# User's Guide

# ACT100/ACT100xx Weight Transmitter User Guide





# ACT100/ACT100xx Weight Transmitter

# **METTLER TOLEDO** Service

# Essential Services for Dependable Performance of Your ACT100/ACT100xx Weight Transmitter

Congratulations on choosing the quality and precision of METTLER TOLEDO. Proper use of your new equipment ensures dependable and accurate operation, protecting your investment. Contact us about a service agreement tailored to your needs and budget. Further information is available at <u>www.mt.com/service</u>.

There are important ways to ensure you maximize your investment's performance.

- Register your product: We invite you to register your product at <u>www.mt.com/productregistration</u> so we can contact you about enhancements, updates and important notifications concerning your product.
- 2. **Contact METTLER TOLEDO for service**: The value of a measurement is proportional to its accuracy an out of specification scale can diminish quality, reduce profits and increase liability. Timely service from METTLER TOLEDO will ensure accuracy and optimize uptime and equipment life.
  - a. **Installation, Configuration, Integration and Training**: Our service representatives are factory-trained, weighing equipment experts. We make certain that your weighing equipment is ready for production in a cost effective and timely fashion, and that personnel are trained for success.
  - b. **Initial Calibration Documentation**: The installation environment and application requirements are unique for every industrial scale, so performance must be tested and certified. Our calibration services and certificates document accuracy to ensure production quality and provide a quality system record of performance.
  - c. **Periodic Calibration Maintenance**: A Calibration Service Agreement provides on-going confidence in your weighing process and documentation of compliance. We offer a variety of service plans that meet your needs and fit your budget.
  - d. **GWP**<sup>®</sup> Verification: A risk-based approach for managing weighing equipment allows for control and improvement of the entire measuring process, which ensures reproducible product quality and minimizes process costs. GWP (Good Weighing Practice), the science-based standard for efficient life-cycle management of weighing equipment, gives clear answers about how to specify, calibrate and ensure accuracy of weighing equipment, independent of make or brand.



#### © METTLER TOLEDO 2019

No part of this manual may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose without the express written permission of METTLER TOLEDO.

U.S. Government Restricted Rights: This documentation is furnished with Restricted Rights.

Copyright 2019 METTLER TOLEDO. This documentation contains proprietary information of METTLER TOLEDO. It may not be copied in whole or in part without the express written consent of METTLER TOLEDO.

#### COPYRIGHT

METTLER TOLEDO<sup>®</sup> is a registered trademark of Mettler-Toledo, LLC. All other brand or product names are trademarks or registered trademarks of their respective companies.

#### METTLER TOLEDO RESERVES THE RIGHT TO MAKE REFINEMENTS OR CHANGES WITHOUT NOTICE.

#### **FCC Notice**

This device complies with Part 15 of the FCC Rules and the Radio Interference Requirements of the Canadian Department of Communications. Operation is subject to the following conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and radiates radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his or her expense.

#### **RoHS Compliance Statement**

- The majority of our products fall within categories 8 and 9. Those categories currently
  do not fall within the scope of the Directive 2002/95/EG (RoHS) of January 27, 2003. If
  our products are intended for use in other products which themselves fall within the
  scope of the RoHS Directive, compliance requirements have to be separately negotiated
  contractually.
- Those products which fall within categories 1-7 and 10 will be in compliance with the EU RoHS Directive from no later than July 1, 2006.
- If it is not possible for technical reasons to replace any non-RoHS-compliant substances in any of the above products as required, we plan to inform our customers in a timely manner.

### Statement regarding harmful substances

We do not make direct use of harmful materials such as asbestos, radioactive substances or arsenic compounds. However, we purchase components from third party suppliers that may contain some of these substances in very small quantities.

# Warnings and Cautions

• READ this manual BEFORE operating or servicing this equipment and FOLLOW these instructions carefully.



THE ACT100 IS INTENDED TO BE USED FOR PROCESS CONTROL AND IS NOT APPROVED AS A SAFETY COMPONENT. WHEN USED AS A

COMPONENT PART OF A SYSTEM, ANY SAFETY CIRCUITS MUST BE INDEPENDENT OF THE ACT100 AND REMOVE POWER FROM THE ACT100 OUTPUTS IN THE EVENT OF AN EMERGENCY STOP OR EMERGENCY POWER DOWN.





ONLY USE RECOMMENDED 12-24 VDC POWER SUPPLY APPROVED AS NEC Class 2 OR RATED AS LIMITED POWER PER IEC60950-1.





WHEN THIS EQUIPMENT IS INCLUDED AS A COMPONENT PART OF A SYSTEM, THE RESULTING DESIGN MUST BE REVIEWED BY QUALIFIED PERSONNEL WHO ARE FAMILIAR WITH THE CONSTRUCTION AND OPERATION OF ALL COMPONENTS IN THE SYSTEM AND THE POTENTIAL HAZARDS INVOLVED. FAILURE TO OBSERVE THIS PRECAUTION COULD RESULT IN BODILY HARM AND/OR PROPERTY DAMAGE.

WARNING



ONLY THE COMPONENTS SPECIFIED ON THE ACT100 DOCUMENTATION MEDIA CAN BE USED IN THIS TRANSMITTER. ALL EQUIPMENT MUST BE INSTALLED IN ACCORDANCE WITH THE INSTALLATION INSTRUCTIONS DETAILED IN THE USER'S GUIDE. INCORRECT OR SUBSTITUTE COMPONENTS AND/OR DEVIATION FROM THESE INSTRUCTIONS CAN IMPAIR THE SAFETY OF THE TRANSMITTER AND COULD RESULT IN BODILY HARM AND/OR PROPERTY DAMAGE.





BEFORE CONNECTING/DISCONNECTING ANY INTERNAL OR EXTERNAL ELECTRONIC COMPONENTS, LOAD CELLS, HARNESSES OR INTERCONNECTING WIRING BETWEEN ELECTRONIC EQUIPMENT ALWAYS REMOVE POWER AND WAIT AT LEAST THIRTY (30) SECONDS BEFORE ANY CONNECTIONS OR DISCONNECTIONS ARE MADE. FAILURE TO OBSERVE THESE PRECAUTIONS COULD RESULT IN BODILY HARM AND/OR PROPERTY DAMAGE.





INSTALLATION AND ANY SERVICE ON THIS EQUIPMENT MUST BE DONE ONLY AFTER THE AREA IS SECURED AS NON-HAZARDOUS BY THE RESPONSIBLE PERSON ON-SITE AUTHORIZED TO DO SO.



# \land WARNING

THE ACT100 IS NOT INTRINSICALLY SAFE! DO NOT USE IN HAZARDOUS AREAS CLASSIFIED AS DIVISION 1, ZONE 0, ZONE 20, ZONE 1 OR ZONE 21 BECAUSE OF COMBUSTIBLE OR EXPLOSIVE ATMOSPHERES.

# NOTICE

 $\triangle$ 

DO NOT ACTIVATE POWER OVER ETHERNET (PoE) ON ETHERNET SWITCHES ON THE ACT100 NETWORK. ACTIVATING PoE MAY RESULT IN DAMAGE TO THE ACT100 TRANSMITTER.

# NOTICE

IN ORDER TO ENSURE PROPER DISSIPATION OF HEAT FROM THE TRANSMITTER'S PCBS, AND TO AVOID DAMAGE TO THE EQUIPMENT, THE ACT100 MUST BE MOUNTED VERTICALLY, ON A HORIZONTAL DIN RAIL.



🕂 WARNING

NOT ALL VERSIONS OF THE ACT100 ARE DESIGNED FOR USE IN HAZARDOUS (EXPLOSIVE) AREAS. REFER TO THE DATA PLATE OF THE ACT100 TO DETERMINE IF A SPECIFIC TRANSMITTER IS APPROVED FOR USE IN AN AREA CLASSIFIED AS HAZARDOUS BECAUSE OF COMBUSTIBLE OR EXPLOSIVE ATMOSPHERES.

# **WARNING**



IN ORDER TO INSTALL THE ACT100xx TRANSMITTER IN THE US OR CANADA, METTLER TOLEDO CONTROL DRAWINGS 30565571 MUST BE FOLLOWED WITHOUT EXCEPTION. IN ORDER TO INSTALL THE CATEGORY 3 MARKED ACT100 UTILIZING THE EUROPEAN APPROVAL, THE APPROVAL CERTIFICATE FM19ATEX0213X / IECEx\_FMG\_19.0043X AND ALL LOCAL REGULATIONS MUST BE FOLLOWED WITHOUT EXCEPTION. FAILURE TO DO SO COULD RESULT IN BODILY HARM AND/OR PROPERTY DAMAGE. REFER TO THE ACT100 DIVISION 2 AND ZONE 2/22 INSTALLATION GUIDE 30529641 FOR ADDITIONAL INFORMATION.



# NOTICE

OBSERVE PRECAUTIONS FOR HANDLING ELECTROSTATIC SENSITIVE DEVICES.

# **Disposal of Electrical and Electronic Equipment**

In conformance with the European Directive 2002/96/EC on Waste Electrical and Electronic Equipment (WEEE) this device may not be disposed of in domestic waste. This also applies to countries outside the EU, per their specific requirements.



Please dispose of this product in accordance with local regulations at the collecting point specified for electrical and electronic equipment.

If you have any questions, please contact the responsible authority or the distributor from which you purchased this device.

Should this device be passed on to other parties (for private or professional use), the content of this regulation must also be related.

Thank you for your contribution to environmental protection.

# Contents

| 1 Introduction |          |                                         |     |
|----------------|----------|-----------------------------------------|-----|
|                | 1.1. In: | spection and Contents Checklist         | 8   |
|                | 1.2. Av  | ailable models                          | 9   |
|                | 1.3. Pł  | ysical Dimensions                       | 9   |
| 2              | Operat   | on                                      | .10 |
|                | 2.1. Fr  | ont Panel                               | .10 |
|                | 2.1.1.   | Display Layout                          | .10 |
|                | 2.2. Fr  | ont Panel Keys                          | .11 |
|                | 2.3. LE  | Ds Status                               | .11 |
|                | 2.4. AC  | CT100 Device Main Menu                  | .12 |
|                | 2.4.1.   | Information Recall                      | .13 |
|                | 2.4.2.   | x10 Resolution                          | .14 |
|                | 2.4.3.   | Comparators                             | .15 |
|                | 2.4.4.   | Calibration                             | .16 |
|                | 2.4.5.   | Language                                | .24 |
|                | 2.4.6.   | Parameters Setup                        | .24 |
|                | 2.4.7.   | Password Security                       | .24 |
|                | 2.4.8.   | Reset Configuration and Master Reset    | .24 |
|                | 2.5. AC  | CT100 Basic Operation Functions         | .25 |
|                | 2.5.1.   | Zero                                    | .25 |
|                | 2.5.2.   | Tare                                    | .26 |
|                | 2.5.3.   | Filter                                  | .27 |
|                | 2.5.4.   | Analog Output                           | .27 |
|                | 2.5.5.   | Error Message                           | .29 |
| 3              | Installa | tion                                    | .31 |
|                | 3.1. Me  | echanical Installation                  | .31 |
|                | 3.2. El  | ectrical Installation                   | .33 |
|                | 3.2.1.   | Digital Inputs and Outputs Connection   | .34 |
|                | 3.2.2.   | Analog Output Connection                | .38 |
|                | 3.2.3.   | Analog Load Cell Connection             | .38 |
|                | 3.2.4.   | PLC Connection                          | .39 |
|                | 3.3. DI  | P Switches                              | .40 |
|                | 3.4. Po  | wer Supply                              | .40 |
| 4              | Webse    | rver Configuration and Maintenance Tool | .41 |
|                | 4.1. W   | ebserver                                | .41 |
|                | 4.1.1.   | Webserver Setup                         | .41 |
|                | 4.2. El  | ements of Webserver                     | .43 |

| 4.2   | .1. Device Information       | 43 |
|-------|------------------------------|----|
| 4.2   | .2. ACT100 Basic Settings    | 43 |
| 4.2   | .3. Analog Output            | 44 |
| 4.2   | .4. Calibration              | 46 |
| 4.2   | .5. Scale                    | 52 |
| 4.2.  | .6. Application              | 57 |
| 4.2   | .7. Communication            | 59 |
| 4.2   | .8. Maintenance              | 60 |
| 4.2   | .9. Login                    | 64 |
| 5 GE  | O Codes                      | 65 |
| 5.1.  | Original Site Calibration    | 65 |
| 5.2.  | New Site GEO Code Adjustment | 65 |
| 6 App | pendix A - SetPoint          | 68 |
| 6.1.  | Introduction                 | 68 |
| 6.2.  | Concurrent Mode              | 69 |
| 6.3.  | Independent Mode             | 70 |
| 6.4.  | Latch                        | 71 |

# **1** Introduction

The ACT100 represents the latest in METTLER TOLEDO technology and is one of the most versatile weighing transmitters available today for conventional strain gauge weighing technology. The factory preconfigured PLC communication interface in a DIN rail mounting scheme makes the ACT100 a perfect match for basic industrial process weighing applications including:

• Filling • Dosing • Sorting

Enhance measurement or control applications with patented TraxDSP<sup>™</sup> digital filtering technology and a PLC update rate of 200 Hz. The ACT100 delivers fast, precise measurement data from milligrams to tons in a single cost-effective package that easily integrates into control panel systems.

