IND780 Weighing Terminal

METTLER TOLEDO Service

Essential Services for Dependable Performance of Your IND780 Weighing Terminal

Congratulations on choosing the quality and precision of METTLER TOLEDO. Proper use of your new equipment according to this Manual and regular calibration and maintenance by our factory-trained service team ensures dependable and accurate operation, protecting your investment. Contact us about a service agreement tailored to your needs and budget. Further information is available at www.mt.com/service.

There are several important ways to ensure you maximize the performance of your investment:

1. **Register your product**: We invite you to register your product at www.mt.com/productregistration so we can contact you about enhancements, updates and important notifications concerning your product.

2. **Contact METTLER TOLEDO for service**: The value of a measurement is proportional to its accuracy – an out of specification scale can diminish quality, reduce profits and increase liability. Timely service from METTLER TOLEDO will ensure accuracy and optimize uptime and equipment life.
 a. **Installation, Configuration, Integration and Training**: Our service representatives are factory-trained, weighing equipment experts. We make certain that your weighing equipment is ready for production in a cost effective and timely fashion and that personnel are trained for success.
 b. **Initial Calibration Documentation**: The installation environment and application requirements are unique for every industrial scale so performance must be tested and certified. Our calibration services and certificates document accuracy to ensure production quality and provide a quality system record of performance.
 c. **Periodic Calibration Maintenance**: A Calibration Service Agreement provides on-going confidence in your weighing process and documentation of compliance with requirements. We offer a variety of service plans that are scheduled to meet your needs and designed to fit your budget.
Contents
1 Introduction and Overview ... 1-1
1.1 IND780 Shared Data Design .. 1-1
1.1.1 Shared Data Access .. 1-1
1.1.2 Shared Data Design Concepts ... 1-1
1.2 Shared Data Name Structure .. 1-2
1.3 Shared Data Storage Types .. 1-3
1.3.1 Dynamic Shared Data ... 1-3
1.3.2 Protected Process Shared Data .. 1-3
1.3.3 Protected Setup Shared Data ... 1-3
1.3.4 Protected Scale Calibration Shared Data 1-4
1.4 Shared Data Callbacks .. 1-4
1.5 Data Format Types .. 1-5
1.5.1 Interpreting Attributes Tables .. 1-5
1.6 Change History Log ... 1-6
1.7 Shared Data Access Control ... 1-6
1.8 Validating Setup Data ... 1-7
1.9 Shared Data Server Commands ... 1-7
1.9.1 user ... 1-8
1.9.2 pass ... 1-8
1.9.3 help ... 1-8
1.9.4 quit .. 1-8
1.9.5 UNICODE .. 1-8
1.9.6 read .. 1-9
1.9.7 write .. 1-9
1.9.8 system ... 1-9
1.9.9 systat .. 1-10
1.9.10 noop .. 1-10
1.9.11 callback ... 1-10
1.9.12 xcallback .. 1-11
1.9.13 group ... 1-11
1.9.14 rgroup ... 1-11
1.9.15 xgroup ... 1-12
1.9.16 contout ... 1-12
1.9.17 xcontout ... 1-12
1.9.18 printout .. 1-12
1.9.19 xprintout .. 1-13
1.9.20 ctimer ... 1-13
1.9.21 csave ... 1-13
1.9.22 cload ... 1-13
1.10 Interactive Remote Standard Database Access 1-14
1.10.1 CREATETABLES .. 1-14
1.10.2. OPENTABLES ... 1-15
1.10.3. CLOSETABLES ... 1-15
1.10.4. SETROW ... 1-15
1.10.5. SELECTROW .. 1-16
1.10.6. NEXTROW ... 1-17
1.10.7. SETITEM ... 1-17
1.10.8. DELROW ... 1-18
1.10.9. DELTABLE ... 1-18
1.10.10. BEGINTRANS .. 1-18
1.10.11. ENDTRANS .. 1-19
1.10.12. TRANSTIME .. 1-19
1.10.13. SELECTSET ... 1-19
1.10.14. SQLTABLE .. 1-20
1.11. Concurrent Access to Standard Databases ... 1-20
1.11.1. CREATETABLES .. 1-20
1.11.2. OPENTABLES .. 1-20
1.11.3. CLOSETABLES ... 1-20
1.11.4. SETROW .. 1-21
1.11.5. SELECTROW, SELECTID, and NEXTRow 1-21
1.11.6. SETITEM and SETID .. 1-21
1.11.7. DELROW and DELID .. 1-21
1.11.8. BEGINTRANS .. 1-21
1.11.9. ENDTRANS ... 1-21
1.11.10. TRANSTIME ... 1-21

2 Scale Data ... 2-1
2.1. Scale Functionality ... 2-1
2.1.1. Dynamic Scale Weight (WT) 2-1
2.1.2. Scale Process Data (WS) .. 2-3
2.1.3. Scale Commands (WC) ... 2-5
2.1.4. Scale Statuses (WX) .. 2-7
2.1.5. Working Scale Setup Data (WK) 2-10
2.1.6. Scale Setup (CS) ... 2-12
2.1.7. Scale Tare Setup (CT) .. 2-18
2.1.8. Scale Zero Setup (ZR) ... 2-20
2.1.9. Scale Totalization Process Data (TZ) 2-22
2.1.10. Totalization Setup (TS) ... 2-23
2.1.11. System Process Data (XT) .. 2-24
2.2. Calibration and Monitoring .. 2-25
2.2.1. Calibration Parameters (QP) 2-25
2.2.2. Cell Calibration (CC) ... 2-26
2.2.3. Scale Calibration (CE) ... 2-27
2.2.4. Cell Shift Adjust (CX) ... 2-33
2.2.5. POWERCELL Network Dynamic Data (PW) 2-34
2.2.6. POWERCELL Monitoring Process Data (PC) 2-35
2.2.7. Scale Monitoring & Service Data (WM) 2-35
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.8.</td>
<td>Scale Monitoring Setup (CM)</td>
<td>2-38</td>
</tr>
<tr>
<td>2.2.9.</td>
<td>PDX Cell Dynamic Shared Data (PY)</td>
<td>2-41</td>
</tr>
<tr>
<td>2.2.10.</td>
<td>PDX Cell Setup Table (PX)</td>
<td>2-42</td>
</tr>
<tr>
<td>2.2.11.</td>
<td>PDX Scale 1 Cell Calibration Table (P1)</td>
<td>2-43</td>
</tr>
<tr>
<td>2.2.12.</td>
<td>PDX Scale 2 Cell Calibration Table (P2)</td>
<td>2-44</td>
</tr>
<tr>
<td>2.2.13.</td>
<td>PDX Scale 3 Cell Calibration Table (P3)</td>
<td>2-44</td>
</tr>
<tr>
<td>2.2.14.</td>
<td>PDX Scale 4 Cell Calibration Table (P4)</td>
<td>2-44</td>
</tr>
<tr>
<td>2.2.15.</td>
<td>PDX Cell Diagnostic Monitoring Table (MX)</td>
<td>2-45</td>
</tr>
<tr>
<td>2.2.16.</td>
<td>PDX Cell Identification Information (DX)</td>
<td>2-46</td>
</tr>
<tr>
<td>2.2.17.</td>
<td>PDX Cell Monitoring Process Data (PM)</td>
<td>2-46</td>
</tr>
<tr>
<td>2.2.18.</td>
<td>PDX Cell Layout Mapping</td>
<td>2-47</td>
</tr>
<tr>
<td>3.1.1.</td>
<td>Dynamic Flow Meter Weight (FW)</td>
<td>3-1</td>
</tr>
<tr>
<td>3.1.2.</td>
<td>Flow Meter Commands (FX)</td>
<td>3-3</td>
</tr>
<tr>
<td>3.1.3.</td>
<td>Flow Meter Setup (FS)</td>
<td>3-4</td>
</tr>
<tr>
<td>3.1.4.</td>
<td>Flow Meter Process Data (FP)</td>
<td>3-6</td>
</tr>
<tr>
<td>4.1.1.</td>
<td>Application Dynamic Commands and Events (AC)</td>
<td>4-1</td>
</tr>
<tr>
<td>4.1.2.</td>
<td>Application Dynamic Statuses (AS)</td>
<td>4-1</td>
</tr>
<tr>
<td>4.1.3.</td>
<td>Application Dynamic Integer Fields (AI)</td>
<td>4-2</td>
</tr>
<tr>
<td>4.1.4.</td>
<td>Application Dynamic Floating Point Fields (AJ)</td>
<td>4-2</td>
</tr>
<tr>
<td>4.1.5.</td>
<td>Application Dynamic Unicode String Fields (AK)</td>
<td>4-3</td>
</tr>
<tr>
<td>4.1.6.</td>
<td>Application Dynamic Character Arrays (AL)</td>
<td>4-3</td>
</tr>
<tr>
<td>4.1.7.</td>
<td>Application Floating Point Process Data (AF)</td>
<td>4-4</td>
</tr>
<tr>
<td>4.1.8.</td>
<td>Application Integer Process Data (AP)</td>
<td>4-4</td>
</tr>
<tr>
<td>4.1.9.</td>
<td>Application Unicode String Process Data (AR)</td>
<td>4-4</td>
</tr>
<tr>
<td>4.1.10.</td>
<td>Application Installation Information (AQ)</td>
<td>4-5</td>
</tr>
<tr>
<td>4.1.11.</td>
<td>Application Message Table (AW)</td>
<td>4-6</td>
</tr>
<tr>
<td>4.1.12.</td>
<td>Application Integer Setup (AX)</td>
<td>4-6</td>
</tr>
<tr>
<td>4.1.13.</td>
<td>Application Floating Point Setup (AY)</td>
<td>4-6</td>
</tr>
<tr>
<td>4.1.14.</td>
<td>Application Unicode String Field Setup (AZ)</td>
<td>4-7</td>
</tr>
<tr>
<td>4.1.15.</td>
<td>TaskExpert Application Start and Stop Triggers (AT)</td>
<td>4-7</td>
</tr>
<tr>
<td>4.1.16.</td>
<td>TaskExpert Data Entry Unicode String Fields (TX)</td>
<td>4-8</td>
</tr>
<tr>
<td>5.1.1.</td>
<td>Complex Target Data</td>
<td>5-1</td>
</tr>
<tr>
<td>5.1.2.</td>
<td>Full Target Commands (SC)</td>
<td>5-1</td>
</tr>
<tr>
<td>5.1.3.</td>
<td>Full Target Statuses (ST)</td>
<td>5-2</td>
</tr>
<tr>
<td>5.1.4.</td>
<td>Full Target Process Data (SP)</td>
<td>5-3</td>
</tr>
<tr>
<td>5.2.1.</td>
<td>Simple Target Data</td>
<td>5-11</td>
</tr>
<tr>
<td>5.2.2.</td>
<td>Simple Target Commands (SK)</td>
<td>5-11</td>
</tr>
<tr>
<td>5.2.3.</td>
<td>Simple Target Statuses (SS)</td>
<td>5-12</td>
</tr>
<tr>
<td>5.2.4.</td>
<td>Simple Target Process Data (SD)</td>
<td>5-12</td>
</tr>
<tr>
<td>5.2.4.</td>
<td>Auto-Jog Target Process Data (SJ)</td>
<td>5-15</td>
</tr>
</tbody>
</table>
Contents

6 **Discrete I/O Data** ... 6-1
6.1.1. Discrete Input/Output Status (DI) 6-1
6.1.2. Discrete Input Edges (DE) .. 6-2
6.1.3. Remote Discrete Input Edges (RE) 6-2
6.1.4. Remote Discrete Input/Output Status (RI) 6-3
6.1.5. Internal Ladder Logic Program Setup (LL) 6-4

7 **Database and Table Data** .. 7-1
7.1. General Information .. 7-1
7.2. Table Column Definition .. 7-1
7.3. Table Shared Data Blocks .. 7-1
7.3.1. Database Table Description (DD) 7-1
7.3.2. Database Table Setup (DS) .. 7-5
7.3.3. Temporary Database Table Description (TD) 7-7

8 **Communication and PLC Data** 8-1
8.1. Web and Network Data ... 8-1
8.1.1. Dynamic System Console Data (XW) 8-1
8.1.2. Web Page Process Data (HT) .. 8-2
8.1.3. Network Node Status (NS) ... 8-2
8.1.4. Cluster IP Addresses (NC) .. 8-3
8.1.5. Network Print Client Setup (NP) 8-4
8.1.6. Data Connections Setup (DC) 8-5
8.1.7. Email Alert Setup (NA) ... 8-8
8.1.8. FTP Server Setup (NF) ... 8-9
8.1.9. Network Print Client Setup (NK) 8-10
8.1.10. TCP/IP/Ethernet Network Setup (NT) 8-11
8.1.11. Serial Port Setup (RP) .. 8-11
8.2. Print and Templates Data .. 8-12
8.2.1. Demand Print Setup (DP) ... 8-12
8.2.2. Custom Print Commands & Statuses (CP) 8-14
8.2.3. Print Templates Setup (PT) .. 8-14
8.2.4. Report Print Templates Setup (RT) 8-15
8.3. PLC Data ... 8-16
8.3.1. PLC Setup (PL) .. 8-16
8.3.2. Dynamic PLC IO Data (PD) ... 8-19
8.3.3. PLC Network Data (PN) ... 8-21
8.3.4. PLC Bridge Process Data (PB) 8-21
8.3.5. Cyclic Output-to-PLC Assembly Template Setup (PO) ... 8-22
8.3.6. Cyclic Input-From-PLC Assembly Template Setup (PI) ... 8-23
8.3.7. Analog Output Setup (AO) .. 8-24
8.4. Barcode Data ... 8-26
8.4.1. Barcode Input Message (MB) 8-26
8.4.2. Barcode Input Templates Setup (BT) 8-26
9 Other Data .. 9-1

9.1 Display and Keyboard Data .. 9-1
 9.1.1 Power-Up Weight Display (XA) ... 9-1
 9.1.2 Dynamic Weight Display Commands (XB) .. 9-2
 9.1.3 Dynamic Display Positions (XY) ... 9-4
 9.1.4 Static Home SoftKey Page (KH) .. 9-5
 9.1.5 Dynamic SoftKey Page Stack (KP) .. 9-6

9.2 System Status and Setup Data .. 9-8
 9.2.1 System State (XD) ... 9-8
 9.2.2 System Logs Setup Data (XR) ... 9-13
 9.2.3 System Log Process Data (XM) .. 9-15
 9.2.4 Transaction Number Setup (XN) .. 9-16
 9.2.5 System Setup (XS) .. 9-17
 9.2.6 System Commands (XK) .. 9-20
 9.2.7 System Monitoring & Service Data (XP) ... 9-23
 9.2.8 Setup Sequencing Control (QC) ... 9-25
 9.2.9 Board Identifications (BD) .. 9-32
 9.2.10 Option Board ID & Calibration EEPROM (BC) ... 9-33
 9.2.11 System Feature Triggers & Controls (XC) .. 9-34

9.3 ID Sequence Data .. 9-36
 9.3.1 Prompt Setup (PR) .. 9-36
 9.3.2 Prompt Response (PA) .. 9-38

9.4 Users and Security Data .. 9-38
 9.4.1 Logged-In Users (XL) ... 9-38
 9.4.2 Access Security Setup (XU) ... 9-38
 9.4.3 Application Virtual Console Messages (AM) ... 9-39
 9.4.4 Keyboard Routing Commands (KC) ... 9-40

A Revision History .. A-1

A.1 Software and Document Revisions ... A-1
1 Introduction and Overview

This chapter covers
• Shared Data Design
• Shared Data Name Structure
• Shared Data Callbacks
• Data Format Types
• Change History Log
• Shared Data Access Control
• Validating Setup Data
• Shared Data Server Commands
• Interactive Remote Standard Database Access
• Concurrent Access to Shared Databases

The Shared Data (SD) Object is the central repository for all “system” data in the IN780. It is also the primary interface for sending commands and exchanging data between local or remote Applications and the IN780.

1.1. IN780 Shared Data Design

The Shared Data concept is a very powerful and flexible tool that provides mechanisms both for storing system data and for providing interfaces among Local Applications, Remote Applications, and the Resident Scale Task.

1.1.1. Shared Data Access

All setup parameters, triggers and statuses in the IN780 are stored and routed through Shared Data. This system of memory mapping permits remote clients to send commands and receive data from the terminal. In order to access the shared data variables in the IN780, a remote client must login to the Shared Data Server. Access is provided through the Ethernet port.

The shared data server is available via port 1701. For applications that have no access to port 1701, a second port can be enabled. To enable the second port, enter the desired port number in setup at Communication > Network > Port. Regardless of the method used, the same access is provided and the login procedure is very similar.

1.1.2. Shared Data Design Concepts

The following are some important Shared Data design concepts:
• Shared Data provides Local and Remote Applications very fast access to the permanently stored data. Shared Data access time is less than 350 microseconds.
• Local and Remote Applications access a Shared Data field using a six-character UNICODE name. Names provide consistency to Applications in accessing Shared Data fields in successive versions of Shared Data. The names for existing fields will remain the same even
when new fields are added or when new physical storage locations are assigned to existing data.

- Shared Data supports “callbacks” that alert a task when a Shared Data field is updated or changes. An application can “Register a Callback Routine” for a particular Shared Data field. Then, when a task writes a new value to a Shared Data field that has a registered callback, Shared Data calls the registered callback routine.

- Shared Data supports both “native” and “string representation” access to data fields. However, Shared Data always stores the data fields in their native format. When an Application accesses a Shared Data field in its native data format, such as binary floating point or integer number representations, Shared Data simply copies the data between its storage and the application interface. When Applications access the Shared Data using a string data format, Shared Data automatically makes the data conversion between the native and the string data format.

- Shared Data provides access to an entire Shared Data block with a single read or write command. Applications can access the block of data in either native format or string format. When the application accesses the data in native format, Shared Data returns a “C-style structure” that matches the native format of the data. When the application accesses the data in string format, Shared Data converts each individual field to its string format, separating fields with a caret (‘^’).

- Shared Data provides access to a list of Shared Data fields. Applications can read a list of fields in either native format or string format. If the application accesses the data in native format, Shared Data returns a “C structure” that matches the native format of the data. If the application accesses the data in string format, Shared Data converts each individual field to its string format, separating each field with a caret (‘^’).

- Shared Data provides a checksum on each protected Shared Data field. It verifies the checksum on power-up and on each read access. It recalculates and stores the new checksum on each write access. When Shared Data detects a checksum failure, it reports a system failure.

1.2. Shared Data Name Structure

Each Shared Data name contains three pieces of information -- the shared data class (group), instance and attribute (item). For example, sp0106 is constructed as follows:

- `sp` = Class = Full Target Process Data
- `01` = Instance = Scale #1
- `06` = Attribute = Target Latching Type

In the following sections, multiple Instances are indicated with dashes (--) in place of the Instance number – e.g. sp--06.
1.3. **Shared Data Storage Types**

There are four types of IND780 Shared Data. The letters below are used throughout this document to identify the type of each variable:

- **D** Dynamic (Dynamic RAM) Shared Data
- **PP** Protected Process (BRAM) Shared Data
- **PS** Protected Setup (FLASH) Shared Data
- **PC** Protected Scale Calibration (EEPROM) Shared Data

1.3.1. Dynamic Shared Data

Dynamic Shared Data is process data that is created dynamically within the IND780. The terminal writes and reads these fields very frequently. The IND780 does not save this Shared Data across a power-failure, but re-initializes it to zero at power-up. The best example of Dynamic Shared Data is the Dynamic Scale Weight data (WT).

1.3.2. Protected Process Shared Data

Protected Process Shared Data is persistent data that may be written and read many times. However, in case of a power-failure the IND780 must save the data so the process can continue after power-up. The terminal writes this Shared Data to battery-backed RAM (BRAM) to save it across a power failure.

An example of Protected Process Shared Data is the state of a Material Transfer process, where you cannot afford to throw out an incomplete batch of material after a power-failure. The IND780 must save its state so the Material Transfer can continue after a power-up.

Writing BRAM Shared Data During Power-Down

A critical event occurs when the IND780 attempts to write to BRAM Shared Data just as the power goes down. The IND780 writes part of a Shared Data field successfully, and then power drops below a valid-power threshold before the IND780 can complete the write, causing a corrupted BRAM. Since writes to BRAM can occur frequently in a process control environment, it is probable that this will happen at some point when the terminal is running.

To protect against this potential problem, the IND780 does a two-stage write procedure whenever it writes to BRAM:

- The terminal first writes a write-in-progress flag, the new Shared Data field, its SD field index, and its checksum to a temporary location in BRAM. When this write is successfully completed, the IND780 then writes the SD field and its checksum to its actual location in BRAM. When this write is successfully completed, the terminal clears the write-in-progress flag.
- At power-up, the IND780 checks the write-in-progress flag. If it is set, the IND780 writes the original SD field from the temporary field and clears the write-in-progress field.

1.3.3. Protected Setup Shared Data

Protected Setup Shared Data is the persistent data that stores the unique configuration of the IND780. The IND780 Setup Procedure typically writes this data once during the Setup procedure and then never writes it again. Other processes may read it many times. The IND780 writes this Shared Data to Flash Memory to save it permanently across a power-failure.

Writing Flash Shared Data During Power-Down

A critical window occurs when the IND780 attempts to write to Flash Shared Data just as the power goes down, causing corrupted Flash Shared Data. The IND780 writes part of a Shared Data field...
Introduction and Overview

Introduction and Overview

1.3.4. Protected Scale Calibration Shared Data

Protected Scale Calibration Data is the persistent scale calibration data. The IND780 writes this Shared Data to the EEPROM on the Scale boards to protect it across a power-failure. On power-up, it reads an image of the EEPROM into the Protected Process BRAM Shared Data. The IND780 only writes the EEPROM after a successful scale calibration.

Writing EEPROM Shared Data During Power-Down

A critical event occurs when the IND780 attempts to write to EEPROM Shared Data just as the power goes down. The IND780 writes part of the EEPROM successfully, and then power drops below a valid-power threshold before the IND780 can complete the write, causing a corrupted EEPROM.

To protect against this potential problem, the IND780 does a two-stage write procedure whenever it writes to EEPROM:

- The IND780 first writes a write-in-progress flag and the new EEPROM data into a temporary location in BRAM. When this write is successfully completed, the IND780 then writes the data and its checksum to the EEPROM. When this second write is successfully completed, the IND780 clears the write-in-progress flag.
- At power-up, the IND780 checks the write-in-progress flag. If it is set, the IND780 writes the EEPROM from the temporary field and clears the write-in-progress flag.

1.4. Shared Data Callbacks

The client application can request callbacks on lists of Shared Data fields so that the Shared Data Server calls back the client when the data is updated or changes. The application does not have to repeatedly poll for new data, but the Shared Data Server alerts the application when the data is updated or changes by sending a message with the value of the new data.
The IND780 designates the special Shared Data fields that can use callbacks as “real-time” fields. In this document, “rt” designates real-time fields, while “na” designates non-real-time fields that do NOT support callbacks. Edge-Sensitive commands are also real-time fields, but the IND780 only makes a callback to process these commands when the field transitions from zero to a non-zero value. In this document, “rc” designates edge sensitive command fields.

- na Callback not supported
- rt Callback supported
- rc Callback on edge sensitive fields

Certain dynamic SDVs (eg. wt--, wx--, etc) are updated continuously and will generate a callback message periodically even though the value of the variable is unchanged.

1.5. Data Format Types

IND780 Shared Data supports the following data types:

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bl</td>
<td>Boolean fields are one-byte integers, but can only take a value of 0 or 1</td>
</tr>
<tr>
<td>By</td>
<td>One byte integer</td>
</tr>
<tr>
<td>US</td>
<td>Two byte unsigned integer (double)</td>
</tr>
<tr>
<td>UL</td>
<td>Four byte unsigned integer (word)</td>
</tr>
<tr>
<td>F</td>
<td>Single precision floating point</td>
</tr>
<tr>
<td>D</td>
<td>Double precision floating point</td>
</tr>
<tr>
<td>AB by nn</td>
<td>Array of one byte integers</td>
</tr>
<tr>
<td>ABI nn</td>
<td>Array of one byte integers used as Boolean</td>
</tr>
<tr>
<td>S mm</td>
<td>A Unicode String. NULL terminated. Array of two byte unsigned integers (doubles)</td>
</tr>
<tr>
<td>AL nn</td>
<td>Array of four byte unsigned integers (words)</td>
</tr>
<tr>
<td>Struct</td>
<td>Composite structure of entire block (multiple data types together)</td>
</tr>
</tbody>
</table>

1. “nn” represents the length of the array
2. “mm” represents the maximum length of the Unicode String, including the null terminator.

1.5.1. Interpreting Attributes Tables

For example, to interpret a typical row from the attributes tables included in this document using the information from the Callback and Data Format descriptions above:

<table>
<thead>
<tr>
<th>wt--02</th>
<th>Displayed Net Weight</th>
<th>S13</th>
<th>rt</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDV name, "--" denoting instance</td>
<td>Content of the shared data variable</td>
<td>A Unicode string, 13 characters maximum length</td>
<td>Callback is supported</td>
</tr>
</tbody>
</table>
1.6. Change History Log

The IND780 maintains a history of all changes to the Setup and Calibration Shared Data in a resident Flash Memory file. There is a separate record for each changed field. The record contains the field name, date and time, user ID, and the new contents of the field. It also maintains a history log of all Shared Data backups and restores.

The Change History file serves the following purposes:

- It provides traceability of changes to Setup and Calibration data. It allows the customer or service technician to find and view the changes to Shared Data. They can validate that the system has been setup properly and that Shared Data contains only the authorized settings.
- It satisfies the FDA CFR 21 Part 11 regulations for the U.S. food and pharmaceutical industries for maintaining strict control over the safety of their processes and for documenting any changes to their processes.
- In case of a catastrophic system failure, you can use an archived Change History file to reconstruct Shared Data. To recover the system, you must first reset the system to the factory defaults and then use a utility to apply the changes from the Change History file one at a time.

The Unicode format of each history record is:

“SSSSSS DDDDDD TTTTTT AUTHOR L VALUE”

Where:

- SSSSSS is the six-letter Shared Data Name;
- DDDDDD is the date of change from xd0103;
- TTTTTT is the time of change from xd0104;
- AUTHOR is the name of the user who made the change from xd0125, xd0127, or xd0129;
- L is the security-level of the user who made the change from xd0126, xd0128, or xd0130;
- VALUE is a Unicode representation of the new value written to the Shared Data variable.

The Change History is a maximum of 250,000 bytes long.

When the file is 75% full, the IND780 SD issues a warning to the user that the file is becoming full. Then, the user can offload it to a PC using FTP and reset the resident log file.

When the file becomes 90% full, the IND780 SD issues a severe warning to the user. Again, the user can offload the log file to a PC and reset the resident log file.

When the file becomes 100% full, the IND780 SD issues an “error alert” to the operator and halts any further updates to Setup until the user takes the appropriate action to save and reset the resident log file.

1.7. Shared Data Access Control

Generally, anyone can read any Shared Data field. The notable exceptions are password fields, which only the IND780 system may read. Hard-coding in Shared Data restricts read-access to the password fields. The user access level for the shared data server connection must match (or exceed) the level expected for the shared data field (currently assigned based on block type) to permit a shared data write.

There are four classes of user – Administrator, Maintenance, Supervisor, and Operator. The Administrator class always has the maximum possible write-access capability. However, not even an Administrator can write into “Read Only” fields. Typical “Read Only” fields are real-time data fields that contain the weight data for the scale.
To satisfy legal metrology regulations or customers’ security concerns, it is often necessary to limit terminal write-access after the customer has installed the terminal. For example, no user of any class may change metrological setup parameters after a government inspector has certified and sealed the terminal.

The IND780 has a Security Switch on its main PCB. The service technician can mechanically seal the IND780 to prevent tampering with the Security Switch. When in the UNSECURED position, authorized users may write to Shared Data fields according to the “access privilege”. In the SECURED position, NO users have write-access to Shared Data fields that previously had Administrator-only level, write privileges.

1.8. Validating Setup Data

IND780 Shared Data validates changes to Protected Setup and Calibration EEPROM fields. It compares the new value with the range of legal values stored in the Shared Data Dictionary. If Shared Data finds the new value is not legal, it does not update the field and returns an error status to the application.

Shared Data does not validate all fields. It only validates those that it can validate using a table of values. It does not validate fields that require special programming logic to validate.

Shared Data supports an application command that returns the validation criteria for a particular field to the application so the application can display the list of legal values.

The Shared Data Dictionary has different validation criteria based on the type of validation required. Some of the validation types include:

- **Boolean validation.** Only zero or one are legal values.
- **Range validation.** Only values within a range are valid. The Data Dictionary contains the minimum and maximum legal values. For example, integer values from one to five are valid, or floating-point values from 0.0 to 9.9 are valid.
- **List validation.** Only values in a list of values are valid. For example, values ‘N’, ‘S’, ‘M’, and ‘H’ are valid.
- **No validation.**

1.9. Shared Data Server Commands

After connecting to the Shared Data Server in the IND780, several commands are available for use by the client. All commands can be given in either upper- or lower-case letters. The quotation marks shown are for clarity only and should not be transmitted. Valid commands are described in the following sections.

- **Response Format:** “Read”, “write”, and “callback” message responses have a formatted header. The first two characters indicate the status. “00” is the success status. “99” is a failure status. The next character is the type of message, “R”, “W”, or “C”. The next three characters are a sequence number, which cycles from 001 to 999, and then starts over again.

If the command sent to the IND780 has a syntax error or is invalid, the terminal will respond with: 81 Parameter Syntax Error or 83 Command Not Recognized.
1.9.1. **user**

A client must login to the SDSV using the “user” command before accessing Shared Data. The server validates the username and sends a response message back to the user. The SDSV responds with [Access OK] if no password is required or [Enter password] if a password is required.

A client can use only the “user”, “pass”, “help” and “quit” commands before successfully logging on.

Format: user username

Response 1: 12 Access OK

Response 2: 51 Enter Password

1.9.2. **pass**

The user enters a password using the “pass” command. If the password is valid, the server displays the [Access OK] message. If not valid, the server displays the [No access] message.

Format: pass password

Response: 12 Access OK

1.9.3. **help**

The “help” command returns the list of the valid commands for the IND780.

Format: help

Response: 02 USER PASS QUIT READ R WRITE W SYSTEM CALLBACK XCALLBACK GROUP RGROUP XGROUP CTIMER LOAD SAVE HELP NOOP CONTOUT XCOUNTOUT PRINTOUT XPRINTOUT

1.9.4. **quit**

The “quit” command terminates the TCP/IP connection.

Format: quit

Response: 52 Closing connection

1.9.5. **UNICODE**

The UNICODE command enables the communications messages between the client and server to use Unicode data encoding. The default message format uses ASCII data encoding. The response is in ASCII data encoding, but the next command must be in unicode.

Format: UNICODE

Response: 00U ~ OK
1.9.6. **read**

The “read” command allows the client to read a list of one or more Shared Data fields. An individual field or an entire block can be read. If more than one field is requested, the fields should be separated by a space. If successful, the server responds with a separated list of values in ASCII format. The server separates individually requested fields with a “~”; and Shared Data separates items within a block with a “^”. If an error is detected, the server responds with an error message. The maximum length of the reply message is 1,024 characters.

Format: read SDV#1 SDV#2

Example 1: read wt0101 wt0103

Response 1: 00R003~ 17.08~lb~

Example 2: read sp0100 (reads entire block)

Response 2: 00R012~XP/0163M^1^^78^20.500000^0^0^0^1.200000^3.500000^0.150000^0.050000^0^0.0000000^0.000000^0.000000~

The “read” command can be abbreviated to the letter “r” if desired.

1.9.7. **write**

The “write” command allows the client to write a list of one or more Shared Data fields. A single field or an entire block can be written. The maximum length of the write message is 1,024 characters. Items within a list of writes must be separated with a “~”. You must separate items within a block with a “^”.

Format: write SDVblock#1 = value1^value2^ value3 write SDV#1 = value1~SDV#2 = value2~SDV#3 = value3

Example 1: write ak0100 = abc^def^hij^lmn (writes fields into a block)

Response 2: 00W006~OK

Example 2: write aj0101 = 12.56~aj0150 = 987.653 (writes fields within a list)

Response 2: 00W007~OK

The “write” command can be abbreviated to the letter “w” if desired.

1.9.8. **system**

The “system” command returns a description of the IND780 terminal. This is the same information that is shown on the Recall System Information screen of the IND780.

Format: system

Response: 00S001~IND780 SYSTEM INFO RECALL

Model: IND780
S/N:
ID1: IND780
ID2: Mettler Toledo
ID3:

Hardware
HMI Mono
POWCELL
Analog Load Cell
Serial IO
Discrete IO
780VETE (Pac)

Software
IND780 RST: 5.1
IND780 CP: 5.1
VehiclePack.cpt: 5.1

1.9.9. **systat**

The “systat” command returns a description of the IND780 terminal’s resource utilization such as the CPU load and memory use.

Format: systat

Response: 00S001~IND780, D173678R.0, WinCE 4.20,
TotalMemory = 24576 KB FreeMemory = 7888 KB MemoryLoad = 68
TotalStore = 24504 KB FreeStore = 24258 KB CPU Load = 25

1.9.10. **noop**

The “noop” command performs no task; it checks communication and returns an [OK] response message.

Format: noop

Response: 00OK

1.9.11. **callback**

The “callback” command allows the client to define one or more fields for which the Shared Data Server sends a message to the client when the value of the callback field is updated or changes. Only certain SDV may be included in a callback command. These SDV are noted by an “rc” or “rt” status in the column after the structure column in the Shared Data document. Mainly, these are triggers that are used in the terminal. SDV with a status of “na” are not real-time SDV and cannot be used in callbacks. Certain dynamic SDV (eg. wt--, wx--, etc) is updated continuously and will generate a callback message periodically even though the value of the variable is unchanged.

The callback message contains one or more changed field names and the new value for each field. A maximum of twelve callback fields can be specified. The “ctimer” command specifies the minimum time between repeated callback messages.
Format: callback SDV#1 SDV#2

Example: callback st0102 st0103 st0104

Response 1: 00B001~OK

Response 2: 00C005~st0102 = 0^st0103 = 1^st0104 = 1 (sent when all of the SDV change)

Response 3: 00C006~st0104 = 0 (sent when only st0104 changes)

1.9.12. xcallback

The “xcallback” command allows the client to remove one or more callback fields from the list of current SDV.

Format: xcallback SDV#1 SDV#2 or xcallback all (removes all callbacks)

Example: xcallback st0102 (removes st0102 SDV from callback)

Response: 00X008~OK

1.9.13. group

The “group” command allows the client to define a group of callback fields. The Shared Data Server sends a message to the client when the value of any field in the group changes. The group callback message contains the group number and the values of all fields in the group in the defined order.

The “ctimer” command specifies the minimum time between repeated callback messages. The maximum number of groups is six, and the maximum number of fields in a group is twelve.

Format: group n SDV#1 SDV#2 SDV#3 (where n = the number of the group 1–6)

Example: group 5 st0103 st0104 st0107 (groups target feeding and tolerance SDV into one group)

Response 1: 00B019~OK

Response 2: 00C026~group5 = 0^1^0 (indicates status of all 3 SDV in group 5 whenever any one of them changes)

1.9.14. rgroup

The “rgroup” command allows the client to define a group of fields. The client can use the group number to read the entire group at once using the READ command. The maximum number of groups is six, and the maximum number of fields in a group is twelve.

Format: rgroup n SDV#1 SDV#2 (where n = the number of the group 1–6)

Example: rgroup 3 di0101 di0102 di0103 di0104 (groups all discrete inputs into one group that can be read with a single read command)

Response: 0G008~group = 3, number fields = 4

Read Example: r 3
1.9.15. xgroup

The “xgroup” command allows the client to remove one or all groups.

Format: xgroup n (where n = the group number 1 - 6) or XGROUP all (removes all groups, including “contout” and “printout”)

Example: xgroup 5 (cancels group 5)

Response: 00X011~group = 5

1.9.16. contout

The “contout” command allows the client to define the Continuous Output message streams from scales as a group of one or more “callback” fields. The Console Print Server sends a group message to the client at each continuous output. The Continuous Output message is either in the Standard Mettler Toledo Continuous Output format, in the Extended Mettler Toledo Continuous Output format, in Multiplexed Mettler Toledo Continuous Output format, or in a custom template format. The “Data Connections” block in Shared Data defines the format of the message streams. The client can select one or more continuous output streams in the command. The “ctimer” command specifies the minimum time between repeated callback messages. The “xgroup all” or “xcontout” command removes the CONTOUT group.

Format: contout stream (1,2,3,4,5 = specified scale number; S = selected scale; M = multiplexed)

Response: 00G008~number CONTOUT streams = 1

When a continuous output occurs to the Ethernet port, the data will be sent to the client formatted as selected in setup.

Data: 00C004 4! 354 236
00C005 4! 354 236

1.9.17. xcontout

The “xcontout” command allows the client to remove the continuous output callback, thus ending the registration so no further continuous outputs will be available.

Format: xcontout

Response: 00X070~CONTOUT

1.9.18. printout 1

The “printout” command allows the client to define a Demand Print Stream as a callback field. The Demand Print Streams include demand print (triggered by the scale) and custom triggers (triggers 1, 2, and 3). The console print server sends a message to the client at each print output. Since print messages can span multiple message blocks (depending upon size), the start of the print message has a <dprint> tag and the end of the message has a </dprint> tag. After registering for the demand output, the client will receive the appropriate data stream. The “ctimer” command
specifies the minimum time between repeated callback messages. The “xprintout” command removes the registration from the terminal and the communication will stop.

Format: printout 1

Response: 00G008~number PRINTOUT streams = 1

When a demand output occurs to the Ethernet port, the data will be sent to the client formatted by the selected template. There will be `<dprint>` and `</dprint>` delimiters for the string.

Data: 00P004 `<dprint> 22.08 lb
17.06 lb T
5.02 lb N</dprint>`

1.9.19. **xprintout**

The “xprintout” command allows the client to remove the print output callback, thus ending the registration so no further demand outputs will be available.

Format: xprintout

Response: 00X070~PRINTOUT

1.9.20. **ctimer**

The “ctimer” command allows the client to set the minimum time between repeated callback messages in milliseconds. The minimum allowable setting is 50 milliseconds and the maximum is 60 seconds. The default value is 500 milliseconds.

Format: ctimer n (where n is the number of milliseconds)

Example: ctimer 1000 (set the callback timing to 1 second)

Response: 00T862~new timeout = 1000

1.9.21. **csave**

The “csave” command saves the current callback and group settings into Shared Data for use later with the “cload” command.

Format: csave

Response: 00L004~OK

1.9.22. **cload**

The “cload” command loads the callback and group settings from Shared Data into the shared data server. The terminal will begin to service the loaded callback and group commands.

Format: cload

Response: 00L001~OK
1.10. **Interactive Remote Standard Database Access**

The Shared Data Server provides a Client Processor interactive remote access to Files and Standard Database Tables in the IND780. The IND780 Control Panel, TaskExpert, and the PC Tools must use the Shared Data Server to access files and Standard Databases in a remote IND780. Valid commands are described in the following sections.

The IND780 Standard Database Tables reside in an SQL CE database. These tables have the following physical characteristics:

They reside in Compact Flash.

There are ten tables, A0 - A9 in \Storage Card\Terminal\standard.sdf.

Records can be accessed using the record ID (GUID), which is the primary key for each table. SQL CE automatically assigns the record ID (GUID) when a new entry is inserted into the table, in order to ensure that the primary key for each row is unique.

Each entry has a shortID column, which can be used to access the field.

Each entry has one description field that belongs to a table column. Each row entry has seven data fields that are in separate table columns.

Each data field has Unicode string data. As indicated in the table below, the description key field is 40 Unicode characters long, data fields 1 - 12 are 16 Unicode characters long, and data fields 13 - 17 are 40 Unicode characters long. The TaskExpert Interpreter has routines that convert between the string data and numeric data so that applications can store numeric data in the data fields. To retrieve the data from the tables using SQL numerical comparison operators on these numerical data fields, the digits must align within the Unicode string.

<table>
<thead>
<tr>
<th>record ID (GUID)</th>
<th>ShortID</th>
<th>Description</th>
<th>Data1</th>
<th>Data12</th>
<th>Data13</th>
<th>Data17</th>
</tr>
</thead>
<tbody>
<tr>
<td>{.....}</td>
<td>{.....}</td>
<td>{.....}</td>
<td>{.....}</td>
<td>{.....}</td>
<td>{.....}</td>
<td>{.....}</td>
</tr>
</tbody>
</table>

The Shared Data Server requires that the command parameters are formatted using the Microsoft Excel methodology for comma-separated files. Commas separate parameters in the commands. If a comma occurs inside a parameter, the entire parameter must be enclosed in quotation marks. Wherever there is a quotation mark in the parameter, double-quotation-marks must identify the quotation mark.

1.10.1. **CREATETABLES**

The “CREATETABLES” command creates the ten data tables A0 – A9 in their defined format. Each table has twenty columns with the following column names and formats:

- ID: uniqueidentifier PRIMARY KEY DEFAULT newid()
- shortID: NVARCHAR(16)
- description: NVARCHAR(40)
- data1: NVARCHAR(16)
The command generates an index on both the record ID and the shortID columns for fast lookups of rows using these index columns as keys.

Example

Format: CREATETABLES

Response: SUCCESS or FAILED

1.10.2. **OPENTABLES**

The “OPENTABLES” command opens the currently existing Standard Database Tables for access within TaskExpert.

Format: OPENTABLES

Response: 00L001~OK

1.10.3. **CLOSETABLES**

The “CLOSETABLES” command terminate access to Standard Database Tables.

If the Shared Data Server loses its connection to the client, it automatically closes the database. If the Shared Data Server does not receive any commands from the client during the default five minutes or the CONNECTIME, it automatically closes the database.

Format: CLOSETABLES

Response: SUCCESS or FAILED

1.10.4. **SETROW**

The “SETROW” command inserts a new row entry into a specific table in the Standard Database Tables.
Format: SETROW table%, shortID$, description$, data1, data2, data3, data4, data5, data6, data7, data8, data9, data10, data11, data12, data13, data14, data15, data16, data17

Calling arguments:
- **table%** 0 – 9 indicating tables A0 – A9
- **shortID$** contents of short ID field
- **description$** contents of the description column in the row
- **data1** contents of the 1st data column
- **data2** contents of the 2nd data column
- **data3** contents of the 3rd data column
- **data4** contents of the 4th data column
- **data5** contents of the 5th data column
- **data6** contents of the 6th data column
- **data7** contents of the 7th data column
- **data8** contents of the 8th data column
- **data9** contents of the 9th data column
- **data10** contents of the 10th data column
- **data11** contents of the 11th data column
- **data12** contents of the 12th data column
- **data13** contents of the 13th data column
- **data14** contents of the 14th data column
- **data15** contents of the 15th data column
- **data16** contents of the 16th data column
- **data17** contents of the 17th data column

Response: SUCCESS or FAILED

When a new entry is added to a table, the SQL CE Server automatically generates a record ID for the new row, ensuring that the primary key for each row is unique.

Example

```
OPENTABLES
SETROW 2, oranges, Florida fresh oranges, "$5,000.00", wt0110@
CLOSETABLES
```

1.10.5. SELECTROW

The “SELECTROW” command selects all rows or specific rows by short ID or by record ID from a table in the Standard Database Tables. The function also returns the first selected row from the table. Use NEXTROW to retrieve subsequent rows.

Format

- Select specific rows by short ID:

 SELECTID table%, shortID$

- Select specific row by record ID:

 SELECTROW table%, recID$

- Select all rows:

 SELECTALL table%
SELECTALL table%

Calling arguments:

- table% 0 – 9 indicating tables A0 – A9
- shortID$ shortID column for the selected row(s). The shortID column is not necessarily unique for each row so this function can select multiple rows.
- recID record ID for the selected row. This value is unique for each row so this identifier will return at most one row.

Response: The SELECTROW function returns the column values for the first selected row in the return string as follows: entryNumber, shortID, description, data1, data2, data3, data4, data5, data6, data7, data8, data9, data10, data11, data12, data13, data14, data15, data16, data17

If there is no data, SELECTROW returns an END_OF_DATA message.

Examples

closetables

1.10.6. NEXTROW

The “NEXTROW” command retrieves the next row from a rowset from the Standard Database Tables. The SELECTROW function returns the first selected row from the table; use NEXTROW to retrieve subsequent rows.

Format: NEXTROW

Response: The return messages are the same as in the SELECTROW function.

Example:

SELECTROW 2
NEXTROW
NEXTROW

1.10.7. SETITEM

The “SETITEM” command sets the value of an item in one or more selected rows in a Standard Database Table. When multiple rows are selected, SETITEM writes the item to all selected rows.

Format

- SETID table%, shortID$, item%, data
- SETITEM table%, recID$, item%, data

Calling arguments:

- table% 0 – 9, indicating tables A0 – A9
shortID$ shortID column for the selected row(s). The shortID column is not necessarily unique for each row so this function can select multiple rows. If the shortID selects multiple rows, the SQL CE modifies the column value in all selected rows.

recID$ Record ID for the selected row. This value is unique for each row so this function will select at most one row.

item% Data field 0 – 17 in selected row(s) to be modified, where 0 is the description item, and 1 – 17 comprise a data item.

data Data value to be inserted into the selected row-column item. Task Expert automatically converts the data value to a string before inserting it into the database table.

1.10.8. **DELROW**

The “DELROW” command deletes specific rows from a table in the Standard Database Tables, by description or by record ID.

Format

Delete specific row(s) by shortID:

```
DELID table%, shortID$
```

Delete specific row by record ID:

```
DELROW table%, recID$
```

Calling arguments:

- table% 0 – 9 indicating tables A0 – A9
- shortID$ shortID column for the selected row(s). The shortID column is not necessarily unique for each row so this function can delete multiple rows.
- recID$ record ID for the selected row. This value is unique for each row so this function will delete at most one row.

Response: SUCCESS or FAILED

1.10.9. **DELTABLE**

The “DELTABLE” command deletes all rows from a table in the Standard Database Tables.

Format

Delete row(s):

```
DELTABLE table%
```

Calling arguments:

- table% 0 – 9 indicating tables A0 – A9

Response: SUCCESS or FAILED

1.10.10. **BEGINTRANS**

The “BEGINTRANS” command enables one client to block access to the master database for any other client while it is updating the database. This helps prevent corruption of the database that may occur when two clients are updating the database at the same time.

Format: BEGINTRANS

Response: SUCCESS or FAILED
1.10.11. ENDTRANS

The “ENDTRANS” command enables the client to un-block access to the master database, allowing other clients to gain access.

If the Shared Data Server loses its connection to the client, it automatically clears all locks. If the Shared Data Server does not receive any database commands from the client during the default two minutes or the TRANSTIME, it automatically removes all locks.

Response: SUCCESS or FAILED

1.10.12. TRANSTIME

The “TRANSTIME” command enables the client to set a new maximum time for monitoring connections. The default time is 2 minutes.

Format

TRANSTIME numberOfSeconds

Example

TRANSTIME 120

1.10.13. SELECTSET

The “SELECTSET” command chooses rows from a table in the Standard Database Tables with WHERE and ORDER BY criteria. The function also returns the first selected row from the table. Use the NEXTROW Table function to retrieve subsequent rows.

Format

SELECTSET table%, where$, orderBy$

Calling arguments:

- table% 0 – 9 indicating tables A0 – A9
- where$ WHERE criteria as would be entered in an SQL select statement.
- orderBy$ ORDER BY criteria as would be entered in an SQL select statement

Response: The SELECTSET function return is the same as the SELECT function.

Examples

- opentables
 SETROW 2, oranges, Florida fresh oranges, 50, 51.5
 SETROW 2, apples, Washington state apples, 200, 25.6
 SETROW 2, apples, South American apples, 1000, 17.9
 SELECTSET 2, “CONVERT(float,data1)<500”, shortID ASC

- closedtables
 SETROW 2, oranges, Florida fresh oranges, 50, 51.5
 SETROW 2, apples, Washington state apples, 200, 25.6
 SETROW 2, apples, South American apples, 1000, 17.9
 SELECTSET 2, , shortID ASC

- closedtables
1.10.14. **SQLTABLE**

The “SQLTABLE” command allows an SQL command to be executed. If a SELECT is executed, use the NEXTROW Table function to retrieve the rows.

Format

```
SQLTABLE sqlcommand$
```

Calling arguments:

- sqlcommand A valid sql command

Response: SUCCESS or FAILED

Examples

```plaintext
opentables
SETROW 2, oranges, Florida fresh oranges, 50, 51.5
SETROW 2, apples, Washington state apples, 200, 25.6
SETROW 2, apples, South American apples, 1000, 17.9
SQLTABLE "select count(*) from a2"
NEXTROW
closetables
```

The number of records in table a2 will be returned with the nextrow command.

Execute a NEXTROW command and the number of records in table a2 will be in the record ID (rid) field.

1.11. **Concurrent Access to Standard Databases**

SQL CE supports access to a relational database, and permits multiple user sessions to access the database at one time. Care must be taken if multiple user sessions are accessing a table concurrently. A locking method is provided to prevent multiple read/writes from corrupting the data in the tables. The mechanism locks the whole database, not an individual record or table.

Standard Database Table commands are affected by concurrent access as described in the following sections.

1.11.1. **CREATETABLES**

CREATETABLES creates a new empty master copy of the database in flash and opens it. If another session has blocked the database with a transaction block, this operation fails. Otherwise, the session waits until any other session has released the database and then performs the operation.

1.11.2. **OPENTABLES**

OPENTABLES opens a database session. If another session has blocked the database with a transaction block, this operation fails. Otherwise, the session waits until any other session has released the database and then performs the operation.

1.11.3. **CLOSETABLES**

CLOSETABLES closes the database session.
1.11.4. **SETROW**

SETROW inserts the record. If another session has blocked the database with a transaction block, this operation fails. Otherwise, the session waits until any other session has released the database and then performs its operation.

1.11.5. **SELECTROW, SELECTID, and NEXTRow**

SELECTROW, SELECTID, and NEXTRow perform their operation. If another session has blocked the database with a transaction block, the operation fails.

1.11.6. **SETITEM and SETID**

SETITEM and SETID apply the change. If another session has blocked the database with a transaction block, this operation fails. Otherwise, the session waits until any other instance has released the database and then performs the operation.

1.11.7. **DELROW and DELID**

DELROW and DELID delete the record(s). If another session has blocked the database with a transaction block, this operation fails. Otherwise, the session waits until any other instance has released the database and then performs the operation.

1.11.8. **BEGINTRANS**

BEGINTRANS blocks the database from access by another session while this session performs an “atomic” sequence of operations on the database. The user must complete an “atomic” sequence of operations without interruption to avoid corrupting the database. An example is reading a value, updating the value, and writing it back to the database. If another session has locked the database with a transaction block, this operation fails.

1.11.9. **ENDTRANS**

ENDTRANS releases the database for reads and writes after the session has completed an atomic sequence of operations.

1.11.10. **TRANSTIME**

TRANSTIME sets the value of the transaction timeout in seconds. The default is 120 seconds. If a transaction is open longer than this period without the user performing any operations, the transaction is terminated, the database is closed and the user is logged off.
2 Scale Data

2.1. Scale Functionality

This chapter covers
- Scale Functionality
- Calibration and Monitoring

2.1.1. Dynamic Scale Weight (WT)

<table>
<thead>
<tr>
<th>Access:</th>
<th>"Read Only." Access level is not customizable.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code:</td>
<td>wt</td>
</tr>
<tr>
<td>Data Type:</td>
<td>D</td>
</tr>
<tr>
<td>ControlNet Class Code:</td>
<td>68 hex</td>
</tr>
<tr>
<td>Instances:</td>
<td>5</td>
</tr>
<tr>
<td>Instance 1 - 4 = Scale platforms 1 – 4</td>
<td></td>
</tr>
<tr>
<td>Instance 5 = Sum scale.</td>
<td></td>
</tr>
</tbody>
</table>

2.1.1.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>wt--00</th>
<th>Composite wt block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>wt--01</td>
<td>Displayed Gross Weight</td>
<td>S13</td>
<td>rt</td>
<td></td>
</tr>
<tr>
<td>wt--02</td>
<td>Displayed Net Weight</td>
<td>S13</td>
<td>rt</td>
<td></td>
</tr>
<tr>
<td>wt--03</td>
<td>Weight Units</td>
<td>S4</td>
<td>rt</td>
<td></td>
</tr>
<tr>
<td>wt--04</td>
<td>Displayed Aux Gross Weight</td>
<td>S13</td>
<td>rt</td>
<td></td>
</tr>
<tr>
<td>wt--05</td>
<td>Displayed Aux Net Weight</td>
<td>S13</td>
<td>rt</td>
<td></td>
</tr>
<tr>
<td>wt--06</td>
<td>Aux Weight Units</td>
<td>S7</td>
<td>rt</td>
<td></td>
</tr>
<tr>
<td>wt--07</td>
<td>Rate Period</td>
<td>S2</td>
<td>rt</td>
<td></td>
</tr>
<tr>
<td>wt--08</td>
<td>Displayed Rate</td>
<td>S13</td>
<td>rt</td>
<td></td>
</tr>
<tr>
<td>wt--09</td>
<td>Diagnostic Weight</td>
<td>S13</td>
<td>rt</td>
<td></td>
</tr>
<tr>
<td>wt--10</td>
<td>Rounded Gross Weight</td>
<td>D</td>
<td>rt</td>
<td></td>
</tr>
</tbody>
</table>

- **lb** pounds, **kg** kilograms, **grams**, **oz** ounces, **oztroy**, **dwt** pennyweights, **t** metric tons, **ton**, or custom units name
- **No**, **Sec**, **Min**, **Hour**
- **lb-oz** pounds & ounces, **oztroy**, **dwt** pennyweights, **t** metric tons, **ton**, or custom units name
| wt--11 | Rounded Net Weight | D | rt | 0 = disabled
| wt--12 | Auxiliary Gross Weight | D | rt | 1 = normal weight processing
| wt--13 | Auxiliary Net Weight | D | rt | 2 = diagnostic
| wt--14 | Rate of Change of Weight | D | rt | 3 = calibration
| wt--15 | Scale Processing State | By | rt | 4 = shift adjust
| | | | | 5 = error
| wt--16 | Continuous Output Status A | By | rt | 6 = Single cell weight display
| wt--17 | Fine Gross Weight | D | rt | 7 = POWERCELL addressing
| wt--18 | Fine Net Weight | D | rt | 8 = Master mode
| wt--19 | Weight Range | By | rt | 9 = SICS Cal
| wt--20 | Reserved | D | rt | 10 = Restarting scale I/O
| wt--21 | Update Scale Display | By | rc | Standard Mettler-Toledo Continuous
| wt--22 | Reserved | D | rt | Command to Weight Display and SmartTrac Visualization task indicating new weight is ready for display.
| wt--23 | Reserved | D | rt |
| wt--24 | IDNet Restart/Reset | S13 | rt |
| wt--25 | IDNet Approval code | S13 | rt |
| wt--26 | Standard Continuous Output String | S20 | rt |
| wt--27 | Template Continuous Output String | S200 | rt |
| wt--28 | Extended Continuous Output String | S30 | rt |
| wt--34 | IDNet Scale Update Rate | S25 | na |
| wt--35 | IDNet Scale Vibration Adapter | S25 | na |
| wt--36 | IDNet Weighing Process Adapter | S25 | na |
| wt--37 | IDNet Automatic Stability Detection | S25 | na |
| wt--38 | IDNet Auto-Zero Setting | S25 | na |
| wt--39 | IDNet Software Part Number | S12 | na |
| wt--40 | IDNet Calibration Ident Code | S3 | na |

- **wt--11**: Rounded Net Weight
- **wt--12**: Auxiliary Gross Weight
- **wt--13**: Auxiliary Net Weight
- **wt--14**: Rate of Change of Weight
- **wt--15**: Scale Processing State
- **wt--16**: Continuous Output Status A
- **wt--17**: Fine Gross Weight
- **wt--18**: Fine Net Weight
- **wt--19**: Weight Range
- **wt--20**: Reserved
- **wt--21**: Update Scale Display
- **wt--22**: Reserved
- **wt--23**: Reserved
- **wt--24**: IDNet Restart/Reset
- **wt--25**: IDNet Approval code
- **wt--26**: Standard Continuous Output String
- **wt--27**: Template Continuous Output String
- **wt--28**: Extended Continuous Output String
- **wt--34**: IDNet Scale Update Rate
- **wt--35**: IDNet Scale Vibration Adapter
- **wt--36**: IDNet Weighing Process Adapter
- **wt--37**: IDNet Automatic Stability Detection
- **wt--38**: IDNet Auto-Zero Setting
- **wt--39**: IDNet Software Part Number
- **wt--40**: IDNet Calibration Ident Code

6 = Single cell weight display
7 = POWERCELL addressing
8 = Master mode
9 = SICS Cal
10 = Restarting scale I/O
0 = disabled
1 = normal weight processing
2 = diagnostic
3 = calibration
4 = shift adjust
5 = error
"F MR" Message specific to IDNet base
"A" Message Approval code for IDNet base, for example, "USA N"
Standard Mettler-Toledo Continuous
Command to Weight Display and SmartTrac Visualization task indicating new weight is ready for display.
Standard Mettler-Toledo Continuous Output
Template Continuous Output Format
Extended Mettler-Toledo Continuous Output
"F MF" Message specific to IDNet base
"F MI" Message specific to IDNet base
"F ML" Message specific to IDNet base
"F MS" Message specific to IDNet base
"F MZ" Message specific to IDNet base
"P" Msg xxxx-x-xxxx string from IDNet base
"I" Msg 00 to 99 calibration count from IDNet
2.1.1.2. Method

The Resident Scale Task updates the Dynamic Weight Shared Data at every weight update, whenever the weight changes. Typically, this occurs up to 20 times per second, but can vary depending on the load cell type and the application-type setting in cs--21. The RST converts the weight from the raw filtered counts it receives from the scale boards to the Legal-For-Trade weight.

