settings with product specific Reference Manual.

Examples

$\mathbf{\Lambda}$	M01	Query of the current weighing mode.
↑	M01_A_4	Dynamic weighing mode is set.
$\mathbf{\Lambda}$	M01_1	Set the weighing mode to dosing.
↑	M01_A	Dosing is set.

See also

M02 - Environment condition

Description

Use M02 to adjust the balance so that it is optimized for the local ambient conditions, or to query the current value.

Syntax

Commands

M02	Query of the current environment.
M02_ <environment></environment>	Set the environment.

Responses

M02_A_ <environment></environment>	Current environment.
M02_A	Command understood and executed successfully.
M02_I	Command understood but currently not executable.
M02_L	Command understood but not executable (incorrect
	parameter).

Parameter

Name	Туре	Values	Meaning
<environment></environment>	Integer	0	Very stable
		1	Stable
	2	Standard	
		3	Unstable
	4	Very unstable	
	5	Automatic	

Comments

- The parameter setting will be saved and the only way to reset the default value will be via MT-SICS or by means of a factory reset, FSET or via terminal not @.
- Use c2 to begin the adjustment procedure with the set weight.
- If FCUT is activated (<Frequency> ≥ 0.001 Hz) and weighing mode, see M01 is 2 (sensor mode), it will override any settings for ambient conditions (M02) in sensor mode.
- Not all balances offer the complete range of settings. If a setting is made that is not supported by the balance, an error massage is issued (MO2_L).

Example

	r	M02_3	Set the environment to unstable.
1	个	M02_A	Environment is set.

See also

- MO1 Weighing mode ▶ Page 157

M03 – Auto zero function

Description

Use M03 to switch the auto zero function on or off and query its current status.

Syntax

Commands

М03	Query of the current auto zero function.
M03_ <autozero></autozero>	Set the auto zero function.

Responses

M03_A_ <autozero></autozero>	Current auto zero function
M03_A	Command understood and executed successfully.
M03_I	Command understood but currently not executable.
MO3_L	Command understood but not executable (incorrect parameter).

Parameter

Name	Туре	Values	Meaning
<autozero></autozero>	Integer	0	Auto zero is switched off (is not supported by approved balances)
		1	Auto zero is switched on

Comment

- The parameter setting will be saved and the only way to reset the default value will be via MT-SICS or by means of a factory reset, FSET or via terminal not @.
- Use c2 to begin the adjustment procedure with the set weight.

$\mathbf{\Lambda}$	M03_1	Switch on the auto zero function.
$\mathbf{\Lambda}$	M03_A	Auto zero function is activated.

M17 – ProFACT: Single time criteria

Description

Use M17 to set the time and days when a ProFACT adjustment should be executed automatically, or to query the current setting.

i Note The settings ProFACT/FACT and days are model dependent.

Syntax

Commands

M17	Query of the current ProFACT time criteria.
M17_ <hour>_<minute>_<second>_<days></days></second></minute></hour>	Set the ProFACT time criteria.

Responses

M17_A_ <hour>_<minute>_<second>_<days></days></second></minute></hour>	Current ProFACT time criteria.
M17_A	Command understood and executed successfully.
M17_I	Command understood but currently not executable.
M17_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<hour></hour>	Integer	00 23	Hours
<minute></minute>	Integer	00 59	Minutes
<second></second>	Integer	00 59	Seconds
<days></days>	Integer	0	Time criteria is switched off
		$2^{\circ} = 1$	Monday
		$2^1 = 2$	Tuesday
		$2^2 = 4$	Wednesday
		$2^3 = 8$	Thursday
		$2^4 = 16$	Friday
		$2^5 = 32$	Saturday
		$2^6 = 64$	Sunday

Comments

- The days of the week are written in binary code. Combinations of different days are expressed as the sum of the individual days.
- Only one time criterion can be set using M17; all other times are deactivated. [M32 ▶ Page 175] must be used if you wish to set several different times.
- If two or more times are set [M32 ▶ Page 175] command, resulting in an M17 query, an M17_I response is generated.
- The parameter setting will be saved and the only way to reset the default value will be via MT-SICS or by means of a factory reset, FSET or via terminal not @.
- Use C2 to begin the adjustment procedure with the set weight.

\mathbf{h}		Set the ProFACT time criteria to Monday and Wednesday ($5 = 1 + 4$) at 12:00 h.
1	M17_A	ProFACT time criteria is set.
$\mathbf{\Lambda}$	M17	Query of the current ProFACT time criteria.

1	M17_A_12_00_00_127	The balance will currently be adjusted every day (127
		= 1 + 2 + 4+ 8 + 16 + 32 + 64) at 12:00 h.

M18 – ProFACT/FACT: Temperature criterion

Description

Use M18 to set the temperature criterion for triggering a ProFACT internal adjustment, or to query the current value.

Syntax

Commands

M18	Query of the current ProFACT/FACT temperature criterion.
M18_ <criterion></criterion>	Set the ProFACT/FACT temperature criterion.

Responses

M18_A_ <criterion></criterion>	Current ProFACT/FACT temperature criterion.
M18_A	Command understood and executed successfully.
M18_I	Command understood but currently not executable.
M18_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<criterion></criterion>	lterion> Integer	0 4	The settings of temperature criterion values depend on the balance model and system setup (bridge module with/without terminal)
		0	Temperature criterion is switched off
		1	0.5 Kelvin
	2	1.0 Kelvin	
		3	2.0 Kelvin
	4	3.0 Kelvin	

Comments

- Temperature difference (Δ temp.) is defined as the criterion. The balance automatically performs an internal adjustment if the temperature of the balance changes by the defined temperature difference.
- The adjustment weight must be entered in the defined unit of the balance. This unit can be found by entering a query command M19 without arguments.
- The taring range is specified to the balance type.
- The parameter setting will be saved and the only way to reset the default value will be via MT-SICS or by means of a factory reset, FSET or via terminal not @.
- Use C2 to begin the adjustment procedure with the set weight.

$\mathbf{\Lambda}$	M18_1	Set the ProFACT/FACT temperature criterion to the 1 st
		setting.
$\mathbf{\Lambda}$	M18_A	1 st setting is activated.

M19 - Adjustment weight

Description

Use M19 to set your external adjustment weight, or to query the current weight value and unit.

Syntax

Commands

M19	Query of the current adjustment weight.
M19_ <value>_<unit></unit></value>	Set the adjustment weight.

Responses

M19_A_ <value>_<unit></unit></value>	Current adjustment weight.
M19_A	Command understood and executed successfully.
M19_I	Command understood but currently not executable.
M19_L	Command understood but not executable (incorrect parameter) or adjustment weight is to low.

Parameters

Name	Туре	Values	Meaning
<value></value>	Float		Value of the adjustment weight, balance specific limitation
<unit></unit>	String		Weight unit of the adjustment weight = defined unit of the balance

Comments

- The adjustment weight must be entered in the defined unit of the balance. This unit can be found by entering a query command M19 without arguments.
- The taring range is specified to the balance type.
- The parameter setting will be saved and the only way to reset the default value will be via MT-SICS or by means of a factory reset, FSET or via terminal not @.
- Use C2 to begin the adjustment procedure with the set weight.

Examples

$\mathbf{\Lambda}$	M19	Query of the current adjustment weight.
1	M19_A_100.123_g	The adjustment weight is 100.123 g.
$\mathbf{\Lambda}$	M19_500.015_g	Set the adjustment weight to 500.015 g.
1	M19_A	The adjustment weight is set to 500.015 g,

See also

M20 – Test weight

Description

You can use M20 to define your external test weight or query the currently weight setting.

Syntax

Commands

M20	Query of the current external test weight.
M20_ <testweight>_<unit></unit></testweight>	Set the external test weight.

Responses

M20_A_ <testweight>_<unit></unit></testweight>	Current external test weight.
M20_A	Command understood and executed successfully.
M20_I	Command understood but currently not executable.
M20_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<testweight></testweight>	Float	>10 digits	Value of the external test weight
<unit></unit>	String		Weight unit of the external test weight = defined unit of the balance

Comments

- The test weight must be entered in the defined unit of the balance. This unit can be found by entering a query command M20 without arguments.
- Use [TST2 > Page 262] to begin the test procedure with the set weight.

Examples

$\mathbf{\Lambda}$	M20	Query of the current external test weight.
1	M20_A_100.123_g	The external test weight is 100.123 g.
$\mathbf{\Lambda}$	M20_500.015_g	Set the external test weight to 500.015 g.
↑	M20_A	The external test weight is set to 500.015 g.

See also

M21 – Unit

Description

Use M21 to set the required weighing unit for the output channels of the weight or request current setting.

Syntax

Commands

M21	Query the unit of all output channels.
M21_ <channel></channel>	Query the unit of output channel only.
M21_ <channel>_<unit></unit></channel>	Set the unit of an output channel.

Responses

M21_B_ <channel>_<unit> M21_B M21_A_<channel>_<unit></unit></channel></unit></channel>	Current first unit. Current last unit.
M21_ <channel>_<unit></unit></channel>	Unit of output channel.
M21_A	Command understood and executed successfully.
M21_I	Command understood but currently not executable.
M21_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning				
<channel></channel>	Integer	0	Host unit, use	ed on th	e MT-SICS Host		
		1	Display unit, used on the terminal screen				
		2	Info unit, used in the info field on the terminal screer				
<unit></unit>	Integer	0		Applicable for definition un			
			Gram	g	yes		
		1	Kilogram	kg	yes		
		2	Ton	t	yes		
		3	Milligram	mg	yes		
		4	Microgram	μg	yes		
		5	Carat	ct	yes		
		6	Newton	N	yes		
		7	Pound avdp	lb	yes		
		8	Ounce avdp	ΟZ	yes		
		9	Ounce troy	ozt	yes		
		10	Grain	GN	yes		
		11	Pennyweight	dwt	yes		
		12	Momme	mom	yes		
		13	Mesghal	msg	yes		
		14	Tael Hongkong	tlh	yes		
		15	Tael Singapore	tls	yes		
		16	Tael Taiwan	tlt	yes		
		17	Tical	tcl	yes		
		18	Tola	tola	yes		
		19	Baht	baht	yes		
		20	lb	ΟZ	yes		
		21	Ton (short ton = 2000 lb)	ton	yes		
		25	no unit				
		26	Piece	PCS	available with application "Counting"		
		27	Percent	%	available with application "Percent"		
		28	Custom unit 1	cul	available if custom unit 1 is switched on M22		
		29	Custom unit 2	cu2	available if custom unit 2 is switched on M22		
		30	Currency unit 1		available if currency unit 1 is switched on M22		
		31	Currency unit 2		available if currency unit 2 is switched on M22		

Comments

- All s commands (except su) are given in Host unit according to the definition of the MT-SICS. Only weight units are accepted as Host unit, see table above, in column applicable for definition unit marked with 'yes'.
- In the event of a power failure, the host unit is lost and, following a restart, the weighing unit is displayed as "g".
- It is not possible to use "no unit" for the displayed unit.
- The units and/or their notation may be different in older software versions.
- The parameter setting will be saved and the only way to reset the default value will be via MT-SICS or by means of a factory reset, FSET or via terminal not @.
- Use C2 to begin the adjustment procedure with the set weight.

$\mathbf{\Psi}$	M21	Query of the current unit.
1	M21_B_0_0	Current host unit is g.
	M21_B_1_3	Current display unit is mg.
	M21_A_2_5	Current info unit is carat.
$\mathbf{\Psi}$	M21_0_1	Set the unit to 1 kg.
1	M21_A	The unit is set to 1 kg.

M22 - Custom unit definitions

Description

You can use M22 to set your own custom unit or query the currently defined custom unit.

Syntax

Commands

M22	Query of the current custom unit definitions.
M22_ <no>_<formula>_<factor>_<unit>_ <rounding></rounding></unit></factor></formula></no>	Set the custom unit(s).

Responses

M22_B_ <no>_<formula>_<factor>_ <unit>_<rounding> M22_B M22_A_<no>_<formula>_<factor>_ <unit>_<rounding></rounding></unit></factor></formula></no></rounding></unit></factor></formula></no>	Current first custom unit. Current last custom unit.
M22_A	Command understood and executed successfully.
M22_I	Command understood but currently not executable.
M22_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<no></no>	Integer	1 … max. units	Number of custom unit
<formula></formula>	Integer	0	(net weight) x factor
		1	factor/(net weight)
<factor></factor>	Float		Factor
<unit></unit>	String		Unit name (max. 4 characters)
<rounding></rounding>	Float		Rounding step

Comments

- To query or define a custom unit, it must be switched on M21.
- The parameter setting will be saved and the only way to reset the default value will be via MT-SICS or by means of a factory reset, FSET or via terminal not @.
- Use C2 to begin the adjustment procedure with the set weight.

Example

$\mathbf{\Lambda}$	M22	Query of the current custom unit definitions.
1	M22_B_1_0_15.5_"sfr"_0.05	The first custom unit is (net weight) x 15.5 sfr, rounded to 0.05.
1	M22_A_2_1_25.4_"h1"_0.1	The second custom unit is 25.4/(net weight) h1, rounded to 0.1.

See also

M23 – Readability, 1d/xd

Description

Use M23 to set how many digits of the weighing result should be displayed or output and whether the value should be rounded, or to query the current value setting.

Syntax

Commands

M23	Query of the current readability.
M23_ <readability></readability>	Set the readability.

Responses

M23_A_ <readability></readability>	Current readability.
M23_A	Command understood and executed successfully.
M23_I	Command understood but currently not executable.
M23_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<readability></readability>	Readability> Integer	0	1d
		1	10d
		2	100d
		3	1000d
		4	2d
		5	5d

Comments

- It is the balance model that determines which parameters can be changed.
- The custom unit M22 will not be changed with the M23 command.
- M23 has no influence of the stability criteria for the [Taring ▶ Page 252] and [Zeroing ▶ Page 272] commands.
- The readability is specified in digits [d] this is the smallest increment a balance may display.
- If the resulting display step has an unusual value it is changed to the nearest normal display step (1, 2, 5 etc.).

Example: d = 0.02 g, readability = 2d, the resulting display step would be 0.04 g which is changed to 0.05 g.

• The readability reduction is applied to the display step of the finest range. The steps of the coarser ranges are only adapted if they would be smaller than the step of the finest range. Example:

	1d	5d	10d
Fine range resolution	0.1 g	0.5 g	1 g
Coarse range resolution	0.5 g	0.5 g	1 g

- The parameter setting will be saved and the only way to reset the default value will be via MT-SICS or by means of a factory reset, FSET or via terminal not @.
- Use C2 to begin the adjustment procedure with the set weight.
- The stability criteria for the weight result (weighing commands) will be adapt to the selected readability based on the USTB setting.

Examples

$\mathbf{\Psi}$	M2 3	Query the readability.
1	M23_A_4	The readability is 2d.
$\mathbf{\Lambda}$	M23_1	Set the readability to 10d.
↑	M23_A	The readability is set to 10d.

See also

M27 – Adjustment history

Description

Use ${\tt M27}$ to call up the adjustment history.

Syntax

Command

M27	Query of the adjustment history.

Responses

M27_B_ <no>_<day>_<month>_<year>_ <hour>_<minute>_<mode>_<"Wgt"> M27_B M27_A_<no>_<day>_<month>_<year>_ <hour>_<minute>_<mode>_<"Wgt"></mode></minute></hour></year></month></day></no></mode></minute></hour></year></month></day></no>	1 st adjustment entry. last adjustment entry.
M27_I	Command understood but currently not executable.
M27_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<no></no>	Integer	1 n	Number of the adjustment entry (n is product dependent)
<day></day>	Integer	1 31	Date, day
<month></month>	Integer	1 12	Date, month
<year></year>	Integer	1970 2099	Date, year
			The accepted range of years is depending on platform/ product
<hour></hour>	Integer	0 23	Time, hour
<minute></minute>	Integer	0 59	Time, minute
<mode></mode>	Integer	0	Built-in adjustment
		1	External adjustment (including linearity)
<"Wgt">	String		Weight of the adjustment weight used

$\mathbf{\Lambda}$	M27	Query of the adjustment history.
1	M27_B_1_1_1_2011_08_26_0_""	1 st adjustment, performed at 1.1.2011, 08:26 h, internal adjustment.
1	M27_B_2_14_12_2010_14_30_1_ "200.1234_g"	2 nd adjustment, performed at 14.12.2010, 14.30 h, external adjustment, weight 200.1234 g.
1	M27_A_3_14_12_2010_8_26_1_ "200.1234_g"	3 rd adjustment, performed at 14.12.2010, 08:26 h, external adjustment, weight 200.1234 g.

M28 – Temperature value

Description

Use ${\tt M28}$ to query the temperature value.

Syntax

Command

M28	Query of the current temperature value.
Responses	
M28_B_ <no>_<tempval></tempval></no>	1 st temperature sensor.
M28 M28_A_ <no>_<tempval></tempval></no>	Inst temperature sensor.
M28_A	Command understood and executed successfully.
M28_I	Command understood but currently not executable.

Parameters

Name	Туре	Values	Meaning
<no></no>	Integer	1 n	Number of temperature sensors (n is product dependent)
<tempval></tempval>	Float		Temperature sensor value in °C

Comments

- The number of temperature sensors depends on the product.
- There is no more Information available about the temperature offset and resolution.

$\mathbf{\Lambda}$	M28	Query of the current temperature value.
↑		There is only one temperature sensor available. The temperature value is 22.5 °C.

M29 – Weighing value release

Description

Use M29 to define the weight value release or query the current setting.

This is an indirect and compact setting of the stability criterion. This factor merges both parameters of the USTB command into one value for all functions.

Syntax

Commands

M2 9	Query of the current value release setting.
M29_ <valuerelease></valuerelease>	Set the value release.

Responses

M29_A_ <valuerelease></valuerelease>	Current value release.
M29_A	Command understood and executed successfully.
M29_I	Command understood but currently not executable.
M29_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<valuerelease></valuerelease>	Integer	0	Very fast
		1	Fast
	2	Reliable and fast	
		3	Reliable
		4	Very reliable

Comments

- The parameter setting will be saved and the only way to reset the default value will be via MT-SICS or by means of a factory reset, FSET or via terminal not @.
- This command is only active when USTB is set to factory default (which is 0 for all entries).
- Not all balances offer the complete range of settings. If a setting is made that is not supported by the balance, an error massage is issued (M29_L).

Example

$\mathbf{\Lambda}$	M29_3	Set the value release to reliable.
$\mathbf{\Lambda}$	M29_A	The value release is set to reliable.

See also

M31 – Operating mode after restart

Description

Use M31 to set the operating mode of the device following restart.

Syntax

Commands

М31	Query of the current operating mode following restart.
M31_ <mode></mode>	Set the operating mode following restart.

Responses

M31_A_ <mode></mode>	Current settings of operating mode following restart.
M31_A	Command understood and executed successfully.
M31_L	Command understood but not executable (not permitted).

Parameter

Name	Туре	Values	Meaning
<mode></mode>	Integer	0	User mode
		1	Production mode
		2	Service mode
		3	Diagnostic mode

Comment

Customer can only use the user- and diagnostic mode. All other settings will give a M31_L response.

$\mathbf{\Lambda}$	M31	Query of the current operating mode following restart.
1	M31_A_0	The operating mode following restart is: user mode.
\mathbf{h}	M31_1	Set the production mode as operating mode after restart.
1	M31_A	Operating mode is set.

M32 – ProFACT: Time criteria

Description

You can use M32 to set several times at which an automatic ProFACT adjustment procedure should be carried out, or query the current settings. The days of the week are defined with [M33 \triangleright Page 175].

M32 is only available for modules with internal adjustment weight.

Syntax

Commands

М32	Query of the current ProFACT time criteria.
M32_ <number>_<hour>_<minute>_<status></status></minute></hour></number>	Set the ProFACT time criteria.