The versatile ACT100 excels in controlling simple filling and dosing applications, delivering best-in-class performance for fast, precise, accurate results in fully automatic operations. Utilize the control capabilities of the ACT100 to effectively manage project costs.

# **1.1.** Inspection and Contents Checklist

Verify the contents and inspect the package immediately upon delivery.

The package should include:

- ACT100/ACT100xx transmitter
- Safety warnings in multiple languages
- Parts for installation, including ferrite, connectors, etc.





## NOTICE

All relevant documentation, software, fieldbus files and sample code are available at <u>www.mt.com/ind-act100-downloads.</u>

# **1.2.** Available models

Following models are available for ACT100:

#### Table 1-1: ACT100 Models

| Item Number                                          | Description                                    | Version  | Label   |
|------------------------------------------------------|------------------------------------------------|----------|---------|
| 30529619                                             | Weight Transm. ACT100                          | ACT100   | English |
| 30529620                                             | Weight Transm. ACT100                          | ACT100   | Chinese |
| 30529621 Weight Transm. ACT10<br>(hazardous version) |                                                | ACT100xx | English |
| 30529622                                             | Weight Transm. ACT100xx<br>(hazardous version) | ACT100xx | Chinese |

# **1.3.** Physical Dimensions



ACT100 enclosure is shown in Figure 1-2.

Figure 1-2: ACT100 Dimensions

## NOTICE

2D and 3D drawings available at www.mt.com/ind-ACT100-downloads.

# **2 Operation**

# 2.1. Front Panel

An example of the ACT100 front panel is shown in Figure 2-1





# 2.1.1. Display Layout

The ACT100 transmitter has an organic LED (OLED) display, 128 x 32 dot matrix graphic type display. The display is reserved for scale weight, units, Net/Gross indicator and error messages.

Additional information provided includes:

- Weight unit ( lb, kg, g )
- Motion / no-motion condition
- Center of zero
- Gross or net mode





Figure 2-2 Display in Weighing Mode

#### **Front Panel Keys** 2.2.

Four dedicated function keys are located on the front panel to support manual setup configuration. These provide the interface to navigate the setup menu hierarchy and data entry, as well as make setup selections within data entry and drop down boxes.

| - | ENTER | Press the ENTER key for 3 seconds to access the device menu.<br>Press the ENTER key to make a selection from the device menu<br>and sub-menus.                                                                                                                                      |  |
|---|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|   |       | When in a data entry field, press the ENTER key to accept the numeric value entered.                                                                                                                                                                                                |  |
|   |       | When the display is in weighing mode, briefly press the ENTER key to execute the zero operation if the scale weight is within the Pushbutton zero range specified in the webserver.                                                                                                 |  |
|   | UP    | Press the UP key to scroll within the device menu and sub-menus.<br>The UP key is also used for incrementing numerals in the numeric<br>data entry field.                                                                                                                           |  |
| V | DOWN  | Press the DOWN key to scroll within the device menu and sub-<br>menus. The DOWN key is also used for decrementing numerals in<br>the numeric data entry field.                                                                                                                      |  |
| ٢ | LEFT  | Press the LEFT key to navigate up one step on the device menu<br>tree. The LEFT key is also used to scroll to the numeral to the left in<br>a data entry field. With the left most numeric character highlighted,<br>the next key press will wrap around to the right most numeral. |  |

#### 2.3. **LEDs Status**

| Normal Work | Analog Output<br>Error<br><i>(Example)</i> | LED | STATUS                                                       |
|-------------|--------------------------------------------|-----|--------------------------------------------------------------|
| SCL         | SCL                                        | SCL | Scales status: ON okay,<br>flashing indicates scale<br>error |
|             |                                            | PWR | Power status: ON okay,<br>OFF error                          |
|             |                                            | AO  | Analog Output: ON okay, flashing out of range                |
|             |                                            | DEV | Device Status: ON okay;<br>flashing contact service          |

# 2.4. ACT100 Device Main Menu

From the front panel, press and hold the ENTER key for 3 seconds to access the device menu. The display will change from showing the normal weight display to showing the Information Recall  $\hat{J}$  icon. Press the UP  $\bigcirc$  or DOWN  $\bigcirc$  keys on the front panel to display icons for the various functions listed in Table 2-1.

| j             | Information<br>Recall | Recall mode for most transmitter information fields.                                             |  |
|---------------|-----------------------|--------------------------------------------------------------------------------------------------|--|
| x10           | Resolution            | Temporarily expands weight display resolution for diagnostic purposes                            |  |
| <b>`</b>      | Comparator<br>s       | Access to the limit value for all currently enabled comparators.                                 |  |
| k⊳            | Calibration           | Access to calibration menu including zero<br>and span adjustment (in non-approved<br>mode only). |  |
| $\wedge$      | Error<br>Message      | Access to list of current error messages                                                         |  |
|               | Language              | Selects between English and Chinese                                                              |  |
| $\Rightarrow$ | Setup                 | Access to all setup parameters for the transmitter.                                              |  |

Table 2-1: Device Menu Icons

Once focus is in a value field, repeated presses of the UP, DOWN or LEFT keys will cycle back to the beginning, so if the LEFT key is pressed when focus is in the left-most position, focus returns to the right-most position. In the case of the UP and DOWN keys, the highlighted value will cycle through numerical values and the decimal point as follows:



After accepting the value by pressing ENTER and the focus has moved to the parameter description, press the LEFT key to exit to the next higher level of the menu.

Pressing the LEFT multiple times will exit the device menu.

Figure 2-3 shows an example of how to access and modify the value of a parameter. The currently selected item (in focus) is indicated by reverse video.



Figure 2-3: Numerical Data Entry Example

# 2.4.1. Information Recall

Once the Information Recall icon 2 appears, press the ENTER key to recall specific information about the transmitter. Figure 2-4 shows the elements of the Information Recall menu in the sequence in which they occur. Note that some items may not appear, depending on the configuration of the transmitter.

Pressing the LEFT key multiple times will exit the device menu.



Figure 2-4: Information Recall Menu

# 2.4.2. x10 Resolution

This function expands the weight display resolution by 10 so that a finer weight increment can be seen. It can be enabled by pressing the ENTER key e when the transmitter's device menu has been accessed and the **x10** icon is displayed on screen:



Figure 2-5: x10 Indication

### NOTICE

This function is intended for **diagnostic purposes only**. The transmitter should not be used in the x10 expanded mode for normal operation.

# 2.4.3. Comparators

The device supports a total of three comparators. One, two or all three comparators may be used. The limit of each comparator may be modified by accessing the Comparator menu in the setup menu. Comparator values are limited to 7 digits.

#### **2.4.3.1.** Setting Comparators

Access the Comparator menu by pressing the ENTER key  $\bigcirc$  when the transmitter's device menu is visible and the  $\neg$   $\leftarrow$  icon is displayed on the device.

The ACT100 only supports a logical comparison of ">=", greater than or equal to, for each comparator. For example, if the limit is set to "24.00" kg, the output configured to use this comparator will be set to true only if the live weight is greater than or equal to 24.00 kg. Please note that inputs and outputs can be configured using the webserver.

The operator of range and other comparisons are NOT supported by the ACT100.

# 2.4.4. Calibration

Calibration is the process of adjusting the display of the transmitter so that when the scale is empty, the display shows zero gross weight. With a specific amount of weight on the scale, it also shows an accurate weight value.

The ACT100 transmitter calibration menu enables entry of an adjustment value, selection of linearity adjustment (**none** [default], three, four or five point), traditional zero calibration and three different types of span calibration:

- Traditional span calibration This uses test weights.
- Step adjust calibration Using a build-up or substitution method of calibration, this method is used for large vessels where only a portion of the required test weights can be placed on the scale.
- **CalFree calibration** Once certain load cell criteria have been entered manually, the transmitter will automatically calculate the span; no test weights are required.

#### 2.4.4.1. Setting Calibration

Access to the Calibration menu using the device's front panel is accomplished by pressing the ENTER key e when the  $\overline{\bigtriangledown}$  icon is displayed on the device. The Calibration menu also can be accessed using the webserver.



Figure 2-6: Calibration Menu – Overview

#### 2.4.4.2. Setting Geo Code

The Geo code, which sets the appropriate adjustment value for the current geographical location, is selected here. Geo codes are numbered 0–31. See Figure 2-6 for more information on the Geo code setting using the transmitter's front panel buttons, and refer to Chapter 5 to find the appropriate Geo Code for the installation location.

## 2.4.4.3. Setting Linearity

To set the Linearity Adjustment value, see Figure 2-6: Calibration Menu – Overview. Choose the number of linearity points from the selection box. Options are **None** [default], 3 point, 4 point, 5 point.

Points are distributed as follows:

| None | Linearity is disabled                                  |
|------|--------------------------------------------------------|
| 3    | Zero, midpoint and highpoint                           |
| 4    | Zero, lowpoint, midpoint and highpoint                 |
| 5    | Zero, lowpoint, midpoint, mid-<br>highpoint, highpoint |

# 2.4.4.4. Zero Calibration and Under Zero Blanking

Scale zero is set simply by emptying the scale and running the "Set Zero" calibration routine, as shown in Figure 2-7.



Figure 2-7: Zero Calibration

If the transmitter detects scale motion during the calibration process, it will retry the start of calibration several times and then proceed, displaying a motion indication. In this case, when calibration is complete, the transmitter will present two options – accept or reject the value.



Figure 2-8: Zero Calibration with Motion

Blanking of the display is used to indicate an under-zero condition when the weight on the scale falls below the current zero reference. Set the under zero blanking for the number of divisions (d) that the transmitter is permitted to go under zero before blanking.

#### NOTICE

A setting value of 0-98 blanks the display at the specified number of divisions below gross zero. A value of 99 makes the transmitter blanks at 50% of the capacity value in the negative direction.

#### 2.4.4.5. Span Calibration

The scale's span calibration can be determined either with or without a linearity adjustment. With linearity disabled, a single reference point is used to calibrate the scale. This is the normal method of span calibration. With linearity enabled, the transmitter is configured with up to three-point linearity – low, mid and high.

The low point is set during zero calibration, and the mid and high points are set during this procedure.



Figure 2-9: Span Calibration

If linearity is enabled, additional mid-range weight reference points are added to the adjustment procedure. Linearity can be enabled or disabled in the Calibration branch of the device menu. Refer to ACT100 Device Main Menu section for the method used to modify numerical values.

### 2.4.4.6. Step Adjust

Step adjustment is an iterative process in which a build-up or material substitution method of calibration is used to calibrate the span. Each step calibrates a portion of the full span.

This method is typically used with large vessels where only a portion of the required calibration test weights can be placed on the scale at one time. Figure 2-10 shows the logic of the procedure using a simple, two-step example. When sufficient steps have been calibrated, pressing the LEFT button returns the view to the calibration menu.



First, a test load is defined by entering its weight.