The RST signals the Weight Display and SmartTrac Visualization task or an Application Task indicating that new weight is ready, using field wt--21. The RST sets this signal whenever weight changes, up to a maximum rate of 10 times per second. If the weight does not change for an extended time, the RST will set the trigger just to refresh the weight display. When displaying the weight for a single scale, the Weight Display and SmartTrac Visualization task may register a callback on the wt--21 field.

When the Weight Display and SmartTrac Visualization task or Application Task is using the Sum Weight as well as the individual platform weights, it must get the weight from the Consolidated Weight Stream, xd0115. The CWS guarantees that the Sum is metrologically consistent.

When the display task is using weight from multiple scales, it needs to register its weight-update callback on the consolidated weight trigger, xd0118.

The RST periodically re-writes the Shared Data weight fields every few seconds even when there is no change to the weight data.

2.1.2. Scale Process Data (WS)

Access:	"Read Only," access level is not customizable.
Class Code:	ws
Data Type:	PP
ControlNet Class Code:	66 hex
Instances:	5

2.1.2.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>ws--00</th>
<th>Composite ws block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>ws--01</td>
<td>Current Scale Mode</td>
<td>By</td>
<td>na</td>
<td>'G' = Gross, 'N' = Net</td>
</tr>
</tbody>
</table>
Scale Data

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ws--02</td>
<td>Rounded Tare Weight</td>
<td>D</td>
<td>na</td>
</tr>
<tr>
<td>ws--03</td>
<td>Fine Tare Weight</td>
<td>D</td>
<td>na</td>
</tr>
<tr>
<td>ws--04</td>
<td>Auxiliary Tare Weight</td>
<td>D</td>
<td>na</td>
</tr>
<tr>
<td>ws--05</td>
<td>Current Units</td>
<td>By</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td>1 = Primary</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 = Secondary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ws--06</td>
<td>Tare Source</td>
<td>By</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td>1 = Pushbutton</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 = Keyboard</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 = Autotare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ws--07</td>
<td>Current Zero Counts</td>
<td>D</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td>Power up zeroing, Pushbutton zeroing, & Auto-zero maintenance can modify the current zero.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The "reset to factory" value is -999999.0, which tells the RST to initially set the current</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>zero to the calibrated zero.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ws--08</td>
<td>Stored Weight</td>
<td>D</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td>Initial weight for Net-Sign Correction.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ws--09</td>
<td>Tare Source String</td>
<td>S2</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td>“PT” = keyboard tare, else “T”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ws--10</td>
<td>Displayed Tare Weight</td>
<td>S13</td>
<td>na</td>
</tr>
<tr>
<td>ws--11</td>
<td>Displayed Aux Tare Weight</td>
<td>S13</td>
<td>na</td>
</tr>
<tr>
<td>ws--12</td>
<td>Last Demand Print Message</td>
<td>S100</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td>Last Demand Print Message for Scale.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ws--13</td>
<td>Reserved</td>
<td>D</td>
<td>na</td>
</tr>
<tr>
<td>ws--14</td>
<td>Displayed Stored Weight</td>
<td>S13</td>
<td>na</td>
</tr>
<tr>
<td>ws--15</td>
<td>Reserved</td>
<td>US</td>
<td>na</td>
</tr>
<tr>
<td>ws--20</td>
<td>Tare table row ID</td>
<td>S40</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td>RST sets this field to identify the row ID in Tare Table of the tare value in ws--02.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zero indicates the value is NOT from Tare Table. RST uses this SD field to update</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Totalization field in the Tare Database record.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ws--21</td>
<td>Tare Weighing Range</td>
<td>US</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td>Weight range where tare was taken.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ws--22</td>
<td>Reserved</td>
<td>D</td>
<td>na</td>
</tr>
<tr>
<td>ws--23</td>
<td>Current Scale Mode String</td>
<td>S13</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td>‘G’ = Gross, ‘N’ = Net</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ws--24</td>
<td>Reserved</td>
<td>US</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ws--25</td>
<td>Reserved</td>
<td>D</td>
<td>na</td>
</tr>
<tr>
<td>ws--26</td>
<td>Reserved</td>
<td>S13</td>
<td>na</td>
</tr>
</tbody>
</table>

2.1.2.2. Method

The Resident Scale Task maintains its scale process data in this block. This scale process data may change frequently but must be stored permanently. The Scale Tare Setup section describes how the RST uses the tare process data in this block.

- A Truck In/Out facility uses the Net Sign Correction to handle two situations:
- Weigh a full truck first and, after emptying the truck, to take the tare weight of the empty truck to find the net weight of the contents.
Take the tare weight of an empty truck first and, after loading the truck, to take the full weight of the truck to find the net weight of the contents.

Net Sign Correction delays the decision of which weighment is the gross weight and which the tare weight until the operator prints the ticket. At that time, the IND780 compares the two weighments and takes the lower weight as the tare weight. Thus, the net weight is always a positive value.

2.1.3. Scale Commands (WC)

<table>
<thead>
<tr>
<th>Access</th>
<th>“Operator”</th>
</tr>
</thead>
<tbody>
<tr>
<td>wc--24 and wc--25 have “Maintenance” access</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class Code</th>
<th>wc</th>
<th>Data Type: D</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ControlNet Class Code: 76 hex</th>
</tr>
</thead>
</table>

2.1.3.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>wc--00</th>
<th>Composite wc block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>wc--01</th>
<th>Pushbutton Tare Scale</th>
<th>BI</th>
<th>rc</th>
<th>Appl. sets from 0 to 1 to trigger command</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>wc--02</th>
<th>Clear Scale</th>
<th>BI</th>
<th>rc</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>wc--03</th>
<th>Demand Print Scale</th>
<th>BI</th>
<th>rc</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>wc--04</th>
<th>Pushbutton Zero Scale</th>
<th>BI</th>
<th>rc</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>wc--05</th>
<th>Switch to Primary Units</th>
<th>BI</th>
<th>rc</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>wc--06</th>
<th>Switch to Secondary Units</th>
<th>BI</th>
<th>rc</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>wc--07</th>
<th>Toggle Primary/Secondary units</th>
<th>BI</th>
<th>rc</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>wc--08</th>
<th>Apply Setup</th>
<th>BI</th>
<th>rc</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>wc--09</th>
<th>Restart Rate</th>
<th>BI</th>
<th>rc</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>wc--10</th>
<th>Reset Target Coincidence</th>
<th>BI</th>
<th>rc</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>wc--11</th>
<th>Restart Target</th>
<th>BI</th>
<th>rc</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>wc--12</th>
<th>Restart Filtering</th>
<th>BI</th>
<th>rc</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>wc--13</th>
<th>Disable Scale</th>
<th>BI</th>
<th>rc</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>wc--14</th>
<th>Capture Raw Counts</th>
<th>BI</th>
<th>rc</th>
<th>Toggle raw counts capturing on/off</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>wc--15</th>
<th>Write Calibration to EEPROM</th>
<th>BI</th>
<th>rc</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>wc--16</th>
<th>Reset Predictive Failures</th>
<th>BI</th>
<th>rc</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>wc--17</th>
<th>Toggle High-precision</th>
<th>BI</th>
<th>rc</th>
<th>Toggle high precision weight display & calculation setting to on/off. In legal-for-trade mode, high-</th>
</tr>
</thead>
<tbody>
<tr>
<td>wc</td>
<td>Description</td>
<td>Parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>--</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wc--18</td>
<td>Reserved</td>
<td>B rc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wc--19</td>
<td>Reset Current Zero to Cal Zero</td>
<td>B rc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wc--20</td>
<td>PLC Pushbutton Tare Scale</td>
<td>B rc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wc--21</td>
<td>PLC Clear Scale</td>
<td>B rc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wc--22</td>
<td>PLC Zero Scale</td>
<td>B rc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wc--23</td>
<td>Restart Tare</td>
<td>B rc 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wc--24</td>
<td>Update Calibration Date</td>
<td>B rc 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wc--25</td>
<td>Update Calibration Expiration</td>
<td>B rc 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wc--26</td>
<td>Set Cal Test Failed</td>
<td>B rc 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wc--27</td>
<td>Temp Disable Tare, Zero, Units Sw.</td>
<td>B rc 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wc--28</td>
<td>Reserved</td>
<td>B rc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wc--29</td>
<td>Composite WC Commands</td>
<td>B rc</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

weight

precision weight display automatically switches back to normal display mode after 5 seconds

wc--18 Reserved B rc
wc--19 Reset Current Zero to Cal Zero B rc
wc--20 PLC Pushbutton Tare Scale B rc
wc--21 PLC Clear Scale B rc
wc--22 PLC Zero Scale B rc
wc--23 Restart Tare B rc 1 = restart tare to use new tare settings
wc--24 Update Calibration Date B rc 1 = Update calibration date
wc--25 Update Calibration Expiration B rc 1 = Update calibration expiration based on new parameters
wc--26 Set Cal Test Failed B rc 1 = Cal Test failed. Record in Monitor Log. qc0176 is failure step
wc--27 Temp Disable Tare, Zero, Units Sw. B rc 1 = Temporarily disable tare, clear tare, zero and units switching
wc--28 Reserved B rc
wc--29 Composite WC Commands B rc

1 = Tare
2 = Clear Tare
3 = Demand Print
4 = Pushbutton Zero
5 = Switch to Primary Units
6 = Switch to Secondary Units
7 = Toggle Primary/Secondary Units
8 = Apply Setup
9 = Restart Rate
10 = Reset Target Coincidence for scale targets
11 = Restart Target for scale targets
12 = Restart Filtering
13 = Disable Scale
14 = Toggle capture raw counts on/off
15 = Write calibration EEPROM
16 = Reset Predictive Failures
17 = Toggle High-Precision Weight
18 = Reserved
19 = Reset Current Zero to Calibrated Zero
20 = PLC Pushbutton Tare
21 = PLC Pushbutton Clear Tare
22 = PLC Zero Scale
2.1.3.2. **Methods**

For example, to issue a Tare Command to Scale A, the application sets Shared Data field wc0101 = 1.

After receiving the callback, the Resident Scale Task sets wx0101 = 1 to indicate the command is in progress. When the command is complete, the Resident Scale Task sets wx0101 = 0 to indicate the command is successful or wx0101 = 2 to 255 for a specific error code. It sets wc0101 = 0 so the application can trigger the command again later. The application can register a callback on wx0101 to monitor when the command is complete and to get the completion status of the command.

2.1.4. **Scale Statuses (WX)**

<table>
<thead>
<tr>
<th>Access:</th>
<th>“Read Only.” Access level is not customizable.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code:</td>
<td>wx</td>
</tr>
<tr>
<td>Data Type:</td>
<td>D</td>
</tr>
<tr>
<td>ControlNet Class Code:</td>
<td>75 hex</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instances:</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instance 1-4 = Scale platforms 1–4</td>
<td></td>
</tr>
<tr>
<td>Instance 5 = Sum scale</td>
<td></td>
</tr>
<tr>
<td>Instance 6 = Selected scale</td>
<td></td>
</tr>
</tbody>
</table>

2.1.4.1. **Attributes**

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>wx--00</th>
<th>Composite wx block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
</table>

General Command Completion Statuses:

0 = Success
1 = Command in Progress
2-255 = Specific error code
97 = Scale in invalid mode
98 = Invalid function parameter
99 = No SD access
0 = Tare completed successfully
1 = Tare in progress
2 = Scale in motion during tare = 2
3 = Pushbutton tare not enabled
4 = Programmable tare not enabled
5 = Chain tare not permitted
6 = Only incremental chain tare permitted
7 = Tare not in rounded increment value
8 = Tare value too small
9 = Tareing when powerup zero not captured
10 = Tareing over capacity

23 = Restart Tare
Any other values are reserved
Clear Tare Status (wx--02)
- **By**: rt
- **Same as tare statuses**
- **0**: Printing completed successfully
- **1**: Printing in progress
- **2**: Print connection not found
- **3**: Printing busy
- **4**: Printing error
- **5**: Printing not ready to print
- **6**: Printing scale in motion
- **7**: Printing scale overcapacity
- **8**: Printing scale under zero
- **11**: Printing not allowed
- **12**: Printing not enabled
- **13**: No demand print, but continuous print completed OK
- **14**: Scale below minimum print weight

Print Scale Status (wx--03)
- **By**: rt
- **Same as tare statuses**
- **0**: Printing completed successfully
- **1**: Printing in progress
- **2**: Print connection not found
- **3**: Printing busy
- **4**: Printing error
- **5**: Printing not ready to print
- **6**: Printing scale in motion
- **7**: Printing scale overcapacity
- **8**: Printing scale under zero
- **11**: Printing not allowed
- **12**: Printing not enabled
- **13**: No demand print, but continuous print completed OK
- **14**: Scale below minimum print weight

Zero Scale Status (wx--04)
- **By**: rt
- **Same as tare statuses**
- **0**: Zero completed successfully
- **1**: Zero in progress
- **2**: Scale in motion during zero
- **3**: Illegal scale mode during zero
- **4**: Scale out of zeroing range
- **5**: IDNET zero command timeout
- **6**: Pushbutton zero disabled
- **7**: Command timeout error
- **8**: Scale communications disabled

Switch to Primary Units Status (wx--05)
- **By**: rt

Switch to Secondary Units Status (wx--06)
- **By**: rt

Toggle primary/secondary status (wx--07)
- **By**: rt

Apply Setup Status (wx--08)
- **By**: rt

Restart Rate Status (wx--09)
- **By**: rt

Reset Target Coincidence Status (wx--10)
- **By**: rt

Restart Target Status (wx--11)
- **By**: rt
<table>
<thead>
<tr>
<th>wx--12</th>
<th>Restart Filtering Status</th>
<th>By rt</th>
</tr>
</thead>
<tbody>
<tr>
<td>wx--13</td>
<td>Disable Scale Status</td>
<td>By rt</td>
</tr>
<tr>
<td>wx--14</td>
<td>Capture Raw Counts Status</td>
<td>By rt</td>
</tr>
<tr>
<td>wx--15</td>
<td>Write to EEPROM Status</td>
<td>By rt</td>
</tr>
<tr>
<td>wx--16</td>
<td>Reset Predictive Failure Status</td>
<td>By rt</td>
</tr>
<tr>
<td>wx--17</td>
<td>Toggle High-precision wt Status</td>
<td>By rt</td>
</tr>
<tr>
<td>wx--18</td>
<td>Reserved</td>
<td>By rt</td>
</tr>
<tr>
<td>wx--19</td>
<td>Reset Current Zero to Cal Zero St</td>
<td>By rt</td>
</tr>
<tr>
<td>wx--20</td>
<td>PLC Pushbutton Tare Scale Status</td>
<td>By rt</td>
</tr>
<tr>
<td>wx--21</td>
<td>PLC Clear Scale Status</td>
<td>By rt</td>
</tr>
<tr>
<td>wx--22</td>
<td>PLC Zero Scale Status</td>
<td>By rt</td>
</tr>
<tr>
<td>wx--23</td>
<td>PLC Restart Tare Status</td>
<td>By rt</td>
</tr>
<tr>
<td>wx--24</td>
<td>Update Cal Date Status</td>
<td>By rt</td>
</tr>
<tr>
<td>wx--25</td>
<td>Update Cal Expiration Status</td>
<td>By rt</td>
</tr>
<tr>
<td>wx--26</td>
<td>Set Cal Failed Status</td>
<td>By rt</td>
</tr>
<tr>
<td>wx--27</td>
<td>Reserved</td>
<td>By rt</td>
</tr>
<tr>
<td>wx--28</td>
<td>Reserved</td>
<td>Bl rt</td>
</tr>
<tr>
<td>wx--29</td>
<td>Composite Command Status</td>
<td>Bl rt</td>
</tr>
<tr>
<td>wx--31</td>
<td>Motion</td>
<td>Bl rt</td>
</tr>
<tr>
<td>wx--32</td>
<td>Center of Zero</td>
<td>Bl rt</td>
</tr>
<tr>
<td>wx--33</td>
<td>Over Capacity</td>
<td>Bl rt</td>
</tr>
<tr>
<td>wx--34</td>
<td>Under Zero</td>
<td>Bl rt</td>
</tr>
<tr>
<td>wx--35</td>
<td>Net Mode</td>
<td>Bl rt</td>
</tr>
<tr>
<td>wx--36</td>
<td>Printing in Progress</td>
<td>Bl rt</td>
</tr>
<tr>
<td>wx--37</td>
<td>Estimated Weight</td>
<td>Bl rt</td>
</tr>
<tr>
<td>wx--38</td>
<td>Weight Data OK</td>
<td>Bl rt</td>
</tr>
<tr>
<td>wx--39</td>
<td>IDNET in Motion Error</td>
<td>Bl rt</td>
</tr>
<tr>
<td>wx--40</td>
<td>Critical Scale Error</td>
<td>Bl rt</td>
</tr>
<tr>
<td>wx--41</td>
<td>Stored Weight Mode</td>
<td>Bl rt</td>
</tr>
<tr>
<td>wx--42</td>
<td>Rate OK</td>
<td>Bl rt</td>
</tr>
</tbody>
</table>
Scale Data

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>wx--43</td>
<td>Target Installed for Scale</td>
<td>BI</td>
<td>rt</td>
</tr>
<tr>
<td>wx--44</td>
<td>Selected Scale</td>
<td>BI</td>
<td>rt</td>
</tr>
<tr>
<td>wx--45</td>
<td>High-Precision Weight</td>
<td>BI</td>
<td>rt</td>
</tr>
<tr>
<td>wx--46</td>
<td>MinWeigh LOW indication</td>
<td>BI</td>
<td>rt</td>
</tr>
<tr>
<td>wx--47</td>
<td>Weight OK, but system in setup</td>
<td>BI</td>
<td>rt</td>
</tr>
<tr>
<td>wx--48</td>
<td>Capture Raw Counts state</td>
<td>BI</td>
<td>rt</td>
</tr>
<tr>
<td>wx--49</td>
<td>PowerUp Zero Not Captured</td>
<td>BI</td>
<td>rt</td>
</tr>
<tr>
<td>wx--50</td>
<td>Reserved</td>
<td>BI</td>
<td>rt</td>
</tr>
<tr>
<td>wx--51</td>
<td>Reserved</td>
<td>BI</td>
<td>rt</td>
</tr>
<tr>
<td>wx--52</td>
<td>Reserved</td>
<td>BI</td>
<td>rt</td>
</tr>
<tr>
<td>wx--53</td>
<td>Reserved</td>
<td>BI</td>
<td>rt</td>
</tr>
<tr>
<td>wx--98</td>
<td>Composite Process Status</td>
<td>BI</td>
<td>rt</td>
</tr>
<tr>
<td>wx--99</td>
<td>Composite Process Status</td>
<td>By</td>
<td>rt</td>
</tr>
</tbody>
</table>

2.1.4.2. Methods

The Resident Scale Task sets the first set of statuses to reflect the status of commands to the scale. The second set of statuses to show the dynamic run-time status of the scale weight.

An Application or PLC can get the multiple scale status bits with a single read of the Composite Status fields.

2.1.5. Working Scale Setup Data (WK)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>wk--00</td>
<td>Composite wk block Struct na Composite of entire block</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wk--01</td>
<td>Auto-Tare Threshold</td>
<td>D</td>
<td>rt</td>
</tr>
<tr>
<td>wk--02</td>
<td>Auto-Tare Reset Threshold</td>
<td>D</td>
<td>rt</td>
</tr>
<tr>
<td>wk--03</td>
<td>Auto-Clear Tare Threshold</td>
<td>D</td>
<td>rt</td>
</tr>
<tr>
<td>wk--04</td>
<td>Programmable Tare</td>
<td>D</td>
<td>rt</td>
</tr>
</tbody>
</table>

2.1.5.1. Attributes

Note: The last two digits of each shared data variable is its attribute.
WK--05 Rate Measurement Interval By na
0 = every second
1 = every five seconds
2 = every half-second.

WK--06 Rate Sample Time By na
Number of intervals in sliding window over which the IND780 averages the rate. 1 to 60 intervals

WK--13 Temporarily Enable Stability Filter BI rt
1 = Temporarily enable

WK--14 Programmable Tare in Increments D rt
Application can set this value to initiate a programmable tare in # of increments

WK--15 Reserved By rt

WK--16 MinWeigh measurement uncertainty D na
Accuracy uncertainty entered as weight value in primary units. This can be a value with at least 2 additional decimal positions beyond the displayed increment.

WK--17 MinWeigh tolerance D na
Values from 0.1 to 99.9 as a percentage

WK--18 MinWeigh safety factor By na
Value from 1 to 10

WK--19 MinWeigh weight value D na
The division and decimal location of this value must match the display resolution.

WK--20 Tare table row ID US na
CP sets this field to identify the Row ID of the tare value in WK--04 or WK--14 in Tare Table. Zero indicates value is NOT from Tare Table.

WK--21 Target table row ID US na
CP sets this field to identify the Row ID of the target value in the SP block. Zero indicates the Target is NOT from Target Table.

WK--22 Reserved US rt

WK--23 Reserved US rt

WK--24 PLC Programmable Tare D rt
Programmable tare command

WK--25 MinWeigh Uncertainty Factor D rt
MinWeigh Measurement Uncertainty Factor (c), entered as weight in primary units

2.1.5.2. Method

This block contains Scale Setup Data that may change during run-time. Rate settings, particularly, may change in a process control environment. In some systems, however, these fields are static setup data that never changes.

RATE is the rate of change of weight normalized to the selected weight and rate units.

- cs--08 defines the rate weight units. cs--07 defines the rate time units in either seconds, minute, or hours.
- The Rate Calculation Interval in WK--05 specifies how often the IND780 calculates a new rate value. The permissible selections are 1 second, 5 seconds, and ½ second.
• The Rate Sample Time is in wk--06. It is length of the sampling period used for the IND780’s rate calculation. Permissible values are from 1 to 60 seconds. RATE calculates the “delta weight” or change in weight from the previous interval. RATE stores this new delta weight in an array of delta weights. It calculates the rate as an average delta weight over all intervals in most recent sample time. For example, if the sample time is set to 10 seconds and interval time is set to one second, the rate is the normalized average of the 10 most recent delta weights. Shorter sample times reflect more accurately the instantaneous changes in the rate, but often have much greater fluctuations in rate values. With longer sample times, the rate changes more slowly and smoothly because the rate is calculated over a longer time.

• The IND780 calculates the delta weights using the fine gross weight. It stores the calculated rate in wt--14 in the “fine” resolution. RATE rounds the displayed rate to the x10 resolution of the scale’s division size. For example, if the scale weight resolution is xxx.x, then displayed rate resolution is xxx.xx. It stores the displayed rate as a Unicode string in the wt--08.

2.1.6. Scale Setup (CS)

<table>
<thead>
<tr>
<th>Access:</th>
<th>“Administrator”</th>
</tr>
</thead>
<tbody>
<tr>
<td>The following fields have “Maintenance” level: cs--01, cs--04, cs--07, cs--08, cs--14, cs--15, cs--16, cs--18, cs--43, cs--44.</td>
<td></td>
</tr>
<tr>
<td>The following fields have “Supervisor” level: cs--29 & cs--30.</td>
<td></td>
</tr>
</tbody>
</table>

| Class Code: | cs |
| Data Type: | PS |

ControlNet Class Code: 67 hex

Instances: 5

2.1.6.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>cs--00</th>
<th>Composite cs block</th>
<th>Struct na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>cs--01</td>
<td>Scale Type</td>
<td>By na</td>
<td>Analog Scale, POWERCELL DigiTOL Scale, IDnet High-Precision Scale, DigiNet High-Precision Scale, SICS Lab Balance, T = PDX POWERCELL Truck Scale, U = Summing, None.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cs--02</th>
<th>Scale Location</th>
<th>By na</th>
</tr>
</thead>
<tbody>
<tr>
<td>For IDnet, DigiNet, and Analog scale bases, legal values are 1, 2, 3 and 4 indicating the Option Card Slot of the scale card. For SICS Lab Balances, legal values are 1-4 indicating COM1 – COM4.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cs--03</th>
<th>Scale ID</th>
<th>S21 na</th>
<th>Text Identifier name for scale</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>cs--04</th>
<th>Rate Weight Units</th>
<th>By na</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 = none 5 = tons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 = pounds 6 = troy ounces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 = kilograms 7 = penny weights</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 = grams 8 = ounces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 = metric tons 9 = custom units</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS</td>
<td>Description</td>
<td>Value</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>cs--05</td>
<td>Enable Pushbutton High Prec. Wt.</td>
<td>BL na</td>
</tr>
<tr>
<td>cs--06</td>
<td>IDNet Class II Device</td>
<td>BL na</td>
</tr>
<tr>
<td>cs--07</td>
<td>Rate Time Units</td>
<td>S2 na</td>
</tr>
<tr>
<td>cs--08</td>
<td>Auxiliary Weight Units</td>
<td>By na</td>
</tr>
<tr>
<td>cs--10</td>
<td>Display Auxiliary Weight</td>
<td>BL na</td>
</tr>
<tr>
<td>cs--11</td>
<td>Display Rate</td>
<td>BL na</td>
</tr>
<tr>
<td>cs--12</td>
<td>Custom Units Name</td>
<td>S13 na</td>
</tr>
<tr>
<td>cs--13</td>
<td>Custom Units Conversion Factor</td>
<td>D na</td>
</tr>
<tr>
<td>cs--14</td>
<td>Low-Pass Filter Corner Frequency</td>
<td>D na</td>
</tr>
<tr>
<td>cs--15</td>
<td>Low-Pass Filter Poles</td>
<td>By na</td>
</tr>
<tr>
<td>cs--16</td>
<td>Notch Filter Frequency</td>
<td>D na</td>
</tr>
<tr>
<td>cs--17</td>
<td>Notch Filter Type</td>
<td>By na</td>
</tr>
<tr>
<td>cs--18</td>
<td>Ultra-Stability Filter Enable</td>
<td>BL na</td>
</tr>
<tr>
<td>cs--19</td>
<td>Add this Scale to Summing Scale</td>
<td>BL na</td>
</tr>
<tr>
<td>cs--20</td>
<td>Units Switch Enable</td>
<td>BL na</td>
</tr>
<tr>
<td>cs--21</td>
<td>Application Process Type</td>
<td>By na</td>
</tr>
<tr>
<td>cs--22</td>
<td>Custom Continuous Output Freq</td>
<td>D na</td>
</tr>
<tr>
<td>cs--23</td>
<td>Enable Estimated Preload</td>
<td>By na</td>
</tr>
<tr>
<td>CS</td>
<td>Description</td>
<td>Value</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>cs--25</td>
<td>Custom Units Increment Size</td>
<td>D</td>
</tr>
<tr>
<td>cs--26</td>
<td>SICS Lab Scale Calibration Units</td>
<td>By</td>
</tr>
<tr>
<td>cs--27</td>
<td>Reserved</td>
<td>D</td>
</tr>
<tr>
<td>cs--28</td>
<td>Reserved</td>
<td>UL</td>
</tr>
<tr>
<td>cs--29</td>
<td>MinWeigh feature</td>
<td>By</td>
</tr>
<tr>
<td>cs--30</td>
<td>MinWeigh entry mode</td>
<td>By</td>
</tr>
<tr>
<td>cs--31</td>
<td>Auto-Calibration for SICS Scale</td>
<td>By</td>
</tr>
<tr>
<td>cs--32</td>
<td>Stability Timeout</td>
<td>By</td>
</tr>
<tr>
<td>cs--33</td>
<td>SICS External Calibration Weight</td>
<td>D</td>
</tr>
<tr>
<td>cs--34</td>
<td>SICS Zero Calibration Weight</td>
<td>D</td>
</tr>
<tr>
<td>cs--35</td>
<td>Reserved</td>
<td>D</td>
</tr>
<tr>
<td>cs--36</td>
<td>SICS Balance Description Data</td>
<td>S30</td>
</tr>
<tr>
<td>cs--37</td>
<td>SICS Software Description & Type</td>
<td>S30</td>
</tr>
<tr>
<td>cs--38</td>
<td>SICS Balance Serial Number</td>
<td>S30</td>
</tr>
<tr>
<td>cs--39</td>
<td>SICS Software Ident. Number</td>
<td>S30</td>
</tr>
<tr>
<td>cs--40</td>
<td>IDNet Restart/Reset</td>
<td>S13</td>
</tr>
<tr>
<td>cs--41</td>
<td>IDNet Approval code</td>
<td>S13</td>
</tr>
<tr>
<td>cs--42</td>
<td>IDNet Scale Update Rate</td>
<td>S25</td>
</tr>
<tr>
<td>cs--43</td>
<td>IDNet Scale Vibration Adapter</td>
<td>S25</td>
</tr>
<tr>
<td>cs--44</td>
<td>IDNet Weighing Process Adapter</td>
<td>S25</td>
</tr>
<tr>
<td>cs--45</td>
<td>IDNet Automatic Stability Detection</td>
<td>S25</td>
</tr>
<tr>
<td>cs--46</td>
<td>IDNet Auto-Zero Setting</td>
<td>S25</td>
</tr>
<tr>
<td>cs--47</td>
<td>IDNet Software Part Number</td>
<td>S12</td>
</tr>
<tr>
<td>cs--48</td>
<td>IDNet Calibration Ident Code</td>
<td>S3</td>
</tr>
</tbody>
</table>
0 = Unknown, 1 = Generic, 2 = 4-Series, 3 = X-Base, 4 = WM/WMH, 11 = Generic Device.

Unless 11 is written to this variable, the Resident Scale Task sets this value if it determines the scale type is SICS.

Notes: The value 11, Generic Device, differs from 1, Generic, which is reserved for use by the IND780. Setting cs--49 to 11 will override all other settings and treat the device as if it were a Generic device. Only supported SICS Level 0 & 1 commands will be issued to the device.

All other values – 0, 1, 2, 3, 4 – are reserved for use by IND780, and should never be written to cs--49. Only 11 forces the IND780 to treat the connected scale as generic, regardless of its determination of that scale’s type.

Description of operation for Generic Device: After a master reset, IND780 has CS--49=0, which means for a SICS scale the IND780 will attempt to identify the scale and write back the associated value into CS--49. If IND780 operation is to be restricted to a generic device, write the value 11 into the CS--49 and cycle the terminal’s power. This feature is useful when connecting a SICS scale but the SICS level 2 or above commands are not working well with the IND780.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Purpose</th>
<th>Setting Options</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>cs--49</td>
<td>SICS Scale Type</td>
<td>By na</td>
<td>0 = Unknown, 1 = Generic, 2 = 4-Series, 3 = X-Base, 4 = WM/WMH, 11 = Generic Device. Unless 11 is written to this variable, the Resident Scale Task sets this value if it determines the scale type is SICS.</td>
</tr>
<tr>
<td>cs--50</td>
<td>SICS DP Location Select</td>
<td>By na</td>
<td>0 = Disabled, 1 = Enabled. RST sets this for CP to indicate feature available</td>
</tr>
<tr>
<td>cs--51</td>
<td>SICS Auto Calibrate Select</td>
<td>By na</td>
<td>0 = Disabled, 1 = Enabled. RST sets this for CP to indicate feature available</td>
</tr>
<tr>
<td>cs--52</td>
<td>SICS External Calibration Select</td>
<td>By na</td>
<td>0 = Disabled, 1 = Enabled. RST sets this for CP to indicate feature available</td>
</tr>
<tr>
<td>cs--53</td>
<td>SICS Initial Adjustment Select</td>
<td>By na</td>
<td>0 = Disabled, 1 = Enabled. RST sets this for CP to indicate feature available</td>
</tr>
<tr>
<td>cs--54</td>
<td>SICS Internal Calibration Select</td>
<td>By na</td>
<td>0 = Disabled, 1 = Enabled. RST sets this for CP to indicate feature available</td>
</tr>
<tr>
<td>cs--55</td>
<td>SICS Editable Test Load</td>
<td>By na</td>
<td>0 = Disabled, 1 = Enabled. RST sets this for CP to indicate feature available</td>
</tr>
<tr>
<td>cs--56</td>
<td>SICS Auto Zero Select</td>
<td>By na</td>
<td>0 = Disabled, 1 = Enabled. RST sets this for CP to indicate feature available</td>
</tr>
<tr>
<td>cs--57</td>
<td>SICS Weight Filter Select</td>
<td>By na</td>
<td>0 = Disabled, 1 = Enabled. RST sets this for CP to indicate feature available</td>
</tr>
<tr>
<td>cs--58</td>
<td>SICS Filtering Select</td>
<td>By na</td>
<td>0 = Disabled, 1 = Enabled. RST sets this for CP to indicate feature available</td>
</tr>
<tr>
<td>cs--59</td>
<td>SICS Motion Select</td>
<td>By na</td>
<td>0 = Disabled, 1 = Enabled. RST sets this for CP to indicate feature available</td>
</tr>
</tbody>
</table>
Methods

SUMMING scale provides an arithmetic sum of the displayed values for the configured scale channels. It provides all metrological display elements provided for the individual scale channels. The Center of Zero, Motion, Over Range, and Under Range are the logical OR of these same conditions for all summed scale channels. The IND780 sends a Zero command for the Summing scale to all of the scale channels for individual action. A Tare or Clear Tare command to the Summing scale only affects the summation. A Tare or Clear Tare command to the component scale channels affects only component scale. The Summing scale is also a data source for printing and data transmission. The Weights and Measures seal protects the Summing scale configuration.

2.1.6.2.1. Filtering

The goal of filtering the weight counts is to remove the internal and external noise from the weight signal. Ideally, users of weight indication would like instant response to a weight input (settling time = 0), and immunity from all signal disturbances. In practice, in selecting a filter, you must trade off settling time and disturbance rejection to find an acceptable compromise.

There are two major classes of weighing applications: transaction and process weighing. In transaction weighing, a load to the scale base is more or less a step input, and the user only wants the actual static weight value of the load. Most shipping, vehicle, food, and service scales fall into this category. Settling time requirements typically range from 0.5 seconds in service scales to several seconds in vehicle or livestock scales. Disturbance rejection requirements vary widely within this weighing classification, but usually there is a need for a very stable final weight reading.

In process weighing, automation equipment or humans continuously add the load over some time. Even though only the final weight reading may be preserved, knowledge of the time varying weight reading is important during the weighing process. Batching, filling, and in-motion weighing fall into
this category. Settling time requirements are usually more relaxed because the “final” settling time for a ramp input is less than that of the same load applied as a step input. Disturbance rejection is important since many types of automation equipment introduce vibrations. Stability of the “final” value is somewhat less important.

IND780 filtering has a large range of adjustment for both disturbance rejection and settling time to meet all application requirements. Since these two parameters are dependent, some experimentation is usually required to find the best fit for the application.

The following describes the Analog Load Cell Interface filtering. The IND780 Analog Scale Interface provides a 366 Hz A/D sampling rate, which permits highly effective digital filtering. Since most of the filtering is digital, it is easily adjusted over a wide range of selections via soft switch setup to meet specific site needs. IND780 has three types of configurable digital filters:

1. **Low Pass Filter**

All weighing applications use the low pass filter. The user can specify the corner frequency of the pass band and the slope of the transition band. The pass band extends from DC (0 Hz) to the corner frequency. The low pass filter accepts the frequencies within this low-pass range with little or no attenuation, but attenuates frequencies above the pass band according to the slope of the transition band.

The scale is measuring the DC signal (static weight), so it is tempting to make the corner frequency very low to reject all “noise”. However, the narrower the pass band, the longer the delay or settling time before we get the final value. As the corner frequency is increased, the scale will settle faster, but will also allow more noise through.

The transition slope describes the rate of change of the attenuation once outside the pass band. The steeper the slope, the more effective a filter is at rejecting a disturbance that is near the corner frequency. Making the slope infinite will cut off all frequencies above the corner. Again the price is delay; the steeper the slope, the longer the settling time.

The IND780 provides a multi-pole Infinite Impulse Response (IIR) low pass digital filter, with Service Technician control over both the filter corner frequency and the sharpness of the transition band slope. The corner frequency is defined in Hz; its adjustment range is 0.2 through 10 Hz. The number of filter poles defines the band slope; there can be from 2 to 10 poles, providing cutoff slopes of -40 through -200 dB/decade. This large range of adjustability provides effective filtering for almost any situation.

2. **Notch Filter**

An ideal notch filter provides infinite attenuation at a single frequency, and little or no attenuation at other frequencies. This type of filter is useful in special cases where there is a single noise frequency near or below the corner frequency of the low pass filter. In such cases, use of the notch filter can provide additional attenuation for a troublesome noise source and may permit opening the pass band of the low pass filter for a faster step response. The IND780 implements the notch filter as a Finite Impulse Response (FIR) filter, and provides the fundamental notch plus additional notches at multiples of the fundamental notch frequency. Specifying the notch frequency in Hz adjusts the notch filter. The notch filter is applicable to all weighing applications, but only to the Analog Load Cell scale.
3. Ultra-Stability Filter

Ultra-Stability Filtering algorithm is for use in transaction applications where it is very difficult to achieve stable weight readings due to excessive motion on the scales. Examples are truck scales in very windy locations and livestock weighing scales. The Ultra-Stability filtering algorithm uses the standard low-pass filtering as long as there is a rapid motion on the scale so that the operator can also observe the weight changing. When the motion begins to die down, this algorithm switches to a very stiff filter that strongly dampens any noise on the scale. Then, the operator can record a stable weight reading. Process weighing applications cannot use the ultra-stability filter, since the non-linear action of the filter switching may cause inaccurate cutoffs in batching or filling applications.

2.1.7. Scale Tare Setup (CT)

Access:	“Administrator”
Class Code:	ct
Data Type:	PS
ControlNet Class Code:	B7 hex
Instances:	5

2.1.7.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

ct--00	Composite ct block	Struct na	Composite of entire block
ct--01	Tare Enabled	Bl na	1 = enable Tare feature.
ct--02	Pushbutton Tare Enabled	Bl na	
ct--03	Keyboard Tare Enabled	Bl na	
ct--04	Auto-Tare Enabled	Bl na	
ct--05	Re-arm Autotare No Motion	Bl na	1 = re-arm autotare only when there is no motion after weight falls below re-arm threshold (wk--02)
ct--06	Auto-Clear Tare Enabled	Bl na	1 = automatically clear tare when weight falls below auto-clear weight threshold (wk--03)
ct--07	Auto-Clear Tare after Print	Bl na	
ct--08	Auto-Clear Tare Motion	Bl na	
ct--09	Clear Tare Only at Gross Zero	Bl na	
ct--10	Incremental Chain Tare Only	Bl na	
ct--11	Display Tare Enabled	Bl na	
ct--12	Weights & Measures Interlock	Bl na	
ct--13	Net-Sign Correction Enabled	Bl na	
ct--14	Do IDNET/SICS Tare in IND780	Bl	na
ct--15	Additive Tare Enabled	Bl	na
ct--16	Multiplicative Tare Enabled	Bl	na
ct--17	Sandwich Tare Enabled	Bl	na
ct--18	Reset tare on power-up	Bl	na
1 = Reset the tare to zero on power-up.			
ct--19	Clear Tare on Zero	Bl	na
ct--20	Reserved	Bl	na
ct--21	Reserved	Bl	na

2.1.7.2. Methods

Tare is the weight of an empty container. The IND780 can mathematically eliminate this weight from the gross weight and show only the contents, or net weight. The IND780 always displays the gross, net, and tare weights using the same display resolution and units. The IND780 always has tare weight available for recall and display, and it always identifies the tare weight. A tare weight of zero is illegal.

There are several methods for capturing tare:

- Pushbutton Tare captures current weight reading as the tare weight upon operator command, at highest internal weight resolution available. There must be no motion on the scale for 3 seconds.

- Auto-Tare captures the current weight as the tare weight when the current weight exceeds the upscale threshold weight, wk--01, and the scale reaches a “no motion” state. The IND780 resets the auto-tare trigger when the weight falls below a downscale threshold, wk--02, and the scale is in an optional stable weight condition. There must be no motion on the scale for 3 seconds.

- The IND780 accepts a Keyboard Tare or a Programmable Tare at either display resolution or full internal resolution. The operator may recall tare on demand. Application specific software packages can set the Programmable Tare weight in wk--04. The IND780 rounds the Tare to the scale display resolution before using it in calculations. Canadian W&M requires keyboard tare to be entered at the scale display resolution.

Auto-Clear Tare operates in conjunction with Auto-Tare. It automatically clears the tare after the weight exceeds an upscale weight threshold, a stable reading achieved, followed by the weight returning below Auto-Clear Tare threshold, wk--03. You may also set the IND780 to automatically clear tare after the IND780 prints.

Net Sign Correction delays the decision of which weighment is the gross weight and which weighment is the tare weight until the operator prints the ticket. At that time, the IND780 compares the two weighments and takes the lower weight as the tare weight, so the net weight is always a positive value. It resolves this dilemma:

- weigh a full truck first and, after emptying the truck, take the tare weight of the empty truck to find the net weight of the contents.
- take the tare weight of an empty truck first and, after loading the truck, take the full weight of the truck to find the net weight of the contents.

When you enable the **Additive Tare** Option, the operator may enter a keyboard value that the IND780 adds to the current tare value to generate a new tare value.

When you enable the **Multiplicative Tare** Option, the operator may enter a keyboard value that the IND780 uses to multiply the current tare value. The resulting product becomes the new tare value.

When you enable the **Sandwich Tare** Option, the operator may place an additional weight on the scale. The IND780 adds the additional weight to the tare weight and the net weight remains the same.

2.1.7.2.1. Weights & Measures Compliance

Tare Interlock, which is the only tare configuration field the Weights & Measures seal protects, enforces the following operations:

- In Europe & Australia, you may do incremental chain tares only.
- In USA, you cannot do chain tares.
- You only capture tare in first range of a multi-range or multi-interval scale.
- You must capture Power-Up zero before capturing a Tare weight.
- You may clear tare only at Gross zero.

IDNET Tare Option. The IND780 enforces taking tare through the high precision base when the Legal-for-Trade switch is ON. The Legal for Trade switch option takes precedence over the setup selection to manage IDENT Tare within the IND780 rather than within the high-precision base.

In **Multi-Interval** weighing, in Europe and Australia, you may take Pushbutton and AutoTare in any interval. In legal for trade mode, Preset Tare entries must be within the lowest interval. The IND780 generates an error message when the entry is too large. If not in legal for trade mode, Preset Tare entries may be in any interval. In the U.S. legal-for-trade mode, all tare entries must be in the lowest weighing range.

2.1.8. Scale Zero Setup (ZR)

Access:	“Administrator”	
Class Code:	zr	
Data Type:	PC	
Instances:	5	The first 4 instances are in EEPROM. The fifth instance for the Summing Scale is in BRAM.

2.1.8.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

zr--00	Composite zr block	Struct	na	Composite of entire block
zr--01	Power-Up Zero Capture Pos Range	By	na	percent of capacity (0-100)
zr--02	Power-Up Zero Capture Neg Range	By	na	percent of capacity (0-100)
zr--03	Pushbutton Zero Positive Range	By	na	percent of capacity (0-100)
2.1.8.2. Methods

Zero is the interval between -0.5d and +0.5d, where “d” is a division or display increment.

Center of Zero is the interval between -0.25d and +0.25d in most market regions. In Canada, Center of Zero is the interval between -0.20d and +0.20d. Center of Zero is a Boolean system output, TRUE when the display reading is in the center of zero range. IND780 evaluates Center of Zero at each new weight update. Metrology regulations usually require that the scale must show a Center of Zero status indication to the user at the primary weight display. Some jurisdictions require that the indication be present only while in gross weight mode, others require it in both gross and net mode.

When the service technician calibrates the scale, the IND780 records the Calibrated Zero reading internally. The IND780 also maintains a separate Current Zero reading that compensates for conditions that may change the scale so that it no longer indicates zero when the platform is empty. Such conditions include thermal effects and the accumulation of matter on the scale. The Center of Zero output is an indication of the quality of the Current Zero. There are several methods available to establish a new Current Zero reading. In each case, there are limits applied to the acceptance of this command by the scale.

On system power up, the IND780 automatically attempts to establish a new Current Zero. The Power-up-Zero logic establishes a Current Zero when the present scale reading is stable and falls within the allowed tolerance from Calibrated Zero. This Power-up-Zero tolerance is the percentage of the scale capacity, specified for (+) and (-) tolerance limits. The service technician can disable Power-up-Zero.

Either the operator or a remote device can also attempt a Pushbutton Zero command. This command succeeds if the scale reading is stable and falls within its allowed tolerance from the Calibrated Zero. The Pushbutton Zero tolerance limits are a percentage of scale capacity, specified for (+) and (-) tolerance limits. The service technician can disable Pushbutton Zero.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>zr-04</td>
<td>Pushbutton Zero Negative Range</td>
</tr>
<tr>
<td>zr-05</td>
<td>Auto-Zero Maintenance Window</td>
</tr>
<tr>
<td>zr-06</td>
<td>Under-Zero Divisions</td>
</tr>
<tr>
<td>zr-07</td>
<td>Pushbutton Zero</td>
</tr>
<tr>
<td>zr-08</td>
<td>Auto-Zero in Gross Mode</td>
</tr>
<tr>
<td>zr-09</td>
<td>Auto-Zero in Gross & Net Mode</td>
</tr>
<tr>
<td>zr-10</td>
<td>Zero-Indication in Gross Mode</td>
</tr>
<tr>
<td>zr-11</td>
<td>Zero-Indication in Gross&Net Mode</td>
</tr>
<tr>
<td>zr-12</td>
<td>Reset to Calibrated 0 on Power-Up</td>
</tr>
<tr>
<td>zr-99</td>
<td>EEPROM Block Checksum</td>
</tr>
</tbody>
</table>
The IND780 also provides **Automatic Zero Maintenance** or AZM. Within the AZM operating range, the IND780 makes small adjustments to the Current Zero reading to drive the weight reading toward true numeric zero. This feature operates only within a small range around true zero. The AZM moves toward zero at a rate of correction (correction amount per unit time) of 0.07 increments per second. “zr--05” configures the operating range of this feature in number of scale increments. Setting “zr--05” to 0 disables Automatic Zero Maintenance.

Under-Zero Divisions are the maximum number of display increments below zero that the scale will operate. When the weight falls below the Under-Zero Divisions, the weight display shows only an error display, the Under Zero logical status output is TRUE, and IND780 indicates that the weight transmitted is invalid. Setting the Under-Zero Divisions to 99 disables the under-zero check.

IDNET Power-Up Restart sets the power up operation of the IDNET base. When Restart = disabled, the IND780/high precision base clears the current tare and enforces a re-zeroing of the base after a restart of the base. When Restart = enabled, the IND780 terminal/high precision base preserves the current zero and tare values after a restart of the base.

The IND780 protects the Zero Configuration Settings when the Weights and Measures seal is in place.

2.1.9. Scale Totalization Process Data (TZ)

<table>
<thead>
<tr>
<th>Access:</th>
<th>“Supervisor”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code:</td>
<td>tz</td>
</tr>
<tr>
<td>Data Type:</td>
<td>PP</td>
</tr>
<tr>
<td>Instances:</td>
<td>5</td>
</tr>
</tbody>
</table>

2.1.9.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

tz--00	Composite tz block Struct na	Composite of entire block
tz--01	Grand Total Weight D na	Grand Total Weight
tz--02	Grand Total Transaction Counter UL na	Grand Total Transaction Counter
tz--03	Subtotal Weight D na	Subtotal Weight
tz--04	Subtotal Transaction Counter UL na	Subtotal Transaction Counter
tz--05	Sequential Number UL na	Scale Transaction Counter maintained separately for each scale (similar function to TERMINAL Consecutive Number)
tz--06	Reserved D na	
tz--07	Reserved UL na	

2.1.9.2. Method

Each time a demand print transaction occurs, the IND780 adds the weight value to the totalization for each scale, according to the setup selections in the TS block. The IND780 saves totals in primary units only.

The Sequential Number is a Transaction Number that the IND780 keeps separately for each scale.
2.1.10. Totalization Setup (TS)

Access: "Supervisor"

ts-01, *ts*-02, *ts*-03, *ts*-04, and *ts*-05 have "Maintenance" access level.

Class Code: ts
Data Type: PS
Instances: 5 One per scale.

2.1.10.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Access</th>
<th>Data Type</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ts-00</td>
<td>Composite ts block</td>
<td>Struct</td>
<td>na</td>
<td>Composite of entire block</td>
</tr>
<tr>
<td>ts-01</td>
<td>Grand Total Enable</td>
<td>By</td>
<td>na</td>
<td>Automatically add Demand Print weight to Grand Total weight:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = Gross Weight</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 = Net Weight.</td>
</tr>
<tr>
<td>ts-02</td>
<td>Clear Grand Total on Totals Print</td>
<td>Bl</td>
<td>na</td>
<td>0 = no, 1 = Clear the Grand Total after printing the Grand Totals.</td>
</tr>
<tr>
<td>ts-03</td>
<td>Subtotal Enable</td>
<td>By</td>
<td>na</td>
<td>Automatically add Demand Print weight to Subtotal weight:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = Gross Weight</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 = Net Weight.</td>
</tr>
<tr>
<td>ts-04</td>
<td>Clear Subtotal on Totals Print</td>
<td>Bl</td>
<td>na</td>
<td>0 = no, 1 = Clear the Subtotal after printing the Subtotals.</td>
</tr>
<tr>
<td>ts-05</td>
<td>Units for Adding to Totals</td>
<td>By</td>
<td>na</td>
<td>Only add Demand Print weight to totals under the following conditions:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = Printing weight in Primary Units Only</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = Printing weight in Secondary Units Only</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 = Printing weight in any units.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The IND780 stores totals in primary units only so it may have to make a weight conversion.</td>
</tr>
<tr>
<td>ts-06</td>
<td>Enable Sequential Number</td>
<td>By</td>
<td>na</td>
<td>0 = no, 1 = yes</td>
</tr>
<tr>
<td>ts-07</td>
<td>Sequential Number Preset Enable</td>
<td>Bl</td>
<td>na</td>
<td>0 = no, 1 = yes</td>
</tr>
<tr>
<td>ts-08</td>
<td>Sequential Number Preset</td>
<td>L</td>
<td>na</td>
<td>Preset value to reset the sequential counter</td>
</tr>
<tr>
<td>ts-09</td>
<td>Sequential Number Reset Enable</td>
<td>Bl</td>
<td>na</td>
<td>0 = no, 1 = yes</td>
</tr>
<tr>
<td>ts-10</td>
<td>Reserved</td>
<td>L</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>ts-11</td>
<td>Reserved</td>
<td>Bl</td>
<td>na</td>
<td></td>
</tr>
</tbody>
</table>
2.1.10.2. Method

Each time a demand print transaction occurs, the IND780 adds the weight value to the totalization for each scale, according to the setup selections in this block. The IND780 saves totals in primary units only.

Scale Grand Totals, SubTotals, and Sequential Numbers are stored in the TZ block in process data.

The Sequential Number is a Transaction Number that the IND780 keeps separately for each scale.

