pH Transmitter 2500

Ihr Vertreter:

01/99 20 606 1158

Mettler-Toledo GmbH, Process, Postfach, 8902 Urdorf, Schweiz Tel. +41 (01) 736 22 11, Fax +41 (01) 736 26 36

CE

Gewährleistung

Innerhalb von 3 Jahren auftretende Mängel werden bei freier Anlieferung im Werk kostenlos behoben. Zubehörteile und Displaybeleuchtung: 1 Jahr

Änderungen für Software-Version 6

Keine Logbuchaufzeichnung von Meßfehlermeldungen während Wartung, Kalibrierung und Parametrierung

Während Wartungsarbeiten, z. B. bei der Reinigung des Sensors oder bei der Kalibrierung, werden oft sehr viele Fehlermeldungen erzeugt, die keinerlei Bedeutung für die Messung haben, da das Gerät sich in Funktionskontrolle befindet und der Strom eingefroren ist. Diese Fehlermeldungen werden nicht mehr im Logbuch aufgezeichnet.

Logbucheintrag bei fehlerhafter Paßzahl

Der Versuch, mit einer falschen Paßzahl eine Funktion aufzurufen, wird im Logbuch protokolliert.

Manuelle Auswahl des Temperaturfühlers

Die automatische Pt 100/Pt 1000-Erkennung und -Umschaltung entfällt.

Funktionskontrolle generell innerhalb der Kalibrierung

Bei der Kalibrierung, nach Eingabe der Paßzahl, wird generell das NAMUR-Signal "Funktionskontrolle" gesetzt, d. h. der Ausgangsstrom wird eingefroren. Bisher wurde dieses Signal bei der Probenkalibrierung nicht gesetzt.

Sicherheitshinweise

Unbedingt lesen und beachten!

Vor dem Anschließen des Gerätes an die Hilfsenergie ist sicherzustellen, daß die Spannung mit der Angabe auf dem Typschild des Gerätes übereinstimmt.

Beim Öffnen des Gerätes werden spannungsführende Teile freigelegt. Daher soll das Gerät nicht geöffnet werden. Falls eine Reparatur erforderlich wird, senden Sie das Gerät ins Werk ein.

Muß das Gerät dennoch in Ausnahmefällen geöffnet werden, ist es zuvor von allen Spannungsquellen zu trennen.

Stellen Sie sicher, daß das Gerät von der Hilfsenergieversorgung getrennt ist.

Eine Reparatur oder ein Abgleich eines geöffneten, unter Spannung stehenden Gerätes darf nur von einer Fachkraft vorgenommen werden, die mit den damit verbundenen Gefahren vertraut ist.

Beachten Sie, daß bei geöffnetem Gerät an berührbaren Teilen eine lebensgefährliche Spannung liegen kann.

Das Gerät muß außer Betrieb genommen und gegen unbeabsichtigten Betrieb gesichert werden, wenn angenommen werden muß, daß ein gefahrloser Betrieb nicht mehr möglich ist.

Gründe für diese Annahme sind:

- sichtbare Beschädigung des Gerätes
- Ausfall der elektrischen Funktion
- längere Lagerung bei Temperaturen über 70 °C
- schwere Transportbeanspruchungen

Bevor das Gerät wieder in Betrieb genommen wird, ist eine fachgerechte Stückprüfung nach DIN EN 61010 Teil 1 durchzuführen. Diese Prüfung sollte bei uns im Werk vorgenommen werden.

Installation und Inbetriebnahme

Die *Installation* des pH Transmitters 2500 darf nur durch ausgebildete Fachkräfte (VBG 4) unter Beachtung der einschlägigen VDE-Vorschriften und der Bedienungsanleitung erfolgen. Bei der Installation sind die technischen Daten und die Anschlußwerte zu beachten.

Hinweise zur Installation finden Sie in Kapitel 10.

Die *Inbetriebnahme* des pH Transmitters 2500 darf nur durch ausgebildete Fachkräfte (VBG 4) unter Beachtung der Bedienungsanleitung erfolgen.

Vor der Inbetriebnahme muß eine *vollständige Parametrierung* durch einen Systemspezialisten erfolgen.

Wenn Sie ein Gerät mit Option 298 an einer einseitig geerdeten 24 V AC-Hilfsenergieversorgung betreiben, kann es bei geerdetem Meßgut durch Ausgleichsströme (über die interne EMV-Beschaltung) zu Fehlmessungen kommen.

Verbinden Sie daher Klemme 4 mit dem Meßgut (leitende Kesselwand) wie in Abb. 9–3 gezeigt.

Bei Umgebungstemperaturen unter 0 °C kann die Ablesbarkeit des LC-Displays eingeschränkt sein. Die Gerätefunktionen sind dadurch *nicht* beeinträchtigt.

Echtzeituhr, Logbuch, Cal-Protokoll und Elektrodenstatistik sind für ca. 1 Jahr akkugepuffert. Bei länger andauerndem Spannungsaufall können diese Daten verlorengehen. Das Gerät bringt dann die Meldung "Warn Uhrzeit/Datum", und das Datum wird auf den 01.01.1990 zurückgesetzt. Uhrzeit und Datum müssen dann neu parametriert werden.

Hinweise zur Elektromagnetischen Verträglichkeit

Einhaltung der Störfestigkeit

Alle Ein- und Ausgänge des pH Transmitters 2500 sind untereinander potentialgetrennt. Die Trennspannungen werden durch Üsags (gasgefüllte Überspannungsableiter zur Einhaltung der EMV nach NAMUR) auf ca. 50 V begrenzt.

Option 351 (Schnittstelle)

Für den Anschluß der RS 485-Schnittstelle ist verdrilltes und/oder geschirmtes Kabel zu verwenden.

Um die Funkstörspannungsgrenzwerte an der RS 485-Schnittstelle einzuhalten, muß die Klemme 15 (Schirm) geerdet werden. Für die Erdung darf nicht der Schutzleiter verwendet werden!

CE

Der pH Transmitter 2500 erfüllt folgende Fachgrundnormen:

- Störaussendung EN 50081-1 Wohnbereich, Geschäfts- und Gewerbebereiche sowie Kleinindustrie
- Störfestigkeit EN 50082-2 Industriebereich

und kann somit im Wohnbereich, in Geschäftsund Gewerbebereichen sowie in der Kleinindustrie und im Industriebereich eingesetzt werden.

Lieferumfang und Auspacken des Gerätes

Packen Sie das Gerät vorsichtig aus. Kontrollieren Sie die Lieferung auf Transportschäden und auf Vollständigkeit. Zum Lieferumfang gehören:

- pH Transmitter 2500
- Diese Bedienungsanleitung
- Ggf. mitbestellte Zubehörteile
 (Lieferbares Zubehör s. Kap. 13)

Der Aufbau dieses Handbuchs

In diesem Handbuch wird beschrieben

- was Sie mit dem pH Transmitter 2500 tun können
- wie Sie den pH Transmitter 2500 bedienen
- was bei Installation und Montage zu beachten ist

Warnung

Eine Warnung bedeutet, daß die Nichtbefolgung zu Fehlfunktion oder Beschädigung des Gerätes und zu Sach- oder Personenschäden führen kann.

Hinweis

Durch Hinweise werden wichtige Informationen vom übrigen Text abgesetzt

Hinweise zur Darstellung

Die Tasten des pH Transmitter 2500 werden im Text so dargestellt:

meas, cal, maint, par, diag

</

Fett ist ein Begriff gedruckt, der unter "Fachbegriffe" (Kap. 17) erklärt ist.

Kursiv sind Informationen gedruckt, die besonders hervorgehoben werden sollen.

Die Darstellung eines Menüs in der Bedienungsanleitung kann von der Anzeige Ihres Gerätes etwas abweichen. Das ist abhängig davon, mit welchen Optionen Ihr Gerät ausgerüstet ist.

diag Meßstellendaten Meßstelle Grenzwert 1 Grenzwert 2	6.94pH MIN99227/XYZXYZ +2000 mV +16.00 pH	Beispiel: Diagnos für ein S
« zurück [diaq]		

Diagnosemenü "Meßstellendaten" ür ein Standardgerät.

diag Meßstellendaten		6.94pH
Meßstelle Grenzwert 1 Grenzwert 2 Regler-Sollwert Sondenspülung	MIN9 +2000 +16.0	99227/XYZXYZ) mV 10 pH 10 pH

Beispiel:

Diagnosemenü "Meßstellendaten" für ein Gerät mit Option 352 (Sondenspülung) und Option 353 (Reglerfunktion).

Gliederung des Handbuchs

Das Handbuch ist wie die Bedienung des pH Transmitters 2500 in drei Ebenen gegliedert:

Anzeigeebene: Sie können alle Informationen über den Gerätezustand und den Sensor sowie die Parametrierung ansehen.

Lesen Sie die Kapitel 1, 2, 4 und 6

Betriebsebene: Sie können ausgewählte Parameter ändern und die pH-Elektrode kalibrieren.

Lesen Sie die Kapitel 1 ... 7

Spezialistenebene: Sie können den pH Transmitter 2500 vollständig parametrieren sowie spezielle Funktionen (z. B. Schnittstellenbetrieb) nutzen.

Lesen Sie die Kapitel 1 ... 10

Wenn Sie Informationen zu bestimmten Themen suchen, die nicht im Inhaltsverzeichnis erscheinen, hilft Ihnen das *Stichwortverzeichnis* am Ende des Handbuches, den gesuchten Begriff zu finden.

Wenn das Verhalten Ihres Gerätes von der Beschreibung in diesem Handbuch abweicht, kontrollieren Sie, ob das Handbuch zur Software-Version ihres Gerätes gehört: s. S. 4–6.

Der pH Transmitter 2500 im Überblick	Kap. 1 gibt Ihnen einen Überblick über die Lei- stungsfähigkeit des pH Transmitters 2500 .
Die Bedienung des pH Transmitters 2500	Kap. 2 behandelt die Bedienoberfläche. Die Ta- stenfunktionen werden beschrieben. Die Auswahl von Menüpunkten und die Eingabe von Zahlen- werten wird erklärt.
Die Kalibrierung	Kap. 3 zeigt Ihnen, wie Sie den Kalibrierablauf auswählen und wie Sie eine Kalibrierung durch- führen.
Das Diagnosemenü	Kap. 4 beschreibt, wie Sie im Diagnosemenü In- formationen über den Zustand der Elektrode und des Gerätes bekommen.
Das Wartungsmenü	Kap. 5 erläutert die Möglichkeiten zur Wartung der Meßstelle.
Die Anzeige der Parametrierung	Kap. 6 erklärt, wie Sie sich die Parametrierung des Gerätes anzeigen lassen können.
Die Parametrierung des Gerätes in der Be- triebsebene	Kap. 7 beschreibt die Parametrierung des Gerätes in der Betriebsebene
Die Parametrierung des Gerätes in der Spezialistenebene	Kap. 8 beschreibt die komplette Parametrierung des Gerätes
Die Meßmöglichkeiten des pH Transmitters 2500	Kap. 9 erläutert umfassend alle Meß- und Einsatz- möglichkeiten des pH Transmitters 2500 und was bei der Anwendung zu beachten ist.
Hinweise zur Montage, Installation und Wartung	Kap. 10 enthält alle erforderlichen Anschlußbele- gungen, Maßbilder und Installationsanweisungen, sowie Hinweise zur Wartung und Reinigung des Gerätes.
Fehlermeldungen	Kap. 11 listet alphabetisch alle Fehlermeldungen auf, die im Betrieb auftreten können.
Schnittstellenbefehle	Kap. 12 enthält eine Zusammenstellung aller Be- fehle, mit denen der pH Transmitter 2500 über die RS 485-Schnittstelle gesteuert werden kann.
Lieferprogramm und Zubehör	Kap. 13 enthält das lieferbare Zubehör sowie die verfügbaren Optionen zur Erweiterung der Gerätefunktionen.
Technische Daten	Kap. 14 enthält die kompletten technischen Spezi- fikationen.
Puffertabellen	Kap. 15 enthält die Temperaturtabellen der für die Calimatic [®] programmierten Puffer.
Anhang	Kap. 16 enthält Anleitungen zum Wechsel des EPROMs.
Fachbegriffe	Kap. 17 erklärt Fachbegriffe
Stichwortverzeichnis	Kap. 18 hilft beim schnellen Auffinden von Begriffen im Handbuch.

Inhalt

Sich	nerheitshinweise	I
Inst	allation und Inbetriebnahme	II
Hinv	weise zur Elektromagnetischen Verträglichkeit	Ш
	Einhaltung der Störfestigkeit	III
Lief	erumfang und Auspacken des Gerätes	IV
Der	Aufbau dieses Handbuchs	IV
	Hinweise zur Darstellung	IV
	Gliederung des Handbuchs	V
1	Der pH Transmitter 2500 im Überblick	1–1
	Das Gerätekonzept	1–1
	Die Bedienoberfläche	1–1
	Die Systemfunktionen	1–3
	Die Menüstruktur	1–4
	Die einzelnen Menüs	1–5
2	Die Bedienung des pH Transmitters 2500	2–1
	Das Gerät im Meßmodus	2–1
	Die Bedienungselemente	2–3
	Die Menüstruktur	2–4
3	Die Kalibrierung	3–1
	Warum muß kalibriert werden?	3–1
	Die Überwachungsfunktionen für die Kalibrierung	3–2
	So gelangen Sie in das Kalibriermenü	3–3
	So wählen Sie einen Kalibrierablauf	3–4
	Was bedeutet "Erstkalibrierung"?	3–5
	Die Temperaturkompensation während der Kalibrierung	3–6
	Einpunkt- oder Zweipunkt-Kalibrierung?	3–7
	Automatische Kalibrierung mit Calimatic [®]	3–8
	Kalibrierung mit manueller Eingabe von Pufferwerten	3–10
	Kalibrierung durch Dateneingabe vorgemessener Elektroden	3–12
	Kalibrierung durch Probennahme	3–13
	Kalibrierung mit Wechselarmatur InClean	3–15
	Probenkalibrierung mit Wechselarmatur InClean	3–17

4	Das Diagnosemenü	4–1
	Das können Sie im Diagnosemenü tun	4–1
	So gelangen Sie in das Diagnosemenü	4–2
	Die aktuelle Meldungsliste	4–2
	Die Meßstellendaten	4–2
	Das Kalibrierprotokoll	4–3
	Die Elektrodenstatistik	4–4
	Das Logbuch	4–5
	Die Gerätebeschreibung	4–6
	Die Gerätediagnose	4–7
5	Das Wartungsmenü	5–1
	Das können Sie im Wartungsmenü tun	5–1
	So gelangen Sie in das Wartungsmenü	5–2
	InClean-Programm starten	5–2
	Die Meßstellen-Wartung	5–2
	Die Stromgeberfunktion	5–4
	Der Temperaturfühler-Abgleich	5–5
	Manuelle Eingabe der Reglerstellgröße	5–6
6	Die Anzeige der Parametrierung	6–1
	Das können Sie in der Anzeigeebene tun	6–1
	So gelangen Sie in die Anzeigeebene	6—1
7	Die Parametrierung in der Betriebsebene	7–1
	Das können Sie in der Betriebsebene tun	7–1
	So gelangen Sie in die Betriebsebene	7–1
8	Die Parametrierung in der Spezialistenebene	8–1
	Das können Sie in der Spezialistenebene tun	8–1
	So gelangen Sie in die Spezialistenebene	8–1
	Die Marker-Parametrierung	8–2
	Der Paßzahl-Schutz	8–4
	Werksseitig parametrierte Paßzahlen	8–6

9	Die Meßmöglichkeiten des pH Transmitters 2500	9–1
	Überblick	9–1
	Die Hilfsenergieversorgung für den pH Transmitter 2500	9–1
	Die einfache pH-Meßstelle	9–2
	Die Meßwertanzeige	9–2
	Die pH-Messung	9–4
	Die Temperaturerfassung	9–8
	Der Stromausgang	9–11
	Voll ausgebaute Meßstelle mit Nutzung aller Funktionen	9–12
	Die Elektrodenüberwachung Sensocheck [®]	9–14
	Die Redox (ORP)-Messung	9–17
	Simultane pH- und Redox (ORP)-Messung	9–18
	Die rH-Messung	9–19
	Die Alarmeinstellungen und die NAMUR-Kontakte	9–22
	Die Grenzwertkontakte	9–26
	Die Reglerfunktion	9–28
	Der Hilfsenergieausgang	9–37
	Der Stromeingang	9–38
	Wechselarmatur InClean	9–40
	Die Sondenspülung	9–49
	Der Schnittstellenbetrieb	9–54
	Die Deltafunktion	9–57
	Gerätediagnose	9–57
10	Hinweise zur Montage, Installation und Wartung	10–1
	Montage	10–1
	So montieren Sie den pH Transmitter 2500 im Schutzgehäuse	10–5
		10–8
	Wartung und Reinigung	10–10

11	Fehlermeldungen	11–1
	Alphabetisch sortiert	11–1
	Sortiert nach Schnittstellen-Fehlercode	11–5
12	Schnittstellenbefehle	12–1
	Inhaltsübersicht	12–1
	Übertragungsverhalten	12–4
	VALUE-Befehle: Meßwerte abfragen	12–5
	STATUS-Befehle: Meldungen und Zustände abfragen	12–6
	PARAMETER-Befehle: Parametrierung abfragen und Parameter setzen	12–10
	DEVICE-Befehle: Gerätebeschreibung	12–31
	COMMAND-Befehle: Steuerkommandos	12–31
	Schnittstelle Punkt-zu-Punkt	12–34
	Schnittstellen-Busprotokoll	12–34
13	Lieferprogramm und Zubehör	13–1
	Optionen	13–1
	Montagezubehör	13–1
	Weiteres Zubehör	13–2
14	Technische Daten	14–1
15	Puffertabellen	15–1
16	Anhang	16–1
	EPROM–Wechsel	16–2
17	Fachbegriffe	17–1
18	Stichwortverzeichnis	18–1

1 Der pH Transmitter 2500 im Überblick

Die *Inbetriebnahme* des pH Transmitters 2500 darf nur durch ausgebildete Fachkräfte (VBG 4) unter Beachtung der Bedienungsanleitung erfolgen.

Vor der Inbetriebnahme muß eine vollständige Parametrierung durch einen Systemspezialisten erfolgen.

Das Gerätekonzept

Durch die weitgehende Berücksichtigung von NAMUR-Empfehlungen und Kundenforderungen, insbesondere bezüglich Sicherheit, Zuverlässigkeit und Funktionsvielfalt, weist dieses Gerät den derzeit neuesten Entwicklungsstand auf und charakterisiert damit den neuen Standard für Prozeß-Meßgeräte.

Die Bedienoberfläche

Die Anzeige-Bedienoberfläche wird aus einem hinterleuchteten Grafikdisplay mit hoher Auflösung (240 x 64 Punkte) und einem Tastenfeld gebildet. Jede Taste ist einfach belegt und eindeutig einem **Menü** oder einer Eingabefunktion zugeordnet.

Im **Meßmodus** erlaubt das Grafikdisplay sowohl die simultane Darstellung des aktuellen Meßwertes in großen Ziffern (25 mm) und von zwei weiteren Werten in Nebenanzeigen, als auch von NAMUR-gerechten **Statusmeldungen** wie **Warnung** (Wartungsbedarf) und **Ausfall** sowie von Grenzwertmeldungen.

Je nach Anwendungsfall können den Anzeigen verschiedene Meßwerte und Ausgangswerte frei zugeordnet werden: pH-/mV-Wert, ORP (Redox-Spannung), rH-Wert, Meß- und manuelle Temperatur, Uhrzeit, Datum, Ausgangsstromwerte 1 und 2, Eingangsstrom in %, Regler-Stellgröße, die Zeitspanne seit der letzten Kalibrierung oder die Glas- und Bezugselektroden-Impedanzen (Elektrodenüberwachung).

cal Calimatic	7.01pH
 Bei Meßkettenwechsel Ers brierung für Statistik ogenessene Cal-Temperatur Erstkalibrierung Jaguar 	stkali- durchführen! +022.2 °C Nein
Kalibrierung weiter zu	ırück

Die Bedienerführung wird durch eine 7-zeilige Klartext-Anzeige mit Informationstexten unterstützt. Während der Bedienung bleiben der aktuelle Meßwert und aktuelle Statusmeldungen immer sichtbar.

Das Tastenfeld enthält die Tasten **meas** (Messen), **cal** (Kalibrierung), **maint** (Wartung), **par** (Parametrierung), **diag** (Diagnose), ein Cursorfeld zur Auswahl der Menüpunkte oder zur alphanumerischen Eingabe und **enter** zur Bestätigung der Eingabe.

Abb. 1–1 System-Funktionen pH Transmitter 2500

Abb. 1–1 zeigt die Vielfalt der System-Funktionen. Neben den obligatorischen Eingängen für Meßund Bezugselektrode (1) und Temperaturfühler (2) kann eine **Potentialausgleichselektrode** angeschlossen werden, die gleichzeitig als **Hilfselektrode** zur Elektrodenüberwachung dient. Bei geeigneter Auswahl der Elektrode – z. B. einer Platinelektrode – läßt sich dann simultan die **Redox-Spannug** messen. Daraus ergibt sich die Möglichkeit, neben der Erfassung des pH-Wertes und der Redox-Spannung auch die pH-kompensierte Redox-Spannung, den sogenannten **rH-Wert**, zu berechnen und anzuzeigen.

Das Gerät enthält zwei galvanisch getrennte *Normstromausgänge* (0(4) ... 20 mA) (7 und 8), denen jeweils die Meßgrößen pH, mV, ORP, rH oder Temperatur zugeordnet werden können. Optionell kann der Stromausgang 2 (7) auch als Analogreglerausgang eingesetzt werden. Ein (optionell galvanisch getrennter) *Normstromeingang* (0(4) ... 20 mA) (3) ermöglicht z. B. die Überwachung eines Drucksensorsignals mit Grenzwerten. Zudem lassen sich in Verbindung mit dem *Hilfsenergieausgang* (10) komplette 2-Leiter-Meßkreise realisieren, z. B. für Durchfluß- oder Füllstandsgeber. Die ermittelten Meßwerte können sowohl angezeigt als auch Grenzwertkontakten und Meldungen zugeordnet werden.

Über eine serielle RS 485-Schnittstelle (9) ist der pH Transmitter 2500 komplett fernsteuerbar und alle Meßdaten und Statusmeldungen können ausgelesen werden, auch über größere Entfernungen. Neben einer "Punkt zu Punkt"-Verbindung sind Busverbindungen von bis zu 31 Geräten möglich.

Mit den NAMUR-Kontakten (6) können direkt vor Ort Meldegeräte für Funktionskontrolle, Warnung (Wartungsbedarf) und Ausfall angesteuert werden. Die Grenzwert-/Regler-Kontakte (5) melden Grenzwertunter- bzw. -überschreitungen oder dienen zur Ansteuerung von Ventilen oder Pumpen zur Regelung (integrierte Regelfunktion). Die Reinigungskontakte (4) ermöglichen die Steuerung geeigneter Sonden zur Spülung und Reinigung der Elektrode oder einer Wechselarmatur InClean.

Die Menüstruktur

Die Menüstruktur (Abb. 2–1, S. 2–4) läßt die streng nach Menügruppen gegliederte Bedienungs-Organisation erkennen, die trotz der Funktionsvielfalt außerordentlich übersichtlich ist.

Der Aufruf eines Menüs erfolgt durch die entsprechende Menütaste. Der direkte Rücksprung zum Meßmodus, auch aus unteren Menüebenen, ist jederzeit durch Druck auf **meas** möglich.

Die Bedienung ist aufgrund der eindeutigen Benutzerführung durch Klartext-Dialog selbsterklärend. Selbst die Spezialistenebene kann ohne Zuhilfenahme des Handbuchs (Bedienungsanleitung) oder eines Zusatzgerätes (Terminal, Laptop) bedient werden.

cal Kalibrierung	7.01pH
» Calimatic- automat » Manuell- Vorgabe v » Dateneingabe- Meßk » Probenkalibrierung	ische Kalibrierung on Pufferwerten etten vorgemessen
« zurück zum Messen	[cal]
cal Calimatic	7.01pH

Meßkette in 1. Pufferlösung tauchen! • Ausgangsstrom,Regler eingefroren 1 Grenzwerte inaktiv

Kalibrierung starten zurück

maint Wartung

» »

» Meβstellen-Wartung

Stromgeber Abgleich Tempfühler Regler manuell zurück zum Messen

par Parametrierung	7.01pH
» Anzeigeebene (Gesam	tdaten) anz
» Spezialistenebene (Gesam	itdaten) spe
« zurück zum Messen [par]	

6.99pH

[maint]

Die einzelnen Menüs

Ein Beispiel der Bedienerführung mit Informationstexten ist nebenstehend anhand des **Kalibriermenüs** dargestellt. Zunächst kann zwischen vier verschiedenen Kalibrierabläufen gewählt werden.

Der Zugang kann über eine abschaltbare Paßzahl verriegelt werden.

Während des **Kalibrierablaufes** erhält der Anwender Schritt-für-Schritt-Anweisungen. Am Ende werden die ermittelten Elektrodendaten angezeigt und übernommen.

Das **Parametriermenü** ist dem Spezialisierungsgrad des Anwenders entsprechend in die Ebenen Anzeige-, Betriebs- und Spezialistenebene aufgeteilt.

In der **Anzeigeebene** kann die Parametrierung nur angesehen, nicht aber verändert werden. In der **Betriebsebene** sind nur markierte Menüpunkte zur Parametrierung freigegeben. In der **Spezialistenebene** sind sämtliche Parametrierfunktionen erreichbar. Zudem können dort, zur Zusammenstellung eines optimalen Benutzermenüs in der Betriebsebene, für jeden Menüpunkt Marker gesetzt werden.

Gegen unbefugten Zugriff auf die Betriebs- und Spezialistenebene schützt eine **Paßzahlverriegelung**, die für die Betriebsebene bei Bedarf abschaltbar ist.