Responses

M32_B_ <number>_<hour>_<minute>_<status></status></minute></hour></number>	Current ProFACT time criteria.
М32_В	
M32_A_ <number>_<hour>_<minute>_<status></status></minute></hour></number>	
M32_A	Command understood and executed successfully.
M32_I	Command understood but currently not executable.
M32_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<number></number>	Integer	0 3	FACT time index
<hour></hour>	Integer	00 23	Hours
<minute></minute>	Integer	00 59	Minutes
<status></status>	Integer	0	Time deactivated (off)
		1	Time activated (on)

Comments

- Only 1 time criterion can be set using M17; all other times are permanently deactivated. M32 and [M33 ► Page 176] must be used if you wish to set several different times.
- The parameter setting will be saved and the only way to reset the default value will be via MT-SICS or by means of a factory reset, FSET or via terminal not @.
- Use C2 to begin the adjustment procedure with the set weight.

$\mathbf{\Lambda}$	M32_2_12_00_1	ProFACT time 2 set to 12:00 and activated (on).
↑	M32_A	ProFACT time criteria is set.
$\mathbf{\Lambda}$	M32	Query of the current ProFACT time criteria.
↑	M32_B_1_09_00_1	The balance will currently be adjusted at 9:00 h,
1	M32_B_2_12_00_1	12:00 and 15:00 h.
↑	M32_A_3_15_00_1	

M33 – ProFACT: Day of the week

Description

You can use M33 to set the days of the week on which a ProFACT adjustment procedure should be carried out, or to query the current settings. The times for each are defined using [M32 ▶ Page 175].

M33 is only available for modules with internal adjustment weight.

Syntax

Commands

M33	Query of the current ProFACT weekday.
M33_ <weekday></weekday>	Set the ProFACT weekday.

Responses

M33_A_ <weekday></weekday>	Current ProFACT weekday.
M33_A	Command understood and executed successfully.
M33_I	Command understood but currently not executable.
M33_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<weekday></weekday>	Integer	0	Time criteria is switched off
		$2^{\circ} = 1$	Monday
		$2^1 = 2$	Tuesday
		$2^2 = 4$	Wednesday
		$2^{3} = 8$	Thursday
		$2^4 = 16$	Friday
		$2^5 = 32$	Saturday
		$2^6 = 64$	Sunday

Comments

- The days of the week are written in binary code. Combinations of different days are expressed as the sum of the individual days.
- Only 1 time criterion can be set using M17; all other times are deactivated. [M32 ▶ Page 175] and M33 must be used if you wish to set several different times.
- The parameter setting will be saved and the only way to reset the default value will be via MT-SICS or by means of a factory reset, FSET or via terminal not @.
- Use C2 to begin the adjustment procedure with the set weight.

$\mathbf{\Lambda}$	M33_5	Time adjustments are made on Mondays and Wednesdays $(5 = 1 + 4)$.
Λ	M33_A	ProFACT weekday is set.

M34 - MinWeigh: Method

Description

Use M34 to select the MinWeigh method you wish to work with, or query the currently set MinWeigh method.

Syntax

Commands

M34	Query of the current MinWeigh method.
M34_ <method></method>	Set the MinWeigh method.

Responses

M34_A_ <method></method>	Current MinWeigh method.
M34_A	Command understood and executed successfully.
M34_I	Command understood but currently not executable.
M34_L	Command understood but not executable (incorrect
	parameter).

Parameters

Name	Туре	Values	Meaning
<method></method>	<method> Integer</method>	0	MinWeigh deactivated
		1	Method 1 activated
		2	Method 2 activated
		3	Method 3 activated
		4	Method 4 activated
		5	Method 5 activated

Comments

- MinWeigh can only be activated by a service technician.
- For additional information on mnimum weight (MinWeigh), see the Reference Manual of the balance.
- The parameter setting will be saved and the only way to reset the default value will be via MT-SICS or by means of a factory reset, FSET or via terminal not @.
- Use C2 to begin the adjustment procedure with the set weight.

$\mathbf{\Lambda}$	M34	Query of the current MinWeigh method.
1	M34_A_3	The MinWeigh method is 3.
$\mathbf{\Lambda}$	M34_1	Set the MinWeigh method to 1.
↑	M34_A	MinWeigh method 1 is set.

M35 – Zeroing mode at startup

Description

You can use M35 to save the last zero. Following a power failure, the balance will resume operation with the saved zero. In normal mode M35_0, the balance specifies a new zero reference point at start-up as soon as a stable condition has been achieved.

Syntax

Commands

M35	Query of the current zeroing mode at startup.
M35_ <mode></mode>	Set the zeroing mode at startup.

Responses

M35_A_ <mode></mode>	Current zeroing mode at startup.
M35_A	Command understood and executed successfully.
M35_I	Command understood but currently not executable.
M35_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<mode></mode>	Integer	0	Normal mode
		1	Start with saved zero or save last zero

Comments

- If the mode is set to 1 when the balance is started up, the fail-safe, saved zero is used.
- For certification reasons, this command may only be executed on normal balances. Certifiable balances do not have this function.
- The parameter setting will be saved and the only way to reset the default value will be via MT-SICS or by means of a factory reset, FSET or via terminal not @.
- Use C2 to begin the adjustment procedure with the set weight.

$\mathbf{\Lambda}$	M35_1	Save the last zero and use it at following startup.
↑	M35_A	Start-up zeroing mode is set.

M38 – Selective parameter reset

Description

Use M38 to execute a reset of selected parameters.

Syntax

Command

M38 <resetmode></resetmode>	Execute reset	
M30_ <resetmode></resetmode>		

Responses

M38_A	Command understood and executed successfully.
M38_I	Command understood but currently not executable.
M38_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<resetmode></resetmode>	Integer	0	Actions, reset, clear window
		1	Applications reset
		2	User reset
		3	Master reset

Comments

- After user- and master reset the module performs a complete restart similar to startup after power up.
- <ResetMode> 1 to 3 not yet implemented.

Example

1	M3	38_0	Execute a actions reset.
1	M3	38_A	Command understood and executed successfully.

See also

M39 – SmartTrac: Graphic

Description

You can use M39 to set the type of SmartTrac graphic (used weighing range graphic) or query the current setting.

Syntax

Commands

M39	Query of the current SmartTrac Graphic.
M39_ <smarttrac></smarttrac>	Set the SmartTrac Graphic.

Responses

M39_A_ <smarttrac></smarttrac>	Current setting of the SmartTrac Graphic.
M39_A	Command understood and executed successfully.
M39_I	Command understood but currently not executable.
M39_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning (Nominal =0)	Meaning (Nominal > 0)
<smarttrac></smarttrac>	Integer	0	No SmartTrac	Weighing-in graphic
		1	Round SmartTrac	Round weighing in SmartTrac
		2	SmartTrac bar	Weighing-in SmartTrac bar
		3	SmartTrac measuring beaker	SmartTrac crosshairs

Comments

- If the application contains a nominal value that is > 0, the used weighing range graphics mentioned above are automatically displayed as weighing-in graphics listed in the left-most column.
- The parameter setting will be saved and the only way to reset the default value will be via MT-SICS or by means of a factory reset, FSET or via terminal not @.
- Use C2 to begin the adjustment procedure with the set weight.

$\mathbf{\Lambda}$	M39_2	Set the SmartTrac bar.
↑	M39_A	SmartTrac bar has been set.

M43 - Custom unit

Description

Use M43 to activate or deactivate custom units (custom display unit, custom info unit).

Syntax

Commands

M43	Query of the current custom unit setting.
M43_ <customunitnumber>_<mode></mode></customunitnumber>	Write new custom unit.

Responses

M43_B_ <customunitnumber>_<mode> M43_B M43_A_<customunitnumber>_<mode></mode></customunitnumber></mode></customunitnumber>	Current custom units.
M43_A	Command understood and executed successfully.
M43_I	Command understood but currently not executable.
M43_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<customunitnumber></customunitnumber>	Integer	1	Custom display unit
		2	Custom info unit
<mode></mode>	Integer	0	Deactivate custom unit
		1	Activate custom unit

Comments

- Dependency: [M21 > Page 165] Unit (Host-, Display- and Info-Unit) [M22 > Page 168] - Custom unit definitions (Formula, Factor, Unit, Rounding)
- Custom units cannot be fully defined or managed via Host.

$\mathbf{\Lambda}$	M43	Query of current custom unit settings.
Υ	M43_B_1_1	Custom display unit is on.
	M43_A_2_0	Custom info unit is off.
$\mathbf{\Lambda}$	M43_1_0	Deactivated custom display unit.
1	M43_A	Command understood and executed successfully.

M44 – Command executed after startup response

Description

Use M44 to set or query the command executed after startup.

Syntax

Commands

M4 4	Query of the current startup command setting.
M44_ <interface>_<"Command"></interface>	Set the startup command.

Responses

M44_B_ <interface>_<"Command"></interface>	Interface number 0.
M44_B M44_A_ <interface>_<"Command"></interface>	 Interface number n.
M44_A	Command understood and executed successfully.
M44_I	Command understood but currently not executable.
M44_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<interface></interface>	Integer	0 n	Interface number
<"Command">	String	max 64 chars	MT-SICS Command after startup

Comments

- Command executed after I4 and after initial zero.
- An invalid command leads to ${\tt ES}$ after start up.

$\mathbf{\Lambda}$	M44	Query of the current startup command setting.
$\mathbf{\Lambda}$	M44_B_0_""	There is no command specified on interface 0.
	M44_A_1_"SIR"	Starts SIR after startup on interface 1.
$\mathbf{\Psi}$	M44_0_"SR_1_g"	Start SR command after startup on interface 0.
1	M44_A	Command understood and executed successfully.

M45 – Electrical termination of RS422/ RS485 data lines

Description

Use M45 to set the electrical termination of RS422/RS485 data lines switch state.

Syntax

Commands

M45	Query of the current RS electrical termination setting.
M45_ <interface>_<onoff></onoff></interface>	Set RS electrical termination on or off.

Responses

M45_B_ <interface>_<state></state></interface>	Interface number 0.
M45_B… M45_A_ <interface>_<state></state></interface>	 Interface number n.
M45_A	Command understood and executed successfully.
M45_I	Command understood but currently not executable.
M45_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<interface></interface>	Integer	0 n	Interface number, see COM
<state></state>	Boolean	ON = 1	RS422 bus termination setting
		Off = 0	

Comments

- Only bus systems like RS422 will be shown in the list.
- Default setting is M45_0 = off.

$\mathbf{\Lambda}$	M45	Query of the RS electrical termination setting.
1	M45_A_1_1	RS bus termination on interface 1 is on. There is only one bus interface available.
$\mathbf{\Lambda}$	M45_1_0	Set RS electrical termination to Off.
$\mathbf{\Lambda}$	M45_A	Command understood and executed successfully.

M47 – Frequently changed test weight settings

Description

Use M47 to read and write the frequently changed test weight settings, such as actual weight and next calibration date.

Syntax

Commands

M47	Query of the current test weight settings.
M47_ <number></number>	Query of the specific test weight setting.
M47_ <number>_<"Actual-</number>	Write new test weight settings for the specific test
Weight">_<"Unit">_ <day>_<month>_<year></year></month></day>	weight.

Responses

M47_B_ <number>_<"Actual- Weight">_<"Unit">_<day>_<month>_<year></year></month></day></number>	Current test weight settings.
M47_B M47_A_ <number>_<"Actual- Weight">_<"Unit">_<day>_<month>_<year></year></month></day></number>	
M47_A	Command understood and executed successfully.
M47_I	Command understood but currently not executable.
M47_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<number></number>	Integer	1 12	Number of the test weight.
<"ActualWeight">	String	Max 10 chars	Actual weight of the test weight.
<"Unit">	String	Max 2 chars	Actual unit of the test weight.
<day></day>	Integer	1 31	Day of the next calibration date.
<month></month>	Integer	1 12	Month of the next calibration date.
<year></year>	Integer	2000 2099	Year of the next calibration date.

Comments

- These initial values are set by the GWP software on the weigh module, balance.
- The parameter "Number" corresponds with the "Number" of [M48 > Page 186] command.
- To write the infrequently changed parameters, the command "[M48 > Page 186]" is used.
- The following conditions must be met before a test weight is considered valid: if name is defined (max 20 characters), if weight value is defined (more than 0), and if unit is valid.
- This command is available only in XP and XS balances and is not supported in XA balances.

$\mathbf{\Lambda}$	M47	Query of the list for all test weight settings.
	M47_B_1_"100.0"_"g"_12_10_2010 M47_B_2_"9.9999"_"g"_19_08_2010 M47_B_3_"20.0001"_"g"_10_12_2009 M47_B_4_"0"_"mg"_12_09_2011 M47_B_5_"0"_"g"_31_12_2099 M47_B_6_"0"_"g"_31_12_2099 M47_B_7_"0"_"g"_31_12_2099 M47_B_9_"0"_"g"_31_12_2099 M47_B_10_"0"_"g"_31_12_2099 M47_B_11_"0"_"g"_31_12_2099 M47_B_11_"0"_"g"_31_12_2099 M47_B_11_"0"_"g"_31_12_2099	The first three test weight settings are defined correctly, the fourth weight is not completely defined (weight value is still O) and the rest is not defined at all.
$\mathbf{\Lambda}$	M47_1	The parameters of the first test weight are requested.
1	M47_A_1_"100.0"_"g"_10_11_2010	The requested test weight has an actual value of 100 grams and the next recalibration is on November 10 th 2010.
$\mathbf{\Psi}$	M47_1_"20.0"_"g"_10_12_2012	Parameters of the first test weight are changed.
1	M47_A	The test weight's actual weight is set to 20 grams and the next recalibration date to December 10 th 2012.

M48 – Infrequently changed test weight settings

Description

Use M48 to read and write the infrequently changed test weight settings, such as actual weight and next calibration date.

Syntax

Commands

M48	Query of the infrequently used test weight settings.
M48_ <number></number>	Query of the specific infrequently used test weight setting.
M48_ <number>_<"Name">_<"ID">_ <"Class">_<"Certificate">_<"Set"></number>	Write new infrequently used test weight settings for the specific test weight.

Responses

M48_B_ <number>_<"Name">_<"ID">_ <"Class">_<"Certificate">_<"Set"> M48_B M48_A_<number>_<"Name">_<"ID">_ <"Class">_<"Certificate">_<"Set"></number></number>	Current test weight settings.
M48_A	Command understood and executed successfully.
M48_I	Command understood but currently not executable.
M48_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<number></number>	Integer	1 12	Number of the test weight.
<"Name">	String	Max 20 chars	Name of the test weight.
<"ID">	String	Max 20 chars	ID of the test weight.
<"Class">	String	See Comments	Class of the test weight.
<"Certificate">	String	Max 20 chars	Certificate of test weight.
<"Set">	String	Max 20 chars	Set number of test weight.

Comments

- The parameter "Number" corresponds with the "Number" of [M47 > Page 184] command.
- Examples for Weight classes: E1, E2, F1, F2, M1, M2, M3, ASTM1, ASTM2, ASTM3, ASTM4, ASTM5, ASTM6, ASTM7.
- The following conditions must be met before a test weight is considered valid: if name is defined (max 20 characters), if weight value is defined (more than 0), and if unit is valid.
- This command is available only in XP and XS balances and is not supported in XA balances.

¥	M48	Query of the list for all infrequently used test weight settings.	
1	M48_B_1_"50gQK"_"798012"_"E1"_ "1231"_"4551"	The first three test weight settings that are infrequently used are defined correctly, and the rest is not defined	
	M48_B_2_"55gQK"_"798013"_"E1"_ "1232"_"4552" M48_B_3_"60gQK"_"798014"_"E1"_	at all.	
	"1233"_"4553" M48_B_4_"Test/Adj. Weight		
	4"_""_"E1"_"" M48_B_5_"Test/Adj. Weight 5"_""_"E1"_""		
	M48_B_6_"Test/Adj. Weight 6"_""_"E1"_""		
	M48_B_7_"Test/Adj. Weight 7"_""_"E1"_""		
	M48_B_8_"Test/Adj. Weight 8"_""_"E1"_""		
	M48_B_9_"Test/Adj. Weight 9"_""_"E1"_""		
	M48_B_10_"Test/Adj. Weight 10"_""_"E1"_"""_""		
	M48_B_11_"Test/Adj. Weight 11"_""_"E1"_"" M48_A_12_"Test/Adj. Weight		
	12"_""_"E1"_""		
¥	M48_1	The infrequently used parameters of the first test weight are requested.	
^	M48_A_1_"50gQK"_"798012"_"E1"_ "5467"_"4556"	The actual test weight name of the requested test weight is 50gQK, the weight ID is 798012, the weight class is E1, the weight certificate is 5467 and the weight set number is 4556.	
¥	M48_3_"100gQK"_"10988"_"F1"_"5991"_" 4111"	Parameters of the third test weight are changed.	

See also

 $\mathbf{\Lambda}$

M48_A

Command understood and executed successfully.

M49 – Permanent tare mode

Description

Define tare value used for start-up. Normal behavior stores tare value to volatile memory and tare value is set back to zero for start-up (compare [M35 >> Page 178] for zero value). Permanent behavior stores tare value to nonvolatile memory (pre-tare value, see [TA >> Page 253]) and provides tare value for start-up. Two modes for permanent behavior are distinguished:

- one-time storage of current tare value by sending M49 command with tare mode 1
- continuous storage of last tare value by activation of mode 2

Syntax

Command

M4 9	Request the tare behavior.
M49_ <taremode></taremode>	Set the tare behavior.

Responses

M49_A_ <taremode></taremode>	Display the tare mode.
M49_A	Command understood and executed successfully.
M49_I	Command understood but currently not executable.
M49_L	Command understood but not executable (incorrect parameter).

Parameter

Name	Туре	Values	Meaning
<taremode> Integer</taremode>	0	Normal, tare set to zero upon startup	
		1	Permanent tare used on startup, one-time storage of current tare
		2	Permanent tare used on startup, continuous storage of last tare value

Comment

Command is similar to M35 command (permanent zero mode).

$\mathbf{\Lambda}$	M49	Request the tare behavior.
↑	M49_A_1	Permanent tare is used after startup.
$\mathbf{\Lambda}$	M49_0	Set normal tare behavior after next startup.
↑	M49_A	Command understood and executed successfully.
\mathbf{V}	M49_1	Set permanent tare behavior after next startup.
↑	M49_A	Command understood and executed successfully.

M66 - GWP: Certified test weight settings

Description

Use M66 command to read and write the certified test weight settings. It is used primarily for the Matrix-Code of the weight certificate of METTLER TOLEDO. It allows directly import the settings of a certified weight from the certificate into the weigh module and thus eliminates any typing errors.

Syntax

Commands

M66	Query of the data from one weight only.
M66_<"ID">_<"Class">_<"Certificate">_ <"ActualWeight">_<"Unit">_ <day>_<month>_ <year></year></month></day>	Set data of one weight only.

Responses

M66_A_<"ID">_<"Class">_<"Certificate">_ <"ActualWeight">_<"Unit">_ <day>_<month>_ <year></year></month></day>	Current data from one weight only.
M66_A	Command understood and executed successfully.
M66_I	Command understood but currently not executable.
M66_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<"ID">	String	5 20 chars	Identifcation of the test weight
<"Class">	String	5 20 chars	Class of the test weight
<"Certificate">	String	5 20 chars	Certificate of test weight
<"ActualWeight">	String	Max 20 chars	Actual weight of the test weight
<"Unit">	String	Max 2 chars	Unit of the actual weight
<day></day>	Integer	1 31	Day of the next calibration date, e.g. 05 (Format: dd)
<month></month>	String	1 12	Month of the next calibration date, e.g. 11 (Format: mm)
<year></year>	Integer	2000 2099	Year of the next calibration date, e.g. 2009 (Format: yyyy)

Comments

- Query of whole list of entries is not possible. Use [M47 ▶ Page 184] and [M48 ▶ Page 186] to get information about all specific tests.
- The initial values are set by the software on the weigh module, balance.
- Examples for Weight classes: E1, E2, F1, F2, M1, M2, M3, ASTM1, ASTM2, ASTM3, ASTM4, ASTM5, ASTM6, ASTM7
- Please note that this command has a product specific implementation.
- This command is available only in XP and XS balances and is not supported in XA balances.