2.1.11. System Process Data (XT)

<table>
<thead>
<tr>
<th>Access:</th>
<th>“Read Only” access, level is not customizable.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code:</td>
<td>xt</td>
</tr>
<tr>
<td>ControlNet Class Code:</td>
<td>7C hex</td>
</tr>
<tr>
<td>Instances:</td>
<td>1</td>
</tr>
</tbody>
</table>

2.1.11.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>xt0100</th>
<th>Composite xt block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>xt0101</td>
<td>Currently Selected Scale</td>
<td>By</td>
<td>rt</td>
<td>RST maintains this field</td>
</tr>
<tr>
<td>xt0102</td>
<td>Number of Q.i K1/K2 Licenses</td>
<td>By</td>
<td>rt</td>
<td>Number of Q.i K1/K2 licenses in cluster. The Q.i Master gathers the individual licenses from the nodes in the cluster and writes the sum of the licenses here.</td>
</tr>
<tr>
<td>xt0103</td>
<td>Currently Selected Node</td>
<td>By</td>
<td>rt</td>
<td>RST maintains this field</td>
</tr>
<tr>
<td>xt0104</td>
<td>PDS Unlock Time Counter</td>
<td>US</td>
<td>rt</td>
<td>PDM MT Service Security Number of minutes remaining in the Unlock state. 0 = MT Service Security is locked</td>
</tr>
<tr>
<td>xt0105</td>
<td>PDX Unlock Tries</td>
<td>US</td>
<td>rt</td>
<td>Number of MT Service Security Unlock tries remaining</td>
</tr>
<tr>
<td>xt0106</td>
<td>Reserved</td>
<td>D</td>
<td>rt</td>
<td></td>
</tr>
<tr>
<td>xt0107</td>
<td>Reserved</td>
<td>D</td>
<td>rt</td>
<td></td>
</tr>
<tr>
<td>xt0108</td>
<td>Reserved</td>
<td>S40</td>
<td>rt</td>
<td></td>
</tr>
<tr>
<td>xt0109</td>
<td>Reserved</td>
<td>S40</td>
<td>rt</td>
<td></td>
</tr>
</tbody>
</table>
2.2. Calibration and Monitoring

2.2.1. Calibration Parameters (QP)

<table>
<thead>
<tr>
<th>Access:</th>
<th>“Operator”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code:</td>
<td>qp</td>
</tr>
<tr>
<td>Data Type:</td>
<td>D</td>
</tr>
<tr>
<td>Instances:</td>
<td>1, referring to the Selected Scale</td>
</tr>
</tbody>
</table>

2.2.1.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Class Code</th>
<th>Data Type</th>
<th>Instance Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>qp0100</td>
<td>Composite qp block</td>
<td>Struct</td>
<td>na</td>
<td>Composite of entire block</td>
</tr>
<tr>
<td>qp0101</td>
<td>Primary Units Type</td>
<td>By</td>
<td>na</td>
<td>1 = pounds, 2 = kilograms, 3 = grams, 4 = metric tons, 5 = tons, 6 = troy ounces, 7 = pennyweights, 8 = ounces</td>
</tr>
<tr>
<td>qp0102</td>
<td>Secondary Units Type</td>
<td>By</td>
<td>na</td>
<td>1 = pounds, 2 = kilograms, 3 = grams, 4 = metric tons, 5 = tons, 6 = troy ounces, 7 = pennyweights, 8 = ounces, 9 = custom units</td>
</tr>
<tr>
<td>qp0103</td>
<td>Cal Units</td>
<td>By</td>
<td>na</td>
<td>1 = pounds, 2 = kilograms, 3 = grams, 4 = metric tons, 5 = tons</td>
</tr>
<tr>
<td>qp0104</td>
<td>Number Ranges</td>
<td>By</td>
<td>na</td>
<td>1 = pounds, 2 = kilograms, 3 = grams, 4 = metric tons, 5 = tons</td>
</tr>
<tr>
<td>qp0105</td>
<td>Low Increment Size</td>
<td>D</td>
<td>na</td>
<td>1 = pounds, 2 = kilograms, 3 = grams, 4 = metric tons, 5 = tons</td>
</tr>
<tr>
<td>qp0106</td>
<td>Mid Increment Size</td>
<td>D</td>
<td>na</td>
<td>1 = pounds, 2 = kilograms, 3 = grams, 4 = metric tons, 5 = tons</td>
</tr>
<tr>
<td>qp0107</td>
<td>High Increment Size</td>
<td>D</td>
<td>na</td>
<td>1 = pounds, 2 = kilograms, 3 = grams, 4 = metric tons, 5 = tons</td>
</tr>
<tr>
<td>qp0108</td>
<td>Low Mid Threshold</td>
<td>D</td>
<td>na</td>
<td>1 = pounds, 2 = kilograms, 3 = grams, 4 = metric tons, 5 = tons</td>
</tr>
<tr>
<td>qp0109</td>
<td>Mid Hi Threshold</td>
<td>D</td>
<td>na</td>
<td>1 = pounds, 2 = kilograms, 3 = grams, 4 = metric tons, 5 = tons</td>
</tr>
<tr>
<td>qp0110</td>
<td>Scale Capacity</td>
<td>D</td>
<td>na</td>
<td>1 = pounds, 2 = kilograms, 3 = grams, 4 = metric tons, 5 = tons</td>
</tr>
<tr>
<td>qp0111</td>
<td>Number UpScale test points</td>
<td>By</td>
<td>na</td>
<td>1, 2, 3, or 4</td>
</tr>
<tr>
<td>qp0112</td>
<td>Low Cal Weight</td>
<td>D</td>
<td>na</td>
<td>for 3 or 4 Upscale test points</td>
</tr>
<tr>
<td>qp0113</td>
<td>Mid Cal Weight</td>
<td>D</td>
<td>na</td>
<td>for 2, 3 or 4 Upscale test points</td>
</tr>
<tr>
<td>qp0114</td>
<td>High Cal Weight</td>
<td>D</td>
<td>na</td>
<td>for 1, 2, 3, or 4 Upscale test points</td>
</tr>
<tr>
<td>qp0115</td>
<td>CALFREE Load Cell Capacity</td>
<td>D</td>
<td>na</td>
<td>Load Cell Sensor Capacity, e.g., 5000 kg</td>
</tr>
<tr>
<td>qp0116</td>
<td>CALFREE Load Cell Capacity Units</td>
<td>By</td>
<td>na</td>
<td>1 = pounds, 2 = kilograms, 3 = grams, 4 = metric tons, 5 = tons</td>
</tr>
<tr>
<td>qp0117</td>
<td>CALFREE Rated Load Cell Output</td>
<td>D</td>
<td>na</td>
<td>Sensor output at the rated capacity, e.g., 2.0 mV/V</td>
</tr>
<tr>
<td>qp0118</td>
<td>CALFREE Gain Jumper</td>
<td>By</td>
<td>na</td>
<td>2 = default 2mV/V, 3 = 3mV/V</td>
</tr>
</tbody>
</table>
Scale Data

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Data Type</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>qp0119</td>
<td>CALFREE Estimated Preload</td>
<td>D</td>
<td>na</td>
</tr>
<tr>
<td>qp0120</td>
<td>CALFREE Estimated Preload Units</td>
<td>By</td>
<td>na</td>
</tr>
<tr>
<td>qp0121</td>
<td>XLow Cal Weight</td>
<td>D</td>
<td>na</td>
</tr>
<tr>
<td>qp0122</td>
<td>Number of POWERCELLs</td>
<td>By</td>
<td>na</td>
</tr>
<tr>
<td>qp0123</td>
<td>Shift adjust mode</td>
<td>By</td>
<td>na</td>
</tr>
<tr>
<td>qp0124</td>
<td>CALFREE Gravity Geo Code</td>
<td>By</td>
<td>na</td>
</tr>
</tbody>
</table>

2.2.1.2. Method

Application must set these user-entered calibration parameters to begin scale calibration.

2.2.2. Cell Calibration (CC)

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Data Type</th>
<th>Class Code</th>
<th>ControlNet Class Code</th>
<th>Instances</th>
</tr>
</thead>
<tbody>
<tr>
<td>cc--00</td>
<td>Composite cc block</td>
<td>Struct</td>
<td>na</td>
<td>Composite of entire block</td>
</tr>
<tr>
<td>cc--01</td>
<td>Calibrated Zero Counts 1 – 24</td>
<td>AL24</td>
<td>na</td>
<td>Contains one long integer for each cell.</td>
</tr>
<tr>
<td>cc--02</td>
<td>Calibrated Span Counts 1 – 24</td>
<td>AL24</td>
<td>na</td>
<td>Contains one long integer for each cell.</td>
</tr>
<tr>
<td>cc--99</td>
<td>EEPROM Block Checksum</td>
<td>US</td>
<td>na</td>
<td></td>
</tr>
</tbody>
</table>

2.2.2.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

2.2.2.2. Method

This block records the zero and span counts for individual cells during calibration. Scale Monitoring uses these values for validating the health of a POWERCELL Scale.
2.2.3. Scale Calibration (CE)

<table>
<thead>
<tr>
<th>Access:</th>
<th>“Administrator”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code:</td>
<td>ce</td>
</tr>
<tr>
<td>Data Type:</td>
<td>PC</td>
</tr>
<tr>
<td>ControlNet Class Code:</td>
<td>72 hex</td>
</tr>
<tr>
<td>Instances:</td>
<td>5</td>
</tr>
</tbody>
</table>

The first 4 instances are in EEPROM. The fifth instance for the Summing Scale is in BRAM.

2.2.3.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>ce--00</th>
<th>Composite ce block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
</table>

| ce--01 | Address of First Load Cell | By | na | For POWERCELL Scale |
| ce--02 | Number Load Cells | By | na | For POWERCELL Scale |

ce--03	Primary Units	By	na	0 = none	1 = pounds	2 = kilograms	3 = grams	4 = metric tons	5 = tons	6 = troy ounces	7 = penny weights	8 = ounces
ce--04	Number Ranges	By	na	1, 2, or 3								
ce--05	Low Range Increment Size	D	na	Increment size is in Calibration units								
ce--06	Mid Range Increment Size	D	na	Multi-ranging parameters are in Cal units								
ce--07	High Range Increment Size	D	na									
ce--08	Low-Mid Range Threshold	D	na									
ce--09	Mid-High Range Threshold	D	na									
ce--10	Scale Capacity	D	na	Scale capacity is in Calibration units								

| ce--11 | Secondary Units | By | na | 0 = none | 1 = pounds | 2 = kilograms | 3 = grams | 4 = metric tons | 5 = tons | 6 = troy ounces | 7 = penny weights | 8 = ounces | 9 = custom units |
| ce--19 | Calibration Units | By | na | 0 = none | 1 = pounds | 2 = kilograms | 3 = grams | 4 = metric tons | 5 = tons |

2.2.3.1.1. Multi-Ranging Parameters

| ce--19 | Calibration Units | By | na | 0 = none | 1 = pounds | 2 = kilograms | 3 = grams | 4 = metric tons | 5 = tons |

2.2.3.1.2. Calibration Parameters

<p>| ce--20 | Zero Calibration Counts | L | na | Zero calibration point for all scales |</p>
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Default</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ce--21</td>
<td>High Calibration Counts</td>
<td>L</td>
<td>na</td>
<td>High calibration point for all calibrated scale bases. Weight is in calibration units.</td>
</tr>
<tr>
<td>ce--22</td>
<td>High Calibration Weight</td>
<td>D</td>
<td>na</td>
<td>Calibrates scale bases. Weight is in calibration units.</td>
</tr>
<tr>
<td>ce--23</td>
<td>Mid Calibration Counts</td>
<td>L</td>
<td>na</td>
<td>Calibration point for non-linear scale bases with 1, 2, or 3 points of non-linearity. Weight is in calibration units.</td>
</tr>
<tr>
<td>ce--24</td>
<td>Mid Calibration Weight</td>
<td>D</td>
<td>na</td>
<td>This value represents the gravitational acceleration depending on the latitude and altitude of the specific location where you last calibrated the IND780. The IND780 uses it to adjust the calculated weight value when you calibrate the IND780 in one location and operate it in a different region of the world. Any value other than 0-31 disables this feature.</td>
</tr>
<tr>
<td>ce--26</td>
<td>Motion Stability Sensitivity</td>
<td>US</td>
<td>na</td>
<td>Sensitivity in tenths of divisions</td>
</tr>
<tr>
<td>ce--27</td>
<td>Motion Stability Time Period</td>
<td>US</td>
<td>na</td>
<td>Time in tenths of seconds</td>
</tr>
<tr>
<td>ce--28</td>
<td>Zero Adjust Calibration Counter</td>
<td>By</td>
<td>na</td>
<td>Zero Adjust Calibration counter</td>
</tr>
<tr>
<td>ce--29</td>
<td>Span Adjust Calibration Counter</td>
<td>By</td>
<td>na</td>
<td>Span Adjust Calibration counter</td>
</tr>
<tr>
<td>ce--30</td>
<td>Over Capacity Divisions</td>
<td>By</td>
<td>na</td>
<td>Refer to ce--34</td>
</tr>
<tr>
<td>ce--31</td>
<td># of upscale test points</td>
<td>By</td>
<td>na</td>
<td>1, 2, 3, or 4. Typically, there is only one upscale calibration point. For non-linear scale bases, two additional calibration points can help correct for the non-linearity. You may also use these additional “non-linearity” points to see more weight resolution in the higher ranges of a multi-ranging scale.</td>
</tr>
<tr>
<td>ce--32</td>
<td>Over Capacity Blanking</td>
<td>Bl</td>
<td>na</td>
<td>0 = Blank scale display when weight exceeds scale capacity by 5 weight divisions. 1 = Blank the scale display when weight exceeds the capacity of the scale plus the over capacity divisions stored in ce--34.</td>
</tr>
<tr>
<td>ce--33</td>
<td>Shift Adjust Mode</td>
<td>By</td>
<td>na</td>
<td>0 = cell, 1 = pair. For POWERCELL scales, shift-adjustment corrects for differences in the weight loading on different load cells or pairs of load cells.</td>
</tr>
<tr>
<td>ce--34</td>
<td>Last Calibration Date & Time</td>
<td>AL2</td>
<td>na</td>
<td>In 100 nanoseconds intervals since 1601</td>
</tr>
<tr>
<td>ce--35</td>
<td>Base Serial Number</td>
<td>ABY14</td>
<td>na</td>
<td>Serial Number of Scale Base</td>
</tr>
</tbody>
</table>
2.2.3.1.5. Second Point of Calibration for Non-Linearity

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Unit</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>ce--39</td>
<td>Low Calibration Counts</td>
<td>L</td>
<td>na</td>
</tr>
<tr>
<td>ce--40</td>
<td>Low Calibration Weight</td>
<td>D</td>
<td>na</td>
</tr>
</tbody>
</table>

Additional Calibration point for non-linear scale bases with 2 or 3 points of non-linearity. Weight is in calibration units.

2.2.3.1.6. CALFREE Calibration Parameters

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Unit</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>ce--41</td>
<td>Use CALFREE Calibration</td>
<td>Bi</td>
<td>na</td>
</tr>
<tr>
<td>ce--42</td>
<td>CALFREE Load Cell Capacity</td>
<td>D</td>
<td>na</td>
</tr>
<tr>
<td>ce--43</td>
<td>CALFREE Load Cell Capacity Units</td>
<td>By</td>
<td>na</td>
</tr>
<tr>
<td>ce--44</td>
<td>CALFREE Rated Load Cell Output</td>
<td>D</td>
<td>na</td>
</tr>
<tr>
<td>ce--45</td>
<td>ALC Board Gain Jumper Setting</td>
<td>By</td>
<td>na</td>
</tr>
<tr>
<td>ce--46</td>
<td>CALFREE Estimated Preload</td>
<td>D</td>
<td>na</td>
</tr>
<tr>
<td>ce--47</td>
<td>CALFREE Estimated Preload Units</td>
<td>By</td>
<td>na</td>
</tr>
<tr>
<td>ce--48</td>
<td>CALFREE Gravity “Geo” Code</td>
<td>By</td>
<td>na</td>
</tr>
</tbody>
</table>

Use CALFREE Calibration Bl 0 = no, 1 = yes
Load Cell Sensor Capacity, e.g., 5000 kg
Sensor output at the rated capacity weight, in mV/V, e.g. 2.0 mV/V
2 = default 2mv/V, 3 = 3mV/V
Estimated preload is optional. If entered, the system can check for saturation of the A/D input.
Gravity “Geo” code of factory that calibrated load cell. Value is 0 – 31.

2.2.3.1.7. Third Point of Calibration for Non-Linearity

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Unit</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>ce--50</td>
<td>XLow Calibration Counts</td>
<td>L</td>
<td>na</td>
</tr>
<tr>
<td>ce--51</td>
<td>XLow Calibration Weight</td>
<td>D</td>
<td>na</td>
</tr>
<tr>
<td>ce--60</td>
<td>Valid Board Calibration</td>
<td>By</td>
<td>na</td>
</tr>
<tr>
<td>ce--61</td>
<td>Reserved</td>
<td>L</td>
<td>na</td>
</tr>
<tr>
<td>ce--62</td>
<td>Reserved</td>
<td>D</td>
<td>na</td>
</tr>
</tbody>
</table>

Additional Calibration point for non-linear scale bases with 3 points of non-linearity. Weight is in calibration units.
1 = ALC Board had valid board calibration during last scale calibration. If RST subsequently detects an invalid board calibration, RST will alert operator to a scale error.

2.2.3.2. Methods

Motion/Stability is a measure of whether the weight has settled on the scale. Metrology regulations generally prohibit a weighing system from recording a measurement before the system has settled. The RST uses the Scale Motion/Stability status as an interlock for triggering a Pushbutton Tare command or for triggering a Print command. The IND780 examines the weight readings over a period of time to determine Motion/Stability of a scale. The weight readings over a chosen interval of
time T must not differ from one another by more than the tolerance value V. The Service Technician can set the level for motion detection.

Over-Capacity Divisions are the number of display increments beyond the nominal scale capacity that the scale will operate. When the weight display exceeds the Over-Capacity Divisions, the weight display shows only an error display, the Over-Capacity logical status output is TRUE, and IND780 indicates that the weight transmitted is invalid. The Service Technician cannot disable the Over-Capacity checking.

The **Units of Measure** that the IND780 fully supports are:

- MKS – metric tons (t), kilograms (kg), grams (g)
- Avoirdupois – tons (ton), pounds (lb)
- troy ounces (toz), pennyweights (dwt), ounces (oz), custom units as secondary units only

The IND780 uses these fully supported units, as follows:

- Calibration Units define the units of calibration test weights.
- Primary Units are the preferred units of measure.
- Secondary Units are the alternate units when using units switching function. The IND780 can also display the Secondary units on the main display.

With **Multiple Range** weighing, there can be up to three weighing ranges and each has a threshold. Each weighing range extends from zero to its range threshold. Each range has an associated increment size. The increment size and threshold value are larger for each successive weighing range from the lowest to highest ranges. The difference between the largest and smallest increment size is at most one decimal place. You manually set the increment sizes and thresholds in setup.

The IND780 only supports automatic selection of the “current weighing range”. When weight is increasing, the current weighing range proceeds from the lower range to the next higher range once the weight exceeds the range threshold. Switchover to the next higher range occurs at the range threshold. When weight is decreasing, the current weighing range returns from the current weighing range to the lowest range only when the weight falls within half-a-division of zero.

The IND780 weight display must clearly indicate the current weighing range. The terminal indicates weighing ranges 1, 2, and 3 respectively. The terminal maintains the same decimal point position in the Displayed Weight even when the current weighing range changes. There is at most one trailing, non-significant “0”. When right of the decimal point, the non-significant “0” must be in the third place to the right of the decimal point. You may take a Tare in any weighing range. The Displayed Weight and Printed Weight are always the same.

In Gross Mode, the IND780 determines the current weighing range by comparing the Fine Gross Weight to the range thresholds. If scale is within half-a-division of zero, the terminal returns to the lowest weighing range as the current weighing range. The IND780 calculates the Displayed Gross Weight by rounding the Fine Gross Weight to the nearest weight increment for the current weighing range.

In Net Mode, the terminal determines current weighing range by comparing the Fine Gross Weight to the range thresholds. If the scale is within half-a-division of zero for gross mode: the terminal returns to the lowest weighing range as the current weighing range. The IND780 terminal calculates
the Displayed Net Weight by rounding the Fine Net Weight to the nearest weight increment for the current weighing range. The IND780 calculates the Displayed Tare Weight by rounding the Fine Tare Weight to the nearest weight increment for the current weighing range. Displayed Gross Weight = Displayed Tare Weight + Displayed Net Weight.

Multi-Interval weighing rules only apply when the scale base is a high precision base. There can be up to three weighing intervals. Each weighing interval has a threshold. Each weighing interval extends from the threshold of the next lower interval to its threshold. Each interval has an associated increment size. The increment size and threshold value are larger for each successive weighing interval from the lowest to highest intervals. The high precision base sets the increment sizes and thresholds. The terminal only supports automatic selection of the "current weighing interval". The IND780 display must clearly display the current weighing range. Displayed Weight and Printed Weight are always the same.

In Gross Mode, the IND780 determines the current weighing interval by comparing the Fine Gross Weight to the interval thresholds. The terminal calculates the Displayed Gross Weight by rounding the Fine Gross Weight to the nearest weight increment for the current weighing interval.

In Net Mode, the IND780 determines the “net weight current weighing interval” by comparing the Fine Net Weight to the interval thresholds. It calculates the Displayed Net Weight by rounding the Fine Net Weight to the nearest weight increment for the “net weight current weighing interval”. The terminal determines the “tare weight current weighing interval” by comparing the Fine Tare Weight to the interval thresholds. It calculates the Displayed Tare Weight by rounding the Fine Net Weight to the nearest weight increment for the “tare weight current weighing interval”. Displayed Gross Weight = Displayed Tare Weight + Displayed Net Weight.

2.2.3.2.1. **Weights & Measures Compliance**

Automatic Multi-Ranging is not compliant with the U.S. and Canadian regulations for Legal for Trade operation.

2.2.3.2.2. **Calibration**

The IND780 supports seven modes of scale calibration. These are:

- **Standard, Two-Point Linear Calibration** is the standard mode for calibrating the large majority of scales. You measure the scale counts at the zero weight and at a span weight of the scale.
- **Three Point Calibration** enables calibration of a scale with one intermediate point of non-linearity.
- **Four Point Calibration** enables calibration of a scale with two intermediate points of scale non-linearity.
- **Five Point Calibration** enables calibration of a scale with three intermediate points of scale non-linearity.
- **Calculated Calibration** measures to zero weight of the scale and calculates the span value of the scale based on the weighing parameters of the load cell and the analog A-to-D circuitry.
- **Zero Adjust Calibration** adjusts only the zero value of the scale. It is valid for use with all modes of calibration.
- **Span Adjust Calibration** adjusts only the span value of the scale in a standard, two-point linear calibration.
Calculated Calibration for Analog Load Cell Weighing Systems

Calibration using test weights is difficult or even impossible for large tank or hopper scales used in process weighing applications. Establishing a zero balance is easy, but it is frequently difficult to place a significant amount of calibrated test load on the scale. Service technicians routinely calibrate such scales in the field with test loads of less than 5% of scale capacity. Then, they use a “step test” using water or some other cheap material as a rough check of linearity performance. This type of span calibration is often less accurate than a mathematically calculated field calibration. When service technicians cannot apply test weights to a tank scale, they must use calculated field calibration as the only recourse.

Method. Calculated calibration requires that both the sensor(s) and the A/D converter be independently calibrated and their output gains known. As an added benefit, if the factory calibrates both the A/D converter and sensors with sufficient accuracy, service technicians can replace either device in the field with another device of the same type without performing a new field calibration.

The factory must calibrate the A/D converter to a common and known gain and offset for all devices of its type. The factory calibrates all IND780 Terminal A/D converters at two points:

<table>
<thead>
<tr>
<th>Load Cell Input</th>
<th>Terminal Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 mV/V</td>
<td>0 counts</td>
</tr>
<tr>
<td>2 mV/V</td>
<td>1,000,000 counts</td>
</tr>
</tbody>
</table>

After factory calibration, all such devices have an A/D gain = 500,000 counts / mV/V. The factory must calibrate the A/D converter for each jumper setting of 2 mV/V and 3 mV/V. Refer to “bc” block definition.

The second requirement is that the factory calibrates the sensor device(s) and publishes the output gain. We express the load cell sensor gain as electrical output in mV/V at the rated mechanical input, typically in units of mass in pounds or kilograms. When you mount multiple identical load cells mechanically in parallel, the total sensor gain is the same as the gain for any one cell. This is typical for most multi-cell scales.

Example: The customer constructs a hopper scale using three load cells, each rated at 2 mV/V output, 10,000 lb capacity. The service technical usually trims the load cells for zero output balance at no load, so:

\[
\text{Sensor gain} = \frac{\text{electrical output}}{\text{mechanical input}} = \frac{0.0002 \text{ mV/V}}{1 \text{ lb}}
\]

Finally, the service technician must know the desired system capacity and units of measure. Example: The desired system capacity is 5,000 kg.

\[
\text{System gain} = (\text{A/D gain}) \times (\text{Sensor gain}) \times (\text{Units Conversion}) = 500,000 \text{ counts/mV/V} \times 0.0002 \text{ mV/V/lb} \times 2.20462 \text{ lb/kg} = 220.462 \text{ counts/kg}
\]

While performing this computation, also the IND780 can also check for A/D saturation at full capacity. In order to perform this test, the service technician must provide the excitation voltage and an estimated preload weight. In actual operation, the weighing indicator replaces the estimated preload with an accurate field zero adjustment.
The IND780 excitation voltage is 10V. Assume that the hopper preload is 4500 kg. Very large preloads are common in process weighing.

\[
\text{Full output} = (\text{preload} + \text{capacity}) \times (\text{Sensor gain}) \times (\text{Units Conversion}) \times (\text{excitation voltage})
\]

\[
= 9,500 \text{ kg} \times 2.20462 \text{ lb/kg} \times 0.0002 \text{ mV/V/lb} \times 10V
\]

\[
= 41.9 \text{ mV}
\]

IND780 will accept ~21 mV before saturation. This scale will not work properly for loads above 10% capacity!

Shortcomings and Warnings. In some cases computed calibration is ineffective or can operate in undesired ways:

1. If the A/D converter provides multiple field selectable gain settings, such as a jumper to select 2mV/V or 3 mV/V load cells, the service technician must know the actual field gain selection. The weighing indicator must account for the differences in the calculations. Further, since such gain adjustment is not perfect, the factory must calibrate the A/D converter for each setting.

2. Some junction boxes include potentiometers in each load cell’s excitation or output wiring to allow field adjustment for corner errors. Since these resistors destroy all hope for accurate computed calibration, the service technician must disable them. There is little point to corner shift adjustment capability if the service technician cannot place test loads on the scale.

3. A barrier device placed in the load cell wiring will usually cause severe gain and offset changes. For example, this often occurs when the load receiver is in a hazardous area. If the barrier is well characterized, we can include these factors in the calculations. However, since this is almost never the case, we must revert to field calibration with test loads.

4. Since A/D factory calibration is numeric only, results are highly accurate and repeatable. System accuracy remains virtually unaffected when swapping like A/D devices in the field without field calibration. Load cell calibration is analog in nature and difficult to perform with perfect accuracy. Maintaining system accuracy is correspondingly less certain when the service technician replaces a load cell. You must consult the vendor specifications for load cell trim to determine the system accuracy impact.

The IND780 protects the Calibration Settings when the Weights and Measures seal is in place.

2.2.4. **Cell Shift Adjust (CX)**

Access:	“Administrator”
Class Code:	cx
ControlNet Class Code	73 hex
Instances:	4

Attributes

Note: The last two digits of each shared data variable is its attribute.

cx--00	Composite cx block
cx--01	Shift Constants 1 – 24 AL24 na Contains one normalized long integer for each cell.
cx--99	EEPROM Block Checksum US na
2.2.4.2. Method

The RST calculates the shift constants during the Shift Adjustment of a POWERCELL Scale, by solving a set of simultaneous equations. The Power Scale board multiplies a shift adjustment factor to the raw counts for each cell on each weighment. The shift adjustment accounts for differences between individual cells in reporting weight when the same load is applied to the different cells. The RST uses the shift adjustment factor as a floating point number. When storing the shift adjustment factor as a LONG in Shared Data, the RST multiplies the floating point value by 1000000Hex.

2.2.5. POWERCELL Network Dynamic Data (PW)

| Class Code: pw | Data Type: D |
| ControlNet Class Code: 71 hex |
| Instances: 1 |

2.2.5.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

- **pw0100** Composite pw block Struct na Composite of entire block
- **pw0101** POWERCELL Scan Table AB y 24 na Ordered list of POWERCELL addresses used in polling the POWERCELLs.
- **pw0102** POWERCELL Cell Counts AL24 rt Array of longs containing the current shift-adjusted counts for each cell. The TERMINAL updates the field approximately every 5 seconds or the application can command an immediate update.
- **pw0103** POWERCELL Overload State AB y 24 na There is one entry each for up to 24 POWERCELLs.
 - 0 = Cell not assigned
 - 1 = Cell OK
 - 2 = Cell in Overload condition.
- **pw0104** POWERCELL Zero Drift State AB y 24 na There is one entry each for up to 24 POWERCELLs.
 - 0 = Cell not assigned
 - 1 = Cell OK
 - 2 = Cell in Zero-Drift-Threshold-Exceeded state.
- **pw0105** POWERCELL Error Status AB y 24 na There is one entry each for up to 24 POWERCELLs. It contains the last error status for each cell.

2.2.5.2. Method

The Resident Scale Task automatically updates the POWERCELL Counts every 5 seconds. The application can issue a command trigger to cause an immediate update.
The Scale Monitoring in the Resident Scale Task maintains the overload state and zero drift state for the individual POWERCELLs.

2.2.6. **POWERCELL Monitoring Process Data (PC)**

<table>
<thead>
<tr>
<th>Access: “Read Only,” access level is not customizable.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code: pc</td>
</tr>
<tr>
<td>Instances: 1</td>
</tr>
</tbody>
</table>

2.2.6.1. **Attributes**

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>pc0100</th>
<th>Composite pc block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>pc0101</td>
<td>Number IO Errors - Cell 1-24</td>
<td>AL24</td>
<td>na</td>
<td>Total counts for each POWERCELL.</td>
</tr>
<tr>
<td>pc0102</td>
<td>Current Zero Counts - Cell 1-24</td>
<td>AL24</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>pc0103</td>
<td>Number Cell Overloads - Cell 1-24</td>
<td>AL24</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>pc0104</td>
<td>Num Symmetry Failures - Cell 1-24</td>
<td>AL24</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>pc0105</td>
<td>Num Zero Drift Failures - Cell 1-24</td>
<td>AL24</td>
<td>na</td>
<td></td>
</tr>
</tbody>
</table>

2.2.6.2. **Method**

Scale Monitoring counts the number of events for each individual POWERCELL. The Service Technician can display these counts to help isolate problems with individual cells.

2.2.7. **Scale Monitoring & Service Data (WM)**

<table>
<thead>
<tr>
<th>Access: “Read Only,” access level is not customizable.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code: wm</td>
</tr>
<tr>
<td>Instances: 5</td>
</tr>
</tbody>
</table>

2.2.7.1. **Attributes**

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>wm--00</th>
<th>Composite wm block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>wm--01</td>
<td>Last Scale Error</td>
<td>S40</td>
<td>na</td>
<td>Date, time & text describing last scale error Factory reset value is “----”.</td>
</tr>
<tr>
<td>wm--02</td>
<td>Number Scale IO Errors</td>
<td>UL</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>wm--03</td>
<td>Num Transactions since Calibration</td>
<td>UL</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>wm--04</td>
<td>Number of Platform Overloads</td>
<td>UL</td>
<td>na</td>
<td></td>
</tr>
</tbody>
</table>

64059110 | 12 | 04/2018

METTLER TOLEDO IND780 Shared Data Reference
Scale Data

<table>
<thead>
<tr>
<th>WM--05</th>
<th>Total Accumulated Weight</th>
<th>D</th>
<th>na</th>
<th>Total Accumulated transaction weight since calibration, when weighment monitoring is on</th>
</tr>
</thead>
<tbody>
<tr>
<td>WM--06</td>
<td>Number of Zero Commands OK</td>
<td>UL</td>
<td>na</td>
<td>Number of Zero Commands Successes</td>
</tr>
<tr>
<td>WM--07</td>
<td>Number of Zero Command Failures</td>
<td>UL</td>
<td>na</td>
<td>Number of Zero Command Failures</td>
</tr>
<tr>
<td>WM--08</td>
<td>Current Symmetry Monitoring State</td>
<td>By</td>
<td>na</td>
<td>Power Cell Symmetry Monitoring reports its current state in this field for Power Cell scales only:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>o If the user has enabled both Run Flat and Symmetry Checking, Symmetry Monitoring can report all possible states.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>o If the user has disabled Run Flat but enabled Symmetry Checking, the Symmetry Monitoring only reports states 0, 3, 4, and 6.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>o If the user has disabled both Run Flat and Symmetry Monitoring, Symmetry Monitoring only reports states 0 and 4.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>o Symmetry Monitoring only reports a single failure. If there are multiple failures, Symmetry Monitoring only reports the first failure that it detects.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>o These are the possible states:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = No Failure detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = Estimate-able Symmetry Failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 = Estimate-able Comm Failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 = UnCorrectable Symmetry Failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 = UnCorrectable Comm Failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 = Estimate-able Zero Drift Failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6 = UnCorrectable Zero Drift Failure</td>
</tr>
<tr>
<td>WM--09</td>
<td>Run Flat Detected Bad Cell</td>
<td>By</td>
<td>na</td>
<td>POWERCELL that was detected bad in symmetry check. If run flat is enabled, this cell is replaced using weight counts from replacement cell. Cell numbers are 0-23 for classic POWERCELLs and 24-47 for POWERCELL PDX.</td>
</tr>
<tr>
<td>WM--10</td>
<td>Run Flat Replacement Cell</td>
<td>By</td>
<td>na</td>
<td>POWERCELL that is used as replacement cell in run flat operation. Cell numbers are 0-23 for classic POWERCELLs and 24-47 for POWERCELL PDX.</td>
</tr>
<tr>
<td>WM--11</td>
<td>Calibration Check Failure</td>
<td>By</td>
<td>na</td>
<td>0 = None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = Latest calibration check failed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 = Latest cal test passed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 = Latest cal test failed & has been reported in Maintenance log</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 = Latest cal test passed & has been reported in Maintenance log</td>
</tr>
<tr>
<td>WM--12</td>
<td>Number of Platform Underloads</td>
<td>UL</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>WM--13</td>
<td>Scale Accumulation Total</td>
<td>D</td>
<td>na</td>
<td>Transaction Weight Accumulation Total for Scale Base.</td>
</tr>
<tr>
<td>wm--14</td>
<td>Reserved</td>
<td>D</td>
<td>na</td>
<td>Reserved</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>---</td>
<td>----</td>
<td>----------</td>
</tr>
<tr>
<td>wm--15</td>
<td>Scale Transaction Total</td>
<td>UL</td>
<td>na</td>
<td>Total Number of Print Transactions for Scale Base.</td>
</tr>
<tr>
<td>wm--16</td>
<td>Total Number of Weighments</td>
<td>UL</td>
<td>na</td>
<td>Total Number of Weighments</td>
</tr>
<tr>
<td>wm--17</td>
<td>Scale Transaction Days Total</td>
<td>UL</td>
<td>na</td>
<td>Total Number of Days when the Scale Base ran at least one Print Transaction.</td>
</tr>
<tr>
<td>wm--18</td>
<td>Transaction Days Subtotal</td>
<td>UL</td>
<td>na</td>
<td>Subtotal Number of Days when the IND780 ran at least one Transaction.</td>
</tr>
<tr>
<td>wm--19</td>
<td>Last Transaction Day</td>
<td>AL2</td>
<td>na</td>
<td>Last Day that Scale Base ran at least one Transaction.</td>
</tr>
<tr>
<td>wm--20</td>
<td>Total Transactions Per Day</td>
<td>AL7</td>
<td>na</td>
<td>Total Number of Print Transactions in each of the last 7 days when the Scale Base ran at least one Transaction.</td>
</tr>
<tr>
<td>wm--21</td>
<td>Transaction Day Pointer</td>
<td>By</td>
<td>na</td>
<td>Pointer to the next Transaction day entry that the IND780 will update, 1-7.</td>
</tr>
<tr>
<td>wm--22</td>
<td>Last Usage Cycle Day</td>
<td>AL2</td>
<td>na</td>
<td>Last Day that Scale Base ran at least one Usage Cycle.</td>
</tr>
<tr>
<td>wm--23</td>
<td>Usage Cycles Per Day</td>
<td>AL7</td>
<td>na</td>
<td>Usage Cycle counter It contains the number of times that the scale base exceeds 1% of the capacity of the base in each of the last 7 days when the Scale Base had at least one cycle.</td>
</tr>
<tr>
<td>wm--24</td>
<td>Usage Cycle Day Pointer</td>
<td>By</td>
<td>na</td>
<td>Pointer to the next usage cycle day entry that the IND780 will update, 1-7.</td>
</tr>
<tr>
<td>wm--25</td>
<td>Average Peak Load</td>
<td>D</td>
<td>na</td>
<td>Running average of daily peak loading IND780 stores value in primary scale weight.</td>
</tr>
<tr>
<td>wm--26</td>
<td>Usage Time Counter</td>
<td>UL</td>
<td>na</td>
<td>Cumulative Usage Time counter in minutes; It contains the cumulative minutes that the scale base weight is above 1% of the scale capacity.</td>
</tr>
<tr>
<td>wm--27</td>
<td>Peak Load Per Day</td>
<td>D</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>wm--28</td>
<td>Peak Load Per Day</td>
<td>D</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>wm--29</td>
<td>Peak Load Per Day</td>
<td>D</td>
<td>na</td>
<td>Peak Load on the Scale Base for each of the last 7 days when the Scale Base ran at least one Usage Cycle. IND780 stores values in primary scale weight.</td>
</tr>
<tr>
<td>wm--30</td>
<td>Peak Load Per Day</td>
<td>D</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>wm--31</td>
<td>Peak Load Per Day</td>
<td>D</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>wm--32</td>
<td>Peak Load Per Day</td>
<td>D</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>wm--33</td>
<td>Peak Load Per Day</td>
<td>D</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>wm--34</td>
<td>Peak Load Since Master Reset</td>
<td>D</td>
<td>na</td>
<td>Peak load on scale since last Master Reset</td>
</tr>
<tr>
<td>wm--35</td>
<td>Reserved</td>
<td>D</td>
<td>na</td>
<td>Reserved</td>
</tr>
<tr>
<td>wm--36</td>
<td>Reserved</td>
<td>UL</td>
<td>na</td>
<td>Reserved</td>
</tr>
<tr>
<td>wm--37</td>
<td>Reserved</td>
<td>UL</td>
<td>na</td>
<td>Reserved</td>
</tr>
</tbody>
</table>
2.2.7.2. Method

The Scale Monitor counts significant processing events and errors for each scale platform. The Scale Monitoring Setup Block, cm, defines what events the Scale Monitor watches.

The FTP Shared Data transfer saves these usage counters but does not restore them.

2.2.8. Scale Monitoring Setup (CM)

Access:	“Maintenance”
Class Code:	cm
Data Type:	PS

2.2.8.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

cm--00	Composite cm block	Struct	na	Composite of entire block
cm--01	Next Scheduled Calibration Date	AL2	na	In 100 nanoseconds intervals since 1601
cm--02	Last Calibration/Service Date	AL2	na	In 100 nanoseconds intervals since 1601. For Analog, POWERCELLs, and SICS scales, this is the last calibration or calibration test date. For IDNet and DigiNet bases, this is the last date to enter service mode or last calibration test date.
cm--03	Calibration Interval in Days	US	na	Max number of days between calibrations
cm--04	Calibration Interval in Weighments	L	na	Number of weighments between calibrations
cm--05	Calibration Check Tolerance	D	na	Weight tolerance in primary units
cm--06	Number Calibration Check-Points	By	na	Number of calibration check points
cm--07	Cal Expired Announcement	By	na	1 = log only 2 = disable scale & alarm 3 = email alert & alarm 4 = alarm only
cm--08	Cal Check Failed Announcement	By	na	1 = log only 2 = disable scale & alarm 3 = email alert & alarm 4 = alarm only
cm--09	Monitor Cell Overloads	By	na	0 = No, 1 = Count, 2 = Count and Log
cm--10	Monitor Platform Overload	By	na	0 = No, 1 = Count, 2 = Count and Log
cm--11	Monitor Platform Underload	By	na	0 = No, 1 = Count, 2 = Count and Log
cm--12	Monitor Weighments	By	na	0 = No, 1 = Count, 2 = Count and Log
cm--13	Monitor Zero Commands	By	na	0 = No, 1 = Count, 2 = Count and Log
cm--14	Monitor Zero Command Failures	By	na	0 = No, 1 = Count, 2 = Count and Log
cm--15	Monitor Scale IO Errors	By	na	0 = No, 1 = Count, 2 = Count and Log
cm--16	Cell Overload Threshold	D	na	Cell overload threshold in units in cm--17, including preload
cm--17	Cell Overload Units	By	na	1 = counts, 2 = primary units, 3 = estimated internally in primary units
cm--23	Cell Symmetry Check	By	na	0 = Off, 1 = Count, 2 = Count & Log
cm--24	Cell Zero Drift Check	By	na	0 = Off, 1 = Count, 2 = Count & Log
cm--25	Cell Zero Drift Check Threshold	D	na	Zero drift threshold in percent of span
cm--26	Cell Symmetry Type	D	na	0 = No, 1 = Radial, 2 = Axial
cm--27	Cell Symmetry Threshold	D	na	Percent difference (0-99) between symmetric cells that triggers symmetry error.
cm--28	Predictive Failure Announcement	By	na	1 = log only, 2 = disable scale & alarm, 3 = email alert & alarm, 4 = alarm only
cm--29	Run Flat This Specific Cell	By	na	Use run flat on this specific cell. Allows user to specify a known bad cell for run-flatting. 1-24 refers to POWERCELL. 25-48 refers to POWERCELL PDX
cm--30	Enable Run Flat Weight Estimation	BI	na	0 = No, 1 = Yes
cm--31	Threshold to begin Symmetry Check	US	na	% of scale capacity to begin symmetry check
cm--32	Span Adjust for Radial Symmetry	By	na	Span-Adjust State for Radial Symmetry checking: 0 = Span-Adjust needs to be done to activate radial symmetry checking, 1 = Span-Adjust has been performed, cell percent loading is now being stored, 2 = Cell percent loading has been stored, N = all other values default to 0 above
cm--33	Reserved	US	na	
cm--34	Reserved	By	na	
cm--35	Reserved	D	na	
2.2.8.2. Methods

2.2.8.2.1. Calibration Checking

The IND780 can enforce Calibration Checking within a certain interval. The Service Technician specifies the interval either in number of days or weighments. Calibration Checking helps the Service Technician test and certify the accuracy of the scale. The scale must weigh test weights within a specified tolerance in the specified number of locations on the scale platform. The Service Technician can certify the scale “as found” if he knows that the scale is weighing accurately. The IND780 prints a receipt of the Calibration Check procedure, and saves the results in the Calibration Check Log. The IND780 can disable the scale, issue a local alert, or email a general alert when the calibration check fails.

2.2.8.2.2. Scale Monitoring

The IND780 can monitor the usage of a scale and record statistics of its use. The Service Technician can set the IND780 to record every occurrence in the Monitor Log File or simply to keep a count of the specific usages. The Monitor Log is a circular file that records the latest occurrences. These records can give the Service Technician knowledge about the health of the scale system. The IND780 can record the weighments, the errors, the zero attempts, and the overloads.

2.2.8.2.3. Predictive Failure

The IND780 can automatically confirm the fitness of the load cells in POWERCELL scales. To do this, it compares the current load cell readings to the readings established when the Scale Technician last calibrated the scale. A significant shift in the load cell output may indicate either current or impending load cell failure. The IND780 has selectable levels of alerting the scale operator or scale technician when it detects a potential fault. The IND780 Display and Web Pages enable you to view the zero, span, and current counts for individual cells attached to the IND780 indicator.

2.2.8.2.4. Cell Zero-Drift Checking

If a scale periodically returns to zero, the IND780 automatically tests the individual load cell readings when the scale is at zero. If the current zero reading does not match the calibrated zero values within a tolerance, it is likely there is a fault condition. However, the IND780 cannot verify zero for many scales. For example, hopper scales may accumulate material on the hopper surfaces; In storage tanks, the scale may never be at zero.

2.2.8.2.5. Cell Symmetry Checking

If a POWERCELL Scale has individual load cells arranged in a logical symmetry, the Scale Monitoring can periodically cross-check the fitness of the individual load cells. The IND780 determines the likely reading for an individual cell by using the readings from one or more cells that are symmetrical to it. If the readings do not match within a tolerance, a fault condition is likely. Here are the possible types of symmetry:

- Left-right symmetry. A railroad track scale or vehicle scale is an example of left-right pair symmetry. The scale has two or more pairs of load cells. Since each cell of a pair usually sees the same loading pattern, the Scale Monitoring can cross-check individual readings from the pair.
- Radial symmetry. Cylindrical tank or hopper scales often have identical net weight loading on all load cells, though they may have an off center dead load due to the mounting of the
discharge feeder machinery. This symmetry is especially strong if the scale is weighing liquid or powder materials. The IND780 can cross check-readings from all the individual cells. The user must perform a Span-Adjust with a load to enable the radial symmetry checking. The load should be at least 10% of the tank capacity. The Span-Adjust enables the Radial Symmetry checking to calculate load percentages on each load cell.

- No symmetry. A floor scale or an overhead monorail scale is a good example. A load could be placed at any location, and any single cell could see all, some, or none of the load. The IND780 Scale Monitoring cannot cross check readings from the individual cells in these scales.

2.2.8.2.6. **Run Flat**

Run Flat is an emergency technique for weighing after a load cell in a POWERCELL Scale has failed. The IND780 estimates the weight on a platform by using the weight from other load cells that are in a symmetrical relationship with the failed cell. The control panel clearly displays the weight as an estimated weight.

2.2.9. PDX Cell Dynamic Shared Data (PY)

<table>
<thead>
<tr>
<th>Access:</th>
<th>“Read Only” Access level is not customizable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code:</td>
<td>py</td>
</tr>
<tr>
<td>ControlNet Class Code:</td>
<td>9D hex</td>
</tr>
<tr>
<td>Instances:</td>
<td>1</td>
</tr>
</tbody>
</table>

2.2.9.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

py0100	Composite py block	struct	na	Composite of entire block
py0101	PDX Cell Scan Table	ABy 24	na	Ordered list of PDX cell addresses used in polling the PDX cells.
py0102	PDX Cell Counts	AL24	rt	Array of longs containing the current shift-adjusted counts for each cell. The IND780 updates the field approximately every 5 seconds, or the application can command an immediate update.
py0103	PDX Overload State	ABy 24	na	One entry each for up to 24 PDX cells. 0 = Cell not assigned, 1 = Cell OK, 2 = Cell in Overload condition
py0104	PDX Zero Drift State	ABy 24	na	One entry each for up to 24 PDX cells. 0 = Cell not assigned, 1 = Cell OK, 2 = Cell in Zero-Drift-Threshold-Exceeded state
py0105	PDX Error Status	ABy 24	na	One entry each for up to 24 PDX cells. Contains the last error status for each cell.
2.2.10. PDX Cell Setup Table (PX)

<table>
<thead>
<tr>
<th>Access:</th>
<th>"Maintenance" default, level is customizable by individual field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code:</td>
<td>px</td>
</tr>
<tr>
<td>Data Type:</td>
<td>PS</td>
</tr>
<tr>
<td>Instances:</td>
<td>1</td>
</tr>
</tbody>
</table>

2.2.10.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>px0100</th>
<th>Composite px block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>na</td>
<td>0 = slow (15 hertz) for up to 24 cells (default)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>na</td>
<td>1 = medium (25 hertz) when there are 14 cells or less on the network.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>na</td>
<td>2 = fast (50 hertz) when there are 6 cells or less on the network.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>na</td>
<td>3 = very fast (100 hertz) when there are 4 cells or less on the network.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>na</td>
<td>4 = very fast (100 hertz) weight update from cells and target processing on the PDX Option Board when there are 4 cells or less on the network, but reports weight to IND780 main processor at 25 hertz.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>na</td>
<td>5 = fast (50 hertz) weight update from cells and target processing on the PDX Option Board when there are 6 cells or less on the network, but reports weight to IND780 main processor at 25 hertz.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>na</td>
<td>6 = synchronous (40 hertz) with the weight update rate of the PDX cells when there are 10 cells or fewer on the network.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>na</td>
<td>7 = synchronous (40 hertz) weight update from cells and target processing on the PDX Option Board when there are 10 cells or less on the network, but reports weight to IND780 main processor at 25 hertz.</td>
</tr>
<tr>
<td>px0101</td>
<td>CAN Bus PDX Cell SYNC Rate</td>
<td>By</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>na</td>
<td>The default SYNC rate 15 hertz.</td>
</tr>
<tr>
<td>px0102</td>
<td>Scale Using PDX</td>
<td>By</td>
<td>na</td>
<td>Scale assigned to use the Discrete Output on the PDX Option Card. The Discrete Output provides a high-speed target cutoff. Default is 1 = Scale 1.</td>
</tr>
<tr>
<td>px0103</td>
<td>Reserved</td>
<td>ABY8</td>
<td>na</td>
<td>Reserved</td>
</tr>
<tr>
<td>px0104</td>
<td>Reserved</td>
<td>By</td>
<td>na</td>
<td>Reserved</td>
</tr>
<tr>
<td>px0105</td>
<td>Reserved</td>
<td>BI</td>
<td>na</td>
<td>Reserved</td>
</tr>
<tr>
<td>px0106</td>
<td>Use CALFREE Calibration</td>
<td>BI</td>
<td>na</td>
<td>0 = no, 1 = yes</td>
</tr>
</tbody>
</table>
2.2.11. PDX Scale 1 Cell Calibration Table (P1)

<table>
<thead>
<tr>
<th>Access:</th>
<th>"Read only" Access level is not customizable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code:</td>
<td>p1</td>
</tr>
<tr>
<td>Data Type:</td>
<td>PS</td>
</tr>
<tr>
<td>Instances:</td>
<td>25</td>
</tr>
</tbody>
</table>

2.2.11.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>p1--00</th>
<th>Composite p1 block</th>
<th>struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1--01</td>
<td>Cell Identification Number</td>
<td>S20</td>
<td>na</td>
<td>Cell identification number</td>
</tr>
<tr>
<td>p1--02</td>
<td>Cell Node Address</td>
<td>By</td>
<td>na</td>
<td>Assigned cell node address</td>
</tr>
<tr>
<td>p1--03</td>
<td>Cell Type</td>
<td>By</td>
<td>na</td>
<td>1 = PDX, 2 = Analog Network, 3 = Junction Box</td>
</tr>
</tbody>
</table>

CalIFREE Cell Calibration Parameters for an Integrated PDX A-to-D and Load Cell

<table>
<thead>
<tr>
<th>p1--11</th>
<th>CalIFREE Load Cell Capacity</th>
<th>D</th>
<th>na</th>
<th>Load cell sensor capacity, e.g. 5000 kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1--12</td>
<td>CalIFREE Load Cell Capacity units</td>
<td>By</td>
<td>na</td>
<td>1=pounds, 2=kilograms, 3=grams, 4=metric tons, 5=tons</td>
</tr>
<tr>
<td>p1--13</td>
<td>CalIFREE Nominal Zero Counts</td>
<td>UL</td>
<td>na</td>
<td>Counts reported for cell at zero load</td>
</tr>
<tr>
<td>p1--14</td>
<td>CalIFREE Weight Count Size</td>
<td>UL</td>
<td>na</td>
<td>Weight Count size in 1 microgram units</td>
</tr>
<tr>
<td>p1--15</td>
<td>CalIFREE Gravity “Geo” Code</td>
<td>By</td>
<td>na</td>
<td>Gravity “Geo” code of factory that calibrated load cell. Value is 0 – 31</td>
</tr>
</tbody>
</table>

Additional Fields Required when A-to-D and Load Cell are Configured Separately

<table>
<thead>
<tr>
<th>p1--16</th>
<th>CalIFREE Rated Load Cell Output</th>
<th>D</th>
<th>na</th>
<th>Sensor output at the rated capacity weight, in mV/V, e.g. 2.0 mV/V</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1--17</td>
<td>CalIFREE A-to-D Gain Setting</td>
<td>By</td>
<td>na</td>
<td>2 = 2mV/V (default), 3 = 3mV/V</td>
</tr>
<tr>
<td>p1--18</td>
<td>CalIFREE Excitation Voltage</td>
<td>D</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>p1--19</td>
<td>CalIFREE Estimated Preload</td>
<td>D</td>
<td>na</td>
<td>Estimated preload is optional. If entered, the system can check for saturation of the A/D input.</td>
</tr>
<tr>
<td>p1--20</td>
<td>CalIFREE Estimated Preload Units</td>
<td>By</td>
<td>na</td>
<td>1 = pounds, 2 = kilograms, 3 = grams, 4 = metric tons, 5 = tons</td>
</tr>
<tr>
<td>p1--21</td>
<td>Reserved</td>
<td>By</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>p1--22</td>
<td>Reserved</td>
<td>By</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>p1--23</td>
<td>Reserved</td>
<td>D</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>p1--24</td>
<td>Reserved</td>
<td>D</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>p1--25</td>
<td>PDX Cell Software Version</td>
<td>UL</td>
<td>na</td>
<td>PDX Cell Software Version Number</td>
</tr>
<tr>
<td>p1--26</td>
<td>Reserved</td>
<td>UL</td>
<td>na</td>
<td></td>
</tr>
</tbody>
</table>
2.2.11.2. Method

CC and CX blocks contain additional Cell Calibration data for POWERCELL and PDX cells.

2.2.12. PDX Scale 2 Cell Calibration Table (P2)

| Access: “Read only” Access level is not customizable |
| Class Code: p2 | Data Type: PS |
| Instances: 25 |

2.2.12.1. Attributes

The last two digits of each shared variable is its attribute.

This table has the same attributes as the P1 table but applies to Scale 2. Refer to P1 for a description of the attributes.

2.2.13. PDX Scale 3 Cell Calibration Table (P3)

| Access: “Read only” Access level is not customizable |
| Class Code: p3 | Data Type: PS |
| Instances: 25 |

2.2.13.1. Attributes

The last two digits of each shared variable is its attribute.

This table has the same attributes as the P1 table but applies to Scale 3. Refer to P1 for a description of the attributes.

2.2.14. PDX Scale 4 Cell Calibration Table (P4)

| Access: “Read only” Access level is not customizable |
| Class Code: p4 | Data Type: PS |
| Instances: 25 |

2.2.14.1. Attributes

The last two digits of each shared variable is its attribute.