Das Wartungsmenü enthält Funktionen zur Meßstellen-Wartung (Spülung und Reinigung) und zum Abgleich des Temperaturfühlers. Ferner ermöglicht eine Stromgeberfunktion das manuelle Einstellen der Ausgangsströme, beispielsweise zur Einstellung eines Reglers oder zum Testen externer Geräte (Schreiber, Anzeiger). Der Zugang kann über eine Paßzahl verriegelt

werden, die bei Bedarf abschaltbar ist.

diag	Diagnose	7.	.01pH	
> > > > > > +	a ktuelle Meldungsliste Meßstellendaten Cal-Protokoll Meßkettenstatistik Jogbuch Gerätebeschreibung	0	Meldg.	(\ t

Im Diagnosemenü sind sensor- und gerätebezogene Daten einzusehen.

Warnungs- und Ausfallmeldungen sind in der aktuellen **Meldungsliste** als Klartext aufgelistet. Außerdem lassen sich aktuelle Elektrodendaten abrufen und mit den Daten der vorangegangenen Kalibrierung oder der Erstkalibrierung vergleichen (Statistik).

In Form eines **Logbuches** mit einer Speichertiefe von 200 Einträgen werden automatisch Meldungen und Funktionsaufrufe mit Datum und Uhrzeit zur Rückverfolgung und QM-Dokumentation von Ereignissen gemäß DIN ISO 9000 gespeichert. Umfangreiche Gerätetests (Speicher-, Displayund Tastaturtests) können direkt am Einsatzort mit Hilfe der Diagnosefunktion durchgeführt werden.

Die Bedienung des pH Transmitters 2500 2

Die Inbetriebnahme des pH Transmitters 2500 darf nur durch ausgebildete Fachkräfte (VBG 4) unter Beachtung der Bedienungsanleitung erfolgen.

Vor der Inbetriebnahme muß eine vollständige Parametrierung durch einen Systemspezialisten erfolgen.

Das Gerät im Meßmodus

Im Meßmodus zeigt die Hauptanzeige den Meßwert.

Unter der Hauptanzeige befinden sich zwei Nebenanzeigen.

Das Symbol 💄 zeigt an, daß die Nebenanzeige mit den Rolltasten geändert werden kann.

benanzeige angezeigt wird.

und ▼ können Sie

Um die rechte Nebenanzeige zu ändern, drücken Sie die Cursortaste 🕨 Dann können Sie mit den Rolltasten und

die angezeigte Meßgröße ändern. Mit der Cursortaste 🖌 gelangen Sie zur linken

Nebenanzeige zurück.

Bei Umgebungstemperaturen unter 0 °C kann die Ablesbarkeit des LC-Displays eingeschränkt sein. Die Gerätefunktionen sind dadurch nicht beeinträchtigt.

Folgende Meßgrößen können Sie in den Nebenanzeigen darstellen:

- pH-Wert
- mV-Meßwert
- ORP- (Redox-)Meßwert
- rH-Wert

- Pt Gemessene Temperatur (°C)
- MAN manuelle Meßtemperatur (°C)
- I-EING Eingangsstrom
- AUSG1 Ausgangsstrom 1
- AUSG2 Ausgangsstrom 2 (nur mit Option 350)
- X_w
 Reglersollwert
 (nur mit Option 353 oder
 Option 483)
- RGL-Y Reglerstellgröße (nur mit Option 353 oder Option 483)
- TIME Uhrzeit
- DATE Datum
- CTIME Kalibrier-Timer
- BEZG Bezugselektroden-Impedanz
- GLAS Glas-Elektroden-Impedanz

Alarm-Meldungen

Wenn die parametrierten Grenzen, z. B. beim pH-Meßwert, für die **Warnungs-Meldung** ("Wartungsbedarf") oder die **Ausfall-Meldung** überschritten werden, erscheint links unten im Display "WARN" oder "AUSF".

Die Meßwertanzeige blinkt.

Die entsprechenden NAMUR-Kontakte sind aktiv.

Im **Diagnosemenü** können Sie in der Meldungsliste nachsehen, welche Meldungen anstehen. Siehe S. 4–2.

Wie Sie die Grenzen für die Warnungs- und Ausfall-Meldungen parametrieren können, erfahren Sie in Kap. 9 auf S. 9–22.

Grenzwertkontakte aktiv

Wenn die parametrierten **Grenzwerte**, z. B. beim pH-Meßwert, über- oder unterschritten werden, erscheint rechts oben im Display "G1" und/oder "G2".

Die Grenzwert-Kontakte G1 und/oder G2 sind aktiv.

Wenn eine Probenkalibrierung durchgeführt wird, wird die Anzeige "G1/G2" durch "Probe" überdeckt!

Wenn das Gerät bei Schnittstellenbetrieb im Remotezustand ist, wird die Anzeige "G1/G2" durch "Remote" überdeckt!

Im **Diagnosemenü** können Sie in den Meßstellendaten nachsehen, wie die Grenzwerte gesetzt sind. Siehe S. 4–2.

Wie Sie die Grenzwerte parametrieren können, erfahren Sie in Kap. 9 auf S. 9–26.

Die Bedienungselemente

Durch Druck auf die Menütasten **cal** , **diag** , **maint** und **par** gelangen Sie in das entsprechende Menü.

Mit den **Cursortasten** ◀ und ▶ wählen Sie eine Eingabeposition im Display aus.

Mit den **Rolltasten** ▲ und ▼ wählen Sie eine Displayzeile aus. Außerdem können Sie bei numerischen Eingaben die Ziffern 0 ... 9 durchrollen und das Vorzeichen wechseln. Die Tasten besitzen eine Repeat-Funktion.

Alle Eingaben werden durch Druck auf die **enter** -Taste übernommen.

spe Cal-Timer-Alarm	₿ 12.10pH
Cal-Timer-Alarm Warnung Limit Hi Ausfall Limit Hi	Ein Hus 0024 h 0048 h
« zurück [par]	

Mit der **meas** -Taste gelangen Sie immer in den Meßmodus zurück, ganz gleich, in welchem Menü oder Untermenü Sie sich befinden.

Ein Menü wird durch Drücken der entsprechenden Menütaste **cal**, **diag**, **maint** oder **par** aktiviert.

Links oben werden das Menü ("spe" für Spezialistenebene) und die Menüebene (z. B. "Cal-Timer-Alarm") angezeigt, in der Sie sich gerade befinden.

Rechts oben wird der Meßwert angezeigt (wie auf der großen Meßwertanzeige). Wenn Warnungs- oder Ausfallmeldungen aktiv sind, erscheinen " $_{W}$ " und/oder "^A" vor dem Meßwert.

Sie können das Menü verlassen und in den Meßmodus zurückkehren,

- indem sie die Menütaste erneut drücken, evtl. mehrfach, oder
- durch Druck auf meas (Messen).

Die Menüstruktur

Abb. 2–1 Menüstruktur

spe	Spezialistenebene 6.94pH	
i	Marker-Parametrierung: [+] Markerparametrierung [†][+] Einstellung ändern [enter] Einstellung setzen	
≪ z	urück [par] 🛛 » weiter [enter]	

Bedienungshinweise erhalten Sie durch Informationstext, gekennzeichnet durch 1.

So wählen Sie einen Menüpunkt aus

Mit den Rolltasten ▲ und ▼ wählen Sie eine Displayzeile aus. Die ausgewählte Zeile wird invertiert (dunkel unterlegt) dargestellt.

Die Rolltasten verfügen über eine Repeat-Funktion:

Bei längerem Drücken laufen die Zeilen durch.

Die Pfeile "↑" und "↓" zeigen an ,daß noch mehr Menüzeilen durch Rollen erreichbar sind.

Die Symbole \ll und \gg am Anfang der Displayzeile zeigen an, daß die Menüebene mit den Cursortasten ◀ und ► gewechselt werden kann:

- mit **>** oder **enter** gelangen Sie zur \gg nächsten (tieferen) Menüebene,
- mit < oder der jeweiligen Menütaste ge- \ll langen Sie zurück zur vorigen (übergeordneten) Menüebene.

So ändern Sie eine Einstellung

Mit **d** bzw. **b** können Sie den Parameter ändern, die angewählte Position wird invertiert dargestellt und blinkt.

spe Cal-Timer-Alarm	12.10 _P H
Cal-Timer-Hlarm Warnung Limit Hi Ausfall Limit Hi « zurück [par]	Ein Hus 0024 h 0048 h

12.10pH

So übernehmen Sie den geänderten Wert

So bleibt die alte Einstellung erhalten

Das Blinken einer Eingabeposition bedeutet: Die bisherige Einstellung wurde verändert, aber noch nicht übernommen.

Mit enter wird der neue Parameter, z. B."Ein" übernommen, das Blinken hört auf.

Mit der Menütaste (z. B. par) an Stelle von enter bleibt die alte Einstellung unverändert erhalten ("Undo"-Funktion).

Bedienung	2–5

spe	Spezialistenebene	7.00pH
↑ • • • • •	 » Nominell: Npkt/Sth » rH-Wert » Deltafunktion » Stromeingang » Ausgangsstrom 1 » Husgangsstrom 2 	

So geben Sie Zahlenwerte ein

Mit ► gelangen Sie auf die Zahl, die Sie eingeben wollen. Der blinkende Cursor steht auf der ersten Ziffer.

Mit den **Cursortasten** ◀ und ▶ wählen Sie eine Eingabeposition im Display aus.

Mit den **Rolltasten** ▲ und ▼ können Sie die Ziffern 0 ... 9 durchrollen und das Vorzeichen wechseln.

So ändern Sie ein Vorzeichen

Mit \blacktriangle oder \blacktriangledown wird zwischen "+" und "-" umgeschaltet.

Im *Beispiel* soll der Cal-Timer-Alarm "Warnung Limit Hi" von 24 auf 30 h verändert werden.

Durch dreimaliges Drücken von ► steht der blinkende Cursor auf der Ziffer "2".

Einmal 🔺 drücken ("3"),

einmal ► drücken, der blinkende Cursor steht auf der Ziffer "4", viermal ▼ drücken ("0").

Mit der Menütaste (**par**) bleibt die alte Einstellung unverändert erhalten.

Mit **enter** wird der neue Zahlenwert übernommen.

spe Cal-Timer-Alarm		12.10pH
Cal-Timer-Alarm Narnung Limit Hi Ausfall Limit Hi	Ein 0024 0048	Aus h h
« zurück [par]		

So bleibt die alte Einstellung erhalten

spe Cal-Timer-Alarm	12.10pH
Cal-Timer-Alarm Warnung Limit Hi Ausfall Limit Hi « zurück [par]	Sin Aus 0030 h 0048 h

3 Die Kalibrierung

Warum muß kalibriert werden?

Jede **pH-Elektrode** hat einen individuellen **Nullpunkt** und eine individuelle **Steilheit**. Beide Werte ändern sich durch Alterung und Verschleiß. Um eine ausreichende Meßgenauigkeit bei der pH-Messung zu erzielen, muß deshalb eine regelmäßige Anpassung an die Elektrodendaten (Kalibrierung) erfolgen. Die von der Elektrode gelieferte Spannung wird vom pH Transmitter 2500 um den Nullpunkt und die Elektrodensteilheit korrigiert und als pH-Wert angezeigt.

Bei der Kalibrierung wird die Elektrode in (ein oder zwei) **Pufferlösungen** mit genau bekanntem pH-Wert getaucht. Der pH Transmitter 2500 mißt die Spannungen der Elektrode sowie die Pufferlösungstemperatur und errechnet daraus selbsttätig den Nullpunkt und die Elektrodensteilheit.

Ohne Kalibrierung liefert jedes pH-Meßgerät einen ungenauen oder falschen Meßwert! Besonders nach dem Austausch der Elektrode *muß* eine Kalibrierung durchgeführt werden!

Die Überwachungsfunktionen für die Kalibrierung

Der pH Transmitter 2500 verfügt über umfangreiche Funktionen, die die ordnungsgemäße Durchführung der Kalibrierungen und den Zustand der Elektrode überwachen. Damit ist eine Dokumentation zur Qualitätssicherung gemäß DIN ISO 9000 und nach **GLP/GMP** möglich.

- Durch die Messung von Glas- und Bezugselektrodenimpedanz überwacht Sensocheck® den Elektrodenzustand. Siehe S. 9–14.
- Das Kalibrier-Protokoll (GLP/GMP) stellt alle relevanten Meßwerte der letzten Kalibrierung zur Verfügung. Siehe S. 4–3.
- Die Elektrodenstatistik zeigt das Verhalten der Elektroden-Parameter bei den drei letzten Kalibrierungen, bezogen auf die Erstkalibrierung. Siehe S. 4–4.
- Das Logbuch zeigt mit Datum und Uhrzeit an, wenn innerhalb der letzten 200 Ereignisse eine Kalibrierung durchgeführt wurde. Siehe S. 4–5.
- Für Nullpunkt, Elektrodensteilheit, Glas- und Bezugselektrodenimpedanz können Sie Grenzen für je eine Warnungs- und Ausfallmeldung parametrieren (s. S. 9–22). Damit können Sie Zustand und Alterung der Elektrode automatisch anhand der Kalibrierdaten überwachen.

So gelangen	Sie	in	das	Kalibrier-
menü				

Mit **cal** wird das Kalibriermenü aufgerufen.

Mit **meas** wird das Kalibriermenü verlassen.

Wenn eine Paßzahleingabe gefordert wird, müssen Sie die **Kalibrier-Paßzahl** kennen:

Geben Sie die Kalibrier-Paßzahl mit den Rolltasten ▲ ▼ und den Cursortasten ◄ ► ein (s. S. 2–6) und bestätigen Sie die Eingabe mit **enter**.

Nach Eingabe der Paßzahl ist der Strom auf den letzten Wert eingefroren.

In der Spezialistenebene kann die Kalibrier-Paßzahl parametriert oder abgeschaltet werden (s. S. 8–4).

Wenn Sie das Kalibriermenü aktivieren (durch Druck auf **cal** bzw. nach Eingabe der Kalibrier-Paßzahl), ist der NAMUR-Kontakt "Funktionskontrolle" aktiv, bis Sie das Menü wieder verlassen. Wenn Sie einen Kalibrierablauf (Calimatic[®], Manuell oder Dateneingabe) wählen, ist der Kontakt "Sonde" für die Dauer des Kalibrierablaufs aktiv (nur bei Option 352 (Sondenspülung), s. S. 9–49). Die Sondenspülung ist innerhalb **cal** verriegelt, es wird kein Spülzyklus gestartet. *Die Kalibrierung ist gesperrt, solange ein timergesteuerter Spülzyklus läuft.*

Wenn Sie *vor* der Kalibrierung mit dem 1. Puffer **meas** drücken, werden Sie nochmals gefragt, ob Sie die Kalibrierung abbrechen wollen. Wenn ja, gehen Sie mit **4** auf "Ja" und bestätigen mit **enter**.

Die alten Kalibrierdaten bleiben gültig.

Wenn Sie *nach* der Kalibrierung mit dem 1. Puffer **meas** drücken, werden Sie nochmals gefragt, ob Sie die Kalibrierung abbrechen wollen. Wenn ja, gehen Sie mit **4** auf "Ja" und bestätigen mit **enter**.

Der neue Nullpunkt ist gültig, aber der alte Steilheitswert bleibt erhalten.

cal Kalibri	erung	7.02	PН
» Calimatic-	automatische	Kalibrie	rung
» Nanuell- V » Dateneinga	Paβzahl:	1147	en
» Probenkall	Messen [cal]	1	•
W ZUI UCK ZUIII	nessen toar.	-	

cal

Ē

Calimatic

Bei Meßkettenwechsel Erstkali-

Funktion abbrechen; ist die Anlage meßber Ja **Rein**

6.99pH

eit ?

en!

Kalibrierung 3–3

Calimatic

cal

İ

cal Kalibrierung	7.01pH
» Calimatic- automatische » Manuell- Vorgabe von Puf » Dateneingabe- Meßketten » Probenkalibrierung	<mark>Kalibrierung</mark> ferwerten vorgemessen
« zurück zum Messen [cal]	

Meßkette in 1. Pufferlösung tauchen! Ausgangsstrom,Regler eingefroren Grenzwerte inaktiv Kontakt Sonde aktiv! Puffersatz: Ingold Kalibrierung starten zurück

ngold Starten zurück

So wählen Sie einen Kalibrierablauf

Es stehen vier verschiedene Kalibrierabläufe zur Verfügung:

- Automatische Puffererkennung mit Calimatic[®]
- Manuelle Vorgabe von Pufferwerten •
- Dateneingabe von vorgemessenen Elektroden •
- Kalibrierung durch Probennahme •

6.99pH

Der zuletzt durchgeführte Kalibrierablauf wird automatisch vorgeschlagen, wenn Sie cal drücken.

Wenn Sie nicht kalibrieren wollen, drücken Sie cal oder gehen Sie mit ▼ auf "zurück zum Messen" und bestätigen mit enter .

Um eine Kalibrierung zu starten: Wählen Sie mit 🔻 ▲ einen Kalibrierablauf und bestätigen Sie mit enter .

Ein Informationsdisplay informiert Sie über den Zustand des pH Transmitters 2500 während der Kalibrierung und gibt Ihnen Hinweise zur Durchführung.

cal Calimatic	7.01pH
• Bei Meßkettenwechsel Ers 1 brierung für Statistik o gemessene Cal-Temperatur Erstkalibrierung Ja	tkali- Jurchführen! +022.3 °C
Kalibrierung weiter zu	ırück

Was bedeutet "Erstkalibrierung"?

Bei einer Erstkalibrierung werden die Elektrodendaten als Referenzwerte für die **Elektrodenstatistik** abgespeichert.

Im Diagnosemenü "Elektrodenstatistik" werden für die drei letzten Kalibrierungen die Differenzen von Nullpunkt, Steilheit, Glas- und Bezugselektrodenimpedanz angezeigt, und zwar bezogen auf die Referenzwerte der Erstkalibrierung. Damit kann das Driftverhalten und die Alterung der Elektrode beurteilt werden.

Wann müssen Sie eine Erstkalibrierung durchführen?

Immer wenn die Elektrode ausgetauscht wurde, muß eine Erstkalibrierung durchgeführt werden!

Wie führen Sie eine Erstkalibrierung durch?

Nachdem Sie einen Kalibrierablauf gewählt haben, gehen Sie mit ▲ und ◀ auf "Erstkalibrierung Ja" und bestätigen mit **enter**.

Wenn Sie *keine Erstkalibrierung* durchführen wollen, können Sie mit **enter** zum nächsten Schritt des Kalibrierablaufs gehen.

Die Temperaturkompensation während der Kalibrierung

Warum Temperaturkompensation?

Die Erfassung der Temperatur der Pufferlösung ist aus zwei Gründen wichtig:

- Die Steilheit der pH-Elektrode ist temperaturabhängig. Daher muß die gemessene Spannung um den Temperatureinfluß korrigiert werden (Nernst-Gleichung).
- Der pH-Wert der Pufferlösung ist temperaturabhängig. Bei der Kalibrierung muß daher die Temperatur der Pufferlösung bekannt sein, um den tatsächlichen pH-Wert aus der Puffertabelle entnehmen zu können.

In der Parametrierung legen Sie fest, ob die Cal-Temperatur automatisch gemessen wird oder manuell eingegeben werden muß (s. S. 9–9).

Automatische Temperaturkompensation

Bei der automatischen Erfassung der Cal-Temperatur mißt der pH Transmitter 2500 die Temperatur der Pufferlösung mit einem Pt 100/Pt 1000-Temperaturfühler.

Wenn Sie mit automatischer Temperaturkompensation bei der Kalibrierung arbeiten, *muß* ein Temperaturfühler in der Pufferlösung sein, der mit dem Pt 100/Pt 1000-Eingang des pH Transmitters 2500 verbunden ist!

Ansonsten muß mit manueller Eingabe der Kalibriertemperatur gearbeitet werden.

Wenn "Cal-Temperatur automatisch" parametriert ist, erscheint "gemessene Cal-Temperatur" im Menü.

Wenn "Cal-Temperatur manuell" parametriert ist, erscheint "Eingabe Cal-Temperatur" im Menü.

Manuelle Temperaturkompensation

Sie müssen die Temperatur der Pufferlösung manuell eingeben:

Messen Sie die Temperatur der Pufferlösung, z. B. mit einem Glasthermometer.

Gehen Sie im Kalibriermenü mit ▲ und ► zur Eingabe der Kalibriertemperatur.

Geben Sie die gemessene Temperatur mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingabe mit **enter**

cal Calimatic	6.95pH
• Bei Meßkettenwechsel Ers • brierung für Statistik o • Eingabe Cal-Temperatur +0 Erstkalibrierung Ja	tkali- lurchführen! 125.0 °C Nein
Kalibrierung weiter zu	ırück

Einpunkt- oder Zweipunkt-Kalibrierung?

Bei den Kalibrierabläufen

- Automatische Kalibrierung mit Calimatic®
- Kalibrierung mit manueller Eingabe von Pufferwerten

können Sie zwischen Einpunktkalibrierung und Zweipunktkalibrierung wählen.

Zweipunktkalibrierung

Die Elektrode wird mit zwei Pufferlösungen kalibriert.

Damit können der Nullpunkt und die Steilheit der Elektrode ermittelt und vom pH Transmitter 2500 in den Meßwert eingerechnet werden.

Eine Zweipunktkalibrierung ist erforderlich, wenn

- der pH-Meßwert stark schwankt,
- der pH-Meßwert weit vom Elektroden-Nullpunkt entfernt liegt,
- der pH-Wert sehr genau gemessen werden soll oder
- die Elektrode starkem Verschleiß ausgesetzt ist.

Einpunktkalibrierung

Die Elektrode wird nur mit einer Pufferlösung kalibriert.

Damit kann *nur der Nullpunkt* der Elektrode ermittelt und vom pH Transmitter 2500 eingerechnet werden.

Eine Einpunktkalibrierung ist sinnvoll und zulässig, wenn die Meßwerte in der Nähe des Elektroden-Nullpunktes liegen, so daß die Änderung der Elektrodensteilheit keine große Rolle spielt.

Automatische Kalibrierung mit Calimatic[®]

Bei der automatischen Kalibrierung mit Calimatic[®] wird die Elektrode in eine oder zwei Pufferlösungen getaucht.

Der pH Transmitter 2500 erkennt anhand der Elektrodenspannung und der gemessenen Temperatur *automatisch* den Puffernennwert . Die Reihenfolge der Pufferlösungen ist beliebig, sie müssen aber zu dem in der Parametrierung (s. Kap. 9, S. 9–7) festgelegten **Puffersatz** gehören. Die Temperaturabhängigkeit des Pufferwertes wird von der Calimatic[®] berücksichtigt.

Alle Kalibrierdaten sind umgerechnet auf eine Bezugstemperatur von 25 °C.

Der Ausgangsstrom (1 und 2) und die Reglerstellgröße sind während der Kalibrierung auf dem letzten Wert eingefroren, die Grenzwertkontakte sind inaktiv, der Kontakt "Sonde" ist aktiv (nur bei Option 352).

Verwendung von Elektroden mit von pH 7 abweichendem Nullpunkt

Die standardmäßig integrierte Option 356 ermöglicht die Parametrierung des nominellen Nullpunktes und der nominellen Steilheit der Elektrode (s. S. 9–7).

Die automatische Kalibrierung mit der Calimatic[®] ist dann auch für Elektroden mit einem Nullpunkt bei z. B. pH = 4,6 möglich.

Die Kalibrierung ist gültig, wenn der Elektrodennullpunkt um $< \pm 1$ pH und die Steilheit um $< \pm 5,5$ mV/pH vom nominellen Wert abweichen.

Das müssen Sie bei der Kalibrierung beachten

Verwenden Sie nur neue, unverdünnte Pufferlösungen!

Die Pufferlösungen müssen zu dem parametrierten Puffersatz gehören (s. Kap. 9, S. 9–7)!

Wenn die Bezugselektroden-Impedanz gemessen wird (Brücke an Klemmen 3 und 4 entfernt), muß die Pufferlösung während der Kalibrierung leitend mit Klemme 4 verbunden werden.

Tauchen Sie dazu eine Hilfselektrode in die Pufferlösung und verbinden Sie die Hilfselektrode mit Klemme 4.

So führen Sie eine automatische Kalibrierung durch

Elektrode ausbauen Untermenü "Calimatic – automatische Kalibrierung" wählen **enter** drücken Elektrode in 1. Pufferlösung tauchen **enter** drücken

cal	Calimatic	7.00pH
• Ka 1 Nu	alibrierung mit 1. ullpunkt-Korrektur	Puffer läuft
•	1eßkettenspannung (alibriertemperatur	+0000 mU +025.0 °C
ō Ē	Puffernennwert Einstellzeit	+07.00 pH 0004 s

7.01pH

4.00pH

beenden wiederholen

cal	Calimatic	7.01pH
• Me I Fü Wä	ßkette in 2. Pufferlösu r Einpunktkalibrierung hlen: 'Kalibrierung abb	ung tauchen! prechen'

Kalibrierung beenden wiederholen

E1-Sth

Elektrode gut abspülen! Elektrode in 2. Pufferlösung tauchen **enter** drücken

cal

cal

Calimatic

mpedanz Glas mpedanz Bezug

Elektrode gut abspülen

und wieder einbauen

Calimatic

∎Warn Hi

Kalibrierung

Nullpunkt Steilheit

enter drücken

Kalibrierung starten abbrechen

Tauchen Sie die Elektrode in die 1. Pufferlösung und bestätigen Sie "Kalibrierung starten" mit **en-ter**.

Wenn der pH Transmitter 2500 die Pufferlösung erkannt hat, wird der Puffernennwert angezeigt. Dann kann die Wartezeit bis zur Stabilisierung der Meßspannung mit **cal** verkürzt werden, *bei reduzierter Genauigkeit der Kalibrierwerte!* Die **Einstellzeit** gibt an, wie lange die Elektrode braucht, bis die Meßspannung stabil ist.

Falls die Elektrodenspannung oder die gemessene Temperatur stark schwanken, wird der Kalibriervorgang nach 2 min. abgebrochen.