$\mathbf{\Lambda}$	M66	
1	M66_A_"A-0926748"_"E1"_"MT-089987"_" 99.99807"_"g"_21_07_210	The query was uniquely defined for the balance, the balance responds with the inquired data.
$\mathbf{\Lambda}$	M66	
1	M66_I	The device is not ready to read the test/adj. weight settings. (e.g. there are more than one Test / Adj. weight available, therefore the query could not be answered.
$\mathbf{\Lambda}$	M66_"A-0926748"_"E1"_"MT-089987"_"99 .99807"_"g"_21_07_210	Write data on the balance.
1	M66_A	The received data are valid and has been stored on the balance.
$\mathbf{\Lambda}$	M66_"A-0926748"_"E1"_"MT-089987"_"99 .99807"_"g"_21_07_210	Write data on the balance.
1	M66_I	The device is not ready to read the test/adj. weight settings. (e.g. there are more than one Test / Adj. Weight available, therefore the query could not be answered. See product specific implementation).

M67 – Timeout

Description

Command M67 provides the possibility to configure the timeout used in commands like "s", "z" etc to better meet the actual need.

Syntax

Command

Μ	167	Query the actual timeout.
М	167_ <timeout></timeout>	Set the timeout in seconds.

Responses

M67_A_ <timeout></timeout>	Current timeout in seconds.
M67_A	Command understood and executed successfully.
M67_I	Command understood but currently not executable.
M67_L	Command understood but not executable (incorrect parameter).

Parameter

Name	Туре	Values	Meaning
<timeout></timeout>	Integer	0 65535	Timeout in seconds

Comments

- This command affects the behavior of the commands [S ▶ Page 223], [Z ▶ Page 272], [T ▶ Page 252] ...
 C1 ... [TST1 ▶ Page 260] ... as well as the zeroing procedure at module startup.
- To specify the timeout, only integer numbers ranging from 0 to 65535 are allowed, any decimal places would be truncated.
- Choosing a too short timeout may cause other commands to response with "_I" (e.g. "c3_I" if the timeout is shorter than the time that is needed to place the internal load). Different commands under different conditions may ask different timeouts; therefore, the actual setting has to be approved under real conditions.
- After a FSET command, the timeout will be reset to the factory default.
- METTLER TOLEDO recommends a minimal timeout of 40 seconds (factory default setting).

$\mathbf{\Lambda}$	M67_60	Set the timeout to 60 seconds.
1	M67_A	Command understood and executed successfully. The
		timeout is now 60 seconds.

M68 – Behavior of serial interfaces

Description

This command is used to set the behavior when querying or setting the parameters of the serial interfaces. The behavior can either be configured to store the parameters of the serial interfaces permanently or temporary. If the permanent mode is used the parameters remain in case of a system restart. If the temporary mode is selected the parameters do not remain in case of a system restart. Temporary parameters remain valid until the system is restarted.

Syntax

Command

м68	Query the behavior of the serial interface.	
M68_ <mode></mode>	Set the behavior of the serial interface.	

Responses

M68_A_ <mode></mode>	Current behavior of the serial interface.
M68_A	Command understood and executed successfully.
M68_I	Command understood but currently not executable.
M68_L	Command understood but not executable (incorrect parameter).

Parameter

Name	Туре	Values	Meaning
<mode></mode>	Integer	0	Permanent parameter storage
		1	Temporary parameter storage

$\mathbf{\Lambda}$	M68	Get current storage mode.
1	M68_A_0	The parameters of the serial interfaces are stored permanently.
$\mathbf{\Lambda}$	M68_1	Set storage mode to temporary.
1	M68_A	The parameters of the serial interfaces are stored temporary.

M69 – Ipv4 network configuration mode

Description

General introduction: **see** [I53 – Ipv4 runtime network configuration information ▶ Page 123]. This specific command will set the mode of how the device will obtain an IP configuration. In case of the mode "Use DHCP, set fallback IP configuration manually", the IP settings made via the M70 command will be used in case of problems with the DHCP server.

Use M69 to set or query the configuration but does not apply the setting immediately and does not check whether the network stack can support the selected setting. The behavior if the supplied configuration cannot be supported by the network stack is product specific. Example: If DHCP is activated by M69 although DHCP is not supported by the network stack: use a well-known hard-coded IP address.

Syntax

Commands

M69	Query the network configuration mode.
M69_ <index></index>	Query the network interface index.
M69_ <index>_<mode></mode></index>	Set the IP configuration mode for a given network
	interface.

Responses

M69_B_ <index>_<mode></mode></index>	Current network configuration mode.
M69_B… M69_A_ <index>_<mode></mode></index>	
M69_A	Command understood and executed successfully.
M69_I	Command understood but currently not executable (no network interfaces present in the system).
M69_L	Command understood but not executable (no network interfaces with index 0 present in the system).

Parameters

Name	Туре	Values	Meaning
<index></index>	Integer	0 or n	Network interface index
		0	1 st network interface
		n	n +1 th network interface
<mode></mode>	Integer	0 3	Mode of the IP configuration
		0	Static IP configuration
		1	Use DHCP, obtain fallback IP configuration with AutoIP
		2	Use DHCP, set fallback IP configuration manually
		3	IP networking disabled, no communication possible

$\mathbf{\Psi}$	M69	Query the network configuration mode.
↑	M69_B_0_0 M69_B_1_1	The network interface at index 0 is manually configured.
	M69_A_2_2	The network interface at index 1 is configured for DHCP/AutoIP.
		The network interface at index 2 is configured for DHCP/Manual.
$\mathbf{\Psi}$	M69_1	Query the mode of network interface index 1.
↑	M69_A_1_1	The network interface at index 1 is configured for DHCP/AutoIP.
Υ	M69_0_0	Set IP configuration mode of network interface index 0 to manual.
1	M69_A	The IP configuration mode at index 0 is configured for manual.
$\mathbf{\Lambda}$	M69_0_1	Set IP configuration of network interface index 0 to DHCP/AutoIP.
↑	M69_A	The IP configuration mode at index 0 is configured for DHCP/AutoIP.
¥	M69_0_2	Set IP configuration of network interface index 0 to DHCP/Manual.
1	M69_A	The IP configuration at index 0 is configured for DHCP/ Manual.
¥	M69_0_3	Set IP configuration of network interface index 0 to not configured.
↑	M69_A	The IP configuration at index 0 is not configured.

See also

 $\mathscr{O}~$ M70 – lpv4 host address and netmask for static configuration \blacktriangleright Page 195

M70 – Ipv4 host address and netmask for static configuration

Description

General Introduction: **see** [I53 – Ipv4 runtime network configuration information ▶ Page 123]. This specific command will set a basic IP configuration composed of IPv4 host address and IPv4 netmask address. This configuration will be used by a network device if either the configuration mode M69 is set to manual or the configuration mode is set to DHCP with manual fallback IP configuration.

Syntax

Commands

М70	Query the host address and netmask.
M70_ <index></index>	Query the host address and netmask of network interface index.
M70_ <index>_<"Host">_<"Netmask"></index>	Set the host address and netmask for a given network interface.

Responses

M70_B_ <index>_<"Host">_"Netmask" M70_B M70_A_<index>_<"Host">_"Netmask"</index></index>	Current host address and netmask.
M70_A	Command understood and executed successfully.
M70_I	Command understood but currently not executable (no network interfaces present in the system).
M70_L	Command understood but not executable (no network interfaces with index 0 present in the system).

Parameters

Name	Туре	Values	Meaning
<index></index>	Integer	0 or n	Network interface index
		0	1 st network interface
	n	n +1 th network interface	
<"Host">	String	Max 15 chars	Ipv4 address (dot-decimal notation) of the device on the given network interface
<"Netmask">	String	Max 15 chars	Ipv4 netmask (dot-decimal notation) on the given network interface

Comments

- If the mode of the IP configuration is set to "DHCP/Manual" M69, the setting of this command only takes effect in the network stack if DHCP fails.
- If the mode of the IP configuration is set to "DHCP/AutoIP" or "not configured" M69, this setting does not take effect in the network stack.
- Use I53 to read the settings that are effectively operational in the network stack. 153 will either return the configured static settings or the dynamic settings given by DHCP.

$\mathbf{\Psi}$	M70	Query the host address and netmask.
↑	M70_B_0_"10.0.0.3"_"255.255.255.0" M70_B_1_"192.168.0.11"_"255.254.0"	The host address at index 0 is "10.0.0.3" and the netmask is "255.255.255.0".
	M70_A_2_"10.0.1.100"_"255.255.255.0"	The host address at index 1 is "192.168.0.11" and the netmask is "255.254.0".
		The host address at index 2 is set to "10.0.1.100" and the netmask is set to "255.255.255.0".
\mathbf{h}	M70_1	Query the host address and netmask of network interface index 1.
1	M70_A_1_"192.168.0.11"_"255.255.255. 0"	The host address at index 1 is "192.168.0.11" and the netmask is "255.255.255.0".

See also

M71 – Ipv4 default gateway address

Description

This specific command will set a default gateway address for a specific network device. This configuration will be used by a network device if either the configuration mode M69 is set to manual or the configuration mode is set to to DHCP with manual fallback IP configuration.

Syntax

Commands

M71	Query the default gateway address.
M71_ <index></index>	Query the default gateway address of network interface index.
M71_ <index>_<"DefaultGateway"></index>	Set the default gateway address for a given network interface.

Responses

M71_B_ <index>_<"DefaultGateway"></index>	Current default gateway address.
M71_B M71_A_ <index>_<"DefaultGateway"></index>	
M71_A	Command understood and executed successfully.
M71_I	Command understood but currently not executable (no network interfaces present in the system).
M71_L	Command understood but not executable (no network interfaces with index 0 present in the system).

Parameters

Name	Туре	Values	Meaning
<index></index>	Integer	0 or n	Network interface index
		0	1 st network interface
		n	n +1 th network interface
<"DefaultGateway">	String	Max 15 chars	Ipv4 default gateway address (dot-decimal notation) on the given network interface

Comments

- If the mode of the IP configuration is set to "DHCP/Manual" M69, the setting of this command only takes effect in the network stack if DHCP fails.
- If the mode of the IP configuration is set to "DHCP/AutoIP" or "not configured" M69, this setting does not take effect in the network stack.
- Use I53 to read the settings that are effectively operational in the network stack. 153 will either return the configured static settings or the dynamic settings given by DHCP.

$\mathbf{\Lambda}$	M71	Query the default gateway address.
1	M71_B_0_"10.0.0.1"	The default gateway address at index 0 is "10.0.0.1".
	M71_B_1_"192.168.0.1" M71_A_2_"10.0.1.1"	The default gateway address at index 1 is "192.168.0.1".
		The default gateway address at index 2 is "10.0.1.1".
\mathbf{h}	M71_1	Query the default gateway address of network interface index 1.
1	M71_A_1_"192.168.0.1"	The default gateway address at index 1 is "192.168.0.1".
\mathbf{A}	M71_0_"10.0.0.1"	Set the default gateway address of network interface index 0 to "10.0.0.1".
↑	M71_A	The default gateway address at index 0 is set to "10.0.0.1".

See also

M72 – Ipv4 DNS server address

Description

This specific command will set a DNS Server address for a specific network device. This configuration will be used by a network device if either the configuration mode M69 is set to manual or the configuration mode is set to DHCP with manual fallback IP configuration.

Syntax

Commands

M72	Query the DNS server address.
M72_ <index></index>	Query the DNS server address for a network interface index.
M72_ <index>_<"DNSServer"></index>	Set the DNS server address for a given network interface.

Responses

M72_B_ <index>_<"DNSServer"></index>	Current DNS server address.
M72_B M72_A_ <index>_<"DNSServer"></index>	
M72_A	Command understood and executed successfully.
M72_I	Command understood but currently not executable (no network interfaces present in the system).
M72_L	Command understood but not executable (no network interfaces with index 0 present in the system).

Parameters

Name	Туре	Values	Meaning
<index></index>	Integer	0 or n	Network interface index
		0	1 st network interface
		n	n +1 th network interface
<"DNSServer">	String	Max 15 chars	Ipv4 DNS server address (dot-decimal notation) on the given network interface

Comments

- If the mode of the IP configuration is set to "DHCP/Manual" M69, the setting of this command only takes effect in the network stack if DHCP fails.
- If the mode of the IP configuration is set to "DHCP/AutoIP" or "not configured" M69, this setting does not take effect in the network stack.

$\mathbf{\Psi}$	M72	Query the DNS server address.
↑	M72_B_0_"10.0.0.1"	The DNS server address at index 0 is "10.0.0.1".
	M72_B_1_"192.168.0.1"	The DNS server address at index 1 is "192.168.0.1".
	M72_A_2_"10.0.1.1"	The DNS server address at index 2 is "10.0.1.1".
$\mathbf{\Psi}$	M72_2	Query the DNS server address of network interface index 2.
↑	M72_A_2_"10.0.1.1"	The DNS server address at index 2 is "10.0.1.1".
$\mathbf{\Psi}$	M72_0_"10.0.0.1"	Set the DNS server address of network interface index 0 to "10.0.0.1".
↑	M72_A	The DNS server address at index 0 is set to "10.0.0.1".

See also

- $\mathscr{O}~$ I53 Ipv4 runtime network configuration information \blacktriangleright Page 123

M89 - Interface command set

Description

This command queries and sets the interface command set.

Syntax

Commands

M8 9	Query the command set of all available interfaces.
M89_ <interface></interface>	Query specific interface command set.
M89_ <interface>_<cmdset></cmdset></interface>	Set the specific command set of interface.

Responses

M89_B_ <interface>_<cmdset> M89_B M89_A_<interface>_<cmdset></cmdset></interface></cmdset></interface>	Current command set of the first available interface. Current command set of the last available interface.
M89_A	Command understood and executed successfully.
M89_I	Command understood but currently not executable.
M89_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<interface></interface>	Integer	0	Serial interface 1
		1	Serial interface 2 (model dependent)
		2	USB device (model dependent)
<cmdset> Intege</cmdset>	Integer	0	MT-SICS
		1	MT-PM
		2	Sartorius 22 character output format
		3	Sartorius 16 character output format

Comments

- New command set type settings are active after a maximum of 100 ms. No commands must be sent during this period.
- The MT-PM and Sartorius commands shall only be used for compatibility/exchangeability with respective devices, but MT-SICS shall be the major command set.

$\mathbf{\Lambda}$	M8 9	Query the command set of all available interfaces.
1	M89_B_0_0	The serial interface 1 uses the MT-SICS command set.
1	M89_A_2_1	The serial interface use the MT-PM command set. The balance does not have a serial interface 2.
$\mathbf{\Lambda}$	M89_1_2	Set the serial interface 2 to use the Sartorius command set.
1	M89_A	The serial Interface 2 uses the Sartorius command set.

M103 - RS422/485 driver mode

Description

Configure RS422/485 driver mode which defines the handling of the two control pins DE (Driver Enable) and RE (Receiver Enable).

Syntax

Command

M103	Query the driver mode.
M103_ <interface></interface>	Query the driver mode of a specific interface.
M103_ <interface>_<drivermode></drivermode></interface>	Set the driver mode.

Responses

M102 D (Interface) (DriverMede)	Driver medee of all interfaces
M103_B_ <interface>_<drivermode></drivermode></interface>	Driver modes of all interfaces.
M103_B	Driver mode of a specific interface.
M103_A_ <interface>_<drivermode></drivermode></interface>	
M103_A	Command understood and executed successfully.
M103_I	Command understood but currently not executable.
M103_L	Command understood but not executable (incorrect
	parameter).

Parameters

Name	Туре	Values	Meaning
<interface></interface>	Integer	0 n	Identification for physical serial interface (n is product dependent)
			The kind of physical serial interface is product specific (RS232, RS422, RS485, USB etc.)
<drivermode></drivermode>	Integer	0	RS232 mode
		1	RS422 mode (full-duplex)
		2	RS485 mode (half-duplex) / RS422 mode (half- duplex)

Comments

- The activation of the RS422/485 driver mode is only possible for RS422/485 interfaces.
- The RS422 driver mode allows performing full-duplex communication using 4 unidirectional wires.
- The RS485 driver mode allows performing half-duplex communication using 2 bidirectional wires.
- The setting of data flow control COM may be dependent on the setting of the RS422/485 driver mode and vice versa.

$\mathbf{\Lambda}$	M103_0_2	Activate RS485 driver mode on the serial interface 0.
↑	M103_A	Command understood and executed successfully.
$\mathbf{\Lambda}$	M103	Query the driver mode.
1	M103_B_0_0 M103_B_1_2 M103_A_2_0	Serial interfaces 0 and 2 are configured to use the classical RS232 mode, e.g. because the underlying physical interface is RS232 or CL which does not allow RS422/485 modes.
		The serial interface 1 is configured to use RS485 driver mode.

See also

 ${\mathscr O}\ \mbox{COM}\ -\ \mbox{Parameters}$ of the serial interfaces $\mbox{\ \ }\ \mbox{Page}\ 46$

M109 – IPv4 device managed network configuration setting

Description

This command defines the setting for the IPv4 device managed network configuration. If IPv4 device managed network configuration is enabled, the device itself manages its network configuration. The network configuration can take place for example through a display on a terminal or MT-SICS commands for network configuration, **see** dependencies. If IPv4 device managed network configuration is disabled, the network settings of the device are configured by an external device, e.g. an Industrial Ethernet configuration tool.

Syntax

Commands

м109	Query the current settings.
M109_ <devnetenabled></devnetenabled>	Change settings.

Responses

M109_A_ <devnetenabled></devnetenabled>	Current list of setting.
M109_A	Command understood and executed successfully.
M109_I	Command understood but currently not executable.
M109_L	Command understood but not executable (selected setting is not available).

Parameter

Name	Туре	Values	Meaning
<devnetenabled></devnetenabled>	Integer	0 or 1	IPv4 device managed network configuration factory setting
		0	IPv4 configuration not managed by this device
		1	IPv4 configuration managed by this device

Comment

Changing the settings of M109 may influence the available IPv4 network configuration capabilities of the device (e.g. disable certain SICS commands).

Examples

\mathbf{A}	M109	Request the setting of IPv4 device managed network configuration.
1	M109_A_0	The setting for device managed network configuration is set to disabled.
$\mathbf{\Psi}$	M109_0	Set the setting to enabled.
1	M109_A	Command understood and executed successfully.

See also

- M69 Ipv4 network configuration mode ▶ Page 193
- M71 Ipv4 default gateway address > Page 197

M110 – Change display resolution

Description

For automated processes like dosing, higher weight value resolutions are needed to control the process. This command increases/decreases the weight value resolution up to factor 100. The guaranteed readability is the standard readability based on datasheet.

Syntax

Command

M110	Query the current display resolution.
M110_ <factorid></factorid>	Set the factor.

Responses

M110_A_ <factorid></factorid>	Current display resolution.
M110_A	Command understood and executed successfully.

Parameter

Name	Туре	Values	Meaning
<factorid></factorid>	Integer	- 6	Factor 100 lower
		-5	Factor 50 lower
		-4	Factor 20 lower
		-3	Factor 10 lower
		-2	Factor 5 lower
		-1	Factor 2 lower
		0	Standard display resolution
		1	Factor 2 higher
		2	Factor 5 higher
		3	Factor 10 higher
		4	Factor 20 higher
		5	Factor 50 higher
		6	Factor 100 higher

Comments

- Typical use case of an increased display resolution: Improved process control of filling and dosing applications. Process control can round the value at the required decimal.
- The resolution is specified in digits [d] this is the smallest increment a device may display.
- The customer unit M22 will not be changed with the M110 command.
- It is recommended to implement only one of the commands M23 or M110 in a product.
- If both commands are implemented, only one of the settings can be active at the same time, i.e. only one of the commands can be configured to a value other than 0 at the same time.
- The stability criteria for the weight result (weighing commands) will be adapted for lower display resolution to the selected readability based on the USTB setting (same as M23). M110 only has an influence on weighing; it has no influence on the stability criteria for the taring, zeroing and adjustments.
- The stability criteria will not change for higher display resolution.
- M110 settings have no effect in production and service mode.
- This command may only be used on not certified devices. On certified devices it is not allowed to use this function.