Confirm the value entry by pressing ENTER.

The ACT100 prompts for the addition of the test load.

Press ENTER to start the first step,

The ACT100 indicates its progress.

Once the first step is calibrated, the ACT100 sets a temporary zero point, and prompts for the removal of the test load. A live weight display indicates that the scale has been cleared.

Press ENTER to confirm the scale is empty.

The ACT100 will prompt to add the test load again.

The live weight indicates that the test load is on the scale.

Press ENTER to start the second step.

The ACT100 indicates its progress.

Press LEFT to complete calibration and exit the procedure.

The ACT100 indicates that the calibration has succeeded.

Press either LEFT or ENTER to return to the calibration menu.

Figure 2-10: Step Adjustment

#### 2.4.4.7. CalFree™

CalFree allows the scale to be calibrated without the use of test weights. The total load cell capacity, unit and output in mV/V must be entered. The system then calculates correct calibration for the scale. Figure 2-11 provides a visual representation of the CalFree calibration procedure.

#### Notes on Load Cell Capacity and Rated Cell Output

- For load cell capacity, enter the sum of all load cell capacities. For example, for three 50t load cells, enter 150,000 kg.
- For systems with passive dummy load cells, enter the value as if all legs have live load cells. For example, for a system with two 50t live load cells and two passive supports, enter 200,000.
- For Rated Cell Output, enter the sensitivity of each live load cell in mV/V for example, 2.0000. For multiple load cells, enter the average sensitivity of all cells.

The ACT100 transmitter allows calibration of the scale without using test weights. This is based on manual entry of capacity and performance data from the load cell or load cell platform. This method of calibration can be used for initial check-out and testing of systems or when a large structure is used as the weighing vessel and it is not possible to apply test weights to the structure. METTLER TOLEDO highly recommends that test weights be used whenever possible, as this provides the most accurate method of calibration.

The Rated Cell Output and Cell Capacity values cannot be zero, and are limited to 7 digits.

#### NOTICE

Scale calibration using CalFree<sup>™</sup> will not be accurate when using zener diode barriers (such as Mettler Toledo ISB05 and ISB05x) between the transmitter and the scale. Do not use CalFree<sup>™</sup> when barriers are installed.





Figure 2-11: CalFree

# 2.4.5. Language

The ACT100 supports a device menu in **English** [default] and in Chinese.

# 2.4.6. Parameters Setup

The last icon displayed in the device menu from the front panel is Setup  $\diamondsuit$ , where many of the transmitter's programming parameters can be viewed and modified. It is not intended that operators enter the setup mode after a weighing system is installed and is operational. It should not be necessary for an operator to access setup.

# 2.4.7. Password Security

Note that a security password can be enabled in setup from the Web-based Configuration Tool. When a password is set, it must be entered to access setup. This protects the setup parameters from inadvertent changes. The default password is "000000".



Figure 2-12: Password Entry Screen

### 2.4.8. Reset Configuration and Master Reset

### **2.4.8.1.** Reset Configuration

To reset all configured items except calibration data:

1. Remove power from the transmitter.

2. Locate the DIP switches, accessible from the underside of the housing.

3. Set both DIP switches, 1 and 2, to ON (up, in Figure 2-13) and restore power to the transmitter.



Figure 2-13: DIP Switches

4. Set both DIP switches to OFF.

## 2.4.8.2. Master Reset

A master reset restores all settings to their factory default values:

- 1. Remove power from the transmitter.
- 2. Set switch **2** to its ON position and restore power to the transmitter. The ACT100 will prompt for confirmation.



Figure 2-14: Master Reset Confirmation

- 3. Press ENTER on the front panel to perform the master reset.
- 4. Set Switch **2** to OFF.

# **2.5.** ACT100 Basic Operation Functions

### 2.5.1. Zero

The Zero function is used to set or reset the initial zero reference point of the transmitter. There are two types of zero setting modes:

### 2.5.1.1. Green ENTER Button

The zero function can be accomplished by a short press of the green ENTER escale function key. The Zero range selections include Disabled, **2%** [default] or 20% plus or minus from the calibrated zero point. A change to the default setting is done via the webserver. If the current scale weight is outside the zero range when a pushbutton zero is commanded, the transmitter will display a message:



Figure 2-15: ENTER button Zero Failure Message

#### 2.5.1.2. Power Up

The Power Up mode setting determines if at power up, the transmitter will restart with the most recent zero reference point it had before power down or if it will reset to the calibrated zero reference.

The selections include Reset [default] and Restart.

## 2.5.1.2.1. Reset

With the setting on Reset, the last zero calibration value will be used as the zero reference point. The Power Up Zero capture range selections include **Disabled** [default], 2% or 10% plus or minus. If the range setting is enabled, the Power Up Zero is applied only when the weight reading on the scale is within the selected range around the originally calibrated zero reference. For example, if the range setting for Power Up Zero is set at +/- 2%, Power Up Zero will only occur when the weight reading on the scale is within +/- 2% of scale capacity above the original calibrated zero reference. If the weight on the scale is outside of the zero range, the display will indicate **EEE** until the weight is adjusted to within this range and zero is captured.

## 2.5.1.2.2. Restart

A setting of Restart enables the transmitter to reuse the most recent zero reference weight after a power cycle so it returns to the same, previously-displayed gross weight value. The Power Up Zero setting is configured using the webserver.

## 2.5.2. Tare

The tare value is subtracted from the gross weight measurement, providing the computation of the net weight (material without the container). The tare function can also be used to track the net amount of material being added to or removed from a vessel or container. In the second case, the weight of the material inside is included with the tare weight of the container and the display reflects the net amount being added to or removed from the vessel. Tare is captured by digital input. Tare is cleared by digital input.

# 2.5.3. Filter

In many weighing applications, vibration can introduce error into your system or cause delays in the transfer of weight to your automation device. It is always recommended to first attempt to mechanically isolate your scale from the surroundings. When this cannot adequately be done, use the electronic filtering inside the ACT100. The Filter section offers three settings: Weighing Mode, Limit Frequency and Environment.

Weighing<br/>ModeNormal: Should only be used for non-automatic,<br/>human-powered weighing. Gives the most stable<br/>response that is required for "legal for trade"<br/>weighing. Not recommended with a process<br/>controlled by an automation device.Dynamic:Intended setting when process is<br/>controlled by automation device such as a PLC.<br/>Trigger Weigh: Recommended to use Dynamic<br/>mode filter instead of Trigger Weigh

Limit Frequency 1-20 Hz: Marks the point at which the filtering process begins to affect the disturbance. Disturbances above the limit frequency will have filtering applied. Recommendation is to start at 20 Hz and reduce the frequency only after adjusting the environment setting. The lower the frequency, the better the disturbance rejection, but it will extend the settling time.

# Environment Very Stable, Stable, Standard, Unstable, Very Unstable:

Sets the level of attenuation applied to the signal above the limit frequency. A very stable environment will have the least attenuation applied to the signal and a very unstable environment will have the strongest attenuation. It is recommended to adjust this value first when changing filter settings. Start with "very stable" and work your way down.

## 2.5.4. Analog Output

The Analog Output section offers five settings

| Source               | Selects either <b>Display Weight</b> or <b>Gross Weight</b> as the source of the analog output                                                                        |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Output<br>Type       | Sets the type of analog output signal provided.<br>Available ranges are <b>None</b> , <b>0-5V</b> , <b>0-10V</b> , <b>4-20mA</b> ,<br><b>0-20mA</b> , <b>0-24mA</b> . |
| Analog<br>Zero Value | Sets the weight value that corresponds to the low<br>end of the selected Output Range. Weight values<br>less than or equal to the Zero Value causes the               |

device to output the lowest value of the Output Range.

- Analog Span Value Sets the weight value that corresponds to the high end of the selected Output Range. Weight values greater than or equal to the Full Scale Value causes the device to output the highest value of the Output Range.
  - **Calibrate Output** Allows for a minor adjustment to be made to the analog output signal. First, an adjustment to the zero value signal will be made. Second, an adjustment to the full scale signal will be made. Adjustment should be completed with either PLC or multimeter connected to analog output of ACT100. Adjustment is completed by using the up or down buttons on the ACT100. A short press (fine adjust) of the button makes an adjustment in step size of 10. A long press (coarse adjust) of the button makes an adjustment in step size of 200.

Assumed below values set to ACT100

- Source: Gross Weight
- Output Type: 4~20mA
- Analog Zero Value: 0 kg
- Analog Span Value: 1000 kg

This means ACT100 will output 4mA when scale is empty and 20mA when 1000 kg load on scale or in tank. If the load on scale exceeds 1000kg, the analog signal value will change from 20mA to 24mA as a warning message to user control system that the analog output is over range. Figure 2-16 shows the relationship between analog output signal and load on scale.



Figure 2-16: Analog Output Example

# 2.5.5. Error Message

With the Errors icon 🔬 in view, press the ENTER key to access a listing of current error messages.

| Error<br>value | ACT100 Display                     | Description                                                  | Action                                                                |
|----------------|------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------|
| 009            | "Board info. Err"                  | Hardware production information error                        | Cycle power; call MT<br>Service if issue persists                     |
| 010            | "Calib. Block err"                 | Calibration block<br>data error; block<br>data is lost       | Perform master reset<br>Re-calibrate                                  |
| 011            | "Scale block err"                  | Scale block data<br>error                                    | Perform master reset<br>Perform setup for scale<br>block              |
| 012            | "Term. Block err"                  | Transmitter block data error                                 | Perform master reset<br>Perform setup for<br>transmitter block        |
| 013            | "APP. Block err"                   | Application block data error                                 | Perform master reset<br>Perform setup for<br>application block        |
| 014            | "COM. Block err"                   | Communication<br>block data error                            | Perform master reset<br>Perform setup for<br>communication block      |
| 015            | "Maint. Block err"                 | Statistics block data<br>error                               | Perform master reset<br>Perform setup for<br>maintenance block        |
| 016            | "Analog system<br>A/D fail"        | Lost analog signal;<br>abnormal functioning<br>of scale      | Call MT Service                                                       |
| 018            | "Zero failed<br>Motion"            | Zero failed due to scale is in motion                        | Wait scale to be stable                                               |
| 019            | "Zero failed Net<br>mode"          | Zero failed due to scale is in Net mode                      | Attempt to Zero after<br>Clear operation is<br>performed              |
| 020            | "Zero failed/Out<br>of range"      | Weight out of zero range                                     | Unload scale and perform Zero again                                   |
| 021            | "Zero failed Zero<br>disabled"     | Zero attempted<br>when function<br>disabled in Setup<br>menu | Enable Zero function in<br>Setup menu                                 |
| 022            | "Tare failed<br>Motion"            | Tare failed due to scale is in motion                        | Wait scale to be stable                                               |
| 029            | "Tare failed Zero<br>not captured" | Tare failed due to<br>Power-up Zero is not<br>captured       | Capture the Power-up<br>Zero or disable Power-<br>up Zero before Tare |

| 030 | "Tare Failed,<br>over capacity" | Tare failed due to<br>scale being over<br>capacity        | Unload weight on scale<br>until overcapacity is<br>cleared and perform<br>Tare again |
|-----|---------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------|
| 031 | "Tare failed<br>Negative value" | Tare failed due to<br>current gross weight<br>is negative | Adjust the weight on<br>scale to make gross<br>weight positive                       |
| 035 | "Analog<br>saturation"          | A/D converter in<br>overload                              | Check the input<br>signal(should be<br>between 0mV and<br>20mV)or call MT<br>Service |
| 036 | "Factory zero not<br>done"      | Factory Zero<br>calibration not<br>performed              | Call MT Service                                                                      |
| 037 | "Factory span<br>not done"      | Factory Span<br>calibration not<br>performed              | Call MT Service                                                                      |
| 050 | "LC Connection<br>Error"        | Lost connection<br>between ACT100<br>and LC               | Check the LC and connection cables                                                   |
# 3 Installation

### NOTICE

This chapter describes the mechanical and electrical installation of ACT100 in safe area applications. If the ACT100xx for Division 2 and Zone 2/22 hazardous areas will be used without a barrier, refer to the ACT100 division 2 and zone 2/22 installation guide 30529641 for additional information. The installation guide can be found at www.mt.com/ind-act100-downloads

# **3.1.** Mechanical Installation

The ACT100 mounts to a standard DIN rail. DIN mount includes an integral transmitter grounding system, visible in **Figure 3-1**.