Für eine *Zweipunktkalibrierung* tauchen Sie die Elektrode in die 2. Pufferlösung und bestätigen Sie mit **enter**.

Die Kalibrierung wird mit dem zweiten Puffer durchgeführt.

Für eine *Einpunktkalibrierung* gehen Sie mit auf "abbrechen" und bestätigen Sie mit **enter**.

Wenn die Kalibrierung erfolgreich beendet wurde, werden die Elektrodendaten angezeigt. Mit **enter** oder **cal** gelangen Sie zurück in das Kalibriermenü.

Mit **meas** gelangen Sie in den Meßmodus.

Wenn Sie die Kalibrierung wiederholen wollen, gehen Sie mit ▶ auf "wiederholen" und bestätigen Sie mit **enter**.

Wenn eine Fehlermeldung erscheint, müssen Sie die Kalibrierung wiederholen.

Kalibrierung 3–9

Kalibrierung mit manueller Eingabe von Pufferwerten

Bei der Kalibrierung mit manueller Eingabe der Pufferwerte wird die Elektrode in eine oder zwei Pufferlösungen getaucht.

Der pH Transmitter 2500 zeigt die gemessene Temperatur an.

Dann sind die *temperaturrichtigen Pufferwerte* manuell einzugeben. Lesen Sie dazu von der Puffertabelle (z. B. auf der Flasche) den Pufferwert ab, der zur angezeigten Temperatur gehört. Zwischenwerte der Temperatur müssen interpoliert werden.

Alle Kalibrierdaten sind umgerechnet auf eine Bezugstemperatur von 25 °C.

Der Ausgangsstrom (1 und 2) und die Reglerstellgröße sind während der Kalibrierung auf dem letzten Wert eingefroren, die Grenzwertkontakte sind inaktiv, der Kontakt "Sonde" ist aktiv (nur bei Option 352).

Das müssen Sie bei der Kalibrierung beachten

Verwenden Sie nur neue, unverdünnte Pufferlösungen!

Wenn die Bezugselektroden-Impedanz gemessen wird (Brücke an Klemmen 3 und 4 entfernt), muß die Pufferlösung während der Kalibrierung leitend mit Klemme 4 verbunden werden.

Tauchen Sie dazu eine Hilfselektrode in die Pufferlösung und verbinden Sie die Hilfselektrode mit Klemme 4.
So führen Sie eine manuelle Kalibrierung durch

Elektrode ausbauen Untermenü "Manuell– Vorgabe von Pufferwerten" wählen **enter** drücken

cal Manuelle Vorgabe	7.00pH
 Bei Meßkettenwechsel Ers 	stkali-
gemessene Cal-Temperatur	urchführen: ≻ +022.1 °C
Erstkalibrierung Ja	Nein
Kalibrierung weiter zu	Irück

1. Pufferwert eingeben

Mit **cal** und **enter** gelangen Sie in das Untermenü "Manuelle Vorgabe".

Die gemessene Cal-Temperatur wird angezeigt oder die Cal-Temperatur kann manuell eingegeben werden.

Mit ▲ und ▶ gelangen Sie zur Eingabe des 1. Pufferwertes.

Geben Sie den 1. Pufferwert mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingabe mit **enter**.

Sie müssen den Pufferwert temperaturrichtig eingeben. Das heißt, daß aus einer Tabelle der Pufferwert abgelesen werden muß, der zu der ange-

Mit enter gelangen Sie weiter zum Informations-

zeigten Cal-Temperatur gehört.

text.

Elektrode in 1. Pufferlösung tauchen enter drücken

cal Manuelle Vorgabe	7.01pH
 Kalibrierung mit 1. Puffe Nullpunkt-Korrektur Meßkettenspannung +00 Kalibriertemperatur +02 Puffernennwert +07 Einstellzeit 000 	er läuft 900 mV 25.0 °C 7.00 pH 901 s
cal Manuelle Vorgabe	7.01pH
 Μeβkette in 2. Pufferlösu Für Einpunktkalibrierung wählen: 'Kalibrierung abk Zweite Pufferlösung +04. 	ng tauchen! prechen' 00 pH

Tauchen Sie die Elektrode in die 1. Pufferlösung und bestätigen Sie "Kalibrierung starten" mit **en-**ter.

Dann kann die Wartezeit bis zur Stabilisierung der Meßspannung mit **cal** verkürzt werden, *bei reduzierter Genauigkeit der Kalibrierwerte!* Die **Einstellzeit** gibt an, wie lange die Elektrode braucht, bis die Meßspannung stabil ist.

Falls die Elektrodenspannung oder die gemessene Temperatur stark schwanken, wird der Kalibriervorgang nach 2 min. abgebrochen.

Elektrode gut abspülen! Elektrode in 2. Pufferlösung tauchen	Für eine <i>Zweipunktkalibrierung</i> tauchen Sie die Elektrode in die 2. Pufferlösung.
	Für eine <i>Einpunktkalibrierung</i> gehen Sie mit auf "abbrechen" und bestätigen Sie mit enter .
2. Pufferwert eingeben	 Mit ▲ und ▶ gelangen Sie zur Eingabe des 2. Pufferwertes. Geben Sie den 2. Pufferwert mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestäti- gen Sie die Eingabe mit enter.
2. Kalibrierschritt mit enter starten	Die Kalibrierung wird mit dem zweiten Puffer durchgeführt.
calManuelle Vorgabe4.00pHNullpunkt+07.16 pH• Steilheit055.8 mV/pHI Impedanz Glas0090 MΩImpedanz Bezug004.2 kΩKalibrierungbeenden	Wenn die Kalibrierung erfolgreich beendet wurde, werden die Elektrodendaten angezeigt. Mit enter oder cal gelangen Sie zurück in das Kalibriermenü. Mit meas gelangen Sie in den Meßmodus.
enter drücken Elektrode gut abspülen und wieder einbauen	Wenn Sie die Kalibrierung wiederholen wollen, gehen Sie mit ▶ auf "wiederholen" und bestäti- gen Sie mit enter .

cal	Manuelle	Vorgabe	\$ 4.02pH
i	∎Warn Lo	El-Sth	
Ka	librierung	beenden	wiederholen

Wenn eine Fehlermeldung erscheint, müssen Sie

die Kalibrierung wiederholen.

Kalibrierung durch Dateneingabe vorgemessener Elektroden

Sie können direkt die Werte für den Nullpunkt, die Steilheit und die Isothermenschnittpunktspannung für eine Elektrode eingeben. Die Werte müssen bekannt sein, also z. B. vorher im Labor ermittelt werden.

Wenn Sie eine Isothermenschnittpunktspannung U_{is} eingeben, bleibt dieser Wert auch für die Kalibrierabläufe Calimatic[®], Manuelle Eingabe und Probenkalibrierung gespeichert.

Zur Erklärung der Isothermenschnittpunktspannung siehe Seite 17–3.

Der Ausgangsstrom (1 und 2) und die Reglerstellgröße sind während der Kalibrierung eingefroren, die Grenzwertkontakte sind inaktiv, der Kontakt "Sonde" ist aktiv (nur bei Option 352).

So geben Sie vorgemessene Daten ein

Mit **cal** und **enter** gelangen Sie in das Menü "Dateneingabe".

Geben Sie die vorgemessenen Werte mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingaben mit **enter**.

Kalibrierung durch Probennahme

Wenn ein Ausbau der Elektrode z. B. aus Sterilitätsgründen nicht möglich ist (z. B. bei biotechnischen Prozessen), kann der Nullpunkt der Elektrode durch "Probennahme" kalibriert werden.

Dazu wird der aktuelle Meßwert des Prozesses vom pH Transmitter 2500 gespeichert. Direkt danach entnehmen Sie dem Prozeß eine Probe. Der pH-Wert der Probe wird im Labor ausgemessen.

Der Laborwert wird in den pH Transmitter 2500 eingeben. Aus der Differenz zwischen Meßwert und Laborwert errechnet der pH Transmitter 2500 den Nullpunkt der Elektrode (mit dieser Methode ist nur eine Einpunktkalibrierung möglich).

So führen Sie eine Kalibrierung mit Probennahme durch

Mit **cal** und **enter** gelangen Sie in das Untermenü "cal Probenkalibrierung". Die gemessene Probentemperatur wird angezeigt.

Der aktuelle pH-Wert des Meßgutes wird angezeigt und gespeichert.

Mit **enter** oder **cal** gelangen Sie zurück in das Kalibriermenü.

Mit meas gelangen Sie in den Meßmodus.

Im Meßmodus weist die Anzeige "Probe" rechts oben im Display daraufhin, daß ein Probenwert für die Kalibrierung gespeichert wurde. Das Gerät erwartet die Eingabe des Laborwertes, mißt aber mit dem alten Nullpunkt weiter.

(Wenn das Gerät bei Schnittstellenbetrieb im Remotezustand ist, wird die Anzeige "Probe" durch "Remote" überdeckt.)

Entnehmen Sie dem Prozeß eine Probe und messen Sie den pH-Wert der Probe, z. B. im Labor oder mit einem Feldgerät direkt vor Ort (z. B. pH-Meter 1120).

7.01pH

+022.3 °C

Beachten Sie, daß der pH-Wert der Probe temperaturabhängig ist. Die Messung im Labor sollte daher möglichst bei der im Display angezeigten Probentemperatur erfolgen.

Transportieren Sie die Probe möglichst in einem Isoliergefäß (Dewar).

Der pH-Wert der Probe kann auch durch Entweichen flüchtiger Substanzen verfälscht werden.

∎ gespeicherte Probe	төг . өг рн
« zurück [cal]	

Probenkalibrieruno

Probentemperatur

Probe entnehmen

cal Probenkalibrierung	6.84pH
• Probentemperatur 1 gespeicherte Probe	+022.4 °C +07.01 pH
Laborwert	+06.84 pH
« zurück [cal]	

Wenn Sie den pH-Wert der Probe ermittelt haben, gelangen Sie mit **cal** und **enter** in das Untermenü "Probenkalibrierung". Die gemessene Probentemperatur und der gespeicherte pH-Wert werden angezeigt.

Geben Sie den gemessenen pH-Wert der Probe ("Laborwert") mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingabe mit **enter**.

Mit **enter** oder **cal** gelangen Sie zurück in das Kalibriermenü.

Mit meas gelangen Sie in den Meßmodus.

Kalibrierung mit Wechselarmatur InClean

Wenn das Gerät mit Option 404 ausgerüstet ist, können Sie eine automatische Wechselarmatur InClean steuern (s. S. 9–40).

Die Kalibrierung der Elektrode erfolgt im ausgebauten Zustand in einem der vier verschiedenen Kalibrierabläufe.

Der Ablauf für eine Kalibrierung wird im folgenden anhand einer automatischen Kalibrierung mit Calimatic[®] beschrieben.

Aus technischen Gründen wird die Wechselarmatur InClean im Menütext des pH Transmitters 2500

Spülprogramm parametriert

Fernsonde aktiv

cal Kalibrierung	6.95pH
» Calimatic- automatische » Manuell- Vorgabe von Puf » Dateneingabe- Meßketten » Probenkalibrierung	(alibrierun g ferwerten vorgemessen
« zurück zum Messen [cal]	

nur "Fernsonde" genannt.

Nach Aufruf der Kalibrierung mit der Taste **cal** und ggf. Eingabe der Kalibrier-Paßzahl wählen Sie den gewünschten Kalibrierablauf.

Fernsonde

Fer	nsonde	aktiv		6.9	95pH
i	Kalib Sonde	`ierung ausfahren	001	6 s	
29%	0	50			100
20%					

Die nachfolgende Beschreibung gilt für den Kalibrierablauf Calimatic[®]. Bei der manuellen Kalibrierung und der Dateneingabe ist der Ablauf entsprechend. Der Ablauf der Probenkalibrierung wird gesondert beschrieben (s. S. 3–17).

Nach Aufruf der Calimatic[®] führt die Wechselarmatur zunächst das parametrierte Spülprogramm bis zur Warteposition aus. Die einzelnen Schritte werden auf dem Display in ihrem Zeitverlauf dargestellt.

Hat das Spülprogramm die Warteposition erreicht, werden Sie aufgefordert, den Betriebsartschalter in Stellung "Service" zu schalten.

Für Kalibrierung: Betriebsartschalter in Stellung "Service"

Erst wenn der Betriebsartschalter in Stellung "Service" steht, erscheint auf dem Display die Rückmeldung. Jetzt können Sie die Elektrode gefahrlos ausbauen.

Bauen Sie niemals die Elektrode aus, ohne vorher den Betriebsartschalter auf "Service" zu schalten!

cal	Calimatic	Fernsonde
ļ	Meβzelle ein artschalter	bauen, Betriebs- in Stellung "Run"
_		

Nach Beendigung der Kalibrierung und Wiedereinbau der Elektrode fordert Sie das Gerät auf, den Betriebsartschalter in Stellung "Run" zu bringen. Kontrollieren Sie vorher nochmals, ob die Elektrode ordnungsgemäß eingebaut und die Wechselarmatur betriebsbereit ist (Druckluft, Wasser, Reinigungsmittel, ...).

Fernsonde	aktiv	6.97pH	ł
• Kalibr 1 Sonde	rierung einfahren Ø	0015 s	
25%	50	10	0
20/0			

Fahren Sie die Wechselarmatur niemals in Stellung "Messen", wenn die Elektrode nicht eingebaut ist, da sonst Prozeßmedium auslaufen kann!

Schalten Sie dann den Betriebsartschalter in Stellung "Run". Die Wechselarmatur führt daraufhin die restlichen Programmschritte aus und fährt in Stellung "Messen".

Meßprogramm parametriert

Feri	nsonde aktiv	6.95pH
i	Meβprogramm Sonde in Wartepos	sition
	letzter Meßwert	+06.95 pH

cal Kalibrierung 6.95pH <u>Calimatic automatische Kalibrierung</u> Manuell- Vorgabe von Pufferwerten Dateneingabe- Meßketten vorgemessen Probenkalibrierung « zurück zum Messen [cal]

Die Wechselarmatur befindet sich bereits in der Warteposition. Die Ausgangsströme sind auf dem letzten Wert eingefroren, die Grenzwertkontakte sind inaktiv, der NAMUR-Kontakt "Funktionskontrolle" ist aktiv.

Nach Aufruf der Kalibrierung mit der Taste **cal** und ggf. Eingabe der Kalibrier-Paßzahl wählen Sie den gewünschten Kalibrierablauf.

Die nachfolgende Beschreibung gilt für den Kalibrierablauf Calimatic[®]. Bei der manuellen Kalibrierung und der Dateneingabe ist der Ablauf entsprechend.

Für die Probenkalibrierung ist der Ablauf gesondert beschrieben (s. S. 3–17).

Nach Aufruf der Calimatic[®] werden Sie aufgefordert, den Betriebsartschalter in Stellung "Service" zu schalten.

• Bei Meßkettenwechsel Erstkali-• Bei Meßkettenwechsel Erstkali-• brierung für Statistik durchführen! Eingabe Cal-Temperatur +050.0 °C Erstkalibrierung Ja Nein Kalibrierung weiter zurück

Erst wenn der Betriebsartschalter in Stellung "Service" steht, erscheint auf dem Display die Rückmeldung. Jetzt können Sie die Elektrode gefahrlos ausbauen.

6.95pH

+06.95 pH

Bauen Sie niemals die Elektrode aus, ohne vorher den Betriebsartschalter auf "Service" zu schalten!

Nach Beendigung der Kalibrierung und Wiedereinbau der Elektrode fordert Sie das Gerät auf, den Betriebsartschalter in Stellung "Run" zu bringen. Kontrollieren Sie vorher nochmals, ob die Elektrode ordnungsgemäß eingebaut und die Wechselarmatur betriebsbereit ist (Druckluft, Wasser, Reinigungsmittel, ...).

Schalten Sie dann den Betriebsartschalter in Stellung "Run". Das Gerät zeigt an, daß sich die Wechselarmatur weiterhin in der Warteposition befindet.

Probenkalibrierung mit Wechselarmatur InClean

Die genaue Beschreibung der Probenkalibrierung finden Sie auf S. 3–13.

Spülprogramm parametriert

cal

Calimatic

Fernsonde aktiv

Meßprogramm Sonde in Warteposition

letzter Meßwert

cal Kalibrierung	Fernsonde
» Calimatic- automat » Manuell- Vorgabe v » Dateneingabe- Meßk » Probenkalibrierung	ische Kalibrierung on Pufferwerten etten vorgemessen
« zurück zum Messen	[cal]

Meßzelle einbauen, Betriebsartschalter in Stellung "Run"

cal	Probenkalibrierung		6.	.98pH
i	Probentemperatur gespeicherte Probe	+0 +0	925.7 96.99	°C PH
~	zurück [cal]			

cal Probenkalibrierung	6.99pH
• Probentemperatur l gespeicherte Probe	+025.7 °C +06.99 pH
Laborwert	+07.14 pH
« zurück [cal]	

Nach Aufruf der Kalibrierung mit der Taste **cal** und ggf. Eingabe der Kalibrier-Paßzahl wählen Sie den Kalibrierablauf Probenkalibrierung.

Der pH Transmitter 2500 speichert den aktuellen pH-Wert des Meßgutes. Entnehmen Sie nun eine Probe und gehen Sie zurück in den Meßmodus. Dabei werden Sie gefragt, ob Sie die Funktion verlassen wollen. Gehen Sie mit ▲ auf "Ja", und bestätigen Sie mit **enter**.

Im Meßmodus weist die Anzeige "Probe" rechts oben im Display darauf hin, daß ein Probenwert für die Kalibrierung gespeichert wurde.

Im Labor ermitteln Sie den pH-Wert der Probe. Anschließend rufen Sie erneut die Probenkalibrierung auf und geben den Laborwert ein. Der pH Transmitter 2500 berechnet daraufhin den neuen Elektrodennullpunkt.

Beenden Sie die Kalibrierung und gehen Sie zurück in den Meßmodus.

Bei der Probenkalibrierung wird nur ein neuer Elektrodennullpunkt ermittelt, die alte Elektrodensteilheit bleibt erhalten.

Meßprogramm parametriert

cal Kalibrierung	6.99pH
» Calimatic- automatis » Manuell- Vorgabe vor » Dateneingabe- Meßket » Probenkalibrierung	sche Kalibrierung n Pufferwerten Sten vorgemessen
« zurück zum Messen [[cal]

Fernsonde aktiv		7	.14pH
• Kalibrierung 1 Spülen		0005 s	
50%	50		100
00%			

Bei parametriertem Meßprogramm führt Uniclean zunächst einen kompletten Meßzyklus durch, um den aktuellen pH-Wert des Meßgutes zu ermitteln.

Nach Aufruf der Kalibrierung mit der Taste **cal** und ggf. Eingabe der Kalibrier-Paßzahl wählen Sie den Kalibrierablauf Probenkalibrierung.

Die Wechselarmatur InClean führt nun einen kompletten Meßzyklus durch (wie parametriert): die Sonde wird gespült und fährt in die Stellung "Messen". Für die parametrierte Meßzeit wird der pH-Wert gemessen.

Anschließend fährt die Sonde wieder zurück in die Stellung "Spülen" und führt die restlichen Programmschritte bis zur Warteposition aus.

cal	Probenkalibrierung		Fernsonde
i	Probentemperatur gespeicherte Probe	+6 +6	025.9 °C 07.14 pH

« zurück [cal]

cal Probenkalibrierun	g Fernsonde
• Probentemperatur 1 gespeicherte Probe	+025.9 °C +07.14 pH
Laborwert	+06.93 pH
« zurück [cal]	

Fer	nsonde aktiv		6.92pH
i	Meßprogramm Sonde in Wartepos	ition	
	letzter Meßwert	+07.1	4 pH

Der pH Transmitter 2500 speichert den aktuellen pH-Wert des Meßgutes. Entnehmen Sie nun eine Probe und gehen Sie zurück in den Meßmodus. Dabei werden Sie gefragt, ob Sie die Funktion verlassen wollen. Gehen Sie mit ▲ auf "Ja", und bestätigen Sie mit **enter**.

Im Labor ermitteln Sie den pH-Wert der Probe. Anschließend rufen Sie erneut die Probenkalibrierung auf und geben den Laborwert ein. Der pH Transmitter 2500 berechnet daraufhin den neuen Elektrodennullpunkt.

Nach Verlassen der Kalibrierung befindet sich die Sonde wieder in der Warteposition.

Bei der Probenkalibrierung wird nur ein neuer Elektrodennullpunkt ermittelt, die alte Elektrodensteilheit bleibt erhalten.

4 Das Diagnosemenü

Das können Sie im Diagnosemenü tun

Im Diagnosemenü können alle relevanten Informationen über den Gerätestatus angezeigt werden.

- Die aktuelle Meldungsliste zeigt die Zahl der gerade aktiven Meldungen und die einzelnen Warnungs- oder Ausfall-Meldungen im Klartext.
- In den Meßstellendaten sehen Sie neben der Meßstellen-Nr. (nach DIN 19227) die parametrierten Grenzwerte, ggf. den Regler-Sollwert und ob die Sondenspülung eingeschaltet ist.
- Das Kalibrierprotokoll zeigt alle relevanten Daten der letzten Kalibrierung zur Dokumentation gemäß GLP/GMP.
- Die Elektrodenstatistik zeigt die Elektrodendaten der drei letzten Kalibrierungen und der **Erstkalibrierung**.
- Das Logbuch zeigt Ihnen die letzten 200 Ereignisse mit Datum und Uhrzeit, z. B. Kalibrierungen, Warnungs- und Ausfallmeldungen, Hilfsenergieausfall usw.
 Damit ist eine Qualitätsmanagement-Dokumentation gemäß DIN ISO 9000 ff. möglich.
- In der Gerätebeschreibung erhalten Sie Informationen über Gerätetyp, Seriennummer und Optionen des pH Transmitters 2500.
- Mit der Gerätediagnose können Sie umfangreiche Tests durchführen, die die Funktion des pH Transmitters 2500 überprüfen.
 Damit ist eine Qualitätsmanagement-Dokumentation gemäß DIN ISO 9000 ff. möglich.
 Die Geräteeinstellung und Parametrierung werden dabei nicht verändert.

diag

Meßstelle Grenzwert 1 Grenzwert 2

« zurück [diag]

diag Diagnose 🖁	0.89pH
» aktuelle Meldungsliste » Meßstellendaten » Cal-Protokoll » Meßkettenstatistik » Logbuch ↓ » Gerätebeschreibung	2 Meldg.

diag Meld	ungsliste	8	0.89pH
∎Warn Lo ∎Ausf Lo	pH-Wert pH-Wert		
« zurück	[diag]		

Meßstellendaten

So gelangen Sie in das Diagnosemenü

Mit diag rufen Sie das Diagnosemenü auf.

Mit **meas** oder **diag** verlassen Sie das Diagnosemenü.

Die aktuelle Meldungsliste

Wählen Sie mit ► oder **enter** "aktuelle Meldungsliste" aus.

Alle aktuellen Ausfall- und Warnungs-Meldungen werden angezeigt.

Zur Erklärung der Meldungen s. Kap. 11.

Mit **diag** gelangen Sie zurück in das Diagnosemenü.

Die Meßstellendaten

Wählen Sie mit ▼ und **enter** "Meßstellendaten" aus.

Die Meßstellen-Nr. (nach DIN 19227) wird angezeigt.

Darunter sehen Sie , welche Grenzwerte parametriert sind.

Wenn das Gerät mit Option 352 (Sondenspülung) ausgerüstet ist, können Sie sehen, ob die Sondenspülung eingeschaltet ist.

diag Meßstellendaten	6.99pH
Meßstelle Grenzwert 1 Grenzwert 2	MIN99227/XYZXYZ +2000 mV +16.00 pH
Sondenspülung	(Ein)
≪ zurück [diaα]	

MIN99227/XYZXYZ +2000 mV +16.00 pH

diag nepscellendaten	г.01рн
Meßstelle MIN992	227/XYZXYZ
Grenzwert 1 +2000 m	nV.
Grenzwert 2 +16.00	PH
Regler-Sollwert 🐖	pН
Fernsonde (Ein)	

diag	Meßstellendate	n	6.99pH
Meßs Gren Gren Regl	telle zwert 1 zwert 2 er-Sollwert	MIN9 +07.0	99227/XYZXYZ * mV * PH * PH
22 7110	Cok [dipa]		

Wenn das Gerät mit Option 353 (Regler) ausgestattet *und der Regler aktiv* ist, wird der Regler-Sollwert angezeigt. Wenn der Regler aktiv ist, werden die Grenzwerte nicht überwacht.

Mit **diag** gelangen Sie zurück in das Diagnosemenü.

spe Meßstellen-Nummer 6.99pH

• Eingabe 1 mit den	Tasten [†][↓]
Meßstelle	MIN99227/XYZXYZ

« zurück [par]

So parametrieren Sie die Meßstellen-Nummer

In der Betriebs- oder Spezialistenebene wählen Sie den Menüpunkt "Meßstellen-Nummer".

Die Zeichen .0...9 A...Z – + / können mit den Rolltasten ausgewählt werden. Geben Sie die Meßstellen-Nummer mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingabe mit **enter**.

Das Kalibrierprotokoll

Wählen Sie mit ▼ und **enter** "Cal-Protokoll" aus.

Mit **diag** gelangen Sie zurück in das Diagnosemenü.

Das können Sie mit dem Kalibrierprotokoll tun

diag	Cal-Protokoll		6.99pH
Leţz	te Kalibrierung	12,07.	93 09:35
Null	Modus punkt	+06.99	tic pH
Stei ↓ Isot	lheit hermenspannung	+058.4	mU∕pH mU
« zur	ück [diaq] [†][↓] r	öllen

Im Kalibrierprotokoll werden alle relevanten Daten der letzten Kalibrierung angezeigt, um eine Dokumentation gemäß DIN ISO 9000 und GLP/GMP zu erstellen.