$\mathbf{\Lambda}$	M110	Request the current display resolution.
↑	M110_A_6	The current display resolution is factor 100 higher.
		Example: standard readability 1 g -> factor 100 shows 0.01 g.
$\mathbf{\Lambda}$	M1102	Set display resolution to factor 5 lower.
1	M110_A	The display resolution is 5 lower.

See also

M111 – SAI Cyclic data format activation

Description

This command activates a specific supported SAI cyclic data format on the device.

Syntax

Command

M111	Read the parameters from the device.
M111_ <activatedformat></activatedformat>	Write the parameters to the device.

Responses

M111_A_ <activatedformat></activatedformat>	Current activated formats.
M111_A	Command understood and executed successfully.
	Command understood but not executable (incorrect parameter).

Parameter

Name	Туре	Range	Meaning
<activatedformat></activatedformat>	Integer	0 31	SAI cyclic data format to be activated by the device.
			0 = 1 block format 1 = 2 block format 2 = 4 block format 3 = 8 block format 31 = custom format (= APW 8 block format)

Comment

Only the SAI formats being supported by a device may be activated.

$\mathbf{\Lambda}$	M111	Request the current activated formats.
1	M111_A_1	The SAI 2 block format is activated.
¥	M111_0	Activate the SAI cyclic data 1 block format on the device.
1	M111_A	Command understood and executed successfully.

M116 – Ignore Industrial Ethernet initial module parametrization

Description

Certain Industrial Ethernet systems (e.g. Profinet) allow initial module parametrization. If supported, module parameters are sent from the PLC to the device (weighing module) during connection setup. Examples of module parameters: weighing environment, cut-off frequency, and timeout settings.

In Siemens TIA portal (Profinet system), initial module parametrization cannot be disabled if the module device manufacturer supports this feature (defined by the device description file).

With this command, the module can be configured to ignore the parameters sent by the PLC and thereby disabling this functionality.

Syntax

Command

M116	Read the parameters from the device.
M116_ <behavior></behavior>	Write the parameters to the device.

Responses

M116_A_ <behavior></behavior>	Current activated parameters.
M116_A	Command understood and executed successfully.
M116_L	Command understood but not executable (incorrect parameter).

Parameter

Name	Туре	Range	Meaning
<behavior></behavior>	Boolean	0	Initial module parametrization enabled (parameters sent by the PLC taking effect). Default setting.
	1	Ignore initial module parametrization (ignore parameters sent by the PLC).	

$\mathbf{\Lambda}$	M116	Request the current activated parameters.
↑	M116_A_0	Initial module parametrization enabled.
$\mathbf{\Lambda}$	M116_1	Disable initial module parametrization.
↑	M116_A	Command understood and executed successfully.

M117 – TCP Port number configuration

Description

This command will set the TCP port number of network devices providing a TCP connection.

Syntax

Command

M117	Reads the parameters from the device; all entries.
M117_ <deviceindex></deviceindex>	Reads the parameters from the device; specific entry.
M117_ <deviceindex>_<portindex></portindex></deviceindex>	
M117_ <deviceindex>_<portindex> _<portnumber></portnumber></portindex></deviceindex>	Write the parameters to the device.

Responses

M117_B_ <deviceindex>_<portindex> _<portnumber< th=""><th>Current parameters of all network devices or devices with a specific DeviceIndex.</th></portnumber<></portindex></deviceindex>	Current parameters of all network devices or devices with a specific DeviceIndex.
M117_B_ <deviceindex>_<portindex> _<portnumber< td=""><td></td></portnumber<></portindex></deviceindex>	
M117_A_ <deviceindex>_<portindex> _<portnumber< td=""><td></td></portnumber<></portindex></deviceindex>	
M117_A	Command understood and executed successfully.
M117_I	There are no network interfaces present in the system.
M117_L	Command understood but not executable (incorrect parameter).

Parameter

Name	Туре	Range	Meaning
<deviceindex> inte</deviceindex>	integer	integer ⁰	1 st network interface
		n	n+1st network interface
<portindex></portindex>	integer	0	1st port
		n	n+1st port
<portnumber></portnumber>	integer	0	Set to default port number. O is no valid TCP port number.
		1 65535	Port number to set.

$\mathbf{\Lambda}$	M117	Request the current device parameters.
↑	M117_B_0_0_80 M117_B_0_1_81	The system has 2 network interfaces. Both network interfaces have 2 configurable TCP ports.
	M117_B_1_0_8080 M117_A_1_1_8081	Network interface with index 0 has TCP port numbers 80 (PortIndex 0) and 81 (PortIndex 1).
		Network interface with index 1 has TCP port numbers 8080 (PortIndex 0) and 8081 (PortIndex 1).
\mathbf{V}	M117_1_0_23	Set PortIndex 0 of DeviceIndex 1 to PortNumber 23.
↑	M117_A	Command understood and executed successfully.

Comments

- The settings only take effect after a reboot.
- The number of existing TCP ports is product specific and can differ among the product's network devices.

See also

- Ø M69 Ipv4 network configuration mode ▶ Page 193
- $\mathscr{O}~$ M70 Ipv4 host address and netmask for static configuration \blacktriangleright Page 195

M118 – Fieldbus network stack type configuration

Description

Define the type of fieldbus network stack to be active. A restart may be required to apply this setting.

Syntax

Command

M118	Read the parameters from the device.
M118_ <stack></stack>	Write the parameters to the device.

Responses

M118_A_ <stack>_<availablestacks></availablestacks></stack>	Current activated parameters.
M118_A	Command understood and executed successfully.
M118_L	Command understood but not executable (incorrect parameter).

Parameter

Name	Туре	Range (ID)	Meaning
<stack></stack>	Integer	0	Disable stack (if possible)
		1	PROFINET IO RT
		2	EtherNet / IP
		3	EtherCat
		4	PROFIBUS
<availablestacks></availablestacks>	Integer	see formula	$AvailableStacks = \sum_{\substack{selectable\\FieldbusStacks}} 2^{FieldbusStackID}$
		0	No Fieldbus stack available

Examples

$\mathbf{\Lambda}$	M118	Request the parameters.
↑	M118_A_2_6	EtherNet / IP stack is selected (2).
		Available stacks are PROFINET IO RT and EtherNet / IP $(6 = 2^1 + 2^2)$
$\mathbf{\Lambda}$	M118_1	Select PROFINET IO RT stack.
$\mathbf{\Lambda}$	M118_A	Command understood and executed successfully.
$\mathbf{\Psi}$	M118_0	Disable the Fieldbus stack.
↑	M118_A	Command understood and executed successfully.

Comment

Available stacks are defined by the device firmware and are visible in the bitset.

M119 - Byte order mode for automation

Defines the 16-bit or 32-bit byte order for automation.

In kinds of fieldbus network communication e.g. Modbus RTU, Profibus DP and so on, due to the different mode of data storage endian, PLC or controllers may demand the swap of data in specific byte order to facilitate data parsing and storage. The storage types of most-used PLC systems includes Byte (8 bits), Word (16 bits) and Double Word (32 bits).

16-bit or 32-bit data byte order can be in 4 ways:

- No swap
- Byte swap
- Word swap
- Byte and word swap

The devices need to convert 16-bit and/or 32-bit data into the host's required byte sequence before data transmission.

Note

64-bit values can be stored into 2 Double Words, following the principles above. While actually 64-bit values are rarely used.

Data type	Data
float 32 bits	1234.56
Little Endian	ec 51 9a 44
Big Endian	44 9a 51 ec [a b c d]
Byte Order Mode for Automation $= 0$ (no swap)	44 9a 51 ec [a b c d]
Byte Order Mode for Automation = 1 (byte swap)	9a 44 ec 51 [b a d c]
Byte Order Mode for Automation = 2 (word swap)	51 ec 9a 44 [c d a b]
Byte Order Mode for Automation = 3 (byte and word swap)	ec 51 9a 44 [d c b a]

Data type	Data
unsigned short 16 bits	20
Little Endian	14 00
Big Endian	00 14 [a b]
Byte Order Mode for Automation = 0 (no swap)	00 14 [a b]
Byte Order Mode for Automation = 1 (byte swap)	14 00 [b a]
Byte Order Mode for Automation = 2 (word swap)	00 14 [a b]
Byte Order Mode for Automation = 3 (byte and word swap)	14 00 [b a]

Syntax

Commands

M119	Query the parameters from the device, all entries.
M119_ <interface></interface>	Query the parameters from the device for a specific entry.
M119_ <interface>_<mode></mode></interface>	Set the parameters to the device.

Responses

<pre>M119_B_<interface>_<mode> M119_B_<interface>_<mode> M119_A_<interface>_<mode></mode></interface></mode></interface></mode></interface></pre>	Command understood and executed successfully, all entries.
M119_A_ <interface>_<mode></mode></interface>	Command understood and executed successfully for a specific entry.
M119_A	Command understood and executed successfully for a specific entry.

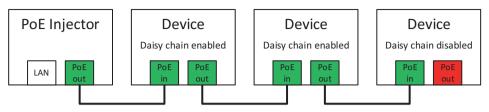
Parameters

Name	Туре	Values	Meaning
<interface></interface>	Integer	01n	Interface number n as well as the kind of the physical serial interface are product dependent
<mode></mode>	unsigned 8 bits	0 1 2 3	no swap byte swap word swap byte and word swap

Initial values

$\mathbf{\Lambda}$	M119	Query the parameters from the device.
$\mathbf{\Lambda}$	M119_B_0_0	Example with 3 serial interfaces: Initially the swap
	M119_B_1_0	mode is no swap
	M119_A_2_0	

Comments


- This command is needed for fieldbus communication, e.g. Modbus, Profibus, etc.
- The byte order has to be correctly set over the MT-SICS interface before starting communication on Modbus RTU or Profibus DP.
- This command is recommended to be used together with the interface command set. First set to the targeted byte order mode through this command over the MT-SICS interface, then set the interface command set to Modbus RTU over the same physical interface, after which Modbus RTU communication can be started.

$\mathbf{\Lambda}$	M119	Query the parameters from the device.
↑	M119_B_0_0	All three serial interfaces are set to no swap mode
	M119_B_1_0 M119_A_2_0	
	MIIJ_A_2_0	
$\mathbf{\Lambda}$	M119_2	Query the parameters from the device for interface 2.
1	M119_A_21	Interface 2 is set to byte swap mode
$\mathbf{\Psi}$	M119_0_3	Query the parameters from the device for interface 2.
1	M119_A	Parameter successfully set to the desired value,.

M124 – Power supply for daisy chain

Description

Configures power supply for daisy chain to power the next device. A typical use case is PoE (Power over Ethernet):

Syntax

Commands

M124	Reads the parameters from the device
M124_ <enable></enable>	Executes a function on the device

Responses

-	
M124_A_ <enable></enable>	Current configuration of the daisy chain.
M124_A	Command understood and executed successfully.
M124_I	Command understood but currently not executable.
M124_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Values	Meaning
<enable></enable>	0	Daisy chain disabled
	1	Daisy chain enabled

Comment

SPE has implemented passive PoE to daisy chain SPEs. Passive PoE means that the power supply is always on. If a device is connected to the SPE that has PoE enabled, the device may be damaged if it can't handle PoE. Therefore, the default value is 0 and power must be manually enabled for daisy chaining.

$\mathbf{\Psi}$	M124	Reads the parameters from the device.
↑	M124_A_0	Daisy chain disabled
$\mathbf{\Lambda}$	M124_1	Enable daisy chain
↑	M124_A	Daisy chain enabled
$\mathbf{\Lambda}$	M124_0	Disable daisy chain
↑	M124_A	Daisy chain disabled

MOD – Various user modes

Description

The MOD command can be used to activate a higher display resolution. The additionally displayed digit(s) or display increment is referred to as an auxiliary digit step. All specifications regarding weighing performance still relate to the nominal readability stated in the specifications.

The auxiliary digit step is a 'tendency display' that provides additional information which is especially valuable when dispensing small quantities. A maximum of 2 additional digits can be displayed.

Syntax

Commands

MOD	Query the user modes.
MOD_ <mode></mode>	Set user mode by mode.
MOD_ <mode>_<increment>_<unit></unit></increment></mode>	Set user mode by increment.

Responses

-	
MOD_A_ <mode></mode>	Query the current user mode.
MOD_A_ <mode>_<increment>_<unit></unit></increment></mode>	Query the current user mode with increments.
MOD_A	Command understood and executed successfully.
MOD_I	Command understood but currently not executable.
MOD_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning				
<mode></mode>	Boolean	0	Switch off all user modes				
		1	Increased display resolution				
<increment></increment>	Float		Define higher display resolution				
<unit></unit>	String		Unit from value increment				

Comments

- The MOD command is only available on request by your METTLER TOLEDO contact person.
- Mode 1 affects all s commands: [S > Page 223], [SI > Page 225], [SIR > Page 232]... However, the syntax response of the s command remains unchanged: "s_s_<Weight>_<Unit>". In addition: The rounding can be affected as follows: In control mode, 100.4 g can be displayed as 100.38 g.
- Activation of the increased display resolution has no effect on the stability criteria set under USTB. Note: The
 auxiliary digit step can be unstable (e.g. due to environmental effects) although the stability criterion
 (according to USTB) is fulfilled.
- When taring and zeroing, although the auxiliary digit step is set to zero when the [T ▶ Page 252] or [Z ▶ Page 272] command is transmitted, depending on environmental conditions the additional decimal place may soon be different from zero.

$\mathbf{\Lambda}$	MOD	Query the current user mode.							
↑	MOD_A_0	The user mode is off.							
$\mathbf{\Lambda}$	MOD	Query the current user mode.							
1	MOD_A_1_0.0001_g	The user mode is 1 (Increased display resolution) and increment is 0.0001 g							
$\mathbf{\Lambda}$	MOD_1	Set the user mode to Mode 1 (increased display resolution factor 10).							
↑	MOD_A	User mode is set to the desired value.							
$\mathbf{\Lambda}$	MOD_1_0.0001_g	Set the user mode to Mode 1 and the increments to 0.0001 g.							
↑	MOD_A	User mode is set to the desired value.							

MONH – Monitor on interface

Description

The MONH command sent all telegrams (requests and responses) from the selected interface are sent in parallel to the interface from which the command is executed.

Syntax

Commands

MONH	Query the monitor on interface setting.					
MONH_ <state>_<interface></interface></state>	Set monitor on interface.					
MONH_ <state></state>	Set monitor interface off.					

Responses

MONH_A_ <state></state>	Current monitor on interface setting.
	Assumption: monitor function is off (State = 0).
MONH_A_ <state>_<interface></interface></state>	Current monitor on interface setting.
	Assumption: monitor function is on (State = 1).
MONH_A	Activate/deactivate the monitor on an interface.
MONH_A	Set the monitor interface off; State = 0 .
MONH_I	Command understood but currently not executable.
MONH_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<state></state>	Boolean	0	Off
		1	On
<interface></interface>	Integer	0 n	Interface number (n is product dependent)

Comments

- The monitored interface can be faster than the current one. In this case some telegrams might be discarded.
- [SIR ▶ Page 232] or other repetitive commands are not locked and can lead to nonsense. MONH is locked against an [SIR ▶ Page 232] on the monitoring interface, not on the monitored.
- On some systems the Baud rate of the monitoring interface is set to the same Baud rate as the monitored interface.
- The command @ does not stop the MONH.

$\mathbf{\Lambda}$	MONH	Query the current monitor on interface setting.
1	MONH_A_0	The monitor on interface is off.
$\mathbf{\Lambda}$	MONH	Query the current monitor on interface setting.
↑	MONH_A_1_0	The monitor on interface 0 is on.
\mathbf{h}	MONH_1_1	Set the monitor on interface 1 to on (set from interface 0).
1	MONH_A	The monitor on interface 1 is on.

NID – Node Identification (for network protocols)

Description

Node identification. This is required to identify each device in a communication network.

Syntax

Commands

NID	Query the weigh module address.
NID_ <nodeid></nodeid>	Set the weigh module address.

Responses

NID_A_ <nodeid></nodeid>	Current weigh module address.
NID_A	Command understood and executed successfully.
NID_L	Command understood but not executable (incorrect parameter).

Parameter

Name	Туре	Values	Meaning
<nodeid></nodeid>	Integer	1 31	Node identification

Comments

- This command is only available if an interface for addressed mode (e.g. RS422) is present.
- In the addressed communication protocol, see [PROT ▶ Page 220], the address (1...31) is represented by a one-byte ASCII coded character starting at "1" (31 hex). The highest address (31) thus corresponds to 4F hex (ASCII character "0"). All commands must be sent to the module with preceding address byte. Consequently, the first byte of all responses is also the address:

dec.	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
hex.	30	31	32	33	34	35	36	37	38	39	ЗA	3B	3C	3D	3E	3F
ASCII	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?

dec.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
hex.	40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F
ASCII	@	А	В	С	D	E	F	G	Н	I	J	K	L	М	Ν	0

- All commands sent to the module must have a leading address byte. Because of this, the first byte of all responses is also the address.
- The address 0 (30 hex) is a broadcast. All modules on the network will reply.

Examples

$\mathbf{\Psi}$	NID	Query the current weigh module address.
1	NID_A_15	The address (Node ID) is 15 decimal = "?" ASCII.
$\mathbf{\Psi}$	NID_12	Set the Node ID: 12 decimal = "<" ASCII to the weigh module.
↑	NID_A	Address (Node ID) set as desired.

See also

NID2 – Device node ID

Description

Node IDs can be changed via MT-SICS command. This command is only available for Profibus DP.

Syntax

Commands

NID2	Query the node identification.
NID2_ <nodeid></nodeid>	Set the node identification.

Responses

NID2_A_ <nodeid></nodeid>	Current node identification.
NID2_A	Command understood and executed successfully.
NID2_I	Command understood but currently not executable.
NID2_L	Command understood but not executable (incorrect parameter).

Parameter

Name	Туре	Values	Meaning
<nodeid></nodeid>	Integer	0 127	Node identification

$\mathbf{\Lambda}$	NID2_12	Set the node identifications to 12.
$\mathbf{\Lambda}$	NID2_A	Node identification is set to 12.

PROT – Protocol mode

Description

This command is only available if an interface for addressed mode (e.g. RS422) is present.

Syntax

Command

PROT	Query the protocol mode.
PROT_ <mode></mode>	Set the protocol mode.

Responses

PROT_A_ <mode></mode>	Current protocol mode.
PROT_A	Command understood and executed successfully.
PROT_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<mode></mode>	Integer	0	Standard protocol without addressing (terminal mode)
		1	Addressed protocol, suitable for network applications
		2	Framed Protocol, see [Appendix Page 276]

Comments

- The PROT command only changes the protocol of the interface that is suitable for addressed mode communication. Protocol via any other interface, such as RS232, is not affected.
- In the addressed communication protocol, the address (1 ... 31) is represented by a one-byte ASCII coded character starting at "1" (31 hex). The highest address (31) thus corresponds to 4F hex (ASCII character "O"). All commands must be sent to the module with a preceding address byte. Consequently, the first byte of all responses is also the address.
- To avoid bus conflicts, do not use repetitive commands ([SIR ▶ Page 232], [SNR ▶ Page 241], [SR ▶ Page 245]) in addressed mode if more than one weigh module is connected to the network.
- It's better to set the node ID with [NID ▶ Page 218] before selecting an addressed protocol. Otherwise, the current node ID has to precede the [NID ▶ Page 218] command if it should be changed.