Figure 3-1: DIN-Mount Latch

To mount the ACT100 on a rail, open the latch by pulling down, then position the transmitter so that its upper tabs rest on the DIN rail.

Use a screwdriver to close the latch and secure the transmitter in position.





Figure 3-2: Latch Closure

To remove the ACT100, simply put the blade of a screwdriver in the latch and press it downward.

# NOTICE

In order to ensure proper dissipation of heat from the transmitter's PCBs, and to avoid damage to the equipment, **the ACT100 must be mounted vertically**, on a horizontal din rail.

# **3.2.** Electrical Installation

Figure 3-3 indicates ACT100 connections and their functions.



Figure 3-3: ACT100

### **Connections:**

- 1 Power connector (12- 30 VDC)
- 2 Analog Output (4-20mA, 0-10V, 0-5V, 0-20mA, 0-24mA)
- Analog scale interface (Number of load cells: up to 4x 350Ω or 10x 1000Ω; 1-4 mV/V; Number of scale: 1; Number of scale ranges: 1; Load cell excitation voltage: 5 VDC; 6 wire connection)
- 4 Ethernet connection

### NOTICE

The special automatic grounding system at the back of the unit is present to ensure that the unit is grounded to the DIN rail. See Figure 3-1

# **3.2.1.** Digital Inputs and Outputs Connection

Three inputs and two outputs are located on the top of the ACT100. Table 3-1 contains the specifications for the digital inputs and outputs.



Figure 3-4: ACT100, Top View (DIO model shown)

|                                    | Input                       | Output                       |
|------------------------------------|-----------------------------|------------------------------|
| Permissible input voltage          | 0~24 VDC                    | 5~30 VDC                     |
| Logical Low-level                  | 0 ~ 3 VDC                   |                              |
| Logical High-level                 | 10 ~ 24 VDC                 |                              |
| Input resistance                   | >3KΩ                        |                              |
| Max.current of one<br>output       |                             | <150mA                       |
| Accumulated current of all outputs |                             | <300mA                       |
| Support Sinking                    | GND connected to<br>IN-COM  | GND connected to OUT-<br>COM |
| Support Sourcing                   | Power source to IN-<br>COM  | Power source to OUT-<br>COM  |
| Default function                   | None                        | None                         |
| Polarity Value                     | +True(Default) or –<br>True |                              |

Table 3-1: Digital Inputs and Outputs Specification

|                            |                   | None; Center of Zero;  |
|----------------------------|-------------------|------------------------|
|                            |                   | Comparator 1-3; Fault; |
|                            | None; Clear Tare; | Motion; NET; Over      |
| Available                  | Tare; Zero; Abort | Capacity; Under Zero;  |
| Available<br>Eurotionality | SetPoint;         | Fast Feed; Fine Feed;  |
| Functionality              | Start/Resume      | Analog Output Over     |
|                            | SetPoint          | Range; Analog Output   |
|                            |                   | Under Range, LC        |
|                            |                   | Connection Error       |

**Example:** Using a rising-edge input signal to trigger the ACT100 to perform a Zero operation, "Polarity" can be set as "+ True" and "Assignment" as "Zero". Refer to Figure 3-5:

| 24 VDC — — — — — — — — — — — — — — — —                       |   |
|--------------------------------------------------------------|---|
| High Level Area                                              | 1 |
| 10 VDC<br>Forbidden Area<br>3 VDC<br>0 VDC<br>Low Level Area |   |

Figure 3-5: A Rising-edge Trigger Signal on Input

Using a falling-edge input signal to trigger ACT100 to perform a Tare operation, "Polarity" can be set as "- True" and "Assignment" as "Tare". Refer to Figure 3-6.



Figure 3-6: A Falling-edge Trigger Signal on Input

# NOTICE

Do not use input voltage between 3 - 10 VDC. Unstable input signal will result. See Figure 3-5 and Figure 3-6 for proper operation



Digital inputs and Outputs electrical connection instructions are shown below. (From Figure 3-7 to Figure 3-10)

Figure 3-7: Sinking Input, Sourcing Output



Figure 3-8: Sinking Input, Sinking Output

Installation



Figure 3-9: Sourcing Input, Sourcing Output



Figure 3-10: Sourcing Input, Sinking Output

# 3.2.2. Analog Output Connection



Figure 3-11: Analog Output Connection

# 3.2.3. Analog Load Cell Connection

Install the ferrite by passing it through the ferrite and wrapping it around once, as indicated here.



Figure 3-12: Ferrite Installed on Analog Load Cell Cable

Following table shows the difference of connecting 6-wire and 4-wire load cells:

| 6-wire load cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4-wire load cells                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| The second secon |                                                                   |
| Connect according to the signal<br>diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Add jumper wires between –EXC and –SEN; and between +EXC and +SEN |

Table 3-2 Connecting 6-wire and 4-wire load cells

Table 3-3 Recommended Maximum Cable Lengths

| TSR (Ohms)             | 24 Gauge<br>(meters/feet) | 20 Gauge<br>(meters/feet) | 16 Gauge<br>(meters/feet) |
|------------------------|---------------------------|---------------------------|---------------------------|
| 350                    | 234/800                   | 610/2000                  | 1219/400                  |
| 87<br>(4 -350 Ω cells) | 60/200                    | 182/600                   | 304/1000                  |

# 3.2.4. PLC Connection

To connect ACT100 with a PLC, use the analog output port shown on Figure 3-3.

Figure 3-13 presents a connection diagram of a weighing system using an ACT100.



Figure 3-13: ACT100 Based Weighing System

# 3.3. DIP Switches

Two DIP switches, 1 and 2, are accessible from the underside of the ACT100's housing. Table 3-3 summarizes their functions.

| ACT100 DIP Switches | Legal for<br>Trade | Reset    |                                                                                  |
|---------------------|--------------------|----------|----------------------------------------------------------------------------------|
|                     | Switch 1           | Switch 2 | Function                                                                         |
|                     | OFF                | OFF      | Normal operation                                                                 |
|                     | ON                 | OFF      | Protection mode for<br>important<br>parameters, e.g.<br>calibration values       |
|                     | OFF                | ON       | Master reset of all<br>data during<br>transmitter power-up                       |
|                     | ON                 | ON       | Reset of all <b>except</b><br>calibration data<br>during transmitter<br>power-up |

Table 3-4: DIP Switch Functions

# 3.4. Power Supply

The ACT100 transmitter is powered only by external DC input (12V to 30V).

|                | 1x 350Ω<br>Loadcell |              | 4x 3<br>Load    | 50Ω<br>icell |
|----------------|---------------------|--------------|-----------------|--------------|
| Supply Voltage | Current<br>(mA)     | Power<br>(W) | Current<br>(mA) | Power<br>(W) |
| 12 VDC         | 265                 | 3.18         | 290             | 3.48         |
| 24 VDC         | 160                 | 3.84         | 170             | 4.08         |
| 30 VDC         | 135                 | 4.05         | 145             | 4.35         |

| Table : | 3-5. | ACT100  | Power     | Consum | ntion |
|---------|------|---------|-----------|--------|-------|
| Tuble . | 00.  | //01/00 | 1 0 10 01 | Consum | puon  |

# 4 Webserver Configuration and Maintenance Tool

# 4.1.Webserver

Webserver supports the following functions:

- Configuring of the ACT100 Transmitter via web browser, such as IE, Chrome and Safari;
- Accessing diagnostic and maintenance information for service purposes;

| METTLER TOL        | EDÓ  | ACT100                |                    | Language English |
|--------------------|------|-----------------------|--------------------|------------------|
| Device Information | n    |                       | Device Information |                  |
| ACT100 Basic Setti | ings |                       |                    |                  |
| Analog Output      |      | Transmitter Informati | ion                |                  |
| Calibration        |      | Serial Number:        |                    |                  |
| Calibration        |      | Software Version:     | 1.00.0000.20190123 |                  |
| Scale              | +    |                       |                    |                  |
| Application        | +    | Ethernet Configuratio | n                  |                  |
| Communication      |      | IP Address:           | 192.168.000.002    |                  |
| communication      |      | Subnet Mask:          | 233.235.255.000    |                  |
| Maintenance        | +    | Default Gateway       | 192 168 000 001    |                  |
| -245 11 6          |      |                       |                    |                  |
| -245.11 Kg         | g    |                       |                    |                  |
| 8/6                |      |                       |                    |                  |
| Zero               |      |                       |                    |                  |
|                    |      |                       |                    |                  |

Figure 4-1 Webserver Splash Screen

By inputting the IP address of ACT100 Transmitter in the web browser, the startup screen of webserver will be displayed.

# 4.1.1. Webserver Setup

# 4.1.1.1. PC setup

# NOTICE

Make sure the PC and ACT100 Transmitter are in the same local network.

The typical PC's configuration:

IP address: 192.168.0.X (X = 0 ~ 254, exclude 2), Subnet Mask: 255.255.255.0, Default Gateway: can be left blank

41

| Local Area Connection Properties                                                                                                               | Internet Protocol Version 4 (TCP/IPv4) Properties                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Networking Sharing                                                                                                                             | General                                                                                                                                                                               |
| Connect using: TwinCAT-Intel PCI Ethernet Adapter (Gigabit)                                                                                    | You can get IP settings assigned automatically if your network supports<br>this capability. Otherwise, you need to ask your network administrator<br>for the appropriate IP settings. |
| Configure This connection uses the following items:                                                                                            | Obtain an IP address automatically                                                                                                                                                    |
| PROFINET IO RT-Protocol V2.3      PROFINET IO protocol (DCP/LLDP)                                                                              | IP address: 192,168,0,80                                                                                                                                                              |
| ✓ SIMATIC Industrial Ethemet (ISO)     ✓ Internet Protocol Version 6 (TCP/IPv6)                                                                | Subnet mask: 255 , 255 , 0                                                                                                                                                            |
| Internet Protocol Version 4 (ICP/IPv4)      A. Link-Layer Topology Discovery Mapper I/O Driver      A. Link-Layer Topology Discovery Responder | Obtain DNS server address automatically     O Use the following DNS server addresses:                                                                                                 |
| Install Uninstall Properties                                                                                                                   | Preferred DNS server:                                                                                                                                                                 |
| Description<br>Transmission Control Protocol/Internet Protocol. The default                                                                    | Alternate DNS server:                                                                                                                                                                 |
| wide area network protocol that provides communication<br>across diverse interconnected networks.                                              | Validate settings upon exit Advanced                                                                                                                                                  |
| OK Cancel                                                                                                                                      | OK Cancel                                                                                                                                                                             |

Figure 4-2 Local Area Connection Setting

# NOTICE

The default setting of the ACT100 Transmitter is as follows: IP address: 192.168.0.2, Subnet Mask: 255.255.255.0, Gateway: 192.168.0.1.