This table has the same attributes as the P1 table but applies to Scale 4. Refer to P1 for a description of the attributes.
2.2.15. PDX Cell Diagnostic Monitoring Table (MX)

Access:	“Maintenance” default, access level is customizable by individual field	
Class Code:	mx	Data Type: PS
Instances:	4 – one instance for each of the 4 PDX scales	

2.2.15.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

mx--00	Composite mx block	struct	na	Composite of entire block
mx--01	Maximum allowed tilt angle	UL	na	Maximum allowed tilt-angle (threshold) before generating an operator alarm. This threshold is used in conjunction with mx--14 time interval. (milliradians)
mx--02	Tilt-energy threshold	UL	na	Tilt-energy (threshold) before generating an operator alarm. This threshold is used in conjunction with mx--14 time interval.
mx--03	Maximum allowed temperature	UL	na	Maximum allowed temperature before generating an operator alarm. (.1 degrees Centigrade, two's-complement integer)
mx--04	Minimum allowed temperature	UL	na	Maximum allowed temperature before generating an operator alarm. (.1 degrees Centigrade, two's-complement integer)
mx--05	Maximum CAN signal deviation	UL	na	Maximum deviation from CAN Signal levels before generating an alarm.
mx--06	Min digital LC power level	UL	na	Minimum Digital LC power level at PDX cell before generating an alarm.
mx--07	Generate alarm on enclosure break	Bl	na	1 = generate operator alarm when enclosure break occurs.
mx--08	Diagnostic alarm announcement	By	na	Level of alarm for PDX diagnostic alerts: 1 = log only, 2 = disable scale & alarm, 3 = email alert & alarm, 4 = alarm only
mx--09	Reserved	By	na	
mx--10	Reserved	By	na	
mx--11	Reserved	UL	na	
mx--12	Min CAN transmit power level	UL	na	Minimum CAN Transmit power level at PDX cell before generating an alarm.
mx--13	Max CAN current deviation	L	na	Maximum deviation from PDX Option Card power current level before generating an alarm.
mx--14	Stuck platform time interval	L	na	Time interval used in conjunction with mx--01 and mx--02 to determine if a platform is "stuck". The tilt-angle and tilt-energy must exceed the threshold for this time interval. Time is in five-second intervals.
mX--15 Gas concentration Check interval
Time interval at which to dynamically check the gas concentration levels in the PDX cells. Check only occurs when there is no motion on the scale. Time is in one-hour intervals.

mX--16 Reserved
mX--17 Reserved
mX--18 Reserved

2.2.16. PDX Cell Identification Information (DX)

<table>
<thead>
<tr>
<th>Access:</th>
<th>"Read Only" Access level is not customizable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code:</td>
<td>dx</td>
</tr>
<tr>
<td>Data Type:</td>
<td>PS</td>
</tr>
<tr>
<td>Instances:</td>
<td>1</td>
</tr>
</tbody>
</table>

2.2.16.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>dx0100</th>
<th>Composite dx block</th>
<th>Struct na</th>
<th>Composite of entire block</th>
</tr>
</thead>
</table>
| dx0101 | Identification Number Cell 1 | S20 na | Cell Identification Number read from 1st cell
Characters 1 - 4 are the Product Code
Characters 5 - 12 are digits 3 - 10 of the Mettler-Toledo Serial Number.
Character 13 is NULL. |
| dx0102 | Identification Number Cell 2 - 24 | S20 na | Cell Identification Number read from the 2nd – 24th cell. |
| dx0129 | Number of Cell Replacements | ABY2 4 na | Number of cell replacements for each cell based on new Identification numbers detected for the cell. |
| dx0130 | Number of Cells | By na | Number of PDX load cells. |
| dx0131 | Node Address Cell 1 - 24 | By na | Node Address read from 1st – 24th cell. |
| dx0161 | Last Addressing Date for Cell 1 - 24 | AL2 na | Last addressing date of the 1st – 24th cell in 100 nanosecond intervals since 1601. |

2.2.17. PDX Cell Monitoring Process Data (PM)

<table>
<thead>
<tr>
<th>Access:</th>
<th>"Read Only" Access level is not customizable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code:</td>
<td>pm</td>
</tr>
<tr>
<td>Data Type:</td>
<td>PP</td>
</tr>
<tr>
<td>Instances:</td>
<td>1</td>
</tr>
</tbody>
</table>

2.2.17.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>pm0100</th>
<th>Composite pm block</th>
<th>Struct na</th>
<th>Composite of entire block.</th>
</tr>
</thead>
<tbody>
<tr>
<td>pm0101</td>
<td>Number IO Errors – Cell 1-24</td>
<td>AL24 na</td>
<td>Total counts for each PDX cell</td>
</tr>
</tbody>
</table>
2.2.18. **PDX Cell Layout Mapping**

Access:	“Service” Default level is customizable by individual field
Class Code:	mp
Instances:	14. There is more than one instance of each possible cell

2.2.18.1. **Attributes**

mp0100	Composite mp block			
mp0101	Cell Node Number	S4	na	Cell node number 1 – 14
mp0102	First Node	S2	na	Y = Home run entry node, N = Not home run entry node
mp0103	Next Node Number	S3	na	Node number of next cell, 1 – 14 or T if last node
mp0104	Scale Position	S2	na	Scale position of cell, A - N

2.2.18.2. **Method**

POWERCELLs are connected in a certain sequence at installation and this block documents this. The First Node is the entry point of the home run cable. The Next Node is the next cell in the connection sequence. If a cell is the one marked as "terminator", it is the last node. The node numbers can be 1-14. The Scale Position is the physical location in the scale and is designated by a letter in this mapping. The cell designated as "A" is the cell in the far left corner of the scale looking from the terminal. The diagram below shows the letter designation for scales.

```
A C E G I K M
B D F H J L N
```
3 Flow Meter Data

3.1.1. Dynamic Flow Meter Weight (FW)

Access:	“Read Only” access level is not customizable
Class Code:	fw
ControlNet Class Code:	8E hex
Instances:	12

3.1.1.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

fw--00	Composite fw Block	Struct	na	Composite of entire block
fw--01	Displayed Accumulative Weight	S13	rt	Rounded to nearest increment.
fw--03	Weight Units	S4	rt	lb pounds, kg kilograms, grams, t metric tons or custom units name
fw--07	Displayed Rate Period	S2	rt	No, Sec, Min, Hour
fw--08	Displayed Rate	S13	rt	
fw--09	Displayed Diagnostic Counts	S13	rt	
fw--10	Rounded Accumulative Weight	D	rt	
fw--14	Rate of Change of Weight	D	rt	In weight units / rate period
fw--15	Flow Meter Processing State	By	rt	0 = disabled 1 = normal weight processing, 2 = diagnostic 3 = calibration 5 = error.
fw--17	Fine Cumulative Weight	D	rt	
fw--19	Flow Meter Status	US rt	Bit 0: 1 = FCE On; 0 = FCE Off	
			Bit 1: 1 = Auto-Feed in progress	
			Bit 2: 1 = Manual Feed in progress	
			Bit 3: 1 = Feed is in paused state	
			Bit 4: 1 = Feed target reached	
			Bit 5: 1 = Max rate exceeded	
			Bit 6: 1 = Data OK	
			Bit 7: 1 = Zero Flow Rate	
			Bit 8: 1 = Incrementing count	
			Bit 9: 1 = Counter rolled over during feed	
			Bit 10: 1 = Option Board H/W Error	
			Bit 11: 1 = Flowmeter error detected	
			Bit 12: 1 = Configuration setup error	
fw--20	Start Feed Status	By rt		
fw--21	Pause Feed Status	By rt	1 = Paused, 0 = Not paused	
fw--22	Set New Target Status	By rt		
fw--23	Load New Setup Status	By rt		
fw--24	Demand Print Status	By rt	0 = Printing completed successfully	
			1 = Printing in progress	
			2 = Print connection not found	
			3 = Printing busy	
			4 = Printing error	
			5 = Printing not ready to print	
			6 = Printing scale in motion	
			11 = Printing not allowed	
			12 = Printing not enabled	
			13 = No demand print, but continuous print completed OK	
fw--25	Start Manual Feed Status	By rt		
fw--26	Start Diagnostic Count Status	By rt		
fw--27	Zero Status	By rt	0 = Zero completed successfully	
			1 = Zero in progress	
			3 = Illegal scale mode during zero	
			6 = Pushbutton zero disabled	
			7 = Command timeout error	
fw--28	Reserved	By rt		
fw--29	Composite Command Status	By rt		
fw--30	Standard Continuous Output String	S20 rt	StandardMettler-Toledo Continuous Output	
fw--31	Template Continuous Output String	S100 rt	Template Continuous Output Format	

Flow Meter Data
3.1.2. Flow Meter Commands (FX)

Access: “Operator” default level is customizable by individual field

Class Code: **fx**

Instances: **12**

3.1.2.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Access</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>fx--00</td>
<td>Composite fx block</td>
<td>Struct</td>
<td>na</td>
</tr>
<tr>
<td>fx--01</td>
<td>Start Feed</td>
<td>BI</td>
<td>rc</td>
</tr>
<tr>
<td>fx--02</td>
<td>Abort Feed</td>
<td>BI</td>
<td>rc</td>
</tr>
<tr>
<td>fx--03</td>
<td>Pause Feed</td>
<td>BI</td>
<td>rc</td>
</tr>
<tr>
<td>fx--04</td>
<td>Resume Feed</td>
<td>BI</td>
<td>rc</td>
</tr>
<tr>
<td>fx--05</td>
<td>Set New Target</td>
<td>BI</td>
<td>rc</td>
</tr>
<tr>
<td>fx--06</td>
<td>Load New Setup</td>
<td>BI</td>
<td>rc</td>
</tr>
<tr>
<td>fx--07</td>
<td>Output On</td>
<td>BI</td>
<td>rc</td>
</tr>
<tr>
<td>fx--08</td>
<td>Output Off</td>
<td>BI</td>
<td>rc</td>
</tr>
<tr>
<td>fx--09</td>
<td>Demand Print</td>
<td>BI</td>
<td>rc</td>
</tr>
<tr>
<td>fx--10</td>
<td>Start Manual</td>
<td>BI</td>
<td>rc</td>
</tr>
<tr>
<td>fx--11</td>
<td>Start Diagnostic</td>
<td>BI</td>
<td>rc</td>
</tr>
<tr>
<td>fx--12</td>
<td>Pushbutton Zero</td>
<td>BI</td>
<td>rc</td>
</tr>
<tr>
<td>fx--13</td>
<td>PLC Pushbutton Zero</td>
<td>BI</td>
<td>rc</td>
</tr>
<tr>
<td>fx--14</td>
<td>Reserved</td>
<td>BI</td>
<td>rc</td>
</tr>
</tbody>
</table>
3.1.3. Flow Meter Setup (FS)

Access:	“Service” default leve is customizable by individual field
Class Code:	fx
Instances:	12

3.1.3.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>fs--00</th>
<th>Composite fs block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>fs--01</td>
<td>Flow Meter ID</td>
<td>S21</td>
<td>na</td>
<td>Text Identifier for flow meter</td>
</tr>
<tr>
<td>fs--02</td>
<td>Increment Size</td>
<td>D</td>
<td>na</td>
<td>Increment size for rounding weight</td>
</tr>
<tr>
<td>fs--03</td>
<td>Units</td>
<td>By</td>
<td>na</td>
<td>1=pounds</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2=kilograms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3=grams</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4=metric tons</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8=ounces</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9=custom units</td>
</tr>
<tr>
<td>fs--04</td>
<td>Rate Time Units</td>
<td>By</td>
<td>na</td>
<td>No, Sec, Min, Hour</td>
</tr>
<tr>
<td>fs--05</td>
<td>Flow Meter ‘K’ Factor selection</td>
<td>US</td>
<td>na</td>
<td>Flow Meter ‘K’ Factor in pulses per unit (see fs-06 for unit selection)</td>
</tr>
<tr>
<td>fs--06</td>
<td>Flow Meter ‘K’ Factor Units</td>
<td>By</td>
<td>na</td>
<td>0 = pulses/liter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = pulses/cc</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 = pulses/gallon</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 = pulses/pound</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 = pulses/kg</td>
</tr>
<tr>
<td>Field</td>
<td>Name</td>
<td>Type</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------------------</td>
<td>------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>fs--07</td>
<td>Accum. Flow Conversion Factor</td>
<td>D</td>
<td>Multiplier used to convert the accumulated flow register to cumulative weight.</td>
<td></td>
</tr>
<tr>
<td>fs--08</td>
<td>Flow Meter ‘M’ Factor</td>
<td>US</td>
<td>‘M’ Factor for scaling the accumulated flow register</td>
<td></td>
</tr>
<tr>
<td>fs--09</td>
<td>Flow Meter ‘R’ Factor</td>
<td>US</td>
<td>‘R’ Factor for scaling the rate register. 0=disabled, factor/10000 is used for scaling.</td>
<td></td>
</tr>
<tr>
<td>fs--11</td>
<td>Capacity</td>
<td>D</td>
<td>Capacity of Flow Meter counter</td>
<td></td>
</tr>
<tr>
<td>fs--12</td>
<td>Flow Meter Board Slot Number</td>
<td>US</td>
<td>There can be 2 flow meter interfaces per flow meter board. Consecutive instance pairs must reside on the same board. Instances pairs 1&2, 3&4, 5&6, 7&8, 9&10, 11&12 must reside on the same board</td>
<td></td>
</tr>
<tr>
<td>fs--13</td>
<td>Custom Units Name</td>
<td>S4</td>
<td>Name of Custom Unit</td>
<td></td>
</tr>
<tr>
<td>fs--14</td>
<td>Update Rate</td>
<td>By</td>
<td>1 = High (10 Hz) 2 = Med (5 Hz) 3 = Low (2 Hz)</td>
<td></td>
</tr>
<tr>
<td>fs--15</td>
<td>Simulation Factor A</td>
<td>F</td>
<td>Sim count = AAtime + B*time + C</td>
<td></td>
</tr>
<tr>
<td>fs--16</td>
<td>Simulation Factor B</td>
<td>US</td>
<td>Sim count = AAtime + B*time + C</td>
<td></td>
</tr>
<tr>
<td>fs--17</td>
<td>Simulation Factor C</td>
<td>US</td>
<td>Sim count = AAtime + B*time + C</td>
<td></td>
</tr>
<tr>
<td>fs--18</td>
<td>Reserved</td>
<td>US</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.1.3.2. Method

Applications may use this block of Shared Data for receiving Dynamic commands. One use is communicating command data with remote tasks over PLC or TCP/IP communications.

This block contains the settings for the Flow Meter Channels. A simulation mode is provided for test purposes with the fields fs--15 through fs--17 enabling and controlling the operation of simulation. If all three factors are set to zero, simulation is disabled. If any of the factors are non-zero, the flow meter will run in simulated mode. The output pulses of the simulated flowmeter are derived using the following:

\[\text{Pulses} = (\text{Simulation Factor A} \times \text{Interval Counts}^2) + (\text{Simulation Factor B} \times \text{Interval Counts}) + \text{Simulation Factor C} \]
3.1.4. Flow Meter Process Data (FP)

<table>
<thead>
<tr>
<th>Class Code:</th>
<th>Fp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instances:</td>
<td>12</td>
</tr>
</tbody>
</table>

3.1.4.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Units</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fp--00</td>
<td>Composite fp block</td>
<td>Struct</td>
<td>na</td>
<td>Composite of entire block</td>
</tr>
<tr>
<td>fp--01</td>
<td>Pushbutton Zero</td>
<td>By</td>
<td>rf</td>
<td>0=Disabled 1=Enabled</td>
</tr>
<tr>
<td>fp--02</td>
<td>Target Weight</td>
<td>D</td>
<td>na</td>
<td>Target amount to feed</td>
</tr>
<tr>
<td>fp--03</td>
<td>Maximum Rate</td>
<td>D</td>
<td>na</td>
<td>Maximum rate before triggering alarm.</td>
</tr>
<tr>
<td>fp--04</td>
<td>Rate Filtering Window</td>
<td>US</td>
<td>na</td>
<td>Sliding Window that is the number of Seconds (0-60) over which the rate is averaged.</td>
</tr>
<tr>
<td>fp--05</td>
<td>Custom Units Conversion Factor</td>
<td>D</td>
<td>na</td>
<td>In Batch systems, the conversion factor from normalized units to custom units.</td>
</tr>
<tr>
<td>fp--06</td>
<td>Reserved</td>
<td>US</td>
<td>na</td>
<td></td>
</tr>
</tbody>
</table>

Access: "Supervisor" default level is customizable by individual field
4 Application Data

4.1.1. Application Dynamic Commands and Events (AC)

```
| Access:  | “All Users” |
| Class Code: | ac |
| Data Type: | D |
| ControlNet Class Code: | 70 hex |
| Instances: | 5 |
```

4.1.1.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

```
| ac--00 | Composite ac block | Struct | na | Composite of entire block |
| ac--01 | Commands 1-40 | BI | rt | Commands destined for the Application. |
| ac--40 |
```

4.1.1.2. Methods

Applications may use this block of Shared Data for receiving Dynamic commands. One use is communicating command data with remote tasks over PLC or TCP/IP communications.

Multiple TaskExpert Applications Objects use these fields for implementing events that communicate between the TaskExpert Application Objects.

4.1.1.2.1. System Inputs

```
| ac0501 | E-Stop In |
| BI | rc |
```

4.1.2. Application Dynamic Statuses (AS)

```
| Access:  | “All Users” |
| Class Code: | as |
| Data Type: | D |
| ControlNet Class Code: | 79 hex |
| Instances: | 5 |
```

4.1.2.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

```
| as--00 | Composite as block | Struct | na | Composite of entire block |
```
4.1.2.2. Methods

Applications may use this block of Shared Data for setting Dynamic statuses. One use is communicating status data with remote tasks over PLC or TCP/IP communications.

The PLC Task reports as--01 and as--02 as *one-bit* Custom Statuses for each scale in the Floating Point Input-to-PLC Assembly. If PLC Task reports a 1 value if the entry is non-zero, and reports a 0 value if the entry is zero.

4.1.3. Application Dynamic Integer Fields (AI)

<table>
<thead>
<tr>
<th>Access: “All Users”</th>
<th>Class Code: ai</th>
<th>Data Type: D</th>
</tr>
</thead>
<tbody>
<tr>
<td>ControlNet Class Code: 6E hex</td>
<td>Instances: 5</td>
<td></td>
</tr>
</tbody>
</table>

4.1.3.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>ai--00</th>
<th>Composite ai block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>ai--01</td>
<td>Integer Fields 1-20</td>
<td>US</td>
<td>rt</td>
<td>Application may use these fields to exchange dynamic data</td>
</tr>
<tr>
<td>ai--20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.1.3.2. Methods

Applications may use this block of Shared Data for storing Dynamic integer fields. One use is exchanging integer data with remote tasks over PLC or TCP/IP communications.

4.1.4. Application Dynamic Floating Point Fields (AJ)

<table>
<thead>
<tr>
<th>Access: “All Users”</th>
<th>Class Code: aj</th>
<th>Data Type: D</th>
</tr>
</thead>
<tbody>
<tr>
<td>ControlNet Class Code: 6D hex</td>
<td>Instances: 5</td>
<td></td>
</tr>
</tbody>
</table>

4.1.4.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>aj--00</th>
<th>Composite aj block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>aj--01</td>
<td>Floating Point Fields 1-20</td>
<td>D</td>
<td>rt</td>
<td>Application may use these fields to exchange dynamic data</td>
</tr>
<tr>
<td>aj--20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.1.4.2. **Methods**

Applications may use this block of Shared Data for storing Dynamic floating point fields. One use is exchanging floating point data with remote tasks over PLC or TCP/IP communications.

4.1.5. Application Dynamic Unicode String Fields (AK)

<table>
<thead>
<tr>
<th>Access:</th>
<th>“All Users”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code:</td>
<td>ak</td>
</tr>
<tr>
<td>Data Type:</td>
<td>D</td>
</tr>
<tr>
<td>ControlNet Class Code:</td>
<td>6B hex</td>
</tr>
<tr>
<td>Instances:</td>
<td>5</td>
</tr>
</tbody>
</table>

4.1.5.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>Composite ak block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>ak--00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ak--01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ak--60</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ak--01 Unicode String Fields 1-60

Application may use these fields to exchange dynamic data

4.1.5.2. Methods

Applications may use this block of Shared Data for storing Dynamic string fields. One use is for exchanging string data with remote tasks over PLC or TCP/IP communications.

4.1.6. Application Dynamic Character Arrays (AL)

<table>
<thead>
<tr>
<th>Access:</th>
<th>“All Users”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code:</td>
<td>al</td>
</tr>
<tr>
<td>Data Type:</td>
<td>D</td>
</tr>
<tr>
<td>ControlNet Class Code:</td>
<td>6C hex</td>
</tr>
<tr>
<td>Instances:</td>
<td>5</td>
</tr>
</tbody>
</table>

4.1.6.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>Composite al block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>al--00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>al--01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>al--20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

al--01 Character Array Fields 1-20

Application may use these fields to exchange dynamic data

4.1.6.2. Methods

Applications may use this block of Shared Data for storing Dynamic string fields. One use is exchanging an array of binary data with remote tasks over PLC or TCP/IP communications.

PLC Task reports al--01 and al--02 as custom **4-byte** inputs for each scale in the Floating Point Input-to-PLC Assembly. The PLC Task reports the first 4 bytes of the entry.
4.1.7. Application Floating Point Process Data (AF)

<table>
<thead>
<tr>
<th>Access:</th>
<th>“All Users”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code:</td>
<td>af</td>
</tr>
<tr>
<td>Data Type:</td>
<td>PP</td>
</tr>
<tr>
<td>ControlNet Class Code:</td>
<td>7E hex</td>
</tr>
<tr>
<td>Instances:</td>
<td>5</td>
</tr>
</tbody>
</table>

4.1.7.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>af--00</th>
<th>Composite af block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>af--01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>af--80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.1.8. Application Integer Process Data (AP)

<table>
<thead>
<tr>
<th>Access:</th>
<th>“All Users”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code:</td>
<td>ap</td>
</tr>
<tr>
<td>Data Type:</td>
<td>PP</td>
</tr>
<tr>
<td>ControlNet Class Code:</td>
<td>7D hex</td>
</tr>
<tr>
<td>Instances:</td>
<td>5</td>
</tr>
</tbody>
</table>

4.1.8.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>ap--00</th>
<th>Composite ap block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>ap--01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ap--50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.1.9. Application Unicode String Process Data (AR)

<table>
<thead>
<tr>
<th>Access:</th>
<th>“All Users”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code:</td>
<td>ar</td>
</tr>
<tr>
<td>Data Type:</td>
<td>PP</td>
</tr>
<tr>
<td>ControlNet Class Code:</td>
<td>7F hex</td>
</tr>
<tr>
<td>Instances:</td>
<td>5</td>
</tr>
</tbody>
</table>

4.1.9.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>ar--00</th>
<th>Composite ar block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>ar--01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ar--50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| ap--50 Unicode String 1-50 | S101 | rt |
4.1.10. Application Installation Information (AQ)

Access:	“Administrator” default, level is not customizable.
Class Code:	Data Type: PS
Instances:	20

Access:
aq0104, aq0204, aq0304, aq0404, aq0504, aq0604, aq0704, aq0804, aq0904, aq1004, aq1104 and aq1204 have “Maintenance” access level

4.1.10.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

aq--00	Composite aq block	Struct	na	Composite of entire block
aq--01	Application Type	By	na	0 = None
				1 = Control Panel
				2 = Reserved
				3 = Custom.Net
aq--02	Application Name	S21	na	Application File Name
aq--03	Part Number	S14	na	
aq--04	Software Number	S14	na	
aq--05	Setup Application Name	S30	na	CP displays this application name in Setup Tree/Menu
aq--06	Security Code	S14	na	Each application must have a valid security code that authorizes its execution on this IND780
aq--07	Enable Auto-Start	Bl	na	1 = Enable Auto-Start of Application
aq--08	Enable Manual Start	Bl	na	1 = Enable Manual-Start of Appl from SKM
aq--09	Enable Manual Stop	Bl	na	1 = Enable Manual-Stop of Appl from SKM
aq--10	Enable Console for App	By	na	1 = Enable Front Console for this application
aq--11	Virtual Console Instance	By	na	0 = None, 1, 2, or 3. am--00 instance that is the Virtual Console for this application
aq--12	Reserved	By	na	

4.1.10.2. Method

This block contains identification, security, and location information for each application pack or TaskExpert application installed in the IND780. The IND780 will only start the applications identified in this list. Each application must have a valid security code.

Instance 1 is the Main application for TaskExpert applications.
Instance 2 is the Custom Setup application for the TaskExpert applications. The name of the application is CustomSetup.bas or CustomSetup cpt.

4.1.11. Application Message Table (AW)

<table>
<thead>
<tr>
<th>Access</th>
<th>“All Users”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code</td>
<td>aw</td>
</tr>
<tr>
<td>ControlNet Class Code</td>
<td>9C hex</td>
</tr>
<tr>
<td>Data Type</td>
<td>PS</td>
</tr>
<tr>
<td>Instances</td>
<td>1</td>
</tr>
</tbody>
</table>

4.1.11.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>aw--00</th>
<th>Composite aw block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>aw--01</td>
<td>String Setup Fields 1-99</td>
<td>S101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aw--99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.1.12. Application Integer Setup (AX)

<table>
<thead>
<tr>
<th>Access</th>
<th>“All Users”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code</td>
<td>ax</td>
</tr>
<tr>
<td>Data Type</td>
<td>PS</td>
</tr>
<tr>
<td>Instances</td>
<td>5</td>
</tr>
</tbody>
</table>

4.1.12.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>ax--00</th>
<th>Composite ax block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>ax--01</td>
<td>Integer Setup Fields 1-80</td>
<td>US</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ax--80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.1.13. Application Floating Point Setup (AY)

<table>
<thead>
<tr>
<th>Access</th>
<th>“All Users”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code</td>
<td>ay</td>
</tr>
<tr>
<td>Data Type</td>
<td>PS</td>
</tr>
<tr>
<td>Instances</td>
<td>5</td>
</tr>
</tbody>
</table>

4.1.13.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>ay--00</th>
<th>Composite ay block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>ay--01</td>
<td>Floating Point Fields 1-50</td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ay--50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.1.14. Application Unicode String Field Setup (AZ)

<table>
<thead>
<tr>
<th>Access:</th>
<th>“All Users”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code:</td>
<td>az</td>
</tr>
<tr>
<td>Data Type:</td>
<td>PS</td>
</tr>
<tr>
<td>Instances:</td>
<td>5</td>
</tr>
</tbody>
</table>

4.1.14.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

- **az--00**: Composite az block
- **az--01**: String Setup Fields 1-25
- **az--25**: S101

4.1.15. TaskExpert Application Start and Stop Triggers (AT)

<table>
<thead>
<tr>
<th>Access:</th>
<th>“Supervisor”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code:</td>
<td>at</td>
</tr>
<tr>
<td>Data Type:</td>
<td>D</td>
</tr>
<tr>
<td>ControlNet Class Code:</td>
<td>97 hex</td>
</tr>
<tr>
<td>Instances:</td>
<td>20</td>
</tr>
</tbody>
</table>

4.1.15.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

- **at--00**: Composite at block
- **at--01**: Start Application
- **at--02**: Stop Application
- **at--03**: Suspend Application
- **at--04**: Resume Application
- **at--05**: Application Run Status
- **at--06**: Reserved
- **at--07**: Reserved

at--01

- **BI**: rc
- **0**: start the application defined in the corresponding entry of the AQ block

at--02

- **BI**: rc
- **1**: stop corresponding AQ application

at--03

- **BI**: rc
- **1**: suspend corresponding AQ application

at--04

- **BI**: rc
- **1**: resume corresponding AQ application

at--05

- **BI**: rc
- **0**: application thread not running
- **1**: application stopped
- **2**: application running
- **3**: application suspended

at--06

- **BI**: rt

at--07

- **BI**: rt
4.1.15.2. Methods

Setting trigger = 1 signals the corresponding application defined in the AQ block.

4.1.16. TaskExpert Data Entry Unicode String Fields (TX)

<table>
<thead>
<tr>
<th>Access:</th>
<th>“All Users”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code:</td>
<td>tx</td>
</tr>
<tr>
<td>Data Type:</td>
<td>D</td>
</tr>
<tr>
<td>Instances:</td>
<td>1</td>
</tr>
</tbody>
</table>

4.1.16.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>tx0100</th>
<th>Composite tx block</th>
<th>Struct na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>tx0101 tx0150</td>
<td>Unicode String Fields 1-50</td>
<td>S40 rt</td>
<td>TaskExpert Application use these fields to retrieve operator-entered data.</td>
</tr>
<tr>
<td>tx0151</td>
<td>DataGrid edited field data</td>
<td>S40 rt</td>
<td>DataGrid returns edited field data to app</td>
</tr>
<tr>
<td>tx0152</td>
<td>DataGrid edited field row shortID$</td>
<td>S40 rt</td>
<td>DataGrid returns edited field row shortID$ to application.</td>
</tr>
<tr>
<td>tx0153</td>
<td>DataGrid edited field column num</td>
<td>S40 rt</td>
<td>DataGrid returns edited field column number to application</td>
</tr>
<tr>
<td>tx0154</td>
<td>DataGrid edited field row index</td>
<td>S40 rt</td>
<td>DataGrid returns edited field row index to application</td>
</tr>
<tr>
<td>tx0155</td>
<td>TaskExpert Data Grid Response</td>
<td>S40 rt</td>
<td>The TaskExpert application sets this field to “Accept” message to accept the edited data in the field. Otherwise, It sets the field to an Error message to reject the newly edited value.</td>
</tr>
<tr>
<td>tx0156</td>
<td>Current Focus Element</td>
<td>US rt</td>
<td>TaskExpert indicates the application object that currently has the focus. TaskExpert writes this field whenever there is a change of focus for the application object.</td>
</tr>
<tr>
<td>tx0157</td>
<td>Lost Focus Element</td>
<td>US rt</td>
<td>TaskExpert indicates the application object that has just lost the focus. TaskExpert writes this field whenever there is a change of focus for the application object.</td>
</tr>
<tr>
<td>tx0158</td>
<td>Reserved</td>
<td>S40 rt</td>
<td></td>
</tr>
<tr>
<td>tx0159</td>
<td>Reserved</td>
<td>S40 rt</td>
<td></td>
</tr>
<tr>
<td>tx0160</td>
<td>Reserved</td>
<td>S40 rt</td>
<td></td>
</tr>
<tr>
<td>tx0161</td>
<td>Reserved</td>
<td>S40 rt</td>
<td></td>
</tr>
<tr>
<td>tx0162</td>
<td>Reserved</td>
<td>S40 rt</td>
<td></td>
</tr>
<tr>
<td>tx0164</td>
<td>Datagrid Processing Error Status</td>
<td>US rt</td>
<td>0 = OK 11 = Error Opening Database 12 = Error Writing to Database</td>
</tr>
<tr>
<td>tx0165</td>
<td>Reserved</td>
<td>US rt</td>
<td></td>
</tr>
</tbody>
</table>
4.16.2. Methods

TaskExpert applications use these fields to retrieve data that the operator enters through the TEXTBOX, COMBOBOX, or DATAGRID objects displayed in the custom application window. The field attribute number corresponds to the object number coded in the TEXTBOX or COMBOBOX commands.
5 Target Data

5.1. Complex Target Data

This chapter covers
• Complex Target Data
• Simple Target Data

5.1.1. Full Target Commands (SC)

Access:	“Supervisor”
Class Code:	sc
Data Type:	D
ControlNet Class Code:	92 hex

Instances: 23
Instance 1-22 = Primary Targets
Instance 23 = Image of first Target for selected scale

5.1.1.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>SC--00</th>
<th>Composite sc block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC--01</td>
<td>Restart Target</td>
<td>BI</td>
<td>rc</td>
<td>Appl. sets from 0 to 1 to trigger command. This command updates the active copy of the Target from SP Shared Data resets the Target latch, and enables Target.</td>
</tr>
<tr>
<td>SC--02</td>
<td>Abort Target</td>
<td>BI</td>
<td>rc</td>
<td>This command turns off all ST statuses associated with Target, and disables Target</td>
</tr>
<tr>
<td>SC--03</td>
<td>Apply New Target Coincidence</td>
<td>BI</td>
<td>rc</td>
<td>This command only updates the active Target target value weight from Shared Data. It does not change any other active Target fields.</td>
</tr>
<tr>
<td>SC--04</td>
<td>Reset Latch</td>
<td>BI</td>
<td>rc</td>
<td>This command resets the Target latch in SP Shared Data and active Target</td>
</tr>
<tr>
<td>SC--05</td>
<td>Start Calibrate Jog Timer</td>
<td>BI</td>
<td>rc</td>
<td>The command initiates calibration of the jog timer</td>
</tr>
<tr>
<td>SC--06</td>
<td>Pause Target</td>
<td>BI</td>
<td>rc</td>
<td>Puts Target in a pause state, turns off feed status, and turns on pause status</td>
</tr>
<tr>
<td>SC--07</td>
<td>Resume Target</td>
<td>BI</td>
<td>rc</td>
<td>Resumes Target from pause state, turns off pause status, and turns on feed status if applicable</td>
</tr>
<tr>
<td>SC--08</td>
<td>Reset Auto Spill Adjust</td>
<td>BI</td>
<td>rc</td>
<td>Reset Auto-Spill FIFO to initiate new cycle</td>
</tr>
<tr>
<td>SC--09</td>
<td>Reserved</td>
<td>BI</td>
<td>rc</td>
<td>In manual jog mode, initiate a manual jog sequence.</td>
</tr>
</tbody>
</table>
5.1.2. Full Target Statuses (ST)

Access: "Read Only" access level is not customizable.

Class Code: st
Data Type: D

ControlNet Class Code: 93 hex

Instances: 23
Instance 1-22 = Primary Targets
Instance 23 = Image of first Target for selected scale

5.1.2.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>st--00</th>
<th>Composite st block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>st--01</td>
<td>Command Completion Status</td>
<td>By</td>
<td>rt</td>
<td>Command Completion Status:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = Success</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = Command In Progress</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2-255 = Specific error code.</td>
</tr>
<tr>
<td>st--02</td>
<td>Latched</td>
<td>BI</td>
<td>rt</td>
<td>0 = no, 1 = yes</td>
</tr>
<tr>
<td>st--03</td>
<td>Feeding</td>
<td>BI</td>
<td>rt</td>
<td>0 = no, 1 = In Progress</td>
</tr>
<tr>
<td>st--04</td>
<td>Fast Feeding</td>
<td>BI</td>
<td>rt</td>
<td>0 = no, 1 = In Progress</td>
</tr>
<tr>
<td>st--05</td>
<td>Below Low Tolerance Weight</td>
<td>BI</td>
<td>rt</td>
<td>0 = Over Low Tolerance Weight</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = Under Low Tolerance Weight</td>
</tr>
<tr>
<td>Bit</td>
<td>Description</td>
<td>Type</td>
<td>rt</td>
<td>Bit Description</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>-------</td>
<td>----</td>
<td>--</td>
</tr>
<tr>
<td>st--06</td>
<td>Above High Tolerance Weight</td>
<td>BI</td>
<td>rt</td>
<td>0 = Under High Tolerance Weight</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = Over High Tolerance Weight</td>
</tr>
<tr>
<td>st--07</td>
<td>In Tolerance</td>
<td>BI</td>
<td>rt</td>
<td>0 = Out of Tolerance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = In Tolerance</td>
</tr>
<tr>
<td>st--08</td>
<td>Weigh-In Feeding</td>
<td>BI</td>
<td>rt</td>
<td>0 = Weigh-Out Feeding</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = Weigh-In Feeding</td>
</tr>
<tr>
<td>st--09</td>
<td>Dump to Empty Feeding</td>
<td>BI</td>
<td>rt</td>
<td>0 = no, 1 = In Progress</td>
</tr>
<tr>
<td>st--10</td>
<td>Dump to Empty Draining</td>
<td>BI</td>
<td>rt</td>
<td>0 = no, 1 = In Progress</td>
</tr>
<tr>
<td>st--11</td>
<td>Pause</td>
<td>BI</td>
<td>rt</td>
<td>1 = Pause state</td>
</tr>
<tr>
<td>st--12</td>
<td>In Progress</td>
<td>BI</td>
<td>rt</td>
<td>1 = feed in progress. This bit is an “or” combination of bits 3, 4, 9, & 10, 13, 14, 15</td>
</tr>
<tr>
<td>st--13</td>
<td>Coarse Feeding</td>
<td>BI</td>
<td>rt</td>
<td>0 = no, 1 = In Progress</td>
</tr>
<tr>
<td>st--14</td>
<td>Learn Mode</td>
<td>BI</td>
<td>rt</td>
<td>0 = no, 1 = In Progress</td>
</tr>
<tr>
<td>st--15</td>
<td>Setting</td>
<td>BI</td>
<td>rt</td>
<td>0 = no, 1 = In Progress</td>
</tr>
<tr>
<td>st--16</td>
<td>Jog Mode</td>
<td>BI</td>
<td>rt</td>
<td>0 = no, 1 = In Progress</td>
</tr>
<tr>
<td>st--17</td>
<td>Override Mode</td>
<td>BI</td>
<td>rt</td>
<td>0 = Normal, 1 = In override mode</td>
</tr>
<tr>
<td>st--18</td>
<td>Reserved</td>
<td>BI</td>
<td>rt</td>
<td></td>
</tr>
<tr>
<td>st--19</td>
<td>Reserved</td>
<td>BI</td>
<td>rt</td>
<td></td>
</tr>
<tr>
<td>st--20</td>
<td>Sensitivity</td>
<td>BI</td>
<td>rt</td>
<td>0 = Sensitive, 1 = Normal</td>
</tr>
<tr>
<td>st--21</td>
<td>Cycle Complete</td>
<td>BI</td>
<td>rt</td>
<td>1 = Cycle Complete State</td>
</tr>
</tbody>
</table>

Cycle Complete Data

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Type</th>
<th>rt</th>
<th>Bit Description</th>
<th>Type</th>
<th>rt</th>
</tr>
</thead>
<tbody>
<tr>
<td>st--30</td>
<td>Final Weight</td>
<td>D</td>
<td>rt</td>
<td>Material transfer final weight. RST sets this field at the end of a material transfer cycle.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>st--31</td>
<td>Final Fine-feed</td>
<td>D</td>
<td>rt</td>
<td>Material transfer final Fine-feed value. RST sets this field at the end of a material transfer cycle.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>st--32</td>
<td>Final Spill</td>
<td>D</td>
<td>rt</td>
<td>Material transfer final spill value. RST sets this field at the end of a material transfer cycle.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>st--99</td>
<td>Composite Feed Status</td>
<td>US</td>
<td>rt</td>
<td>Bitwise status st--2 to st--17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.1.2.2. Method

Please read the method description in the Target Process for the Full Target Process Data Block, “sp”. Here, the application can read the status of the Full Target operation.

5.1.3. Full Target Process Data (SP)

<table>
<thead>
<tr>
<th>Access:</th>
<th>“Supervisor”</th>
<th>Data Type:</th>
<th>PP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code:</td>
<td>sp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ControlNet Class Code:</td>
<td>69 hex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instances:</td>
<td>22</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Instances: 1-5: Basic operation - Scales 1 – 5
Instances 5-10: Basic operation – Reserved
Instances 11-22: Fill Pac
5.1.3.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>sp--00</th>
<th>Composite sp block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>sp--01</td>
<td>Name Descriptor</td>
<td>S21</td>
<td>na</td>
<td>Text name describing the Target</td>
</tr>
</tbody>
</table>

sp--02 Target is Active
- **By** na
- **0 = Target Disabled**
- **1-17 Device enabling Target**
- The RST sets this field from sp--22 when the Target is re-started.

| sp--03 | Shared Data field source | S7 | na | Shared Data field for containing source value to be compared in Target. |

sp--04 Target Data Stream Type
- **By** na
- **N = Displayed (Net) Weight**
- **G = Gross Weight**
- **R = Rate**
- **P = Piece Count**
- **X = Source Shared Data Field in sp--03**

| sp--05 | Target Coincidence Value | D | rt | For weight and jog Target targets, this field has a weight value. For rate Targets, this field contains the max value that can trigger a rate alarm. For Piece Count Targets, this field contains number of pieces. For LearnJog Targets, this field contains a time value. For a Dump to Empty Target, this field contains the dump-completion-trigger weight. |

| sp--06 | Latching-Type Target | BI | na | 0 = non-latching-type, 1 = latching-type. Applications must set this field to enable “latching”. When latching is set, the Target will not re-enable the feed after the device first reaches Target coincidence until the application resets the “latched” bit. |

| sp--07 | Target Is Latched | BI | na | If latching is set, the Target sets this field to 1 when it first encounters the Target coincidence. After power recovery or scale error, an active latching Target comes up in latched state. An application must issue restart command to continue. The application must reset this bit to 0 to start next Target processing. |

| sp--08 | Target Action | By | na | 1 = 1-speed fill (weigh-in) 2 = 2-speed fill (weigh-in) 3 = 1-speed dose (discharge) 4 = 2-speed dose (discharge) 5 = dump to empty 6 = classify 7 = 1-speed absolute weight 8 = 2-speed absolute weight |

Ancillary Target Values

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Symbol</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>sp--09</td>
<td>Spill Weight Value</td>
<td>D</td>
<td>rt</td>
</tr>
<tr>
<td>sp--10</td>
<td>Fine-feed Weight Value</td>
<td>D</td>
<td>rt</td>
</tr>
<tr>
<td>sp--11</td>
<td>Upper Tolerance Value</td>
<td>D</td>
<td>rt</td>
</tr>
<tr>
<td>sp--12</td>
<td>Lower Tolerance Value</td>
<td>D</td>
<td>rt</td>
</tr>
<tr>
<td>sp--13</td>
<td>Tolerance Operation</td>
<td></td>
<td>na</td>
</tr>
<tr>
<td>sp--14</td>
<td>Upper Tolerance Percent</td>
<td></td>
<td>na</td>
</tr>
<tr>
<td>sp--15</td>
<td>Lower Tolerance Percent</td>
<td></td>
<td>na</td>
</tr>
<tr>
<td>sp--16</td>
<td>Drain Timer</td>
<td></td>
<td>na</td>
</tr>
<tr>
<td>sp--17</td>
<td>Skip Drain Timer at No Motion</td>
<td>BI</td>
<td>na</td>
</tr>
<tr>
<td>sp--18</td>
<td>Tolerance Motion Check</td>
<td>BI</td>
<td>na</td>
</tr>
<tr>
<td>sp--19</td>
<td>Override Default Appearance</td>
<td></td>
<td>na</td>
</tr>
<tr>
<td>sp--20</td>
<td>Target Weight Units</td>
<td></td>
<td>na</td>
</tr>
</tbody>
</table>

Visualization

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sp--18</td>
<td>Tolerance Motion Check</td>
</tr>
</tbody>
</table>

Misc

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sp--20</td>
<td>Target Weight Units</td>
</tr>
</tbody>
</table>

For weight Target targets, this field is a cutoff spill value. When this field is set, the Target turns off the feed when the weight = (sp--04) – (sp--09).

For two-speed feeds, this field is a feed Fine-feed value. When this field is set, the Target turns off the fast feed when the weight = (sp--04) – (sp--09) – (sp--10).

The Target uses this field to determine if the actual cutoff weight falls within this specified upper tolerance. This is the last OK weight when transitioning from "in tolerance" to "over tolerance". Value is in absolute weight or deviation from target depending on sp--13.

The Target uses this field to determine if the actual cutoff weight falls within this specified lower tolerance. This is the first OK weight when transitioning from "under tolerance" to "in tolerance". Value is in absolute weight or deviation from target depending on sp--13.

Target tolerance operation: 0 = Weight Deviation from Target, 1 = Absolute Weight Value, 2 = % Deviation from Target

If sp--13 = 2, the Target uses this field to calculate the upper tolerance value as a percent of the coincidence value.

If sp--13 = 2, the Target uses this field to calculate the lower tolerance value as a percent of the coincidence value.

For dump-to-empty Targets This value is the amount time after hitting the dump trigger weight to leave valve open. It allows vessel to drain.

For dump-to-empty Targets, stop the drain timer at no motion.

For dump-to-empty setpoints, stop the drain timer at not motion.

SmarTrac Visualization Appearance:
- 0 = Use default in xa0115 & xb0115,
- 1 = Bar Graph
- 2 = Cross Hairs
- 3 = 3 Zones

0 = primary units
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>sp--21</td>
<td>Target Is Paused</td>
<td>By na</td>
</tr>
<tr>
<td>0</td>
<td>running</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>paused</td>
<td></td>
</tr>
<tr>
<td>RST sets this field upon command from the application.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sp--22</td>
<td>Assigned Scale or Flow Meter</td>
<td>By na</td>
</tr>
<tr>
<td>0</td>
<td>Target Disabled</td>
<td></td>
</tr>
<tr>
<td>1-17</td>
<td>Device enabling Target. This field is copied to sp—02 when the Target is enabled.</td>
<td></td>
</tr>
<tr>
<td>sp--23</td>
<td>Output Mode Override</td>
<td>BL na</td>
</tr>
<tr>
<td>0</td>
<td>Default (type specified by ds0112)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Override (type specified by fd--26)</td>
<td></td>
</tr>
<tr>
<td>sp--24</td>
<td>Output Mode Override Value</td>
<td>By na</td>
</tr>
<tr>
<td>0</td>
<td>concurrent</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>independent</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>regulated</td>
<td></td>
</tr>
<tr>
<td>sp--25</td>
<td>Sensitivity Zones</td>
<td>By na</td>
</tr>
<tr>
<td>0</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Settling only</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Slow feed and Settling</td>
<td></td>
</tr>
<tr>
<td>sp--26</td>
<td>Timer Start Time</td>
<td>AL2 na</td>
</tr>
<tr>
<td>Timer Start Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sp--27</td>
<td>Target State</td>
<td>By rt</td>
</tr>
<tr>
<td>Target State</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.1.3.1.2. Auto-Spill Targets

Mutually exclusive with Spill and Fine-feed; Only the Formulation Pack supports the Auto-Spill Targets.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>sp--30</td>
<td>Auto-Spill Time 1 in Seconds</td>
<td>D na</td>
</tr>
<tr>
<td>Auto-Spill time in rate range 1. For time-based auto-spill Targets, the Target turns off the feed when the current weight = (coincidence weight – rate*auto Spill Time. There are up to 3 auto-spill ranges, each operating within a particular rate range. The ranges are in ascending order of rate values.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sp--31</td>
<td>Auto-Spill Time 2 in Seconds</td>
<td>D na</td>
</tr>
<tr>
<td>Auto-Spill time in rate range 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sp--32</td>
<td>Auto-Spill Time 3 in Seconds</td>
<td>D na</td>
</tr>
<tr>
<td>Auto-Spill time in rate range 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sp--33</td>
<td>Auto-Spill Threshold 1</td>
<td>D na</td>
</tr>
<tr>
<td>Threshold rate to switch from Auto-Spill time 1 to Auto-Spill time 2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sp--34</td>
<td>Auto-Spill Threshold 2</td>
<td>D na</td>
</tr>
<tr>
<td>When the rate exceeds the threshold value, Target automatically switches to next ascending auto-spill-time.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

"
5.1.3.1.3. Coarse Feed
Mutually exclusive with Spill and Fine-feed

<table>
<thead>
<tr>
<th>sp--35</th>
<th>Coarse Feed Mode</th>
<th>By</th>
<th>na</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Only the Formulation Pack supports the Coarse feed cutoff mode for the selected material.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 = Disabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = Weight Cutoff</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 = Timed Cutoff.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sp--36</th>
<th>Coarse Feed Weight Cutoff</th>
<th>D</th>
<th>na</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coarse feed weight cutoff for the selected material.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sp--37</th>
<th>Coarse Feed Timed Cutoff</th>
<th>D</th>
<th>na</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coarse feed timed cutoff for the selected material</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.1.3.1.4. Spill & Fine-feed Adjust
Mutually exclusive with Spill and Fine-feed

<table>
<thead>
<tr>
<th>sp--40</th>
<th>Auto Spill Adjustment Enable</th>
<th>BI</th>
<th>na</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Only the Formulation Pack supports the Auto-Spill Targets.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 = Disabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = Enabled</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sp--41</th>
<th>Cycles Averaged</th>
<th>By</th>
<th>na</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of samples to keep in rolling average for auto spill adjustment. Values allowed (1 - 9).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sp--42</th>
<th>Adjustment Factor</th>
<th>By</th>
<th>na</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>sp--43</th>
<th>Learn Mode Enable</th>
<th>By</th>
<th>na</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 = Disabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = Auto</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 = On</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sp--44</th>
<th>Test Point</th>
<th>By</th>
<th>na</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Percentage of target weight to first learn mode cutoff.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sp--45</th>
<th>Spill FIFO</th>
<th>AL11</th>
<th>na</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Array of 9 Spill values in tenths of weight divisions for last 9 material transfers, which are maintained circularly in the array. Entry 1 is the number of values in the array. Entry 2 is the last entry into the array.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sp--46</th>
<th>Jog Mode</th>
<th>By</th>
<th>na</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0-disabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = auto in tol</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 = auto to target</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 = manual to high tol</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sp--47</th>
<th>Learn Feed Time</th>
<th>D</th>
<th>na</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time the fast feed and / or slow feed will be turned on before the fine-feed and / or spill are calculated.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sp--48</th>
<th>Jog On Time</th>
<th>D</th>
<th>na</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time the jog output is turned on in auto or manual modes (msec).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sp--50</th>
<th>OK to Weigh</th>
<th>S7</th>
<th>na</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SD name else null = OK Fill control selects the function now</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sp--51</th>
<th>Manual Complete Input</th>
<th>S7</th>
<th>na</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SD name else null = OK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sp--52</th>
<th>Manual Jog Input</th>
<th>S7</th>
<th>na</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Source Shared Data field for the manual jog feed input.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sp--60</th>
<th>Fast Feed Done Time</th>
<th>D</th>
<th>na</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time the feed outputs are off after the fast feed cutoff</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Target Data

5.1.3.2. Method

In its simplest form, a Target is a comparator having two numeric data inputs and one binary output. One of the two numeric data inputs is a Coincidence (or Target) Value, which an outside agency may update at any time. The other numeric data input is an available data stream from a device channel. The data stream choices include gross weight, net weight, piece count, and rate of flow. The Target also provides a direction specification of either Fill, Dose or Dump. A simple Target output truth table is as follows:

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable = FALSE</td>
<td>FALSE</td>
</tr>
<tr>
<td>Enable = TRUE Direction = WEIGH-IN</td>
<td>iDataStream < iTargetl</td>
</tr>
<tr>
<td>Enable = TRUE Direction = WEIGH-OUT</td>
<td>iDataStream > iTargetl</td>
</tr>
</tbody>
</table>

You may associate the logical output of a Target with a physical Discrete Output or may use it as an internal status. Typically, you select this during IND780 configuration.

An application can set up and run feeds using a Target Instance and can monitor for its completion using the Target Commands and Statuses. The application must first setup a Target Instance to use it. At a minimum, it must setup the Assigned Device, the Target Data Stream Type, the Coincidence Value, and the Target Action within the Target Instance. To start the feed, the application then sets the Restart Target command, sc--01 = 1. This triggers a callback to the Resident Scale Task (RST) to process the Target Instance. When it is ready to begin feeding, the Resident Scale Task turns on the Target in Progress status, st--12 = 1. When the feed is complete, the RST turns off the Target in Progress bit. The RST maintains the Target status in the ST block.

The application can monitor the Feeding in Progress bit for the Target Instance to see when the feed starts and when the feed completes.

The application can also set the Target Instance to be a Latching-Type Target. The advantage of the Latching-Type Target is that once the feed control goes off, it stays off. It will not toggle on and off when weight fluctuates around the coincidence weight, possibly causing damage to the feed control equipment. When the Resident Scale Task first detects the target coincidence for a "Latching-Type
Target", it also sets the Target-Is-Latched = 1 when it sets the Feeding in Progress = 0. Then, the Resident Scale Task will never change the Target Feeding = 0 condition again until the application resets Target-Is-Latched by issuing a Restart Target command, sc--01 = 1 to start a new target feed.

The Targets also supports two-speed feeds, weight-based spills, and three-speed feeds in the fill and dose modes. Spills anticipate a cut-off in advance of the actual Coincidence weight to account for material in suspension, which the feeder has already fed, but which the scale has not yet reported in its weight. There is always some propagation delay in reporting the actual weight because of time for material to hit the scale base and inherent weight filtering delays. The two-speed feeds also compensate for this weight-reporting delay by switching to a slow feed as the weight approaches the Coincidence weight. The three-speed feed adds a coarse feed which can be either weight or time based. This allows a fast coarse feed well below the fine-feed cutoff to decrease feed time.

The Targets also support learn in the fill and dose modes. Learn will determine the proper fine-feed and spill values automatically when a new material is entered or every time a weighment is initiated. It basically feeds until the test point is reached and the amount of weight change is recorded. If single speed operation, the spill is calculated. If two-speed operation the fine-feed is calculated and the fine-feed output is turned on for the Learn Feed Time, turned off, the amount of weight change is recorded and the spill is calculated. The operation will resume with feed. If learn is in auto (sp--42 = 1), it will only learn spill if the value is zero and fine-feed if it is zero. If learn is set to on (sp--42 = 2), it will learn on every weigh sequence initiated.

Another feature in fill and dose modes is auto-spill adjust. This functionality adjusts the spill value over a period of weighments. It maintains a buffer of last weighment deviations. When the buffer has enough weighments (sp--41) it calculates the average and multiplies it by the adjustment factor (sp--42). The spill is adjusted by this value and readjusted as needed on every subsequent weighment.

Jog mode can be enabled in fill and dose targets. Jogging turns fine-feed on for a preset time (sp--48) and off for a preset time (sp--63) and performs a tolerance check. This allows small amounts of material to be fed. There are three modes of operation for jog. The first is auto jog into tolerance (sp--46 = 1) which, if the value is below the low tolerance after the normal feed is complete, jogs it within the low tolerance limit. The second is auto jog to target (sp--46 = 2) which, if the value is below low tolerance after the normal feed is complete, jogs it to the target. The third is manual to high tolerance (sp--46 = 3) which, if the value is below low tolerance after the normal feed is complete, allows the operator to initiate a manual jog (sc--09 = 1) up to the high tolerance limit. The operator must terminate a manual jog with a complete (sc--10 = 1).

The dump mode of operation supports emptying the scale by feeding until the weight drops below a weight threshold (heel) and optionally leaving the output on for an additional drain time.