Examples

$\mathbf{\Lambda}$	PROT	Query the current protocol mode.
1	PROT_A_0	The standard protocol without addressing (terminal mode) is active.
$\mathbf{\Lambda}$	NID_18	Set module address to 18 (ASCII "B").
↑	NID_A	Module address set as desired.
$\mathbf{\Lambda}$	PROT_1	Set the protocol mode to addressed protocol.
1	PROT_A	Protocol set as desired.
\mathbf{A}	BS	Query of stable weight value from the Module with address 18 (ASCII "B").
1	BS_S100.000_g	Module with address 18 responds and sends the current value (100.000 g).

See also

R01 – Restart device

Description

Restarts the device. This is a warm start.

Syntax

Command

R01	Restart the device.		
Response			
I4_A_<"SerialNumber"> (or equivalent startup response)	Startup response of the device.		

Parameter

Name	Туре	Values	Meaning
I4_A_<"SerialNumber">			Startup response after the device has restarted

Comments

- If the mapping of the serial interface is 'MT-SICS Printer 24': Command R01 response ---- METTLER TOLEDO ---- the software has been restarted.
- This command must not be confused with M38. M38 modifies parameters whereas R01 does not.

Example

$\mathbf{\Lambda}$	R01	Restart the device.
↑	I4_A_"B001000001"	The software has been restarted. The serial number of
		the device is B001000001.

RDB – Readability

Description

Readability, e.g. 0.0001 g with a WMS404C-L weigh module, determines the smallest weight increment that can be measured and sent via interface to the system called 1 digit (1 d). It strongly affects weighing behavior, especially weighing speed, stability, and reproducibility. The RDB command makes the weigh module faster at the cost of the smallest weight increment that can be distinguished. Proper setting of this parameter is therefore important to the entire weighing application.

Syntax

Commands

RDB	Query the current readability.
	Readability expressed as number of decimal places referring to weight unit g.

Responses

RDB_A_ <decplaces></decplaces>	Current readability.
RDB_A	Command understood and executed successfully.
	Command understood but not executable (incorrect parameter).

Parameter

Name	Туре	Values	Meaning
<decplaces></decplaces>	Integer	0 … max. decimal places	Readability in weight unit g (Decimal places)

Comments

- Default factory setting for RDB is the maximum possible number of decimal places (highest accuracy) specific to the respective module, e.g. 4 decimal places with a WMS404C-L weigh module.
- The definition of the readability is always referring to the weight unit gram, regardless of the current used weighing unit.
- RDB enables reduction of the number of decimal places below the maximum; it cannot be increased above the maximum nor accept negative values. For more decimal places, **see** [MOD > Page 215].
- After acknowledgement "RDB_A", the weigh module performs a complete restart similar to startup after power up. Weighing and communication can be resumed when the restart procedure is complete. Due to the restart procedure, new initial zero setting is performed and the tare memory is reset to 0. Nevertheless, all other settings (except readability) are not affected.
- The RDB command can be used for a complete firmware restart by leaving the parameter of RDB unchanged.
- Since the stability criterion for weighing, taring, and zero setting, as well as for adjustment and test is related to digits "d", **see** USTB, changing the readability will also change the absolute stability criteria for all functions including the adjustment (calibration) and test procedures.

Examples

$\mathbf{\Lambda}$	RDB	Query the current readability
1	RDB_A_1	The readability is $1 = 0.1$ g
$\mathbf{\Lambda}$	RDB_2	Set the readability to $2 = 0.01$ g.
↑	RDB_A	Readability set as desired.
↑	I4_A_"B123456789"	Restart, 14 shows the serial number B123456789.

See also

S – Stable weight value

Description

Use s to send a stable weight value, along with the host unit, from the balance to the connected communication partner via the interface.

If the automatic door function is enabled and a stable weight is requested the balance will open and close the balance's doors to achieve a stable weight.

Syntax

Command

S	Send the current stable net weight value.	
Responses		
S_S_ <weightvalue>_<unit></unit></weightvalue>	Current stable weight value in unit actually set under host unit.	
S_I	Command understood but currently not executable (balance is currently executing another command, e.g. taring, or timeout as stability was not reached).	
S_L	Command understood but not executable (incorrect	

	parameter).
S_+	Balance in overload range.
S	Balance in underload range.

Parameters

Name	Туре	Values	Meaning
<weightvalue></weightvalue>	Float		Weight value
<unit></unit>	String		Currently displayed unit

Comments

- The duration of the timeout depends on the balance type.
- The weight value is formatted as a right aligned string with 10 characters including the decimal point. For details, please refer to chapter Format of responses with weight value.
- To send the stable weight value in actually displayed unit, see SU.

$\mathbf{\Lambda}$	S	Send a stable weight value.
Υ	S_S100.00_g	The current, stable ("S") weight value is 100.00 g.

SC – Send stable weight value or dynamic value after timeout

Description

Command sc with configurable timeout is used for processes with defined time cycles.

Syntax

Command

SC_ <time></time>	Send the current stable net weight value – or dynamic
	weight value immediately after timeout. Timeout
	defined in ms.

Responses

S_S_ <weightvalue>_<unit></unit></weightvalue>	Current stable weight value in unit actually set under host unit.
S_D_ <weightvalue>_<unit></unit></weightvalue>	Dynamic weight value in unit actually set under host unit after timeout.
S_I	Command understood but currently not executable (balance is currently executing another command, e.g. taring, or timeout as stability was not reached).
S_L	Command understood but not executable (incorrect parameter).
S_+	Balance in overload range.
S	Balance in under load range.

Parameters

Name	Туре	Values	Meaning
<time></time>	Integer	0 65535 ms	Timeout in Milliseconds [ms]
<weightvalue></weightvalue>	Float		Weight value
<unit></unit>	String		Currently displayed unit

Comments

- <Time> will be rounded to the next possible interval (interval steps 8 ms)
- The M67 command does not apply for the sc command.
- The criterion for the stability of the weight value is set by the USTB command.
- The weight value is formatted as a right aligned string with 10 characters including the decimal point. For details, please refer to chapter Format of responses with weight value.

\mathbf{h}	sc_500	Send a stable weight value or within 500 ms a dynamic weight value.
1	S_S100.00_g	If the weigh module is able to determine a stable weight value within 500 ms, this value will be trans- mitted immediately; the weight is 100.00 g.
or		
1	S_D103.04_g	In case this is not possible (e.g. due to vibrations), a dynamic weight value will be transmitted immediately after timeout; in this example, a dynamic weight value (note the 'D' in the answer string) of 103.04 g was transmitted after 500 ms. The stability criterion for weighing was not met within 500 ms.

SI – Weight value immediately

Description

Use s1 to immediately send the current weight value, along with the host unit, from the balance to the connected communication partner via the interface.

Syntax

Command

SI	Send the current net weight value, irrespective of
	balance stability.

Responses

S_S_ <weightvalue>_<unit></unit></weightvalue>	Stable weight value in unit actually set under host unit.
S_D_ <weightvalue>_<unit></unit></weightvalue>	Non-stable (dynamic) weight value in unit actually set under host unit.
S_I	Command understood but currently not executable (balance is currently executing another command, e.g. taring).
S_L	Command understood but not executable (incorrect parameter).
S_+	Balance in overload range.
S	Balance in underload range.

Parameters

Name	Туре	Values	Meaning
<weightvalue></weightvalue>	Float		Weight value
<unit></unit>	String		Currently displayed unit

Comments

- The balance response to the command si with the last built-in weight value (stable or dynamic) before receipt of the command si.
- To send weight value immediately in actually displayed unit, see SIU.
- The weight value is formatted as a right aligned string with 10 characters including the decimal point. For details, please refer to chapter Format of responses with weight value.

$\mathbf{\Lambda}$	SI	Send current weight value.
↑		The weight value is unstable (dynamic, "D") and is currently 129.07 g.

SIC1 – Weight value with CRC16 immediately

Description

This command is an extension of the SI command with an additional <CRC16> hash value.

Syntax

Command

S	Ι	С	1

Query current weight value.

Responses

SIC1_A_ <status>_<weight>_<unit>_ <crc16></crc16></unit></weight></status>	Current weight value together with the <crc16> value.</crc16>
SIC1_I	The request could not be served because the state of the balance did not allow it (e.g. a taring or zeroing in progress).

Parameters

Name	Туре	Values	Meaning
<status></status>	Char		Weight status
		S	Stable weight
		D	Dynamic weight (unstable, not accurate)
		+	Overload
		-	Underload
		I	Invalid value
<weight></weight>	String		Net weight value in host unit
<unit></unit>	String		The unit used for this command is the host unit
<crc16></crc16>	Integer		CRC16 hash value over the whole message
			CRC-16-CCITT algorithm value (polynomial: 0x1021, initial value: 0xFFF)

Comments

- The CRC is calculated over the whole message, starting with the first s up to and including the space before the CRC itself. For example: sIC1_s_12325.00_g_E603 → Message and CRC.
- Similar to other s commands this weight command reflects the error code in the command response if there is an internal error (with influence on the weight).

$\mathbf{\Lambda}$	SIC1	Query current weight value.
1	SIC1_S_12325.00_g_E603	The current weight value is 12325.00 g and the value is detected as stable.
$\mathbf{\Lambda}$	SIC1	Query current weight value.
1	SIC1_+	The request could not be served because of overload. A similar response is sent in case of underload.

SIC2 – HighRes weight value with CRC16 immediately

Description

This command is similar to SIC1 with the only difference that a high resolution weight is returned.

Syntax

Command

SIC2 Query current weight value.		
	SIC2	Query current weight value.

Responses

SIC2_A_ <status>_<hrweight>_<unit>_ <crc16></crc16></unit></hrweight></status>	High resolution weight value together with the CRC16 value.
SIC2_I	The request could not be served because the state of the balance did not allow it (e.g. a taring or zeroing in progress).

Parameters

Name	Туре	Values	Meaning
<status></status>	Char		Weight status
		S	Stable weight
		D	Dynamic weight (unstable, not accurate)
		+	Overload
		-	Underload
		I	Invalid value
<hrweight></hrweight>	String		High resolution net weight value in host unit
<unit></unit>	String		The unit used for this command is the host unit
<crc16></crc16>	Integer		CRC16 hash value over the whole message
			The CRC16 is calculated using the CRC-16-CCITT algorithm

Comments

- The CRC is calculated over the whole message, starting with the first s up to and including the space before the CRC itself. For example: sic1_i_12325.00_g_E603 → Message and CRC.
- Similar to other s commands this weight command reflects the error code in the command response if there is an internal error (with influence on the weight).

$\mathbf{\Lambda}$	SIC2	Query current weight value.
1	SIC2_S_12325.0012_g_C7C9	The current HighRes weight value is 12325.0012 g and the value is detected to be stable.
$\mathbf{\Lambda}$	SIC2	Query current weight value.
1	SIC2_+	The request could not be served because of overload. A similar response is sent in case of underload.

SIMC - Clear stored weight value

Clear the stored weight value from the device. The value can be stored using the SIMS command.

Syntax

Command

SIMC	Clear the stored weight value from the device
Response	
SIMC_A	Command understood and executed successfully.

See also

 ${\mathscr O}\,$ SIMS - Store weight immediately \blacktriangleright Page 231

SIMR - Recall stored weight value

Recall the sored weight value from the device. The value can be stored using the SIMS command.

Syntax

Command

SIMR	Query the parameters from the device
Deenenee	

Responses

S_ <status>_<weightvalue>_<unit></unit></weightvalue></status>	Command understood and executed successfully.
SIMR_I	No weight has previously been stored by the SIMS
	command

Parameters

Name	Туре	Values	Meaning
<status></status>	Character		Status of the weighing, linked to the net value
		S	Stable weight
		D	Dynamic weight
		+	Overload
		-	Underload
		/	Inclination
			Invalid value
<weightvalue></weightvalue>	Float		Weight value in host unit
<unit></unit>	String (ASCII)		The unit used for this command is the host unit

Initial values

$\mathbf{\Lambda}$	SIMR	Query the parameters from the device.
↑		No weight has previously been stored by the SIMS command.

Example

$\mathbf{\Lambda}$	SIMR	Query the parameters from the device.
Υ	S_S15.003_g	The current stored weight value is 15.003 g

See also

SIMS - Store weight immediately > Page 231

SIMRC - Recall and clear stored weight value

Recalls the weight previously stored by the SIMS command from the device.

Syntax

Command

SIMRC	Query the parameters from the device

Responses

S_ <status>_<weightvalue>_<unit></unit></weightvalue></status>	Command understood and executed successfully.
SIMRC_I	No weight has previously been stored by the SIMS
	command

Parameters

Name	Туре	Values	Meaning
<status></status>	Character		Status of the weighing, linked to the net value
		S	Stable weight
		D	Dynamic weight
		+	Overload
		-	Underload
		/	Inclination
			Invalid value
<weightvalue></weightvalue>	Float		Weight value in host unit
<unit></unit>	String (ASCII)		The unit used for this command is the host unit

Initial values

$\mathbf{\Lambda}$	SIMRC	Query the parameters from the device.
1	SIMRC_I	No weight has previously been stored by the SIMS
		command.

Comments

- The command name starts with SI to emphasize the similarities to the SI command.
- The command name SIMRC means "SI Memory Recall and Clear".
- The terminology "store"/"recall"/"clear" follows common terminology of e.g. calculators.

Example

$\mathbf{\Lambda}$	SIMRC	Query the parameters from the device.
↑	S_S15.003_g	The current stored weight value is 15.003 g

- SIMS Store weight immediately ▶ Page 231

SIMS - Store weight immediately

Store weight into memory for later recalling by SIMR or SIMRC.

Syntax

Command

SIMS	Store current weight data into cache.
Response	
SIMS_A	Command understood and executed successfully.

Comments

- The weight value will be stored in non-permanent memory and will only be available as long the device is powered.
- The command name starts with SI to emphasize the similarities to the SI command.
- The command name SIMS means "SI Memory Store".
- The terminology "store"/"recall"/"clear" follows common terminology of e.g. calculators.

SIR – Weight value immediately and repeat

Description

Request current weight value in host unit independent of the stability and repeat sending responses until the command is stopped.

Syntax

Command

SIR	Send the net weight values repeatedly, irrespective of
	balance stability.

Responses

S_S_ <weightvalue>_<unit></unit></weightvalue>	Stable weight value in unit actually set under host unit.
S_D_ <weightvalue>_<unit></unit></weightvalue>	Non-stable (dynamic) weight value in unit actually set under host unit.
S_I	Command understood but currently not executable (balance is currently executing another command, e.g. taring).
S_L	Command understood but not executable (incorrect parameter).
S_+	Balance in overload range.
S	Balance in underload range.

Comments

- The number of weight values per second can be configured using UPD.
- SIR is overwritten by the commands S, SI, SR, @ and hardware break and hence cancelled.
- To send weight value in actually displayed unit, see SIRU.
- This command is cancelled by the @, S, SI, SIRU, SIU, SNR, SNRU, SR and SRU commands.
- The weight value is formatted as a right aligned string with 10 characters including the decimal point. For details, please refer to chapter Format of responses with weight value.

Example

$\mathbf{\Lambda}$	SIR	Send current weight values at intervals.
1	S_D129.07_g	The balance sends stable ("S") or unstable ("D")
1	S_D129.08_g	weight values at intervals.
↑	s_s129.09_g	
↑	s_s129.09_g	
↑	S_D114.87_g	
1	S	

- SIRU Weight value in display unit immediately and repeat > Page 233
- SNR Send stable weight value and repeat on stable weight change > Page 241
- SNRU Send stable weight value with currently displayed unit and repeat on stable weight change Page 243
- SRU Send stable weight value with currently displayed unit and repeat on any weight change > Page 247
- $\mathscr{S}~\text{SR}-\text{Send}$ stable weight value and repeat on any weight change \blacktriangleright Page 245

SIRU – Weight value in display unit immediately and repeat

Description

Request current weight value in display unit independent of the stability and repeat sending responses until the command is stopped.

Syntax

Command

SIRU	Requests the current weight value and repeat.

Responses

S_S_ <weightvalue>_<unit></unit></weightvalue>	Stable weight value in unit actually set under host unit.
S_D_ <weightvalue>_<unit></unit></weightvalue>	Non-stable (dynamic) weight value in unit actually set under host unit.
S_I	Command understood but currently not executable (balance is currently executing another command, e.g. taring).
S_L	Command understood but not executable (incorrect parameter).
S_+	Balance in overload range.
S	Balance in underload range.

Comments

- As the SIR command, but with currently displayed unit.
- The number of weight values per second can be configured using UPD.
- This command is cancelled by the @, S, SI, SIRU, SIU, SNR, SNRU, SR and SRU commands.
- The weight value is formatted as a right aligned string with 10 characters including the decimal point. For details, please refer to chapter Format of responses with weight value.

Example

$\mathbf{\Lambda}$	SIRU	Query of the current weight value with currently displayed unit.
$\mathbf{\Lambda}$	S_D12.34_lb	Non-stable (dynamic) weight value of 12.34 lb.
↑	S_D12.44_lb	Non-stable (dynamic) weight value of 12.44 lb.
1	S_D12.43_1b	Non-stable (dynamic) weight value of 12.43 lb.

- SIR Weight value immediately and repeat ▶ Page 232
- SIRU Weight value in display unit immediately and repeat ▶ Page 233
- SIU Weight value in display unit immediately ▶ Page 237
- SNR Send stable weight value and repeat on stable weight change > Page 241
- SNRU Send stable weight value with currently displayed unit and repeat on stable weight change Page 243
- SRU Send stable weight value with currently displayed unit and repeat on any weight change > Page 247

SIS – Send netweight value with actual unit and weighing status

Description

Use sis to immediately send the current net weight value to the connected communication partner via the interface, along with the host unit and other information regarding the weighing status.

Syntax

Command

SIS	Send the current net weight value.

Responses

SIS_A_ <state>_<"NetWeight">_<unit1>_ <readability>_<step>_<approv>_<info></info></approv></step></readability></unit1></state>	At status 0 to 3.
SIS_A_ <state>_"<error>"</error></state>	At status 4 to 6.
SIS_I	Command understood but currently not executable.
S_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning	
<state></state>	Integer	0	Stable weight value	
		1	Dynamic weight value	
		2	Stable inaccurate weight (MinWeigh)	
	3	Dynamic inaccurate weight (MinWeigh)		
		4	Overload	
		5	Underload	
		6	Error, not valid	
<"NetWeight">	Float		Net weight value	

Name	Туре	Values	Meaning	
<unit1></unit1>	Integer	0	Gram	g
		1	Kilogram	kg
		2	reserved	
		3	Milligram	mg
		4	Microgram	hâ
		5	Carat	ct
		6	reserved	
		7	Pound avdp	lb
		8	Ounce avdp	OZ
		9	Ounce troy	ozt
		10	Grain	GN
		11	Pennyweight	dwt
		12	Momme	mom
		13	Mesghal	msg
		14	Tael Hongkong	tlh
		15	Tael Singapore	tls
		16	Tael Taiwan	tit
		17	reserved	
		18	Tola	tola
		20	Baht	baht
<readability></readability>	Integer	0 6	Amount of decimal places	
<step></step>	Integer	1	"1" step	
		2	"2" step	
		5	"5" step	
		10	"10" step	
		20	"20" step	
		50	"50" step	
		100	"100" step	
<approv></approv>	Integer	0	Standard balance, Not approved	
		1	e = d	
		10	e = 10 d	
		100	e = 100 d	
		-1	Unapproved with * in display	
<info></info>	Integer	0	Without tare	
	Ŭ	1	Net with weighed tare	
		2	Net with stored tare	

Comments

- Can not be used with custom unit, piece counting (PCS) or percent weighing (%).
- This command has no effect on the other $s\star$ commands.
- The units and/or their notation may be different in older software versions.
- Relates to the host output interfaces. The weight unit is the host unit, not the displayed unit.
- Also supplies a weigh value for zeroing, adjusting and taring, and in the menu.