### 4.1.1.2. IE setup

Internet Option -> LAN setting -> Automatically detect settings should be unchecked.

| internet Options                                                                                                                                        | Local Area Network (LAN) Settings                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General Security Privacy Content Connections Programs Advance                                                                                           | d Automatic configuration<br>Automatic configuration may override manual settings. To ensure the<br>use of manual settings, disable automatic configuration.                                                                                              |
| Dial-up and Virtual Private Network settings  Add  Add VPN  Remove  Choose Settings if you need to configure a proxy server for a connection.  Settings | Use automatic configuration gorpt         Address         Proxy server         Use a proxy server for your LAN (These settings will not apply to dailyp or VPN connections).         Address:       Port;         Bypass proxy server for local addresses |
| Local Area Network (LAN) settings<br>LAN Settings do not apply to dal-up connections.<br>Choose Settings above for dial-up settings.<br>DK Cancel Apply | OK Cancel                                                                                                                                                                                                                                                 |

Figure 4-3 IE setting

# 4.2. Elements of Webserver

## 4.2.1. Device Information

The device information page displays basic information about the ACT100. Transmitter information includes the serial number of the unit and the current software version. The service Ethernet configuration includes the IP address of the ACT100, subnet mask, MAC address and default gateway. None of this information can be edited from this screen.

| Device Information             |                   |  |  |  |  |
|--------------------------------|-------------------|--|--|--|--|
|                                |                   |  |  |  |  |
| Transmitter Information        |                   |  |  |  |  |
| Name                           | ACT 100 Scale     |  |  |  |  |
| Serial Number                  | 69961486CW        |  |  |  |  |
| Software Version               | 1.00.0001         |  |  |  |  |
|                                |                   |  |  |  |  |
| Service Ethernet Configuration |                   |  |  |  |  |
| IP Address                     | 192.168.000.002   |  |  |  |  |
| Subnet Mask                    | 255.255.255.000   |  |  |  |  |
| MAC Address                    | 00:10:52:C2:17:DC |  |  |  |  |
| Default Gateway                | 192.168.000.001   |  |  |  |  |

Figure 4-4 Device Information

# 4.2.2. ACT100 Basic Settings

The ACT100 basic settings include three options:

| Display Auto Off | This sets the amount of inactive<br>time required before the display<br>on the front of the ACT100<br>automatically turns itself off. The<br>options are 1 minute, 10<br>minutes, 30 minutes, or this<br>feature can be disabled so the<br>display does not turn off<br>automatically. |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Display Language | This sets the language to be<br>used on the ACT100 display.<br>The options are English or<br>Chinese.                                                                                                                                                                                  |
| Pushbuttons      | This allows the pushbuttons on<br>the front of the ACT100 to be<br>either enabled or disabled. If<br>disabled, the only way to enable<br>the pushbuttons again is via the<br>webserver.                                                                                                |

| ACT100 Basic Settings |        |            |   |  |
|-----------------------|--------|------------|---|--|
|                       |        |            |   |  |
| Display Auto Off      |        | 10 minutes | • |  |
| Display Language      |        | English    | • |  |
| Pushbuttons           |        | Enabled    | • |  |
| Pushbullons           |        | Enabled    |   |  |
|                       | Submit | Reset      |   |  |

Figure 4-5 ACT100 Basic Settings

# 4.2.3. Analog Output

# 4.2.3.1. Analog Output Settings

| Source             | Selects either Display Weight or<br>Gross Weight as the source of<br>the analog output                                                                                                                                                   |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Output Type        | Sets the type of analog output<br>signal provided. Available<br>ranges are None, 0-5V, 0-10V,<br>4-20mA, 0-20mA, 0-24mA.                                                                                                                 |
| Analog Zero Value  | Sets the weight value that<br>corresponds to the low end of<br>the selected Output Range.<br>Weight values less than or equal<br>to the Zero Value causes the<br>device to output the lowest value<br>of the Output Range.               |
| Analog Scale Value | Sets the weight value that<br>corresponds to the high end of<br>the selected Output Range.<br>Weight values greater than or<br>equal to the Full Scale Value<br>causes the device to output the<br>highest value of the Output<br>Range. |

### Analog Output Settings

| Analog Source     |        | Displa | ayed We | ight |  | • |    |
|-------------------|--------|--------|---------|------|--|---|----|
| Output Type       |        | None   |         |      |  | • |    |
| Analog Zero Value |        | 0.0000 | 000     |      |  |   | kg |
| Analog Span Value |        | 60.000 | 0000    |      |  |   | kg |
|                   | Submit |        | Re      | eset |  |   |    |

Figure 4-6 Analog Output Settings

## 4.2.3.2. Analog Output Adjustment

Allows for a minor adjustment to be made to the analog output signal. First, press the "Start" button to initiate an adjustment to the zero value signal will be made. Second, an adjustment to the full scale signal will be made. Adjustment should be completed with either a PLC or multimeter connected to the analog output of ACT100.

Adjustment is completed by using the "+", "++", "-", and "--" buttons on the webserver screen. Pressing the "+" or "-" (fine adjust) button makes an adjustment of 10 steps positively or negatively. Pressing the "++" or "--" (coarse adjust) button makes an adjustment of 200 steps positively or negatively.

Press "Continue" to proceed in the adjustment process from Zero Value to Span Value. Press "ESC" to cancel the current adjustment step, please note the prior step adjustment result has been saved.



**Analog Output Adjustment** 

| Adjust Zero Output                            |
|-----------------------------------------------|
| Press "+ +" or "+" to increase Zero Output    |
| Press "" or "-" to decrease Zero Output       |
| + ++                                          |
| Press Continue to save and adjust Span Output |
| Press ESC to Abort                            |
| ESC Continue                                  |

Figure 4-8 Example of Zero Value Adjustment

# 4.2.4. Calibration

# 4.2.4.1. Calibration Setting

Calibration offers two settings that can be changed:

|           | on where the ACT100 is located<br>in the world. The valid range is<br>0-31. See Section 5 of this<br>document for more information<br>on Geo Codes.                                                                                                                                                                       |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Linearity | This is the number of points of<br>linearity to be used in calibration.<br>Options are 3 point, 4 point, 5<br>point or none. Please note that<br>even after a change to the<br>number of linearity points is<br>submitted, the user must<br>execute a "Set Span" or "Step<br>Calibration" for this change to be<br>saved. |

Used to set the Geo code based

| Calibration Setting                     |                                                                         |  |  |  |  |
|-----------------------------------------|-------------------------------------------------------------------------|--|--|--|--|
| GEO<br>(Range:0-31)<br>Linearity        | 16<br>None                                                              |  |  |  |  |
| New Linearity value will be saved after | r a success of " <u>Set Span</u> " or " <u>Step Calibration</u> "<br>it |  |  |  |  |

Figure 4-9 Calibration Setting

# 4.2.4.2. Set Zero

Scale zero is set simply by emptying the scale and pressing the "Start" button on the Set Zero page.

| Set Zero            |  |  |  |
|---------------------|--|--|--|
|                     |  |  |  |
|                     |  |  |  |
| Start Capture Zero? |  |  |  |
|                     |  |  |  |
| Start               |  |  |  |

Figure 4-10 Press "Start" to Initiate the scale Zero Adjusmtnet

If zero is successfully captured, a message showing the zero capture has completed is displayed. The user can navigate away from the page if they are satisfied with the zero captured or they can begin the process over again.





Figure 4-12 A Dynamic Zero Adjustment

# 4.2.4.3. Set Span

The scale's span calibration can be set either with or without a linearity adjustment. With linearity disabled, a single reference point is used to calibrate the scale. This is the normal method of span calibration. The webserver will display the correct number of test load points to be used in the calibration according to the linearity setting found in the Calibration Setting menu.

The process begins by entering the weight value into test load 1 and loading the scale with the corresponding test weight. Click the start button to calibrate that load point.

| Set Span    |     |    |       |  |
|-------------|-----|----|-------|--|
| Test Load 1 | 200 | kg | Start |  |

Place test load on scale and start adjustment.

Figure 4-13 Enter Test Load Value

Repeat this process for the rest of the test loads displayed on the webserver. When complete, the page will ask whether or not to save the calibration.

| Set Span                        |                        |      |       |  |
|---------------------------------|------------------------|------|-------|--|
| Test Load 1                     | 200                    | kg _ | Start |  |
|                                 | Adjustment in process. |      |       |  |
| Set Span                        |                        |      |       |  |
| Test Load 1                     | 200                    | kg   | Start |  |
| Span adjustment complete. Save? |                        |      |       |  |
|                                 | ESC OK                 |      |       |  |

Figure 4-14 A Successful Span Adjustment

If motion occurs during adjustment, a message "Span adjustment complete in dynamic" will be shown as seen in Figure 4-15.

| Set Span                                   |        |    |       |  |  |
|--------------------------------------------|--------|----|-------|--|--|
| Test Load 1                                | 200    | kg | Start |  |  |
| Span adjustment complete in dynamic. Save? |        |    |       |  |  |
|                                            |        |    |       |  |  |
|                                            | ESC OK |    |       |  |  |

Figure 4-15 A Dynamic Span Adjustment

# 4.2.4.4. Step Calibration

Step adjustment is an iterative process in which a build-up or material substitution method of calibration is used to calibrate the span. Each step calibrates a portion of the full span.

This method is typically used with large vessels where only a portion of the required calibration test weights can be placed on the scale at one time. It starts from inputting the Test Load value in Figure 4-16 and pressing the "start" button.

| Step Calibration                     |                                            |         |  |
|--------------------------------------|--------------------------------------------|---------|--|
| Test Load                            | [25 k                                      | .g      |  |
| Current Weight                       |                                            |         |  |
| Target Weight                        |                                            |         |  |
| Step Count                           | 0                                          |         |  |
| Enter Test Load value, Place test lo | ad on scale and click button to start adju | ıstment |  |

| ESC | Start |
|-----|-------|
|     |       |

Figure 4-16 Input Test Load Value

When this step of calibration is completed, it shows current weight, press the "Continue" button and then remove the Test Load following the prompt message, then press the "Continue" button again, as shown in Figure 4-17 and Figure 4-18.

| Step Calibration                                                            |                           |  |  |
|-----------------------------------------------------------------------------|---------------------------|--|--|
| Test Load                                                                   | 25 kg                     |  |  |
| Current Weight                                                              | 25.023141kg               |  |  |
| Target Weight                                                               |                           |  |  |
| Step Count                                                                  | 1                         |  |  |
| Adjustment successful. Click Done to finish calibration. Or click Continue. |                           |  |  |
| ESC                                                                         | Continue Done             |  |  |
| Figure 4-17 Get the Current Weight                                          |                           |  |  |
| Ste                                                                         | p Calibration             |  |  |
| Test Load                                                                   | 25 kg                     |  |  |
| Current Weight                                                              | 24.998473kg               |  |  |
| Target Weight                                                               |                           |  |  |
| Step Count                                                                  | 1                         |  |  |
| Remove Test                                                                 | Load then Click Continue. |  |  |

Figure 4-18 Remove the Test Load

ESC Continue

This process requires adding a replacement material, normally water. User can compare the Target Weight and Current Weight until they are very close. Then press the "Continue" button for the next step and add the Test Load again.

| Step Calibration      |                                     |    |
|-----------------------|-------------------------------------|----|
| Test Load             | 25                                  | kg |
| Current Weight        | 24.942230kg                         |    |
| Target Weight         | 24.998219                           |    |
| Step Count            | 1                                   |    |
| Add material weight t | to equal target then Click Continue |    |

i material weight to equal targetin then click continu

ESC Continue

Figure 4-19 Add Replacement Material

Repeat the steps shown in Figure 4-17 to Figure 4-19 until the last step, then press the "Done" button in Figure 4-17.

After each step, the user has the option to continue with another step or to complete the calibration.

### 4.2.4.5. CalFree

CalFree allows the scale to be calibrated without the use of test weights. The total load cell capacity, unit and output in mV/V must be entered. The system then calculates correct calibration for the scale.

#### Notes on Load Cell Capacity and Rated Cell Output

- For load cell capacity, enter the sum of all load cell capacities. For example, for three 50t load cells, enter 150,000 kg.
- For systems with passive dummy load cells, enter the value as if all legs have live load cells. For example, for a system with two 50t live load cells and two passive supports, enter 200,000.
- For Rated Cell Output, enter the sensitivity of each live load cell in mV/V – for example, 2.0000. For multiple load cells, enter the average sensitivity of all cells.

The ACT100 transmitter allows calibration of the scale without using test weights. This is based on manual entry of capacity and performance data from the load cell or load cell platform. This method of calibration can be used for initial check-out and testing of systems or when a large structure is used as the weighing vessel and it is not possible to apply test weights to the structure. METTLER TOLEDO highly recommends that test weights be used whenever possible, as this provides the most accurate method of calibration.