The following table shows the possible Target States (sp--27):

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reset - ready to start another sequence</td>
</tr>
<tr>
<td>1</td>
<td>Dumping - dump on, weight above threshold</td>
</tr>
<tr>
<td>2</td>
<td>Draining - dump on, weight below threshold waiting for drain time</td>
</tr>
<tr>
<td>3</td>
<td>Done - dump off, operation complete</td>
</tr>
</tbody>
</table>
The Weights and Measures seal does not protect the Target configuration data.

5.1.3.2.1. Processing Tolerance Values

1. The CP edits the Active Record in Target Database Table. The CP displays tolerance values as selected in ds0113.
2. When the CP exits the Edit Active Record leaf node, it must store the tolerance values in the correct SP variables based on tolerance mode setting ds0113.
 a. If ds0113 = 0, move deviation tolerance values to sp--11 and sp--12
 b. If ds0113 = 1, move absolute weight tolerance values to sp--11 and sp--12
 c. If ds0113 = 2, move tolerance values to sp--14 and sp--15
3. After the CP moves the data into the BRAM Shared data, it triggers sc--03 to move the values into the RST’s active SP object.
4. SP object reads sp--13 to determine how to interpret the tolerance values in SP object.
 a. sp--13 = 0 indicates a weight deviation tolerance
 i. Subtract the Lower Tolerance value in sp--12 from the target to get the weight value to first turn on the In Tolerance output.
 ii. Add the Upper Tolerance value from sp--11 to the target to get the last weight value for which the In Tolerance output is on.
 b. sp--13 = 1 indicates absolute weight tolerance
 i. Get the Lower Tolerance absolute weight value in sp--12 to first turn on the “In Tolerance” output.
 ii. Get the Upper Tolerance absolute weight value from sp--11 to last leave on the “In Tolerance” output.
 c. sp--13 = 2 indicates % deviation tolerance

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Init - initialize feed operation</td>
</tr>
<tr>
<td>5</td>
<td>Coarse start - start coarse feed in appropriate mode</td>
</tr>
<tr>
<td>6</td>
<td>Coarse run - waiting for coarse weight threshold to be met or time to expire</td>
</tr>
<tr>
<td>7</td>
<td>Learn start - start mode if required</td>
</tr>
<tr>
<td>8</td>
<td>Test fast feed run - waiting for learn feed time</td>
</tr>
<tr>
<td>9</td>
<td>Test fast feed wait - waiting for no motion to record weight</td>
</tr>
<tr>
<td>10</td>
<td>Test feed - start feed learn operation if required</td>
</tr>
<tr>
<td>11</td>
<td>Test feed run - wait for learn feed time</td>
</tr>
<tr>
<td>12</td>
<td>Test feed wait - wait for no motion to record weight</td>
</tr>
<tr>
<td>13</td>
<td>Feed start - start feed operation</td>
</tr>
<tr>
<td>14</td>
<td>Fast feeding - weight below threshold (coincidence - fine-feed - spill)</td>
</tr>
<tr>
<td>15</td>
<td>Fast wait - fast feed off waiting for fast feed done time</td>
</tr>
<tr>
<td>16</td>
<td>Feed slow - fine-feeding weight below threshold (coincidence - spill)</td>
</tr>
<tr>
<td>17</td>
<td>Feed wait - feed on waiting for feed extension time</td>
</tr>
<tr>
<td>18</td>
<td>Feed settle - feed off waiting for settle time</td>
</tr>
<tr>
<td>19</td>
<td>Jog init - init jog mode</td>
</tr>
<tr>
<td>20</td>
<td>Jog run - initiate manual jog or auto jog operation</td>
</tr>
<tr>
<td>21</td>
<td>Manual jog wait - waiting for manual jog or jog complete command</td>
</tr>
<tr>
<td>22</td>
<td>Jog - feeding waiting for jog on time</td>
</tr>
<tr>
<td>23</td>
<td>Jog off wait - not feeding waiting for jog off time</td>
</tr>
<tr>
<td>24</td>
<td>Jog settle - weight near value waiting for settle time to determine if weight is in tolerance</td>
</tr>
<tr>
<td>25</td>
<td>Cycle complete - weigh cycle complete</td>
</tr>
</tbody>
</table>
i. Multiply the Lower Tolerance value from sp--15 (as a %) times the target to find the deviation in weight. Subtract this value from the target to get the weight value to first turn on the In Tolerance output.

ii. Multiply the Upper Tolerance value from sp--14 (as a %) times the target to find the deviation in weight. Add this value to the target to get the last weight value for which the In Tolerance output is on.

5.1.3.2.2. Example for tolerance programmed as weight deviation

- sp--05 (Target) = 200 kg
- sp--12 (-Tol) = 5 kg
- sp--11 (+Tol) = 10 kg

Low “In Tolerance” weight = 200kg - 5kg = 195kg
High “In Tolerance” weight = 200kg + 10kg = 210kg

5.1.3.2.3. Example for tolerance programmed as % deviation

- sp--05 (Target) = 200 kg
- sp--15 (-Tol) = 5 %
- sp--14 (+Tol) = 10 %

Low “In Tolerance” weight = 200kg - (5% X 200kg) = 190kg
High “In Tolerance” weight = 200kg + (10% X 200kg) = 220kg

5.2. Simple Target Data

5.2.1. Simple Target Commands (SK)

<table>
<thead>
<tr>
<th>Access: “Supervisor”</th>
<th>Class Code: sk</th>
<th>Data Type: D</th>
<th>Instances: 20</th>
</tr>
</thead>
</table>

5.2.1.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>sk--00</th>
<th>Composite sk block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>sk--01</td>
<td>Restart Target</td>
<td>Bl</td>
<td>rc</td>
<td>Appl. sets from 0 to 1 to trigger command</td>
</tr>
<tr>
<td>sk--02</td>
<td>Abort Target</td>
<td>Bl</td>
<td>rc</td>
<td></td>
</tr>
<tr>
<td>sk--03</td>
<td>Apply New Target Coincidence</td>
<td>Bl</td>
<td>rc</td>
<td></td>
</tr>
<tr>
<td>sk--04</td>
<td>Reset Latch</td>
<td>Bl</td>
<td>rc</td>
<td></td>
</tr>
<tr>
<td>sk--05</td>
<td>Reserved</td>
<td>Bl</td>
<td>rc</td>
<td></td>
</tr>
<tr>
<td>sk--06</td>
<td>Pause Target</td>
<td>Bl</td>
<td>rc</td>
<td>Puts Target in a pause state, turns off feed status, and turns on pause status</td>
</tr>
<tr>
<td>sk--07</td>
<td>Resume Target</td>
<td>Bl</td>
<td>rc</td>
<td>Resumes Target from pause state, turns off pause status, and turns on feed status if applicable</td>
</tr>
<tr>
<td>sk--08</td>
<td>Reserved</td>
<td>Bl</td>
<td>rc</td>
<td></td>
</tr>
<tr>
<td>sk--09</td>
<td>Reserved</td>
<td>Bl</td>
<td>rc</td>
<td></td>
</tr>
</tbody>
</table>
5.2.2. **Simple Target Statuses (SS)**

<table>
<thead>
<tr>
<th>Access:</th>
<th>“Read Only” access level is not customizable.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code:</td>
<td>ss</td>
</tr>
<tr>
<td>Data Type:</td>
<td>D</td>
</tr>
<tr>
<td>Instances:</td>
<td>20</td>
</tr>
</tbody>
</table>

5.2.2.1. **Attributes**

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>Attribute Code</th>
<th>Description</th>
<th>Structure</th>
<th>Access/Status</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>ss--00</td>
<td>Composite ss block</td>
<td>Struct</td>
<td>na</td>
<td>Composite of entire block</td>
</tr>
<tr>
<td>ss--01</td>
<td>Command Completion Status</td>
<td>By</td>
<td>rt</td>
<td>Command Completion Status. 0 = Success, 1-255 = Specific error code.</td>
</tr>
<tr>
<td>ss--02</td>
<td>Latched</td>
<td>Bl</td>
<td>rt</td>
<td>0 = no, 1 = yes</td>
</tr>
<tr>
<td>ss--03</td>
<td>Feeding</td>
<td>Bl</td>
<td>rt</td>
<td>0 = no, 1 = In Progress</td>
</tr>
<tr>
<td>ss--04</td>
<td>Timing</td>
<td>Bl</td>
<td>rt</td>
<td>0 = no, 1 = In Progress</td>
</tr>
<tr>
<td>ss--05</td>
<td>Pause</td>
<td>Bl</td>
<td>rt</td>
<td>1 = Pause state</td>
</tr>
<tr>
<td>ss--06</td>
<td>In Progress</td>
<td>Bl</td>
<td>rt</td>
<td>1 = In Progress state.</td>
</tr>
<tr>
<td>ss--07</td>
<td>Cycle Complete</td>
<td>Bl</td>
<td>rt</td>
<td>1 = Cycle Complete State</td>
</tr>
<tr>
<td>ss--08</td>
<td>Reserved</td>
<td>Bl</td>
<td>rt</td>
<td></td>
</tr>
<tr>
<td>ss--09</td>
<td>Reserved</td>
<td>Bl</td>
<td>rt</td>
<td></td>
</tr>
<tr>
<td>ss--99</td>
<td>Composite Feed Status</td>
<td>US</td>
<td>rt</td>
<td>Bitwise status ss--02 to ss--07</td>
</tr>
</tbody>
</table>

5.2.2.2. **Method**

Please read the method description in the simple Target Process for the Simple Target Process Data Block,* sd. Here, the application can set commands and read the status of the Simple Target operation.

5.2.3. **Simple Target Process Data (SD)**

<table>
<thead>
<tr>
<th>Access:</th>
<th>“Supervisor”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code:</td>
<td>sd</td>
</tr>
<tr>
<td>Data Type:</td>
<td>PP</td>
</tr>
<tr>
<td>Instances:</td>
<td>20</td>
</tr>
</tbody>
</table>

5.2.3.1. **Attributes**

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>Attribute Code</th>
<th>Description</th>
<th>Structure</th>
<th>Access/Status</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>sd--00</td>
<td>Composite sc block</td>
<td>Struct</td>
<td>na</td>
<td>Composite of entire block</td>
</tr>
<tr>
<td>sd--01</td>
<td>Name Descriptor</td>
<td>S21</td>
<td>na</td>
<td>Text name describing the Target</td>
</tr>
<tr>
<td>sd--02</td>
<td>Target is Active</td>
<td>By</td>
<td>na</td>
<td>RST sets = 1 when the Target is active, = 0 when Target is disabled.</td>
</tr>
<tr>
<td>sd--03</td>
<td>Shared Data source field</td>
<td>S7</td>
<td>na</td>
<td>Shared Data field to be compared to target.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sd--04</td>
<td>Mode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 = Unlatched</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = Immediate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 = Timed Pulse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 = Time Delay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 = Weight</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 = Timed Pulse After Weight</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 = Time Delay After Weight</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7 = Weight Range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 = Weight Range OR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sd--05</td>
<td>Target Coincidence Value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D na Units must be the same as sd--03.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sd--06</td>
<td>Latching Type Target</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bl na 0 = non-latching type, 1 = latching type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Used in weight-only modes.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sd--07</td>
<td>Target Is Latched</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bl na If latching is set, the Target sets this field to 1 when</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>it first encounters the Target coincidence. After power</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>recovery or a scale error, an active latching Target</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>comes up in pause state. An application must issue a restart command to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>continue. The application must reset this bit to 0 to start next Target</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>processing.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sd--08</td>
<td>Target Comparison Operator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>By na 1 = ‘ < ’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 = ‘ < = ’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 = ‘ = ’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 = ‘ <> ’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 = ‘ > ’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 = ‘ > = ’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sd--09</td>
<td>Upper Weight Range Value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D na Used only with Weight Range mode. Units must be the same as sd--03.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sd--10</td>
<td>Upper Weight Comparison Operator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>By na 1 = ‘ < ’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 = ‘ < = ’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 = ‘ = ’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 = ‘ <> ’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 = ‘ > ’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 = ‘ > = ’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sd--11</td>
<td>Timer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D na Timer has 0.01 second precision.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sd--12</td>
<td>Time Units</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>By na Time units 0 = Seconds, 1 = Minutes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.2.3.1.1. Permissives

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sd--13</td>
<td>Okay to Feed Permissive</td>
</tr>
<tr>
<td></td>
<td>S7 na Points to Shared Data source field for “OK to feed” permissive. If SD</td>
</tr>
<tr>
<td></td>
<td>source field value = 1, then it is OK to Feed. When this field is empty,</td>
</tr>
<tr>
<td></td>
<td>there is no OK to Feed permissive defined, which implies that it is always</td>
</tr>
<tr>
<td></td>
<td>OK to Feed.</td>
</tr>
<tr>
<td>sd--14</td>
<td>“Immediate Mode” Output State</td>
</tr>
<tr>
<td></td>
<td>Bl na 0 = Turn Output On, 1 = Turn Output Off</td>
</tr>
<tr>
<td>sd--21</td>
<td>Target Is Paused</td>
</tr>
<tr>
<td></td>
<td>By na 0 = running</td>
</tr>
<tr>
<td></td>
<td>1 = paused</td>
</tr>
<tr>
<td></td>
<td>RST sets this field upon command from the application.</td>
</tr>
<tr>
<td>sd--26</td>
<td>Timer Start Time</td>
</tr>
<tr>
<td></td>
<td>AL2 na Timer Start Time</td>
</tr>
<tr>
<td>sd--27</td>
<td>Target State</td>
</tr>
<tr>
<td></td>
<td>By na Target State</td>
</tr>
<tr>
<td>sd--28</td>
<td>Reserved</td>
</tr>
<tr>
<td></td>
<td>D na</td>
</tr>
<tr>
<td>sd--29</td>
<td>Reserved</td>
</tr>
<tr>
<td></td>
<td>US na</td>
</tr>
</tbody>
</table>
5.2.3.2. Method

5.2.3.2.1. Simple Target Operation

In its simplest form, a Target is a comparator having two numeric data inputs and one binary output. One of the two numeric data inputs is a Coincidence (or Target) Value, which an application may update at any time. The other numeric data input is any available shared data stream. The data stream choices include gross weight shared data item that generates a callback. You may associate the logical output of a Target with a physical Discrete Output or may use as an internal status.

\[
\text{Binary Result} = \text{Source value} \text{ <comparison operator> Coincidence Target value}
\]

The SD block contains the Simple Target Process Data. An application uses SK block to issue the Simple Target commands. The RST maintains the Simple Target status in the SS block. An application can set up a feed using an SD instance, can start the Simple Target feed using the corresponding SK instance, and can monitor for its completion using the statuses in the corresponding SS instance.

The application must first set up a SimpleTarget Instance to use it. At minimum, it must set up the Shared Data source field, the Operation Mode, the Target Coincidence Value, and the Target Comparison Operator within the SD Instance. To start the feed, the application then sets the Restart Target command, sk--01 = 1. This triggers a callback to the Resident Scale Task (RST) to process the SD instance. When it is ready to begin feeding, the Resident Scale Task turns on the Target in Progress status, ss--06 = 1. When the feed is complete, the RST turns off the Target in Progress bit. The application monitors the Feeding in Progress bit in the SS instance to see when the feed starts and when the feed completes.

5.2.3.2.2. Operational Modes

- “Immediate” mode sets the feeding status (ss--03) to the “immediate mode output state” (sd--14).
- “Timed Pulse” mode starts the timer immediately when the application starts the Simple Target and sets the feeding status on. When the timer expires, it sets the feeding status off.
- “Time Delay” mode sets the feeding status off until timer expires, and then sets it on.
- “Weight” mode reacts to the SD source field value (sd--03) as it changes. It sets the feeding status on when the target comparison is true. It sets the feeding status off and sets latching bit on when the comparison is false.
“Timed Pulse after Weight” mode sets feeding status off if the target comparison is true; it sets feeding status on and starts the timer when the comparison is false. When the timer expires, it sets the feeding status off.

“Time Delay after Weight” mode sets feeding status on if target comparison is true; it starts the timer when target comparison is false and sets the feeding status off after the timer expires.

“Weight Range” mode sets the feeding status on when both target and upper weight range comparisons are true; otherwise, it sets the feeding status off.

“Weight Range OR” mode sets the feeding status on when either the target or upper weight range comparison is true; otherwise, it sets the feeding status off.

5.2.3.2.3. Latching

The weight-only operational modes can have latching enabled or disabled (sd--06). The operational modes with timers in them will always have latching enabled. If latching is enabled, the Target Control sets the latched state (sd--07) on when the target comparison is true. After turning on the latched state, the Target Control will not turn the feed status on again even if the target comparison subsequently goes false. After power recovery or a scale error, an active Target with latching enabled and latched state off comes up in pause state. An application must issue a restart command to continue the Target control. Before starting the next Target control processing, the application must reset latched state to off.

5.2.4. Auto-Jog Target Process Data (SJ)

Access: “Supervisor”
Class Code: sj
Data Type: PP
Instances: 5 One per scale.

5.2.4.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

sj--00 Composite sj block Struct na Composite of entire block

sj--01 Number of Auto-Jog Table Entries By na Number of Table Entries Used

sj--02 Auto-Jog Weight Table AL10 na The Target uses the Auto-Jog Tables when the weight of the feed comes up short. Jog-feeds are time-based. The Weight table contains the amount of weight to jog in weight increments.

sj--03 Auto-Jog Time Table AL10 na The Time table contains the length of time to keep the feed open in milliseconds. The two Auto-Jog tables are in ascending order and correlate with each other.
6 Discrete I/O Data

6.1.1. Discrete Input/Output Status (DI)

Access:	Discrete outputs have a “Supervisor” default level that is customizable by individual field. Discrete inputs have “Read Only” access that is not customizable.
Class Code:	di
ControlNet Class Code:	78 hex
Data Type:	D
Instances:	6

Option Board Slots 1 - 6

6.1.1.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>di--00</th>
<th>Composite di block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>di--01</td>
<td>Input Status 1</td>
<td>BI</td>
<td>rt</td>
<td>0 = off, 1 = on</td>
</tr>
<tr>
<td>di--02</td>
<td>Input Status 2</td>
<td>BI</td>
<td>rt</td>
<td>0 = off, 1 = on</td>
</tr>
<tr>
<td>di--03</td>
<td>Input Status 3</td>
<td>BI</td>
<td>rt</td>
<td>0 = off, 1 = on</td>
</tr>
<tr>
<td>di--04</td>
<td>Input Status 4</td>
<td>BI</td>
<td>rt</td>
<td>0 = off, 1 = on</td>
</tr>
<tr>
<td>di--05</td>
<td>Output Status 1</td>
<td>BI</td>
<td>rt</td>
<td>0 = off, 1 = on</td>
</tr>
<tr>
<td>di--06</td>
<td>Output Status 2</td>
<td>BI</td>
<td>rt</td>
<td>0 = off, 1 = on</td>
</tr>
<tr>
<td>di--07</td>
<td>Output Status 3</td>
<td>BI</td>
<td>rt</td>
<td>0 = off, 1 = on</td>
</tr>
<tr>
<td>di--08</td>
<td>Output Status 4</td>
<td>BI</td>
<td>rt</td>
<td>0 = off, 1 = on</td>
</tr>
<tr>
<td>di--09</td>
<td>Output Status 5</td>
<td>BI</td>
<td>rt</td>
<td>0 = off, 1 = on</td>
</tr>
<tr>
<td>di--10</td>
<td>Output Status 6</td>
<td>BI</td>
<td>rt</td>
<td>0 = off, 1 = on</td>
</tr>
</tbody>
</table>

6.1.1.2. Method

The Resident Scale Task records the state of the physical discrete inputs and outputs in Shared Data. The Discrete Inputs and Outputs may reside on the Discrete I/O Option Boards. The Application can read the individual statuses or composite block to access all eight in IND780 (or ten in IND560) statuses at once. The Application can read or write the Discrete Output Statuses. It can only read the Discrete input statuses.

The Application or Ladder Logic can read or write these status bits to read or write the corresponding physical discrete inputs and outputs.
The IND780 has four Discrete Outputs on its Discrete IO option boards.

The Analog Load Cell board on the IND780 has one Discrete Output and no Discrete Inputs. This Discrete Out controls Target Feeds.

6.1.2. **Discrete Input Edges (DE)**

Access:	"Supervisor"
Class Code:	de
Data Type:	D
Instances:	6
Option Board Slots 1 - 6	

Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>de--00</th>
<th>Composite de block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>de--01</td>
<td>Rising Input Edge 1</td>
<td>BI</td>
<td>rc</td>
<td>1 = Transition from 0 to 1 detected</td>
</tr>
<tr>
<td>de--02</td>
<td>Rising Input Edge 2</td>
<td>BI</td>
<td>rc</td>
<td>1 = Transition from 0 to 1 detected</td>
</tr>
<tr>
<td>de--03</td>
<td>Rising Input Edge 3</td>
<td>BI</td>
<td>rc</td>
<td>1 = Transition from 0 to 1 detected</td>
</tr>
<tr>
<td>de--04</td>
<td>Rising Input Edge 4</td>
<td>BI</td>
<td>rc</td>
<td>1 = Transition from 0 to 1 detected</td>
</tr>
<tr>
<td>de--05</td>
<td>Falling Input Edge 1</td>
<td>BI</td>
<td>rc</td>
<td>1 = Transition from 1 to 0 detected</td>
</tr>
<tr>
<td>de--06</td>
<td>Falling Input Edge 2</td>
<td>BI</td>
<td>rc</td>
<td>1 = Transition from 1 to 0 detected</td>
</tr>
<tr>
<td>de--07</td>
<td>Falling Input Edge 3</td>
<td>BI</td>
<td>rc</td>
<td>1 = Transition from 1 to 0 detected</td>
</tr>
<tr>
<td>de--08</td>
<td>Falling Input Edge 4</td>
<td>BI</td>
<td>rc</td>
<td>1 = Transition from 1 to 0 detected</td>
</tr>
</tbody>
</table>

6.1.2.2. **Method**

The Resident Scale Task sets the associated command = 1 when it detects a rising or falling edge on a discrete input. The Application can trigger on this change of state. After receiving the trigger, the Application must reset the command = 0 in order to receive the next trigger.

6.1.3. **Remote Discrete Input Edges (RE)**

Access:	"Supervisor"	
Class Code:	re	
Data Type:	D	
ControlNet Class Code:	77 hex	
Instances:	8	There are up to 8 "nodes" in a remote IO unit

Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>re--00</th>
<th>Composite de block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>re--01</td>
<td>Rising Input Edge 1 - 4</td>
<td>BI</td>
<td>rc</td>
<td>1 = Transition from 0 to 1 detected</td>
</tr>
</tbody>
</table>
6.1.3.2. **Method**

The Resident Scale Task sets the associated command = 1 when it detects a rising or falling edge on a discrete input. The Application can trigger on this change of state. After receiving the trigger, the Application must reset the command = 0 in order to receive the next trigger.

6.1.4. **Remote Discrete Input/Output Status (RI)**

<table>
<thead>
<tr>
<th>Access:</th>
<th>Discrete outputs have a “Supervisor” default level that is customizable by individual field. Discrete inputs have “Read Only” access that is not customizable.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code: ri</td>
<td>Data Type: D</td>
</tr>
<tr>
<td>ControlNet Class Code: 95 hex</td>
<td></td>
</tr>
<tr>
<td>Instances: 8</td>
<td></td>
</tr>
</tbody>
</table>

There are up to 8 “nodes” in a remote IO unit

6.1.4.1. **Attributes**

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>ri--00</th>
<th>Composite ri block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>ri--01</td>
<td>Input Status 1 - 4</td>
<td>BI</td>
<td>rt</td>
<td>0 = off, 1 = on</td>
</tr>
<tr>
<td>ri--04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ri--05</td>
<td>Output Status 1 - 6</td>
<td>BI</td>
<td>rt</td>
<td>0 = off, 1 = on</td>
</tr>
<tr>
<td>ri--10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ri--21</td>
<td>ARM100 Remote Unit Status</td>
<td>By</td>
<td>rt</td>
<td></td>
</tr>
</tbody>
</table>

6.1.4.2. **Method**

The D100 Remote Discrete IO Unit attaches to the IND780 through a Serial port. It can have up to 8 nodes. Each node has 4 Discrete Inputs and 6 Discrete Outputs. The IND780 monitors the state of the Discrete IO using a unique Serial IO protocol that talks to the Remote IO unit.

The Resident Scale Task records the state of the physical discrete inputs and outputs in Shared Data. The Application can read the individual statuses or composite block to access all 10 statuses at once. The Application can read or write the Discrete Output Statuses. It can only read the Discrete input statuses.

The Application or Ladder Logic can read or write these status bits to read or write the corresponding physical discrete inputs and outputs.
6.1.5. **Internal Ladder Logic Program Setup (LL)**

<table>
<thead>
<tr>
<th>Access:</th>
<th>"Maintenance"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code:</td>
<td>II</td>
</tr>
<tr>
<td>Data Type:</td>
<td>PS</td>
</tr>
<tr>
<td>Instances:</td>
<td>1</td>
</tr>
</tbody>
</table>

6.1.5.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>Attribute Code</th>
<th>Description</th>
<th>Data Type</th>
<th>Note</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>II0100</td>
<td>Composite II block</td>
<td>Struct</td>
<td>na</td>
<td>Composite of entire block</td>
</tr>
<tr>
<td>II0101</td>
<td>Number of Ladder Runs</td>
<td>By</td>
<td>na</td>
<td>Number of rungs in the ladder program</td>
</tr>
<tr>
<td>II0102</td>
<td>Ladder Logic Run 1-98</td>
<td>S32</td>
<td>na</td>
<td>Each attribute is a Ladder Logic Rung</td>
</tr>
<tr>
<td>II0199</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.1.5.2. Method

The IND780 has a simple Ladder Logic Interpreter that runs in the background monitor continuously Discrete I/O and Shared Data commands. The Ladder Logic Program executes these tasks efficiently to minimize CPU utilization and to respond quickly to “real-time” changes in Discrete I/O or Shared Data commands.

The Ladder Logic Interpreter runs in conjunction with Visual Basic or TaskExpert Programs. Visual Basic and TaskExpert are the custom application programming languages for the IND780. They handle sophisticated application tasks and operator interfaces. The Ladder Logic Interpreter efficiently handles the very simple, repetitive task of monitoring Discrete IO and Shared Data commands. Using the Interpreter, you eliminate the significant processing overhead and logic in custom Visual Basic applications required to accomplish these repetitive tasks. Visual Basic applications and the Ladder Logic programs communicate to each other through Shared Data.

The Control Panel Setup application and other application programs must build the Ladder Logic program for their application. The Ladder Logic commands provide flexibility for different applications to select what signals the Interpreter monitors and how it acts on the signals. The Ladder Logic Interpreter loads the program code from this Shared Data block. Each attribute is a Ladder Logic Rung.

6.1.5.2.1. Ladder Rung Commands

There are six rung commands. Each rung takes one or two inputs, and has one output. The rung inputs and outputs are physical Discrete I/O or Shared Data commands.

RUNGAND `input1, input2, output` takes two inputs, “AND’s” them together, and outputs the result. For example, take a physical discrete input “permissive” signal and “AND” it with “Target 1 feeding” to generate a physical discrete output.

`RUNGANDNT ri0101,st0103,di0105`

RUNGANDNT `input1, input2, output` takes two inputs, “AND’s” them together, and outputs the inverse value. For example, take two physical inputs and generate a physical discrete output.

`RUNGANDNT di0101,di0102,di0105`
RUNGMOV input, output takes an input and generates an output with the same value. For example, take a tare on Scale 2 when a physical discrete input goes on.

RUNGMOV di0103,wc0201

RUNGMVNOT input, output moves the inverse of the input to the output. For example, turn on a physical discrete output when the data from Scale 1 is invalid.

RUNGMVNOT wx0138,di0108

RUNGOR input1, input2, output takes two inputs, OR’s them together, and outputs the result. For example, turn on a physical discrete output if Scale 1 or Scale 2 is in motion.

RUNGOR wx0131,wx0231,di0508

RUNGORNOT input1, input2, output takes two inputs, OR’s them together, and outputs the inverse value.

For example, turn on a physical discrete output when either the custom application turns off an application status or a physical discrete input is off.

RUNGORNOT as0101,di0103,di0505
7 Database and Table Data

7.1. General Information

Standard Tables A0 to A9 have the following format:

<table>
<thead>
<tr>
<th>Entry ID#</th>
<th>Key</th>
<th>Description</th>
<th>Data1</th>
<th>Data2</th>
<th>...</th>
<th>Data17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integer</td>
<td>16 Unicode characters</td>
<td>40 Unicode characters</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Tare Table uses Table A1.

The Target Table uses Table A2.

7.2. Table Column Definition

The tables described in the following sections include the following columns:

- DB Field: The field name in the database table.
- dd/nn: The shared data location in which the fields data is available for printing at the end of the transaction. Data is only valid at the end of the transaction, and is cleared when complete. Instance dd01-- is for Table A0, 04 for A3, 05 for A4, and so on.
- td01xx: The shared data location used by control panel for interim storage of data.
- Name: The name of the field used in the Vehicle PAC.
- Type: The type of data stored in the field – N (numeric) or A/N (alphanumeric).
- Len: The maximum length of data in the field.
- Description: A human-readable description of the field.

7.3. Table Shared Data Blocks

7.3.1. Database Table Description (DD)

<table>
<thead>
<tr>
<th>Access:</th>
<th>“All Users”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code:</td>
<td>dd</td>
</tr>
<tr>
<td>Data Type:</td>
<td>PP</td>
</tr>
<tr>
<td>Instances:</td>
<td>10</td>
</tr>
</tbody>
</table>

7.3.1.1. Attributes

Note: The last two digits of each shared data variable is its attribute.
7.3.1.1.1. Active Record

<table>
<thead>
<tr>
<th>dd--00</th>
<th>Composite dd block</th>
</tr>
</thead>
<tbody>
<tr>
<td>dd--01</td>
<td>Entry number of current record</td>
</tr>
<tr>
<td>dd--02</td>
<td>Alphanumeric Key</td>
</tr>
<tr>
<td>dd--03</td>
<td>Description field of current record</td>
</tr>
<tr>
<td>dd--04</td>
<td>Data 1 field of current record</td>
</tr>
<tr>
<td>dd--05</td>
<td>Data 2 field of current record</td>
</tr>
<tr>
<td>dd--06</td>
<td>Data 3 field of current record</td>
</tr>
<tr>
<td>dd--07</td>
<td>Data 4 field of current record</td>
</tr>
<tr>
<td>dd--08</td>
<td>Data 5 field of current record</td>
</tr>
<tr>
<td>dd--09</td>
<td>Data 6 field of current record</td>
</tr>
<tr>
<td>dd--10</td>
<td>Data 7 field of current record</td>
</tr>
<tr>
<td>dd--11</td>
<td>Data 8 field of current record</td>
</tr>
<tr>
<td>dd--12</td>
<td>Data 9 field of current record</td>
</tr>
<tr>
<td>dd--13</td>
<td>Data 10 field of current record</td>
</tr>
<tr>
<td>dd--14</td>
<td>Data 11 field of current record</td>
</tr>
<tr>
<td>dd--15</td>
<td>Data 12 field of current record</td>
</tr>
<tr>
<td>dd--16</td>
<td>Data 13 field of current record</td>
</tr>
<tr>
<td>dd--17</td>
<td>Data 14 field of current record</td>
</tr>
<tr>
<td>dd--18</td>
<td>Data 15 field of current record</td>
</tr>
<tr>
<td>dd--19</td>
<td>Data 16 field of current record</td>
</tr>
<tr>
<td>dd--20</td>
<td>Data 17 field of current record</td>
</tr>
</tbody>
</table>

7.3.1.1.2. Database Usage

dd--31	Joined Table	Bl	na	1 = yes
dd--32	Database Table Usage	By	na	0 = None, 1 = Target Targets Table, 2 = Tare Table
dd--33	Database Table Security	By	na	NO VALUE; This is a dummy entry that defines within the Shared Data dictionary the security level for write access to the physical SQL CE table

7.3.1.1.3. Report Format

<p>| dd--41 | Table Descriptive Name | S40 | na | Descriptive Name for the table, such as, CUSTOMER, PRODUCT, TARGET, or TARE TOTALIZATION |
| dd--42 | Report Header Print Template | By | na | Template Number 0 = None, 1 - 10 |</p>
<table>
<thead>
<tr>
<th>dd--43</th>
<th>Report Body Print Template</th>
<th>By</th>
<th>na</th>
<th>Template Number 0 = None, 1 -10</th>
</tr>
</thead>
<tbody>
<tr>
<td>dd--44</td>
<td>Report Footer Print Template</td>
<td>By</td>
<td>na</td>
<td>Template Number 0 = None, 1 -10</td>
</tr>
<tr>
<td>dd--45</td>
<td>Reserved</td>
<td>By</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>dd--46</td>
<td>Reserved</td>
<td>By</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>dd--47</td>
<td>Reserved</td>
<td>By</td>
<td>na</td>
<td></td>
</tr>
</tbody>
</table>

7.3.1.4. Statistics

<table>
<thead>
<tr>
<th>dd--51</th>
<th>Number of Entries in Table</th>
<th>US</th>
<th>na</th>
<th>The maximum is 999</th>
</tr>
</thead>
<tbody>
<tr>
<td>dd--52</td>
<td>Number of Reads from Table</td>
<td>UL</td>
<td>na</td>
<td>Running read count</td>
</tr>
<tr>
<td>dd--53</td>
<td>Number of Writes to Table</td>
<td>UL</td>
<td>na</td>
<td>Running write count</td>
</tr>
<tr>
<td>dd--54</td>
<td>Average Read Access Time</td>
<td>US</td>
<td>na</td>
<td>In milliseconds</td>
</tr>
<tr>
<td>dd--55</td>
<td>Average Write Access Time</td>
<td>US</td>
<td>na</td>
<td>In milliseconds</td>
</tr>
<tr>
<td>dd--56</td>
<td>Last Read Access Time</td>
<td>AL2</td>
<td>na</td>
<td>In 100 nanosecond intervals since 1601</td>
</tr>
</tbody>
</table>

7.3.1.5. Column Names

<table>
<thead>
<tr>
<th>dd--61</th>
<th>Name for Column 1</th>
<th>S16</th>
<th>na</th>
<th>Corresponds to dd--01 entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>dd--62</td>
<td>Name for Column 2</td>
<td>S16</td>
<td>na</td>
<td>Corresponds to dd--02 entry</td>
</tr>
<tr>
<td>dd--63</td>
<td>Name for Column 3</td>
<td>S16</td>
<td>na</td>
<td>Corresponds to dd--03 entry</td>
</tr>
<tr>
<td>dd--64</td>
<td>Name for Column 4</td>
<td>S16</td>
<td>na</td>
<td>Corresponds to dd--04 entry</td>
</tr>
<tr>
<td>dd--65</td>
<td>Name for Column 5</td>
<td>S16</td>
<td>na</td>
<td>Corresponds to dd--05 entry</td>
</tr>
<tr>
<td>dd--66</td>
<td>Name for Column 6</td>
<td>S16</td>
<td>na</td>
<td>Corresponds to dd--06 entry</td>
</tr>
<tr>
<td>dd--67</td>
<td>Name for Column 7</td>
<td>S16</td>
<td>na</td>
<td>Corresponds to dd--07 entry</td>
</tr>
<tr>
<td>dd--68</td>
<td>Name for Column 8</td>
<td>S16</td>
<td>na</td>
<td>Corresponds to dd--08 entry</td>
</tr>
<tr>
<td>dd--69</td>
<td>Name for Column 9</td>
<td>S16</td>
<td>na</td>
<td>Corresponds to dd--09 entry</td>
</tr>
<tr>
<td>dd--70</td>
<td>Name for Column 10</td>
<td>S16</td>
<td>na</td>
<td>Corresponds to dd--10 entry</td>
</tr>
<tr>
<td>dd--71</td>
<td>Name for Column 11</td>
<td>S16</td>
<td>na</td>
<td>Corresponds to dd--11 entry</td>
</tr>
<tr>
<td>dd--72</td>
<td>Name for Column 12</td>
<td>S16</td>
<td>na</td>
<td>Corresponds to dd--12 entry</td>
</tr>
<tr>
<td>dd--73</td>
<td>Name for Column 13</td>
<td>S16</td>
<td>na</td>
<td>Corresponds to dd--13 entry</td>
</tr>
<tr>
<td>dd--74</td>
<td>Name for Column 14</td>
<td>S16</td>
<td>na</td>
<td>Corresponds to dd--14 entry</td>
</tr>
<tr>
<td>dd--75</td>
<td>Name for Column 15</td>
<td>S16</td>
<td>na</td>
<td>Corresponds to dd--15 entry</td>
</tr>
<tr>
<td>dd--76</td>
<td>Name for Column 16</td>
<td>S16</td>
<td>na</td>
<td>Corresponds to dd--16 entry</td>
</tr>
<tr>
<td>dd--77</td>
<td>Name for Column 17</td>
<td>S16</td>
<td>na</td>
<td>Corresponds to dd--17 entry</td>
</tr>
<tr>
<td>dd--78</td>
<td>Name for Column 18</td>
<td>S16</td>
<td>na</td>
<td>Corresponds to dd--18 entry</td>
</tr>
<tr>
<td>dd--79</td>
<td>Name for Column 19</td>
<td>S16</td>
<td>na</td>
<td>Corresponds to dd--19 entry</td>
</tr>
<tr>
<td>dd--80</td>
<td>Name for Column 20</td>
<td>S16</td>
<td>na</td>
<td>Corresponds to dd--20 entry</td>
</tr>
</tbody>
</table>
7.3.1.2. Methods

The IND780 Standard Database Tables reside in a SQL CE database. These standard tables have the following physical characteristics:

- They reside in Compact Flash.
- There are ten tables, A0 - A9.
- We conceptually associate with the A1 – A4 tables with the four application keys on the keypad.
- Each table has up to 999 entry rows. You can access the field by the entry number. The Entry ID # is the primary key for each table. SQL CE automatically increments the primary key # when you insert a new entry in the table. If you delete a row, its primary key # becomes unused. This way, SQL CE ensures that the primary key for each row is unique.
- Each entry has one description key field that belongs to a table column. You can also access the field by the description key.
- Each row entry has 17 data fields that are in separate table columns.
- Each data field has Unicode string data. The description key field is 40 Unicode characters long, 12 data fields are 16 Unicode characters long, and 5 other data fields are 40 Unicode characters long. The TaskExpert Interpreter has routines that convert between the string data and numeric data, so the applications can store numeric data in the data fields. To retrieve the data from the tables using SQL numerical comparison operators on these numerical data fields, you must insure that the digits align within the Unicode string.
- The TaskExpert records the current active entry for each Standard Database table in Shared Data. The Shared Data field name is dd--01 through dd--20; the instance number that is the table number is 00 through 09. You can use these Shared Data fields for print templates or for remote access.

<table>
<thead>
<tr>
<th>Entry ID #</th>
<th>Key 16 Unicode Characters</th>
<th>Description 40 Unicode Characters</th>
<th>Data1 16 Unicode Characters</th>
<th>Data2 16 Unicode Characters</th>
<th>Data3 16 Unicode Characters</th>
<th>Data17 40 Unicode Characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Applications may use the A4 table as an index directory into the other three tables. In this case, the three data fields in each A4 entry become pointers to entries in the other three tables, instead of holding application data. When you access a specific A4 entry, then you can access data from the other three tables. A Boolean field in Database Description block in Shared Data indicates whether the application is using the A4 table as a data table or as an index directory. When A4 is an index table, it has the following format:

<table>
<thead>
<tr>
<th>Entry ID #</th>
<th>Description 40 Unicode Characters</th>
<th>A1ID Integer Index to A1</th>
<th>A2ID Integer Index to A2</th>
<th>A3ID Integer Index to A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A Database Description block in Shared Data describes the use and the status of the Standard Database tables. It has the following fields for each table:

- Descriptive name, such as CUSTOMER, PRODUCT, TARGET, or TARE TOTALIZATION
- Current table entries, which the application can use in Print Templates

The Control Panel has operator menus that allow the operator to build, edit and display the Standard Database tables.

A host processor may build the Standard database for the application and download it to the IND780 using a Special Remote Database Access Utility. The host may also periodically retrieve the SQL CE database from the IND780.

7.3.2. Database Table Setup (DS)

<table>
<thead>
<tr>
<th>Access</th>
<th>“Maintenance”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code</td>
<td>ds</td>
</tr>
<tr>
<td>Data Type</td>
<td>PS</td>
</tr>
<tr>
<td>Instances</td>
<td>1</td>
</tr>
</tbody>
</table>

7.3.2.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>ds0100</th>
<th>Composite ds block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>ds0101</td>
<td>Reserved</td>
<td>By</td>
<td>na</td>
<td>Moved to dd0232</td>
</tr>
<tr>
<td>ds0102</td>
<td>Reserved</td>
<td>By</td>
<td>na</td>
<td>Moved to dd0332</td>
</tr>
<tr>
<td>ds0103</td>
<td>Reserved</td>
<td>By</td>
<td>na</td>
<td>Moved to dd0432</td>
</tr>
<tr>
<td>ds0104</td>
<td>Reserved</td>
<td>By</td>
<td>na</td>
<td>Moved to dd0532</td>
</tr>
</tbody>
</table>

7.3.2.2. Target Table Settings

<table>
<thead>
<tr>
<th>ds0111</th>
<th>Target Comparison Mode</th>
<th>By</th>
<th>na</th>
<th>0 = None, 1 = Material Transfer, 2 = Over/Under</th>
</tr>
</thead>
<tbody>
<tr>
<td>ds0112</td>
<td>Target Output Mode</td>
<td>By</td>
<td>na</td>
<td>0 = Concurrent Target Outputs (during fast feed cycle, feed and fast feed are on together)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = Independent Target Outputs (during feed cycle, feed and fast feed are on separately)</td>
</tr>
<tr>
<td>ds0113</td>
<td>Target Tolerance Entry</td>
<td>By</td>
<td>na</td>
<td>The operator enters Target tolerance values:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = Weight Deviation from Target</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = Absolute Weight Value</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 = % Deviation from Target</td>
</tr>
<tr>
<td>ds0114</td>
<td>Target Description In Report</td>
<td>Bl</td>
<td>na</td>
<td>1 = enabled</td>
</tr>
<tr>
<td>ds0115</td>
<td>Target Value In Report</td>
<td>Bl</td>
<td>na</td>
<td>1 = enabled</td>
</tr>
<tr>
<td>ds0116</td>
<td>Target Tolerances In Report</td>
<td>Bl</td>
<td>na</td>
<td>1 = enabled</td>
</tr>
</tbody>
</table>
7.3.2.2.2. Tare Totalization Table Settings

<table>
<thead>
<tr>
<th>Data Station</th>
<th>Description</th>
<th>User/Global Setting</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>ds0121</td>
<td>Tare Totalization Weight</td>
<td>By</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 = none</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 = Gross Weight</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 = Net (Displayed) Weight</td>
</tr>
<tr>
<td>ds0122</td>
<td>Tare Description Enabled</td>
<td>Bl</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 = enabled</td>
</tr>
<tr>
<td>ds0123</td>
<td>Tare Clear Totals on Print</td>
<td>Bl</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 = enabled</td>
</tr>
<tr>
<td>ds0124</td>
<td>Tare Value In Report</td>
<td>Bl</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 = enabled</td>
</tr>
<tr>
<td>ds0125</td>
<td>Tare Description In Report</td>
<td>Bl</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 = enabled</td>
</tr>
<tr>
<td>ds0126</td>
<td>Tare N Value In Report</td>
<td>Bl</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 = enabled</td>
</tr>
<tr>
<td>ds0127</td>
<td>Tare Total In Report</td>
<td>Bl</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 = enabled</td>
</tr>
<tr>
<td>ds0128</td>
<td>Reserved</td>
<td>By</td>
<td>na</td>
</tr>
<tr>
<td>ds0129</td>
<td>Reserved</td>
<td>By</td>
<td>na</td>
</tr>
<tr>
<td>ds0130</td>
<td>Reserved</td>
<td>By</td>
<td>na</td>
</tr>
<tr>
<td>ds0131</td>
<td>Reserved</td>
<td>By</td>
<td>na</td>
</tr>
<tr>
<td>ds0132</td>
<td>Reserved</td>
<td>By</td>
<td>na</td>
</tr>
<tr>
<td>ds0133</td>
<td>Reserved</td>
<td>By</td>
<td>na</td>
</tr>
<tr>
<td>ds0134</td>
<td>Reserved</td>
<td>By</td>
<td>na</td>
</tr>
<tr>
<td>ds0151</td>
<td>Reserved</td>
<td>By</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Moved to dd0233</td>
</tr>
<tr>
<td>ds0152</td>
<td>Reserved</td>
<td>By</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Moved to dd0333</td>
</tr>
<tr>
<td>ds0153</td>
<td>Reserved</td>
<td>By</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Moved to dd0433</td>
</tr>
<tr>
<td>ds0154</td>
<td>Reserved</td>
<td>By</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Moved to dd0533</td>
</tr>
<tr>
<td>ds0161</td>
<td>Reserved</td>
<td>By</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Moved to dd0234</td>
</tr>
<tr>
<td>ds0162</td>
<td>Reserved</td>
<td>By</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Moved to dd0334</td>
</tr>
<tr>
<td>ds0163</td>
<td>Reserved</td>
<td>By</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Moved to dd0434</td>
</tr>
<tr>
<td>ds0164</td>
<td>Reserved</td>
<td>By</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Moved to dd0534</td>
</tr>
</tbody>
</table>

7.3.2.3. Method

The Control Panel uses the Target Setting Settings for building a table of Target Targets.

The Control Panel uses the Global TareTotalization Settings for building a Tare Settings Table. The Formatted Output Server (FOS) in the Resident Scale Task adds the weight for each completed transaction to the Tare Totalization totals.
The IND780 has four Standard Database tables that the user can assign for specific purposes, such as Target Targets and Tare Totalization. Please refer to the description of the Standard Database Tables in the Data Description (DD) Section.

7.3.3. **Temporary Database Table Description (TD)**

<table>
<thead>
<tr>
<th>Access:</th>
<th>All Users</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code:</td>
<td>dd</td>
</tr>
<tr>
<td>Data Type:</td>
<td>PP</td>
</tr>
<tr>
<td>Instances:</td>
<td>5 One entry for each scale.</td>
</tr>
</tbody>
</table>

7.3.3.1. **Attributes**

Note: The last two digits of each shared data variable is its attribute.

- td--00 Composite td block

7.3.3.1.1. **Tare Table Record**

<table>
<thead>
<tr>
<th>Entry number of current tare record</th>
<th>Column 1 - Entry number of the current database record</th>
</tr>
</thead>
<tbody>
<tr>
<td>td--01</td>
<td>S40 na</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alphanumeric Key</th>
<th>Column 2 - Alphanumeric Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>td--02</td>
<td>S16 na</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description field of current record</th>
<th>Column 3 - Description field of the current record</th>
</tr>
</thead>
<tbody>
<tr>
<td>td--03</td>
<td>S40 na</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data 1 field of current tare record</th>
<th>Column 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>td--04</td>
<td>S16 na</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data 2 field of current tare record</th>
<th>Column 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>td--05</td>
<td>S16 na</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data 3 field of current tare record</th>
<th>Column 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>td--06</td>
<td>S16 na</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data 4 field of current tare record</th>
<th>Column 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>td--07</td>
<td>S16 na</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data 5 field of current tare record</th>
<th>Column 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>td--08</td>
<td>S16 na</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data 6 field of current tare record</th>
<th>Column 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>td--09</td>
<td>S16 na</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data 7 field of current tare record</th>
<th>Column 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>td--10</td>
<td>S16 na</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data 8 field of current tare record</th>
<th>Column 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>td--11</td>
<td>S16 na</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data 9 field of current tare record</th>
<th>Column 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>td--12</td>
<td>S16 na</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data 10 field of current tare record</th>
<th>Column 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>td--13</td>
<td>S16 na</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data 11 field of current tare record</th>
<th>Column 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>td--14</td>
<td>S16 na</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data 12 field of current tare record</th>
<th>Column 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>td--15</td>
<td>S16 na</td>
</tr>
</tbody>
</table>
Target Table Record

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Length</th>
<th>Notes</th>
<th>Column</th>
</tr>
</thead>
<tbody>
<tr>
<td>td--21</td>
<td>Entry number of current record</td>
<td>S40</td>
<td>na</td>
<td></td>
<td>Column 1 - Entry number of the current database record</td>
</tr>
<tr>
<td>td--22</td>
<td>Alphanumeric Key</td>
<td>S16</td>
<td>na</td>
<td></td>
<td>Column 2 - Alphanumeric Key</td>
</tr>
<tr>
<td>td--23</td>
<td>Description field of current record</td>
<td>S40</td>
<td>na</td>
<td></td>
<td>Column 3 - Description field of the current record</td>
</tr>
<tr>
<td>td--24</td>
<td>Data 1 field of current target record</td>
<td>S16</td>
<td>na</td>
<td></td>
<td>Column 4</td>
</tr>
<tr>
<td>td--25</td>
<td>Data 2 field of current target record</td>
<td>S16</td>
<td>na</td>
<td></td>
<td>Column 5</td>
</tr>
<tr>
<td>td--26</td>
<td>Data 3 field of current target record</td>
<td>S16</td>
<td>na</td>
<td></td>
<td>Column 6</td>
</tr>
<tr>
<td>td--27</td>
<td>Data 4 field of current target record</td>
<td>S16</td>
<td>na</td>
<td></td>
<td>Column 7</td>
</tr>
<tr>
<td>td--28</td>
<td>Data 5 field of current target record</td>
<td>S16</td>
<td>na</td>
<td></td>
<td>Column 8</td>
</tr>
<tr>
<td>td--29</td>
<td>Data 6 field of current target record</td>
<td>S16</td>
<td>na</td>
<td></td>
<td>Column 9</td>
</tr>
<tr>
<td>td--30</td>
<td>Data 7 field of current target record</td>
<td>S16</td>
<td>na</td>
<td></td>
<td>Column 10</td>
</tr>
<tr>
<td>td--31</td>
<td>Data 8 field of current target record</td>
<td>S16</td>
<td>na</td>
<td></td>
<td>Column 11</td>
</tr>
<tr>
<td>td--32</td>
<td>Data 9 field of current target record</td>
<td>S16</td>
<td>na</td>
<td></td>
<td>Column 12</td>
</tr>
<tr>
<td>td--33</td>
<td>Data 10 field of current target record</td>
<td>S16</td>
<td>na</td>
<td></td>
<td>Column 13</td>
</tr>
<tr>
<td>td--34</td>
<td>Data 11 field of current target record</td>
<td>S16</td>
<td>na</td>
<td></td>
<td>Column 14</td>
</tr>
<tr>
<td>td--35</td>
<td>Data 12 field of current target record</td>
<td>S16</td>
<td>na</td>
<td></td>
<td>Column 15</td>
</tr>
<tr>
<td>td--36</td>
<td>Data 13 field of current target record</td>
<td>S40</td>
<td>na</td>
<td></td>
<td>Column 16</td>
</tr>
</tbody>
</table>
7.3.3.1.3. Miscellaneous Table Record

td--37	Data 14 field of current target record	S40	na	Column 17
td--38	Data 15 field of current target record	S40	na	Column 18
td--39	Data 16 field of current target record	S40	na	Column 19
td--40	Data 17 field of current target record	S40	na	Column 20

td--41	Entry number of current misc record	S8	na	Column 1 - Entry number of the current database record
td--42	Alphanumeric Key	S16	na	Column 2 - Alphanumeric Key
td--43	Description field of current record	S40	na	Column 3 - Description field of the current record
td--44	Data 1 field of current misc record	S16	na	Column 4
td--45	Data 2 field of current misc record	S16	na	Column 5
td--46	Data 3 field of current misc record	S16	na	Column 6
td--47	Data 4 field of current misc record	S16	na	Column 7
td--48	Data 5 field of current misc record	S16	na	Column 8
td--49	Data 6 field of current misc record	S16	na	Column 9
td--50	Data 7 field of current misc record	S16	na	Column 10
td--51	Data 8 field of current misc record	S16	na	Column 11
td--52	Data 9 field of current misc record	S16	na	Column 12
td--53	Data 10 field of current misc record	S16	na	Column 13
td--54	Data 11 field of current misc record	S16	na	Column 14
td--55	Data 12 field of current misc record	S16	na	Column 15
td--56	Data 13 field of current misc record	S40	na	Column 16
td--57	Data 14 field of current misc record	S40	na	Column 17
7.3.3.2. Method

The CP uses the Tare Table and Target Table fields for maintaining the current Tare and Target Database records for each scale.

A TaskExpert application can use the Miscellaneous fields in this block maintaining Database Table records on a per scale basis. The application can set these fields in a print template for printing by the RST.
8 Communication and PLC Data

8.1 Web and Network Data

8.1.1 Dynamic System Console Data (XW)

<table>
<thead>
<tr>
<th>Access:</th>
<th>“All Users”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code:</td>
<td>xw</td>
</tr>
<tr>
<td>Data Type:</td>
<td>D</td>
</tr>
<tr>
<td>Instances:</td>
<td>1</td>
</tr>
</tbody>
</table>

8.1.1.1 Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>xw0100</th>
<th>Composite xw block</th>
<th>Struct na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>xw0101 SICS Level 1 Display Messages</td>
<td>S121 rf</td>
<td>When an SICS-Master protocol sends display messages to the IND780, the RST stores them here</td>
<td></td>
</tr>
<tr>
<td>xw0102 SICS Level 1 Display Messages</td>
<td>S121 rf</td>
<td>SICS-Master 2</td>
<td></td>
</tr>
<tr>
<td>xw0103 PLC Display Messages</td>
<td>S121 rf</td>
<td>When a PLC sends a display messages to the IND780, the RST stores them here</td>
<td></td>
</tr>
<tr>
<td>xw0104 PLC Display Messages</td>
<td>S121 rf</td>
<td>When a PLC sends a display messages to the IND780 the RST stores them here</td>
<td></td>
</tr>
</tbody>
</table>
8.1.2. **Web Page Process Data (HT)**

<table>
<thead>
<tr>
<th>Access:</th>
<th>“Maintenance”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code:</td>
<td>ht</td>
</tr>
<tr>
<td>Data Type:</td>
<td>PP</td>
</tr>
<tr>
<td>Instances:</td>
<td>1</td>
</tr>
</tbody>
</table>

8.1.2.1. **Attributes**

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ht0100</td>
<td>Composite ht block Struct na Composite of entire block</td>
</tr>
<tr>
<td>ht0101</td>
<td>SD Indirect Access Pointer 1-20 S6 na</td>
</tr>
<tr>
<td>ht0120</td>
<td>Enable Web Server Bl na 0 = no, 1 = yes.</td>
</tr>
<tr>
<td>ht0121</td>
<td>Home Page location S81 na</td>
</tr>
<tr>
<td>ht0122</td>
<td>Documentation Page location S81 na</td>
</tr>
<tr>
<td>ht0123</td>
<td>Help Page location S81 na</td>
</tr>
<tr>
<td>ht0125</td>
<td>Web Page Language By na</td>
</tr>
<tr>
<td>ht0126</td>
<td>Web Page Language By na</td>
</tr>
<tr>
<td>ht0127</td>
<td>Web Page Language By na</td>
</tr>
<tr>
<td>ht0128</td>
<td>Web Page Language By na</td>
</tr>
<tr>
<td>ht0129</td>
<td>Web Page Language By na</td>
</tr>
<tr>
<td>ht0130</td>
<td>Shared Data Server Save Area AL240 na Saves Shared Data Socket Server callbacks and group settings</td>
</tr>
</tbody>
</table>

8.1.2.2. **Method**

The Web Pages can use Alias Names for accessing Shared Data names. It provides one level of indirection for reading Shared Data. This mechanism allows the Web Pages to store names of the Shared Data fields it is monitoring in Shared Data fields ht0101 through ht0120. Then, it can read the fields indirectly by reading the Alias names, hc0101 through hc0120.