$\mathbf{\Lambda}$	SIS	Query of the current weight value with actual host unit and weighing status.
1	SIS<"NetWeight">A<"NetWeight">0<"Net Weight">"100.00"<"NetWeight">0<"NetW eight">2<"NetWeight">1<"NetWeight">1 0<"NetWeight">0	100.0(0) g.
$\mathbf{\Psi}$	SIS	Query of the current weight value.
1	SIS<"NetWeight">A<"NetWeight">1<"Net Weight">"10.0"<"NetWeight">5<"NetWei ght">2<"NetWeight">50<"NetWeight">0< "NetWeight">2	with stored tare and unstable.
$\mathbf{\Psi}$	SIS	Query of the current weight value.
↑	SIS<"NetWeight">A<"NetWeight">6<"Net Weight">"Error7"	Error, not valid.
$\mathbf{\Lambda}$	SIS	Query of the current weight value.
↑	SIS<"NetWeight">A<"NetWeight">4<"Net Weight">""	Overload.

SIU – Weight value in display unit immediately

Description

Request current weight value in display unit independent of the stability.

Syntax

Command

[STU	Request the current weight value in display unit.
	510	Requesi ne curren weigin vulue in display unit.

Responses

S_S_ <weightvalue>_<unit></unit></weightvalue>	Stable weight value in unit actually set under host unit.
S_D_ <weightvalue>_<unit></unit></weightvalue>	Non-stable (dynamic) weight value in unit actually set under host unit.
S_I	Command understood but currently not executable (balance is currently executing another command, e.g. taring).
S_L	Command understood but not executable (incorrect parameter).
S_+	Balance in overload range.
S	Balance in underload range.

Comments

- As the [SI > Page 225] command, but with currently displayed unit.
- The weight value is formatted as a right aligned string with 10 characters including the decimal point. For details, please refer to chapter Format of responses with weight value.

\checkmark	SIU	Requests the current weight value in display unit independent of the stability.
Υ	S_D12.34_lb	Non-stable (dynamic) weight value is 12.34 lb.

SIUM – Weight value in display unit and MinWeigh information immediately

Description

Use SIUM to immediately send the current weight value, along with the displayed unit and MinWeigh information, from the balance to the connected communication partner via the interface.

Syntax

Command

SIUM	Send the current net weight value with currently
	displayed unit and MinWeigh Information, irrespective
	of balance stability.

Responses

S_ <status>_<weightvalue>_<unit></unit></weightvalue></status>	Weight value in currently displayed unit.
S_I	Command understood but currently not executable (balance is currently executing another command, e.g. taring).
S_L	Command understood but not executable (incorrect parameter).
S_+	Balance in overload range.
S	Balance in underload range.

Parameters

Name	Туре	Values	Meaning
<status></status>	Char	S	Stable, net >= MinWeigh limit
		D	Dynamic, net >= MW limit
		М	Stable, net < MinWeigh limit
		N	Dynamic, net < MW limit
<weightvalue></weightvalue>	Float		Weight value
<unit></unit>	String		Currently displayed unit

Comments

- As the [SI > Page 225] command, but with currently displayed unit and MinWeigh information.
- If the MinWeigh function is switched off, or is not available on the balance, it corresponds to the command [SIU ▶ Page 237].
- The weight value is formatted as a right aligned string with 10 characters including the decimal point. For details, please refer to chapter Format of responses with weight value.

1	SIUM	Query of the current weight value with currently displayed unit.
1	S_D123.34_mg	Dynamic net weight displayed, greater than MinWeigh limit.
\mathbf{h}	SIUM	Query of the current weight value with currently displayed unit.
↑	S_M123.34_mg	Stable net weight displayed, less than MinWeigh limit.
\mathbf{h}	SIUM	Query of the current weight value with currently displayed unit.
1	S_N123.34_mg	Dynamic net weight displayed, less than MinWeigh limit.

SIX1 – Current gross, net and tare values

Description

This command is intended to provide complete weighing information for a variety of applications. To provide complete weight information to the host software, several status flags are provided beside gross, net and tare value.

Syntax

Command

SIX	<1	Read the parameters from the device.
_		

Responses

SIX1_ <sts>_<minw>_<coz>_<rep>_<calc> _<pose>_<stepe>_<marke>_<range>_<tm> _<g>_<n>_<t>_<unit></unit></t></n></g></tm></range></marke></stepe></pose></calc></rep></coz></minw></sts>	Current parameters.
SIX1_I	Command understood but currently not executable.
SIX1_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<sts></sts>	Character		Status of the weighing, linked to the net value
		S	Stable weight
		D	Dynamic weight
		+	Overload
		-	Underload
		/	Inclination
		1	Invalid value
<minw></minw>	Integer		MinWeigh status
		0	MinWeigh function is inactive.
		1	Below MinWeigh limit. Relative accuracy is bad.
		2	Above MinWeigh limit. The minimum relative accuracy is guaranteed.
<coz></coz>	Character		Center of zero status
		Z	+/- 1/4 e around gross zero
		N	Outside the limits of +/- 1/4 e around gross zero
<rep></rep>	ep> Character		Repeating indicator
		R	Repeated value (was already sent once or several times)
		N	New weight update (new computed weight value)
<calc></calc>	Character		Calculation method indicator
		R	Net, tare and gross values are rounded separately.
		С	Gross is calculated based on rounded net and rounded tare.

Name	Туре	Values	Meaning
<pose></pose>	Pose> Integer		Position of the approved digit relative to the base resolution (smallest digit d). Bland digits (at the end) are counted. This parameter can be used on terminals to set the approval brackets at the correct position.
		0	Not approved
		1	Approved, last digit is approved (no brackets)
		2	Approved, second last digit is approved
		3	Approved, third last digit is approved
		4	Approved, fourth last digit is approved
		5	Approved, fifth last digit is approved
<stepe></stepe>	Integer		Step of the approved digit
		0	Not approved
		1	Step of e is 1
		2	Step of e is 2
		5	Step of e is 5
<marke></marke>	Integer		This flag indicates whether the weight value has to be marked as "not approved". A possible indication could be an asterisk.
		0	No special indication needed
		1	Special indication (e.g. by an asterisk *) has to be displayed.
<range></range>	Range> Integer		Range/interval number of the net value. Numbering according to OIML/NIST range numbering scheme.
		1	Single range
		1,	Multi range: range is linked to gross value.
		2,,	ⁿ Multi interval: range is linked to net value.
<tm></tm>	M> Character		Tare mode
		N	No tare
		М	Measured tare
		P	Preset tare
<g></g>	Float		Gross value, calculated or rounded
<n></n>	Float		Net value, rounded for actual range step
<t></t>	Float		Tare value, rounded for actual range step
<unit></unit>	String		The unit used for this command is the host unit
	(ASCII)		The unit can be selected by using the M21 command

See also

SNR – Send stable weight value and repeat on stable weight change

Description

Request the current stable weight value in host unit followed by stable weight values after predefined minimum weight changes until the command is stopped.

Syntax

Commands

Send the current stable weight value and repeat after each deflection (see comment).
Send the current stable weight value and repeat after each deflection greater or equal to the preset value (see comment).

Responses

S_S_ <weightvalue>_<unit> S_S_<weightvalue>_<unit> </unit></weightvalue></unit></weightvalue>	Current stable weight value (1 st value). Next stable weight value after preset deflection (2 nd value).
S_I	Command understood but currently not executable (balance is currently executing another command, e.g. taring, or timeout as stability was not reached).
S_L	Command understood but not executable (incorrect parameter).
S_+	Balance in overload range.
S	Balance in underload range.

Parameters

Name	Туре	Values	Meaning
<presetvalue></presetvalue>	Float	1 digit … capacity	Preset minimum deflection load
<unit></unit>	String		Currently displayed unit

Comments

• The preset value is optional. If no value is defined, the deflection depends on balance readability as follows:

Readability	Min. deflection
0.001 mg	0.001 g
0.01 mg	0.01 g
0.1 mg	0.1 g
0.001 g	l g
0.01 g	1 g
0.1 g	1 g
1 g	5 g

• In contrast to SNR, SR sends also dynamic weight values.

- This command is cancelled by the @, S, SI, SIR, SIU, SIRU, SNRU, SR and SRU commands.
- The weight value is formatted as a right aligned string with 10 characters including the decimal point. For details, please refer to chapter Format of responses with weight value.

Example

\checkmark	SNR_50_g	Send the current stable weight value and repeat after each deflection greater or equal to the preset value of 50 g.
$\mathbf{\Lambda}$	S_S12.34_g	1 st weight value is 12.34 g.
1	S_S67.89_g	2 nd weight value is 67.89 g.

- ${\mathscr O}~{\mbox{SIR}}$ Weight value immediately and repeat ${\mbox{ }}$ Page 232
- SIRU Weight value in display unit immediately and repeat > Page 233
- SIU Weight value in display unit immediately > Page 237
- SNRU Send stable weight value with currently displayed unit and repeat on stable weight change Page 243
- $\mathscr{O}~$ SR Send stable weight value and repeat on any weight change \blacktriangleright Page 245
- SRU Send stable weight value with currently displayed unit and repeat on any weight change > Page 247

SNRU – Send stable weight value with currently displayed unit and repeat on stable weight change

Description

Request the current stable weight value in display unit followed by stable weight values after predefined minimum weight changes until the command is stopped.

Syntax

Commands

SNRU	Send the current stable weight value with the currently displayed unit and repeat after each deflection (see comment).
SNRU_ <presetvalue>_<unit></unit></presetvalue>	Send the current stable weight value with the currently displayed unit and repeat after each deflection greater or equal to the preset value (see comment).

Responses

S_S_ <weightvalue>_<unit> S_S_<weightvalue>_<unit> </unit></weightvalue></unit></weightvalue>	Current stable weight value (1 st value). Next stable weight value after preset deflection (2 nd value).
S_I	Command understood but currently not executable (balance is currently executing another command, e.g. taring, or timeout as stability was not reached).
S_L	Command understood but not executable (incorrect parameter).
S_+	Balance in overload range.
S	Balance in underload range.

Parameters

Name	Туре	Values	Meaning
<presetvalue></presetvalue>	Float	1 digit … capacity	Preset minimum deflection load
<unit></unit>	String		Currently displayed unit

Comments

• The preset value is optional. If no value is defined, the deflection depends on balance readability as follows:

Readability	Min. deflection
0.001 mg	0.001 g
0.01 mg	0.01 g
0.1 mg	0.1 g
0.001 g	1 g
0.01 g	1 g
0.1 g	1 g
1 g	5 g

• In contrast to $_{\ensuremath{\texttt{SNR}}}$, SR sends also dynamic weight values.

- This command is cancelled by the @, S, SI, SIR, SIU, SIRU, SNRU, SR and SRU commands.
- The weight value is formatted as a right aligned string with 10 characters including the decimal point. For details, please refer to chapter Format of responses with weight value.

Example

\checkmark	SNRU_50_g	Send the current stable weight value with the currently displayed unit and repeat after each deflection greater or equal to the preset value of 50 g.
$\mathbf{\Lambda}$	S_S12.34_g	1 st weight value is 12.34 g.
1	S_S67.89_g	2 nd weight value is 67.89 g.

- ${\mathscr O}~{\mbox{SIR}}$ Weight value immediately and repeat ${\mbox{ }}$ Page 232
- SIRU Weight value in display unit immediately and repeat > Page 233
- SNR Send stable weight value and repeat on stable weight change > Page 241
- SNRU Send stable weight value with currently displayed unit and repeat on stable weight change ▶ Page 243
- SR Send stable weight value and repeat on any weight change > Page 245
- SRU Send stable weight value with currently displayed unit and repeat on any weight change > Page 247

SR – Send stable weight value and repeat on any weight change

Description

Request the current stable weight value in host unit followed by weight values after predefined minimum weight changes until the command is stopped.

Syntax

Commands

SR	Send the current stable weight value and then contin- uously after every weight change
	If no preset value is entered, the weight change must be at least 12.5% of the last stable weight value, minimum = 30 digit.
SR_ <presetvalue>_<unit></unit></presetvalue>	Send the current stable weight value and then contin- uously after every weight change greater or equal to the preset value a non-stable (dynamic) value followed by the next stable value, range = 1 digit to maximal capacity.

Responses

S_S_ <weightvalue>_<unit></unit></weightvalue>	Current, stable weight value in unit actually set as host unit, 1 st weight change.
S_D_ <weightvalue>_<unit></unit></weightvalue>	Dynamic weight value in unit actually set as host unit.
S_S_ <weightvalue>_<unit></unit></weightvalue>	Next stable weight value in unit actually set as host unit.
S_I	Command understood but currently not executable (balance is currently executing another command, e.g. zero setting, or timeout as stability was not reached).
S_L	Command understood but not executable (incorrect parameter).
S_+	Balance in overload range.
S	Balance in underload range.

Parameters

Name	Туре	Values	Meaning
<weightvalue></weightvalue>	Float		Weight value
<unit></unit>	String		Unit, only available units permitted

Comments

- This command is cancelled by the @, S, SI, SIR, SIU, SIRU, SNRU, SR and SRU commands.
- In contrast to SR, [SNR > Page 241] only sends stable weight values.
- If, following a non-stable (dynamic) weight value, stability has not been reached within the timeout interval, the response s_I is sent and then a non-stable weight value. Timeout then starts again from the beginning.
- The preset value can be entered in any by the balance accepted unit.
- The weight value is formatted as a right aligned string with 10 characters including the decimal point. For details, please refer to chapter Format of responses with weight value.

Example

\checkmark	SR_10.00_g	Send the current stable weight value followed by every load change of 10 g.
$\mathbf{\Lambda}$	S_S100.00_g	Balance stable.
↑	S_D115.23_g	100.00 g loaded.
1	S_S200.00_g	Balance again stable.

- SIRU Weight value in display unit immediately and repeat > Page 233
- SNR Send stable weight value and repeat on stable weight change > Page 241
- SNRU Send stable weight value with currently displayed unit and repeat on stable weight change ▶ Page 243
- $\mathscr{O}~$ SR Send stable weight value and repeat on any weight change \blacktriangleright Page 245
- SRU Send stable weight value with currently displayed unit and repeat on any weight change > Page 247

SRU – Send stable weight value with currently displayed unit and repeat on any weight change

Description

Request the current weight values in display unit and repeat sending responses after a predefined minimum weight change until the command is stopped.

Syntax

Commands

SRU	Send the current stable weight value with the currently displayed unit and then continuously after every weight change.
	If no preset value is entered, the weight change must be at least 12.5% of the last stable weight value, minimum = 30 digit.
SRU_ <weightvalue>_<unit></unit></weightvalue>	Send the current stable weight value with the currently displayed unit and then continuously after every weight change greater or equal to the preset value a non-stable (dynamic) value followed by the next stable value, range = 1 digit to maximal capacity.

Responses

S_S_ <weightvalue>_<unit></unit></weightvalue>	Current, stable weight value with the currently displayed unit until 1 st weight change.
S_D_ <weightvalue>_<unit></unit></weightvalue>	Non-stable (dynamic) weight value with the currently displayed unit.
S_I	Command understood but currently not executable (balance is currently executing another command, e.g. taring).
S_L	Command understood but not executable (incorrect parameter).
S_+	Balance in overload range.
S	Balance in underload range.

Parameters

Name	Туре	Values	Meaning
<weightvalue></weightvalue>	Float		Weight value
<unit></unit>	String		Unit, only available units permitted

Comments

- As the SR command, but with currently displayed unit.
- This command is cancelled by the @,[S ▶ Page 223], [SI ▶ Page 225], [SIR ▶ Page 232], [SIU ▶ Page 237], [SIRU ▶ Page 233], [SNRU ▶ Page 243], [SR ▶ Page 245] and [SRU ▶ Page 247] commands.
- In contrast to SR, SNRU only sends stable weight values.
- If, following a non-stable (dynamic) weight value, stability has not been reached within the timeout interval, the response s_1 is sent and then a non-stable weight value. Timeout then starts again from the beginning.
- The preset value can be entered in any by the balance accepted unit.
- The weight value is formatted as a right aligned string with 10 characters including the decimal point. For details, please refer to chapter Format of responses with weight value.

1	SRU	Send the current stable weight value followed by every default load change with current display unit.
1	S_S12.34_lb	1 st weight value is stable and 12.34 lb.
$\mathbf{\Lambda}$	S_D13.88_lb	2 nd weight value is non-stable and 13.88 lb.
$\mathbf{\Lambda}$	S_S15.01_lb	3 rd weight value is stable and 15.01 lb.

ST – Stable weight value on pressing (Transfer) key

Description

Use s_T to send the current stable weight value when the transfer key \blacksquare is pressed. The value is sent, along with the currently displayed unit, from the balance to the connected communication partner via the interface.

Syntax

Commands

ST	Query the current status transfer function.
	Sent the current stable net weight value with display unit each time when the transfer key 🗐 is pressed.
ST_0	Stop sending weight value when print key is pressed.

Responses

ST_A_0	Function inactive, no weight value is sent when the transfer key 📇 is pressed.
ST_A_1	Function active, weight value is sent each time when the transfer key 📇 is pressed.
ST_A	Command understood and executed successfully.
ST_I	Command understood but currently not executable (balance is currently executing another command).
ST_L	Command understood but not executable (incorrect parameter).

Parameter

Name	Туре	Values	Meaning
<status></status>	Boolean		Behavior of the transfer function
		0	Inactive
		1	Active

Comments

- st_0 is the factory setting (default value).
- sr function is not active after switching on and after reset command.
- The weight value is formatted as a right aligned string with 10 characters including the decimal point. For details, please refer to chapter Format of responses with weight value.

$\mathbf{\Lambda}$	ST_1	Activate ST function.
$\mathbf{\Lambda}$	ST_A	Command executed.
1		When transfer key 📇 pressed: current net weight is 123.456 g.

SU – Stable weight value in display unit

Description

Use su to query the stable weight value in display unit.

If the automatic door function is enabled and a stable weight is requested the balance will open and close the balance's doors to achieve a stable weight.

Syntax

Command

S	U	Query the stable weight value with the currently
		displayed unit.

Responses

S_S_ <weightvalue>_<unit></unit></weightvalue>	Current stable weight value with the currently displayed unit.
S_I	Command understood but currently not executable (balance is currently executing another command, e.g. taring, or timeout as stability was not reached).
S_L	Command understood but not executable (incorrect parameter).
S_+	Balance in overload range.
S	Balance in underload range.

Parameters

Name	Туре	Values	Meaning
<weightvalue></weightvalue>	Float		Weight value
<unit></unit>	String		Currently displayed unit

Comments

- As the [S > Page 223] command, but with currently displayed unit.
- The weight value is formatted as a right aligned string with 10 characters including the decimal point. For details, please refer to chapter Format of responses with weight value.

\mathbf{h}	SU	Query the stable weight value with the currently displayed unit.
↑	S_S12.34_lb	The current, stable weight value is 12.34 lb.

SUM – Stable weight value in display unit and MinWeigh information

Description

Use SUM to send the current stable weight value, along with the currently displayed unit and the MinWeigh information, from the balance to the connected communication partner via the interface.

Syntax

Command

SUM	Send the current stable net weight value with currently
	displayed unit and MinWeigh Information.

Responses

SUM_ <status>_<weightvalue>_<unit></unit></weightvalue></status>	Weight value in currently displayed unit.
S_I	Command understood but currently not executable (balance is currently executing another command, e.g. taring).
S_L	Command understood but not executable (incorrect parameter).
S_+	Balance in overload range.
S	Balance in underload range.

Parameters

Name	Туре	Values	Meaning
<status></status>	Char	S	Stable, >= MinWeigh limit
		М	Stable, < MinWeigh limit
<weightvalue></weightvalue>	Float		Weight value
<unit></unit>	String		Weight unit

Comments

- As the [S > Page 223] command, but with currently displayed unit and MinWeigh information.
- If a weight other than the net weight is displayed, only the "S" index and the stable weight value displayed are output on the interface.
- If the MinWeigh function is switched off or not available on the balance, the corresponding command is [SU ▶ Page 250].
- The weight value is formatted as a right aligned string with 10 characters including the decimal point. For details, please refer to chapter Format of responses with weight value.