The Rated Cell Output and Cell Capacity values cannot be zero, and are limited to 7 digits.

| CalFree             |                            |      |
|---------------------|----------------------------|------|
| Total Cell Capacity | 60.000000                  |      |
| CalFree Unit        | kg                         | V    |
| Rated Cell Output   | 2.000000                   | mV/V |
|                     | Press OK to start CalFree. |      |

Figure 4-20 CalFree Settings

## NOTICE

Scale calibration using CalFree<sup>™</sup> will not be accurate when using zener diode barriers (such as Mettler Toledo ISB05 and ISB05x) between the transmitter and the scale. Do not use CalFree<sup>™</sup> when barriers are installed.

## 4.2.5. Scale

# 4.2.5.1. Capacity and Increment

The capacity and increment page offers four settings

| Unit                     | Select the weight unit of measure. Options are grams (g), kilograms (kg) and pounds (lb).                                 |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Capacity                 | Set the total capacity of the scale. Range is from 0-980000.                                                              |
| Increment                | Set the increment size for the scale. Selection is made via a dropdown menu. Options are limited by the capacity chosen.  |
| OverCapacity<br>Blanking | Value above Capacity that<br>causes ACT100 display to blank.<br>Value is measured in divisions.<br>Valid range is 0-99 d. |

| Capacity & Increment                   |             |      |
|----------------------------------------|-------------|------|
|                                        |             |      |
| Unit                                   | kg          | ~    |
| Scale Capacity<br>(Range: 0-980000)    | 1500.000000 | kg   |
| Increment                              | 1           | ✓ kg |
| OverCapacity Blanking<br>(Range: 0-99) | 5           | d    |
| Submi                                  | t Reset     |      |

Figure 4-21 Capacity & Increment Settings

# 4.2.5.2. Zero

| Power Up Mode       | Determines if at power up, the<br>transmitter will restart with the<br>most recent zero reference point<br>it had before power down or if it<br>will reset to the calibrated zero<br>reference.                                                                                                                                                                                                                                                                                                                       |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Under Zero Blanking | Blanking of the display is used to<br>indicate an under-zero condition<br>when the weight on the scale<br>falls below the current zero<br>reference. Set the under zero<br>blanking for the number of<br>divisions (d) that the transmitter<br>is permitted to go under zero<br>before blanking. A setting value<br>of 0-98 blanks the display at the<br>specified number of divisions<br>below gross zero. A value of 99<br>makes the transmitter blank at<br>50% of the capacity value in the<br>negative direction |
| Power Up Zero       | The Power Up Zero capture<br>range selections include<br>Disabled [default], 2% or 10%<br>plus or minus. If the range<br>setting is enabled, the Power Up<br>Zero is applied only when the<br>weight reading on the scale is<br>within the selected range around<br>the originally calibrated zero<br>reference. If the weight on the<br>scale is outside of the zero<br>range, the display will indicate<br>EEE until the weight is adjusted                                                                         |

| 2               | Zero                                                                                                                                                                                                                                                                           |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pushbutton Zero | The Zero range selections<br>include Disabled, 2% [default] or<br>20% plus or minus from the<br>calibrated zero point. If the<br>current scale weight is outside<br>the zero range when a<br>pushbutton zero is commanded,<br>the transmitter will display an<br>error message |
|                 | to within this range and zero is captured.                                                                                                                                                                                                                                     |

| Power Up Mode                 | Reset    | ~ |   |
|-------------------------------|----------|---|---|
| Under Zero Blanking<br>(0-99) | 5        |   | d |
| Power Up Zero                 | Disabled | ~ |   |
| Pushbutton Zero               | +/- 2%   | ~ |   |
|                               |          |   |   |
| Submit                        | Reset    |   |   |



# 4.2.5.3. Stability

| Motion Range       | Sets the range (in divisions) in<br>which the weight value can<br>fluctuate and maintain a no-<br>motion condition                                                              |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No-motion Interval | Sets the amount of time (in seconds) in which the weight value must remain in the Motion Range in order to maintain a no-motion condition                                       |
| Timeout            | Sets the time (in seconds) after<br>which the transmitter will stop<br>attempting to complete a<br>function that requires a no-<br>motion condition and aborts the<br>function. |

| S                               | Stability |   |
|---------------------------------|-----------|---|
|                                 |           |   |
| Motion Range<br>(0.1-3.0)       | 1.0       | d |
| No-motion Interval<br>(0.1-1.0) | 0.3       | s |
| Timeout<br>(0-99)               | 3         | s |
| Submit                          | Reset     |   |

Figure 4-23 Stability Settings

# 4.2.5.4. Filter

In many weighing applications, vibration can introduce error into your system or cause delays in the transfer of weight to your automation device. It is always recommended to first attempt to mechanically isolate your scale from the surroundings. When this cannot adequately be done, use the electronic filtering inside the ACT100. The Filter section offers three settings: Weighing Mode, Limit Frequency and Environment.

- Weighing<br/>ModeNormal: Should only be used for non-automatic,<br/>human-powered weighing. Gives the most stable<br/>response that is required for "legal for trade"<br/>weighing. Not recommended with a process<br/>controlled by an automation device.<br/>Dynamic: Intended setting when process is<br/>controlled by automation device such as a PLC.<br/>Trigger Weigh: Recommended to use Dynamic<br/>mode filter instead of Trigger Weigh
- Limit Frequency 1-20 Hz: Marks the point at which the filtering process begins to affect the disturbance. Disturbances above the limit frequency will have filtering applied. Recommendation is to start at 20 Hz and reduce the frequency only after adjusting the environment setting. The lower the frequency, the better the disturbance rejection, but it will extend the settling time.
- Environment Very Stable, Stable, Standard, Unstable, Very Unstable:

Sets the level of attenuation applied to the signal above the limit frequency. A very stable environment will have the least attenuation applied to the signal and a very unstable environment will have the strongest attenuation. It is recommended to adjust this value first when changing filter settings. Start with "very stable" and work your way down.

|                           | Filter   |    |
|---------------------------|----------|----|
| Limit Frequency<br>(1-20) | 18       | Hz |
| Weighing Mode             | Normal   |    |
| Environment               | Standard |    |
| Submit                    | Reset    |    |

Figure 4-24 Filter Settings



Name

Allows a custom name to be set to help identify the device. Can use up to 20 characters,

|                  | includes '0'~'9', 'a'~'z', 'A'~'Z', '-<br>' and Space.                                                            |
|------------------|-------------------------------------------------------------------------------------------------------------------|
| Approval         | Select approval type from a drop<br>down menu. Possible selections<br>include None, Canada, OIML &<br>CPA, or USA |
|                  | Туре                                                                                                              |
| Name<br>Approval | ACT100 Scale None                                                                                                 |
|                  | Submit Reset                                                                                                      |

Figure 4-25 Type Settings

# 4.2.6. Application

# 4.2.6.1. Comparator

The ACT100 supports a total of three comparators. One, two or all three comparators may be used. The limit of each comparator may be modified via the webserver. Comparators must be enabled before the comparator limit can be changed. The comparator limit must be less than the scale capacity.

| Comparator         |                          |    |  |
|--------------------|--------------------------|----|--|
|                    |                          |    |  |
| # of Used          | Use Comparator 1 & 2 & 3 |    |  |
| Comparator 1 Limit | 0.000000                 | kg |  |
| Comparator 2 Limit | 0.000000                 | kg |  |
| Comparator 3 Limit | 0.000000                 | kg |  |
|                    |                          |    |  |
| Submit             | Reset                    |    |  |

Figure 4-26 Comparator Settings

# 4.2.6.2. SetPoint

SetPoint is a simple application that allows for the inputs and outputs of the ACT100 to be used to react to reaching a set weight. For more details see Appendix A - SetPoint.

Several options are available to set up this application:

| Mode   | Options are either Concurrent of<br>Independent, see Appendix A -<br>SetPoint for more details |
|--------|------------------------------------------------------------------------------------------------|
| Source | Select whether the Gross<br>Weight or Displayed Weight will                                    |

|               | be used as the source value to<br>be compared to the target<br>weight                                                                                                                                                                      |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Latch         | Set to be either enabled or<br>disabled. If enabled, SetPoint<br>output is latched. The latch is<br>cleared by starting the SetPoint<br>application.                                                                                       |
| Target Weight | Set the target weight at which the SetPoint output will go TRUE when reached.                                                                                                                                                              |
| Pre-act       | Weight of material expected to<br>be added after the Fine Feed<br>output goes FALSE.                                                                                                                                                       |
| Fine Feed     | When the weight rises above<br>this value, the Fine Feed output<br>will go TRUE and the Fast Feed<br>output will go FALSE. This is<br>intended to signal to the PLC<br>that the process should slow as<br>the target weight is approached. |
|               | SetPoint                                                                                                                                                                                                                                   |

| Mode          |        | Concur  | rent      | ~ |    |
|---------------|--------|---------|-----------|---|----|
| Source        |        | Display | ed Weight | ~ |    |
| Latch         |        | Disable | d         | ~ |    |
| Target Weight |        | 0.0000  | 00        |   | kg |
| Pre-act       |        | 0.0000  | 00        |   | kg |
| Fine Feed     |        | 0.00000 | 00        |   | kg |
|               |        |         |           |   |    |
|               | Submit |         | Reset     |   |    |

Figure 4-27 SetPoint Settings

# 4.2.6.3. Discrete Inputs

This page allows for the polarity type and assignments to be set for all three inputs of the ACT100. Each input can individually have its input polarity set to either +True or –True. Each input can also be individually assigned to a specific function. Whenever that input becomes true, it's assigned function will execute. Possible functions include: None, Clear Tare, Tare, Zero, Abort SetPoint application, Start/Resume Setpoint application.

|               | Disci  | rete I | nputs |   |
|---------------|--------|--------|-------|---|
|               |        |        |       |   |
| #1 Polarity   |        | + True |       | ~ |
| #1 Assignment |        | None   |       | ~ |
| #2 Polarity   |        | + True |       | ~ |
| #2 Assignment |        | None   |       | ~ |
| #3 Polarity   |        | + True |       | ~ |
| #3 Assignment |        | None   |       | ~ |
|               |        |        |       |   |
|               | Submit |        | Reset |   |

Figure 4-28 Discrete Inputs Settings

# 4.2.6.4. Discrete Outputs

This page allows for the polarity type and assignments to be set for both outputs of the ACT100. The output polarity for the outputs can be set to either +True or –True. Each output can be individually assigned to go true when it's assigned function is true. Options for the assigned function are: None, Center of zero, Comparator 1, Comparator 2, Comparator 3, Fault (if any fault is detected), Motion (if motion is detected on the scale), Net (if in net weighing mode), Over Capacity, Under Zero, Fast Feed (see Section 4.2.6.2), Fine Feed (see Section 4.2.6.2), Analog Output over range, Analog Output under range.



Figure 4-29 Discrete Outputs Settings

## 4.2.7. Communication

Allows for certain Ethernet settings to be edited. The IP address, Subnet mask, and default gateway of the ACT100 can be changed here. The MAC address can be viewed but not changed. Once any of these values are edited, the ACT100 will automatically restart after 3 seconds.

| IP Address      |        | 192.16  | 8.000.002   |  |  |
|-----------------|--------|---------|-------------|--|--|
| Subnet Mask     |        | 255.25  | 5.255.000   |  |  |
| MAC Address     | Γ      | 00:10:5 | 52:C2:17:DC |  |  |
| Default Gateway | [      | 192.16  | 8.000.001   |  |  |
|                 |        |         |             |  |  |
|                 | Submit |         | Reset       |  |  |

Service Ethernet

Figure 4-30 Service Ethernet Settings

#### 4.2.8. **Maintenance**

#### 4.2.8.1. **Load Cell Output**

This page displays the raw count value from the load cell(s). This value can be useful when troubleshooting the system to see the raw value seen by the scale input of the ACT100.



Figure 4-31 Load Cell Output

#### 4.2.8.2. **Calibration Values**

This page shows the calibration weight values and the corresponding load cell output for that value. If fewer than 5 linearity points are used for calibration, unused calibration points are disabled on this page.

Calibration values can manually be changed on this screen by either adjusting the weight of the calibration point or the corresponding load cell output counts.