8.1.3. **Network Node Status (NS)**

<table>
<thead>
<tr>
<th>Access:</th>
<th>“Read Only.” Access level is not customizable.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code:</td>
<td>ns</td>
</tr>
<tr>
<td>Data Type:</td>
<td>D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ControlNet Class Code:</th>
<th>6F hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instances:</td>
<td>1</td>
</tr>
</tbody>
</table>

8.1.3.1. **Attributes**

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ns0100</td>
<td>Composite ns block Struct na Composite of entire block</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>ns0101</td>
<td>Cluster Nodes Online 1–20</td>
</tr>
<tr>
<td>ns0120</td>
<td></td>
</tr>
<tr>
<td>ns0121</td>
<td>Host Nodes Online 1 – 3</td>
</tr>
<tr>
<td>ns0133</td>
<td></td>
</tr>
<tr>
<td>ns0124</td>
<td>PLC Online</td>
</tr>
<tr>
<td>ns0125</td>
<td>FTP Currently Active</td>
</tr>
<tr>
<td>ns0126</td>
<td>Email Server Online</td>
</tr>
<tr>
<td>ns0127</td>
<td>Gateway Server Online</td>
</tr>
<tr>
<td>ns0128</td>
<td>Reserved</td>
</tr>
<tr>
<td>ns0129</td>
<td>Reserved</td>
</tr>
<tr>
<td>ns0130</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

8.1.3.2. Method

The Resident Scale Task maintains the online/offline status for all nodes in its local cluster, using the TCP/IP IGMP protocol. Refer to the Section entitled “Clustering Services Task”.

The RST maintains the Email Server and Gateway Server status using the standard ping protocol.

The Application can read these statuses.

8.1.4. Cluster IP Addresses (NC)

<table>
<thead>
<tr>
<th>Access:</th>
<th>“Maintenance”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code:</td>
<td>80 Hex</td>
</tr>
<tr>
<td>Data Type:</td>
<td>PP</td>
</tr>
<tr>
<td>Instances:</td>
<td>1</td>
</tr>
</tbody>
</table>

8.1.4.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Class</th>
<th>Data Type</th>
<th>Instances</th>
</tr>
</thead>
<tbody>
<tr>
<td>nc0100</td>
<td>Composite nc block</td>
<td>Struct</td>
<td>na</td>
<td>Composite of entire block</td>
</tr>
<tr>
<td>nc0101</td>
<td>Cluster Node IP Address 1 – 20</td>
<td>S40</td>
<td>na</td>
<td>If no cluster, nc0101 contains IP address of this node. Otherwise, this group contains IP addresses of all nodes in a cluster.</td>
</tr>
<tr>
<td>nc0120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nc0121</td>
<td>Cluster Nodes Disable 1 – 20</td>
<td>ABI 20</td>
<td>na</td>
<td>0 = no, 1 = yes for each cluster node</td>
</tr>
<tr>
<td>nc0122</td>
<td>Remote Cluster Node Count</td>
<td>By</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>nc0123</td>
<td>Network Console Enable</td>
<td>BI</td>
<td>na</td>
<td>1 = This terminal may act as a remote console for other cluster nodes.</td>
</tr>
<tr>
<td>nc0124</td>
<td>Cluster Node Number of This Node</td>
<td>By</td>
<td>na</td>
<td>1 – 20, 0 = no cluster</td>
</tr>
<tr>
<td>nc0131</td>
<td>Terminal Names 1 – 20</td>
<td>S21</td>
<td>na</td>
<td>Terminal names of all nodes in a cluster.</td>
</tr>
<tr>
<td>nc0150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.1.4.2. Method

The RST supports up to 20 terminals in an IND780 cluster. The RST:

- Automatically establishes the TCP/IP connections with remote terminals,
- Acts as a client to the Shared Data Server in other terminals in a cluster,
- Automatically detects online/offline state by periodically "pinging" remote terminals in cluster.

To find the IP Address of the local IND780 Terminal, follow this procedure:

- Read nc0124. It provides an index into nc0101 through nc0120 for accessing the local IP address in a cluster.
- If nc0124 = 0, then nc0101 contains the local IP address in a standalone IND780.

To find the nodes multicasting on a specific Multicast address, follow this procedure:

- Set qc0171 = 2 to enter node query mode. The shared data items ns0101-20 and nc0101-20 will reflect the other nodes multicasting on the Cluster Address (nt0106).
- Set qc0171 = 1 to return to normal operation.

8.1.5. Network Print Client Setup (NP)

| Access: "Service", default level is customizable by individual field. |
| Class Code: np |
| Instances: 1 |

8.1.5.1. Attributes

np0100	Composite np block	Struct	na	Composite of entire block
np0101	Enable Network Print Client	BI	na	0 = no, 1 = yes
np0102	Reserved	S21	na	
np0103	Reserved	S21	na	
np0104	Reserved	S21	na	
np0105	Network Print Client Port Number	S21	na	
np0106	Network Print Client IP Address	S40	na	
np0107	Reserved	S40	na	
np0108	Reserved	S40	na	
np0109	Reserved	BI	na	
np0110	Reserved	S21	na	
np0111	Reserved	S21	na	
np0112	Reserved	S40	na	
np0113	Reserved	S40	na	
np0114	Reserved	S40	na	
np0115	Reserved	BI	na	
8.1.6. Data Connections Setup (DC)

Access: "Maintenance"

Class Code: dc
Data Type: PS
Instances: 20

8.1.6.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>dc--00</th>
<th>Composite dc block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>none</td>
<td>4</td>
<td>5</td>
<td>multi-continuous print 2</td>
</tr>
<tr>
<td>1</td>
<td>scale transaction</td>
<td>6</td>
<td>11</td>
<td>totals reports</td>
</tr>
<tr>
<td>2</td>
<td>continuous print</td>
<td></td>
<td></td>
<td>extended continuous print</td>
</tr>
<tr>
<td>3</td>
<td>multi-continuous</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>dc--01</th>
<th>Output Connection Type</th>
<th>By</th>
<th>na</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>scale transaction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>continuous print</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>multi-continuous print</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>dc--02</th>
<th>Input Connection Type</th>
<th>By</th>
<th>na</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>scale commands, CTPZ-style</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>scale commands, SICS Slave Level 0 & 1,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>bar codes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>remote keyboard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ComPac 8142</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ComPac 8530</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>ComPac PT6S3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>ComPac SMA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
dc--03 LPRINT Device
By na
| 0 = none, 1 = Virtual Console Instance 1 (am0100), 2 = Virtual Console Instance 2 (am0200), 3 = Virtual Console Instance 3 (am0300) |

Only the first LPRINT connection definition for each Virtual Console in the Data Connections is valid. It is only valid in conjunction with a demand print type connection.

dc--04 Output Trigger
By na
<table>
<thead>
<tr>
<th>Entity that triggers output:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: None</td>
</tr>
<tr>
<td>1 – 5: Scales 1 - 5</td>
</tr>
<tr>
<td>6 – 25: Custom Print 1 – 20</td>
</tr>
<tr>
<td>26 -37: Flow Meter 1 – 12</td>
</tr>
</tbody>
</table>

If this connection is a SICS Slave Connection in dc--02, this field indicates which scale the SICS Connection controls.

dc--05 Print Template(s)
ABI na
| An array with one element for each template |
| Entry 1: 1 = use default template. |
| Entry 2-11: 1 = Connection uses this template 1-10. |

dc--06 Address
By na

There are up to 3 IO ports for an output data connection. There can be only one local IO port for an input connection. The IO port numbers are as follows:

1-6 are Serial Ports 1-6
7-12 are USB Ports 1-6
13-15 are TCP/IP Demand Print Message streams 1-3 for remote data connections. An IND780 client or PC client application must connect to the Shared Data Server to receive data from this output connection.
16 is TCP/IP message stream for continuous output
17 is the TCP/IP "EPRINT" connection for the second Shared Data Server port. This connection supports the legacy JagX Console Print server connection for continuous output and demand print.
20 is a "no connection" output connection that enables totalization and alibi memory processing without generating an output message to a device.

dc--07 IO Port
ABy 3
| 1-6 are Serial Ports 1-6 |
| 7-12 are USB Ports 1-6 |
| 13-15 are TCP/IP Demand Print Message streams 1-3 for remote data connections. An IND780 client or PC client application must connect to the Shared Data Server to receive data from this output connection. |
| 16 is TCP/IP message stream for continuous output |
| 17 is the TCP/IP "EPRINT" connection for the second Shared Data Server port. This connection supports the legacy JagX Console Print server connection for continuous output and demand print. |
| 20 is a "no connection" output connection that enables totalization and alibi memory processing without generating an output message to a device. |

dc--08 Add Checksum
Bl na
| 1 = Add checksum to end of output string |

dc--09 Default Demand Print Template
By na
| 0 = Single-Line, 1 = Multi-Line |

dc--10 Default Demand Print Control Chars
By na
| 0 = None, 1 = STX, 2 = SO-SI, 3 = STX & SO-SI |
8.1.6.2. Method

You can establish Data Connections to Serial Ports, USB Ports, and TCP/IP Connection Ports. There is a separate instance of the DC class for each data connection. You may only specify a single output type OR a single input type in each connection instance – not both. A SICS command connection is an exception; it is both input and an output connection.

Here are some rules for configuring data connections:

- Demand print and Continuous print connections CANNOT share the same IO port.
- An input connection CANNOT share the same IO port with another input connection.
- Multiple demand print and custom print connections CAN share the same IO port.
- Demand OR Continuous print connections CAN share an IO port with a single Input-only connection, such as CTPZ-command connection or a bar-code reader connection.
- A SICS-connection must have exclusive use of its IO port since it does bi-directional IO.
- Multiple ComPac 8142 or 8530 hosts (not both) may share the same port if their addresses are unique.
- Scales and Remote Discrete IO devices must have exclusive use of their IO port.
- You can configure multiple continuous print connections to a single IO port. However, the RST only sends the data from a single “selected” scale at a time.
- Custom applications must have exclusive use of their IO ports for communicating bi-directionally with a custom device. However, they CAN share a port with demand print and custom print connections when the application is doing output-only operations.
- Only the first LPRINT connection definition is valid.
- Only the first Continuous Standard connection for each scale is valid.
- Only the first Continuous Template connection for each scale is valid. The maximum length of Template Continuous Output string is 200 characters.
- Only the first Continuous Multiplexed connection is valid.

The RST uses the “Output Trigger” parameter for determining which device or command can trigger the print operations for the connection. Shared Data commands for each device initiate the demand or continuous print operations. Shared Data commands trigger the custom print operations.

The TCP/IP Console Print Server enables one or more remote client programs to receive print data from the IND780. The remote clients can be WINDOWS PC Visual Basic applications or other TCP/IP host programs. You must first enable the TCP/IP Console Print Server Print Connection. Then, whenever a remote client establishes a TCP/IP connection, the Console Print Server sends the LPRINT data, the demand and custom print data, and the console log data to the client across the TCP/IP connection to the remote client. The Console Print Server uses TCP/IP port 1701 for establishing connections.

The IND780 Console Print Server sends only the specific output selected by the Output Connection and LPRINT device parameters in the TCP/IP data connection instances.
In order to route print connection data to a remote IND780 terminal IO port, you must setup locally an output connection to a TCP/IP port. In the remote IND780 terminal, you must configure a “Network Print Client” to fetch the data and route it to the proper IO port.

The TCP/IP Console Print Server routes input data that it receives, as keystrokes to the SoftKey Manager/Keyboard Routing. Then, using this connection, a remote client can submit keystrokes to the IND780.

Each demand print, custom print, or lprint message have a <dprint> and </dprint> delimiter tags to denote the beginning and end of the message, and they may span multiple messages. The Print Client and destination Serial Services task must print the data within the beginning and ending tags sequentially and consecutively so that messages from different terminals do not become intermixed.

8.1.7. Email Alert Setup (NA)

<table>
<thead>
<tr>
<th>Access:</th>
<th>Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code:</td>
<td>na</td>
</tr>
<tr>
<td>Data Type:</td>
<td>PS</td>
</tr>
<tr>
<td>Instances:</td>
<td>1</td>
</tr>
</tbody>
</table>

8.1.7.1. Attributes

Note. The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>na0100</th>
<th>Composite na block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>na0101</td>
<td>Enable Email Alert</td>
<td>Bl</td>
<td>na</td>
<td>0 = no, 1 = yes</td>
</tr>
<tr>
<td>na0102</td>
<td>SMTP Server IP Address</td>
<td>S40</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>na0103</td>
<td>SMTP Sending Machine Name</td>
<td>S21</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>na0104</td>
<td>SMTP Sender E-mail Address</td>
<td>S40</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>na0105</td>
<td>SMTP Subject</td>
<td>S81</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>na0106</td>
<td>SMTP Domain</td>
<td>S40</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>na0107</td>
<td>SMTP Server TCP Port</td>
<td>US</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>na0108</td>
<td>E-mail Recipient Address 1 – 6</td>
<td>S40</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>na0113</td>
<td>E-mail Recipient Address 1 – 6</td>
<td>S40</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>na0114</td>
<td>E-mail On Calibration Checks</td>
<td>ABy 6</td>
<td>no</td>
<td>0 = no, 1 = yes (all), 2 = failures only for corresponding E-mail recipient</td>
</tr>
<tr>
<td>na0120</td>
<td>E-mail On Warnings</td>
<td>ABy 6</td>
<td>na</td>
<td>0 = no, 1 = yes (all) for corresponding E-mail recipient</td>
</tr>
<tr>
<td>na0121</td>
<td>E-mail On Failures</td>
<td>ABy 6</td>
<td>na</td>
<td>0 = no, 1 = yes (all) for corresponding E-mail recipient</td>
</tr>
<tr>
<td>na0122</td>
<td>E-mail On Application Trigger</td>
<td>ABy 6</td>
<td>na</td>
<td>0 = no, 1 = yes (all) for corresponding E-mail recipient. Note: Resident Scale Task ignores this element. This is intended to provide a convenient location for email address configuration. Use of this element</td>
</tr>
</tbody>
</table>
would be exclusive to TaskExpert functionality in which the TaskExpert program/application reads this element to determine if a “TaskExpert” Email command should be invoked / called.

na0123	Reserved	ABy 6
na0124	Reserved	ABy 6
na0125	Reserved	ABy 6
na0126	Reserved	ABy 6

8.1.7.2. Method

The RST Emailer sends email messages in the following format:

```
ALERT! IND780:11:MONITOR SCALE ERRORS:01:000:exp 06/07:2007/20/07 15:00:03
```

8.1.8. FTP Server Setup (NF)

Attributes

Note: The last two digits of each shared data variable is its attribute.

nf0100	Composite nf block	Struct	na	Composite of entire block
nf0101	Enable FTP Server	BI	na	0 = no, 1 = yes, 2 = yes, read only
nf0102	FTP login names 1-6	S13	na	
nf0107	FTP login names 1-6	S13	na	
nf0108	FTP passwords 1-6	S13	na	
nf0113	FTP passwords 1-6	S13	na	
nf0114	Write Access Level 1-6	By	na	1 = Operator, 2 = Supervisor, 3 = Service, 4 = Administrator
nf0119	Write Access Level 1-6	By	na	

8.1.8.2. Method

The FTP Server listens on a TCP/IP port for a remote FTP client to initiate a connection with the FTP Server. Once the Client and Server establish the connection, the FTP client initiates the file transfers to and from the Server, using standard FTP Protocol commands.

The IND780 restricts access to the files on the IND780 based on the access privilege level of the user.

Users with “Administrator” rights can write the entire FLASH file system (“\Storage Card”). Only Administrators have write access to the following Files/directories:
All users have read only access by default. Users with an access level of at least the “Supervisor” access level have write access to all files & directories except those restricted to administrator write access only listed above. The “anonymous” user has read only access.

IND780 Shared Data is accessible in the \IND780\SD directory. Files available are BRAM.dmt, FLASH.dmt and EEPROM.dmt. Users with the “Administrator” access level have read and write access to these files. All other users have read only access to these files, except only “Administrators” have read access to the Terminal Access Security Setup (xu) block and the FTP Server Setup (nf) Access block.

8.1.9. Network Print Client Setup (NK)

Access:	“Maintenance”
Class Code:	nk
Data Type:	PS
Instances:	1

8.1.9.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>nk0100</th>
<th>Composite nk block</th>
<th>Struct na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Identifies the Remote Print Servers to which the Print Client on this IND780 connects. Byte 0 is the Server node number, 1 to 20, to which the Print Client must establish the connection to the Print Server. 0 indicates no connection. Byte 1 is the Print Stream Number on the Server node: 1-3 = TCP/IP Demand Print Stream 1-3 4-8 = TCP/IP Continuous Output Stream for Scale 1-5 9 = TCP/IP Continuous Output Stream for the Selected Scale 10 = TCP/IP Multiplexed Continuous Output Stream Byte 2 is the IO Port Number to route the data from the remote Print Server. 1-6 are Serial Ports 1-6 7-12 are USB Ports 1-6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8.1.9.2. Method

The Print Client attempts to establish a TCP/IP connection with the Print Server on the remote cluster nodes as identified by this Shared Data block. The Print Client accepts the output data from the
Remote Print Server and routes it to the selected local output port. Refer to the Data Connections (DC) Setup block.

8.1.10. **TCP/IP/Ethernet Network Setup (NT)**

Access:	“Maintenance”
Class Code:	nt
Data Type:	PS
Instances:	1

8.1.10.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>Instance</th>
<th>Description</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nt0100</td>
<td>Composite nt block</td>
<td>Struct</td>
<td>na</td>
<td>Composite of entire block</td>
</tr>
<tr>
<td>nt0101</td>
<td>Ethernet MAC Address</td>
<td>S13</td>
<td>na</td>
<td>Read from Ethernet Adapter.</td>
</tr>
<tr>
<td>nt0102</td>
<td>Ethernet IP Address</td>
<td>S40</td>
<td>na</td>
<td>Default: 192.168.001.000. Used only IP address is fixed – NO DHCP</td>
</tr>
<tr>
<td>nt0103</td>
<td>Ethernet IP Address Subnet Mask</td>
<td>S40</td>
<td>na</td>
<td>Default: 255.255.255.000</td>
</tr>
<tr>
<td>nt0104</td>
<td>Ethernet Gateway IP Address</td>
<td>S40</td>
<td>na</td>
<td>Default: 000.000.000.000</td>
</tr>
<tr>
<td>nt0105</td>
<td>Enable Ethernet DHCP Client</td>
<td>By</td>
<td>na</td>
<td>0 = no, 1 = yes</td>
</tr>
<tr>
<td>nt0106</td>
<td>Cluster Multicast Address</td>
<td>S40</td>
<td>na</td>
<td>IGMP protocol uses multicast address to acquire cluster addresses. Default: 227.227.000.001</td>
</tr>
<tr>
<td>nt0107</td>
<td>Reserved</td>
<td>S40</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>nt0108</td>
<td>Reserved</td>
<td>S40</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>nt0109</td>
<td>Reserved</td>
<td>By</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>nt0110</td>
<td>Reserved</td>
<td>By</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>nt0111</td>
<td>Reserved</td>
<td>S40</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>nt0112</td>
<td>Reserved</td>
<td>S40</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>nt0113</td>
<td>Reserved</td>
<td>By</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>nt0114</td>
<td>Reserved</td>
<td>By</td>
<td>na</td>
<td></td>
</tr>
</tbody>
</table>

8.1.11. **Serial Port Setup (RP)**

Access:	“Maintenance”
Class Code:	rp
Data Type:	PS
Instances:	4

8.1.11.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>Instance</th>
<th>Description</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rp--00</td>
<td>Composite rp block</td>
<td>Struct</td>
<td>na</td>
</tr>
</tbody>
</table>
Communication and PLC Data

8.1.11.2. Method

The Data Format is the encoding (using the code page) of the data sent and received on the port. Received data will use this code page to convert the data to internal unicode. Data will be converted from internal unicode using this code page when sent. Unicode is converted internally to CP1252 when required.

8.2. Print and Templates Data

8.2.1. Demand Print Setup (DP)

<table>
<thead>
<tr>
<th>Access: Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code: dp Data Type: PS</td>
</tr>
<tr>
<td>Instances: 17 (Scales 1 - 5, Flowmeters 1 - 12)</td>
</tr>
</tbody>
</table>

8.2.1.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>dp--00</th>
<th>Composite dp block</th>
<th>Struc</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>dp--01</td>
<td>Enable Auto-Print</td>
<td>BI</td>
<td>na</td>
<td>1 = yes</td>
</tr>
<tr>
<td>dp--02</td>
<td>Ensure No Motion before Printing</td>
<td>BI</td>
<td>na</td>
<td>1 = yes</td>
</tr>
<tr>
<td>dp--03</td>
<td>Print Threshold</td>
<td>D na</td>
<td>Weight threshold for Auto-Print and Scale Weighment Monitoring in primary weight units.</td>
<td></td>
</tr>
<tr>
<td>dp--04</td>
<td>Print Reset Threshold</td>
<td>D na</td>
<td>Weight threshold for resetting Auto-Print and scale weigment monitoring in primary weight units.</td>
<td></td>
</tr>
<tr>
<td>dp--05</td>
<td>Minimum Print Threshold</td>
<td>D na</td>
<td>Minimum print threshold for demand print</td>
<td></td>
</tr>
</tbody>
</table>
| dp--06 | Weighment Trigger | By na | 0 = None
1 = Print Command
2 = Upscale Gross Weight Threshold to start Auto-Print or to record a weighment
3 = Downscales Gross Weight Threshold to start Auto-Print, or to record a weight
4 = Upscale Net Weight Threshold to start Auto-Print or to record a weighment
5 = Downscaes Net Weight Threshold to start Auto-Print or to record a weighment. |
| dp--07 | Print Interlock Enabled | Bl na | 1 = enable print checks
0 = disabled |
| dp--08 | Weight Deviation Print Threshold | D na | Auto-Print when this absolute weight deviation occurs from the last printed weight. |
| dp--09 | Last “Reset On” Menu Selection | By na | 0 = Return, 1 = Deviation |
| dp--10 | Reserved | By na |
| dp--11 | Reserved | D na |

8.2.1.2. Method

The **Demand Print** command is a “transaction” print command. A local operator, an external operator, or a remote device can generate a print command. When the Resident Scale Task receives a Print command, it formats and stores weight and other data as a transaction record for the scale or flow meter channel. It forwards the transaction record to one or more destinations, which could include a printer, Alibi (transaction) memory, or a remote device. The Resident Scale Task rejects Print command when:

- The scale weight is less than the Minimum Print Weight.
- The scale is in motion, when dp--02 is enabled.
- After generating a print, the Resident Scale Task has not reset the print trigger because the weight has not gone below the print reset threshold, when dp--01 selects auto-printing.

Auto-Print is Demand Print command that operates in conjunction with the Print Threshold and the Reset Print Threshold. When the scale weight goes above the Print Threshold and there is no motion the scale, the Resident Scale Task automatically generates a demand print. When the scale goes below the Print Reset Threshold, the Resident Scale Task re-enables the next print.

Print Connections Table associates a logical print command with one or more physical print devices and print messages. The Print Template Setup specifies the format of the print messages.
Scale Monitoring uses these settings to count the number and size of the scales’ weighments.

The Weights and Measures seal protects the print configuration.

8.2.2. Custom Print Commands & Statuses (CP)

<table>
<thead>
<tr>
<th>Access: “All Users”</th>
<th>Data Type: D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code: cp</td>
<td></td>
</tr>
<tr>
<td>ControlNet Class Code: 94 hex</td>
<td></td>
</tr>
<tr>
<td>Instances: 1</td>
<td></td>
</tr>
</tbody>
</table>

8.2.2.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>cp0100</th>
<th>Composite cp block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>cp0101</td>
<td>Custom Print 1–10</td>
<td>BI</td>
<td>rc</td>
<td>Application sets from 0 to 1 = command to start custom print.</td>
</tr>
<tr>
<td>cp0110</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cp0111</td>
<td>Custom Print 1–10</td>
<td>By</td>
<td>rt</td>
<td>Command Completion Statuses: O = Success, 1-255 = Specific error code.</td>
</tr>
<tr>
<td>cp0120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cp0121</td>
<td>Custom print 11–20</td>
<td>BI</td>
<td>rc</td>
<td>Application sets from 0 to 1 = command to start custom print.</td>
</tr>
<tr>
<td>cp0130</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cp0131</td>
<td>Custom print 11-20</td>
<td>By</td>
<td>rt</td>
<td>Command Completion Statuses: O = Success, 1-255 = Specific error code.</td>
</tr>
<tr>
<td>cp0140</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8.2.2.2. Method

The Application uses this Shared Data block to trigger custom prints and to monitor their completion status.

8.2.3. Print Templates Setup (PT)

<table>
<thead>
<tr>
<th>Data Type: PS</th>
<th>Access: “Maintenance”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code: pt</td>
<td></td>
</tr>
<tr>
<td>Instances: 1</td>
<td></td>
</tr>
</tbody>
</table>

8.2.3.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>pt0100</th>
<th>Composite pt block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>pt0101</td>
<td>Print Templates 1–10</td>
<td>S1001</td>
<td>na</td>
<td>Printer Template</td>
</tr>
<tr>
<td>pt0110</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pt0111</td>
<td>Print Literals 1 – 20</td>
<td>S51</td>
<td>na</td>
<td>Fixed Text Messages used in Templates</td>
</tr>
<tr>
<td>pt0130</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.2.3.2. Method

Templates are a method to configure both data content and data format in print messages. A Template is a user specific “program” that the RST Template Interpreter executes to build a print message. A Template defines a serial data stream that the IND780 transmits to a printer, sends to a host computer, or writes to a data file. The IND780 supports template nesting. Templates make use of the encapsulation of related data fields, e.g., weight data is not a composed of 10 isolated fields but is instead a single object having many highly correlated attributes, such as gross, tare, net, units, and tare mode. These attributes remain internally consistent at all times. The Weights and Measures seal does not protect Template editing.

A Template Editor that runs in the IND780 Control Panel, the IND780 Web Pages, or in a remote PC Setup program enable the user to build the Template. Appendix B (Default Settings) of the IND780 Technical Manual describes the Template Format, and Chapter 3 (Configuration) of the Technical Manual details template editing.

8.2.4. Report Print Templates Setup (RT)

Access:	“Maintenance”
Class Code:	rt
Data Type:	PS
Instances:	1

8.2.4.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

rt0100	Composite bi block			
rt0101	Report Width	Bl	na	0 = wide (132 chars), 1 = narrow (40 chars)
rt0102	Blank Header Lines	By	na	# blank lines in header
rt0103	Print Standard Title	Bl	na	0 = no, 1 = yes
rt0104	Record Separator	By	na	0 = none, 1 = ‘*’, 2 = ‘\,’ 3 = ‘=’, 4 = ‘CR/LF’
rt0105	Blank Footer Lines	By	na	# blank lines in footer

8.2.4.2. Method

RST uses the Report Template settings for printing the Standard Terminal reports.
8.3. PLC Data

8.3.1. PLC Setup (PL)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access</td>
<td>“Maintenance”</td>
</tr>
<tr>
<td>Class Code</td>
<td>pl</td>
</tr>
<tr>
<td>Data Type</td>
<td>PS</td>
</tr>
<tr>
<td>Instances</td>
<td>1</td>
</tr>
</tbody>
</table>

Attributes

- **Note**: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pl0100 Composite pl block</td>
<td>Struc na Composite of entire block</td>
</tr>
<tr>
<td>pl0101 PLC Node Address</td>
<td>By na Allen-Bradley Rack Address 0-59</td>
</tr>
<tr>
<td></td>
<td>PROFIBUS station ID 1-127</td>
</tr>
<tr>
<td></td>
<td>ControlNet MacID 1-99</td>
</tr>
<tr>
<td>pl0102 PLC Type</td>
<td>By na 0 = None 1 = ControlNet 2 = PROFIBUS 3 = Ethernet IP 4 = Device Net 5 = AB RIO 6 = PROFINET</td>
</tr>
<tr>
<td></td>
<td>The RST automatically determines the PLC Type by reading the installed hardware board.</td>
</tr>
<tr>
<td>pl0103 Number of Message Slots Used</td>
<td>By na Slots used in PLC Message – up to 12</td>
</tr>
<tr>
<td>pl0104 Device Assignment Table</td>
<td>ABY 12 na Source Device associated with each PLC Message Slot. Scale 1-5, Flow Meter K-V.</td>
</tr>
<tr>
<td>pl0105 Node Assignment Table</td>
<td>ABY 12 na Source Node associated with each PLC Message Slot.</td>
</tr>
<tr>
<td>pl0106 Data Format</td>
<td>By na 1 = Integer Weight 2 = Integer Increments 3 = Extended Integer Weight 4 = Floating Point 5 = Assembly Template 6 = Application Processing</td>
</tr>
<tr>
<td>pl0107 Enable Explicit Messaging</td>
<td>Bi na 1 = Yes. AB RIO Block Transfer supports explicit messaging to read and write Shared Data. For PROFIBUS, this field also enables explicit messaging for Shared Data IO blocks appended to the cyclic data messages. ControlNet contains explicit message as part of its standard protocol.</td>
</tr>
<tr>
<td>pl0108 Timer Interval for Cyclic Outputs</td>
<td>US na In Assembly Template Data format only, number of milliseconds between cyclic outputs to PLC.</td>
</tr>
<tr>
<td>pl0109 DHCP IP Assignment</td>
<td>Bi na 0 = Disable, 1 = Enable</td>
</tr>
<tr>
<td>pl0110 AB RIO Data Rate</td>
<td>By na 0 = 57.6K 1 = 115.2K</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>pl0111</td>
<td>AB RIO Starting Quarter</td>
</tr>
<tr>
<td>pl0112</td>
<td>AB RIO Last Rack / PROFINET migration DAP</td>
</tr>
<tr>
<td>pl0113</td>
<td>Byte-Ordering of PLC Data</td>
</tr>
<tr>
<td>pl0114</td>
<td>Input Rotation</td>
</tr>
<tr>
<td>pl0115</td>
<td>App Cyclic Input To PLC size</td>
</tr>
<tr>
<td>pl0116</td>
<td>App Cyclic Output From PLC size</td>
</tr>
<tr>
<td>pl0120</td>
<td>Size of Input to PLC Assembly</td>
</tr>
<tr>
<td>pl0121</td>
<td>Size of Output from PLC Assembly</td>
</tr>
<tr>
<td>pl0122</td>
<td>PROFINET IP Adress</td>
</tr>
<tr>
<td>pl0123</td>
<td>Reserved</td>
</tr>
<tr>
<td>pl0125</td>
<td>Ethernet/IP IP Address</td>
</tr>
<tr>
<td>pl0126</td>
<td>Ethernet/IP Subnet Mask</td>
</tr>
<tr>
<td>pl0127</td>
<td>Ethernet/IP Global Address</td>
</tr>
<tr>
<td>pl0128</td>
<td>DeviceNet Address</td>
</tr>
<tr>
<td>pl0129</td>
<td>ABRIOD Address Display Format</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>pl0130</td>
<td>Q.i ControlNet Cyclic Assembly</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.3.1.2. Method

The IND780 RST supports three general methods for building PLC output messages and processing PLC Input Messages:

1. The RST uses Internally-Defined PLC input and output messages. These messages have a fixed format. The RST builds the output messages and processes the input messages based on this fixed format.

2. The RST uses assembly templates. The user can build templates defining the specific format of the input and output PLC messages. The templates consist of a list of Shared Data field names and some minimum formatting definitions. The RST processes the PLC messages based on these templates.

3. The Application processes the PLC messages. The RST sends the Output-to-PLC messages from the Dynamic PLC IO Shared Data Block. It writes the Input-from-PLC messages to the same block and alerts the Application that there is a new message.

For the Internally-Defined PLC messages, the RST can support up to 12 device “slots” in the messages. That is, there can be up to 12 devices reporting weight and accepting commands. The devices can be either scales or flow meters. The devices may reside in the local IND780, or they may reside in a remote IND780 within the cluster.

8.3.1.2.1. PLC Data Byte-Ordering – pl0113

<table>
<thead>
<tr>
<th></th>
<th>Big Endian</th>
<th>Little Endian</th>
<th>Modicon Endian</th>
<th>Jog AB-RIO Endian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integer</td>
<td>1 2</td>
<td>2 1</td>
<td>1 2</td>
<td>2 1 2 1 1 2 2 1 1 2</td>
</tr>
<tr>
<td>Float</td>
<td>1 2 3 4</td>
<td>4 3 2 1</td>
<td>3 4 1 2</td>
<td>N/A</td>
</tr>
<tr>
<td>String</td>
<td>A B C D</td>
<td>ABCD</td>
<td>ABCD</td>
<td>A B C D</td>
</tr>
<tr>
<td>ControlNet</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>PROFINET</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>ABRIIO</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Modbus TCP</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

PLC (O-T). Classic T-O assembly length is 496 bytes and classic O-T assembly length is 4 bytes.

2 = Use IND780 Q.i Retro instance numbers for Q.i Honeywell ControlNet PLC where 10 is Cyclic Assembly Input to PLC (T-O) and 2 = Cyclic Assembly Output from PLC (O-T). Classic T-O assembly length is 496 bytes and classic O-T assembly length is 22 bytes.

3 = Use IND780 Q.i Retro instance numbers for Q.i Honeywell ControlNet PLC where 10 is Cyclic Assembly Input to PLC (T-O), and Cyclic Assembly Output from PLC (O-T) comes from Shared Data field bx0176. Classic T-O assembly length is 496 bytes and classic O-T assembly length comes from Shared Data field bx0175.
8.3.2. Dynamic PLC IO Data (PD)

<table>
<thead>
<tr>
<th>Access:</th>
<th>Data Type: D</th>
</tr>
</thead>
<tbody>
<tr>
<td>“All Users”</td>
<td></td>
</tr>
<tr>
<td>Class Code: pd</td>
<td></td>
</tr>
<tr>
<td>Instances: 1</td>
<td></td>
</tr>
</tbody>
</table>

Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>Variable Code</th>
<th>Description</th>
<th>Type</th>
<th>Direction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pd0100</td>
<td>Composite pd block</td>
<td>Struct</td>
<td>na</td>
<td>Composite of entire block</td>
</tr>
<tr>
<td>pd0101</td>
<td>App Cyclic Input to PLC Buffer</td>
<td>ABy500</td>
<td>rt</td>
<td>TaskExpert Application sets Cyclic Input to PLC buffer.</td>
</tr>
<tr>
<td>pd0102</td>
<td>App Cyclic Input to PLC Length</td>
<td>US</td>
<td>rt</td>
<td>TaskExpert Application sets input buffer length. RST transfers data length from setting in pl0115</td>
</tr>
<tr>
<td>pd0103</td>
<td>App Cyclic Output from PLC Buffer</td>
<td>ABy500</td>
<td>rt</td>
<td>RST sets Cyclic Output data from PLC in buffer for TaskExpert application</td>
</tr>
<tr>
<td>pd0104</td>
<td>App Cyclic Output from PLC Length</td>
<td>US</td>
<td>rt</td>
<td>RST sets data length for pl0116</td>
</tr>
<tr>
<td>pd0105</td>
<td>App Explicit Out from PLC Buffer</td>
<td>ABy500</td>
<td>rt</td>
<td>RST sets Explicit Output sent from PLC to buffer for TaskExpert application. This capability is available for ControlNet explicit messaging and for ABRIIO Block Transfer messaging only.</td>
</tr>
<tr>
<td>pd0106</td>
<td>App Explicit Out from PLC Length</td>
<td>US</td>
<td>rt</td>
<td>RST sets length of Explicit Output data length for TaskExpert Application.</td>
</tr>
<tr>
<td>pd0107</td>
<td>App Explicit Input to PLC Buffer</td>
<td>ABy500</td>
<td>rt</td>
<td>TaskExpert Application sets the Explicit Input buffer to send to PLC. The RST sends to PLC upon read request by PLC. This capability is available for ControlNet explicit messaging and for ABRIIO Block Transfer messaging only.</td>
</tr>
<tr>
<td>pd0108</td>
<td>App Explicit Input from PLC Length</td>
<td>US</td>
<td>rt</td>
<td>TaskExpert Application sets this field to indicate length of data in the Explicit Input to PLC buffer.</td>
</tr>
<tr>
<td>pd0109</td>
<td>App Send Cyclic Output Command</td>
<td>Bl</td>
<td>rc</td>
<td>Application sets from 0 to 1 to send new cyclic data to PLC.</td>
</tr>
<tr>
<td>pd0110</td>
<td>Reserved</td>
<td>Bl</td>
<td>rc</td>
<td></td>
</tr>
<tr>
<td>pd0111</td>
<td>Received New Cyclic Input Status</td>
<td>Bl</td>
<td>rc</td>
<td>Resident Scale Task sets from 0 to 1 to alert application for new data cyclic received.</td>
</tr>
<tr>
<td>pd0112</td>
<td>Analog Output Value for Channel 1</td>
<td>D</td>
<td>rt</td>
<td>Application uses these two values to control Analog Output values.</td>
</tr>
<tr>
<td>pd0113</td>
<td>Analog Output Value for Channel 2</td>
<td>D</td>
<td>rt</td>
<td></td>
</tr>
<tr>
<td>pd0114</td>
<td>Analog Out Error Signal Channel 1</td>
<td>Bl</td>
<td>rt</td>
<td>Application uses these two values to control Analog Output Discrete Error.</td>
</tr>
</tbody>
</table>
Communication and PLC Data

<table>
<thead>
<tr>
<th>Block</th>
<th>Description</th>
<th>Value</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>pd0117</td>
<td>Analog Out Error Signal Channel 2</td>
<td>Bl</td>
<td>rt</td>
</tr>
<tr>
<td>pd0118</td>
<td>PLC / SICS Display Message Data</td>
<td>S101</td>
<td>rt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RST sets this when PLC / SICS command sends new display data.</td>
</tr>
<tr>
<td>pd0119</td>
<td>PLC / SICS Display Command Byte</td>
<td>By</td>
<td>rt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 = Clear Display Message</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 = Display Message Table message 1 (aw0101)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 = Display Message Table message 2 (aw0102)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 = Display Message Table message 3 (aw0103)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 = Display Message Table message 4 (aw0104)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 = Display Message Table message 5 (aw0105)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 = Start ID1 prompt sequence</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7 = Display text in pd0118</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8 = Start ID2 prompt sequence</td>
</tr>
<tr>
<td>pd0124</td>
<td>Analog Output Value for Channel 3</td>
<td>D</td>
<td>rt</td>
</tr>
<tr>
<td>pd0125</td>
<td>Analog Output Value for Channel 4</td>
<td>D</td>
<td>rt</td>
</tr>
<tr>
<td>pd0126</td>
<td>Analog Out Error Signal Channel 3</td>
<td>Bl</td>
<td>rt</td>
</tr>
<tr>
<td>pd0127</td>
<td>Analog Out Error Signal Channel 4</td>
<td>Bl</td>
<td>rt</td>
</tr>
</tbody>
</table>

8.3.2.2 Method

The IND780 allows the Application to control directly the PLC Messaging. The Service Technician can select this option in Setup. Other options allow the Resident Scale Task to process the PLC messages. When controlling the PLC messaging, the Application must be keenly aware of the capabilities and limitations of the particular PLC protocol.

The Application uses the “pd” block to affect its direct control over the PLC message data. Using this block, the Application can directly access the PLC message data. This block also has triggers that the Resident Scale Task and Application use to signal each other when another buffer is ready.

The Resident Scale Task maintains “cyclic” and “explicit” message buffers for both input and output messages. Cyclic messages are scheduled messages that occur on a periodic basis, for example, once every 50 milliseconds. All PLC protocols support cyclic messaging. Cyclic messages typically contain dynamic data, such as weight data or weight status, which is continuously changing.

Explicit messages are unscheduled messages that occur on demand by the PLC. They are typically request-response message exchanges that the PLC initiates. In a good system design, they should occur much less frequently than the cyclic messages. One good use for explicit messages in IND780 systems is in reading and writing Shared Data. For example, explicit messages can set a...
Target coincidence value. Not all PLC protocols support the concept of explicit messages; in which case, the Application must embed the explicit message capability inside the cyclic messaging.

The IND780 allows the Application to control directly the Analog Output signal level. The Service Technician can select this option in Setup. Other options allow the Resident Scale Task to control the signal level. When in control, the Application writes to Shared Data fields in the pd block to control the signal.

8.3.3. **PLC Network Data (PN)**

Access:	“All Users”
Class Code:	pn
Data Type:	D
Instances:	1

8.3.3.1. **Attributes**

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>pn0100</th>
<th>Composite pd block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>pn0101</td>
<td>Device Input to PLC Buffer Slot 1</td>
<td>ABy 200</td>
<td>rt</td>
<td>Cyclic input to PLC</td>
</tr>
<tr>
<td>pn0102</td>
<td>Device Input to PLC Buffer Slot 2</td>
<td>ABy 200</td>
<td>rt</td>
<td></td>
</tr>
<tr>
<td>pn0112</td>
<td>Device Input to PLC Buffer Slot 12</td>
<td>ABy 200</td>
<td>rt</td>
<td></td>
</tr>
</tbody>
</table>

8.3.3.2. **Method**

Scale and Flow Meter devices format and write cyclic data for input to the PLC for the selected slot, based on the setup of the PB block.

8.3.4. **PLC Bridge Process Data (PB)**

Access:	“Read Only” access, level is not customizable.
Class Code:	pb
Data Type:	PP
Instances:	17

8.3.4.1. **Attributes**

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>pb--00</th>
<th>Composite pb block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>pb--01</td>
<td>Bridge Node #</td>
<td>By</td>
<td>rt</td>
<td>Cluster node # of IND780 terminal containing PLC adapter = 1 – 20; 0 = this node</td>
</tr>
<tr>
<td>pb--02</td>
<td>Slot # within PLC Assembly</td>
<td>By</td>
<td>rt</td>
<td>Slot Number within PLC Assembly for this scale = 1 – 12</td>
</tr>
</tbody>
</table>
8.3.4.2. Method

PLC Thread of Bridge Terminal automatically sets up this data for each of the assembly slots in its assembly structure. Bridge Terminal is the IND780 terminal containing the PLC adapter. It can provide PLC assembly slots for both local and remote scales and flow meters.

8.3.5. Cyclic Output-to-PLC Assembly Template Setup (PO)

<table>
<thead>
<tr>
<th>Access:</th>
<th>“Maintenance”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code:</td>
<td>po</td>
</tr>
<tr>
<td>Data Type:</td>
<td>PS</td>
</tr>
<tr>
<td>ControlNet Class Code:</td>
<td>7B hex</td>
</tr>
<tr>
<td>Instances:</td>
<td>1</td>
</tr>
</tbody>
</table>

8.3.5.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>po0100</th>
<th>Composite po block</th>
<th>Struct na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>po0101</td>
<td>Number of fields</td>
<td>By na</td>
<td># of Shared Data fields in message</td>
</tr>
<tr>
<td>po0102</td>
<td>Special length formatting</td>
<td>AbY 60 na</td>
<td>This is an array with one entry for each field. It specifies the length of corresponding string and array fields in the message:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>po0103</th>
<th>1<sup>st</sup> SD field name</th>
</tr>
</thead>
<tbody>
<tr>
<td>po0104</td>
<td>2<sup>nd</sup> SD field name</td>
</tr>
<tr>
<td>po0105</td>
<td>3<sup>rd</sup> SD field name</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>po0161</td>
<td>59<sup>th</sup> SD field name</td>
</tr>
<tr>
<td>po0162</td>
<td>60<sup>th</sup> SD field name</td>
</tr>
</tbody>
</table>

Names of Shared Data fields

If the Shared Data field is remote, the format of this field is “nn/ssssss”, where “nn” is the node number and “ssssss” is the Shared Data field. If the Shared Data field is local, the format of the field is “ssssss” only.

8.3.5.2. Method

The IND780 PLC logic builds a cyclic output buffer from the Shared Data in specified fields. It concatenates the fields together into an assembly buffer. It writes the messages to the PLC Cyclic message buffer on a regular interval time basis.

The IND780 converts its internal Shared Data to the fields in the messages, according to these rules:

1. All fields in the message begin on an even-byte boundary within the message.
2. All fields in the message, except composite block structures, have Big Endian or Little Endian byte-ordering as specified in pl0113. Composite block structures have the native byte ordering of the IND780.
3. String fields in the message must have a specified length. If the internal string data is shorter than the message fields, the IND780 pads the end of the message fields with nulls. If internal data is longer, it truncates the end of the data. The IND780 converts strings from Unicode internally to ASCII data format in the message.

4. The IND780 converts double float internal data to single floating point fields in the message.

5. The IND780 converts Byte and Boolean internal data to word (2-byte) fields in the message.

6. Array fields must have a specified length. If internal data is shorter than the message field, the IND780 pads the end of the message field with nulls. If internal data is longer, it truncates the end of the data. The IND780 does not reformat “Arrays of Bytes and Booleans”, but copies them directly to the template buffer. However, in “Arrays of Long”, each “long” is adjusted to the appropriate Endian.

7. All other fields take the IND780 native formats and lengths.

For PROFIBUS PLC cyclic messages only, the IND780 concatenates explicit messages for reading and writing Shared to the end of the cyclic message. AB RIO, ControlNet, Ethernet/IP and PROFINET use other mechanisms for explicit messaging.

8.3.6. **Cyclic Input-From-PLC Assembly Template Setup (PI)**

<table>
<thead>
<tr>
<th>Access:</th>
<th>“Maintenance”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code:</td>
<td>pi</td>
</tr>
<tr>
<td>Data Type:</td>
<td>PS</td>
</tr>
<tr>
<td>ControlNet Class Code:</td>
<td>7A hex</td>
</tr>
<tr>
<td>Instances:</td>
<td>1</td>
</tr>
</tbody>
</table>

8.3.6.1. **Attributes**

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>pi0100</th>
<th>Composite pi block</th>
<th>Struct na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>pi0101</td>
<td>Number of fields</td>
<td>By na</td>
<td># of Shared Data fields in message</td>
</tr>
<tr>
<td>pi0102</td>
<td>Special length formatting</td>
<td>ABy 60 na</td>
<td>This is an array with one entry for each field. It specifies the length of corresponding string and array fields in the message:</td>
</tr>
<tr>
<td>pi0103</td>
<td>1st SD field name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pi0104</td>
<td>2nd SD field name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pi0105</td>
<td>3rd SD field name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pi0161</td>
<td>59th SD field name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pi0162</td>
<td>60th SD field name</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8.3.6.2. **Method**

The IND780 PLC decodes the cyclic input buffer using this format data. It writes the data to the specified SD fields ONLY IF the data has changed from the last cyclic input message.

Conversion from message data to IND780 internal Shared Data follows the same rules as described in the immediately preceding section.
For PROFIBUS PLC cyclic messages only, the IND780 interprets explicit messages for reading and writing Shared from the end of the cyclic message. AB RIO and ControlNet use other mechanisms for explicit messaging.

8.3.7. Analog Output Setup (AO)

Access: *“Service” default level is customizable by individual field

Class Code: \(\text{ao} \)

Instances: 2, one for each Analog Output board

8.3.7.1. Attributes

<table>
<thead>
<tr>
<th>(\text{ao--00})</th>
<th>Composite ao block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{ao--01})</td>
<td>Board Slot Number</td>
<td>By</td>
<td>na</td>
<td>Board slot number for the Analog Output Board</td>
</tr>
</tbody>
</table>

This data represents the first channel on the Analog Output board. For Instance 1, this is Channel 1. For Instance 2, this is Channel 3.

| \(\text{ao--02} \) | Data Source | By | na | 0 = Not Enabled, 1 = Gross Weight, 2 = Net Weight, 3 = Rate, 4 = Application, 5 = ABS-Displayed weight, 6 = ABS Rate |
| \(\text{ao--03} \) | Source Device | By | na | 1 - 5 = Scale 1 - 5, 6 -17 = Flow Meter 1 - 12 |

Zero weight value in Primary Weight Units, Zero rate value in Primary Weight Units per Time unit, or Zero Value for Application with no Units.

\(\text{ao--04} \)	Zero Calibration Preset	D	na	Span weight value in Primary Weight Units, Span rate value in Primary Weight Units per Time unit, or Span Value for Application with no Units.
\(\text{ao--05} \)	Span Calibration Preset	D	na	Manual Adjustment to Zero Analog Output Value
\(\text{ao--06} \)	Zero Adjustment	D	na	Manual Adjustment to Span Analog Output
\(\text{ao--07} \)	Span Adjustment	D	na	Reserved
\(\text{ao--08} \)	Reserved	D	na	Reserved
\(\text{ao--09} \)	Reserved	D	na	Reserved
\(\text{ao--10} \)	Reserved	By	na	Reserved
\(\text{ao--11} \)	Reserved	By	na	Reserved
\(\text{ao--12} \)	Application Shared Data Source	S7	na	When the source is “Application”, this is the Shared Data field that the Analog Output Driver uses to drive the analog output. The SD field must be a floating point field. The defaults are: Instance 1: \(\text{pd0114} \) Instance 2: \(\text{pd0124} \)
\(\text{ao--13} \)	Calibration Date/Time	AL2	na	
This data represents the second channel on the Analog Output board. For Instance 1, this is Channel 2. For Instance 2, this is Channel 4.

<table>
<thead>
<tr>
<th>ao--22</th>
<th>Data Source</th>
<th>By</th>
<th>na</th>
<th>0 = Not Enabled, 1 = Gross Weight, 2 = Net Weight, 3 = Rate, 4 = Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>ao--23</td>
<td>Source Device</td>
<td>By</td>
<td>na</td>
<td>1 - 5 = Scale 1 - 5, 6 -17 = Flow Meter 1 - 12</td>
</tr>
<tr>
<td>ao--24</td>
<td>Zero Calibration Preset</td>
<td>D</td>
<td>na</td>
<td>Zero weight value in Primary Weight Units, or Zero rate value in Primary Weight Units per Time unit, or Zero Value for Application with no Units.</td>
</tr>
<tr>
<td>ao--25</td>
<td>Span Calibration Preset</td>
<td>D</td>
<td>na</td>
<td>Span weight value in Primary Weight Units, or Span rate value in Primary Weight Units per Time unit, or Span Value for Application with no Units.</td>
</tr>
<tr>
<td>ao--26</td>
<td>Zero Adjustment</td>
<td>D</td>
<td>na</td>
<td>Manual Adjustment to Zero Analog Output Value</td>
</tr>
<tr>
<td>ao--27</td>
<td>Span Adjustment</td>
<td>D</td>
<td>na</td>
<td>Manual Adjustment to Span Analog Output Value</td>
</tr>
<tr>
<td>ao--28</td>
<td>Reserved</td>
<td>D</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>ao--29</td>
<td>Reserved</td>
<td>D</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>ao--30</td>
<td>Reserved</td>
<td>By</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>ao--31</td>
<td>Reserved</td>
<td>By</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>ao--32</td>
<td>Application Shared Data Source</td>
<td>S7</td>
<td>na</td>
<td>When the source is “Application”, this is the Shared Data field that the Analog Output Driver uses to drive the analog output. The SD field must be a floating point field. The defaults are: Instance 1: pd0115 Instance 2: pd0125</td>
</tr>
<tr>
<td>ao--33</td>
<td>Calibration Date/Time</td>
<td>AL2</td>
<td>na</td>
<td></td>
</tr>
</tbody>
</table>

8.3.7.2. Method

The Zero and Span Calibration weight values are in Primary Weight Units.
8.4. **Barcode Data**

8.4.1. **Barcode Input Message (MB)**

<table>
<thead>
<tr>
<th>Access:</th>
<th>“All Users”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code:</td>
<td>mb</td>
</tr>
<tr>
<td>Data Type:</td>
<td>D</td>
</tr>
<tr>
<td>Instances:</td>
<td>1</td>
</tr>
</tbody>
</table>

8.4.1.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>mb0100</th>
<th>Composite mb block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>mb0101</td>
<td>barcode message</td>
<td>S100</td>
<td>na</td>
<td>Resident Serial Services decomposes the message into message blocks according to the Input Message Template</td>
</tr>
<tr>
<td>mb0102</td>
<td>Clear message block</td>
<td>Bl</td>
<td>rc</td>
<td>The application must set this command when it is done processing the current message.</td>
</tr>
<tr>
<td>mb0103</td>
<td>New message received</td>
<td>Bl</td>
<td>rt</td>
<td>Trigger to application indicating that a new input message is ready for the application to begin processing.</td>
</tr>
</tbody>
</table>

8.4.1.2. Method

Resident Serial Services parses a Barcode Input string based on the message definition in the Barcode Template BT Setup fields and stores the parsed message in the Shared Data Message Block. The Data Connections DC Setup fields assign the BT input message to a Serial or USB input port.

The Serial Services buffers serial port input data. The Serial Services copies the next message from its buffer into the mb0101 Shared Data field, and sets the mb0103 trigger to alert the application that a new message is ready. When the application has completed processing the current message block, it must set the mb0102 trigger to the clear the message block. Then, the Serial Services can again copy the next message from its buffer to the message block.