Examples

1	SUM	Query of the current weight value with currently displayed unit.
$\mathbf{\Lambda}$	S_M123.34_mg	Stable weight displayed, less than MinWeigh limit.
$\mathbf{\Lambda}$	SUM	Query of the current weight value with currently displayed unit.
1	S_S123.34_mg	Stable weight displayed, greater than MinWeigh limit.

T – Tare

Description

Use ${\ensuremath{\mathbb T}}$ to tare the balance. The next stable weight value will be saved in the tare memory.

Syntax

Command

Т	Tare, i.e. store the next stable weight value as a new
	tare weight value.

Responses

T_S_ <tarevalue>_<unit></unit></tarevalue>	Taring successfully performed.
	The tare weight value returned corresponds to the weight change on the balance in the unit actually set under host unit since the last zero setting.
T_I	Command understood but currently not executable (balance is currently executing another command, e.g. zero setting, or timeout as stability was not reached).
T_L	Command understood but not executable (incorrect parameter).
T_+	Upper limit of taring range exceeded.
T	Lower limit of taring range exceeded.

Parameters

Name	Туре	Values	Meaning
<tarevalue></tarevalue>	Float		Weight value in host unit
<unit></unit>	String		Weight unit

Comments

- The tare memory is overwritten by the new tare weight value.
- The duration of the timeout depends on the balance type.
- Clearing tare memory: see TAC.
- The draft shield closes with this command, when the "Door function" is set on "Automatic". It opens after sending a stable weight.
- The weight value is formatted as a right aligned string with 10 characters including the decimal point. For details, please refer to chapter Format of responses with weight value.

Example

$\mathbf{\Lambda}$	Т	Tare.
↑		The balance is tared and has a value of 100.00 g in the tare memory.

See also

TA – Tare weight value

Description

Use TA to query the current tare value or preset a known tare value.

Syntax

Commands

ТА	Query of the current tare weight value.
TA_ <tarepresetvalue>_<unit></unit></tarepresetvalue>	Preset of a tare value.

Responses

TA_A_ <tareweightvalue>_<unit></unit></tareweightvalue>	Query current tare weight value in tare memory, in unit actually set under host unit.
TAJI	Command understood but currently not executable (balance is currently executing another command, e.g. zero setting, or timeout as stability was not reached).
TA_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<tareweightvalue></tareweightvalue>	Float		Tare weight value in host unit
<unit></unit>	String		Weight unit

Comments

- The tare memory will be overwritten by the preset tare weight value.
- The inputted tare value will be automatically rounded by the balance to the current readability. This value is shown in the response.
- The taring range is specified to the balance type.

Example

$\mathbf{\Lambda}$	TA_100.00_g	Preset a tare weight of 100 g.
↑	TA_A100.00_g	The balance has a value of 100.00 g in the tare
		memory.

TAC – Clear tare weight value

Description

Use ${\tt TAC}$ to clear the tare memory.

Syntax

Command

TAC	Clear fare value.

Responses

TAC_A	Tare value cleared, 0 is in the tare memory.
TAC_I	Command understood but currently not executable (balance is currently executing another command, e.g. zero setting).
T_L	Command understood but not executable (incorrect parameter).

Example

$\mathbf{\Lambda}$	TAC	Clear tare value.
↑	TAC_A	Tare value cleared, o is in the tare memory.

TC – Tare or tare immediately after timeout

Description

Command TC with configurable timeout is used for processes with defined time cycles.

Syntax

Command

TC_ <time></time>	Tare, i.e. store the next stable weight value as a new
	tare weight value, and send this value back - or store
	and send dynamic value immediately after timeout.
	Timeout defined in ms.

Responses

TC_S_ <tareweightvalue>_<unit></unit></tareweightvalue>	Taring successfully performed. The tare weight value returned corresponds to the weight change on the balance in the unit actually set under host unit since the last zero setting.
TC_D_ <tareweightvalue>_<unit></unit></tareweightvalue>	Taring performed using an unstable (status "D" for dynamic) tare value immediately after timeout. The tare weight value returned corresponds to the weight change on the balance in the unit actually set under host unit since the last zero setting.
TC_I	Command understood but currently not executable (balance is currently executing another command, e.g. zero setting, or timeout as stability was not reached).
TC_L	Command understood but not executable (incorrect parameter).
TC_+	Upper limit of taring range exceeded.
TC	Lower limit of taring range exceeded.

Parameters

Name	Туре	Values	Meaning
<time></time>	Integer	1 65535 ms	Timeout in milliseconds [ms]
<tareweightvalue></tareweightvalue>	Float		Tare weight value
<unit></unit>	String		Currently displayed unit

Comments

- The tare memory is overwritten by the new tare weight value.
- <Time> will be rounded to the next possible interval (interval steps 8 ms).
- The M67 command does not apply for the ${\tt TC}$ command.
- The criterion for the stability of the weight value is set by the USTB command.
- The fare value can be inquired by using the [TA > Page 253] command.
- Clearing tare memory: see [TAC > Page 254].
- The weight value is formatted as a right aligned string with 10 characters including the decimal point. For details, please refer to chapter Format of responses with weight value.

Example

$\mathbf{\Lambda}$	TC_500	Tare within a maximum time period of 500 ms.
1	TC_S100.00_g	The balance is tarred and has a value of 100.00 g in the tare memory.
or		
1	TC_D105.46_g	Taring performed upon timeout of 500 ms, an unstable (status "D" for dynamic) tare value of 105.46 g is stored in the tare memory. The stability criterion for taring was not met.

See also

 ${\mathscr O}\ \mbox{TAC}-\mbox{Clear}$ tare weight value $\mbox{\sc Page}\ \mbox{254}$

TI – Tare immediately

Description

Use TI to tare the balance immediately and independently of balance stability.

Syntax

Command

TI	Tare immediately, i.e. store the current weight value,
	which can be stable or non stable (dynamic), as tare
	weight value.

Responses

TI_S_ <weightvalue>_<unit></unit></weightvalue>	Taring performed, stable tare value. The new tare value corresponds to the weight change on the balance since the last zero setting.
TI_D_ <weightvalue>_<unit></unit></weightvalue>	Taring performed, non-stable (dynamic) tare value.
TIJI	Command understood but currently not executable (balance is currently executing another command, e.g. zero setting).
TI_L	Command understood but not executable (e.g. approved version of the balance).
TI_+	Upper limit of taring range exceeded.
TI	Lower limit of taring range exceeded.

Parameters

Name	Туре	Values	Meaning
<weightvalue></weightvalue>	Float		Tare weight value in host unit
<unit></unit>	String		Weight unit

Comments

- This command is not supported by approved balances.
- The tare memory will be overwritten by the new tare weight value.
- After a non-stable (dynamic) stored tare weight value, a stable weight value can be determined. However, the absolute value of the stable weight value determined in this manner is not accurate.
- The taring range is specific to the balance type.

Example

$\mathbf{\Lambda}$	TI	Tare immediately.
1	TI_D117.57_g	The tare memory holds a non-stable (dynamic) weight value.

TIM – Time

Description

Set the system time of the balance or query the current time.

Syntax

Commands

TIM	Query of the current time of the balance.
TIM_ <hour>_<minute>_<second></second></minute></hour>	Set the time of the balance.

Responses

TIM_A_ <hour>_<minute>_<second></second></minute></hour>	Current time of the balance.
TIM_A	Command understood and executed successfully.
TIM_I	Command understood but currently not executable (balance is currently executing another command).
TIM_L	Command understood but not executable (incorrect parameter, e.g. 22_67_25) or no clock is built in.

Parameters

Name	Туре	Values	Meaning
<hour></hour>	Integer	00 23	Hours
<minute></minute>	Integer	00 59	Minutes
<second></second>	Integer	00 59	Seconds

Comments

- The parameter setting will be saved and the only way to reset the default value will be via MT-SICS or by means of a factory reset, FSET or via terminal not @.
- Use C2 to begin the adjustment procedure with the set weight.

Example

$\mathbf{\Psi}$	TIM	Query of the current time of the balance.	
<u></u>	TIM_A_09_56_11	The current time of the balance is 9 hours, 56 minutes	
		and 11 seconds.	

- ⊘ DAT Date ▶ Page 53

TSTO - Query/set test function settings

Description

Use TSTO to query the current setting for testing the balance, or to specify the type of testing (internal or external).

Syntax

Commands

TSTO	Query of the setting for the test function.
TST0_ <test></test>	Set the test configuration of the balance.

Responses

TST0_A_ <test>_<"WeightValue">_ <"Unit"></test>	Current setting for the test function.
TSTO_A	Command understood and executed successfully.
TST0_I	Command understood but currently not executable (balance is currently executing another command).
TST0_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<test></test>	Integer	0	Test with built-in weight
		1	Test with external weight
<"WeightValue">	String	10 chars	Weight value in definition unit
<"Unit">	String	Max 9 chars	Weight unit. The unit corresponds to the definition unit

Comments

- The current value of the external weight can be seen in the menu under "Test", see Reference Manual.
- With an internal test, no weight value appears.
- For additional information on testing the adjustment, see the Reference Manual of the balance.
- The value of the external weight is set in the menu under "Test" or with M20.

Example

\mathbf{A}	TSTO	Query of the current setting for the test and the value of the external test weight
↑	TST0_A_1_"2000.0_g"	The current setting corresponds to the test with an external weight.
		For a test initiated with the [TST2 ▶ Page 262] command, an external weight of 2000.0 g is needed.

See also

TST1 – Test according to current settings

Description

Use IST1 to start the balance test function using the preset parameter settings.

Syntax

Command

TST1	Start test function in the current setting [TST0 >
	Page 259], M20.

First Responses

TST1_B	The test procedure has been started. Wait for next response, see Comment.
TST1_A_<"Deviation">	Test completed, current difference is mention.
TST1_I	Command understood but currently not executable (balance is currently executing another command). No second response follows.
TST1_L	Command understood but not executable (incorrect parameter). No second response follows.

Further Responses

TST1_<"TestWeight">_<"Unit">	Prompt to unload and load the balance (only with external weight).
TST1_A_<"TestWeight">_<"Unit">	Test procedure completed successfully.
	Weight value with unit corresponds to the deviation from the specified value displayed after the test. No unit is specified if the test has been performed with
	the built-in weight.
TST1_I	The test procedure has been aborted as, e.g., stability was not attained or wrong weights were loaded.

Parameters

Name	Туре	Values	Meaning
<"Deviation"	String		Current difference in definition unit
<"TestWeight">	String		Value of the test weight in definition unit
<"Unit">	String		Weight unit. Fixed to definition unit

Comments

- Commands sent to the balance during the test procedure are not processed and responded to in the appropriate manner until the test procedure is at an end.
- Use @ or C to abort a running adjustment.
- For additional information on testing the adjustment, see the Reference Manual of the balance.

Example

$\mathbf{\Psi}$	TST1	Start test function in the current setting.
1	TST1_B	The test procedure has been started.
1	TST1_"0.00000_g"	Clear weighing pan.
1	TST1_"_100.00000_g"	Load 100 g external weight.
1	TST1_"0.00000_g"	Unload weight.
1	TST1_A_"0.00020_g"	Test completed, current difference is 0.00020 g.

TST2 – Test with external weight

Description

Use TST2 to start the balance test function using external test weights.

Syntax

Command

TST2

Start test function with external weight.

First Responses

TST2_B	The test procedure has been started. Wait for next response, see Comment.
TST2_A_<"Deviation">	Test completed, current difference is mention.
TST2_I	Command understood but currently not executable (balance is currently executing another command). No second response follows.
TST2_L	Command understood but not executable (incorrect parameter). No second response follows.

Further Responses

TST2_<"TestWeight">_<"Unit">	Prompt to unload and load the balance.
TST2_A_<"TestWeight">_<"Unit">	Test procedure completed successfully.
	Weight value with unit corresponds to the deviation from the specified value displayed in the top line after the test.
TST2_I	The test procedure has been aborted as, e.g. stability was not attained or wrong weights were loaded.

Parameters

Name	Туре	Values	Meaning
<"Deviation"	String		Current difference in definition unit
<"TestWeight">	String		Value of the test weight in definition unit
<"Unit">	String		Weight unit. Fixed to definition unit

Comments

- · Commands sent to the balance during the test procedure are not processed and responded to in the appropriate manner until the test procedure is at an end.
- Use @ or C to abort a running adjustment.
- For additional information on testing the adjustment, see the Reference Manual of the balance.
- The value of the external weight is set in the menu under "Test" or with M20.

Example

$\mathbf{\Lambda}$	TST2	Start test with external weight.
↑	TST2_B	The test procedure has been started.
↑	TST2_"0.00_g"	Prompt to unload the balance.
↑	TST2_"_200.00_g"	Prompt to load the test weight.
↑	TST2_"0.00_g"	Prompt to unload the balance.
1	TST2_A_"0.01_g"	External test completed successfully.

TST3 - Test with built-in weight

Description

Use ISI3 to start the sensitivity test function using built-in test weight.

Syntax

Command

TST3	Start sensitivity test function with built-in test weight.
1010	

Responses

TST3_B	The test procedure has been started. Wait for next response, see Comments.
TST3_A_<"DeviationValue">	Test procedure completed successfully.
	Weight value corresponds to the deviation from the specified value displayed after the test.
TST3_I	Command understood but currently not executable (balance is currently executing another command). No second response follows.
	The test procedure has been aborted as, e.g., stability was not attained or wrong weights were loaded.
TST3_L	Command understood but not executable (incorrect parameter). No second response follows.

Parameter

Name	Туре	Values	Meaning
<"DeviationValue">	String		Current difference (deviation value is output without unit)

Comments

- Use @ or C to abort a running adjustment.
- For additional information on testing the adjustment, see the Reference Manual of the balance.
- The unit is fixed to definition unit, no unit is output since the built-in weight is used.
- The commands received immediately after the first response are not processed and responded to in the appropriate manner until after the second response.

Example

$\mathbf{\Lambda}$	TST3	Start sensitivity test with built-in weight.
↑	TST3_B	The test procedure has been started.
1	TST3_A_"0.0002"	Test with internal weight completed successfully. The difference to the specified value is 0.0002 (= 2 digits from a weigh module/balance with an increment of 0.1 mg).

See also

TST5 – Module test with built-in weights (scale placement sensitivity test)

Description

Start the module test function using built-in weights to verify the scale placement sensitivity adjustment. This test does not return the overall sensitivity error of the weigh module, but it shows the sensitivity error after the factory and scale placement adjustment stage in the signal path. The corrections of the signal, which are done with the scale production and customer/user adjustment stage, are not taken into account in this test function.

This test function is used to verify the sensitivity adjustment done by command c9 (scale placement sensitivity adjustment). Do not use this test function, to verify the sensitivity adjustment done by commands c1, c2, c3, c6 and c8 (customer sensitivity adjustment).

Syntax

Commands

TST5	Starts the test procedure with built-in weights.

Responses

TST5_B	Test procedure has been started.
TST5_A_<"DevPerMille">	Test completed, current difference is mentioned.

Parameters

Name	Туре	Values	Meaning
<"DevPerMille">	String		Deviation of the measured signal when the built-in weights are applied to the scale, relative to the exact value of the built-in weights in per mille (‰). The value is rounded to the resolution of the finest range

Comments

- This test shows the sensitivity error after the factory/production adjustment and the scale placement adjustment stage in the signal path using built-in weights. In certain scales (especially in hybrid scales) the overall sensitivity error cannot be tested using built-in weights as these built-in weights cannot be applied on the external lever system. The only thing what can be tested in this case is the sensitivity error of the load cell itself, i.e. the signal before the corrections of the external lever system (which is typically done in the scale production adjustment stage and the customer/user adjustment stage). However be careful that if the adjustment of the external lever system or even the customer sensitivity or linearity adjustment is not done correctly, the scale sensitivity error can be bad even if this test function shows a good result.
- For example in hybrid scales, a sensitivity adjustment using built-in weights can only correct the span of the load cell without external lever system. This is typically done using command c9 (scale placement sensitivity adjustment). With this test function it can be determined if such a sensitivity adjustment using built-in weights is necessary.
- This test function is similar to TST3, but at a different place in the signal path. The output parameter deviation is defined in per mille (different to TST3).
- This adjustment can be canceled by the command @ or c.

Example

$\mathbf{\Lambda}$	TST5	Starts the test procedure.
1	TST5_B	Test procedure has been started.
1	TST5_A_"0.23"	Test completed; current difference is 0.23 per mille.

Command-specific error responses

Response

TST5_E_<Error>

Current error code.

Parameter of command-specific error

Parameters

Name	Туре	Values	Meaning
<error></error>	Integer	0	Timeout
		1	Cancel
		2	Built-in weight not supported
		3	Test not available (e.g. unknown or disabled)
		4	Calibration load error (e.g. load value of built-in weights is too light or too heavy)
		5	Busy (e.g. another adjustment or test is already running)

UPD – Update rate of SIR and SIRU output on the host interface

Description

Use UPD to set the update rate of the host interface or query the current setting.

Syntax

Commands

UPD	Query of the update rate of the host interface.	
UPD_ <currentupd></currentupd>	Set the update rate of the host interface.	

Responses

UPD_A_ <currentupd></currentupd>	Current setting of the update rate of the host interface.
UPD_A	Command understood and executed successfully.
UPD_I	Command understood but currently not executable (balance is currently executing another command).
UPD_L	Command understood but not executable (incorrect parameter).

Parameter

Name	Туре	Values	Meaning
<updaterate></updaterate>	Float	1 1000	Update rate in values per second Terminal: 123, stand-alone bridge: 11000

Comments

- The parameter setting will be saved and the only way to reset the default value will be via MT-SICS or by means of a factory reset, FSET or via terminal not @.
- Use C2 to begin the adjustment procedure with the set weight.
- An update rate less than 23 must be specified for weigh modules, balances with a terminal. Otherwise, unpredictable behavior may occur.

Examples

$\mathbf{\Lambda}$	UPD	Query of the update rate of the host interface.	
1	UPD_A_20.2	The update rate of the interface is 20.2 values per second.	
↓	UPD_20	Set the update rate of the host interface to 20 values per second.	
Υ	UPD_A	Command executed successfully.	
1	UPD	Query of the exact update rate of the host interface.	
1	UPD_A_18.311	The exact update rate is 18.311 values per second.	

- SIRU Weight value in display unit immediately and repeat > Page 233

USTB – User defined stability criteria

Description

Use USTB to define the stability criteria individually for weighing, taring, zero setting and adjustment functions.

Syntax

Commands

	Query the current stability criteria for all functions: weighing, taring, and zero setting.
USTB_ <function>_<crit>_<time></time></crit></function>	Set the stability criteria.

Responses

USTB_B_ <function>_<crit>_<time> USTB_B USTB_A_<function>_<crit>_<time></time></crit></function></time></crit></function>	Current settings of the stability criteria.
USTB_A	Command understood and executed successfully.
USTB_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<function></function>	Integer	0	Stability criterion for weighing, see "S", "SI", "SIR" commands
		1	Stability criterion for taring, see "T", "TI", commands
		2	Stability criterion for zero setting, see "[Z ▶ Page 272]", "[ZI ▶ Page 274]", commands
		3	Stability criterion for adjustments, see "C1" to "C9" commands
<crit></crit>	Float	0.1 1000 digit	Specify tolerance in digits (smallest weight increment) within which the value must stay to be regarded as stable
<time></time>	Float	0.1 4.0 seconds	Specify the observation time in seconds during which the value must stay within tolerance in order to be regarded as stable

Comments

• The observation period is rolling.

It restarts every time the current weight value exceeds the tolerance. Therefore, the actual time for stability determination depends on the current weight trend as well as on the history before sending an S, SR..., T, or [Z > Page 272] command. Ideally, taring or zero setting can take just a few milliseconds, provided the weight value was stable for the observation period before sending the appropriate command.

- As long as no user values for USTB are set (USTB = 0), factory default settings are used.
- During power up or restart, **see** RDB command the zero point will only be determined if stability for zero setting is achieved. Otherwise, an undefined weight value will appear after the startup procedure has been completed.
- The adjustment function parameter is not available on all product lines.