Figure 4-32 Calibration Values

# 4.2.8.3. Statistics

Displays various statistics to help assist with troubleshooting. Many of these values can be reset to zero via the webserver.

| Calibration Changes                 | Displays the number of times a zero, span, step or CalFree calibration has been performed                                                                                                         |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Weighments                          | Used to show how many<br>weighing cycles have<br>completed. Each weighing cycle<br>is initiated when gross weight<br>exceeds Start Threshold and<br>ended when it falls below Reset<br>Threshold. |
| Start Threshold                     | % of the Capacity value                                                                                                                                                                           |
| Reset Threshold                     | % of the Capacity value                                                                                                                                                                           |
| Zero Commands                       | Number of pushbutton zero<br>commands attempted. This<br>includes the "Zero" button in the<br>bottom left corner of the<br>webserver. This does not<br>include zero calibrations.                 |
| Zero Failures                       | Number of times a pushbutton<br>zero command has failed. This<br>includes the "Zero" button in the<br>bottom left corner of the<br>webserver. This does not<br>include zero calibrations.         |
| Target Achieved                     | Number of times the weight value is greater than or equal to any of the comparator values in use                                                                                                  |
| Firmware Download<br>Success Counts | Number of times the webserver<br>has been used to successfully<br>download firmware to the<br>ACT100.                                                                                             |
| Firmware Download<br>Failure Counts | Number of times the webserver<br>has failed to successfully<br>download firmware to the<br>ACT100.                                                                                                |

| Statistics                        |       |  |
|-----------------------------------|-------|--|
| Calibration Changes               | 12    |  |
| Weighments                        | 0     |  |
| Start Threshold(Range:0-100)      | 90 %  |  |
| Reset Threshold(Range:0-100)      | 10 %  |  |
| Pushbutton Zero Commands          | 0     |  |
| Pushbutton Zero Failures          | 0     |  |
| Zero Drift Threshold(Range:0-100) | 5 %   |  |
| Zero Drift                        | 0     |  |
| Target Achieved                   | 0     |  |
| Firmware Download Success Counts  | 6     |  |
| Firmware Download Failure Counts  | 1     |  |
| Submit                            | Reset |  |

Figure 4-33 Statistics

# 4.2.8.4. Faults

| Scale Overload   | Number of times over<br>capacity blanking has<br>occurred. Weights<br>over capacity, but<br>below the over<br>capacity blanking<br>value will not<br>increment this fault. |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Scale Underload  | Number of times<br>under zero blanking<br>has occurred.<br>Weights under zero,<br>but above the under<br>zero blanking value<br>will not increment this<br>fault.          |
| Watchdog Failure | Number of times the<br>watchdog timer of the<br>ACT100 has failed.                                                                                                         |

| Faults           |       |  |
|------------------|-------|--|
|                  |       |  |
| Scale Overload   | 0     |  |
| Scale Underload  | 13    |  |
| Watchdog Failure | 0     |  |
|                  |       |  |
| Submit           | Reset |  |

Figure 4-34 Faults

# 4.2.8.5. Error Messages

Any current error messages for the ACT100 are displayed here. If there are no errors listed here, the ACT100 has no current errors. Once an error is corrected, the error message will automatically clear from this page. See Section 2.5.5 for details.

### 4.2.8.6. Firmware Downloads

Download new versions of the firmware to the ACT100 here. The latest firmware files can be found at <u>www.mt.com/ind-act100-downloads</u>. Click the "Choose File" button to navigate to the firmware file on your computer. Click the "Download" button to begin the download process, as shown in Figure 4-35 to Figure 4-37. The webserver will reload itself when the process is complete.



Select a File to Download ACT100 Firm ware Choose file ACT100\_1.0.1.mot Name: ACT100\_1.0.1.mot Size: 1.32MB Download

Figure 4-35 Choose File

**Firmware Downloads** 



#### Figure 4-36 Download in Process



#### Figure 4-37 Download Successful

# 4.2.9. Login

### 4.2.9.1. Login/Logout

If login protection is enabled, this is where the password to login is entered. If login protection is disabled, this page is blank.

### 4.2.9.2. Protection Setting

Enable or disable whether a login password is needed to change any settings via the webserver.

### 4.2.9.3. Change Password

If the login password needs to be changed, the old password must be entered on this screen along with the new password. The password must be a 6 digit number.

# **5 GEO Codes**

The GEO code feature provided in the ACT100 transmitter permits calibration readjustment due to changes in elevation or latitude without reapplying test weights. This adjustment assumes a previously accurate calibration was completed with the GEO code set properly for that original location, and that the GEO code for the new location can be accurately determined. The procedure for using this feature is as follows.

# 5.1. Original Site Calibration

- 1. Use the GEO code chart (Table 5-1) on the following pages to determine the GEO code for the current altitude and location at which the scale will be calibrated.
- 2. Enter that GEO value into the GEO code parameter in setup at Scale >Calibration.
- 3. Immediately after entering the GEO code, perform a zero and span adjustment using accurate test weights.
- 4. Exit the setup menu tree.
- 5. The scale can now be used in its new location.

# 5.2. New Site GEO Code Adjustment

When a terminal is to be reinstalled at a different geographic location, gravitational and altitude changes can be accounted for by following these steps. Note that this procedure is not necessary if an on-site recalibration is performed.

- Use the GEO code chart (Table 5-1) on the following pages to determine the GEO code for the new altitude and location at which the scale will be used.
- 2. Enter that GEO value into the GEO code parameter in Setup at Scale >Calibration.
- 3. Immediately after entering the GEO code, exit the setup menu tree. DO NOT perform a normal calibration.

The calibration has now been adjusted for the differences in gravity from the original site of calibration to the new site of use.

Using the GEO code value for calibration adjustment is not as accurate as re-applying certified test weights and re-calibrating the scale in a new location.

|                                                          | Height Above Sea Level, in Meters |      |      |      |      |      |      |      |      |       |       |
|----------------------------------------------------------|-----------------------------------|------|------|------|------|------|------|------|------|-------|-------|
| Latitude North<br>or South,<br>in Degrees and<br>Minutes | 0                                 | 325  | 650  | 975  | 1300 | 1625 | 1950 | 2275 | 2600 | 2925  | 3250  |
|                                                          | 325                               | 650  | 975  | 1300 | 1625 | 1950 | 2275 | 2600 | 2925 | 3250  | 3575  |
|                                                          | Height Above Sea Level, in Feet   |      |      |      |      |      |      |      |      |       |       |
|                                                          | 0                                 | 1060 | 2130 | 3200 | 4260 | 5330 | 6400 | 7460 | 8530 | 9600  | 10660 |
|                                                          | 1060                              | 2130 | 3200 | 4260 | 5330 | 6400 | 7460 | 8530 | 9600 | 10660 | 11730 |
| 0° 0'–5° 46'                                             | 5                                 | 4    | 4    | 3    | 3    | 2    | 2    | 1    | 1    | 0     | 0     |
| 5° 46'–9° 52'                                            | 5                                 | 5    | 4    | 4    | 3    | 3    | 2    | 2    | 1    | 1     | 0     |
| 9° 52'–12° 44'                                           | 6                                 | 5    | 5    | 4    | 4    | 3    | 3    | 2    | 2    | 1     | 1     |
| 12° 44'–15° 6'                                           | 6                                 | 6    | 5    | 5    | 4    | 4    | 3    | 3    | 2    | 2     | 1     |
| 15° 6'–17° 0'                                            | 7                                 | 6    | 6    | 5    | 5    | 4    | 4    | 3    | 3    | 2     | 2     |
| 17° 10'–19° 2'                                           | 7                                 | 7    | 6    | 6    | 5    | 5    | 4    | 4    | 3    | 3     | 2     |
| 19° 2'–20° 45'                                           | 8                                 | 7    | 7    | 6    | 6    | 5    | 5    | 4    | 4    | 3     | 3     |
| 20° 45'–22° 22'                                          | 8                                 | 8    | 7    | 7    | 6    | 6    | 5    | 5    | 4    | 4     | 3     |
| 22° 22'–23° 54'                                          | 9                                 | 8    | 8    | 7    | 7    | 6    | 6    | 5    | 5    | 4     | 4     |
| 23° 54'–25° 21'                                          | 9                                 | 9    | 8    | 8    | 7    | 7    | 6    | 6    | 5    | 5     | 4     |
| 25° 21'–26° 45'                                          | 10                                | 9    | 9    | 8    | 8    | 7    | 7    | 6    | 6    | 5     | 5     |
| 26° 45'–28° 6'                                           | 10                                | 10   | 9    | 9    | 8    | 8    | 7    | 7    | 6    | 6     | 5     |
| 28° 6'–29° 25'                                           | 11                                | 10   | 10   | 9    | 9    | 8    | 8    | 7    | 7    | 6     | 6     |
| 29° 25'–30° 41'                                          | 11                                | 11   | 10   | 10   | 9    | 9    | 8    | 8    | 7    | 7     | 6     |
| 30° 41'–31° 56'                                          | 12                                | 11   | 11   | 10   | 10   | 9    | 9    | 8    | 8    | 7     | 7     |
| 31° 56'–33° 9'                                           | 12                                | 12   | 11   | 11   | 10   | 10   | 9    | 9    | 8    | 8     | 7     |
| 33° 9'–34° 21'                                           | 13                                | 12   | 12   | 11   | 11   | 10   | 10   | 9    | 9    | 8     | 8     |
| 34° 21'–35° 31'                                          | 13                                | 13   | 12   | 12   | 11   | 11   | 10   | 10   | 9    | 9     | 8     |
| 35° 31'–36° 41'                                          | 14                                | 13   | 13   | 12   | 12   | 11   | 11   | 10   | 10   | 9     | 9     |
| 36° 41'–37° 50'                                          | 14                                | 14   | 13   | 13   | 12   | 12   | 11   | 11   | 10   | 10    | 9     |
| 37° 50'–38° 58'                                          | 15                                | 14   | 14   | 13   | 13   | 12   | 12   | 11   | 11   | 10    | 10    |
| 38° 58'–40° 5'                                           | 15                                | 15   | 14   | 14   | 13   | 13   | 12   | 12   | 11   | 11    | 10    |
| 40° 5'–41° 12'                                           | 16                                | 15   | 15   | 14   | 14   | 13   | 13   | 12   | 12   | 11    | 11    |
| 41° 12'–42° 19'                                          | 16                                | 16   | 15   | 15   | 14   | 14   | 13   | 13   | 12   | 12    | 11    |
| 42° 19'–43° 26'                                          | 17                                | 16   | 16   | 15   | 15   | 14   | 14   | 13   | 13   | 12    | 12    |
| 43° 26'–44° 32'                                          | 17                                | 17   | 16   | 16   | 15   | 15   | 14   | 14   | 13   | 13    | 12    |
| 44° 32'–45° 38'                                          | 18                                | 17   | 17   | 16   | 16   | 15   | 15   | 14   | 14   | 13    | 13    |
| 45° 38'–46° 45'                                          | 18                                | 18   | 17   | 17   | 16   | 16   | 15   | 15   | 14   | 14    | 13    |
| 46° 45'–47° 51'                                          | 19                                | 18   | 18   | 17   | 17   | 16   | 16   | 15   | 15   | 14    | 14    |
|                                                          | Height Above Sea Level, in Meters |      |      |      |      |      |      |      |      |       |       |  |
|----------------------------------------------------------|-----------------------------------|------|------|------|------|------|------|------|------|-------|-------|--|
| Latitude North<br>or South,<br>in Degrees and<br>Minutes | 0                                 | 325  | 650  | 975  | 1300 | 1625 | 1950 | 2275 | 2600 | 2925  | 3250  |  |
|                                                          | 325                               | 650  | 975  | 1300 | 1625 | 1950 | 2275 | 2600 | 2925 | 3250  | 3575  |  |
|                                                          | Height Above Sea Level, in Feet   |      |      |      |      |      |      |      |      |       |       |  |
|                                                          | 0                                 | 1060 | 2130 | 3200 | 4260 | 5330 | 6400 | 7460 | 8530 | 9600  | 10660 |  |
|                                                          | 1060                              | 2130 | 3200 | 4260 | 5330 | 6400 | 7460 | 8530 | 9600 | 10660 | 11730 |  |
| 47° 51'–48° 58'                                          | 19                                | 19   | 18   | 18   | 17   | 17   | 16   | 16   | 15   | 15    | 14    |  |
| 48° 58'–50° 6'                                           | 20                                | 19   | 19   | 18   | 18   | 17   | 17   | 16   | 16   | 15    | 15    |  |
| 50° 6'–51° 13'                                           | 20                                | 20   | 19   | 19   | 18   | 18   | 17   | 17   | 16   | 16    | 15    |  |
| 51° 13'–52° 22'                                          | 21                                | 20   | 20   | 19   | 19   | 18   | 18   | 17   | 17   | 16    | 16    |  |
| 52° 22'–53° 31'                                          | 21                                | 21   | 20   | 20   | 19   | 19   | 18   | 18   | 17   | 17    | 16    |  |
| 53° 31'–54° 41'                                          | 22                                | 21   | 21   | 20   | 20   | 19   | 19   | 18   | 18   | 17    | 17    |  |
| 54° 41'–55° 52'                                          | 22                                | 22   | 21   | 21   | 20   | 20   | 19   | 19   | 18   | 18    | 17    |  |
| 55° 52'–57° 4'                                           | 23                                | 22   | 22   | 21   | 21   | 20   | 20   | 19   | 19   | 18    | 18    |  |
| 57° 4'–58° 17'                                           | 23                                | 23   | 22   | 22   | 21   | 21   | 20   | 20   | 19   | 19    | 18    |  |
| 58° 17'–59° 32'                                          | 24                                | 23   | 23   | 22   | 2\2  | 21   | 21   | 20   | 20   | 19    | 19    |  |
| 59° 32'–60° 49'                                          | 24                                | 24   | 23   | 23   | 22   | 22   | 21   | 21   | 20   | 20    | 19    |  |
| 60° 49'–62° 9'                                           | 25                                | 24   | 24   | 23   | 23   | 22   | 22   | 21   | 21   | 20    | 20    |  |
| 62° 9'–63° 30'                                           | 25                                | 25   | 24   | 24   | 23   | 23   | 22   | 22   | 21   | 21    | 20    |  |
| 63° 30'–64° 55'                                          | 26                                | 25   | 25   | 24   | 24   | 23   | 23   | 22   | 22   | 21    | 21    |  |
| 64° 55'–66° 24'                                          | 26                                | 26   | 25   | 25   | 24   | 24   | 23   | 23   | 22   | 22    | 21    |  |
| 66° 24'–67° 57'                                          | 27                                | 26   | 26   | 25   | 25   | 24   | 24   | 23   | 23   | 22    | 22    |  |
| 67° 57'–69° 35'                                          | 27                                | 27   | 26   | 26   | 25   | 25   | 24   | 24   | 23   | 23    | 22    |  |
| 69° 5'–71° 21'                                           | 28                                | 27   | 27   | 26   | 26   | 25   | 25   | 24   | 24   | 23    | 23    |  |
| 71° 21'–73° 16'                                          | 28                                | 28   | 27   | 27   | 26   | 26   | 25   | 25   | 24   | 24    | 23    |  |
| 73° 16'–75° 24'                                          | 29                                | 28   | 28   | 27   | 27   | 26   | 26   | 25   | 25   | 24    | 24    |  |
| 75° 24'–77° 52'                                          | 29                                | 29   | 28   | 28   | 27   | 27   | 26   | 26   | 25   | 25    | 24    |  |
| 77° 52'–80° 56'                                          | 30                                | 29   | 29   | 28   | 28   | 27   | 27   | 26   | 26   | 25    | 25    |  |
| 80° 56'–85° 45'                                          | 30                                | 30   | 29   | 29   | 28   | 28   | 27   | 27   | 26   | 26    | 25    |  |
| 85° 45'–90° 00'                                          | 31                                | 30   | 30   | 29   | 29   | 28   | 28   | 27   | 27   | 26    | 26    |  |