8.4.2. **Barcode Input Templates Setup (BT)**

<table>
<thead>
<tr>
<th>Access:</th>
<th>“Maintenance”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code:</td>
<td>bt</td>
</tr>
<tr>
<td>Data Type:</td>
<td>PS</td>
</tr>
<tr>
<td>Instances:</td>
<td>1</td>
</tr>
</tbody>
</table>

8.4.2.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>bt0100</th>
<th>Composite bt block</th>
</tr>
</thead>
<tbody>
<tr>
<td>bt0101</td>
<td>Preamble length</td>
</tr>
<tr>
<td>bt0102</td>
<td>Max data length</td>
</tr>
</tbody>
</table>
8.4.2.2. Method

Resident Serial Services parses a Barcode Input string based on the message definition in the Barcode Template BT Setup fields and stores the message in the Shared Data Message Block. The Data Connections DC Setup fields assign the BT template processing to a Serial or USB input port.
9 Other Data

9.1 Display and Keyboard Data

This chapter covers
• Display and Keyboard Data
• System Status and Setup Data
• ID Sequence Data
• Users and Security Data

9.1.1 Power-Up Weight Display (XA)

<table>
<thead>
<tr>
<th>Access:</th>
<th>“Maintenance”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code:</td>
<td>xa</td>
</tr>
<tr>
<td>Data Type:</td>
<td>PS</td>
</tr>
<tr>
<td>Instances:</td>
<td>2</td>
</tr>
</tbody>
</table>

Instance 1 has commands for local weight display,
Instance 2 for remote weight display

9.1.1.1 Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>xa--00</th>
<th>Composite xa block</th>
<th>Struct na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>xa--01</td>
<td>Set Weight Display Visible</td>
<td>By rt</td>
<td>1 = Set Visible (default)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 = Set Invisible.</td>
</tr>
<tr>
<td>xa--02</td>
<td>Set SmartTrac Display Visible</td>
<td>By rt</td>
<td>1 = Set Visible.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 = Set Invisible, Release Screen (default)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 = Set Invisible, Reserve Screen Area</td>
</tr>
<tr>
<td>xa--08</td>
<td>Compress Weight Height</td>
<td>By rt</td>
<td>1 = Use Standard Weight size (default)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 = Compress size of digital weight display to minimum size.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This command = 1 overrides the following commands to set the height and width of the weight displays.</td>
</tr>
<tr>
<td>xa--09</td>
<td>Set Sum Weight Height</td>
<td>By rt</td>
<td>Set Height of Sum Weight</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 = Small (6.1 mm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 = Medium (11.2 mm) (default)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 = Large (16.9 mm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 = Larger (25.6 mm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 = Huge (37.1 mm)</td>
</tr>
</tbody>
</table>
Method
This block contains the power-up settings for the Weight and SmartTrac Display. Changes to these settings only take effect on power-up. To change the weight display appearance dynamically, make settings in the XB block.

Dynamic Weight Display Commands (XB)

<table>
<thead>
<tr>
<th>Access:</th>
<th>“All Users”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code:</td>
<td>xb</td>
</tr>
<tr>
<td>Data Type:</td>
<td>D</td>
</tr>
<tr>
<td>Instances:</td>
<td>2</td>
</tr>
</tbody>
</table>

Instance 1 has commands for local weight display, Instance 2 for remote weight display.
9.1.2.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>xb--00</th>
<th>Composite xb block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>xb--01</td>
<td>Set Weight Display Visible</td>
<td>By</td>
<td>rf</td>
<td>0 = Use Default in xa0101, 1 = Set Visible, 2 = Set Invisible.</td>
</tr>
</tbody>
</table>
| xb--02 | Set SmartTrac Display Visible | By | rf | 0 = Use Default in xa0102
1 = Set Visible
2 = Set Invisible Release Screen Area
3 = Set Invisible, Reserve Screen Area |
| xb--08 | Compress Weight Height | By | rf | 0 = Use Default in xa0108.
1 = Standard Weight size.
2 = Compress size of digital weight display to minimum size.
This command = 1 overrides the following commands to set the height and width of the weight displays. |
| xb--09 | Set Sum Weight Height | By | rf | Set Height of Sum Weight
0 = Use default in xa0109
1 = Small (6.1 mm)
2 = Medium (11.2 mm)
3 = Large (16.9 mm)
4 = Larger (25.6 mm)
5 = Huge (37.1 mm) |
| xb--10 | Set Sum Weight Width | By | rf | 0 = Use default in xa0110
1 = Full
2 = Half
This field applies only to medium and large heights. |
| xb--11 | Set Scale Platform Weight Height | By | rf | Set Height of ScalePlatform Weight display
0 = Use default in xa0111
1 = Small (6.1 mm)
2 = Medium (11.2 mm)
3 = Large (16.9 mm)
4 = Larger (25.6 mm)
5 = Huge (37.1 mm) |
| xb--12 | Set Scale Platform Weight Width | By | rf | 0 = Use default in xa0112
1 = Full
2 = Half
This field applies only to Medium and Large Heights. |
9.1.2.2. Method

The Control Panel or custom application can set this block to set parameters for the display.

9.1.3. Dynamic Display Positions (XY)

Access:

"All Users." Default access is customizable.

Class Code:

| xy |

Data Type:

D

Instances:

1. System Message Display
2. Digital Weight and SmartTrac Visualization Display
3. SoftKey Display
4. Control Panel Display
5. Reserved
6. Custom.Net Display
7. TaskExpert Display

Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>xy--00</th>
<th>Composite xy block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>xy--01</td>
<td>Visible</td>
<td>Bi</td>
<td>rt</td>
<td>0 = no, 1 = yes</td>
</tr>
</tbody>
</table>
Starting X coordinate | US | rt | Starting horizontal pixel position for the display area. Legal values = 1 or 161.
Starting Y coordinate | US | rt | Starting vertical pixel position for the display area = 1 to 240.
Width | US | rt | Horizontal width in pixels = 160 or 320.
Height | US | rt | Vertical height in pixels

9.1.3.2. Method

Tasks associated with each instance of the display area must maintain the position data describing their display windows. Other tasks use this data to configure their own display positions and window sizes.

- The System Error task maintains Instance 1.
- The Weight Display and SmartTrac Visualization task maintains the Instance 2.
- The Control Panel maintains Instance 3.
- The SoftKey Manager maintains Instance 4.
- Instance 5 is reserved.
- The TaskExpert Language Interpreter maintains Instance 7.

Only one of instances 4, 5, 6, and 7 is visible at a time. The Custom applications regulate which instance is visible by setting xb commands.

9.1.4. Static Home SoftKey Page (KH)

Access: “Maintenance” default level
Class Code: hp Data Type: PS
Instances: 1
Instance 1 is the home page.

9.1.4.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>kh0100</th>
<th>composite hp block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>composite hp block</td>
<td></td>
<td></td>
<td>A multi-part string containing:</td>
</tr>
</tbody>
</table>
| | application key 1 | S50 | rt | “Application Index, SoftKey Identifier, Text Message Index, Graphics file name, Exe file name”.
| | application key 2 | S50 | rt | A NULL String entry in this field indicates that there is no “application key” or “soft key” associated with this entry.
| | application key 3 | S50 | rt | “ |
| | application key 4 | S50 | rt | “ |
9.1.4.2. Method

The SoftKey Manager uses this Static Home Page from permanently stored flash memory to initialize the Dynamic SoftKey Home Page, kp0100, to begin processing the SoftKeys. The Control Panel application configures the Home Page.

9.1.5. Dynamic SoftKey Page Stack (KP)

Access:	"Operator" default level
Class Code:	kp
Data Type:	D
Instances:	19

Instance 1 is the current page.
Instances 2 – 10 are the Softkey processing stack.
Instance 11 is the application-working page.
Instances 12 – 19 are TaskExpert application working pages.

9.1.5.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

kp--00 composite kp block Struct na Composite of entire block

A multi-part string containing:

“Application Index, SoftKey Identifier, Text Message Index, Graphics file name, program name”, where

- Application index points to the application that processes the key.

 1 = Control Panel

 2 = Reserved

 3 = Custom.Net application

 4 = TaskExpert application defined in the AQ table

- The Application must define an integer “SoftKey identifier” for each SoftKey in the SoftKey stack. The SoftKey Manager (SKM) sends this identifier in each SoftKey message that it sends to a destination application when the operator selects this SoftKey.

- Text Message. The SoftKey Manager (SKM) displays this text in the SoftKey display when there is no Graphics File. If text = "&nnnn", then the SKM looks up the text string in LangTran DLL in to get the appropriate language translation before displaying the text. "&nnnn" is a numeric string preceded by an ampersand.

- Text Message index is the text displayed in the SoftKey display by the SoftKey Manager (SKM) when there is no Graphics File.

- Graphics file name is a bit-map file used to draw the icon for the SoftKey.

<table>
<thead>
<tr>
<th>Instance 155</th>
<th>Application key 1</th>
<th>S50</th>
<th>rt</th>
</tr>
</thead>
</table>
• If the application is the Control Panel, the Softkey Manager starts the Control Panel.exe when the operator presses the Softkey. This field contains the Control Panel.exe name. If the Control Panel is already running, SKM sends a custom message to the Control Panel Message Window.

If the application is a TaskExpert application, the Softkey Manager validates the application in the AQ table contains and triggers TaskExpert Interpreter. This field contains the following commands:

“START nn” to start application
“STOP nn” to stop application
“SUSPEND nn” to suspend application
“RESUME nn” to resume the application, where “nn” is the index into the AQ table.

If the TaskExpert application is already running, the SKM sends the key to the TaskExpert Message Window.

• A NULL String entry in this field indicates that there is no “application key” or “soft key” associated with this entry.

kp--02 application key 2 S50 rt
kp--03 application key 3 S50 rt
kp--04 application key 4 S50 rt
kp--05 soft key 1 S50 rt
kp--06-18 soft keys 2-14 S50 rt
kp--19 soft key 15 S50 rt

Same as for kp--01

9.1.5.2. Method

The SoftKey Manager uses the Dynamic SoftKey page stack to manage the display and to control the processing of the IND780 SoftKeys and Application keys. Each page instance represents all the SoftKeys and Application keys used at one time. The SoftKey Manager displays the keys within an instance in the order the application writes them to Shared Data.

Applications control page instances up and down the stack in order to change the usage of the SoftKeys. To do this, applications use the “kc” commands and the application-working page. The application first writes the application-working page to send its new instance of SoftKeys to the SoftKey Manager. Then, it writes the “kc0122” command to push the page onto the stack. The SoftKey Manager then begins processing the new page. When it completes using this instance, the application writes “kc0123” to pop the current top page off the stack. The SoftKey Manager returns to processing the new current top page.

Alternatively, you can design your application to run so that the SoftKey Manager only processes the Home Page and the Current Page – not the stack. For example, every Application Form loads a new SoftKey image each time a new Application Form loads. The Application Form writes its SoftKey image to the working image. Then, it issues the command kc0109 to replace the current page with the working page. After Form A starts Form B, Form A “closes” itself so that it is reloaded each time it restarts.
Custom applications can re-write the Dynamic Home Page to insert or remove their own SoftKeys. When the IND780 first starts up, the SoftKey Manager initializes the dynamic Home Page, kp0100, from the Static Home Page, kh0100, defined in setup. The custom application reads the Dynamic Home Page, inserts its own SoftKeys in any order into the SoftKey page, and re-writes the Dynamic Home Page into Shared Data. The SoftKey Manager rewrites the SoftKey image on the display from the Dynamic Home Page. A custom application must never modify the Static Home Page.

The SoftKey Manager uses the current SoftKey Page Table in Shared Data for sending the SoftKey Messages to the specific application identified in the table. The SoftKey Manager does the centralized control of the key message routing. The contents of Windows SoftKey Messages, as follows:

- SoftKey Message Number = 500 hex
- Wparam = application-defined SoftKey identifier
- Lparam = empty for now

9.2. System Status and Setup Data

9.2.1. System State (XD)

<table>
<thead>
<tr>
<th>Access:</th>
<th>“Read Only.” Access level is not customizable. xd0153 has “Administrator” level security</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code:</td>
<td>xd</td>
</tr>
<tr>
<td>Data Type:</td>
<td>D</td>
</tr>
<tr>
<td>ControlNet Class Code:</td>
<td>65 hex</td>
</tr>
<tr>
<td>Instances:</td>
<td>1</td>
</tr>
</tbody>
</table>

9.2.1.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Structure</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xd0100</td>
<td>Composite xd block</td>
<td>Struct</td>
<td>Composite of entire block</td>
</tr>
<tr>
<td>xd0101</td>
<td>Julian Date</td>
<td>S9</td>
<td>yyddd, where ddd is the number of days in the yy year.</td>
</tr>
<tr>
<td>xd0102</td>
<td>Julian Time</td>
<td>S9</td>
<td>Fractional part of day that is past = .dddddd</td>
</tr>
<tr>
<td>xd0103</td>
<td>Current Date</td>
<td>S12</td>
<td>Format defined in xs0110.</td>
</tr>
<tr>
<td>xd0104</td>
<td>Time of Day</td>
<td>S12</td>
<td>Format defined is xs0111.</td>
</tr>
<tr>
<td>xd0105</td>
<td>Week Day</td>
<td>S11</td>
<td>na</td>
</tr>
<tr>
<td>xd0106</td>
<td>Quarter-Second Ticks</td>
<td>UL</td>
<td>rt</td>
</tr>
<tr>
<td>xd0107</td>
<td>Second Ticks</td>
<td>UL</td>
<td>rt</td>
</tr>
<tr>
<td>xd0108</td>
<td>Number of Scales</td>
<td>By</td>
<td>na</td>
</tr>
<tr>
<td>xd0109</td>
<td>Number of Flow Meters</td>
<td>By</td>
<td>na</td>
</tr>
<tr>
<td>xd0110</td>
<td>Number of Discrete Inputs</td>
<td>By</td>
<td>na</td>
</tr>
<tr>
<td>xd0111</td>
<td>Number of Discrete Outputs</td>
<td>By</td>
<td>na</td>
</tr>
<tr>
<td>xd0112</td>
<td>Reserved</td>
<td>By</td>
<td>rt</td>
</tr>
<tr>
<td>xd0113</td>
<td>Weight Display Height</td>
<td>By</td>
<td>rt</td>
</tr>
<tr>
<td>xd0114</td>
<td>Reserved</td>
<td>By</td>
<td>rt</td>
</tr>
<tr>
<td>xd0115</td>
<td>Consolidated Weight String</td>
<td>S270</td>
<td>rt</td>
</tr>
<tr>
<td>xd0116</td>
<td>Reserved</td>
<td>S121</td>
<td>rt</td>
</tr>
<tr>
<td>xd0117</td>
<td>Reserved</td>
<td>BI</td>
<td>rt</td>
</tr>
<tr>
<td>xd0118</td>
<td>Update Multi-Weight Display</td>
<td>By</td>
<td>rc</td>
</tr>
<tr>
<td>xd0119</td>
<td>Multi-Continuous Print Stream</td>
<td>S100</td>
<td>rt</td>
</tr>
<tr>
<td>xd0120</td>
<td>Selected Standard Continuous Out</td>
<td>S20</td>
<td>rt</td>
</tr>
<tr>
<td>xd0121</td>
<td>Selected Template Continuous Out</td>
<td>S200</td>
<td>rt</td>
</tr>
<tr>
<td>xd0125</td>
<td>Reserved</td>
<td>S13</td>
<td>na</td>
</tr>
<tr>
<td>xd0126</td>
<td>Display Contrast Adjust Setting</td>
<td>By</td>
<td>na</td>
</tr>
<tr>
<td>xd0127</td>
<td>Reserved</td>
<td>S13</td>
<td>na</td>
</tr>
<tr>
<td>xd0128</td>
<td>Reserved</td>
<td>By</td>
<td>na</td>
</tr>
<tr>
<td>xd0129</td>
<td>Reserved</td>
<td>S13</td>
<td>na</td>
</tr>
<tr>
<td>xd0130</td>
<td>Reserved</td>
<td>By</td>
<td>na</td>
</tr>
<tr>
<td>xd0131</td>
<td>System Setup State</td>
<td>By</td>
<td>rt</td>
</tr>
<tr>
<td>xd0132</td>
<td>Baseboard Switch settings</td>
<td>By</td>
<td>na</td>
</tr>
<tr>
<td>xd0140</td>
<td>Current CPU utilization</td>
<td>By</td>
<td>na</td>
</tr>
<tr>
<td>xd0141</td>
<td>Peak CPU utilization</td>
<td>By</td>
<td>na</td>
</tr>
<tr>
<td>xd0142</td>
<td>Compact Flash Memory Capacity</td>
<td>UL</td>
<td>na</td>
</tr>
</tbody>
</table>

xd0111
- **Number of Discrete Outputs**
- By: **na**

xd0112
- **Reserved**
- By: **rt**
- moved to xt0101

xd0113
- **Weight Display Height**
- By: **rt**
- Current height of weight display, in pixels.

xd0114
- **Reserved**
- By: **rt**
- moved to xt0103

xd0115
- **Consolidated Weight String**
- S270: **rt**
- Consolidated weight stream - up to 5 scales.

xd0116
- **Reserved**
- S121: **rt**

xd0117
- **Reserved**
- BI: **rt**

xd0118
- **Update Multi-Weight Display**
- By: **rc**
- Command to Weight Display and SmartTrac Visualization task indicating new weight is ready for display.

xd0119
- **Multi-Continuous Print Stream**
- S100: **rt**
- Mettler-Toledo Continuous Output Stream for multiple scales.

xd0120
- **Selected Standard Continuous Out**
- S20: **rt**
- Standard Continuous Output Stream for Selected Scale.

xd0121
- **Selected Template Continuous Out**
- S200: **rt**
- Template Continuous Output Stream for Selected Scale.

xd0125
- **Reserved**
- S13: **na**

xd0126
- **Display Contrast Adjust Setting**
- By: **na**
- Contrast setting value returned from the Display Contrast Adjust Controller. Values are from -32 to +31. 0 is the reset value.

xd0127
- **Reserved**
- S13: **na**

xd0128
- **Reserved**
- By: **na**

xd0129
- **Reserved**
- S13: **na**

xd0130
- **Reserved**
- By: **na**

xd0131
- **System Setup State**
- By: **rt**
- 0 = Startup State
- 1 = Normal Run State
- 2 = Setup State

xd0139
- **Baseboard Switch settings**
- By: **na**
- Settings of the 2 toggle switches on the baseboard:
 - Bit 0 = Master Reset Pushbutton
 - Bit 1 = switch 1 (Security Switch)
 - Bit 2 = switch 2 (Test Switch)

xd0140
- **Current CPU utilization**
- By: **na**
- Percent CPU utilization averaged over the last one minute.

xd0141
- **Peak CPU utilization**
- By: **na**
- Peak percent CPU utilization averaged once a minute over the last 24 hours.

xd0142
- **Compact Flash Memory Capacity**
- UL: **na**
- Compact Flash memory capacity in bytes
<table>
<thead>
<tr>
<th>Register</th>
<th>Description</th>
<th>Type</th>
<th>Access</th>
<th>Other Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>xd0143</td>
<td>Compact Flash Memory Free</td>
<td>UL</td>
<td>na</td>
<td>Compact Flash memory free in bytes</td>
</tr>
<tr>
<td>xd0144</td>
<td>BRAM Capacity</td>
<td>UL</td>
<td>na</td>
<td>BRAM capacity in bytes</td>
</tr>
<tr>
<td>xd0145</td>
<td>BRAM Used</td>
<td>UL</td>
<td>na</td>
<td>Amount of BRAM used in bytes</td>
</tr>
<tr>
<td>xd0146</td>
<td>Dynamic Program RAM Capacity</td>
<td>UL</td>
<td>na</td>
<td>Dynamic Program RAM capacity in bytes</td>
</tr>
<tr>
<td>xd0147</td>
<td>Dynamic Program RAM Used</td>
<td>UL</td>
<td>na</td>
<td>Dynamic Program RAM used in bytes</td>
</tr>
<tr>
<td>xd0148</td>
<td>RAM Storage Memory Capacity</td>
<td>UL</td>
<td>na</td>
<td>RAM File Memory capacity in bytes</td>
</tr>
<tr>
<td>xd0149</td>
<td>RAM Storage Memory Used</td>
<td>UL</td>
<td>na</td>
<td>RAM File Memory used in bytes</td>
</tr>
<tr>
<td>xd0150</td>
<td>Windows CE Version</td>
<td>S13</td>
<td>na</td>
<td>Windows CE Version string</td>
</tr>
<tr>
<td>xd0151</td>
<td>I-Button EEPROM Read Image</td>
<td>ABy4</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>xd0152</td>
<td>Last Raw Keystroke Entered</td>
<td>US</td>
<td>rt</td>
<td>SKM sets the last keystroke here</td>
</tr>
<tr>
<td>xd0153</td>
<td>Current System Message Display</td>
<td>S81</td>
<td>rt</td>
<td>In order to write a message to the System Message Line area, first read this field to make sure it is cleared. The IND780 automatically clears the message from System Message Line area after 10 seconds.</td>
</tr>
<tr>
<td>xd0154</td>
<td>EtherNet / IP DHCP IP address</td>
<td>S40</td>
<td>rt</td>
<td>IP address for the EtherNet / IP when assigned using DHCP.</td>
</tr>
<tr>
<td>xd0155</td>
<td>Reserved</td>
<td>S40</td>
<td>rt</td>
<td></td>
</tr>
<tr>
<td>xd0156</td>
<td>Composite Cluster Status</td>
<td>UL</td>
<td>rt</td>
<td>Contains status of ns--01 through ns--20. ns--01 is bit 0, ns--02 is bit 1…and ns--20 is bit 19.</td>
</tr>
<tr>
<td>xd0157</td>
<td>Checksum value for Excalibur.exe</td>
<td>UL</td>
<td>rt</td>
<td>On power-up, the RST verifies that the checksum in the header of the Excalibur.exe file matches the calculated checksum for the file. RST stores the checksum value here for display by the CP. 2 and 5 are failure statuses.</td>
</tr>
<tr>
<td>xd0158</td>
<td>Status of Remote Viewer Connect</td>
<td>US</td>
<td>rt</td>
<td>After the CP requests to connect the Remote Viewer to a remote node, the RST sets a success or error status for the connection attempt here.</td>
</tr>
<tr>
<td>xd0159</td>
<td>Reserved</td>
<td>US</td>
<td>rt</td>
<td></td>
</tr>
<tr>
<td>xd0160</td>
<td>Reserved</td>
<td>D</td>
<td>rt</td>
<td></td>
</tr>
<tr>
<td>xd0161</td>
<td>Reserved</td>
<td>D</td>
<td>rt</td>
<td></td>
</tr>
<tr>
<td>xd0162</td>
<td>Remote DIO Network Error Status</td>
<td>By</td>
<td>rt</td>
<td>0 = OK, 1 = Error</td>
</tr>
<tr>
<td>xd0163</td>
<td>I-Button Target Product</td>
<td>By</td>
<td>rt</td>
<td></td>
</tr>
<tr>
<td>xd0164</td>
<td>Backlight On State</td>
<td>By</td>
<td>rt</td>
<td>1 = Backlight on, 0 = Backlight off</td>
</tr>
<tr>
<td>xd0165</td>
<td>Remote Viewer Current Connection</td>
<td>By</td>
<td>rt</td>
<td>Node Number of Remote Node to which the Remote Viewer is connected. 0 = Not connected</td>
</tr>
</tbody>
</table>
The IND780 only updates date and time fields when an Application or RST attempts to access these fields. The IND780 updates the clock tick fields regularly so an application may use these fields for periodic callbacks. xs0110 and xs0111 contain the format specification for the date and time.

The Consolidated Weight Stream (CWS) is a Unicode string that contains the weight for up to five scales on a single IND780 terminal. When an application is displaying the weight for multiple scales including the sum scale, it should read the weight from this Shared Data field for these reasons:

- Within this field, the weight is metrologically consistent among all scales and among gross, net, and tare weights. We cannot guarantee this when the application does individual reads because they occur at different times.
- It is more efficient to get all the data in one access instead of multiple accesses.
- An application can access the CWS either locally or remotely.

When the Weight Display and SmartTrac Visualization task is displaying weight from multiple scales, it needs to register its weight-update callback on the consolidated weight trigger, xd0118. The RST sets this signal whenever weight changes, up to a maximum rate of 10 times per second. If the weight does not change for an extended time, the RST will set the trigger just to refresh the weight display.

The IND780 sets data in the CWS according to field xp0102, where application subscribes to the fields it wants reported. The format of xp0102 is S<ABCDE>T where ABCDE represents the scales, S represents the selected scale and T is the Time. “S” is mutually exclusive from ABCDE.

The Consolidated Weight Stream has the following format: stream 1><US><stream 2><US><stream n>, and it may contain time, display, and application messages inserted in the output stream, with <US> separating the fields. Each weight stream has the following contents:
Other Data

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><Node ID></td>
<td>1N</td>
</tr>
<tr>
<td><Scale ID></td>
<td>1A</td>
</tr>
</tbody>
</table>
| **<Status 1>** | 1C | Bit 7: Always 0
Bit 6: Always 1
Bit 5: = Scale in Motion
Bit 4 |
01 = weight range 1
02 = weight range 2
03 = weight range 3
00 = single range |
| **<Status 2>** | 1C | Bit 7: Always 0
Bit 6: Always 1
Bit 5: Spare 0
Bit 4 |
1 = Class II Device
1 = Legal for Trade
1 = Estimated Weight
1 = Times Ten Active |
| **<Tare Source>** | 1C | ‘M’ = memory tare, ‘P’ = Preset tare, ‘ ’ = Gross tare, ‘T’ = Pushbutton tare |
| **<Units>** | 1C | 0 = None, 1 = lb, 2 = kg, 3 = g, 4 = t, 5 = ton, 6 = toz, 7 = dwt, 8 = oz, 9 = custom |
| **<Custom Units>** | 4C | Custom Units name is three characters + 0 |
| **<RateTimeUnits>** | 1C | ‘ ’ = None, ‘s’ = Seconds, ‘m’ = Minutes, ‘h’ = Hours |
| **<RateWeightUnits>** | 1C | ‘0’ = None, ‘1’ = lb, ‘2’ = kg, ‘3’ = g, ‘4’ = t, ‘5’ = tons, ‘6’ = troy oz, ‘7’ = penny wts, ‘8’ = ounces, ‘9’ = custom |
| **<Net Wt>** | 10N | 8 digits plus possible “-” and “.”
“^^^^^^^^^^” indicates the gross weight on scale is over capacity.
“v^^^^^^^^” indicates the gross weight is under zero.
“--------” indicates an indeterminate weight. |
| **<Tare Wt>** | 10N | 8 digits plus possible “-” and “.” |
| **<Rate>** | 10N | 8 digits plus possible “-” and “.” |

Remote Console is an application operating as remote keyboard and display for an IND780. The Remote Console should access the CWS for displaying weight from the IND780 since the weight is always metrologically consistent. The “xd” and “xw” blocks also contains other fields that the Control Panel and Applications can use for building messages for access by a remote console.
9.2.2. System Logs Setup Data (XR)

<table>
<thead>
<tr>
<th>Access:</th>
<th>"Maintenance"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code:</td>
<td>xr</td>
</tr>
<tr>
<td>Data Type:</td>
<td>PS</td>
</tr>
<tr>
<td>Instance 1 = Maintenance Log</td>
<td></td>
</tr>
<tr>
<td>Instance 2 = Alibi Memory Log</td>
<td></td>
</tr>
<tr>
<td>Instance 3 = Error Log</td>
<td></td>
</tr>
<tr>
<td>Instance 4 = Change History Log</td>
<td></td>
</tr>
<tr>
<td>Instance 5 = Future Transaction Log expansion to Alibi Memory</td>
<td></td>
</tr>
<tr>
<td>Instance 6 = PDX Performance Log</td>
<td></td>
</tr>
</tbody>
</table>

| Instances: | 6 |

9.2.2.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>xr--00</th>
<th>Composite xr block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>xr--01</td>
<td>Number of Bytes in Log File</td>
<td>UL</td>
<td>na</td>
<td>Number of Bytes in Log File</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>xr--02</th>
<th>Enable logging</th>
<th>BI</th>
<th>rt</th>
<th>0 = logging is disabled (default)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = logging is enabled</td>
</tr>
</tbody>
</table>

9.2.2.2. Method

The IND780 currently maintains four log files. IND780 Control Panel Setup can view, search, and print the information in these files. FTP transfers a comma-separated version (CSV) of these files to a remote PC, transmitting the records in newest to oldest order. Since the IND780 RST may add records to the Maintenance, Alibi Memory, and Error log files frequently, the RST Loggers buffers the records in BRAM before writing them Compact Flash. When the buffer is full, the RST Logger writes the entire buffer to the Compact Flash and clears the buffer. This buffering technique prevents excessive writing to the Compact Flash that could drastically reduce the useful life of the Compact Flash. Since the IND780 only writes to the Change log infrequently, the RST Logger writes directly to the Compact Flash.

When the operator enables any of the log files in Compact Flash, the RST Logger clears buffer and Compact Flash file. There is no warning to the user even if the Logger deletes a previously existing file (per Venus Simmons).

When the user enables a log file, IND780 FTP Server creates a phantom file with a .csv extension on the in the /Terminal/HIS directory on the Compact Flash. When a remote FTP Client requests the .csv file, the FTP Server reads the log file through the RST logger. The RST Logger expands the internal log into the .csv ASCII file, and orders the .csv file with the most recent records first. The RST logger separates the field values by commas and encloses the strings by double quotes.

The "Error Log" is a circular log file that contains a record of the significant errors that occurred on the IND780. The Error Log also contains Scale Monitoring data. It aids the Service Technician in resolving problems and in deciding what service he needs to perform on the IND780.

The "Alibi Memory Log" is circular log file that contains historical record of all the transactions performed on the IND780. The Demand Print operation defines a transaction on the IND780; the Demand Print Setup block specifies the requirements for legal Demand Print operations. Each Alibi
Memory record has a fixed format field containing the date, time, scale identifier, net weight, tare weight, tare source, and consecutive number for each transaction. The user may specify a special Print Template for additional data that the IND780 adds to each record.

The "Maintenance Log" tracks service operations that an Operator or Service Technician performs with the IND780.

The "Change Log" contains a record of the changes made to Shared Data Setup, Calibration fields, and Standard Tables. It provides an audit trail of all the changes that the Service Technician has made to the IND780 since its initial installation. This historical record is a requirement in the pharmaceutical and food industries, where companies must prove their compliance with governmental regulations. The IND780 provides warnings to the operator when this file is becoming full and prevents further changes when this file is finally full. Then, the Service Technician must use FTP to save the log file to a remote PC and reset the file before the IND780 will continue.

A future extension to the System Logs provides an extension to the Alibi Memory Log file, known as the "Transaction Log". A custom application defines transaction data that the RST Logger stores with the Alibi Memory data, thus increasing the Alibi Memory Log record size. The Transaction extensions are a fixed length.Multiples of the extended transaction log record must fit evenly into the log buffer. The custom application defines a template in pt0131 Shared Data field, which specifies the contents of the Transaction data. The RST logger uses its BRAM buffering technique with the Transaction Log to extend the Compact Flash’s useful life. When the user enables the Transaction Log extension, the Setup view, search, print functions, and the FTP functions related to the Alibi Memory log would include the Transaction extensions.

Please refer to the Section entitled “Compact Flash Files” for a definition of the Log File formats.

Design Comments

- Each sector in the Compact Flash has a maximum of 300,000 writes. Each time the IND780 writes to the Compact Flash, the Compact Flash re-writes an entire sector. There are typically multiple records per sector. In logging, we need to minimize the number of writes to the Compact Flash to prevent premature wear-out of the Compact Flash.
- This is a potential problem with three logs – Error Log, Maintenance Log, and Transaction Log.
- The Change Log does not change frequently.
- The Log Files reside in Compact Flash in the \Storage Card\IND780\HIS directory.
- The Logger creates Log Files that are static files of fixed file size, fixed record size, and a fixed number of records. This prevents re-writing the file directory each time that we write to the Log File. We can set the fixed record size to 16 bytes.
- The Log Files may be circular files where the IND780 over-writes the oldest record.
- However, we do not overwrite the oldest record in the Change Log until the user clears the log.
- The Logger buffers 64 log records (1K bytes) in BRAM Shared Data until the buffer becomes full. When the buffer is full, the Logger should write the entire 1K block to the Log File at once, and clear the BRAM buffer.
- The Logger allocates the Log File sizes in 1K byte increments only.
- Fields in BRAM Shared Data point to the current position in the Log File.
• The Logger must support a “flush” command where it writes the current contents of the BRAM buffer to the Log File, even if it is not full.

• Since multiple records always end evenly in the BRAM buffer, the Logger does not need to take into account the end-of-file, wrap-around conditions where a BRAM buffer may be split between the end and beginning of the file. – Note item above makes this unnecessary

• The Service Technician can use FTP to read the Log Files through FTP.

• When the Service Technician reads the Log Files through FTP, FTP issues a command to the Logger to flush the BRAM buffer to Compact Flash Log File before transmitting the Log File to the host.

• FTP Server provides READ-ONLY access to these log files as newest-to-oldest, comma-separated value (CSV) files. These files have the most recent record at the beginning of the file and the oldest at the end. These files are named “filename.csv”; for example, Alibi.csv, Error.csv, Maintenance.csv, and Change.csv.

9.2.3. System Log Process Data (XM)

<table>
<thead>
<tr>
<th>Access:</th>
<th>“Read Only” access, level is not customizable.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code:</td>
<td>xm</td>
</tr>
<tr>
<td>Data Type:</td>
<td>PP</td>
</tr>
<tr>
<td>Instance 1 = Maintenance Log</td>
<td></td>
</tr>
<tr>
<td>Instance 2 = Alibi Memory Log</td>
<td></td>
</tr>
<tr>
<td>Instance 3 = Error Log</td>
<td></td>
</tr>
<tr>
<td>Instance 4 = Change History Log</td>
<td></td>
</tr>
<tr>
<td>Instance 5 = Future Transaction Log expansion to Alibi Memory</td>
<td></td>
</tr>
<tr>
<td>Instance 6 = PDX Performance Log</td>
<td></td>
</tr>
</tbody>
</table>

9.2.3.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

- **xm--00**: Composite xm block
- **xm--01**: Counts Reset Time S20 na Date & time, where applicable
- **xm--02**: File Last Reset Time S20 na Date & time
- **xm--03**: File Last Save Time S20 na Date & time when last sent to host via FTP
- **xm--04**: File Next Byte Pointer UL na Pointer to next byte in log file that IND780 will write, typically in fixed size records, ref XR for record size
- **xm--05**: File Status By na 0 = less than 75% full 2 = 90 to 99% full 1 = 75 to 90% full 3 = 100% full
- **xm--06**: Buffer Next Byte Pointer US na Position for next written byte to the buffer
- **xm--07**: Internal Buffer By1024 na Buffer for temporary records, the size of this element is dependent upon the flash in use and should match the sector size of the flash or be some multiple of the sector size

Note: Only instances 1, 2, and 3 utilize these shared data elements. [xm0407 & xm0507 are large buffers available for use in BRAM space.]
9.2.3.2. Method

The Logger maintains pointers to these circular files that record system activity. Please refer to the method description in the XR block that more fully describes the Logger operation.

9.2.4. Transaction Number Setup (XN)

<table>
<thead>
<tr>
<th>Access:</th>
<th>“Maintenance”</th>
<th>Class Code:</th>
<th>xn</th>
<th>Data Type:</th>
<th>PS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code:</td>
<td>xn</td>
<td>Instances:</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9.2.4.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>xn0100</th>
<th>Composite xn block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>xn0101</td>
<td>Transaction Number Enable</td>
<td>BI</td>
<td>na</td>
<td>0 = no, 1 = yes</td>
</tr>
<tr>
<td>xn0102</td>
<td>Transaction Number Preset Enable</td>
<td>BI</td>
<td>na</td>
<td>0 = no, 1 = yes</td>
</tr>
<tr>
<td>xn0103</td>
<td>Transaction Number Preset</td>
<td>L</td>
<td>na</td>
<td>Preset value to reset the transaction counter</td>
</tr>
</tbody>
</table>

xn0104 Transaction Number Destination | By | na | Only increment transaction number on Demand Print to this destination. |
				0: All Demand Print operations
				1-6: Serial Ports 1-4
				7-12: USB Ports 1-3
				13-15: TCP/IP Printer/Console Connection

xn0105 Transaction Number Reset Enable | BI | na | 0 = no, 1 = yes |

xn0106 Reserved | L | na |

xn0107 Reserved | By | na |

9.2.4.2. Method

The Resident Scale Task increments the Transaction Number (TN) each time the IND780 receives a “Demand Print” request for the specified print destination. Range is 1-999,999,999. The user may specify starting value for the TN register in the “Preset”. The Weights and Measures seal does not protect the TN configuration.
9.2.5. System Setup (XS)

Access: "Maintenance"

The following fields have "Administrator" level security: xs0101, xs0102, and xs0122. The following fields have "Read Only" level security: xs0103, xs0104, xs0105, xs0109, xs0124, xs0125, xs0126, xs0127, xs0131, xs0151 and xs0152.

<table>
<thead>
<tr>
<th>Class Code</th>
<th>Data Type</th>
<th>ControlNet Class Code</th>
<th>Instances</th>
</tr>
</thead>
<tbody>
<tr>
<td>xs</td>
<td>PS</td>
<td>6A hex</td>
<td>1</td>
</tr>
</tbody>
</table>

9.2.5.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>Xs0100</th>
<th>Composite xs block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>xs0101</td>
<td>Market</td>
<td>By</td>
<td>na</td>
<td>0 = USA, 1 = European Community, 2 = Australia, 3 = Canada</td>
</tr>
<tr>
<td>xs0102</td>
<td>Legal for Trade</td>
<td>By</td>
<td>na</td>
<td>0 = no, 1 = yes</td>
</tr>
<tr>
<td>xs0103</td>
<td>Software ID</td>
<td>S21</td>
<td>na</td>
<td>Textual Description of the Installed Software</td>
</tr>
<tr>
<td>xs0104</td>
<td>Software Part Number</td>
<td>S14</td>
<td>na</td>
<td>Part #'s are 13 digits + null terminator</td>
</tr>
<tr>
<td>xs0105</td>
<td>IND780 Serial #</td>
<td>S14</td>
<td>na</td>
<td>Serial #’s are 13 digits + null terminator</td>
</tr>
<tr>
<td>xs0106</td>
<td>IND780 ID</td>
<td>S21</td>
<td>na</td>
<td>Terminal ID</td>
</tr>
<tr>
<td>xs0107</td>
<td>IND780 Project ID</td>
<td>S21</td>
<td>na</td>
<td>Project ID</td>
</tr>
<tr>
<td>xs0108</td>
<td>IND780 Terminal ID</td>
<td>S161</td>
<td>na</td>
<td>User Textual Description of the IND780</td>
</tr>
<tr>
<td>xs0109</td>
<td>Shared Data Version Number</td>
<td>S14</td>
<td>na</td>
<td>Year, Month, Day</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Xs0110</th>
<th>Date Format</th>
<th>By</th>
<th>na</th>
<th>1 = MM_DD_YY, 2 = MMM_DD_YYYY, 3 = DD_MM_YY, 4 = DD_MMM_YYYY, 5 = YY_MM_DD, 6 = YYYY_MMM_DD, 7 = YYYY_MM_DD, 0 = none</th>
</tr>
</thead>
<tbody>
<tr>
<td>xs0111</td>
<td>Time Format</td>
<td>By</td>
<td>na</td>
<td>1 = 24_MM, 2 = 12_MM, 3 = 24_MM_SS, 4 = 12_MM_SS</td>
</tr>
<tr>
<td>xs0112</td>
<td>Date Separator</td>
<td>S2</td>
<td>na</td>
<td>"/" = slash, "." = hyphen, "." = period, " " = space, 0 = none</td>
</tr>
<tr>
<td>xs0113</td>
<td>Time Separator</td>
<td>S2</td>
<td>na</td>
<td>":" = colon, ":" = hyphen, ".:" = period, " " = space, 0 = none</td>
</tr>
<tr>
<td>x00114</td>
<td>Printer Language Set</td>
<td>By</td>
<td>na</td>
<td>0 = USA, 1 = France, 2 = England, 7 = Spain-I, 8 = Japan, 9 = Norway</td>
</tr>
</tbody>
</table>
Operator Message Language

<table>
<thead>
<tr>
<th>Code</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>English</td>
</tr>
<tr>
<td>1</td>
<td>French</td>
</tr>
<tr>
<td>2</td>
<td>German</td>
</tr>
<tr>
<td>3</td>
<td>Spanish</td>
</tr>
<tr>
<td>4</td>
<td>Dutch</td>
</tr>
<tr>
<td>5</td>
<td>Italian</td>
</tr>
<tr>
<td>6</td>
<td>Swedish</td>
</tr>
<tr>
<td>7</td>
<td>Portuguese</td>
</tr>
<tr>
<td>8</td>
<td>Russian</td>
</tr>
<tr>
<td>9</td>
<td>Chinese</td>
</tr>
<tr>
<td>10</td>
<td>Denmark-II</td>
</tr>
<tr>
<td>11</td>
<td>Spain-II</td>
</tr>
<tr>
<td>12</td>
<td>Latin-II</td>
</tr>
<tr>
<td>13</td>
<td>Chinese America</td>
</tr>
</tbody>
</table>

xs0115 Operator Message Language

<table>
<thead>
<tr>
<th>Code</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>English</td>
</tr>
<tr>
<td>1</td>
<td>French</td>
</tr>
<tr>
<td>2</td>
<td>German</td>
</tr>
<tr>
<td>3</td>
<td>Spanish</td>
</tr>
<tr>
<td>4</td>
<td>Italian</td>
</tr>
<tr>
<td>5</td>
<td>Swedish</td>
</tr>
<tr>
<td>6</td>
<td>Portuguese</td>
</tr>
<tr>
<td>7</td>
<td>Russian</td>
</tr>
</tbody>
</table>

Keyboard Nationality

<table>
<thead>
<tr>
<th>Code</th>
<th>Nationality</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>English</td>
</tr>
<tr>
<td>1</td>
<td>French</td>
</tr>
<tr>
<td>2</td>
<td>German</td>
</tr>
<tr>
<td>3</td>
<td>Spanish</td>
</tr>
<tr>
<td>4</td>
<td>Italian</td>
</tr>
<tr>
<td>5</td>
<td>Swedish</td>
</tr>
<tr>
<td>6</td>
<td>Portuguese</td>
</tr>
<tr>
<td>7</td>
<td>Russian</td>
</tr>
</tbody>
</table>

xs0116 Keyboard Nationality

<table>
<thead>
<tr>
<th>Code</th>
<th>Nationality</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>English</td>
</tr>
<tr>
<td>1</td>
<td>French</td>
</tr>
<tr>
<td>2</td>
<td>German</td>
</tr>
<tr>
<td>3</td>
<td>Spanish</td>
</tr>
<tr>
<td>4</td>
<td>Italian</td>
</tr>
<tr>
<td>5</td>
<td>Swedish</td>
</tr>
<tr>
<td>6</td>
<td>Portuguese</td>
</tr>
<tr>
<td>7</td>
<td>Russian</td>
</tr>
</tbody>
</table>

Disable Key Beeper

xs0117 Disable Key Beeper

<table>
<thead>
<tr>
<th>Code</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Disable</td>
</tr>
<tr>
<td>1</td>
<td>Enable</td>
</tr>
</tbody>
</table>

Disable Alarm Beeper

xs0118 Disable Alarm Beeper

<table>
<thead>
<tr>
<th>Code</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Disable</td>
</tr>
<tr>
<td>1</td>
<td>Enable</td>
</tr>
</tbody>
</table>

Auto Configure Devices Done

xs0119 Auto Configure Devices Done

<table>
<thead>
<tr>
<th>Code</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>1</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Battery Replacement Text

xs0120 Battery Replacement Text

<table>
<thead>
<tr>
<th>Code</th>
<th>Text Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>S81</td>
<td>Date, time & Service text message that the Service Technician enters when he replaces the battery.</td>
</tr>
</tbody>
</table>

Backlight Timeout Minutes

xs0121 Backlight Timeout Minutes

<table>
<thead>
<tr>
<th>Code</th>
<th>Timeout (Minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>Time out the backlight when there is no TERMINAL activity for these minutes. The RST does not turn off the backlight based on this timeout if its value is 0.</td>
</tr>
</tbody>
</table>

Local Gravity “Geo” Code

xs0122 Local Gravity “Geo” Code

<table>
<thead>
<tr>
<th>Code</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>S4</td>
<td>-31</td>
</tr>
</tbody>
</table>

Value from 0-31. This value represents the gravitational acceleration depending on the latitude and altitude at this specific location where the IND780 is now operating. The IND780 uses it to adjust the weight value when you calibrate it in one location and use it in a different region of the world. Any value other than 0-31 disables this feature.

Time Zone

xs0123 Time Zone

<table>
<thead>
<tr>
<th>Code</th>
<th>Time Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>S4</td>
<td>Local Time Zone</td>
</tr>
</tbody>
</table>

9.2.5.1.1. Hardware Configuration

Number Of Scales

xs0124 Number Of Scales

<table>
<thead>
<tr>
<th>Code</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>na</td>
<td>RST automatically sets during system installation, and verifies at power up.</td>
</tr>
</tbody>
</table>

Number Of Flow Meters

xs0125 Number Of Flow Meters

<table>
<thead>
<tr>
<th>Code</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>na</td>
<td>RST automatically sets during system installation, and verifies at power up.</td>
</tr>
</tbody>
</table>

Number of Discrete IO Boards

xs0126 Number Of Discrete IO Boards

<table>
<thead>
<tr>
<th>Code</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>na</td>
<td>RST automatically sets during system installation, and verifies at power up.</td>
</tr>
</tbody>
</table>

Nodes in Remote Discrete IO Unit

xs0127 # Nodes in Remote Discrete IO Unit

<table>
<thead>
<tr>
<th>Code</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>na</td>
<td>1-8 nodes. RST automatically sets during system installation, and verifies at power up.</td>
</tr>
</tbody>
</table>

Restart/Reset Units at Power Up

xs0128 Restart/Reset Units at Power Up

<table>
<thead>
<tr>
<th>Code</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>na</td>
<td>0 = start up at scale 1 primary units 1 = restart with current scale & current units</td>
</tr>
<tr>
<td>Code</td>
<td>Field Description</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>xs0129</td>
<td>Weight Display Update Rate</td>
</tr>
<tr>
<td>xs0130</td>
<td>Keypad Language</td>
</tr>
<tr>
<td>xs0131</td>
<td>Display Type</td>
</tr>
<tr>
<td>xs0132</td>
<td>Reserved</td>
</tr>
<tr>
<td>xs0133</td>
<td>Reserved</td>
</tr>
<tr>
<td>xs0134</td>
<td>Reserved</td>
</tr>
<tr>
<td>xs0135</td>
<td>Screen Saver</td>
</tr>
<tr>
<td>xs0136</td>
<td>Metrology Control Number</td>
</tr>
<tr>
<td>xs0137</td>
<td>Reserved</td>
</tr>
<tr>
<td>xs0138</td>
<td>Shared Data Server Port</td>
</tr>
<tr>
<td>xs0139</td>
<td>Last Battery Change Date & Time</td>
</tr>
<tr>
<td>xs0140</td>
<td>Display IP on System Line</td>
</tr>
<tr>
<td>xs0141</td>
<td>Reserved</td>
</tr>
<tr>
<td>xs0142</td>
<td>PDX Performance Log Interval</td>
</tr>
<tr>
<td>xs0151</td>
<td>I-Button EEPROM Option Image</td>
</tr>
<tr>
<td>xs0152</td>
<td>I-Button Target Product</td>
</tr>
<tr>
<td>xs0153</td>
<td>System Installation Date</td>
</tr>
<tr>
<td>xs0155</td>
<td>Duplicate Print Setup</td>
</tr>
</tbody>
</table>
9.2.6. **System Commands (XK)**

<table>
<thead>
<tr>
<th>Access:</th>
<th>“Operator” xk0111 and xk0112 have “Supervisor” access level.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code:</td>
<td>xk</td>
</tr>
<tr>
<td>Instances:</td>
<td>1</td>
</tr>
</tbody>
</table>

9.2.6.1. **Attributes**

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>xk0100</th>
<th>Composite xk block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
</table>

9.2.6.1.1. Fields for Applications to Search and Filter Alibi Memory, Error Log, Monitor Log & SD History Log for Printing and Display

<table>
<thead>
<tr>
<th>xk0101</th>
<th>Log File Search String</th>
<th>S64</th>
<th>na</th>
<th>Application sets search string that IND780 RST uses to search for a particular record or set of records in a log file</th>
</tr>
</thead>
<tbody>
<tr>
<td>xk0102</td>
<td>Begin Specific Log File Search</td>
<td>By</td>
<td>rc</td>
<td>Application sets value to begin search of specific log file:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = Alibi Memory</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 = Error Log</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 = Maintenance Log</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 = SD Change History Log</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>xk0103</th>
<th>Control Panel Lock</th>
<th>By</th>
<th>rt</th>
<th>Control Panel sets this flag to 1 to indicate a log search is in progress. The RST supports only one search at a time, so this flag helps prevent two different Control Panels from initiating two concurrent searches. Any local or remote Control Panel that wants to initiate a search must verify this field is 0 before initiating a new search. The Control Panel must set this field to 0 upon completing its log search.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>xk0104</th>
<th>Begin Print of Log File</th>
<th>B1</th>
<th>rc</th>
<th>When application sets = 1, RST begins printing log file based on current search parameters.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>xk0105</th>
<th>Reserved</th>
<th>B1</th>
<th>rc</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>xk0106</th>
<th>Log File Search Complete</th>
<th>B1</th>
<th>rc</th>
<th>RST sets this flag = 1 when it completes the current search</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>xk0107</th>
<th>Log File Search Result</th>
<th>S100</th>
<th>rt</th>
<th>Buffer containing Log File search results. Format is specific to each log file.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>xk0110</th>
<th>Reserved</th>
<th>B1</th>
<th>rt</th>
<th>Acknowledges System Alarm xd0117</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>xk0111</th>
<th>Set Current Time of Day</th>
<th>S12</th>
<th>rt</th>
<th>Set current time of day</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>xk0112</th>
<th>Set Current Date</th>
<th>S12</th>
<th>rt</th>
<th>Set current date</th>
</tr>
</thead>
</table>

9.2.6.1.2. Fields for Applications to Report Errors for Alerting Operator and Writing to Error Log

<table>
<thead>
<tr>
<th>xk0114</th>
<th>Reserved</th>
<th>S6</th>
<th>na</th>
<th>Error Code</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>xk0115</th>
<th>Reserved</th>
<th>S64</th>
<th>na</th>
<th>Additional Error Text</th>
</tr>
</thead>
</table>
xk0116 Reserved Bl na
0 = write to log only
1 = alert operator in system message line and write to log

Write the Error Message ID after writing the previous three fields. The Error Logger triggers on the application writing this field. The Error Logger sets this field to zero after completing the processing of the error.

The Error Logger also uses this field for indexing into the Language Table for selecting the error message in the currently selected language. If the error message is not in the Language Table, set the Message ID to 999999. The Error Logger then only writes and displays the Error Code and the Additional Error Text.

9.2.6.1.3. Fields for Applications to Report Monitoring Events

xk0118 Monitor Code String S6 na
Monitor Code

Write the Monitor Message ID after writing the previous two fields. The Monitor Logger triggers on the application writing this field. The Monitor Logger sets this field to zero after completing the write to the Monitor Log.

The Monitor Logger also uses this field for indexing into the Language Table for selecting the message in the currently selected language. If the Monitor message is not in the Language Table, set the Message ID to 999999. The Monitor Logger then only writes the Monitor Code and the Additional Monitor Text fields to the Monitor Log.

The Monitor Logger sets the monitoring category to “Application”.

xk0120 Monitor Message ID L rf

9.2.6.1.4. Control Panel Buffer Fields

xk0121 Reserved S6 na

xk0122 Control Panel buffer S40 na
Reserved for use by CP

xk0123 Reserved Bl na

xk0124 Reserved L rf

xk0125 Control Panel buffer S40 na
Reserved for use by CP

xk0126 Control Panel/Upgrade buffer S40 na
Reserved for use by CP/Upgrade

xk0127 Control Panel Runtime Mode Bl na
0 = CP not in runtime mode, 1 = CP in runtime mode

xk0128 IDPrompt Error Code L rf
101 = ID1 busy, 102 = ID1 function disabled, 201 = ID2 busy, 202 = ID2 function disabled
9.2.6.2. Method

The Alibi Memory file search string format is: TNumber[,<Expression>][,<Expression>]]

Where:

TNumber := number, maximum of 8 digits, denoting the beginning transaction number of interest, a value of 0 (zero) represents an unspecified transaction number. This is the expected value for the first search.

<Expression> := Field + Operator + Value

Field := 1 character denoting the search field:
- T – Time & Date
- D – Date
- C – Transaction counter.

Value := Field specific value:
- YYMMDD if “D” Date field
- YYMMDDHHMMSS if “T” Time & Date field
- N := 0 through 99999999 – transaction number

The Error log file search string format is: YYMMDDHHMMSS,N[,<Expression>][,<Expression>]]

Where:

YYMMDDHHMMSS := Date of the beginning record of interest, a value of 0 (zero) represents an unspecified date & time number. This is the expected value for the first search.