- Datum und Uhrzeit der letzten Kalibrierung
- Kalibrierablauf (z. B. Calimatic[®])
- Nullpunkt der Elektrode
- Elektrodensteilheit
- Isothermenschnittpunktspannung Uis

diag Cal-Prot	okoll	7.01pH
† 1. Puffer Ner Meßkettens Cal-Temper Einstellze ↓ 2. Puffer Ner	nwert +07.0 spg. +0007 stur +022. sit +0019 nwert_+04.0	0 pH mV 1 °C 1 pH
– « zurück Edia	ag] [†][∔]	rollen

Für den 1. und den 2. Puffer:

- Puffer-Nennwert
- (gemessene) Elektrodenspannung
- Kalibriertemperatur

der Meßspannung

•

Bei manchen Kalibrierabläufen, z. B. bei der Dateneingabe stehen nicht alle Meßwerte zur Verfügung. Die betroffenen Positionen sind dann durch einen grauen Balken verdeckt.

Einstellzeit der Elektrode bis zur Stabilisierung

Die Elektrodenstatistik

Was ist die Elektrodenstatistik?

Wenn Sie eine **Erstkalibrierung** durchführen (s. S. 3–5), werden folgende Werte als **Referenz**werte gespeichert:

- Datum und Uhrzeit der Erstkalibrierung
- Einstellzeit der Elektrode bei der Erstkalibrierung
- Nullpunkt der Elektrode
- Elektrodensteilheit
- Glaselektroden-Impedanz
- Bezugselektroden-Impedanz

Wenn Sie danach normale Kalibrierungen durchführen, werden für die *drei letzten Kalibrierungen* in der Elektrodenstatistik angezeigt:

- Datum und Uhrzeit der Kalibrierung
- Einstellzeit der Elektrode bei der Kalibrierung
- Differenz des Nullpunkts zwischen Kalibrierung und Erstkalibrierung
- Differenz der Elektrodensteilheit
- Differenz der Glaselektroden-Impedanz
- Differenz der Bezugselektroden-Impedanz

Sie erhalten so wichtige Hinweise auf den Zustand der Elektrode, auf die Alterung und den erforderlichen Zeitabstand zur nächsten Kalibrierung. Ist der zeitliche Abstand zwischen zwei Kalibrierungen kleiner als 6 Minuten, wertet das Gerät dies als Wiederholungskalibrierung (z. B. bei einer Fehlkalibrierung). Es wird kein neuer Datensatz angelegt. Der letzte Datensatz wird nur mit den neuen Werten überschrieben.

So zeigen Sie die Elektrodenstatistik an

di	iag	Meβl	kettenst	latisti	k	6.9	99pH
N	կ ս11յ	punkt	t.				
	Ersi	ţCal	+06.95	멦	-30.06 30.06	- 83	14:30
	Dif	f	+00.04	PH	08.07	.93	14:25
ŧ	Dif	<u>f</u>	+00.03	PH	12.07	<u>. 93</u>	09:35
\sim	zur	ück	[diag]	[†][↓] rol	len	

Wählen Sie mit ▼ und **enter** "Meßkettenstatistik" aus.

Mit den Rolltasten können Sie die Statistikdaten jeweils von der Erstkalibrierung und den letzten drei Kalibrierungen in die Anzeige bringen:

d	iag Meß	³ kettens	tatisti	k	6.9	99pH
† :	Steilhei	it.eso a		70	or 07	14.70
	Diff	-000.0	mV/pH mV/pH	30. 30.	06.93	14:30
Ŧ	Diff Diff	+000.0	mV/pH mV/pH	08. 12.	07.93 07.93	14:25 09:35
~~	zurück	[diag]		↓] r	ollen	

- Nullpunkt
- Steilheit
- Impedanz Glas-Elektrode
- Impedanz Bezugs-Elektrode
- Elektroden-Einstellzeit

Mit **diag** gelangen Sie zurück in das Diagnosemenü.

Das Logbuch

Sie können das Logbuch nur nutzen, wenn Ihr Gerät mit der Option 354 ausgerüstet ist. Ohne diese Option steht "Logbuch (optionell)" im Menü, eine Anwahl ist nicht möglich.

Was ist das Logbuch?

Im Logbuch werden die letzten 200 Ereignisse mit Datum und Uhrzeit gespeichert und angezeigt. Während der Parametrierung, Kalibrierung oder Wartung auftretende Fehlermeldungen werden nicht aufgezeichnet. Folgende Ereignisse werden aufgezeichnet:

- Gerät im Meßmodus
- · Ein- und Ausschalten des Gerätes
- Beginn von Warnungs- und Ausfall-Meldungen
- Ende von Warnungs- und Ausfall-Meldungen
- Sondenspülung aktiv
- Kalibrier-Meldungen
- Parametrierung, Kalibrierung, Wartung oder Diagnose aktiv
- Eingabe einer falschen Paßzahl

Das können Sie mit dem Logbuch tun

Mit den Einträgen im Logbuch kann eine Dokumentation zum Qualitätsmanagement gemäß DIN ISO 9000 und GLP/GMP erstellt werden. diag Logbuch

7.01pH

Die Einträge im Logbuch können nicht verändert werden!

Wenn das Gerät mit Option 351 (Schnittstelle) ausgerüstet ist (s. S. 9–54), können Sie den Inhalt des Logbuches auslesen und automatisch dokumentieren.

So zeigen Sie die Einträge im Logbuch an

Wählen Sie mit ▼ und enter "Logbuch" aus.

Mit den Rolltasten können Sie sich alle Einträge ansehen.

Mit diag gelangen Sie zurück in das Diagnosemenü.

So parametrieren Sie Uhr und Datum und Datumsformat

In der Betriebs- oder Spezialistenebene wählen Sie den Menüpunkt "Uhr stellen".

Wählen Sie mit **V** und **enter** Datumsformat, Uhrzeit oder Datum aus.

Mit der Rolltasten und den Cursortasten stellen Sie den gewünschten Wert ein (s. S. 2-6). Bestätigen Sie die Eingabe mit enter.

Die Uhr beginnt auf dem eingestellten Wert zu laufen, wenn enter gedrückt wird. Sie können Uhrzeit und Datum in der Nebenanzeige darstellen, die Uhrzeit auch in der Meßwertanzeige (s. S. 2-1).

Die Gerätebeschreibung

Wählen Sie mit v und enter "Gerätebeschreibung" aus.

Es werden angezeigt:

- Der Gerätetyp,
- die Seriennummer,
- Hardware- und Software-Version und die Geräte-Optionen.

t	09.01.93	09:57 ∎Warn Lo	pH-Wert
	09.01.93	09:57 Diagnose	aktiy
	08.01.93	17:57 Hilfsene	rgie Aus
ŧ	08.01.93	<u> 16:12 oWarn Hi</u>	<u>E1-Sth</u>
<	(zurück	ldiagJ l†Jl∔	J rollen

spe Uhr stellen	7.00pH
Ustumformat Uhrzeit 11:31:43 Datum 08.12.93	M∕T∕J J-M-T
« zurück [par]	

Gerätebeschreibung

pH 2500 000001

Hardw: 354;356

1

7.00pH

Softw: 6.0

diag

Gerätetyp Seriennummer Version

Optionen « zurück [diag]

7.01pH

ĕrfolgt

Mit **diag** gelangen Sie zurück in das Diagnosemenü.

Die Software-Version muß mit der Version übereinstimmen, die unten auf der zweiten Seite dieses Handbuchs angegeben ist.

Die Optionen für die *Hilfsenergie* werden *nicht* angezeigt. Sie sind auf dem Typschild (zwischen den Pg-Verschraubungen) vermerkt.

Die Gerätediagnose

Was Sie mit der Gerätediagnose tun können

Mit der Gerätediagnose können Sie umfangreiche Tests durchführen, die die Funktion der pH Transmitters 2500 überprüfen.

Damit ist eine Qualitätsmanagement-Dokumentation gemäß DIN ISO 9000 ff. möglich.

Die Geräteeinstellung und Parametrierung werden dabei nicht verändert.

So führen Sie die Gerätediagnose durch

Wählen Sie mit ▼ und **enter** "Gerätediagnose" aus.

Sie sehen, wann jeder Test zuletzt durchgeführt wurde und mit welchem Ergebnis.

dia	g RAM	-Test	
i	nicht	zerstörender RAM-Test	
	ю	50	100

64% 🖻

Der Speichertest

Wählen Sie mit 🔻 und **enter**

"RAM-Test", "EPROM-Test" oder EEPROM-Test" aus.

Mit **enter** wird der Testablauf gestartet. Ein Balken zeigt den Test-Fortschritt an.

Wenn nach Ablauf des Tests im Menü "Ausfall" erscheint, muß das Gerät zur Reparatur zum Hersteller eingeschickt werden.

Der Display-Test

Wählen Sie mit ▼ "Display-Test" aus.

Mit enter wird der Testablauf gestartet.

Das Display zeigt mehrere Testmuster, mit denen Sie überprüfen können, ob alle Bildpunkte, Zeilen und Spalten einwandfrei arbeiten.

Tastatur

Test

• Alle Tasten einmal drücken 1 Abbruch: [diag] [diag]

[meas] [cal] [maint] [par] [diag]

diag

Wenn die Testmuster Störungen zeigen, sollte das Gerät zur Reparatur zum Hersteller eingeschickt werden.

Der Tastaturtest

Wählen Sie mit ▼ "Tastatur-Test" aus.

Mit **enter** wird der Testablauf gestartet.

Sie müssen alle Tasten *einmal* drücken. Gedrückte Tasten werden im Display invertiert angezeigt.

[+]^[†] [+]

lenteri

Wenn Sie alle Tasten gedrückt haben, und im Menü "Tastatur-Test Ausfall" erscheint, muß das Gerät zur Reparatur zum Hersteller eingeschickt werden.

Mit **diag** gelangen Sie zurück in das Diagnosemenü.

5 Das Wartungsmenü

Das können Sie im Wartungsmenü tun

Im Wartungsmenü sind alle Funktionen zur Wartung der Sensoren und zur Einstellung angeschlossener Meßgeräte zusammengefaßt. Der Zugang zum Wartungsmenü kann durch eine Paßzahl geschützt werden.

- Wenn das Gerät mit der InClean-Funktion (Option 404) ausgerüstet ist, können Sie das Wechselarmatur-Programm starten.
- Die Meßstellen-Wartung erlaubt den Ausbau der Elektrode. Bei Geräten mit InClean-Funktion (Option 404) wird die Wechselarmatur in die Warteposition gefahren.
- Mit der Sondenspülung (Option 352) kann die Elektrode automatisch gespült und gereinigt werden: s. S. 9–49.
- Der Stromgeber erlaubt die manuelle Einstellung der Ausgangsströme (1 und 2) zur Einstellung und Überprüfung angeschlossener Peripheriegeräte (z. B. Anzeiger oder Schreiber).
- Der Temperaturfühler-Abgleich ermöglicht die individuelle Kalibrierung eines Pt 100/Pt 1000-Temperaturfühlers.
- Wenn das Gerät mit der Reglerfunktion (Option 353) ausgerüstet ist, können Sie die Reglerstellgröße Y manuell vorgeben.

Nur bei Option 404: Im Untermenü "Meßstellen-Wartung" wird kein timergesteuerter Spülzyklus gestartet (s. S. 9–46).

Nur bei Option 352: Im Untermenü "Meßstellen-Wartung" ist der Kontakt "Sonde" aktiv. Es wird kein timergesteuerter Spülzyklus gestartet (s. S. 9–52). maint Wartung

So gelangen Sie in das Wartungsmenü

Mit maint wird das Wartungsmenü aufgerufen.

» Meßstellen-Wartung

» Stromgeber » Abgleich Tempfühler

« zurück zum Messen [maint]

maint	Wartung	1		7.0	1pH
» Meβs » Stro » Abal	tellen mgeber eich T	Paĝza	ahl:	2958	ו
« zurü	ck zum Þ	lessen	Emai	nt]	

Wenn eine Paßzahleingabe gefordert wird, müssen Sie die Wartungs-Paßzahl kennen:

Geben Sie die Wartungs-Paßzahl mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingabe mit **enter**.

In der Spezialistenebene kann die Wartungs-Paßzahl parametriert oder abgeschaltet werden (s. S.

8-4).

7.01pH

InClean-Pro Wartung 6.95pH Wenn das Gerät n

7.01pH

Fernsonden Frogramm starten » Meßstellen-Wartung » Stromgeber » Abgleich Tempfühler « zurück zum Messen [maint]

Spülprogramm parametriert

Meßprogramm parametriert

maint Meßstellen-Wartung

Ausgangsstrom,Regler eingefroren Grenzwerte inaktiv

InClean-Programm starten

Wenn das Gerät mit Option 404 (InClean-Funktion) ausgerüstet und die Wechselarmatur in der Parametrierung eingeschaltet ist, können Sie mit ▶ oder **enter** das InClean-Programm starten. *Weitere Informationen finden Sie auf S. 9–40.*

Die Sonde fährt in Position "Spülen", alle Schritte werden durchlaufen, die Sonde fährt wieder in Position "Messen".

Die Sonde fährt in Position "Messen". Nach Ablauf der Meßzeit fährt die Sonde in Position "Spülen", alle Schritte werden durchlaufen, die Sonde bleibt in der Warteposition.

Die Meßstellen-Wartung

Wählen Sie mit ► oder **enter** "Meßstellen-Wartung" aus.

Jetzt können Sie die Elektrode ausbauen, um sie zu reinigen oder auszuwechseln.

Der Ausgangsstrom (1 und 2) und die Reglerstellgröße sind auf dem letzten Wert eingefroren, die Grenzwertkontakte sind inaktiv, der NAMUR-Kontakt "Funktionskontrolle" ist aktiv.

« zurück [maint]

Gerät mit InClean-Funktion (Option 404)

Wenn das Gerät mit Option 404 (InClean-Funktion) ausgerüstet ist, erhalten Sie eine der drei folgenden Anzeigen.

InClean-Funktion ausgeschaltet

maint Meßstellen-Wartung	7.01pH	Die Wechselarmatur ist in der Parametrierung
• Ausgangsstrom,Regler eing 1 Grenzwerte inaktiv	efroren	ausgeschaltet.
		Weitere Informationen finden Sie auf S. 9–46.

« zurück [maint]

InClean: Meßprogramm parametriert

maint Meßstellen-Wartung Fernsonde	Die Wechselarmatur ist eingeschaltet, das
 Ausgangsstrom,Regler eingefroren 	Meßprogramm ist parametriert.
1 Grenzwerte inaktiv Fernsonde in Wanterosition!	Die Wechselarmatur verharrt solange in der War-
remsonde in wardeposicion:	teposition, bis maint gedrückt wird. Ein Start des
<pre>// zueück [maint]</pre>	InClean-Programms durch den Timer oder den
	Startkontakt ist nicht möglich.

InClean: Spülprogramm parametriert

Fernsond	de aktiv		6.95pH
• Μeβs Ι Sond	stellen-Wartung de ausfahren	0014	s
30%	50		100

maint	Meßstellen-Wartu	ung Fernsonde			
• Ausgangsstrom,Regler eingefroren • Grenzwerte inaktiv Fernsonde in Warteposition! « zurück imaint					
Fernso	Fernsonde aktiv 6.95pH				
• Me 1 So	ßstellen-Wartung nde einfahren	0015 s			
25% 💼	50	100			
25% 📺					

Gerät mit Sondenspülung (Option 352)

Sondenspülung ausgeschaltet

Maint Meßstellen-Wartung 7.01pH
 Ausgangsstrom,Regler eingefroren
 Grenzwerte inaktiv

Sondenspülung aus

« zurück [maint]

Die Wechselarmatur ist eingeschaltet, das **Spülprogramm** ist parametriert. Die Wechselarmatur fährt in Stellung "Spülen", alle Schritte des Wechselarmatur-Programms, z. B. Spülen und Reinigen der Elektrode, bis zur Warteposition werden durchlaufen.

Die Wechselarmatur verharrt solange in der Warteposition, bis **maint** gedrückt wird. Ein Start des Wechselarmatur-Programms durch den Timer oder den Startkontakt ist nicht möglich.

Alle Schritte des Wechselarmatur-Programms, z. B. Spülen und Reinigen der Elektrode, nach der Warteposition werden durchlaufen, die Sonde fährt in Stellung "Messen".

Wenn Ihr Gerät mit Option 352 (Sondenspülung) ausgerüstet ist, erhalten Sie eine der beiden folgenden Anzeigen.

Die Sondenspülung ist in der Parametrierung ausgeschaltet.

Weitere Informationen finden Sie auf S. 9-52.

Sondenspülung eingeschaltet

Stromgeber

Ausgangsstrom 1 Ausgangsstrom 2 « zurück [maint]

maint

maint Meβstellen-Wartung	7.01pH
• Ausgangsstrom,Regler eing Grenzwerte inaktiv Kontakt Sonde aktiv!	efroren
Sondenspälung starten Handbetätigung Aus Späle « zurück [maint]	en Reinigen

Die Sondenspülung ist eingeschaltet. Sie können einen **Spülzyklus** starten: Gehen Sie mit ▲ auf "Sondenspülung starten" und bestätigen Sie mit **enter** . Nach Ablauf des Spülzyklus geht das Gerät in den Meßmodus.

Mit **maint** gelangen Sie zurück in das Wartungsmenü.

Mit **meas** gelangen Sie zurück in den Meßmodus. Dabei werden Sie nochmals gefragt, ob Sie die Funktion verlassen wollen. Wenn ja, gehen Sie mit ◀ auf "Ja" und bestätigen mit **enter**.

Die Stromgeberfunktion

6.99pH

In der Stromgeberfunktion folgen die Ausgangsströme *nicht* mehr dem Meßwert! Die Werte können manuell vorgegeben werden. Der NAMUR-Kontakt "Funktionskontrolle" ist aktiv.

Daher muß sichergestellt sein, daß die angeschlossenen Geräte (Meßwarte, Regler, Anzeiger) den Stromwert nicht als Meßwert interpretieren!

Wählen Sie mit ▼ und **enter** "Stromgeber" aus.

Jetzt können Sie die Werte für den Ausgangsstrom 1 (und 2) manuell einstellen, um angeschlossene Peripheriegeräte zu überprüfen.

Geben Sie den gewünschten Stromwert mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingabe mit **enter**.

Mit **maint** gelangen Sie zurück in das Wartungsmenü.

Mit **meas** gelangen Sie zurück in den Meßmodus. Dabei werden Sie nochmals gefragt, ob Sie die Funktion verlassen wollen. Wenn ja, gehen Sie mit ◀ auf "Ja" und bestätigen mit **enter**.

maint Stromgeber	6.99pH
• Ausgangsstrom einstellba	ar 020.5mA
Funktion abbrechen; ist die Anlage meßbe Au Ja Nein	ereit ?

• Ausgangsstrom einstellbar 0..20.5mA] übernahme mit [enter]

> 09.99 mA 09.99 mA

Der Temperaturfühler-Abgleich

Diese Funktion dient dazu, die individuelle Toleranz des Temperaturfühlers und den Einfluß der Zuleitungswiderstände abzugleichen, um die Genauigkeit der Temperaturmessung zu erhöhen.

Der Abgleich darf nur erfolgen, wenn eine genaue Messung der Prozeßtemperatur mit einem kalibrierten Vergleichsthermometer erfolgt ist! Der Meßfehler des Vergleichsthermometers sollte unter 0,1 °C liegen.

Ein Abgleich ohne genaue Messung kann den angezeigten pH-Meßwert u. U. stark verfälschen!

Zur Erleichterung des Abgleichvorgangs parame-

Aus

21.7°C

+021.7 °C

Ein

Abgleich Tempfühler

Abgleich Tempfühler

Fühlertoleranz- u.Zuleitungsabgleich Gemessene Prozeßtemperatur eingeben

Installationsabgleich

Installationsabgleich Prozestemperatur: « zurück [maint]

« zurück [maint]

maint

trieren Sie "Meßwertanzeige: Meßgröße °C" (s. S. 9–2). Wählen Sie mit vund enter "Abgleich Tempfühler" aus. Fühlertoleranz- u.Zuleitungsabgleich Gemessene Prozeßtemperatur eingeben

> Oben rechts wird die vom Temperaturfühler gemessene Temperatur angezeigt, wenn die Meßwertanzeige entsprechend parametriert wurde.

Wenn der Abgleich aktiviert werden soll, gehen Sie mit auf "Installationsabgleich Ein" und bestätigen mit enter .

Geben Sie die mit dem Vergleichsthermometer gemessene Prozeßtemperatur mit den Rolltasten und den Cursortasten ein (s. S. 2-6) und bestätigen Sie die Eingabe mit enter .

Oben rechts wird jetzt die vom Temperaturfühler gemessene, abgeglichene Temperatur angezeigt.

Der zulässige Abgleichbereich beträgt ±5 °C um den Meßwert des Temperaturfühlers.

Mit maint gelangen Sie zurück in das Wartungsmenü.

Mit meas gelangen Sie zurück in den Meßmodus.

Manuelle Eingabe der Reglerstellgröße

Wenn das Gerät mit der Reglerfunktion (Option 353 oder Option 483) ausgerüstet und der Regler in der Parametrierung eingeschaltet ist, können Sie zu Testzwecken oder zum Anfahren eines Prozesses die Stellgröße Y manuell einstellen.

Wenn Sie die Reglerstellgröße manuell einstellen, folgt die Stellgröße *nicht* mehr der Regelgröße!

Daher muß sichergestellt sein, daß die angeschlossenen Stellglieder und der Regelkreis entsprechend überwacht werden!

Wählen Sie mit ▼ und **enter** "Regler manuell" aus.

Jetzt können Sie die Stellgröße manuell im Bereich -100 % ... +100 % vorgeben, um z. B. angeschlossene Stellglieder zu überprüfen.

Geben Sie die gewünschte Stellgröße mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingabe mit **enter**.

Mit **maint** gelangen Sie zurück in das Wartungsmenü.

Mit **meas** gelangen Sie zurück in den Meßmodus. Dabei werden Sie nochmals gefragt, ob Sie die Funktion verlassen wollen. Wenn ja, gehen Sie mit ◀ auf "Ja" und bestätigen mit **enter**.

maint Regler manuell	6.99рн
• (Kontakt 2: -1000) • Kontakt 1: 0+100)	
Stellgröße manuell +000).0 %
« zurück [maint]	

maint	Regler manuell	6.99pH
• 4 K	ontakt 2: -1000 ;	
	Funktion abbrechen; ist die Anlage meßbe Ja Nein	ereit ?
~ ~ -		

6 Die Anzeige der Parametrierung

(Gesamtdate

(Gesamtdaten)

bet.

spe

triebsda

[par]

Das können Sie in der Anzeigeebene tun

In der Anzeigeebene können Sie die gesamte Parametrierung des Gerätes ansehen. Die Parametrierung kann nicht verändert werden!

So gelangen Sie in die Anzeigeebene

Mit par rufen Sie das Parametriermenü auf.

Mit meas verlassen Sie das Parametriermenü.

anz Anzeigeebene	7.02pH
 o ≫ MeBwertanzeige ● > Eingangsfilter o >> Temperaturerfassung ● >> Tk MePmedium o >> Calimatic-Puffer ↓ o >> Nominell: Npkt/Sth 	

(Be

Parametrierun¤

» Spezialistenebene

« zurück zum Messen

ene

Wählen Sie mit ► oder **enter** "Anzeigeebene (Gesamtdaten) " aus.

Mit **par** gelangen Sie zurück in das Parametriermenü.

Sie können jetzt alle Einstellungen ansehen

So wählen Sie einen Menüpunkt aus

Mit den **Rolltasten** ▲ und ▼ wählen Sie eine Displayzeile aus. Die ausgewählte Zeile wird invertiert (dunkel unterlegt) dargestellt.

Die Rolltasten verfügen über eine Repeat-Funktion:

Bei längerem Drücken laufen die Zeilen durch.

Die Pfeile "↑" und "↓" zeigen an, daß noch mehr Menüzeilen durch Rollen erreichbar sind.

Die Symbole \ll und \gg am Anfang der Displayzeile zeigen an, daß die Menüebene mit den Cursortasten \triangleleft und \blacktriangleright gewechselt werden kann:

- ≫ mit ► oder enter gelangen Sie zur nächsten (tieferen) Menüebene,
- ≪ mit ◀ gelangen Sie zurück zur vorigen (übergeordneten) Menüebene.

Ein Beispiel

Sie wollen die Parametrierung für den Glaselektroden-Alarm ansehen.

Rufen Sie mit par das Parametriermenü auf.

Wählen Sie mit ► oder **enter** "Anzeigeebene (Gesamtdaten) " aus.

par Parametrierung	7.02pH
» Anzeigeebene (Gesamt » Betriebsebene (Betriebs » Spezialistenebene (Gesamt	tdaten) anz sdaten) bet tdaten) spe
« zurück zum Messen [par]	

anz Anzeigeebene	7.02pH
 MeBwertanzeige » Eingangsfilter » Temperaturerfassung » Tk Meßmedium » Calimatic-Puffer 	

Mit den **Rolltasten** ▲ und ▼ wählen Sie "Alarmeinstellungen" aus. Die ausgewählte Zeile wird invertiert (dunkel unterlegt) dargestellt.

Die Rolltasten verfügen über eine Repeat-Funktion:

Bei längerem Drücken laufen die Zeilen durch.

anz Anzeigeebene	7.00pH
<pre>↑ ● >> rH-Wert ● >> Deltafunktion ● >> Stromeingang ● >> Ausgangsstrom 1 ● >> Ausgang 2 / Regler ↓ o >> Highmaingtallungen</pre>	

anz	Alarmeinstellungen	7.02pH
>>	PH-Alarm	(Ein)
>>	mV-Alarm	(Aus)
>>	rH-Alarm	(Aus)
>>	ORP-Alarm	(Aus)
↓ »»	Temperatur-Alarm Cal-Timer-Alarm	(Aus) (Aus)

2	anz	Alarmeinstellungen	7.02pH
t	» » »	ORP-Alarm Temperatur-Alarm Çal-Timer-Alarm	(Aus) (Aus) (Aus)
Ŧ	>> >>	Nullpunkts-Hlarm Steilheit-Alarm Massalselasm	(Ein) (Ein)

anz Glas-El-Alarm	7.02pH
Glas-EleAlarm Ausfall Limit Lo Warnung Limit Lo Warnung Limit Hi Ausfall Limit Hi « zurück [par]	Είπ Αus 0015 ΜΩ 0045 ΜΩ 0120 ΜΩ 0200 ΜΩ

≫ mit ► oder enter gelangen Sie zur nächsten (tieferen) Menüebene

Mit den **Rolltasten** ▲ und ▼ wählen Sie "Glas-El-Alarm" aus. Die ausgewählte Zeile wird invertiert (dunkel unterlegt) dargestellt.