Examples

\mathbf{h}	USTB	Query the current stability criteria for all functions: weighing, taring, and zero setting.	
1	USTB_B_0_1_1	Stability criteria for weighing: 1 digit for at least 1 seconds.	
1	USTB_B_1_0.5_2	Stability criteria for taring: 0.5 digit for at least 2 seconds.	
1	USTB_A_2_0.5_2	Stability criteria for zeroing: 0.5 digit for at least 2 seconds.	
1	USTB_0_1_1.5	Set the stability criteria for weighing to 1 digit for at least 1.5 seconds.	
↑	USTB_A	Command understood and executed successfully.	

WMCF – Configuration of the weight monitoring functions

Description

The WMCF command is used to configure a "Check weighing" or "Dispensing" function without a PC or PLC. The digital outputs DOT_1...3 are used.

Syntax

Commands

WMCF	Query the current configuration of the weight monitoring functions.
WMCF_ <function></function>	Set WMCF function.
WMCF_1_ <targetvalue>_<unit>_<tol->_ <unit>_<tol+>_<unit></unit></tol+></unit></tol-></unit></targetvalue>	Set configuration for "Control Weighing" function. The digital output will be set if a stable weight value is: DOT_1: below <targetvalue> - <tol->. DOT_2: between <targetvalue> - <tol-> and <targetvalue> + <tol+>. DOT_3: OVEr <targetvalue> + <tol+>.</tol+></targetvalue></tol+></targetvalue></tol-></targetvalue></tol-></targetvalue>
WMCF_2_ <limit1>_<unit>_<limit2>_<u- nit>_<limit3>_<unit></unit></limit3></u- </limit2></unit></limit1>	Set configuration for "Dispensing" function. The digital output will be set if a any (stable and unstable) weight value reach: DOT_1: <limit1>. DOT_2: <limit2>. DOT_3: <limit3>.</limit3></limit2></limit1>

Responses

WMCF_A_0 or WMCF_A_1_ <targetvalue>_<unit>_<tol->_ <unit>_<tol+>_<unit> or WMCF_A_2_<limit1>_<unit>_<limit2>_ <unit>_<limit3>_<unit></unit></limit3></unit></limit2></unit></limit1></unit></tol+></unit></tol-></unit></targetvalue>	Current configurations for the weight monitor function.
WMCF_A	Command understood and executed successfully.
WMCF_I	Command understood but currently not executable.
WMCF_L	Command understood but not executable (incorrect parameter).

Parameters

Name	Туре	Values	Meaning
<function></function>	Integer	0	Off
		1	Control weighing
		2	Dispensing
<targetvalue></targetvalue>	Float		Target value
<tol-></tol->	Float		Minus tolerance
<tol+></tol+>	Float		Plus tolerance
<limit1> <limit3></limit3></limit1>	Float		Weight limit value
<unit></unit>	String		Target, tolerance and limit unit, only available units permitted

Comments

- Digital output must be available.
- Only one command DOTC (n), DOTP (n) or WMCF can be configured for the same digital output.
- TargetValue and Limit1 ... Limit3 will be rounded to the defined resolution from the load cell.
- Only allowed units are permitted, see M21.
- The weight value monitoring function works only with a weight value command (e.g. SI, SIR).
- The weight value monitoring function works only on the interface 1 (RS422), see COM.
- The update rate depends on the defined UPD rate.
- Tol- and Tol+ defined as % reference to the ${\tt Target}$ Value.
- Duration and Delay from the digital output must be defined with the command DOT.

Examples

$\mathbf{\Lambda}$	WMCF	Query the current configuration for the weight monitoring function.
↑	WMCF_A_0	No weight monitoring function is activated.
or		
1	WMCF_A_1_100_g_3_g_5_%	The target weight for check weighing is 100 g. Weights which are equal to or greater than 97 g and less than or equal to 105 g (=100 g+5 %) are within the tolerance. The digital Output are TRUE, if weight value is stable and: $DOT_1: < 97$ g. $DOT_2: \ge 97$ g and ≤ 105 g. $DOT_3: > 105$ g.
or		
1	WMCF_A_2_70_g_75_g_76_g	The limits of the dispensing function are 70 g, 75 g, and 76 g. The digital output are TRUE, if any (stable and unstable) weight values are: DOT_1: \geq 70 g. DOT_2: \geq 75 g. DOT_3: \geq 76 g.
$\mathbf{\Lambda}$	WMCF_A_1	Activate "Control Weighing" function with last used parameters.
1	WMCF_A_1_100_g_3_g_5_%	The last used parameters are activated, see example above.
↓	WMCF_1_300.00_30_mg_0.1_%	When check weighing, the target weight of 300 g may be exceeded by a minimum of 299.70 g and by a maximum of 300.30 g (= $300.00 \text{ g} + 0.1\%$).
↑	WMCF_A	Command understood and executed successfully.
$\mathbf{\Lambda}$	WMCF_2_150_g_165_g_167_g	When dosing, the first limit is 150 g, the second 165 g and the third 167 g.
1	WMCF_A	Command understood and executed successfully.

See also

⊘ DOT – Configuration for digital outputs ▶ Page 58

Z – Zero

Description

Use z to set a new zero; all weight values (including the tare weight) will be measured relative to this zero. After zeroing has taken place, the following values apply: tare weight = 0; net weight (= gross weight) = 0.

Syntax

Command

P. C.	7	
	Zero the balance.	

Responses

Z_A	Zero setting successfully performed. Gross, net and tare = 0 .
Z_I	Command understood but currently not executable (balance is currently executing another command, e.g. taring, or timeout as stability was not reached).
Z_+	Upper limit of zero setting range exceeded.
Z	Lower limit of zero setting range exceeded.

Comments

- The zero point determined during switching on is not influenced by this command, the measurement ranges remain unchanged.
- The duration of the timeout depends on the balance type.
- The tare memory is cleared after zero setting.
- The draft shield closes with this command, when the "Door function" is set on "Automatic". It opens after sending a stable weight.

Example

$\mathbf{\Lambda}$	Z	Zero.
↑	Z_A	Zero setting performed.

See also

*Z*I – Zero immediately ▶ Page 274

ZC – Zero or zero immediately after timeout

Description

Use z to set a new zero; all weight values (including the tare weight) will be measured relative to this zero. After zeroing has taken place, the following values apply: tare weight = 0; net weight (= gross weight) = 0. The command z_{c} with configurable timeout is used for processes with defined time cycles.

Syntax

Command

ZC_ <time></time>	Set next stable weight value as new zero weight
	(reference) point or set dynamic weight value
	immediately after timeout as new zero weight point.
	Timeout is specified in ms.

Responses

ZC_S	Zero setting successfully performed. Gross, net and tare = 0 .
ZC_D	Zero setting successfully performed with dynamic weight value after timeout i.e. the stability criterion for zero setting was not met. Gross, net and tare $= 0$.
ZC_I	Command understood but currently not executable (balance is currently executing another command, e.g. taring, or timeout as stability was not reached).
ZC_L	Command understood but not executable (incorrect parameter).
ZC_+	Upper limit of zero setting range exceeded.
ZC	Lower limit of zero setting range exceeded.

Parameter

Name	Туре	Values	Meaning
<time></time>	Integer	1 65535	Timeout in milliseconds [ms]

Comments

- The tare memory is cleared after zero setting.
- <Time> will be rounded to the next possible interval (interval steps 8 ms).
- Zero point set under unstable conditions may not be considered as a true reference for further measurements.
- The tare memory is cleared after zero setting.
- The criterion that must be fulfilled to reach stability for zeroing can be set using the USTB command.

Example

$\mathbf{\Lambda}$	ZC_500	Set new zero point within maximum 500 ms.
↑	ZC_S	Zero setting performed, stability criterion for zero setting met.
or		
↑	ZC_D	Zero setting performed upon timeout of 500 ms under unstable conditions (stability criterion for zero setting not fulfilled).

ZI – Zero immediately

Description

Use z_{I} to set a new zero immediately, regardless of balance stability. All weight values (including the tare weight) will be measured relative to this zero. After zeroing has taken place, the following values apply: tare weight = 0; net weight (= gross weight) = 0.

Syntax

Command

ΖI	Zero the balance immediately regardless the stability of balance.
	of balancer

Responses

ZI_D	Re-zero performed under non-stable (dynamic) conditions.
ZI_S	Re-zero performed under stable conditions.
ZI_I	Command understood but currently not executable (balance is currently executing another command, e.g. taring).
ZI_+	Upper limit of zero setting range exceeded.
ZI	Lower limit of zero setting range exceeded.

Comments

- This command is not supported by approved balances.
- The zero point determined during switching on is not influenced by this command, the measurement ranges remain unchanged.
- The tare memory is cleared after zero setting.

Example

	ZI	Zero immediately.
L	ZI_D	Re-zero performed under non-stable (dynamic) conditions.

See also

4 What if...?

Tips from actual practice if the communication between the system (computer, PLC) and the balance is not working.

Establishing the communication

Switch the weigh module/balance off / on.

The balance must now send identification string I4, e.g. 14_A_"0123456789".

If this is not the case, check the following points.

Connection

For RS232 communication, at least three connecting lines are needed:

- Data line from the weigh module/balance (TxD signal).
- Data line to the weigh module/balance (RxD signal).
- Signal ground line (GNDINT).

For RS422 communication, at least four connecting lines are needed:

- Data line from the weigh module/balance (TX+ signal).
- Data line from the weigh module/balance (TX- signal).
- Data line to the weigh module/balance (RX+ signal).
- Data line to the weigh module/balance (RX- signal).

Make sure that all these connections are in order. Check the connector pin assignment of the connection cables.

Interface parameters

For the transmission to function properly, the settings of the following parameters must match at both the computer and the balance:

- Baud rate (send/receive rate)
- Number of data bits
- Parity bit

Check the settings at both devices.

Handshake

For control of the transmission, in part separate connection lines are used (CTS/DTR). If these lines are missing or wrongly connected, the computer or balance can not send or receive data.

Check whether the weigh module/balance is prevented from transmitting by handshake lines (CTS or DTR). Set the parameter "protocol" for the weigh module/balance and the peripheral device to "No Handshake" or "none". The handshake lines now have no influence on the communication.

Characters are not displayed correctly

In order to display ASCII characters >127 dec., ensure that 8-bit communication is taking place.

5 Appendix

5.1 Framed protocol

Introduction

With the command PROT a framed bus protocol (PROT_2) that is derived from the DIN Measurement Bus (DIN 66348) can be selected. This protocol may be used to make data transmission more reliable.

Nevertheless, full safety cannot be guaranteed since not all transmission errors may be detected or some errors may compensate each other.

In this protocol, the data is enclosed by a set of control characters and a checksum is calculated. This checksum enables the receiver to check whether the data was transmitted correctly or not.

In the following description, control characters are enclosed by angle brackets.

Character	Hex	Function
<stx></stx>	02	FrameStart This control character marks the begin of a frame
<etx></etx>	03	FrameEnd This control character marks the end of a frame
<ack></ack>	06	Acknowledge This control character will be sent by the receiver after a frame is transmitted correctly
<nak></nak>	15	NegativeAcknowledgement This control character will be sent by the receiver after a frame is transmitted incor- rectly
<eot></eot>	04	EndOfTransmission This control character terminates the transmission immediately

Used Control Characters

Frame Structure

A frame encloses the data that has to be transmitted. The control characters <STX> and <ETX> mark the begin and the end of the frame. The Block Control Code (BCC) follows this frame.

<stx></stx>	Control character FrameStart
ADDR	Weighing Module address
	Data
<etx></etx>	Control character FrameEnd
BCC	Block Control Code

BCC

Transmission errors may be detected by means of the Block Control Code. The BCC equals XOR (exclusive or) over the data bytes and <ETX> (including ADDR, but excluding <STX>). Single 1-bit errors may be detected whereas multiple errors may compensate each other and remain undetected.

Flow of Communication

After the transmission of a frame, the receiver has to reply with <ACK> or <NAK> within 200 ms. If the BCC and the data don't mach, a transmission error is detected and <NAK> has to be returned. This requests the sender to transmit the frame again. The number of transmission trials is limited to three. After three erroneous trials, the transmission is aborted with <EOT>. <EOT> may also be used to abort the transmission at any time unless the BCC is expected (the BCC can take an arbitrary value including 03 hex which represents <EOT>).

Example

The command si is sent to the weigh module:

Character	Hex	Comment
<stx></stx>	02	FrameStart
7	37	Weighing Module address
, S′	53	Data
, 1′	49	
<etx></etx>	03	FrameEnd
BCC	OE	Block Control Code

The weigh module checks the frame by means of the BCC. If the Data was transmitted correctly, the weigh module returns a <ACK>. Subsequently, the weigh module sends the following reply:

Character	Hex	Comment
<stx></stx>	02	FrameStart
7	37	Weighing Module address
,S'	53	Data
	20	
, D'	44	
	20	
	20	
	20	
	20	
	20	
	20	
	20	
,3′	33	
	2E	
,4'	34	
,8′	38	
	20	
,g′	67	
<etx></etx>	03	FrameEnd
BCC	75	Block Control Code

The PLC then checks the data with the BCC and acknowledges the successful transmission by sending <arks,

Exception: SIR

A problem occurs if a sir command is issued. It won't be practicable to await an acknowledgement for 200 ms after each weighing result. Therefore, the weigh module doesn't expect a <arcs- or <nak-> while replying on a sir command.

Index

Α	
Adjustment	
A30	22
CO	24
C1	26
C2	28
C3	30
C4	31
C5	33
C6	34
C7	37
C8	40
C9	43
150	120
154	125
171	136
M17	160
M18	162
M19	163
M27	171
M32	175
M33	176
M47	184
M48	186
Auto zero	
152	122

B

Balance ID	
110	102
Balance information	
IO	96
11	97
110	102
111	103
114	104, 129
12	98
126	109
13	99
14	100
15	101
151	121
156	127
165	132
166	133

167	134
LST	156
M31	174
	174
Balance settings	
C	23
115	106
127	110
129	111
M21	165
M38	179
M43	181
M44	182
M67	191
M89	201
RDB	222
USTB	268
Byte order mode for automation	200
	010
M119	212
C	
Cancel	
@	16
DW	
	61
Change display resolution	
Change display resolution M110	205
	205
M110	205 228
M110 Clear stored weight value SIMC	
M110 Clear stored weight value SIMC D	
M110 Clear stored weight value SIMC	
M110 Clear stored weight value SIMC D	
M110 Clear stored weight value SIMC Data interface	228
M110 Clear stored weight value SIMC D Data interface COM	228 46 183
M110 Clear stored weight value SIMC D Data interface COM M45 M68	228 46 183 192
M110 Clear stored weight value SIMC Data interface COM M45 M68 MONH	228 46 183 192 217
M110 Clear stored weight value SIMC Data interface COM M45 M68 MONH NID	228 46 183 192 217 218
M110 Clear stored weight value SIMC Data interface COM M45 M68 MONH NID NID2	228 46 183 192 217 218 219
M110 Clear stored weight value SIMC Data interface COM M45 M68 MONH NID NID2 PROT	228 46 183 192 217 218 219 220
M110 Clear stored weight value SIMC Data interface COM M45 M68 MONH NID NID2	228 46 183 192 217 218 219
M110 Clear stored weight value SIMC Data interface COM M45 M68 MONH NID NID2 PROT	228 46 183 192 217 218 219 220
M110 Clear stored weight value SIMC Data interface COM M45 M68 MONH NID NID2 PROT UPD	228 46 183 192 217 218 219 220
M110 Clear stored weight value SIMC Data interface COM M45 M68 MONH NID NID2 PROT UPD Network configuration M71	228 46 183 192 217 218 219 220 267
M110 Clear stored weight value SIMC Data interface COM M45 M68 MONH NID NID2 PROT UPD Network configuration M71 Diagnostics	228 46 183 192 217 218 219 220 267 197
M110 Clear stored weight value SIMC Data interface COM M45 M68 MONH NID NID2 PROT UPD Network configuration M71 Diagnostics I32	228 46 183 192 217 218 219 220 267 197 112
M110 Clear stored weight value SIMC Data interface COM M45 M68 MONH NID NID2 PROT UPD Network configuration M71 Diagnostics I32 I76	228 46 183 192 217 218 219 220 267 197 112 140
M110 Clear stored weight value SIMC D Data interface COM M45 M68 MONH NID NID2 PROT UPD Network configuration M71 Diagnostics I32 I76 I77	228 46 183 192 217 218 219 220 267 197 112 140 141
M110 Clear stored weight value SIMC Data interface COM M45 M68 MONH NID NID2 PROT UPD Network configuration M71 Diagnostics I32 I76 I77 I78	228 46 183 192 217 218 219 220 267 197 112 140 141 143
M110 Clear stored weight value SIMC D Data interface COM M45 M68 MONH NID NID2 PROT UPD Network configuration M71 Diagnostics I32 I76 I77	228 46 183 192 217 218 219 220 267 197 112 140 141

145	F03
	F04
	F05
110	F06
55	F07
	F08
50	F09
57	F10
	F11
	F12
270	F13
	F14
	F15
	F16
	G
63	GEO code
65	174
153	
169	175
180	Н
	Network configu
114	M70
	Host unit
199	143
	Humidity value
202	, 1101
	1
	-
00	ID balance
66	110
000	Initial zero range
208	148
	L
	List of command
168	10
95	Μ
113	MinWeigh Applic
114	M34
115	SIUM
	SUM
	Module test with
211	tivity test)
211	TST5
60	Monitoring
	132
70	
	153 169 180 114 199 202 66 208 168 95 113

F03	71
FO4	72
F05	73
F06	75
F07	77
F08	79
F09	80
F10	82
F11	84 85
F12	85 86
F13 F14	86 88
F14 F15	00 89
F16	89 91
3	91
BEO code	
174	138
175	139
4	100
• Network configuration	
M70	195
Host unit	100
143	113
lumidity value	
1101	152
D balance	
110	102
nitial zero range	
148	119
ist of commands	
10	96
M	
InWeigh Application	
M34	177
SIUM	238
SUM	251
Module test with built-in weights (scale placement ser tivity test)	ısi-
TST5	265
Monitoring	
132	112

Ν Network configuration M70 195 Network configuration 153 123 M69 193 M7109 204 Ρ Percent weighing SU 223, 250 Percent weighing application A01 17 Piece counting 223, 250 SU Point of calibration 174 138 Point of use 175 139 Power supply for daisy chain M124 214 R Recall and clear stored weight value 230 SIMRC Recall stored weight value 229 SIMR Restart R01 221 RS422 M103 202 RS485 M103 202 S Service 107 116 162 131 169 135 Software 183 149 Stability criteria 1100 151 Status DAT 53 DATI 54

96

258
231
137
118
252
253
254
255
257
209
172
52
164
184
186
189
259
260
262
264
48
131
108
50
156
215
223
224

10

SI	225
SIR	232
SIRU	233
SIS	234
SIU	237
SIUM	238
SIX1	239
SNR	241
SNRU	243
SR	245
SRU	247
ST	249
SU	250
SUM	251
Weighing application	
A02	18
AO3	19
A06	20
Weighing filter setup	
FCUT	92
FCUT2	93
145	115
M01	157
M02	158
M03	159
M29	173
Weighing mode	
146	117
Weighing to a nominal value	
A10	21
Weight calculation mode	
CW11	51
Weight value	
SIC1	226
SIC2	227
Z	

Z

Zeroing	
M35	178
Z	272
ZC	273
ZI	274

To protect your product's future: METTLER TOLEDO Service assures the quality, measuring accuracy and preservation of value of this product for years to come.

Please request full details about our attractive terms of service.

www.mt.com/apw

For more information

Mettler-Toledo GmbH Im Langacher 44 8606 Greifensee, Switzerland www.mt.com/contact

Subject to technical changes. © 12/2023 METTLER TOLEDO. All rights reserved. 11781363N en