Table 5-1: GEO Adjustment Values

# **6** Appendix A - SetPoint

#### 6.1. Introduction

SetPoint is a simple application that allows for the inputs and outputs of the ACT100 to react to reaching pre-set weights determined by Target Weight, Pre-act and Fine Feed in the below equations.

CP1 = Target Weight - Pre-act - Fine Feed

CP2 = Target Weight - Pre-act

Fine Feed could be zero. In this case, SetPoint works in single speed mode. The Fast Output is disabled, only Fine Output works.

The Source is used to determine which value, Displayed Weight or Gross Weight, is compared to CP1 and CP2. The comparison result and Latch option determine the status of Fast Output and Fine Output. The Mode parameter determines how Fast Output and Fine Output work.

| Mode          | Options are either Concurrent or<br>Independent                                                                                                                                     |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Source        | Select whether the Gross<br>Weight or Displayed Weight will<br>be used as the source value to<br>be compared to the target<br>weight                                                |
| Latch         | Set to be either enabled or<br>disabled. If enabled, SetPoint<br>output is latched once the weight<br>reaches CP2. The latch is<br>cleared by starting the SetPoint<br>application. |
| Target Weight | Set the target weight.                                                                                                                                                              |
| Pre-act       | Weight of material expected to<br>be added after the Fine Feed<br>output goes FALSE.                                                                                                |
| Fine Feed     | This parameter is used together<br>with Target Weight and Pre-act<br>to define the CP1.                                                                                             |

#### 6.2. Concurrent Mode

When Source is set to Gross Weight, two Outputs of Discrete IO are set respectively as Fast Output and Fine Output and gross weight is below CP1, both Fast and Fine Outputs are TRUE. The controlled valves in the user's equipment are open so the material filling speed is the fastest. Then when gross weight increases to hit CP1, Fast Output switches to FALSE and Fine Output remains TRUE until CP2 is reached. Both Fast and Fine Outputs are FALSE at this point and the corresponding valves are closed. The material filling is stopped. The whole process is shown in Figure 6-1.



Figure 6-1 Concurrent Mode

#### 6.3. Independent Mode

In this mode the Fast Output and Fine Output will be TRUE sequentially. Figure 6-2 shows the difference to Concurrent Mode.



Figure 6-2 Independent Mode

#### 6.4. Latch

When Latch is Enabled and weight is above CP2, the DIO Outputs are FALSE regardless of additional weight changes, e.g. weight somehow decreases to be less than CP2 or even CP1. In this case, the False status remains until a Start/Resume Setpoint signal is triggered via a Discrete IO input.

The Abort SetPoint application input signal can be used to pause the SetPoint process. In this case, the Fast and Fine Outputs will change to FALSE regardless of the comparison result between weight and CP1/CP2. A Start/Resume SetPoint signal is required to resume the process.



Figure 6-3 Latch Enabled with Start/Resume Input

When Latch is Disabled, neither Start/Resume Setpoint nor Abort SetPoint application signal will work. The Fast and Fine Outputs are only determined by the comparison result between weight and CP1/CP2. This is completely an automatic mode.

## Figure Table:

| Figure 1-1: ACT100 Packing Materials                            | 8  |
|-----------------------------------------------------------------|----|
| Figure 1-2: ACT100 Dimensions                                   | 9  |
| Figure 2-1: ACT100 Front Panel Layout                           | 10 |
| Figure 2-2 Display in Weighing Mode                             | 11 |
| Figure 2-3: Numerical Data Entry Example                        | 13 |
| Figure 2-4: Information Recall Menu                             | 14 |
| Figure 2-5: x10 Indication                                      | 14 |
| Figure 2-6: Calibration Menu – Overview                         | 17 |
| Figure 2-7: Zero Calibration                                    | 18 |
| Figure 2-8: Zero Calibration with Motion                        | 19 |
| Figure 2-9: Span Calibration                                    | 20 |
| Figure 2-10: Step Adjustment                                    | 21 |
| Figure 2-11: CalFree                                            | 23 |
| Figure 2-12: Password Entry Screen                              | 24 |
| Figure 2-13: DIP Switches                                       | 24 |
| Figure 2-14: Master Reset Confirmation                          | 25 |
| Figure 2-15: ENTER button Zero Failure Message                  | 25 |
| Figure 2-16: Analog Output Example                              | 28 |
| Figure 3-1: DIN-Mount Latch                                     |    |
| Figure 3-2: Latch Closure                                       |    |
| Figure 3-3: ACT100                                              | 33 |
| Figure 3-4: ACT100. Top View (DIO model shown)                  | 34 |
| Figure 3-5: A Rising-edge Trigger Signal on Input               |    |
| Figure 3-6: A Falling-edge Trigger Signal on Input              | 35 |
| Figure 3-7: Sinking Input. Sourcing Output                      |    |
| Figure 3-8: Sinking Input, Sinking Output                       |    |
| Figure 3-9: Sourcing Input, Sourcing Output                     | 37 |
| Figure 3-10: Sourcing Input, Sinking Output                     | 37 |
| Figure 3-11: Analog Output Connection                           | 38 |
| Figure 3-12: Ferrite Installed on Analog Load Cell Cable        |    |
| Figure 3-13: ACT100 Based Weighing System                       | 39 |
| Figure 4-1 Webserver Splash Screen                              | 41 |
| Figure 4-2 Local Area Connection Setting                        | 42 |
| Figure 4-3 IF setting                                           | 42 |
| Figure 4-4 Device Information                                   | 43 |
| Figure 4-5 ACT100 Basic Settings                                | 44 |
| Figure 4-6 Analog Output Settings                               | 45 |
| Figure 4-7 Analog Output Adjustment                             | 45 |
| Figure 4-8 Example of Zero Value Adjustment                     | 46 |
| Figure 4-9 Calibration Setting                                  | 47 |
| Figure 4-10 Press "Start" to Initiate the scale Zero Adjustment | 47 |
| Figure 4-11 A successful Zero Adjustment                        | 48 |
| Figure 4-12 A Dynamic Zero Adjustment                           | 48 |
| Figure 4-13 Enter Test Load Value                               | 48 |
| Figure 4-14 A Successful Span Adjustment                        | 49 |
| Figure 4-15 A Dynamic Span Adjustment                           |    |
| Figure 4-16 Input Test Load Value                               | 50 |
| Figure 4-17 Get the Current Weight                              | 50 |
| Figure 4-18 Remove the Test Load                                | 50 |
|                                                                 |    |

| Figure 4-19 Add Replacement Material             | 51 |
|--------------------------------------------------|----|
| Figure 4-20 CalFree Settings                     | 52 |
| Figure 4-21 Capacity & Increment Settings        | 53 |
| Figure 4-22 Zero Settings                        | 54 |
| Figure 4-23 Stability Settings                   |    |
| Figure 4-24 Filter Settings                      |    |
| Figure 4-25 Type Settings                        | 57 |
| Figure 4-26 Comparator Settings                  |    |
| Figure 4-27 SetPoint Settings.                   | 58 |
| Figure 4-28 Discrete Inputs Settings             | 59 |
| Figure 4-29 Discrete Outputs Settings            | 59 |
| Figure 4-30 Service Ethernet Settings            | 60 |
| Figure 4-31 Load Cell Output                     | 60 |
| Figure 4-32 Calibration Values                   | 60 |
| Figure 4-33 Statistics                           | 62 |
| Figure 4-34 Faults                               | 63 |
| Figure 4-35 Choose File                          | 63 |
| Figure 4-36 Download in Process                  | 64 |
| Figure 4-37 Download Successful                  | 64 |
| Figure 6-1 Concurrent Mode                       | 69 |
| Figure 6-2 Independent Mode                      | 70 |
| Figure 6-3 Latch Enabled with Start/Resume Input | 71 |

### **METTLER TOLEDO Service**

To protect your METTLER TOLEDO product's future:

Congratulations on choosing the quality and precision of METTLER TOLEDO. Proper use according to these instructions and regular calibration and maintenance by our factory-trained service team ensure dependable and accurate operation, protecting your Contact about investment. us а METTLER TOLEDO service agreement tailored to your needs and budget.

We invite you to register your product at <u>www.mt.com/productregistration</u> so we can contact you about enhancements, updates and important notifications concerning your product.

www.mt.com/ACT100

For more information

Mettler-Toledo Im Langacher 44 8606 Greifensee Switzerland Phone +41449442011 30529357 Rev. 03, 06/2021