Sie können hier schon erkennen, ob der Alarm eingeschaltet ist.

≫ mit ► oder enter gelangen Sie zur untersten Menüebene

Hier wird die Parametrierung für den Glaselektroden-Alarm angezeigt.

≪ mit ◀ oder par gelangen Sie zurück zur nächsten (höheren) Menüebene.

Mit meas verlassen Sie das Parametriermenü.

7 Die Parametrierung in der Betriebsebene

Das können Sie in der Betriebsebene tun

In der Betriebsebene können Sie bestimmte Einstellungen (Menüpunkte) des Gerätes parametrieren.

Der Zugang zur Betriebsebene kann durch eine Paßzahl geschützt werden.

So gelangen Sie in die Betriebsebene

Mit par rufen Sie das Parametriermenü auf.

Mit meas verlassen Sie das Parametriermenü.

» Anzeigeebene (Gesamtdaten) » Betriebsebene (Betriebsdaten) » Spezialistenebene (Gesamtdaten)	anz bet spe
« zurück zum Messen [par]	
D	
par Parametrierung 7.02	2PH

par Parametrierung

par Parametrierung		1.02	έрн	
» Anze » Betr » Spez	igeeben iebsebe	Paßzahl:	1246] nz et
« zurü	ick zum Mes	sen [par]		

7.02pH

Wählen Sie mit ▼ und **enter** "Betriebsebene" aus.

Geben Sie ggf. die **Betriebs-Paßzahl** mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingabe mit **enter**.

In der Spezialistenebene kann die Betriebs-Paßzahl parametriert oder abgeschaltet werden (s. S. 8–4).

Mit **par** gelangen Sie zurück in das Parametriermenü.

Sie können die markierten Menüpunkte parametrieren:

- Dieser Menüpunkt wurde in der Spezialistenebene freigegeben: er kann parametriert werden.
- Dieser Menüpunkt wurde in der Spezialistenebene gesperrt : er kann nicht parametriert werden. Beim Durchrollen wird der Menüpunkt übersprungen. Der Menüpunkt kann jedoch in der Anzeigeebene angesehen werden.

So wählen Sie einen Menüpunkt aus

Mit den **Rolltasten** ▲ und ▼ wählen Sie eine Displayzeile aus. Die ausgewählte Zeile wird invertiert (dunkel unterlegt) dargestellt. Die Pfeile "↑" und "↓" zeigen an, daß noch mehr Menüzeilen durch Rollen erreichbar sind.

Die Symbole \ll und \gg am Anfang der Displayzeile zeigen an, daß die Menüebene mit den Cursortasten \triangleleft und \blacktriangleright gewechselt werden kann:

- ≫ mit ► oder enter gelangen Sie zur nächsten (tieferen) Menüebene,

Ein Beispiel

Sie wollen die Parametrierung für das Eingangsfilter ändern.

par Parametrierung 7.02pH » Anzeigeebene (Gesamtdaten) anz » Betriebsebene (Betriebsdaten) bet » Spezialistenebene (Gesamtdaten) spe « zurück zum Messen [par]

Mit **par** wird das Parametriermenü aufgerufen.

par Parametrierung	7.02pH
» Anzeigeeben » Betniebsebe Paßzahl: » Spezialiste	1246 nz
« zurück zum Messen [par]	

bet	Betriebsebene	7.02pH
0 0 0 0	» Meßwertanzeige » Eingangsfilter » Temperaturerfassung » Tk Meßmedium » Calimatic-Puffer » Nominell: Npkt/Sth	

bet	Eingan	gsfilter		7.02pH
Im	pulsunt	erdrückung	Ein	Aus
~	zurück	[par]		

So bleibt die alte Einstellung erhalten

Wählen Sie mit ▼ und **enter** "Betriebsebene" aus.

Geben Sie die **Betriebs-Paßzahl** mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingabe mit **enter**.

Wählen Sie mit ▼ den Menüpunkt "Eingangsfilter " aus.

≫ mit ► oder enter gelangen Sie zur nächsten (tieferen) Menüebene.

Wenn das Eingangsfilter aktiviert werden soll, gehen Sie mit \blacktriangleleft auf "Impulsunterdrückung Ein" und bestätigen mit **enter**.

Mit **par** an Stelle von **enter** bleibt die alte Einstellung unverändert erhalten ("Undo"-Funktion).

≪ mit ◀ oder **par** gelangen Sie zurück zur vorigen (übergeordneten) Menüebene.

Mit meas wird das Parametriermenü verlassen.

8 Die Parametrierung in der Spezialistenebene

7.02<u>pH</u>

Vor der Inbetriebnahme des pH Transmitters 2500 muß eine *vollständige Parametrierung* durch einen Systemspezialisten erfolgen.

Das können Sie in der Spezialistenebene tun

In der Spezialistenebene können Sie alle Einstellungen des Gerätes einschließlich der Paßzahlen parametrieren. Außerdem können Sie mit der Marker-Parametrierung einzelne Menüpunkte sperren, die in der Betriebsebene nicht zugänglich sein sollen.

Bei Auslieferung des Geräts sind alle Menüpunkte freigegeben.

Der Zugang zur Spezialistenebene ist durch eine Paßzahl geschützt.

So gelangen Sie in die Spezialistenebene

Mit par rufen Sie das Parametriermenü auf.

Mit meas verlassen Sie das Parametriermenü.

Wählen Sie mit ▼ und **enter** "Spezialistenebene" aus.

Geben Sie die **Spezialisten-Paßzahl** mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingabe mit **enter**.

Mit **par** gelangen Sie zurück in das Parametriermenü.

» An » Be » Sp	zeigeebene (G triebsebene (Bet ezialistenebene (G	esamtdaten) anz riebsdaten) bet esamtdaten) spe
« zu	rück zum Messen []	par]
par	Parametrierung	7.02pH

arametrierun

par Farametrier	arig	1.02	РП
» Anzeigeebene	(Gesamt	daten)	anz
» Betriebseben » Spezialisten	Paβzahl:	1989	٦ĕ
« zurück zum Mes	sen [par]		

Die Marker-Parametrierung

Ein Informationstext erklärt die Marker-Parametrierung in der Spezialistenebene.

Was Sie mit der Marker-Parametrierung tun können

Mit der Marker-Parametrierung können Sie jeden Menüpunkt der obersten Menüebene der Parametrierung (außer "Paßzahl-Eingabe") für die Betriebsebene freigeben oder sperren:

- Dieser Menüpunkt ist freigegeben: er kann in der Betriebsebene parametriert werden.
- Dieser Menüpunkt ist gesperrt: er kann in der Betriebsebene *nicht* parametriert werden. Der Menüpunkt kann jedoch in der Anzeigeebene angesehen werden.

Bei Auslieferung des Geräts sind alle Menüpunkte freigegeben.

So parametrieren Sie den Marker

Gehen Sie mit ◀ auf den Marker. Mit ▼ oder ▲ können Sie den Menüpunkt freigeben (●) oder sperren (○). Bestätigen Sie die Einstellung mit **enter**.

So wählen Sie einen Menüpunkt aus

Mit den **Rolltasten** ▲ und ▼ wählen Sie eine Displayzeile aus. Die ausgewählte Zeile wird invertiert (dunkel unterlegt) dargestellt.

Die Pfeile "↑" und "↓" zeigen an, daß noch mehr Menüzeilen durch Rollen erreichbar sind.

Die Symbole \ll und \gg am Anfang der Displayzeile zeigen an, daß die Menüebene mit den Cursortasten \triangleleft und \blacktriangleright gewechselt werden kann:

- ≫ mit ▶ oder enter gelangen Sie zur nächsten (tieferen) Menüebene,

Ein Beispiel

Sie wollen die Parametrierung für das Eingangsfilter ändern.

Mit **par** rufen Sie das Parametriermenü auf.

par	Parametrier	rung	7.02	pН
» An:	zeigeebene	(Gesamt	daten)	anz
» Be » Spi	ezialisten	Paßzahl:	1989	Ē
« zu	rück zum Mes	ssen [par]		

Parametrierung;

Markerparametrieru Einstellung ändern Einstellung setzen

7.02pH

7.02pH

7.02pH

erung

» weiter [enter]

Spezialistenebene

Spezialistenebene

Temperaturerfassung Tk Meßmedium Calimatic-Puffer Nominell: Npkt/Sth

Impulsunterdräckung Ein Aus

So bleibt die alte Einstellung erhalten

[par]

» Meßwertanzeige » Eingangsfilter

Marker

[+] .er]

zurück [par]

spe Eingangsfilter

« zurück

spe

ο •

0 »

» » . o »

Wählen Sie mit v und enter "Spezialistenebene" aus.

Geben Sie die Spezialisten-Paßzahl mit den Rolltasten und den Cursortasten ein (s. S. 2-6) und bestätigen Sie die Eingabe mit enter .

Bestätigen Sie den Informationstext mit enter .

Wählen Sie mit	▼	den Menüpunkt "Eingangsfil
ter " aus.		

mit **>** oder **enter** gelangen Sie zur \gg nächsten (tieferen) Menüebene.

Wenn das Eingangsfilter aktiviert werden soll, gehen Sie mit **4** auf "Impulsunterdrückung Ein" und bestätigen mit enter .

Mit par an Stelle von enter bleibt die alte Einstellung unverändert erhalten ("Undo"-Funktion).

mit **d** oder **par** gelangen Sie zurück \ll zur vorigen (übergeordneten) Menüebene.

Mit **meas** verlassen Sie das Parametriermenü.

Der Paßzahl-Schutz

Der Zugang zum Kalibriermenü, Wartungsmenü, zur Parametrierung in der Betriebsebene und in der Spezialistenebene kann jeweils durch eine Paßzahl geschützt werden. Sie können alle Paßzahlen individuell parametrieren oder abschalten (Die Spezialisten-Paßzahl ist nicht abschaltbar).

Bei abgeschalteten Paßzahlen besteht kein Schutz gegen unbefugten Zugang zu den Menüs!

Die werksseitig parametrierten Paßzahlen sind bei allen Geräten gleich.

Es ist daher empfehlenswert, daß Sie Ihre eigenen Paßzahlen parametrieren.

So parametrieren Sie die Paßzahlen

Wählen Sie mit ▼ und **enter** "Spezialistenebene" aus.

Wählen Sie mit v und enter

"Paßzahl-Eingabe" aus.

Geben Sie die **Spezialisten-Paßzahl** mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingabe mit **enter**.

spe	Spezialistenebene	7.00pH
↑ 0 ● 0 ↓ 0	» Sondenspülung » Schnittstelle » Gerätediagnose » Uhr stellen » Meßstellen-Nummer » Paßzahl-Eingabe	

ŋ	ре Раβ	7.02pH		
	cal	Kalibrierung	Ein Aus	
	maint	Wartung	Ein Aus	
ŧ	bet	Betriebsebene Paßzahl ändern	Ein Aus 1246	

Wählen Sie mit ▼ "cal", "maint" oder "bet" aus.

Sie können die Kalibrier-Paßzahl, die Wartungs-Paßzahl und die Betriebs-Paßzahl einzeln einoder ausschalten.

Nur wenn eine Paßzahl eingeschaltet ist, erscheint die Zeile "Paßzahl ändern". Die Paßzahl bleibt parametriert, auch wenn sie ausgeschaltet wurde.

Ändern Sie die Paßzahlen mit den Rolltasten und den Cursortasten (s. S. 2–6) und bestätigen Sie die Eingabe mit **enter**.

So bleibt die Paßzahl unverändert

Mit **par** an Stelle von **enter** bleibt die alte Paßzahl unverändert erhalten ("Undo"-Funktion).

So parametrieren Sie die Spezialisten-Paßzahl

7.02pH

7.02pH

1989

1989

Papzahl-Eingabe

Paßzahl-Eingabe

Eingabe wiederholen:

[par]

« zurück [par]

« zurück

spe

Spezialistenebene

Bei Verlust der spe-Paßzahl ist der Systemzugang gesperrt!

Bei Verlust der spe-Paßzahl ist der Systemzugang gesperrt! Bei Verlust der Spezialisten-Paßzahl ist der Systemzugang gesperrt! Eine Parametrierung in der Spezialistenebene ist dann nicht mehr möglich. Alle gesperrten (○) Menüpunkte können auch in der Betriebsebene nicht mehr parametriert werden.

Wenden Sie sich in diesem Fall an: Mettler Toledo GmbH Hotline Im Hackacker 15 8902 Urdorf Schweiz Tel.: (01) 736 22 14 Fax.: (01) 736 26 36

Wählen Sie mit v und enter "spe" aus.

Ändern Sie die Spezialisten-Paßzahl mit den Rolltasten und den Cursortasten (s. S. 2–6) und bestätigen Sie die Eingabe mit **enter**.

Zur Sicherheit müssen Sie die Spezialisten-Paßzahl ein zweites Mal eingeben.

Wenn die zweite Eingabe nicht mit der ersten übereinstimmt oder Sie mit **par** abbrechen, bleibt die Spezialisten-Paßzahl unverändert.

Wenn Sie die Spezialisten-Paßzahl auf "0000" parametrieren, kann die Spezialistenebene ohne Zahleneingabe bei der Paßzahl-Abfrage, nur mit **enter**, erreicht werden.

Wenn Sie die Spezialisten-Paßzahl auf "0000" parametrieren, besteht kein Schutz gegen unbefugten Zugang zu den Menüs und zur Geräte-Parametrierung!

Unsachgemäße Veränderung der Parametrierung kann eine Fehlfunktion des Gerätes und falsche Meßwert-Ausgaben zur Folge haben!

Werksseitig parametrierte Paßzahlen

Bei Auslieferung des Gerätes sind folgende Paßzahlen parametriert:

•	Kalibrier-Paßzahl:	1147
	Runbrior r ubzum.	

•	Wartungs-Paßzahl:	2	9	5	8
	Trantango r abzann	_	<u> </u>	-	-

- Betriebs-Paßzahl: 1 2 4 6
- Spezialisten-Paßzahl: 1989

9 Die Meßmöglichkeiten des pH Transmitters 2500

Die *Inbetriebnahme* des pH Transmitters 2500 darf nur durch ausgebildete Fachkräfte (VBG 4) unter Beachtung der Bedienungsanleitung erfolgen.

Vor der Inbetriebnahme muß eine vollständige Parametrierung durch einen Systemspezialisten erfolgen.

Überblick

Der pH Transmitter 2500 verfügt über eine Vielzahl von Eigenschaften und Meßmöglichkeiten. In diesem Kapitel erfahren Sie

- welche Meßmöglichkeiten das Gerät bietet
- wie Sie das Gerät beschalten
- wie Sie das Gerät parametrieren

Die Hilfsenergieversorgung für den pH Transmitter 2500

Bevor Sie die Hilfsenergieversorgung anschließen, lesen Sie unbedingt Kap. 10 "Installationshinweise"! Überzeugen Sie sich auf dem Typschild, daß das Gerät die richtige Netzspannung hat:

- 230 V AC
- 115 V AC (Option 363)
- 24 V AC/DC (Option 298)

Nach dem Anlegen der Hilfsenergie sind die Stromausgänge und die Kontakte für ca. 10 s auf dem Stand vor dem Hilfsenergieausfall eingefroren. Dies garantiert, daß nach dem Einschalten keine ungültigen Meldungen erzeugt werden.

Die einfache pH-Meßstelle

Abb. 9–1, S. 9–3, zeigt die Beschaltung des pH Transmitters 2500 für eine einfache pH-Meßstelle mit Überwachung der Glaselektroden-Impedanz, automatischer Temperaturerfassung und Auswertung des pH-Signals durch einen angeschlossenen Schreiber.

Die Meßwertanzeige

In der Parametrierung können Sie festlegen, welcher Meßwert im Meßmodus auf der großen Anzeige erscheinen soll. Folgende Meßgrößen können angezeigt werden:

- pH-Wert
- mV-Meßwert
- ORP- (Redox-)Meßwert
- rH-Wert
- Gemessene Temperatur (°C)
- Uhrzeit

So parametrieren Sie die Meßwertanzeige

Wählen Sie im Parametriermenü den Menüpunkt "Meßwertanzeige" und bestätigen Sie mit **enter**.

Wählen Sie mit ◀ und ► die Meßgröße aus, die im Meßmodus angezeigt werden soll und bestätigen Sie die Auswahl mit **enter**. Die Meßgröße erscheint rechts oben im Display.

Wenn Sie "Meßgröße pH" parametriert haben,
können Sie in "Anzeigeformat" parametrieren, ob
der pH-Meßwert mit ein (xx.x) oder zwei (xx.xx)
Kommastellen angezeigt wird.

Im Menüpunkt "Blickwinkel" können Sie den Blickwinkel des Displays verändern. Wenn das Gerät sehr hoch oder sehr niedrig an einer Montagewand befestigt ist, können Sie den Blickwinkel des Displays für Ihre Erfordernisse optimieren. Wählen Sie mit ◀ und ► den gewünschten Blickwinkel aus (+ bedeutet Blickwinkel nach

oben und – Blickwinkel nach unten), und bestätigen Sie die Auswahl mit **enter**. Die Veränderung sehen Sie sofort im Display.

Meßgröße °C Zeit DН mU ORP rН Blickwinkel 0 +2 -2 -1 +1 « zurück [par] Meßwertanze ORP Zeit mυ eigefor Blickwinkel

« zurück [par]

bet Meßwertanz

bet Meßw	bet Meßwertanzeige				6.96pH		
Meβgröβe Anzeigefo Blickwink	pH ormat cel	mU × -2	ORP ו×× −1	rH ×× Ø +	i [×] +	Zeit 2	
« zurück	[par]						

Abb. 9–1 pH-Messung mit Schreiberauswertung

Die pH-Messung

Abb. 9–2 zeigt Ihnen, wie Sie eine Einstab-pH-Elektrode am pH Transmitter 2500 anschließen. Je nachdem, ob der Außenschirm des Elektrodenkabels geerdet ist oder nicht, muß er an Klemme 5 oder die Schirmklemme angeschlossen werden. *Klemmen 3 und 4 müssen gebrückt werden!*

Abb. 9–2 Beschaltung des pH-Eingangs für einfache pH-Messung mit Impedanzmessung der Glaselektrode

Wie Sie die Elektrodenüberwachung Sensocheck[®] nutzen können, erfahren Sie auf S. 9–14.

Wenn Sie ein Gerät mit Option 298 an einer einseitig geerdeten Hilfsenergieversorgung 24 V AC betreiben, kann es bei geerdetem Meßgut durch Ausgleichsströme (über die interne EMV-Beschaltung) zu Fehlmessungen kommen.

Verbinden Sie daher Klemme 4 mit dem Meßgut (leitende Kesselwand) wie in Abb. 9–3 gezeigt. *Klemmen 3 und 4 dürfen nicht gebrückt werden!*

Abb. 9–3 Beschaltung des pH-Eingangs für Geräte mit Option 298 an einseitig geerdeter 24 V AC-Hilfsenergieversorgung bei geerdetem Meßgut

Das Eingangsfilter

Zur Erhöhung der Störsicherheit der pH-Messung kann ein Eingangsfilter eingeschaltet werden. Wenn das Filter eingeschaltet ist, werden kurzzeitige Störimpulse unterdrückt, langsame Meßwertänderungen jedoch erfaßt.

Wenn Sie schnelle Meßwertänderungen erfassen wollen, muß das Eingangsfilter abgeschaltet werden.

spe Einga	ngsfilter		7.01pH
Impulsun	terdrückung	Ein	Aus
« zurück	[par]		

So parametrieren Sie das Eingangsfilter

Wählen Sie im Parametriermenü mit v den Menüpunkt "Eingangsfilter" und bestätigen Sie mit enter.

Der Cal-Timer

Mit dem Cal-Timer können Sie überwachen, ob die Elektrode regelmäßig kalibriert wird. Der Cal-Timer zählt die Zeit seit der letzten Kalibrierung. Wenn die parametrierte Zeit erreicht ist, wird eine Meldung ausgelöst. Sie können im Menü "Alarmeinstellungen" je eine Zeit für die Warnungs- und die Ausfall-Meldung parametrieren.

Der Stand des Cal-Timers kann in der Nebenanzeige dargestellt werden (s. S. 2–1).

So parametrieren Sie den Cal-Timer

spe	Alarmeinstellungen	7.01pH
>> >> >> >>	PH-Alarm mV-Alarm rH-Alarm ORP-Alarm Temperatur-Alarm Da Jaimen Blarm	(Ein) (Aus) (Aus) (Aus) (Aus) (Aus) (Aus)

spe Cal-Timer-Alarm		7.01pH
Cal-fimer-Alar m Warnung Limit Hi Ausfall Limit Hi	Ein 0030 0048	Aus h h
« zurück [par]		

Wählen Sie im Parametriermenü mit v den Menüpunkt "Alarmeinstellungen" und bestätigen Sie mit **enter**.

Wählen Sie mit ▼ den Menüpunkt "Cal-Timer-Alarm" und bestätigen Sie mit **enter**.

Sie können den Alarm ein- oder ausschalten und je eine Zeit für die Warnungs- und die Ausfall-Meldung parametrieren.

S	pe	Cali	matio	o-Pufi	fer		7.01	ιpΗ
i	In Me DI	gold rckRi N 192	tech edel 67	2.00 2.00 1.09	4.01 4.00 4.65	7.00 7.00 6.79	9.21 9.00 9.23	12.00 12.75
P) «	uff zu	ersat rück	z D Lpar	100010 ^]	Mer	nok/R:	iedel	DIN

spe	Calimati	ic-Puf	fer		6.95	БρΗ
• Ing I Mer Opt	old teck ckRiedel t 375	2.00 2.00 4.66	4.01 4.00 7.00	7.00 7.00	9.21 9.00	12.00
Puffe « zur	rick Ipa	Ingol ar]	d Mer	nok/R:	iedel	Opt
					_	_

Der Calimatic[®]-Puffersatz

Für die automatische Kalibrierung mit der Calimatic[®] muß der verwendete Puffersatz parametriert werden. Zur Kalibrierung müssen dann Pufferlösungen aus diesem Puffersatz verwendet werden; die Reihenfolge ist beliebig.

So parametrieren Sie den Calimatic[®]-Puffersatz

Wählen Sie im Parametriermenü mit \checkmark den Menüpunkt "Calimatic[®]-Puffer" und bestätigen Sie mit **enter**.

Wählen Sie mit ◀ und ► den Puffersatz aus, und bestätigen Sie die Auswahl mit **enter**. Die Nennwerte der Puffersätze werden angezeigt.

Wenn das Gerät mit einer der Optionen 370 ... 379 "Puffersatz nach Kundenwunsch" ausgerüstet ist, können Sie *an Stelle des DIN-Puffersatzes* den optionellen Puffersatz auswählen.

Die Puffertabellen sind in Kap. 15 zusammengestellt.

Verwendung von Elektroden mit von pH 7 abweichendem Nullpunkt

Die standardmäßig integrierte Option 356 ermöglicht die Parametrierung des nominellen Nullpunktes und der nominellen Steilheit bei Verwendung von Elektroden mit von pH 7 abweichendem Nullpunkt.

Die automatische Kalibrierung mit der Calimatic[®] ist dann auch für Elektroden mit einem Nullpunkt bei z. B. pH = 4,6 möglich.

Die Kalibrierung ist gültig, wenn der Elektrodennullpunkt um $< \pm 1 \text{ pH}$ und die Steilheit um $< \pm 5,5 \text{ mV/pH}$ vom nominellen Wert abweichen.

So parametrieren Sie nominellen Nullpunkt und Steilheit

Wählen Sie im Parametriermenü mit ▼ den Menüpunkt "Nominell: Npkt/Sth" und bestätigen Sie mit **enter**.

Geben Sie die Werte für den nominellen Elektroden-Nullpunkt und die nominelle Steilheit mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingabe mit **enter**.

spe	Nomine	11:	Npkt/	′Sth		7.01pH
No	minelle minelle	∼_N St	ullpur eilhei	nkt t	+07.00	∣pH ∣mV∕pH
«	zurück	[P	ar]			

Die Temperaturerfassung

Warum Temperaturkompensation?

Die Erfassung der Temperatur des Prozesses bzw. der Pufferlösung ist aus zwei Gründen wichtig:

- Die Steilheit der pH-Elektrode ist temperaturabhängig (Nernst-Gleichung). Daher muß die gemessene Spannung um den Temperatureinfluß korrigiert werden.
- Der pH-Wert der Pufferlösung ist temperaturabhängig. Bei der Kalibrierung muß daher die Temperatur der Pufferlösung bekannt sein, um den tatsächlichen pH-Wert aus der Puffertabelle entnehmen zu können.

In der Parametrierung legen Sie fest, ob die Prozeß-Temperatur und/oder die Cal-Temperatur automatisch gemessen werden oder manuell eingegeben werden müssen.

Automatische Temperaturkompensation

Bei der automatischen Temperaturkompensation wird die Prozeßtemperatur mit einem Pt 100/Pt 1000-Temperaturfühler vom pH Transmitter 2500 gemessen.

Wenn Sie mit automatischer Temperaturkompensation arbeiten, *muß* ein Temperaturfühler im Prozeß sein, der mit dem Pt 100/Pt 1000-Eingang des pH Transmitters 2500 verbunden ist! Wenn kein Temperaturfühler am pH Transmitter 2500 angeschlossen ist, muß mit manueller Eingabe der Meßtemperatur gearbeitet werden.

Abb. 9–1 zeigt, wie Sie den Temperaturfühler im **3-Leiter-Anschluß** an den pH Transmitter 2500 anschließen. Durch den 3-Leiter-Anschluß des Pt 100/Pt 1000-Temperaturfühlers wird der Temperatur-Meßfehler eliminiert, der durch den Zuleitungswiderstand erzeugt wird.

