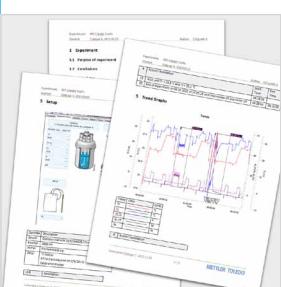


Understand Process Parameters

Faster, Safer Process Development


Understand Process Parameters
OptiMax HFCal combines the benefits of a synthesis workstation and a reaction calorimeter, collecting heat data for scale-up and safety information. Heat data under both isothermal and non-isothermal conditions enables measurement and optimization of process parameters under process-like conditions.

Uncover Potential Safety Issues
Critical information like induction time, start and end of reaction, and maximum heat release combined with more detailed information such as reaction enthalpy, accumulated energy and adiabatic temperature rise on cooling failure, ensures potential safety issues are quickly identified.

Faster Process Development
Characterize and optimize process parameters in a well-controlled, accurate and reproducible environment. Collecting safety relevant heat information at the same time reduces the number of trials – saving time and resources.

Data Analysis
During an experiment OptiMax HFCal collects and stores a wealth of information. With a single click, iControl software automatically calculates and reports heat transfer data, specific heat of the reaction mass, heat flow and reaction enthalpies.

OptiMax™ HFCal

Uncovering potential safety issues or non-scalable conditions is critical to develop and scale a process in a safe and robust way. However, this information is not typically generated until late in the scale-up phase.

OptiMax HFCal is a synthesis workstation designed specifically to enable the determination of this critical information much earlier in the development process. Reaction enthalpy, heat transfer and maximum heat release data is collected and calculated in a simple way, enabling better decisions to be made earlier regarding chemistry and conditions – ultimately resulting in faster process development and scale-up.

Understand Process Parameters

Faster, Safer Process Development

Heat Flow Calorimetry – Simple and Accurate

OptiMax HFCal reproducibly delivers information to characterize process parameters, for scale-up and to ensure it is safe at scale.

- Heat transfer coefficient
- Specific heat of the reaction mass
- Heat flow for isothermal and non-isothermal conditions
- Enthalpy
- Thermal conversion
- Adiabatic temperature rise

Heating and Cooling – No Additional Cryostat Needed

The electrical heating and Peltier cooling ensure precise temperature control from -40°C to 180°C . It doesn't require any cumbersome or bulky cryostats.

Quality Information

All events and data are recorded automatically, making experiments traceable and reproducible. At the end of the experiment, the relevant data is summarized and a report with tables and trends is generated automatically. For further processing, interpretation or storage purposes, the data are either taken care of by iC Data Center™ or can be exported to Microsoft® Excel®.

30064130 – OptiMax Calorimetry Starter Kit

The OptiMax HFCal Starter Kit is a heat flow based, ready-to-use system to quickly obtain heat data of any chemical or physical reaction on a 1 L scale. This includes all parts required plus iControl software and HFCal license.

30050150 – OptiMax HFCal Kit

The OptiMax HFCal Kit is a calorimetry upgrade kit for OptiMax. It is Plug&Play and contains all necessary parts to convert the workstation into a fully functional calorimeter. iControl software is not included. No service call is required for installation.

* Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

OptiMax HFCal Specifications

Thermostat

Heating	Electrical	
Cooling	Peltier	
Cooling Performance	0 °C	35 W
	20 °C	65 W
	40 °C	90 W
Temperature Range	-40°C to 180°C (jacket temperature)	
Control Modes	Isothermal and isoperibolic, constant or ramp, reflux, distillation and crystallization	
Stirring	30 rpm to 1200 rpm	
Dimensions	388 mm x 414 mm x 539 mm	
Power Supply	100 V to 240 V AC, 50 Hz to 60 Hz, 1300 VA	
Operation	iControl software for calorimetric applications Graphical touchscreen and/or iControl software	

Reactors

Type	Single piece or two piece (with bottom drain valve)
Volume	1000 mL
Pressure	50 mbar to 1 bar
Material	Duran® glass
Stirrer	Pitch-blade (glass, Alloy 22), Anchor (glass, Alloy 22), Half-moon (PTFE for single piece reactor)

Calorimetry

Type	Heat flow
Precision Heat Transfer**	Typically $\pm 3\%$
Accuracy and Precision	Typically $\pm 10\%$
Specific Heat**	
Accuracy Heat Flow**	Typically $\pm 3\%$ to 5% , under isothermal conditions. Typically $\pm 5\%$ to 10% under non-isothermal conditions. Based on comparison of qr_{hf} with qc resp. $\int qr_{hf}$ with $\int qc$.
Sensitivity qr Noise**	$\leq 0.1\text{ W}$ measured as standard deviation of qr under steady state conditions. Peak-to-peak noise is \leq approximately 0.4 W .

HFCal Module

Power and Data Interface	Direct connection to CAN interface of standard OptiMax, no additional power supply or PC connection required
Data Logging	Via iControl software
Dimensions	120 mm x 40 mm x 170 mm
Software	iControl 5.2 or higher, HFCal license required

Calibration Heater

Power	Max. 20 W
Material	Alloy 22
Size	300 mm length, 8 mm diameter

** Data determined with silicon oil 47V20 between -25°C and 160°C , water between 5°C and 40°C , toluene between -35°C and 75°C .

Mettler-Toledo AG, AutoChem

Sonnenbergstrasse 74
CH-8603 Schwerzenbach, Switzerland
Phone +41-44 806 7711
Fax +41-44 806 7290

Email autochem@mt.com
Internet www.mt.com/autochem

Subject to technical changes.

© 04/2013 Mettler-Toledo AG, AutoChem
Printed in Switzerland, 30043748

www.mt.com/OptiMaxHFCal

For more information