N := 0 to 999, Number of records, matching all the criteria, to skip before returning result records

<Expression> := Field + Operator + Value

Field := 1 character denoting the search field:
- T – Time & Date
- D – Date
- S – Source identifier, defined elsewhere

Value := Field specific value:
- YYMMDD if “D” Date field
- YYMMDDHHMMSS if “T” Time & Date field
- N := 0 through ? – Source id

The Maintenance log file search string format is:
YYMMDDHHMMSS,N[,<Expression>][,<Expression>]]

Where:

YYMMDDHHMMSS := Date of the beginning record of interest, a value of 0 (zero) represents an unspecified date & time number. This is the expected value for the first search.
N := 0 to 999, Number of records, matching all the criteria, to skip before returning result
<Expression> := Field + Operator + Value

Field := 1 character denoting the search field:
- T – Time & Date
- D – Date
- U – User Id
- E – Event Id, defined elsewhere

Value := Field specific value:
- YYMMDD if “D” Date field
- YYMMDDHMMSS if “T” Time & Date field
- N := 0 through ? – User Id
- N := 0 through ? – Event Id

9.2.7. System Monitoring & Service Data (XP)

Access: “Maintenance”
Class Code: xp
Data Type: PP
Instances: 1

9.2.7.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>xp0100</th>
<th>Composite xp block</th>
<th>Struct na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>xp0101</td>
<td>Transaction Counter</td>
<td>UL na</td>
<td>Transaction counter incremented according to the Transaction Counter Setup. FTP does not restore this field.</td>
</tr>
<tr>
<td>xp0102</td>
<td>Scale Subscription String</td>
<td>S10 rt</td>
<td>The string contains a subset of <ABCDESJLT>, where ABCDE represents the scales, S represents the selected scale, L represents the Message Display, J is the Application Message Field, and T is time. See description of xd0115.</td>
</tr>
<tr>
<td>xp0103</td>
<td>Terminal Accumulation Total</td>
<td>D na</td>
<td>Transaction Weight Accumulation Total for terminal.</td>
</tr>
<tr>
<td>xp0104</td>
<td>Terminal Accumulation SubTotal</td>
<td>D na</td>
<td>Transaction Weight Accumulation SubTotal for terminal.</td>
</tr>
<tr>
<td>xp0105</td>
<td>Terminal Transaction Total</td>
<td>UL na</td>
<td>Total Number of Print Transactions for terminal.</td>
</tr>
<tr>
<td>xp0106</td>
<td>Terminal Transaction SubTotal</td>
<td>UL na</td>
<td>SubTotal Number of Print Transactions for terminal.</td>
</tr>
<tr>
<td>xp0107</td>
<td>Terminal Transaction Days Total</td>
<td>UL na</td>
<td>Total Number of Days when the terminal ran at least one Transaction.</td>
</tr>
<tr>
<td>xp0108</td>
<td>Terminal Transaction Days SubTotal</td>
<td>UL na</td>
<td>SubTotal Number of days when the terminal ran at least one Transaction.</td>
</tr>
<tr>
<td>xp0109</td>
<td>Last Transaction Day</td>
<td>AL2 na</td>
<td>Last Day that IND780 ran at least one Transaction.</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>Type</td>
<td>Default Value</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
<td>---------------</td>
</tr>
<tr>
<td>xp0110</td>
<td>Last Print Message</td>
<td>S100</td>
<td>na</td>
</tr>
<tr>
<td>xp0111</td>
<td>Last Error Message</td>
<td>S81</td>
<td>rt</td>
</tr>
<tr>
<td>xp0112</td>
<td>Power Cycle Counter</td>
<td>UL</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xp0114</td>
<td>Usage Time Counter</td>
<td>UL</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xp0115</td>
<td>Total Transactions Per Day</td>
<td>AL7</td>
<td>na</td>
</tr>
<tr>
<td>xp0116</td>
<td>Transaction Day Pointer</td>
<td>By</td>
<td>na</td>
</tr>
<tr>
<td>xp0117</td>
<td>Total Power On Time Counter</td>
<td>UL</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xp0118</td>
<td>Reserved</td>
<td>D</td>
<td>na</td>
</tr>
<tr>
<td>xp0119</td>
<td>Reserved</td>
<td>D</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xp0120</td>
<td>Last Demand/Custom Print Dest</td>
<td>UL</td>
<td>na</td>
</tr>
<tr>
<td>xp0121</td>
<td>Reserved</td>
<td>UL</td>
<td>na</td>
</tr>
<tr>
<td>xp0122</td>
<td>Reserved</td>
<td>UL</td>
<td>na</td>
</tr>
</tbody>
</table>

9.2.7.2. Method

The System Monitor maintains the system usage counters. The FTP Shared Data transfer saves these usage counters but does not restore them. “xp0102”, which FTP restores, is the only exception.
9.2.8. **Setup Sequencing Control (QC)**

Access	“Service.” The default level is customizable by individual field. The following fields have “Administrator” security: qc0101, qc0102, qc0103, qc0104, qc0105, qc0107, qc0108, qc0110, qc0111, qc0112, qc0152, qc0162, qc0163, qc0164, qc0173. qc0174 and qc0180 have “Operator” default security level. qc0189 and qc0190 have “Supervisor” default security level.
Class Code:	qc
Data Type:	D
ControlNet ClassCode:	9A hex
Instances:	1, referring to the Selected Scale

Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>qc0100</th>
<th>Composite qc block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application sets this field to initiate a sequence. Resident Scale Task (RST) sets field back to 0 when sequence is complete. 0. Null Calibration 1. Adjust Zero-Point for all Calibration Types 2. Span Adjust High-Point for Linear Two-Point Calibration 3. Adjust Zero-Point & High-Point Linear Two-Point Calibration 4. Adjust Mid-Point & High-Point in Non-Linear Three-Point Calibration 5. Adjust Low-Point, Mid-Point, & High-Point in Non-Linear Four-Point Calibration 6. Adjust Xlow-Point, Low-Point, Mid-Point, & High-Point in Non-Linear Five-Point Calibration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>qc0101</th>
<th>Do Calibration Sequence</th>
<th>By</th>
<th>rt</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Do Calibration Sequence By rt</td>
<td>Oxff = Full Shift-Adjust Sequence 1 to 24 = Single Cell Shift Adjust for this cell or pair of cells.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>qc0102</th>
<th>Do Auto-tune Sequence</th>
<th>By</th>
<th>rt</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>qc0103</th>
<th>Do Shift Adjust Sequence</th>
<th>By</th>
<th>rt</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Do Shift Adjust Sequence By rt</td>
<td>Oxff = Full Shift-Adjust Sequence 1 to 24 = Single Cell Shift Adjust for this cell or pair of cells.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>qc0104</th>
<th>Do Address POWERCELL Sequence</th>
<th>By</th>
<th>rt</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Do Address POWERCELL Sequence By rt</td>
<td>Oxff = Full Shift-Adjust Sequence 1 to 24 = Single Cell Shift Adjust for this cell or pair of cells.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>qc0105</th>
<th>Do Reset POWERCELL Addresses</th>
<th>By</th>
<th>rt</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Do Reset POWERCELL Addresses By rt</td>
<td>Reset all cell addresses to 240</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>qc0106</th>
<th>Do POWERCELL Diagnostic Seq</th>
<th>By</th>
<th>rt</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Do POWERCELL Diagnostic Seq By rt</td>
<td>Run diagnostic test on specified cell Oxff = scan for first attached cell and diagnose it. Otherwise, the diagnose specified address</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>qc0107</th>
<th>Do IDNET Master Mode Sequence</th>
<th>By</th>
<th>rt</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Do IDNET Master Mode Sequence By rt</td>
<td>IDNET Master Mode Dialog</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>qc0108</td>
<td>Do Shift Adjust Reset Sequence</td>
<td>By</td>
<td>rt</td>
<td>Reset Shift Adjust Parameters to 1.0</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------</td>
<td>-----</td>
<td>----</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>qc0109</td>
<td>Do Serial Port Diagnostic Sequence</td>
<td>By</td>
<td>rt</td>
<td>Perform loopback test on Serial Port. Command contains serial port number 1 – 6.</td>
</tr>
</tbody>
</table>
| qc0110 | Set Adjustable IDNet Setup Values | By | rt | 1 = Set Vibration Adapter
2 = Weighing Process Adapter
3 = Automatic Stability Detection
4 = AutoZero On/Off
5 = Restart/Reset
6 = Return to Defaults
Refer to wt0135 – wt0139 for current values and possible selections for parameter values. |
| qc0111 | Do CalFree Calibration | By | rt | 1 = Begin CalFree |
| qc0112 | Do SICS Lab Scale Calibration | By | rt | 1 = Zero Calibration
2 = Internal Calibration
3 = External Calibration
4 = Initial Adjustment
5 = Set Readability (dp. loc.)
6 = Set Filtering
7 = Set Motion
10 = Reset to Factory
11 = Internal Calibration Test |
| qc0116 | Analog Output Calibration | By | rt | 1 = Calibrate Zero, 2 = Calibrate Span, 3 = Return to Normal Operation |
| qc0118 | Abort the Current Sequence | BI | rc | Application sets this command from 0 to 1 to abort the current sequence at the RST. |
| qc0119 | Current Sequence Complete | By | rt | RST sets this field from 0 to non-zero to indicate an error abort of the current sequence. 1 = Successful completion. 2-255 indicates an error status. |
| qc0120 | Text describing the completion | S41 | rt | RST writes this text describing successful completion or the error condition |
| qc0121 | Operator Intervention Required | By | rc | Command from Resident Scale Task (RST) to application indicating that the sequence requires an operator intervention step.
1 = last operation complete successfully; operator intervention required
2 = calibration step completed with excessive motion; operator must make decision to abort or continue with calibration. To abort the calibration, hit trigger qc0118. To continue the calibration, hit trigger qc0123 |
| qc0122 | Operator Message | S41 | rt | RST sets text message describing state of the sequence and the operator intervention required. For IDNet Master Mode command, the operator message |
contains the text of the operator message from the base,

<table>
<thead>
<tr>
<th>qc0123</th>
<th>Operation Intervention Complete</th>
<th>By</th>
<th>rc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Command from application to Resident Scale Task indicating that Operator Input is complete. For IDNet Master Mode sequence: 1 = Yes, 2 = No</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>qc0124</th>
<th>Operator Input Data</th>
<th>S41</th>
<th>rt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Application sets data that the operator entered here. For the IDNet Setup Values command, the format of the operator input is a string value ‘1’ to ‘9’ indicating the value to set the parameter. Refer to wt0135 – wt0139 for current values and possible selections.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>qc0130</th>
<th>Selected Scale Node Number</th>
<th>By</th>
<th>na</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Node number of selected scale or flow meter. You must set this field before setting one of the following commands to select a scale or flow meter. Node number = 0 selects this local node.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>qc0131</th>
<th>Select Scale 1 - 5</th>
<th>Bl</th>
<th>rc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Command to Resident Scale task (RST) to select a scale or flow meter</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>qc0135</th>
<th>Select Flow Meter 1-12</th>
<th>Bl</th>
<th>rc</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>qc0147</th>
<th>Select Flow Meter 1-12</th>
<th>Bl</th>
<th>rc</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>qc0148</th>
<th>Enter Setup Mode Command</th>
<th>Bl</th>
<th>rc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Command to CP and RST.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>qc0149</th>
<th>Exit Setup Mode Command</th>
<th>Bl</th>
<th>rc</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>qc0150</th>
<th>Sequencer State</th>
<th>By</th>
<th>rt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The RST sets this field to indicate the current state of the calibration sequence:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0. No sequencing state</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Starting calibration sequence</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Wait for operator to zero scale</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Getting zero counts</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Wait for operator to set Xlow weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Getting Xlow weight counts</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Wait for operator to set low weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. Getting low weight counts</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8. Wait for operator to set mid weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9. Getting mid weight counts</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10. Wait for operator to set high weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11. Getting high weight counts</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12. Calibration writing EEPROM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13. Calibration completed successfully</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14. Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15. Wait for Operator to accept Excessive Motion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20. Starting shift adjust</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21. Wait for operator to set SA weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22. Getting shift adjust counts</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23. Shift adjust sequence step OK</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24. Shift adjust sequence completed OK</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25. Shift adjust writing EEPROM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30. Starting POWERCELL addressing Sequence</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>31. Starting reset POWERCELL addresses sequence</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32. Starting POWERCELL diagnostic sequence</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>33. Cell addressing sequence completed OK</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34. Turning cell power off</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>35. Turning cell power on</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
36. Cell power off - attach next POWERCELL
37. Adressing cell
38. Operator must end cell diagnostic
39. Cell diagnostic sequence completed OK
40. Cell power off - connect cells(s)
41. Not used
42. Finding first cell
43. Resetting POWERCELL addresses
44. Cell power off - reconnect cell(s)
45. Starting IDNet Master Mode
46. Wait for Operator IDNet Setup Reply
47. Sending NO reply to IDNet base
48. Sending YES reply to IDNet base
49. IDNet Master Mode completed OK
50. Starting IDNet Setup Values
51. Wait for operator IDNet setup reply
52. IDNet setup values completed OK
53. Calibration complete with excessive motion
54. Reserved
55. Writing ALC Board Calibration EEPROM
56. Write ALC Board Calibration Completed OK
57. Read I-Button EEPROM Completed OK
58. Starting SICS Internal Cal Sequence
59. Executing SICS External Cal Sequence
60. SICS CAL Completed Successfully
61. Wait for SICS Calibration Operator Reply
62. Starting SICS Zero Cal Sequence
63. Reserved
64. Reserved
65. Reserved
66. Reserved
67. Reserved
68. Reserved
69. Reserved
70. Reserved
71. Reserved
72. Reserved
73. Reserved
74. Sequence Failed
80. Cal failed aborted by operator
81. Cal failed sequence already in progress
82. Cal failed invalid selected scale
83. Cal failed system not in setup
84. Cal failed invalid cal type
85. Cal failed invalid parameter settings
86. Cal failed too few span counts
87. Cal failed low weight invalid
88. Cal failed mid weight invalid
89. Cal failed high weight invalid
90. Cal failed sequence error
91. Cal failed write to EEPROM error
92. Seq failed scale IO error
93. Shift adjust calculation failed
94. Cell addressing could not find old address
95. Cell addressing could not change cell address
96. Cell already at new address
97. Cell addressing invalid response
98. Cal failed Xlow weight invalid
99. Cal Failed Invalid Board Calibration
100. Cal Failed Too large Capacity
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Command</th>
<th>Trigger</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>qc0151</td>
<td>New POWERCELL Address</td>
<td>By</td>
<td>na</td>
<td>Used with qc0104 command</td>
</tr>
<tr>
<td>qc0152</td>
<td>Reset Scale Shared Data</td>
<td>By</td>
<td>rc</td>
<td>Scale number to reset or 99 to reset all</td>
</tr>
<tr>
<td>qc0153</td>
<td>Reset Application Shared Data</td>
<td>By</td>
<td>rc</td>
<td>99 = reset</td>
</tr>
<tr>
<td>qc0154</td>
<td>Reset Terminal Shared Data</td>
<td>By</td>
<td>rc</td>
<td>99 = reset</td>
</tr>
<tr>
<td>qc0155</td>
<td>Refresh Display</td>
<td>By</td>
<td>rt</td>
<td>1 = RST display forces itself to the background so CP display is in foreground.</td>
</tr>
<tr>
<td>qc0156</td>
<td>Reset Communication SD</td>
<td>By</td>
<td>rc</td>
<td>99 = reset</td>
</tr>
<tr>
<td>qc0157</td>
<td>Reset Maintenance SD</td>
<td>By</td>
<td>rc</td>
<td>99 = reset</td>
</tr>
<tr>
<td>qc0158</td>
<td>Write ALC Board Calib. EEPROM</td>
<td>By</td>
<td>rt</td>
<td>Factory Test. Trigger = ALC Scale Slot 1-4. \nWrite ALC Board Calibration EEPROM from Shared Data bw0100. After power-up, read the results from the associated bc--00 slot.</td>
</tr>
<tr>
<td>qc0159</td>
<td>Reserved</td>
<td>By</td>
<td>rc</td>
<td></td>
</tr>
<tr>
<td>qc0160</td>
<td>Reset Data Connections</td>
<td>Bl</td>
<td>rc</td>
<td>1 = Reset data connections setup</td>
</tr>
<tr>
<td>qc0161</td>
<td>Restart IND780</td>
<td>Bl</td>
<td>rc</td>
<td>1 = Do a soft restart of the IND780</td>
</tr>
<tr>
<td>qc0162</td>
<td>Reset Setup Shared Data</td>
<td>Bl</td>
<td>rc</td>
<td>1 = Reset Setup Shared Data to factory settings</td>
</tr>
<tr>
<td>qc0163</td>
<td>Reset All Calibration Data</td>
<td>Bl</td>
<td>rc</td>
<td>1 = Reset Calibration Data to factory settings for all scales</td>
</tr>
<tr>
<td>qc0164</td>
<td>Reset Process Shared Data</td>
<td>Bl</td>
<td>rc</td>
<td>1 = Reset Process Shared Data to factory settings</td>
</tr>
<tr>
<td>qc0165</td>
<td>Serial Port Diagnostic Send Buffer</td>
<td>S20</td>
<td>rt</td>
<td>Output buffer for serial port diagnostic <LF>Testing COM1 NN<CR></td>
</tr>
<tr>
<td>qc0166</td>
<td>Serial Port Diagnostic Recv Buffer</td>
<td>S20</td>
<td>rt</td>
<td>Input buffer for serial port diagnostic</td>
</tr>
<tr>
<td>qc0167</td>
<td>Run BRAM Memory Test</td>
<td>By</td>
<td>rt</td>
<td>1 = start, 0 = success, 99 = failure</td>
</tr>
<tr>
<td>qc0168</td>
<td>Reconfigure PLC Thread</td>
<td>By</td>
<td>rc</td>
<td>1 = start, 0 = done</td>
</tr>
<tr>
<td>qc0169</td>
<td>Backup BRAM to flash</td>
<td>By</td>
<td>rc</td>
<td>1 = start, 0 = done. Application sets this trigger to cause RST to write the current contents of BRAM to a backup file in the Compact Flash. This is necessary before replacing the battery. On power up, SD automatically recovers the BRAM from the flash backup file.</td>
</tr>
<tr>
<td>qc0170</td>
<td>New battery installed trigger</td>
<td>By</td>
<td>rc</td>
<td>1 = start, 0 = done. Application sets this trigger to indicate the service technician or factory has</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>By</td>
<td>rt</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>----</td>
<td>----</td>
<td>--</td>
</tr>
<tr>
<td>QC0171</td>
<td>Reset Network Config</td>
<td>rc</td>
<td>0</td>
<td>done, 1 = start normal, 2 = start query mode</td>
</tr>
<tr>
<td>QC0172</td>
<td>Control Panel Running</td>
<td>rt</td>
<td>0</td>
<td>CP start-up is complete & CP is running</td>
</tr>
<tr>
<td>QC0173</td>
<td>Adding Power Scale</td>
<td>rt</td>
<td>0</td>
<td>CP must trigger adding a new POWERCELL scale.</td>
</tr>
<tr>
<td>QC0174</td>
<td>CP Using Display Screen</td>
<td>rt</td>
<td>0</td>
<td>no, 1 = yes</td>
</tr>
<tr>
<td>QC0175</td>
<td>Reserved</td>
<td>rt</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>QC0176</td>
<td>Reserved</td>
<td>rt</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>QC0177</td>
<td>Backup/Restore Operation</td>
<td>rt</td>
<td>1</td>
<td>Backup DMT Files</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>Backup Tables</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>Backup Logs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>Restore DMT files, including scale calibration</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>Restore Tables</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>Restore DMT files, excluding scale calibration</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>Backup Operation Complete</td>
</tr>
<tr>
<td>QC0178</td>
<td>Active Remote Viewer</td>
<td>rt</td>
<td>0</td>
<td>Deactivate, 1 - 20 = Activate Node Number</td>
</tr>
<tr>
<td>QC0179</td>
<td>Screen Saver Active</td>
<td>rt</td>
<td>0</td>
<td>Inactive, 1 = Active</td>
</tr>
<tr>
<td>QC0180</td>
<td>CP Starting TaskExpert App.</td>
<td>rt</td>
<td>1</td>
<td>CP is starting TaskExpert Setup Application</td>
</tr>
<tr>
<td>QC0181</td>
<td>TE Enabled</td>
<td>rt</td>
<td>1</td>
<td>CP sets this flag to indicate TE is enabled.</td>
</tr>
<tr>
<td>QC0182</td>
<td>InSite Legal-for-Trade check</td>
<td>rt</td>
<td>1</td>
<td>Perform Legal-for-Trade check. Alert Operator and Block Scale Operation if Security Check failure.</td>
</tr>
<tr>
<td>QC0185</td>
<td>Read PDX Option Card A/D</td>
<td>rt</td>
<td>1</td>
<td>Read Dynamic PDX Option Card voltages. 0 = Command Complete</td>
</tr>
<tr>
<td>QC0186</td>
<td>Adjust Weight Displays</td>
<td>rt</td>
<td>1</td>
<td>Adjust number and size of weight displays according to system configuration, 0 = Command Complete</td>
</tr>
<tr>
<td>QC0187</td>
<td>Reserved</td>
<td>rt</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>QC0189</td>
<td>Remote Tare/Target Command</td>
<td>rt</td>
<td>1</td>
<td>This field enables a remote PC or PLC to set a new active Tare or Target in the IND780 from the IND780 Standard Database Tables. The Tare or Target ID must first be set in QC0190 before issuing the command in QC0189.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>The PC/PLC sets commands in this field, as follows:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>Set an active Tare for Scales 1 – 5, respectively, from the Tare Table using ID in QC0190.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>Set an active Target for Scales 1-5, respectively, from Target Table using ID is in QC0190</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>Command in progress = 255</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>254</td>
<td>No matching database record found = 254</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>253</td>
<td>Tare unit invalid / target unit mismatch = 253</td>
</tr>
</tbody>
</table>
Tare Failed = 252, see result in wx--01
Successful completion = 0

Database record values:
Upon successful completion the IND780 has also written the new active Tare Table or Target Table record to the appropriate fields of the TD block, where the PC/PLC can read them.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Format</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>qc0190</td>
<td>Tare or Target Table ID</td>
<td>S20</td>
<td>rt</td>
</tr>
<tr>
<td>qc0193</td>
<td>Reserved</td>
<td>S20</td>
<td>rt</td>
</tr>
<tr>
<td>qc0194</td>
<td>Reserved</td>
<td></td>
<td>rt</td>
</tr>
<tr>
<td>qc0195</td>
<td>Reset PDX CANopen Network</td>
<td>By</td>
<td>rt</td>
</tr>
<tr>
<td></td>
<td>1 = Reset PDX CANopen Network</td>
<td></td>
<td></td>
</tr>
<tr>
<td>qc0196</td>
<td>Rest PDX Diagnostic Fields</td>
<td>By</td>
<td>rt</td>
</tr>
<tr>
<td></td>
<td>1 = Reset PDX Diagnostic fields</td>
<td></td>
<td></td>
</tr>
<tr>
<td>qc0197</td>
<td>Capture PDX Tilt Data</td>
<td>By</td>
<td>rt</td>
</tr>
<tr>
<td></td>
<td>1 = Stop Capture, Reset to Default</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 = Capture Tilt Angles</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 = Capture Tilt Energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 = Capture Tilt Angles & Energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 = Write Fine Weight to Ethernet LPRINT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 = Write Rounded Weight to Ethernet LPRINT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>qc0198</td>
<td>PDX Performance Log Comands</td>
<td>By</td>
<td>rt</td>
</tr>
<tr>
<td></td>
<td>1 = Make new entry immediately in PDX Performance Log</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 = Clear PDX Performance Log</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 = Change automatic recording interval in PDX Performance Log</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 = Command Complete</td>
<td></td>
<td></td>
</tr>
<tr>
<td>qc0199</td>
<td>Update PDX Load Cell Filters</td>
<td>By</td>
<td>rt</td>
</tr>
<tr>
<td></td>
<td>1-4 = Scale Number; update filter settings in PDX Cells in this scale from filter values in cs--66 and cs--70</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 = filter settings updated successfully in PDX Cells</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>99 = attempt to update filter settings in PDX Cells failed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Method

The Setup Sequence Control Object in the Resident Scale Task (RST) manages the sequencing of the Scale Setup operations that take multiple steps and require operator intervention. Examples of such sequences are Scale Calibration, Calibration Check, Auto-Tune Filtering, and POWERCELLs Addressing. This object leads the sequencing of the operations and the application must supply the required operator interfaces.

The Application sets the Shared Data command to start the sequence and then monitors the state of the sequence. When the sequence requires an operator interaction, the RST sets a command to the application. The application must display a message to the operator and wait for the operator response. After the operator responds, the application sets the response field and sets a command to the RST indicating that the operator interaction is complete. The RST sets a command to the application indicating that the sequence is complete and a success or failure status.
9.2.9. Board Identifications (BD)

Access: "Read Only" access, level is not customizable.

<table>
<thead>
<tr>
<th>Class Code</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bd</td>
<td>PS</td>
<td></td>
</tr>
</tbody>
</table>

Instances: 16

- Instance 1 = IND780 Model Description
- Instance 2 = HMI Interface Board
- Instance 3 = Baseboard
- Instance 4 = MSC ETX Board
- Instance 5 = I-button
- Instance 6 = Reserved
- Instance 7 – 12 = Option Board Slots 1 – 6, respectively
- Instance 13 = PLC Interface Board
- Instance 14 = Remote Discrete IO Unit

9.2.9.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>Attribute Code</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>bd--00</td>
<td>Composite bd block</td>
<td>Struct na Composite of entire block</td>
</tr>
<tr>
<td>bd--01</td>
<td>Board Installed This Slot</td>
<td>BI na 0 = no, 1 = yes</td>
</tr>
<tr>
<td>bd--02</td>
<td>Board Name</td>
<td>S21 na Textual Description: For an Ethernet IP PLC board, this field contains “ETHIP” + Ethernet MAC Address. For a PROFINET PLC board, this field contains “PRNET” + Ethernet MAC Address.</td>
</tr>
<tr>
<td>bd--03</td>
<td>Board Serial Number</td>
<td>S14 na Serial #'s are 13 digits + null terminator</td>
</tr>
<tr>
<td>bd--04</td>
<td>Board Part Number</td>
<td>S14 na Part #'s are 13 digits + null terminator</td>
</tr>
<tr>
<td>bd--05</td>
<td>Board Type</td>
<td>By na</td>
</tr>
</tbody>
</table>

- 0 = None
- 1 = B/W Display Interface Board
- 2 = Color Display Interface Board
- 3 = Baseboard
- 4 = ETX Board
- 5 = CMOS RAM Board
- 6 = Keyboard Interface Board
- 7 = Analog LC Option Board
- 8 = Discrete IO Option Board — relay outputs
- 9 = Serial Option Board
- 10 = IDNET/DigiNet Option Board
- 11 = POWERCELL Option Board
- 12 = Flow Meter Board
- 13 = Analog Output PLC Interface Board
- 14 = IND780 Model Description
- 15 = AB-RI0 PLC Interface Board
- 16 = PROFIBUS PLC Interface Board
- 17 = ControlNet PLC Interface Board
- 18 = DeviceNet (future) PLC Interface Board
- 19 = Remote Discrete IO Unit
20 = Discrete IO Option Board – photoMOS outputs
21 = Analog LC Option Board – HAP version
22 = High-Speed Analog LC Option Board
23 = Ethernet/IP PLC Interface Board
24 = PDX Cell Option Board
25 = I-button
26 = PROFINET PLC Interface Board

<table>
<thead>
<tr>
<th>bd--06</th>
<th>Number of Channels</th>
<th>By</th>
<th>na</th>
</tr>
</thead>
<tbody>
<tr>
<td>bd--08</td>
<td>Board Software Part Number</td>
<td>S14</td>
<td>Part #’s are 13 digits + null terminator</td>
</tr>
<tr>
<td>bd--09</td>
<td>Kit number</td>
<td>S14</td>
<td>na</td>
</tr>
</tbody>
</table>

9.2.9.2. Method

At power-up, the Resident Scale Task reads the hardware boards and writes their identification to Shared Data. If there are any changes from the previously recorded hardware configuration, Shared Data will automatically record them in the Change Log.

9.2.10. Option Board ID & Calibration EEPROM (BC)

| Access: “Read Only” access level is not customizable. |
| Class Code: bc |
| Data Type: PS |
| Instances: 6 One instance for each Option board slot. |

9.2.10.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>bc--00</th>
<th>Composite bc block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>bc--01</td>
<td>Calibration Data Length</td>
<td>US</td>
<td>na</td>
<td>A length ! = 0 indicates factory has programmed calibration data in the EEPROM. The factory must also set a valid checksum.</td>
</tr>
<tr>
<td>bc--02</td>
<td>Board Serial Number</td>
<td>S14</td>
<td>na</td>
<td>Serial #’s are 13 digits + null terminator</td>
</tr>
<tr>
<td>bc--03</td>
<td>Board Part Number</td>
<td>S14</td>
<td>na</td>
<td>Part #’s are 13 digits + null terminator</td>
</tr>
<tr>
<td>bc--04</td>
<td>Checksum</td>
<td>US</td>
<td>na</td>
<td>for(i = sum = 0; i<len; sum+ = ((char *)start)[i++]);</td>
</tr>
</tbody>
</table>

9.2.10.1.1. Analog Board Calibration Fields Required Are Only Set for Analog Boards

bc--05	Zero Counts with 2mv/V jumper	UL	na	A/D Counts at 0mv/V input w 2mv/V jumper
bc--06	Span Counts with 2mv/V jumper	UL	na	A/D Counts at 2mv/V input w 2mv/V jumper
bc--07	Zero Counts with 3 mv/V jumper	UL	na	A/D Counts at 0mv/V input w 3mv/V jumper
bc--08	Span Counts with 3 mv/V jumper	UL	na	A/D Counts at 2mv/V input w 3mv/V jumper
bc--09	Targeted Output Counts In Span	UL	na	Targeted output counts in span calibration
bc--10	Reduced Excitation Version	US	na	1 = Yes; 0 = No
9.2.10.2. Method

During manufacturing of the Analog Scale Boards, the factory sets minor adjustments in a soldered “board calibration” EEPROM that account for differences in the electronics between the boards. The objective is to be able to move the load cells and the socket-ed “scale calibration” EEPROM between Analog scale boards in order to get different boards to report the same weight. The Analog Scale Board applies the factory calibration adjustment after performing its on-board filtering. The adjustment is: \(y = mx + z \), where \(y \) = adjusted counts, \(x \) = raw counts, \(m \) = (span counts – zero counts) / range counts, \(z \) = zero counts.

The Analog Board calibration EEPROM is 256x16 bits. The first 128 words are for the first channel. The second 128 words are for the second channel.

Other boards provide the length, Board Serial #, Board Part #, and checksum in the short format. These boards do not provide the Analog Board Calibration data fields.

9.2.11. System Feature Triggers & Controls (XC)

<table>
<thead>
<tr>
<th>Access:</th>
<th>“Supervisor”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code:</td>
<td>xc</td>
</tr>
<tr>
<td>ControlNet Class Code:</td>
<td>96 hex</td>
</tr>
<tr>
<td>Data Type:</td>
<td>D</td>
</tr>
<tr>
<td>Instances:</td>
<td>1</td>
</tr>
</tbody>
</table>

9.2.11.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>xc0100</th>
<th>Composite xc block</th>
<th>Struct na</th>
<th>Composite of entire block</th>
</tr>
</thead>
</table>

9.2.11.1.1. Triggers to disable features through a Discrete Input Keyswitch

<table>
<thead>
<tr>
<th>xc0101</th>
<th>Disable PLC</th>
<th>Bl rt</th>
<th>0 = enable, 1 = disable feature.</th>
</tr>
</thead>
<tbody>
<tr>
<td>xc0102</td>
<td>Disable Error Display</td>
<td>Bl rt</td>
<td></td>
</tr>
<tr>
<td>xc0103</td>
<td>Disable SmartTrac/Weight DisplayBl</td>
<td>rt</td>
<td></td>
</tr>
<tr>
<td>xc0104</td>
<td>Disable Setup</td>
<td>Bl rt</td>
<td></td>
</tr>
<tr>
<td>xc0105</td>
<td>Disable Maintenance</td>
<td>Bl rt</td>
<td></td>
</tr>
<tr>
<td>xc0106</td>
<td>Disable Keypad & Keyboard</td>
<td>Bl rt</td>
<td></td>
</tr>
<tr>
<td>xc0107</td>
<td>Reserved</td>
<td>Bl rt</td>
<td></td>
</tr>
<tr>
<td>xc0108</td>
<td>Disable Run Flat</td>
<td>Bl rt</td>
<td></td>
</tr>
<tr>
<td>xc0109</td>
<td>Disable Alarms</td>
<td>Bl rt</td>
<td></td>
</tr>
<tr>
<td>xc0110</td>
<td>Disable Application</td>
<td>Bl rt</td>
<td></td>
</tr>
<tr>
<td>xc0111</td>
<td>Disable Select Key</td>
<td>Bl rt</td>
<td></td>
</tr>
</tbody>
</table>
9.2.11.1.2. Triggers to activate/deactivate Ladder Logic

<table>
<thead>
<tr>
<th>Trigger Code</th>
<th>Description</th>
<th>Active</th>
<th>Passive</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>xc0112</td>
<td>Master Control Relay</td>
<td>Bl</td>
<td>rt</td>
<td>Master switch for turning on/off discrete outputs. 1 = discrete outputs enabled, 0 = all discrete outputs disabled.</td>
</tr>
<tr>
<td>xc0113</td>
<td>Run Ladder Logic</td>
<td>Bl</td>
<td>rc</td>
<td>Run ladder logic</td>
</tr>
<tr>
<td>xc0114</td>
<td>Stop Ladder Logic</td>
<td>Bl</td>
<td>rc</td>
<td>Stop ladder logic</td>
</tr>
</tbody>
</table>

9.2.11.1.3. Triggers to turn on/off display

<table>
<thead>
<tr>
<th>Trigger Code</th>
<th>Description</th>
<th>Active</th>
<th>Passive</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>xc0115</td>
<td>Disable LCD Display</td>
<td>Bl</td>
<td>rt</td>
<td>1 = disable, 0 = enable</td>
</tr>
<tr>
<td>xc0116</td>
<td>Disable Backlight</td>
<td>Bl</td>
<td>rt</td>
<td>1 = disable, 0 = enable</td>
</tr>
<tr>
<td>xc0117</td>
<td>Contrast Adjustment</td>
<td>By</td>
<td>rc</td>
<td># number of steps to increase (+) or decrease (-) contrast adjustment</td>
</tr>
</tbody>
</table>

9.2.11.1.4. Triggers to Initiate Miscellaneous Functions from Discrete Inputs

<table>
<thead>
<tr>
<th>Trigger Code</th>
<th>Description</th>
<th>Active</th>
<th>Passive</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>xc0118</td>
<td>Reload + Templates</td>
<td>Bl</td>
<td>rc</td>
<td>Trigger to cause PLC messaging to reload the latest assembly message templates.</td>
</tr>
<tr>
<td>xc0130</td>
<td>Enter Key Trigger</td>
<td>Bl</td>
<td>rc</td>
<td>Trigger to simulate the Enter Key</td>
</tr>
<tr>
<td>xc0131</td>
<td>Next Local Scale Trigger</td>
<td>Bl</td>
<td>rc</td>
<td>Trigger to select the next local scale</td>
</tr>
<tr>
<td>xc0132</td>
<td>Run Calibration Test</td>
<td>Bl</td>
<td>rc</td>
<td></td>
</tr>
<tr>
<td>xc0133</td>
<td>Disable FTP</td>
<td>Bl</td>
<td>rc</td>
<td>1 = Temporarily disable FTP transfers while critical file operations are in progress</td>
</tr>
<tr>
<td>xc0134</td>
<td>Sound Key Click Beeper</td>
<td>Bl</td>
<td>rc</td>
<td>1 = trigger key click beeper</td>
</tr>
<tr>
<td>xc0135</td>
<td>Sound Alarm Beeper</td>
<td>Bl</td>
<td>rc</td>
<td>1 = trigger alarm beeper</td>
</tr>
<tr>
<td>xc0136</td>
<td>Operator Struck Enter Key</td>
<td>Bl</td>
<td>rc</td>
<td>SKM sets this trigger = 1 whenever the operator strikes the Enter Key. The Application initiates the callback by setting trigger = 0</td>
</tr>
<tr>
<td>xc0137</td>
<td>Toggle SmartTrac Display</td>
<td>Bl</td>
<td>rc</td>
<td>1 = toggle display</td>
</tr>
<tr>
<td>xc0138</td>
<td>Reset Weight Display</td>
<td>Bl</td>
<td>rc</td>
<td>1 = reset weight display. RST resets weight display upon entering and exiting setup</td>
</tr>
<tr>
<td>xc0139</td>
<td>Reprint Last Demand Print</td>
<td>Bl</td>
<td>rc</td>
<td>1 = reprint last demand or custom print. Applications use this trigger for DUPLICATE PRINT request</td>
</tr>
<tr>
<td>xc0140</td>
<td>IND780 Soft Reset</td>
<td>Bl</td>
<td>rc</td>
<td>1 = Issue SoftReset for IND780</td>
</tr>
<tr>
<td>xc0141</td>
<td>Reserved</td>
<td>Bl</td>
<td>rc</td>
<td></td>
</tr>
<tr>
<td>xc0142</td>
<td>Remote I/O Error Action</td>
<td>By</td>
<td>rt</td>
<td>0 = pause Targets only 1 = pause Targets & turn off all Discrete IO until Remote IO OK.</td>
</tr>
<tr>
<td>xc0143</td>
<td>Deactivate Remote Viewer Session</td>
<td>By</td>
<td>rt</td>
<td>1 = yes</td>
</tr>
<tr>
<td>xc0144</td>
<td>Deactivate View Server Session</td>
<td>By</td>
<td>rt</td>
<td>1 = yes</td>
</tr>
<tr>
<td>xc0145</td>
<td>Run (ID) Prompt</td>
<td>By</td>
<td>rt</td>
<td>1 = initiate start of ID (Prompt) sequence</td>
</tr>
</tbody>
</table>
Sequence

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Access</th>
<th>By</th>
<th>rt</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xc0146</td>
<td>Saved SmartTrac Height</td>
<td>By</td>
<td>rt</td>
<td></td>
<td>Saved SmartTrac height from xa0116</td>
</tr>
<tr>
<td>xc0147</td>
<td>Saved Weight Height</td>
<td>By</td>
<td>rt</td>
<td></td>
<td>Saved weight height from xa0111</td>
</tr>
<tr>
<td>xc0148</td>
<td>Data Entry Line Busy</td>
<td>By</td>
<td>rt</td>
<td></td>
<td>1 = busy, 0 = not busy</td>
</tr>
<tr>
<td>xc0149</td>
<td>Start ID1 Prompt Sequence</td>
<td>By</td>
<td>rt</td>
<td></td>
<td>1 = Start ID1 Sequence</td>
</tr>
<tr>
<td>xc0150</td>
<td>Start ID2 Prompt Sequence</td>
<td>By</td>
<td>rt</td>
<td></td>
<td>1 = Start ID2 Sequence</td>
</tr>
<tr>
<td>xc0151</td>
<td>PDX Cell Voltage Diagnostic</td>
<td>Bl</td>
<td>rt</td>
<td></td>
<td>0 = Run PDX Cell Voltage Diagnostic once every hour in no-motion state; 1 = Run PDX Voltage Diagnostic once every 15 seconds</td>
</tr>
<tr>
<td>xc0152</td>
<td>Reserved</td>
<td>Bl</td>
<td>rt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xc0153</td>
<td>Reserved</td>
<td>Bl</td>
<td>rt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xc0154</td>
<td>Reserved</td>
<td>Bl</td>
<td>rt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xc0155</td>
<td>Reserved</td>
<td>Bl</td>
<td>rt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xc0156</td>
<td>Reserved</td>
<td>By</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xc0157</td>
<td>Reserved</td>
<td>By</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xc0158</td>
<td>Reserved</td>
<td>By</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9.2.11.2. **Methods**

These system triggers enable, disable, or activate IND780 functions through Discrete Inputs. You must setup Ladder Logic rungs to tie the Discrete Inputs to these triggers. Applications may also access these features by writing to these Shared Data triggers.

9.3. **ID Sequence Data**

9.3.1. **Prompt Setup (PR)**

<table>
<thead>
<tr>
<th>Access</th>
<th>“Service” Default level is customizable by individual field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code</td>
<td>pr</td>
</tr>
<tr>
<td>Instances</td>
<td>2</td>
</tr>
</tbody>
</table>

9.3.1.1. **Attributes**

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Access</th>
<th>By</th>
<th>rt</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pr--00</td>
<td>Composite pr block</td>
<td>Struct</td>
<td>na</td>
<td></td>
<td>Prompt setup string:</td>
</tr>
<tr>
<td>pr--01-20</td>
<td>Prompt setup array fields 1-20</td>
<td>Aby1</td>
<td>na</td>
<td></td>
<td>1st byte is step number, value is 1-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td>2nd byte is type:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = Disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = Alphanumeric</td>
</tr>
</tbody>
</table>
2 = Clear Tare
3 = Numeric
4 = Print
5 = Select Scale
6 = Select Tare
7 = Select Target
8 = Start Sequence
9 = Auto Tare
10 = Preset Tare

3rd byte is Clear Data:
0 = Disabled
1 = Enabled

4th byte is Prompt Length; values 0-40

5th byte is Scale Number for Select Scale; values 1-5

6th byte is Start Sequence jump:
1 = Jump to Sequence 1 Start
2 = Jump to Sequence 2 Start

7th byte is print trigger:
0 = Scale demand mode
1 = Custom Print 1
2 = Custom Print 2

8th-10th bytes are reserved

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pr--21</td>
<td>Prompt Mode</td>
<td>By</td>
</tr>
<tr>
<td>pr--22</td>
<td>Auto Trigger Scale</td>
<td>By</td>
</tr>
<tr>
<td>pr--23</td>
<td>Prompt Threshold</td>
<td>D</td>
</tr>
<tr>
<td>pr--24</td>
<td>Prompt Reset Threshold</td>
<td>D</td>
</tr>
<tr>
<td>pr--25</td>
<td>Prompt Busy</td>
<td>By</td>
</tr>
<tr>
<td>pr--26</td>
<td>Prompt Restart</td>
<td>By</td>
</tr>
<tr>
<td>pr--27</td>
<td>Reserved</td>
<td>D</td>
</tr>
<tr>
<td>pr--28</td>
<td>Reserved</td>
<td>D</td>
</tr>
<tr>
<td>pr--31-50</td>
<td>Prompt String 1-20</td>
<td>S41</td>
</tr>
</tbody>
</table>

9.3.1.2. Method

The Prompt String is a sequence of operator lead-through steps that the CP can set up. A special application runs the steps during a weighing operation. Operator responses are handled by the PA block.
9.3.2. Prompt Response (PA)

Access: “Operator” Default level is customizable by individual field
Class Code: pa Data Type: PP
Instances: 2

9.3.2.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>pa0100</th>
<th>Composite of pa block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>pa0101-20</td>
<td>Response string 1-20</td>
<td>S51</td>
<td>na</td>
<td>String size valid for Task Expert or C# programs. In all other situations the length is limited to 40 characters plus termination characters. In this case, Struct is S41, not S51.</td>
</tr>
</tbody>
</table>

9.3.2.2. Method

The PA block contains the run-time operator response to the Prompt sequence set up in the PR block.

9.4. Users and Security Data

9.4.1. Logged-In Users (XL)

Access: “Read Only.”
Class Code: xl Data Type: D
Instances: 25 Up to 25 users logged in simultaneously.

9.4.1.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>xl--00</th>
<th>Composite xl block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
<tbody>
<tr>
<td>xl--01</td>
<td>Logged-On User Name</td>
<td>S13</td>
<td>na</td>
<td>Name of user currently logged-on</td>
</tr>
<tr>
<td>xl--02</td>
<td>Access Privilege Level of User</td>
<td>By</td>
<td>na</td>
<td>1 = Operator, 2 = Supervisor, 3 = Service, 4 = Administrator</td>
</tr>
</tbody>
</table>

9.4.2. Access Security Setup (XU)

Access: “Maintenance” (Not customizable.)
Class Code: xu Data Type: PS
Instances: 20

9.4.2.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>xu--00</th>
<th>Composite xu block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
</table>
9.4.3. Application Virtual Console Messages (AM)

Access:	“All Users”
Class Code:	am
Data Type:	D
Instances:	6

The Control Panel uses Instance 1 for reports. TaskExpert applications use Instances 2, 3 and 4 for lprint. Control Panel uses Instance 5 for Totals Reports. TaskExpert uses Instance 6 as a special dummy console.

9.4.3.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

am--00	Composite am block	Struct	na	Composite of entire block
am--01	Unicode LPRINT Message	S1000	na	
am--02	Trigger to begin LPRINT	By	rc	1 = start LPRINT command
am--03	LPRINT complete status	By	rt	1 = LPRINT command complete
am--04	LPRINT debug data override	By	na	1 = Print debug data on LPRINT printer
am--05	Application Console Out Message	S200	rt	Application Output Messages for display on Virtual Console display
am--06	Application Console In Message	S100	rt	Application Console Messages that are input from a Virtual Console keyboard
am--07	Trigger to begin Console Print	By	rc	1 = start Console Print
am--08	Console Print Complete Status	By	rt	1 = Console Print Complete
am--09	Keyboard Data Ready Trigger	By	rc	1 = Keyboard Data Ready
am--10	Reserved	By	rt	

9.4.3.2. Methods

An application can use this structure to send and receive messages from a Virtual Console. The Virtual Console consists of input messages from a Virtual Console keyboard, a Virtual Console display, and a Virtual Console LPRINT device.

When LPRINT messages can span multiple blocks, the start of the print message must contain the <dprint> tag and the end of the message must contain the </dprint> tag. The application begins the LPRINT by setting 1 in the “begin print” trigger. It must wait until it sees the print complete status before setting another LPRINT block into Shared Data.
Use a <LFCR> token to embed a "line feed/carriage return" control character within the am--05 and am--06 fields. The Shared Data Server automatically converts the <LFCR> token to the print control characters.

9.4.4. Keyboard Routing Commands (KC)

<table>
<thead>
<tr>
<th>Access:</th>
<th>"Operator" default level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Code:</td>
<td>kc</td>
</tr>
<tr>
<td>Data Type:</td>
<td>D</td>
</tr>
<tr>
<td>Instances:</td>
<td>1</td>
</tr>
</tbody>
</table>

9.4.4.1. Attributes

Note: The last two digits of each shared data variable is its attribute.

<table>
<thead>
<tr>
<th>kc0100</th>
<th>Composite kc block</th>
<th>Struct</th>
<th>na</th>
<th>Composite of entire block</th>
</tr>
</thead>
</table>

9.4.4.1.1. Keyboard Routing Tables

<table>
<thead>
<tr>
<th>kc0101</th>
<th>Control Panel Message Window</th>
<th>UL</th>
<th>rt</th>
<th>Control Panel Message Window Handle Application must set its Message Window field on entry and clear it on exit.</th>
</tr>
</thead>
<tbody>
<tr>
<td>kc0102</td>
<td>Error Display Window</td>
<td>UL</td>
<td>rt</td>
<td>Error Display Message Window Handle</td>
</tr>
<tr>
<td>kc0103</td>
<td>Custom.Net Message Window</td>
<td>UL</td>
<td>rt</td>
<td>Custom.Net Message Window Handle</td>
</tr>
<tr>
<td>kc0104</td>
<td>TaskExpert Message Window</td>
<td>UL</td>
<td>rt</td>
<td>TaskExpert Message Window Handle</td>
</tr>
<tr>
<td>kc0105</td>
<td>SoftKey Manager Message Window</td>
<td>UL</td>
<td>rt</td>
<td>SoftKey Manager Message Window Handle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>kc0110</th>
<th>Route Keypad Numeric Keys to</th>
<th>By</th>
<th>rt</th>
<th>1 = Control Panel 2 = reserved 3 = Custom.Net 4 = TaskExpert 5 = SoftKey Manager 6 = Disabled Default = 0 (none).</th>
</tr>
</thead>
<tbody>
<tr>
<td>kc0111</td>
<td>Route Keyboard AlphaNumerics to</td>
<td>By</td>
<td>rt</td>
<td>Same as for kc0110</td>
</tr>
<tr>
<td>kc0112</td>
<td>Route Enter Key to</td>
<td>By</td>
<td>rt</td>
<td></td>
</tr>
<tr>
<td>kc0113</td>
<td>Route Navigation Keys to</td>
<td>By</td>
<td>rt</td>
<td></td>
</tr>
<tr>
<td>kc0114</td>
<td>Route Scale Keys to</td>
<td>By</td>
<td>rt</td>
<td></td>
</tr>
<tr>
<td>kc0115</td>
<td>Route Clear Key to</td>
<td>By</td>
<td>rt</td>
<td></td>
</tr>
<tr>
<td>kc0116</td>
<td>Route Function Keys to</td>
<td>By</td>
<td>rt</td>
<td></td>
</tr>
<tr>
<td>kc0117</td>
<td>Route Application Keys to</td>
<td>By</td>
<td>rt</td>
<td></td>
</tr>
</tbody>
</table>

9.4.4.1.2. SoftKey Processing Commands

<table>
<thead>
<tr>
<th>kc0119</th>
<th>Disable SoftKey Display</th>
<th>By</th>
<th>rt</th>
<th>Command from Application to SoftKey Manager to disable and turn-off SoftKey display.</th>
</tr>
</thead>
<tbody>
<tr>
<td>kc0120</td>
<td>Go to Home SoftKey page</td>
<td>By</td>
<td>rc</td>
<td>Command from Application to SoftKey Manager. Reset SoftKey Stack, display Home page, and begin</td>
</tr>
<tr>
<td>Command Code</td>
<td>Description</td>
<td>By</td>
<td>Action</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>----</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>kc0121</td>
<td>Reserved</td>
<td>rc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kc0122</td>
<td>Push working page onto stack</td>
<td>rc</td>
<td>Command from Application to SoftKey Manager. Push working page onto page top of stack, display it, and begin processing it.</td>
<td></td>
</tr>
<tr>
<td>kc0123</td>
<td>Pop current top page off stack</td>
<td>rc</td>
<td>Command from Application to SoftKey Manager. Pop the top page off the page stack and return to processing the new top.</td>
<td></td>
</tr>
<tr>
<td>kc0124</td>
<td>Replace current top page</td>
<td>rc</td>
<td>Command from Application to SoftKey Manager. Replace the current top page with the working page and begin to processing the new top.</td>
<td></td>
</tr>
<tr>
<td>kc0125</td>
<td>Current top page</td>
<td>na</td>
<td>SoftKey Manager maintains this field with the index of the current top page on page stack.</td>
<td></td>
</tr>
<tr>
<td>kc0126</td>
<td>Current processing page</td>
<td>na</td>
<td>SoftKey Manager maintains this field with the index of the page on the stack it is currently processing – either the home page or the current top page.</td>
<td></td>
</tr>
<tr>
<td>kc0127</td>
<td>Enable KeyPad Alphabetic Mode</td>
<td>rt</td>
<td>Command from Application to SoftKey Manager. 0 = Interpret SoftKeys as function keys. 1 = Interpret SoftKeys as alphabetic keys</td>
<td></td>
</tr>
<tr>
<td>kc0128</td>
<td>Enable Clear as Backspace Erase</td>
<td>rt</td>
<td>Command from Application to SoftKey Manager. 0 = Interpret Clear Key as Clear Tare. 1 = Interpret Clear Key as Backspace Erase key.</td>
<td></td>
</tr>
</tbody>
</table>

9.4.4.1.3. Data Entry Line Commands

<table>
<thead>
<tr>
<th>Command Code</th>
<th>Description</th>
<th>By</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>kc0130</td>
<td>Enable Data Entry Line</td>
<td>rt</td>
<td>Command from Application to SoftKey Manager. 0 = Disable. 1 = Enable with prompt in pre-entry mode. 2 = Enable with no prompt in pre-entry mode. 3 = Enable with prompt in specific entry mode. 4 = Enable with no prompt in specific entry mode.</td>
</tr>
<tr>
<td>kc0131</td>
<td>Font for Data Entry Line</td>
<td>rc</td>
<td>Font size * 2 (+1 for Bold)</td>
</tr>
<tr>
<td>kc0132</td>
<td>Pre-Entry Prompt for Data Entry</td>
<td>S21</td>
<td>The application can specify a prompt message that SoftKey manager displays at the beginning of the data entry line in pre-entry mode.</td>
</tr>
<tr>
<td>kc0133</td>
<td>Specific Prompt for Data Entry</td>
<td>S21</td>
<td>The application can specify a numeric data format with a maximum number of digits and position of the decimal point. The format is “#nn.dd” where nn is the max number of numeric digits and dd is the decimal point position. Or the application can specify an alphanumeric data format with a maximum number of characters for alphanumeric data. The format is “!ss” where ss is the maximum number of characters.</td>
</tr>
<tr>
<td>kc0134</td>
<td>Format for a Specific Data Entry</td>
<td>S8</td>
<td>The application can specify an alphanumeric data format with a maximum number of characters for alphanumeric data. The format is “!ss” where ss is the maximum number of characters.</td>
</tr>
</tbody>
</table>
Other Data

<table>
<thead>
<tr>
<th>Other Data</th>
<th>number of alphanumeric characters.</th>
</tr>
</thead>
</table>

kc0135 Format for Pre-Entry Data **S8** **rt**

The application can specify a numeric data or alphanumeric data format for data the operator enters in “pre-entry” mode. The format is the same as kc0134.

kc0136 Data Entry Line Data **S40** **rt**

The SoftKey Manager records data here that the operator entered on the data entry line. The last character of the buffer contains the termination character.

kc0137 Send Key Code to CP **By** **rt**

Send Key Code from TaskExpert to Control Panel, as follows:

1 = Select Scale
2 = Zero
3 = Tare
4 = Print
8 = Clear
11 = Enter Setup

kc0138 Reserved **By** **rt**

kc0139 Reserved **S40** **rt**

kc0140 Reserved **S40** **rt**

9.4.4.2. Method

The SoftKey Manager sends a custom message containing the SoftKeys to the Message Window of the appropriate application. Each application must write its Message Window handle to Shared Data in order to receive the messages. Before an application terminates, it must clear its Message Window handle.

Other fields are commands from the applications to the SoftKey Manager to control processing of the SoftKey pages.
A Revision History

A.1. Software and Document Revisions

<table>
<thead>
<tr>
<th>Document Revision</th>
<th>Firmware Version</th>
<th>Date</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>8.x</td>
<td>20180424</td>
<td>Addition of PROFINET PLC option</td>
</tr>
<tr>
<td>11</td>
<td>7.x</td>
<td>2013</td>
<td>Added network printer (np) block; added Flow Meter blocks; added table column definition to Database and Table Data</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>09</td>
<td></td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>08</td>
<td></td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>6.3.03</td>
<td>2011</td>
<td>Added UNICODE command and all Standard Database commands</td>
</tr>
<tr>
<td>06</td>
<td></td>
<td>2010</td>
<td>Minor modifications to CS block</td>
</tr>
<tr>
<td>05</td>
<td></td>
<td>2010</td>
<td>WS updated and AO added, to reflect addition of analog output</td>
</tr>
<tr>
<td>04</td>
<td>6.1.08</td>
<td>2009</td>
<td>Updated to reflect addition of PDX</td>
</tr>
<tr>
<td>03</td>
<td>6.0.x</td>
<td>2008</td>
<td>Updated to reflect changes in s/w rev 6.1</td>
</tr>
<tr>
<td>02</td>
<td>5.1.x</td>
<td>2007</td>
<td>Updated to reflect changes in s/w rev 5.1</td>
</tr>
<tr>
<td>01</td>
<td>4.14</td>
<td>2007</td>
<td>Comparator and host additions and modifications</td>
</tr>
<tr>
<td>00</td>
<td>3.xx</td>
<td>2006</td>
<td>[Initial release]</td>
</tr>
</tbody>
</table>
To protect your METTLER TOLEDO product’s future:

Congratulations on choosing the quality and precision of METTLER TOLEDO. Proper use according to these instructions and regular calibration and maintenance by our factory-trained service team ensure dependable and accurate operation, protecting your investment. Contact us about a METTLER TOLEDO service agreement tailored to your needs and budget.

We invite you to register your product at www.mt.com/productregistration so we can contact you about enhancements, updates and important notifications concerning your product.