Die Leitungen zu den Klemmen 6 und 7 müssen den gleichen Querschnitt aufweisen.

Bei 2-Leiter-Anschluß wird der Pt 100/Pt 1000 mit den Klemmen 6 und 7 verbunden. Zwischen Klemme 7 und 8 muß eine Brücke eingesetzt werden.

spe Temperaturerfassung	7.05pH
Temperaturfühler Pt10 Meßtemperatur auto	⊈ Pt1000 manuell
Cal-Temperatur auto	manuell
« zurück [par]	

So parametrieren Sie die Meßtemperatur-Erfassung

Wählen Sie im Parametriermenü mit ▼ den Menüpunkt "Temperaturerfassung" und bestätigen Sie mit **enter**. Wählen Sie mit ◀ und ► den verwendeten Temperaturfühler, bestätigen Sie mit **enter** und gehen Sie mit ▼ auf den Menüpunkt "Meßtemperatur". Wählen Sie mit ◀ und ► zwischen "Meß-

Wählen Sie mit ◀ und ► zwischen "Meßtemperatur auto" und "Meßtemperatur manuell" und bestätigen Sie mit **enter**.

Manuelle Temperaturkompensation

Manuelle Temperaturkompensation ist nur sinnvoll, wenn der Prozeß bei konstanter Temperatur läuft!

Wenn "Meßtemperatur manuell" parametriert ist, erscheint im Meßmodus "MAN.TEMP" unten rechts im Display. Der Hinweis "MAN.TEMP" erscheint *nicht*, wenn die Meßwertanzeige die Meßtemperatur zeigt. Sie können die parametrierte manuelle Temperatur in der Nebenanzeige anzeigen (s. S. 2–1).

Wenn "Meßtemperatur manuell" parametriert ist, läuft die automatische Temperaturmessung weiter, die Anzeige, Grenzwerte und Alarmmeldungen werden vom Meßwert gesteuert.

Sie müssen die Prozeßtemperatur eingeben:

Messen Sie die Temperatur des Meßgutes, z. B. mit einem Glasthermometer,

oder

stellen Sie sicher, daß die Meßguttemperatur einen konstanten Wert hat, z. B. durch einen Thermostaten.

Geben Sie die gemessene Temperatur mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingabe mit **enter**.

spe Temperaturerfass	ung 7.05pH
Temperaturfühler Meßtemperatur au Manuell: +0 Cal-Temperatur au	Ptil00 Pt1000 to manuell 25.0 °C to manuell
« zurück [par]	

So parametrieren Sie die Kalibriertemperatur-Erfassung

	. ~		
Г	Γ		
	L	R	
	~		

spe	Temper	7.05pH		
Temp Meß	peratu temper	rfühler stur	Pt10 auto	Pt1000 manuell
Cal	-Temper	ratur	auto	manuell
« z	urück	[par]		

Manuelle Kompensation der Kalibriertemperatur ist dann sinnvoll, wenn der Temperaturfühler bei der Kalibrierung im Prozeß verbleibt.

Wählen Sie mit **v** den Menüpunkt "Cal-Temperatur".

Wählen Sie mit ◀ und ► zwischen "Cal-Temperatur auto" und "Cal-Temperatur manuell" und bestätigen Sie mit **enter**.

Die manuelle Eingabe der Kalibriertemperatur ist auf S. 3–6 beschrieben.

Temperaturkompensation für spurenverunreinigtes Reinstwasser

Wenn es sich bei der Meßlösung um "spurenverunreinigtes Reinstwasser" handelt, kann der pH-Meßwert entsprechend temperaturabhängig umgerechnet werden.

spe	Tk M	eβmedium		7.01pH
i Tk	spur	enverunr -	einigtes R	einstwasser
Tk « zu	≏ück	Aus [par]	Reinstwa	isser

Wählen Sie im Parametriermenü mit ▼ den Menüpunkt "Tk Meßmedium " aus. Gehen Sie mit ► auf "Tk Reinstwasser" und bestätigen mit **enter**.

Die Korrektur erfolgt gemäß folgender Beziehung:

 $pH(25^{\circ}C) = pH(T) + Korr(T)$

- pH(25°C) auf 25°C korrigierter pH-Wert
- pH(T) bei T[°C] gemessener pH-Wert
- Korr(T) Korrekturwert [pH] aus Tabelle

Die im pH Transmitter 2500 gespeicherte Korrekturtabelle wurde für vollständig dissoziierte Elektrolyte (starke Säuren und Laugen) und für den schwach dissoziierenden Elektrolyten Ammoniak berechnet. Dies ist vor allem für Kraftwerksanwendungen interessant, wo als pH-bestimmender Stoff vor allem Ammoniak vorliegt.

Der Stromausgang

Am Stromausgang steht ein eingeprägter Normstrom vom 0 ... 20 mA oder 4 ... 20 mA potentialfrei zur Verfügung. Der Ausgangsstrom kann in einer Nebenanzeige dargestellt werden (s. S. 2–1).

Sie können dem Ausgangsstrom eine der folgenden Meßgrößen zuordnen:

- pH-Wert
- mV-Meßwert
- ORP-Wert
- rH-Wert
- Gemessene Temperatur (°C)

Die Meßspanne, die dem Strombereich 0 (4) ... 20 mA entspricht, können Sie bestimmen, indem Sie einen Anfangs- und einen Endwert für die Meßgröße parametrieren.

Die zulässigen Meßspannen finden Sie in den Technischen Daten, Kap. 14.

Wenn der Anfangswert kleiner als der Endwert ist, erhalten Sie eine steigende Ausgangskennlinie. Sie können eine *fallende Ausgangskennlinie* parametrieren, wenn Sie als Endwert den kleineren Wert und als Anfangswert den größeren Wert der Meßgröße parametrieren.

Der Ausgangsstrom ist auf dem letzten Wert eingefroren:

- Während der Kalibrierung
- In der Stromgeberfunktion (manuelle Eingabe)
- Im Menü "maint Meßstellen-Wartung"
- Nach dem entsprechenden Schnittstellenbefehl

Der 2. Stromausgang

Wenn Ihr Gerät mit der Option 350 ausgerüstet ist, können Sie eine weitere Meßgröße parallel über den zweiten Stromausgang ausgeben (s. a. Abb. 9–4, S. 9–13).

Wenn das Gerät keinen 2. Stromausgang besitzt, erscheint im Parametriermenü die Menüzeile "Ausgangsstrom 2 (optionell)".

So parametrieren Sie den Stromausgang

Wählen Sie im Parametriermenü mit ▼ den Menüpunkt "Ausgangsstrom 2" und bestätigen Sie mit enter .

Falls der pH Transmitter 2500 zusätzlich mit der Option 483 (Analogregler) ausgestattet ist, erscheint anstatt "Ausgangsstrom 2" das Zwischenmenü "Ausgang 2 / Regler". In diesem Fall wählen Sie ggf. mit ◀ "Strom 2" aus, bestätigen die Auswahl mit **enter** und öffnen das Parametriermenü "Ausgangsstrom 2" mit **enter** . Für die Parametrierung als Regler s. S. 9–28.

Wählen Sie mit ◀ und ► die Meßgröße aus, der Sie den Ausgangsstrom zuordnen wollen und bestätigen Sie mit **enter**.

Gehen Sie mit ▼ zu "Ausgang". Wählen Sie mit ◀ und ▶ aus, ob der Stromausgang von 0 ... 20 mA oder von 4 ... 20 mA (Live Zero) arbeiten soll und bestätigen Sie mit **enter**.

Gehen Sie mit ▼ zu "Anfang". Geben Sie den Anfangswert der Meßgröße (entspricht 0 bzw. 4 mA) mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingabe mit **enter**.

Gehen Sie mit ▼ zu "Ende". Geben Sie den Endwert der Meßgröße (entspricht 20 mA) ein und bestätigen Sie die Eingabe mit **enter**.

Voll ausgebaute Meßstelle mit Nutzung aller Funktionen

Abb. 9–4, S. 9–13, zeigt die Beschaltung des pH Transmitters 2500, wenn Sie alle Meß- und Steuerungsmöglichkeiten nutzen wollen.

spe Spezialistenebene	7.00pH
 Nominell: Npkt/Sth rH-Wert Deltafunktion Stromeingang Ausgangsstrom 1 Nusgangsstrom 2 	
spe Ausgang 2 ∕ Regler	7.00pH
Ausgang 2 Strom 2 F » Ausgangsstrom 2	Regler
« zurück [par]	

spe	Ausgan	gsstrom 2		7.00pH
Au Au En «	Børöðe Sgang fang de zurück	020mA 020mA 0(4)mA 20mA [par]	0RP 4 +00 +14	rH °C 2000 ₽H .00 ₽H .00 ₽H

Abb. 9–4 pH- und ORP-Messung mit Durchflußüberwachung, Regelung, Sondenreinigung, Rechneranschluß, Schreiber-Auswertung von pH und ORP und Überwachung über NAMUR-Kontakte

Die Elektrodenüberwachung Sensocheck[®]

Die Elektrodenüberwachung Sensocheck[®] mißt die Impedanz der Glaselektrode und der Bezugselektrode. Die Messung erfolgt kontinuierlich zusammen mit der pH-Messung.

Die Elektrodenimpedanzen sind ein gutes Maß für den Zustand der Elektroden, Verschmutzung (bei der Bezugselektrode), Glasbruch (bei der Glaselektrode), Alterung und Kabelbruch.

So nutzen Sie Sensocheck®

Wenn Sie nur die Impedanz der Glaselektrode überwachen wollen, können Sie die Elektrode anschalten wie in Abb. 9–2. S. 9–4, gezeigt. Damit können Sie eine einfache Bruch-Überwachung durchführen.

Zur Messung der Bezugselektroden-Impedanz wird eine Hilfselektrode benötigt. Die Beschaltung zeigt Abb. 9–5. Damit ist eine Überwachung der Verschmutzung der Bezugselektrode möglich. Anstelle mit einer Hilfselektrode kann Klemme 4 auch mit einem metallisch leitenden Behälter des Meßmediums verbunden werden. Der Behälter darf geerdet sein.

Die Absolutwerte der Elektrodenimpedanzen sind stark Hersteller- und Typen-abhängig. *Sie müssen daher die Sollwerte für die verwendete Elektrode an einer neuen Elektrode ermitteln.* Dazu können Sie sich die Werte für Glas- und Bezugselektrodenimpedanz in der Nebenanzeige anzeigen lassen (s. S. 2–1) oder aus den Daten im Kalibrierprotokoll entnehmen (s. S. 4–3). In der Parametrierung "Alarmeinstellungen" legen Sie die Grenzen für Warnungs- und Ausfallmeldungen fest. Wenn der Wert der Glas- bzw. Bezugselektrodenimpedanz einen parametrierten Wert unter- oder überschreitet, wird eine Warnungs- oder Ausfallmeldung ausgelöst.

Abb. 9-5 Beschaltung des pH-Eingangs mit Impedanzmessung der Glas- und Bezugselektrode

	⁄	
- 1		
- I		\neg
Ŀ	<u>ل</u> ــــ	

Oberer Wert für die Glaselektroden-Impedanz überschritten: Hinweis auf Kabelbruch oder Elektrode trocken.

Unterer Wert für Glaselektroden-Impedanz unterschritten: Hinweis auf Glasbruch.

Oberer Wert für Bezugselektroden-Impedanz überschritten: Hinweis auf Verschmutzung der Bezugselektrode.

Unterer Wert für Bezugselektroden-Impedanz unterschritten: Hinweis auf Kurzschluß.

Die Glaselektroden- und die Bezugselektrodenimpedanz können in der Nebenanzeige dargestellt werden (s. S. 2–1).

So parametrieren Sie Sensocheck®

Wählen Sie im Parametriermenü mit v den Menüpunkt "Alarmeinstellungen" und bestätigen Sie mit **enter**.

Gehen Sie mit ▼ zu "Glas-El-Alarm" und bestätigen Sie mit **enter**.

Parametrieren Sie "Glas-El-Alarm Ein". Geben Sie die Werte für die Warnungsmeldung (Warnung Limit Lo und Hi) und die Ausfallmeldung (Ausfall Limit Lo und Hi) mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingaben mit **enter**.

spe Glas-El-Alarm	7.01pH
Glas-El-Alarm Ausfall Limit Lo Warnung Limit Lo Warnung Limit Hi Ausfall Limit Hi « zurück [par]	Ein Aus 0015 ΜΩ 0045 ΜΩ 0120 ΜΩ 0200 ΜΩ

spe Bezugs-El-Alarm	7.01pH
Bezgel:Alerm	510 Aus
Ausfall Limit Lo	001.0 ka
Warnung Limit Lo	002.0 ka
Warnung Limit Hi	010.0 ka
Ausfall Limit Hi	014.0 ka

Gehen Sie zum Untermenü "Bezugs-El-Alarm" und bestätigen Sie mit **enter**.

Parametrieren Sie "Bezg-El-Alarm Ein". Geben Sie die Werte für die Warnungsmeldung (Warnung Limit Lo und Hi) und die Ausfallmeldung (Ausfall Limit Lo und Hi) mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingaben mit **enter**.

Hinweise zur Impedanzmessung

Um eine einwandfreie Überwachung der Glaselektrodenimpedanz zu erreichen, müssen geeignete Kabel mit ausreichend geringer Kabelkapazität zum Anschluß der Elektrode verwendet werden.

Bei Verwendung eines pH-Trennverstärkers ist keine Elektrodenüberwachung möglich!

Die Elektrodenimpedanzen werden dynamisch mit einer kleinen Wechselspannung gemessen. Für die Glaselektrode ergeben sich dadurch Impedanz-Werte von ca. 0,8 facher Größe der statischen Messung nach DIN-IEC 746, Teil 2. Die Kabelkapazität der Elektrodenzuleitung geht in die Messung nicht ein, wenn sie einen Wert von 2 nF (entspricht ca. 20 m Länge des Meßkabels) nicht überschreitet. Da die niederohmige Bezugs-Elektroden-Impedanz nur über den Meß-Elektrolyten erfaßt werden kann, geht dessen Eigenleitfähigkeit in die gemessene Gesamtimpedanz mit ein. Für diese Impedanz können sich daher wesentlich größere Meßwerte ergeben als bei Messung nach DIN-IEC 746, Teil 2. Wenn eine Bezugselektrode mit einem sehr kleinen Widerstand (< 100 Ω) verwendet wird, kann ein Widerstand von 100 Ω in Reihe geschaltet werden, um im Meßbereich des pH Transmitters 2500 zu bleiben.

Die Auswertung der Impedanzen erfolgt kontinuierlich nach Mittelwertbildung über mehrere Messungen. Wird der Minimal- oder Maximalwert des Alarmfensters erreicht bzw. unter- oder überschritten, wird eine Warnungs- oder Ausfall-Meldung ausgelöst. Da die Elektroden-Impedanzen, insbesondere die Impedanz der Glasmembran, temperaturabhängig sind, werden sie auf eine Bezugstemperatur von 25 °C umgerechnet, so daß auch bei stark schwankenden Meßtemperaturen vergleichbare Impedanzwerte angezeigt und ausgewertet werden. Damit vereinfacht sich auch das Festlegen sinnvoller Bereiche für die Elektrodenüberwachung.

Die Redox (ORP)-Messung

Abb. 9-6 Beschaltung des pH Transmitters 2500 für Redox (ORP)-Messung

Bei Redoxpotential (ORP)-Messungen muß zusätzlich zum Meßergebnis angegeben werden, gegen welche Bezugselektrode gemessen wurde oder ob eine Umrechnung auf die Normal-Wasserstoff-Elektrode erfolgte.

Die Angabe des Redoxpotentials (ORP) wird vervollständigt durch die Angabe der verwendeten Meßelektrode (z. B. "Platin") sowie der Meßtemperatur und des pH-Wertes.

Differenzspannungen von Bezugselektroden gegen die Normal-Wasserstoff-Elektrode (<u>+</u>5 mV, bei 25 °C):

trode	Differenzspannung
KCI 1 molar	+236 mV
KCI 3 molar	+207 mV
KCI 3,5 molar	+200 mV
KCI gesättigt	+197 mV
KCI 3 molar	+207 mV
KCI 3,5 molar	+252 mV (Kalomel)
KCI gesättigt	+244 mV (Kalomel)
KCI 3,5 molar	-571 mV
	trode KCI 1 molar KCI 3 molar KCI 3,5 molar KCI gesättigt KCI 3 molar KCI 3,5 molar KCI gesättigt KCI 3,5 molar

Simultane pH- und Redox (ORP)-Messung

Wenn als Hilfselektrode eine Platin-Elektrode verwendet wird, können Sie *simultan* den pH-Wert und den Redox (ORP)-Wert messen. Wenn der pH Transmitter 2500 mit dem 2. Stromausgang (Option 350) ausgerüstet ist, können Sie pH-Wert und Redox (ORP)-Wert gleichzeitig ausgeben.

Abb. 9–7 Beschaltung des pH-Eingangs für Impedanzmessung der Glas- und Bezugselektrode mit simultaner Redox (ORP)-Messung

Die rH-Messung

Der rH-Meßwert wird vom pH Transmitter 2500 aus zwei getrennt erfaßten Meßwerten (pH-Wert und Redoxspannung) berechnet. Eine direkte Kalibrierung der rH-Messung ist zwar nicht möglich, aber die pH-Elektrode kann einzeln kalibriert werden.

Als pH-Elektrode kann eine Einstab-Elektrode eingesetzt werden. Die zusätzlich erforderliche Metall- (Platin)-Elektrode wird an Klemme 4 für die Hilfselektrode angeschlossen und dient gleichzeitig als Hilfselektrode für die Impedanzmessung zur Elektrodenüberwachung (s. Abb. 9–7).

Ein weiterer Anschluß an Klemme 4 darf nicht erfolgen!

Die Kalibrierung erfolgt mit normalen pH-Pufferlösungen, da die zusätzliche Platinelektrode praktisch als kalibrierfrei angesehen werden kann.

pH- und rH-Wert können nach der pH-Kalibrierung mit rH-Pufferlösungen kontrolliert werden.

Im Parametriermenü können verschiedene Bezugselektroden gewählt werden, deren temperaturabhängige Bezugsspannungen E_{Bez} gegen die Normal-Wasserstoff-Elektrode (NWE) im pH Transmitter 2500 tabelliert sind:

- Silberchlorid Ag/AgCl, KCl 1m
- Silberchlorid Ag/AgCl, KCl 3 m
- Thalamid Hg,TI/TICI, KCI 3,5 m
- Quecksilbersulfat Hg/Hg₂SO₄, K₂SO₄ gesättigt

Hinweise zur Theorie der rH-Messung

Das **Red**uktions-**Ox**idations-Verhalten (Redox) von Stoffen in einer wäßrigen Lösung wird korrekt beschrieben durch die Angabe der Spannung E_H zwischen einer chemisch indifferenten Metallelektrode und der Normalwasserstoffelektrode (NWE) sowie der Meßtemperatur.

Wegen der meist vorhandenen pH-Abhängigkeit muß der pH-Wert zusätzlich angegeben werden.

Als Meßelektrode wird eine chemisch nicht reagierende, elektronensensitive Edelmetallelektrode, z. B. eine Platin-Elektrode verwendet.

$E_{H} = ORP + EBez$

Als Bezugselektrode dient in der Praxis nicht die NWE, sondern eine einfacher zu handhabende andere Bezugselektrode, z. B. eine Ag/AgCl-Elektrode, deren temperaturabhängige Spannung E_{Bez} gegen die NWE bekannt sein muß. Sie muß durch Addition zur gemessenen Spannung berücksichtigt werden.

Eine andere Meßgröße für das Redox-Verhalten ist der **rH-Wert**.

Er stellt eine aus dem Redoxverhalten, beschrieben durch den sogenannten pe-Wert, und aus dem pH-Wert zusammengesetzte Größe dar. Der pe-Wert ist eine theoretische Hilfsgröße, die durch Multiplikation von E_H mit 1/E_N (Kehrwert der Nernst-Spannung) gebildet wird.

Der rH-Wert wird folgendermaßen definiert:

 $rH = (pe+pH) \star 2$ oder $rH = (E_H/E_N + pH) \star 2$.

Diese Beziehung wird vom pH Transmitter 2500 in folgender Form verarbeitet:

 $rH = (((ORP + E_{Bez}) / E_N) + pH) * 2 * Faktor.$

Hierbei sind

ORP :	gemessene Spannung der Platin-
	gegen die Bezugs-Elektrode
E _{Bez} :	tabellierte, temperaturabhängige
	Spannung der Bezugs-Elektrode
	gegen die NWE (parametrierbar)
E _N :	Nernst-Spannung
	(temperaturabhängig)
pH :	aktueller pH-Wert
"2":	theoretischer Faktor für den rH-Wert
Faktor:	zusätzlicher, empirischer Faktor
	(parametrierbar, Standardwert 1)

Zur rH-Messung werden somit zwei Spannungen zwischen drei Elektroden benötigt: Glaselektrode gegen Bezugselektrode (pH-Elektrode) und Platinelektrode gegen Bezugselektrode (Redox-Elektrode). Durch die Verknüpfung des Redox-Wertes mit dem pH-Wert zum rH-Wert sollte eine vom pH-

Wert unabhängige Meßgröße für das Redox-Ver-

halten geschaffen werden. Dies gilt jedoch nur, wenn u. a.

- überhaupt Protonen an der Reaktion maßgeblich beteiligt sind,
- vorzugsweise genau ein Mol Protonen umgesetzt werden und
- der pH-Variationsbereich möglichst klein ist.

Die "direkte" Messung des rH-Wertes mit einer sogenannten rH-Elektrode durch Spannungsmessung zwischen einer Platin- und einer Glaselektrode führt zwar direkt zum rH-Wert, aus dem jedoch weder der pH-Wert noch die Redox-Spannung herausgerechnet werden können, weswegen die automatische Berechnung des rH-Wertes wie im pH Transmitter 2500 vorzuziehen ist.

Der Faktor "2" in der Bestimmungsgleichung für den rH-Wert kommt dadurch zustande, daß ein Molekül H_2 in zwei Protonen dissoziert. Für einige spezielle, empirische Meßverfahren in der chemischen Produktion enthält die Bestimmungsgleichung einen parametrierbaren Zusatzfaktor.

Die Bestimmungsgleichung für den theoretischen rH-Wert gilt nur bei Parametrierung "rH mit Faktor berechnen Nein" oder wenn der Faktor 1 parametriert ist.

So parametrieren Sie die rH-Messung

Wählen Sie im Parametriermenü mit ▼ den Menüpunkt "rH-Wert" und bestätigen Sie mit **enter**. Wenn Sie den rH-Wert mit Zusatzfaktor berechnen wollen, parametrieren Sie "rH mit Faktor berechnen Ja".

Geben Sie den Faktor mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingabe mit **enter**.

Gehen Sie mit ▼ zu "Bezugselektrode" und bestätigen Sie mit **enter**.

Wählen Sie mit ◀ und ► den Typ der verwendeten Bezugselektrode aus und bestätigen Sie mit **enter**.

spe rH-Wert	6.96pH
rH mit Faktor berechnen F <mark>aktor</mark> » Bezugselektrode	Ja Nein 01.00
« zurück [par]	

spe Bezugselektrode	7.01pH
A Silberchlorid Ag/AgC B Silberchlorid Ag/AgC C Thalamid Hg,TI/ D Quecksilbersulfat Hg/Hg29 Huswahl der Elektrode A « zurück [par]	l,KCl 1m L,KCl 3m TlCl,KCl 3.5m 304,K2S04 ges B C D

Die Alarmeinstellungen und die NAMUR-Kontakte

Die Alarmeinstellungen

Für jede der folgenden Meßgrößen können Sie **Alarmgrenzen** parametrieren:

- pH-Wert
- mV-Meßwert
- rH-Wert
- ORP-Meßwert
- Temperatur-Meßwert
- Cal-Timer
- Elektroden-Nullpunkt
- Elektroden-Steilheit
- Glaselektroden-Impedanz
- Bezugselektroden-Impedanz
- Eingangsstrom am Stromeingang (bei Verwendung als Meßeingang)
- Dosierzeit (Reglerstellgröße auf ±100 %) (nur bei eingeschaltetem Regler)

Für jede Meßgröße (außer Cal-Timer und Dosierzeit) können Sie unabhängig vier Alarmgrenzen parametrieren:

- Ausfall Limit Lo Unterschreitet der Meßwert die parametrierte Grenze, wird der NAMUR-Kontakt "Ausfall" aktiv, im Display erscheint "AUSF"
- Warnung Limit Lo Unterschreitet der Meßwert die parametrierte Grenze, wird der NAMUR-Kontakt "Warnung" aktiv, im Display erscheint "WARN"
- Warnung Limit Hi Überschreitet der Meßwert die parametrierte Grenze, wird der NAMUR-Kontakt "Warnung" aktiv, im Display erscheint "WARN"
- Ausfall Limit Hi Überschreitet der Meßwert die parametrierte Grenze, wird der NAMUR-Kontakt "Ausfall" aktiv, im Display erscheint "AUSF"

Die gerade aktiven Alarmmeldungen können Sie im Diagnosemenü "aktuelle Meldungsliste" ansehen (s. S. 4–2).

Außerdem können Sie in der Parametrierung die Alarmmeldungen für jede Meßgröße ein- oder ausschalten. Die Alarmgrenzen bleiben auch bei ausgeschalteter Meldung gespeichert.

Alarmmeldungen für die Temperatur sind nur möglich, wenn "Meßtemperatur auto" parametriert wurde (s. S. 9–9) und der Alarm eingeschaltet ist.

Beispiel: Alarmeinstellung pH-Alarm

spe pH-Alarm	7.01pH
PH-Hlarm Ausfall Limit Lo Warnung Limit Lo Warnung Limit Hi Ausfall Limit Hi « zurück [par]	510 Aus +03.00 pH +05.00 pH +09.00 pH +11.00 pH

Mef	Bwert [pH]	Meldung
≤	3,00	Ausf Lo pH-Wert und Warn Lo pH-Wert
	3,01 5,00	Warn Lo pH-Wert
	5,01 8,99	
	9,00 10,99	Warn Hi pH-Wert
≥	11,00	Ausf Hi pH-Wert und Warn Hi pH-Wert

So parametrieren Sie die Alarmeinstellungen

spe	Alarmeinstellungen	7.01pH
† » » »	ORP-Alarm Temperatur-Alarm Cal-Timer-Alarm Nullpunkts-Alarm Steilheit-Alarm	(Aus) (Aus) (Aus) (Ein) (Ein)

spe Glas-El-Alarm	7.01pH
Glas-21-Alarm Ausfall Limit Lo Warnung Limit Lo Warnung Limit Hi Ausfall Limit Hi « zurück [par]	5in Aus 0015 ΜΩ 0045 ΜΩ 0120 ΜΩ 0200 ΜΩ

Wählen Sie im Parametriermenü mit v den Menüpunkt "Alarmeinstellungen" und bestätigen Sie mit **enter**.

Sie können in dieser Menüebene sehen, welche Alarme eingeschaltet sind.

Wählen Sie mit ▼ die Alarmeinstellung, die Sie parametrieren wollen (z. B. "Glas-El-Alarm") und bestätigen Sie mit **enter**.

Geben Sie die Warnungs- und Ausfallgrenzen mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingaben mit **enter**.

Mit **par** gelangen Sie zurück in die Menüebene "Alarmeinstellungen" und können weitere Alarme parametrieren.

Die NAMUR-Kontakte

Der pH Transmitter 2500 verfügt standardmäßig über die drei NAMUR-Kontakte Funktionskontrolle, Warnung (Wartungsbedarf) und Ausfall.

- Funktionskontrolle ist aktiv: bei der Kalibrierung (cal), bei der Wartung (maint): Stromgeber, Meßstellen-Wartung, bei der Parametrierung (par) in der Betriebsebene (bet) und der Spezialistenebene (spe) und während eines Spülzyklus.
- Warnung (Wartungsbedarf) ist aktiv, wenn ein parametrierter Wert "Warnung Limit Hi" oder "Warnung Limit Lo" über- bzw. unterschritten wurde oder bei anderen Warnungsmeldungen.
 Das bedeutet, daß die Meßeinrichtung noch

ordnungsgemäß arbeitet, aber gewartet werden sollte oder, daß Prozeßparameter einen Wert erreicht haben, der ein Eingreifen erfordert. Warnung ist *nicht* aktiv bei "Funktionskontrolle".

• Ausfall ist aktiv,

wenn ein parametrierter Wert "Ausfall Limit Hi" oder "Ausfall Limit Lo" über- bzw. unterschritten wurde,

wenn die Meßbereichsgrenzen des pH Transmitters 2500 überschritten wurden oder bei anderen Ausfallmeldungen.

Das bedeutet, daß die Meßeinrichtung *nicht mehr* ordnungsgemäß arbeitet oder, daß Prozeßparameter einen kritischen Wert erreicht haben.

Ausfall ist nicht aktiv bei "Funktionskontrolle".

Sie können die drei NAMUR-Kontakte als Arbeitskontakte (aktiv geschlossen) oder Ruhekontakte (aktiv geöffnet) parametrieren.

Für einen sicheren Betrieb müssen die NAMUR-Kontakte als *Ruhekontakte* parametriert werden. Nur dann erfolgt bei Netzausfall eine Alarm-Meldung!

Für den Warnungskontakt und den Ausfallkontakt kann jeweils eine **Verzögerungszeit** parametriert werden. Wenn eine Alarmmeldung auftritt, wird der Kontakt erst nach Ablauf der Verzögerungszeit aktiv.

Die Relaiskontakte sind im Lieferzustand auch für kleine Signalströme (ab ca. 1 mA) geeignet. Wenn größere Ströme als ca. 100 mA geschaltet werden, brennt die Vergoldung beim Schaltvorgang ab. *Die Relais schalten danach kleine Ströme nicht mehr zuverlässig.*

So parametrieren Sie die NAMUR-Kontakte

spe NAMUR-Kontakte	7.01pH
• 3 Kontakte: Funktionsko Warnung (Wartungsbedar NHWWEKONTAKTE Ausfall Verzögerungszeit Warnung Verzögerungszeit « zurück [par]	ontrolle, f), Ausfall cit, Ruhe 0010 s 0005 s

Wählen Sie im Parametriermenü mit ▼ den Menüpunkt "NAMUR-Kontakte" und bestätigen Sie mit **enter**.

Wählen Sie mit ◀ und ▶ zwischen "NA-MUR-Kontakte Arbeit" und "NAMUR-Kontakte Ruhe" und bestätigen Sie mit **enter**.

Geben Sie die Ausfall-Verzögerungszeit und die Warnung-Verzögerungszeit mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingaben mit **enter**.

Die Grenzwertkontakte

Der pH Transmitter 2500 verfügt standardmäßig über zwei Grenzwertkontakte. Die Grenzwertkontakte können von folgenden Meßgrößen gesteuert werden:

- pH-Wert
- mV-Meßwert
- ORP-Wert
- rH-Wert
- Temperatur-Meßwert (°C)
- · Eingangsstrom des Stromeingangs

Jeden der beiden Kontakte können Sie unabhängig parametrieren:

- Die Meßgröße steuert den Grenzwertkontakt.
- Die *Wirkrichtung* gibt an, ob der Kontakt beim Unterschreiten (Min) oder beim Überschreiten (Max) des Grenzwertes aktiv wird.
- Der Grenzwert 1 bzw. 2 (GW1, GW2) legt die Schaltschwelle fest.
- Die Hysterese bestimmt, um wieviel der Grenzwert unterschritten (Max) oder überschritten (Min) sein muß, bevor der Kontakt zurückschaltet.
- Arbeitskontakt oder Ruhekontakt legt fest, ob der aktive Kontakt geschlossen (Arbeit) oder geöffnet (Ruhe) ist.

Wenn der Meßwert die parametrierten Grenzwerte unter- bzw. überschreitet, erscheint rechts oben im Display "G1" und/oder "G2". Kontakt 1 und/oder Kontakt 2 sind aktiv.

Während der Kalibrierung sind die Grenzwertkontakte inaktiv!

Wenn eine Probenkalibrierung durchgeführt wird, wird die Anzeige "G1/G2" durch "Probe" überdeckt!

Wenn das Gerät bei Schnittstellenbetrieb im Remotezustand ist, wird die Anzeige "G1/G2" durch "Remote" überdeckt!

Grenzwerte und Hysterese

Hysterese

Die Relaiskontakte sind im Lieferzustand auch für kleine Signalströme (ab ca. 1 mA) geeignet. Wenn größere Ströme als ca. 100 mA geschaltet werden, brennt die Vergoldung beim Schaltvorgang ab. *Die Relais schalten danach kleine Ströme nicht mehr zuverlässig*.

So parametrieren Sie die Grenzwertkontakte

9.0IPH

Wählen Sie im Parametriermenü mit ▼ den Menüpunkt "Grenzwerte" und bestätigen Sie mit **en-**ter .

Wählen Sie mit ▼ und ▲ zwischen "Grenzwert 1" und "Grenzwert 2" und bestätigen Sie mit enter .

spe Grenzwert	1	7.01pH
Meßanöße Wirkrichtung	BH mV ORP r Min	H °C I-Eing
Grenzwert 1 Husterese	+09. +09.	00 рН 10 рН
Grenzwertkont « zurück [pa	akt Heb a	it Ruhe

Wählen Sie jeweils die Meßgröße, die Wirkrichtung und Arbeits-/Ruhekontakt mit ◀ und ▶ aus und bestätigen Sie die Auswahl mit **enter**. Geben Sie den Grenzwert und die Hysterese jeweils mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingaben mit **enter**.

Mit **par** gelangen Sie zurück in die Menüebene "Grenzwerte" und können den anderen Grenzwert parametrieren.

spe Grenzwerte / Regler 7.01pH Grenzwertkontakte Grenzwert Regler » Regler « zurück [par] Falls Ihr Gerät mit der Reglerfunktion (Option 353) ausgerüstet ist, erscheint nebenstehendes Menü.

Um die Grenzwertkontakte zu parametrieren, gehen Sie mit auf "Grenzwert" und bestätigen mit enter .

Die Reglerfunktion

Sie können die Reglerfunktion nur nutzen, wenn Ihr Gerät mit der Option 353 für den Digitalregler, **oder** mit den Optionen 350 und 483 für den Analogregler (Ausgang 2) ausgerüstet ist. Ohne diese Optionen erscheint im Parametriermenü nur der Menüpunkt "Grenzwerte", sonst "Grenzwerte/Regler", bzw. "Ausgangsstrom 2" oder "Ausgangsstrom 2 (optionell)" anstatt "Ausgang 2 / Regler" für den Analogregler.

Der Digitalregler

Den Digitalregler parametrieren Sie im Menüpunkt "Grenzwerte / Regler". Der zweiseitige PI-Regler ermöglicht eine quasistetige (getaktete) Regelung. Es sind zwei Reglertypen parametrierbar:

- Typ A: Impulslängenregler (s. S. 9–33)
- Typ B: Impulsfrequenzregler (s. S. 9–33)

Der Analogregler

Den Analogregler parametrieren Sie im Menüpunkt "Ausgang 2 / Regler".

Es sind drei Reglertypen parametrierbar:

- Typ A: 3-Wege-Mischventil (s. S. 9–34)
- Typ B: Durchgangsventil (< Sollwert) (s. S. 9–35)
- Typ C: Durchgangsventil (> Sollwert) (s. S. 9–36)

Regelgrößen

- pH-Wert
- mV-Wert
- ORP-Wert
- rH-Wert
- Temperatur-Meßwert (°C)

Der aktuelle Wert der Stellgröße kann im Meßmodus in der Nebenanzeige dargestellt werden (RGL-Y [%]).

Während der Kalibrierung ist die Reglerstellgröße auf dem letzten Wert eingefroren!

Mit dem parametrierbaren **Dosierzeitalarm** können Sie die Zeit überwachen, für die die Stellgröße auf +100 % oder -100 % steht, also das Ventil voll geöffnet ist.

Wenn diese Zeit überschritten wird, kann das z. B. ein Hinweis auf fehlendes Titrans oder ein defektes Ventil sein.

Die Regelkennlinie

Abb. 9–8 zeigt die Kennlinie des Reglers im pH Transmitter 2500. Alle Punkte der Kennlinie können parametriert werden:

- Regelanfang und
- Regelende legen den Regelbereich fest. Außerhalb des Regelbereiches bleibt die Stellgröße fest auf +100 % bzw. -100 %.
- Auf den Sollwert wird geregelt.
- In der Neutralzone wird nicht geregelt.
 Die Neutralzone liegt symmetrisch zum Sollwert, ihre Breite kann parametriert werden.
- Mit Eckpunkt X und Eckpunkt Y können Sie für beide Regelbereiche (◀: Regelgröße < Sollwert und ►: Regelgröße > Sollwert) einen Eckpunkt parametrieren. So lassen sich jeweils zwei unterschiedliche Regelsteilheiten realisieren, um z. B. bei stark nichtlinearen Titrationskennlinien eine optimale Regelcharakteristik zu erzielen.
- Die Nachstellzeit bestimmt den I-Anteil des Reglers. Wenn Sie "Nachstellzeit 0000 s" parametrieren, ist der I-Anteil abgeschaltet. Die Nachstellzeit kann für beide Regelbereiche (◀: Regelgröße < Sollwert und ►: Regelgröße > Sollwert) getrennt parametriert werden.

Zu Testzwecken können Sie die Reglerstellgröße Y im Wartungsmenü manuell eingeben (s. S. 5–6).

Die Stellgröße

Die Ermittlung der Stellgröße ist für den Digitalregler und den Analogregler gleich. Die Ausgabe der Stellgröße auf die Grenzwertkontakte bzw. auf den Ausgang 2 unterscheidet sich jedoch wie folgt:

Digitalregler

Die Stellgröße wird über die beiden Grenzwertkontakte 1 und 2 ausgegeben.

- Grenzwertkontakt 1 arbeitet im Stellgrößenbereich 0 ... +100 % Regelgröße < Sollwert
- Grenzwertkontakt 2 arbeitet im Stellgrößenbereich 0 ... -100 % Regelgröße > Sollwert

Mit den Kontakten können z. B. Ventile oder Dosierpumpen gesteuert werden. Dabei variiert die Einschaltdauer bzw. die Schaltfrequenz der Kontakte entsprechend der Stellgröße. Die aktuelle Stellgröße kann in der Nebenanzeige dargestellt werden (s. S. 2–1).

Die Relaiskontakte sind im Lieferzustand auch für kleine Signalströme (ab ca. 1 mA) geeignet. Wenn größere Ströme als ca. 100 mA geschaltet werden, brennt die Vergoldung beim Schaltvorgang ab. *Die Relais schalten dann kleine Ströme nicht mehr zuverlässig.*

Analogregler

Die Stellgröße wird proportional als analoger Strom über den Ausgang 2 ausgegeben.

- Reglertyp A (3-Wege-Mischventil) arbeitet im Stellgrößenbereich -100 ... +100 %
- Reglertyp B (Durchgangsventil) arbeitet im Stellgrößenbereich 0 ... +100 % Regelgröße < Sollwert
- Reglertyp C (Durchgangsventil) arbeitet im Stellgrößenbereich 0 ... -100 % Regelgröße > Sollwert

Mit dem Ausgang 2 können Ventile gesteuert werden. Dabei variiert der Strom entsprechend der Stellgröße. Die aktuelle Stellgröße kann in der Nebenanzeige dargestellt werden (s. S. 2–1).

Abb. 9-8 Regelkennlinie

spe Grenzwerte / Re	gler	7.01pH
Grenzwertkontakte » Regler	Grenzu	vert <mark>Regler</mark>
« zurück [par]		

Der Impulslängenregler

(nur mit Option 353)

Der Impulslängenregler dient zur Ansteuerung von Ventilen als Stellglieder.

Der Impulslängenregler schaltet die Kontakte für eine Zeit ein, deren Dauer von der Stellgröße abhängt.

Die *Periodendauer* ist dabei konstant. Sie kann getrennt für beide Regelbereiche parametriert werden, um z. B. die Anpassung an zwei verschiedene Ventiltypen zu ermöglichen. Die *minimale Einschaltdauer* wird nicht unterschritten, auch wenn die Stellgröße entsprechende Werte annimmt. Damit kann z. B. die Reaktionszeit eines Ventils berücksichtigt werden. Ist die minimale Einschaltdauer auf 0 parametriert, so ist eine systembedingte minimale Einschaltdauer von 0,25 s wirksam.

Der Impulsfrequenzregler

(nur mit Option 353)

Der Impulsfrequenzregler dient zur Ansteuerung von (frequenzgesteuerten) Dosierpumpen als Stellglieder.

Der Impulsfrequenzregler variiert die Frequenz, mit der die Kontakte eingeschaltet werden. Die maximale Impulsfrequenz [Imp/min] kann parametriert werden. Sie ist abhängig von der verwendeten Dosierpumpe. Der höchste einzugebende Wert beträgt 120 Imp/min. Die Einschaltdauer ist konstant.

Sie wird automatisch aus der parametrierten maximalen Impulsfrequenz abgeleitet:

Einschaltdauer [s] = 30 / max. Impulsfrequenz [Imp/min]

So parametrieren Sie die Reglerfunktion

Wählen Sie im Parametriermenü mit ▼ den Menüpunkt "Grenzwerte/Regler" und bestätigen Sie mit **enter**.

Gehen Sie mit

auf "Regler" und bestätigen

Sie mit enter .

Mit ► oder **enter** gelangen Sie in das Untermenü "Regler".

Wählen Sie mit ◀ und ► den Reglertyp aus und bestätigen Sie mit **enter**.

Um die Regelparameter zu parametrieren, gehen Sie mit ▶ oder **enter** in das Untermenü "Regelparameter".

spe	Impulslängen	regler	6.99pH
i	∢Kontakt 2:	-1000	×
	▶Kontakt 1:	0+100	×
∎ka	gelgröße	■ mV OR	Р rH °C
So	llwert	+07.	00 рН
∔ Ne	utralzone	+00.	00 рН

Der Informationstext zeigt die Kontaktbelegung: Kontakt 2 arbeitet im Stellgrößenbereich 0 ... -100 % (z. B. Säureventil), Kontakt 1 arbeitet im Stellgrößenbereich 0 ... +100 % (z. B. Laugenventil).

9	spe	Impulslär	igeni	regl	ler		6.9	9рН
t	1	▶Kontakt	1:	0	.+100	%		
	Re So	gelgröβe llwert		рН	мV 01 +07	RP . ØØ	гH	°C
Ŧ	Ne	utralzone n sinsena	1622	eit.	+00 00	ŏŏ ai	βĤ	

spe	Impulslängenregl	er 7.01pH
↑ Mi TREUNN	n. Einschaltzeit egelanfang ckpunkt X ckpunkt Y achstellzeit griofendauer	0005 s +02.00 pH +04.00 pH +020.0 % 0000 s 0060 s

Typ A: Impulslängenregler

Mit ◀ und ▶ parametrieren Sie die Regelgröße, die den Regler steuert. Geben Sie den Sollwert, die Neutralzone und die minimale Einschaltzeit jeweils mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingaben mit **enter**.

Geben Sie für den linken Regelbereich (◀: Regelgröße < Sollwert) Regelanfang, Eckpunkt X, Eckpunkt Y, Nachstellzeit und Periodendauer ein.

spe	Impulslängenr	egler	7.01pH
↑ ARIAN ARIAN ARIAN ARIAN	egelende ckpunkt X ckpunkt Y achstellzeit eriodendauer Zurück (par)	+12. +11. +045 000 006	00 PH 00 PH .0 % 0 s 0 s

Geben Sie für den rechten Regelbereich (▶: Regelgröße > Sollwert) Regelende, Eckpunkt X, Eckpunkt Y, Nachstellzeit und Periodendauer ein.

	SPe	Impulstre	quenzre	gren	0.32PH
t	1	€Kontakt	1: 0	.+100 >	.
Ļ	Reg Sol Neu	elgröβe llwert utralzone	PH requenz	mV ORF +07.0 +00.0 ■ 0120	°rH°C)0pH)0pH)Imp∕min

ŝ	spe	Impulsfrequenzreg	ler	7.01pH
t	Ne	utralzone	+02.	00 pH
	₫	egelanfang	+02.	
	ł	ckpunkt X ckpunkt Y	+04.	00 рн).0 %
÷.	ΚN	achstellzeit	- 000)0 s

spe Impulsfrequenz	zregler	7.01pH
 Nachstellzeit Regelende Eckpunkt X Eckpunkt Y Nachstellzeit « zurück [par] 	000 +12. +11. +045 000	30 s .00 pH 5.0 % 30 %

Typ B: Impulsfrequenzregler

Mit ◀ und ▶ parametrieren Sie die Regelgröße, die den Regler steuert. Geben Sie den Sollwert, die Neutralzone und die maximale Impulsfrequenz jeweils mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingaben mit **enter**.

Geben Sie für den linken Regelbereich (◀: Regelgröße < Sollwert) Regelanfang, Eckpunkt X, Eckpunkt Y und Nachstellzeit ein.

Geben Sie für den rechten Regelbereich (▶: Regelgröße > Sollwert) Regelende, Eckpunkt X, Eckpunkt Y und Nachstellzeit ein.

spe	Ausgai	ng 2 /	Regler	•	7.00pH
Hus » A	gang 2 Usgang:	sstrom	Strom 2	2	Regler
« z	urück	[par]			

spe	Regler	7.00pH
	A 3-Wege-Mischventil B Durchgangsventil (< C Durchgangsventil () glentup B Regelparameter zurück [par]	Sollwert) Sollwert) C

spe	Regler	7.00pH
i	A 3-Wege-Mischventil Ausgang 2: -100+10	0 %
∎Re So ∔ Ne	gelgröße DH m V OR llwert Xw +07. utralzone +02.	?P rH °C 00 pH 00 pH

So parametrieren Sie den Analogregler (nur mit Option 483)

Wählen Sie im Parametriermenü mit ▼ den Menüpunkt "Ausgang 2 / Regler" und bestätigen Sie mit **enter**.

Gehen Sie mit ▶ auf "Regler" und bestätigen Sie mit **enter**.

Mit \blacktriangleright oder **enter** gelangen Sie in das Untermenü \gg "Regler".

Wählen Sie mit ◀ und ► den Reglertyp A, B oder C aus und bestätigen Sie mit **enter**. Um die Regelparameter zu parametrieren, gehen Sie mit ▼ oder **enter** in das Untermenü ≫ "Regelparameter" und bestätigen mit **enter**..

Der Informationstext zeigt den ausgewählten Reglertyp und den Bereich der Stellgröße an.

Spe Regler A 3-Wege-Mischventil Ausgang 2: -100...+100 % Regeleresse PH mV ORP rH °C Sollwert Xw +07.00 pH Neutralzone +02.00 pH

↑ Sollwert Xw +07.00 pH Neutralzone +02.00 pH √Resplantens -02.00 pH √Eckpunkt X +04.00 pH √Eckpunkt Y +020.0 % ↓ √Nachstellzeit 0000 s	spe Regler	7.00pH
	† Sollwert Xw Neutralzone KReselanfans ∢Eckpunkt X ∢Eckpunkt Y ↓ ∢Nachstellzeit	+07.00 pH +02.00 pH -02.00 pH +04.00 pH +020.0 % 0000 ≤

Typ A: 3-Wege-Mischventil

Für das 3-Wege-Mischventil arbeitet der Analogreglerausgang im Stellgrößenbereich -100 % ... +100 $\%^*$). Eine Reglerstellgröße Y = 0 % entspricht einem Strom von 10 bzw. 12 mA.

*) Stellgrößenbereich entspricht 0(4) ... 20 mA

Mit ◀ und ▶ parametrieren Sie die Regelgröße, die den Regler steuert.

Mit ▲ und ▼ wählen Sie zwischen den Regelparametern. Geben Sie die Regelparameter jeweils mit den Rolltasten und den Cursortasten ein (s. a. S. 2–6) und bestätigen Sie die Eingaben mit **enter**.

Geben Sie für den linken Regelbereich (◀: Regelgröße < Sollwert) Regelanfang, Eckpunkt X, Eckpunkt Y und Nachstellzeit ein.

spe	Regler			7.00pH
↑ ERE DEC DEC DEC Aus « 2	selende Skpunkt Skpunkt Schstell Sgang Surück	y y zeit Ø20mH [par]	+12.00 +11.00 -045.0 0000 4 420	PH PH

spe	Regler	7.00pH
i	Regelbereich unterhal ∢Ausgang 2: 0+100	b Sollwert %
∎ze So ∔ Ne	<mark>9el9r88e PH m</mark> V O llwert Xw +07 utralzone +02	RP rH °C .00 pH .00 pH

S	pe Regler	7.00pH
t	Sollwert Xw Neutralzone	+07.00 pH
	Klegelanfang (Eckpunkt, X	-02.00 pH +04.00 pH
ŧ	∢Eckpunkt V ∢Nachstellzeit	+020.0 % 0000 s

spe Regler	7.00pH
 Regelence Eckpunkt X Eckpunkt Y Nachstellzeit Ausgang Aurück [par] 	+12.00 pH +11.00 pH -045.0 % 0000 s 420mA

Geben Sie für den rechten Regelbereich (►: Regelgröße > Sollwert) Regelende, Eckpunkt X, Eckpunkt Y und Nachstellzeit ein.

Typ B: Durchgangsventil (< Sollwert)

Für das Durchgangsventil Typ B arbeitet der Analogreglerausgang im Stellgrößenbereich 0 ... +100 %. Dabei entsprechen +100 % einem Strom von 20 mA. Der Regler gibt nur die Stellgröße für die gewählte Seite aus, auf der anderen Seite des Sollwertes kann die Stellgröße nicht ausgegeben werden, der Ausgang bleibt auf 0 (4) mA.

Mit ◀ und ▶ parametrieren Sie die Regelgröße, die den Regler steuert.

Mit ▲ und ▼ wählen Sie zwischen den Regelparametern. Geben Sie die Regelparameter jeweils mit den Rolltasten und den Cursortasten ein (s. a. S. 2–6) und bestätigen Sie die Eingaben mit **enter**.

Geben Sie für den linken Regelbereich (◀: Regelgröße < Sollwert) Regelanfang, Eckpunkt X, Eckpunkt Y und Nachstellzeit ein.

Bei einem reinen P-Regler (Nachstellzeit = 0s), muß nur der benutzte Regelbereich parametriert werden. Für den unbenutzten Bereich ist es jedoch erforderlich, sinnvolle Parameter einzugeben, da sonst die Fehlermeldung "Warn Regelparameter" auftritt.

Bei Benutzung als PI-Regler (Nachstellzeit $\neq 0$ s) ist es zwingend erforderlich, auch den unbenutzten Bereich zu parametrieren. Durch die Integrationszeit wird die Stellgröße von beiden Regelbereichen beeinflußt.

366	Kearei	1:0001
i	Regelbereich oberhalb ▶Ausgang 2: -1000	Sollwert %
∎RS Sc ∔ Ne	399197832 DH m V OF Dllwert Xw +07. eutralzone +02.	₹Р rH °C .00 pH .00 pH
∔ Ne	eutralzone +02.	.00 pH

spe	Regler		7.00pH
↑ N ALIA ALIA ALIA ALIA	ckpunkt X ckpunkt X achstellze sgang	+12. +11. -045 000 920mm 4	00 PH 00 PH 5.0 % 30 S 20mA

S	pe Regler	7.00pH
t	Sollwert Xw Newtralzone	+07.00 pH +02 00 pH
	KRegelanfang	-02.00 pH +04.00 pH
÷	<pre>▲Eckpunkt Y </pre> Anachstellzeit	+020 0 % 0000 s

Typ C: Durchgangsventil (> Sollwert)

Für das Durchgangsventil Typ C arbeitet der Analogreglerausgang im Stellgrößenbereich 0 ... -100 %. Dabei entsprechen -100 % einem Strom von 20 mA.

Der Regler gibt nur die Stellgröße für die gewählte Seite aus. Auf der anderen Seite des Sollwertes kann die Stellgröße nicht ausgegeben werden, der Ausgang bleibt auf 0 (4) mA.

Mit ◀ und ▶ parametrieren Sie die Regelgröße, die den Regler steuert. Geben Sie den Sollwert und die Neutralzone jeweils mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingaben mit **enter**.

Geben Sie für den rechten Regelbereich (►: Regelgröße > Sollwert) Regelende, Eckpunkt X, Eckpunkt Y und Nachstellzeit ein.

Bei einem reinen P-Regler (Nachstellzeit = 0s), muß nur der benutzte Regelbereich parametriert werden. Für den unbenutzten Bereich ist es jedoch erforderlich, sinnvolle Parameter einzugeben, da sonst die Fehlermeldung "Warn Regelparameter" auftritt.

Bei Benutzung als PI-Regler (Nachstellzeit $\neq 0$ s) ist es zwingend erforderlich, auch den unbenutzten Bereich zu parametrieren. Durch die Integrationszeit wird die Stellgröße von beiden Regelbereichen beeinflußt.

Dosierzeitalarm

Wählen Sie im Parametriermenü mit ▼ den Menüpunkt "Alarmeinstellungen" und bestätigen Sie mit **enter** . *Der Menüpunkt erscheint nur, wenn der Regler eingeschaltet ist!* Gehen Sie mit ▼ zu "Dosierzeit-Alarm" und bestätigen Sie mit **enter** ..

Geben Sie die Werte für die Warnungsmeldung (Warnung Limit Hi) und die Ausfallmeldung (Ausfall Limit Hi) mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingaben mit **enter**.

spe Dosierzeit-Alarm	7.01pH
Dosierzeit-Alarm Warnung Limit Hi Ausfall Limit Hi	Ein Hus 0000 s 0000 s
« zurück [par]	

Fehlermeldungen bei der Parametrierung des Reglers

Der Regler wird abgeschaltet und die Alarmmeldung "Warn Regelparameter" wird erzeugt, wenn bei der Parametrierung eine der folgenden Bedingungen erfüllt ist:

- Anfang ≥ Sollwert Neutrale Zone / 2
- Eckpunkt X < Anfang</p>
- Eckpunkt X > Sollwert Neutrale Zone / 2
- Ende < Sollwert + Neutrale Zone/2
- Eckpunkt X < Sollwert + Neutrale Zone / 2
- Eckpunkt X > Ende
- Neutrale Zone < 0
- Eckpunkt Y > 100 %

zusätzlich beim Impulslängenregler:

- Periodendauer < Min. Einschaltzeit * 2</p>
- Periodendauer < Min. Einschaltzeit * 2

zusätzlich beim Impulsfrequenzregler:

- Max. Pulsfrequenz \leq 0 Imp/min
- Max. Pulsfrequenz > 120 Imp/min

Der Hilfsenergieausgang

Der pH Transmitter 2500 verfügt standardmäßig über einen potentialfreien, kurzschlußfesten Hilfsenergieausgang.

Mit dem Hilfsenergieausgang können Sie z. B. Sensoren, Schaltkontakte oder einen pH-Trennverstärker mit 24 V DC, 30 mA versorgen (s. Abb. 9–4, S. 9–13).

Die Verwendung des Hilfsenergieausgangs zur Realisierung eines "2-Leiter-Speise-Meßumformers" zusammen mit dem Stromeingang ist im folgenden Abschnitt beschrieben.

Der Stromeingang

Der pH Transmitter 2500 verfügt standardmäßig über einen Stromeingang. Der Stromeingang verarbeitet Normstromsignale von 0 ... 20 mA oder 4 ... 20 mA.

Der Eingangsstrom kann in der Nebenanzeige dargestellt werden (s. S. 2–1).

Außerdem kann der Eingangsstrom durch Alarmgrenzen überwacht werden (s. S. 9–22). In den "Alarmeinstellungen" können Sie Warnungs- und Ausfallgrenzen parametrieren.

Die Eingabe der Alarmgrenzen erfolgt in Prozent vom Eingangsstrombereich.

Dabei entsprechen

0 % 0 oder 4 mA, 100 % 20 mA.

Wenn der Stromeingang auf "Eingang 0...100% 4...20mA" parametriert ist, können Sie negative Prozentwerte parametrieren. -25 % entsprechen 0 mA.

Die gerade aktiven Alarmmeldungen können Sie im Diagnosemenü "aktuelle Meldungsliste" ansehen (s. S. 4–2).

Abb. 9–4, S. 9–13, zeigt als Anwendungsbeispiel den Anschluß eines 2-Leiter-Durchflußgebers. Der Durchflußgeber dient z. B. zur Überwachung, ob das Meßmedium in einer Bypass-Meßstelle den erforderlichen Durchfluß aufweist. Der Durchflußgeber wird aus dem Hilfsenergie-

ausgang versorgt.

Der Strom des Durchflußgebers wird über den Stromeingang gemessen. Durch Parametrierung von vier Alarmgrenzen für den Stromeingang kann das Meßsignal des Durchflußgebers überwacht werden.

So parametrieren Sie den Stromeingang

7.00pH

Wenn das Gerät mit Option 352 ausgerüstet und die Sondenspülung in der Parametrierung eingeschaltet ist, kann der Stromeingang zur Steuerung der Sondenspülung parametriert werden (s. u.).

Wählen Sie im Parametriermenü mit ▼ den Menüpunkt "Stromeingang" und bestätigen Sie mit enter .

Wählen Sie mit ◀ und ► zwischen "Eingang 0...100% 0...20mA" oder "Eingang 0...100% 4...20mA" aus und bestätigen Sie die Auswahl mit **enter**.

Anwendungsbeispiel

Stromeingang

« zurück [par]

🖠 Meßeingang für Grenzwerte/Alarme

Eingang 0...100% 0...20mA 4...20mA

spe Stromeingangs-Alarm 7.01pH Stromeing-Alarm Ein Hus Ausfall Limit Lo -0025 % Warnung Limit Lo +0016 % Warnung Limit Hi +0070 % Ausfall Limit Hi +0095 % « zurück [par]	Wenn Sie den Stromeingang mit Alarmgrenzen überwachen wollen, wählen Sie im Parametrier- menü "Alarmeinstellungen" den Menüpunkt "Stro- meingangs-Alarm". Geben Sie die Alarmgrenzen jeweils mit den Roll- tasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingaben mit enter .
	Sie können mit dem Eingangsstrom auch die Grenzwertkontakte steuern. Die Parametrierung ist auf S. 9–27 beschrieben.
Stromeingang als Steuereingang für Son- denspülung	Wenn Ihr Gerät mit der Option 352 "Sondenspü- lung" ausgerüstet ist, können Sie den Stromein- gang zur Fernsteuerung der Sondenspülung be- nutzen (s. S. 9–51). Die Menüzeile "Stromeingangs-Alarm" bei den Alarmeinstellungen erscheint nicht bei Verwen- dung als Steuereingang.
SpeStromeingang7.00pH• Steuereingang für Sondenspülung oder• Meßeingang für Grenzwerte/Alarme= Lingang 0100%020mH# Steuereingang420mAVerwendungSteuereingang& zurück[par]	 Um den Stromeingang als Steuereingang zu parametrieren, wählen Sie im Parametriermenü mit ✓ den Menüpunkt "Stromeingang" und bestätigen Sie mit enter . Wählen Sie im Parametriermenü mit ▼ den Menüpunkt "Verwendung". Wählen Sie mit ◀ und ▶ "Steuereingang" aus, und bestätigen Sie die Auswahl mit enter (eine Live-zero-Parametrierung des Stromeingangs ist dann nur für die Stromanzeige wirksam, der Stromeingangsalarm ist abgeschaltet).

Sie können die Wechselarmatur InClean nur steuern, wenn Ihr Gerät mit der Option 404 ausgerüstet ist. Ohne diese Option steht "Fernsonde (op-

tionell)" im Menü, eine Anwahl ist nicht möglich.

Wechselarmatur InClean

Zur Installation, Inbetriebnahme und Wartung der Wechselarmatur InClean benutzen Sie bitte das mitgelieferte InClean-Handbuch.

Mit der Wechselarmatur InClean kann die pH-Elektrode automatisch gespült, mit einem Reinigungsmedium gereinigt und die Funktion kontrolliert werden. Die Wechselarmatur wird vom pH Transmitter 2500 gesteuert.

Zum Spülen/Reinigen der Elektrode wird das **Wechselarmatur-Programm** gestartet.

Das Wechselarmatur-Programm kann gestartet werden:

- timergesteuert nach Ablauf der parametrierbaren Intervallzeit,
- manuell im maint -Menü,
- durch einen Schaltkontakt am InClean,
- ferngesteuert über die Schnittstelle (s. S. 9–54).

Sie können eine Intervallzeit im Bereich von 0,1...999,9 h parametrieren. Die Intervallzeit dauert vom Beginn eines Wechselarmatur-Programms bis zum Beginn des nächsten Wechselarmatur-Programms.

Sie können das timergesteuerte Wechselarmatur-Programm abschalten, indem Sie die Intervallzeit "000.0 h" parametrieren.

Bevor Sie das Wechselarmatur-Programm starten, müssen Sie die einzelnen Schritte in der Parametrierung im Menüpunkt "Wechselarmatur InClean" parametrieren (s. S. 9–46)!

So arbeitet die Wechselarmatur-Steuerung

Aus technischen Gründen wird die Wechselarmatur InClean im Menütext des pH Transmitters 2500 nur "Fernsonde" genannt.
Die Wechselarmatur InClean wird über drei Kontakte gesteuert:

- Kontakt "Sonde"
- Kontakt "Spülung"
- Kontakt "Reinigung"

Wenn das Gerät mit der Option 404 "InClean" ausgerüstet und die Wechselarmatur-Funktion in der Parametrierung eingeschaltet ist, wird der **Stromeingang** zusammen mit dem Hilfsenergieausgang zur Auswertung von Rückmeldungen verwendet. Folgende Rückmeldungen von der Wechselarmatur werden einzeln und in Kombination ausgewertet:

- Sonde in Position "Messen" : Elektrode im Prozeß
- Sonde in Position "Spülen": Elektrode in der Spülkammer
- Betriebsartschalter in Position "Service"
- Start
 Der Startkontakt wurde betätigt und löst ein
 Wechselarmatur-Programm aus.

 Solange der Start-Kontakt geschlossen ist, ver bleibt die Sonde in der "Warteposition"
- Verriegeln: Solange der Verriegelungskontakt geschlossen ist, wird ein timergesteuerter Start des Wechselarmatur-Programms verhindert.

Wechselarmatur-Programm

In der Parametrierung können Sie zwei Abläufe für das Wechselarmatur-Programm auswählen: Spülprogramm und Meßprogramm.

Wenn Sie eine der Schrittzeiten auf 0000 s parametrieren, entfällt der Schritt ganz. Mit **meas** können Sie während des Wechselarmatur-Programms für ca. 5 s den Meßwert anzeigen.

Spülprogramm	Wenn das Spülprogramm parametriert wurde, be- findet sich die Sonde normalerweise zum Messen im Prozeß und fährt beim Start des Programms in die Spülkammer, wo die Elektrode gespült, gerei- nigt und kontrolliert werden kann. Am Ende des Programms fährt die Sonde zur Messung wieder in den Prozeß.
	 Das Spülprogramm beginnt: Der NAMUR-Kontakt "Funktionskontrolle" wird aktiv, Ausgangsstrom 1 (und 2) und die Reglerstell- größe werden eingefroren, die Grenzwerte sind inaktiv, das maint - und das cal -Menü sind gesperrt, der Intervall-Timer wird zurückge- setzt.
Fernsonde aktiv 6.95pH • Spülprogramm 0011 s • Sonde ausfahren 0011 s • 50 100 45%	 Sonde ausfahren: Während dieser Zeit wird geprüft, ob die Sonde die Endlage "Spülen" erreicht. Ist dies nach 20 s nicht der Fall, erfolgt die Fehlermeldung "Ausf Fernsonde". Es werden keine weiteren timergesteuerten Wechselarmatur-Programme gestartet. Nach Behebung des Fehlers kann die Sonde durch Umschalten des Betriebsart- schalters auf "Run" wieder in Betrieb genom- men werden.
Fernsonde aktiv6.95pH• Spülprogramm0013 s• Spülen0013 s• 05010035%•	 Spülen (1): Die Elektrode wird für die parametrierte Dauer mit Wasser gespült. Der Schritt kann entfallen (Schrittzeit 0 s), wenn die Elektrode zuerst gereinigt werden soll.
Fernsonde aktiv6.95pH• Spülprogramm0011 s• Reinigen0011 s• 05010045%• • • • • • • • • • • • • • • • • • •	 Reinigen: Entsprechend der parametrierten Reinigungs- zeit wird das Reinigungsmedium in die Sonden- kammer gepumpt (über das Zusatzventil oder die Dosierpumpe). Dieser Schritt kann entfallen (Schrittzeit 0 s).
Fernsonde aktiv6.95pH• Spülprogramm0005 s• Einwirkzeit0005 s• 5010075%	 Für die Dauer der parametrierten Zeit wirkt das Reinigungsmedium auf die Elektrode ein.
Fernsonde aktiv6.95pH• Spülprogramm0005 s• Spülen0005 s• 050• 10075%	 Spülen (2): Die Elektrode wird für die parametrierte Dauer mit Wasser gespült. Der Schritt muß entfallen (Schrittzeit 0 s), wenn die Elektrode mit dem pH-Wert der Reinigungs- lösung kontrolliert werden soll.

Fernsonde aktiv 6.95pH • Spülprogramm 1 Sensorkontrolle 0001 s 0 50 100 67%	 Sensorkontrolle: Nach Ablauf der parametrierbaren Kontrollvor- laufzeit wird überprüft, ob der von der Elektrode gemessene pH-Wert innerhalb der parametrier- ten Warnungs- und Ausfallgrenzen liegt. Ist dies nicht der Fall, wird eine Warnungs- bzw. Ausfallmeldung erzeugt.
Fernsonde aktiv6.95pH• Spülprogramm0014 s• Spülen0014 s• 05010030%• • • • • • • • • • • • • • • • • • •	 Spülen (3): Die Elektrode wird für die parametrierte Dauer mit Wasser gespült. Der Schritt kann entfallen (Schrittzeit 0 s), wenn die Elektrode in der Reinigungslösung aufbe- wahrt werden soll.
 Fernsonde aktiv 6.95pH Spülprogramm Sonde in Warteposition letzter Meβwert +06.95 pH 	 Warteposition: Die Sonde verharrt in der Warteposition, so- lange der Startkontakt geschlossen ist. Wenn der Startkontakt vor Erreichen des Schrittes geöffnet wurde, wird er übersprungen.
Fernsonde aktiv6.95pH• Spülprogramm0015 s• Spülen0015 s05010025%	 Spülen (4): Die Elektrode wird für die parametrierte Dauer mit Wasser gespült. Der Schritt kann entfallen (Schrittzeit 0 s), wenn vorher bereits gespült wurde.

Fernsonde	aktiv	6.95pH
• Spülpr 1 Sonde	ogramm einfahren 00	17 s
15%	50	100

Fern	sonde aktiv		6.95pH
i	Spülprogramm Vorlauf vor Messen	0011	s
45% [0 50		100

• Sonde einfahren:

Während dieser Zeit wird geprüft, ob die Sonde die Endlage "Messen" erreicht. Ist dies nach 20 s nicht der Fall, erfolgt die Fehlermeldung "Ausf Fernsonde". Es werden keine weiteren timergesteuerten Wechselarmatur-Programme gestartet. Nach Behebung des Fehlers kann die Sonde durch Umschalten des Betriebsartschalters auf "Run" wieder in Betrieb genommen werden.

 Vorlaufzeit vor Messen: Die parametrierte Wartezeit bis zum Ende des Spülprogramms läuft ab. Danach wird "Funktionskontrolle" inaktiv und die Messung beginnt.

Meßprogramm

Fer	nsonde aktiv	6.95pH
i	Meßprogramm Sonde in Wartepos	sition
	letzter Meßwert	+06.95 pH

Wenn das Meßprogramm parametriert wurde, befindet sich die Sonde normalerweise in der Spülkammer und fährt beim Start des Programms zur Messung in den Prozeß. Nach Ablauf der parametrierten Meßzeit fährt die Sonde zurück in die Spülkammer, wo die Elektrode gespült, gereinigt und kontrolliert werden kann und verharrt dort, bis das Meßprogramm erneut gestartet wird.

 Das Meßprogramm beginnt: das maint - und das cal -Menü sind gesperrt, der Intervall-Timer wird zurückgesetzt.

Fernsonde aktiv			6.95pH
• Meßprogramm 1 Spülen		0016	s
28% <u>0</u>	50		100
204			

• Spülen (1):

Die Elektrode wird für die parametrierte Dauer mit Wasser gespült. Der Schritt kann entfallen (Schrittzeit 0 s), wenn die Elektrode im letzten Schritt gespült wurde.

Fernsonde a	aktiv		6.95pH
• Μeβprog 1 Sonde e	∦ramm ≷infahren	0017	s
15%	50		100
10.1			

Fernsonde aktiv		6.95pH
• Μeβprogramm 【 Vorlauf vor	Messen 00	14 5
70% 0	50	100
304		

• Sonde einfahren:

Während dieser Zeit wird geprüft, ob die Sonde die Endlage "Messen" erreicht. Ist dies nach 20 s nicht der Fall, erfolgt die Fehlermeldung "Ausf Fernsonde". Es werden keine weiteren timergesteuerten Wechselarmatur-Programme gestartet. Nach Behebung des Fehlers kann die Sonde durch Umschalten des Betriebsartschalters auf "Run" wieder in Betrieb genommen werden.

- Vorlaufzeit vor Messen:
 Die parametrierte Wartezeit läuft ab.
 Danach wird "Funktionskontrolle" inaktiv, Ausgangsstrom 1 (und 2) und die Reglerstellgröße werden freigegeben, die Grenzwerte sind aktiv, und die Messung beginnt.
- Messen:

Für die parametrierte Meßzeit wird der pH-Wert gemessen.

Nach Ablauf der Meßzeit wird der NAMUR-Kontakt "Funktionskontrolle" aktiv, Ausgangsstrom 1 (und 2) und die Reglerstellgröße werden eingefroren, die Grenzwerte sind inaktiv.

Ferr	nsonde aktiv		6.95pH
i	Meβprogramm Sonde ausfahren	0016	ŝs
20%	0 50		100

Fernsonde aktiv			6.95pH
• Meβprogramm 1 Spülen		0016	s
20%	50		100

Feri	nsonde aktiv			6.95pH
i	Meßprogramm Reinigen		0008	s
60%	0	50		100
00%	L			

Fernsonde aktiv		6.1	95pH
• Μeβprogramm 1 Einwirkzeit		0012 s	
40%	50		100

Fernsonde aktiv			6.95pH
• Meßprogramm 1 Spülen		0005	s
752	50		100

Fer	nsonde aktiv			6.95pH
i	Meβprogramm Sensorkontroll	e	0005	s
29%	0	50		100

Fernsonde aktiv			6.95pH
• Meβprogramm 1 Spülen		0016	s
0	50		100
20%			

Sonde ausfahren:

Während dieser Zeit wird geprüft, ob die Sonde die Endlage "Spülen" erreicht. Ist dies nach 20 s nicht der Fall, erfolgt die Fehlermeldung "Ausf Fernsonde". Es werden keine weiteren timergesteuerten Wechselarmatur-Programme gestartet. Nach Behebung des Fehlers kann die Sonde durch Umschalten des Betriebsartschalters auf "Run" wieder in Betrieb genommen werden.

Spülen (2):

Die Elektrode wird für die parametrierte Dauer mit Wasser gespült. Der Schritt kann entfallen (Schrittzeit 0 s), wenn die Elektrode zuerst gereinigt werden soll.

Reinigen:

Entsprechend der parametrierten Reinigungszeit wird das Reinigungsmedium in die Sondenkammer gepumpt (über das Zusatzventil oder die Dosierpumpe). Dieser Schritt kann entfallen (Schrittzeit 0 s).

- Für die Dauer der parametrierten Zeit wirkt das Reinigungsmedium auf die Elektrode ein.
- Spülen (3): Die Elektrode wird für die parametrierte Dauer mit Wasser gespült. Der Schritt muß entfallen (Schrittzeit 0 s), wenn die Elektrode mit dem pH-Wert der Reinigungslösung kontrolliert werden soll.
- Sensorkontrolle:

Nach Ablauf der parametrierbaren Kontrollvorlaufzeit wird überprüft, ob der von der Elektrode gemessene pH-Wert innerhalb der parametrierten Warnungs- und Ausfallgrenzen liegt. Ist dies nicht der Fall, wird eine Warnungsbzw. Ausfallmeldung erzeugt.

• Spülen (4):

Die Elektrode wird für die parametrierte Dauer mit Wasser gespült. Der Schritt kann entfallen (Schrittzeit 0 s), wenn die Elektrode in der Reinigungslösung aufbewahrt werden soll.

Fernsonde aktiv

Fernsonde

Fernsonde

Betriebsart Intervallzeit

Meßprogramm
 Sonde in Warteposition
 letzter Meßwert +06.95 pH

6.95pH

6.95pH

progr

Warteposition: Die Sonde verharrt in der Warteposition, bis ein neues Meßprogramm gestartet wird.

So parametrieren Sie das Wechselarmatur-Programm

In der Parametrierung wählen Sie den Menüpunkt "Fernsonde InClean".

Parametrieren Sie "Fernsonde Ein" mit **4** und bestätigen mit **enter**.

Parametrieren Sie die Betriebsart (Spülprogramm oder Meßprogramm) mit ◀ und ▶ und bestätigen mit **enter**.

5	spe	Fernsonde			6.95pH
t	In	tervallzeit			001.0 h
	SP	ülzeit	111	SFULEN	0010 s
	Ei	nyirkzeit			0050 s
÷.	Spi	ülzeit			0020 s

Fernsonde verwendet Stromeingang als Steuereingang.

Spülpro

Geben Sie die Intervallzeit und die Schrittzeiten mit den Rolltasten und den Cursortasten ein und bestätigen Sie die Eingaben mit **enter**.

Wenn Sie eine der Schrittzeiten auf 0000 s parametrieren, entfällt der Schritt ganz.

Beachten Sie, daß die zulässige Einschaltdauer des Wasserventils von der Spülwassertemperatur abhängt! Bei Spülwassertemperaturen > 25 °C verringert sich die Einschaltdauer gemäß nachstehendem Diagramm. Die Einschaltdauer wird bezogen auf 300 s (= 5 min.) angegeben

Beispiel:

Bei einer Spülwassertemperatur von 60 °C beträgt die maximale Einschaltdauer 60 % (gerechnet auf 300 s), also höchstens 180 s. Das bedeutet, daß Sie eine maximale Spülzeit von 180 s (= 60 %) parametrieren dürfen und danach eine Pause von 120 s (= 40 %) bis zum Wiedereinschalten des Wasserventils (bis zum nächsten Spülschritt) einhalten müssen.

Wenn Sie z. B. 60 s Spülzeit parametrieren, müssen Sie eine Pause von 40 s bis zum Wiedereinschalten einhalten Das erreichen Sie, indem Sie den folgenden Schritt, also z. B. Kontrollvorlaufzeit, Reinigungszeit oder Einwirkzeit auf 40 s parametrieren.

spe	Fernso	onde			6.	.95pH
† SP Re Ei SP	Sonde ülzeit inigung nwirkze ülzeit	fährt Szeit Sit	in le	SPOLEN	 0010 0035 0050 0020 (Eir	

spe Sensorkontrolle	6.95pH
Sensorkontrolle Kontrollvorlaufzeit Ausfall Limit Lo Warnung Limit Hi ↓ Ausfall Limit Hi	Sin Aus 0005 s +06.00 pH +06.50 pH +07.50 pH +08.00 pH

spe	Senso	orkontr	`011	e			6.95pH	
† Wa Wa Au Te	mnung Irnung Isfall Imperat	Limit Limit Limit tur	Lo Hi Hi	+0 +0 +0 auto	16. 17. 18.	50 50 00 mar	PH PH PH nuell	
11	zueño	и Граи						

spe Fernsonde		6.	.95pH
† Spülzeit	tion	0020	s
Spülzeit	CION	0000	s
Vorlaufzeit	vor Messen	0010	5

Mit ▶ gelangen Sie in das Untermenü für die Sensorkontrolle (Erklärung s. S. 9–48).

Sie können die Sensorkontrolle mit ◀ oder ► und **enter** ein- oder ausschalten.

Geben Sie die Kontrollvorlaufzeit und die Warnungs- und Ausfallgrenzen für die Sensorkontrolle mit den Rolltasten und den Cursortasten ein und bestätigen Sie die Eingaben mit **enter**.

Die Temperaturkompensation bei der Sensorkontrolle kann entweder automatisch durch Messung (bei Verwendung einer Elektrode mit eingebautem Temperaturfühler) oder manuell durch Eingabe der Temperatur der Kontrolllösung erfolgen. Für automatische Temperaturkompensation wählen Sie "auto". Für manuelle Temperaturkompensation wählen Sie mit ▶ und **enter** "man" und geben dann die Lösungstemperatur mit den Rolltasten und den Cursortasten ein und bestätigen die Eingabe mit **enter**.

Achtung! Der Transmitter kompensiert nur den Temperaturgang der Elektrodensteilheit, nicht jedoch den TK der Reinigungsflüssigkeit oder der Pufferlösung!

Geben Sie die restlichen Schrittzeiten mit den Rolltasten und den Cursortasten ein und bestätigen Sie die Eingaben mit **enter**.

Wenn Sie eine der Schrittzeiten auf 0000 s parametrieren, entfällt der Schritt ganz.

Nach dem Einschalten des Wechselarmatur-Programms in der Parametrierung erfolgt der nächste automatische Start des Programms erst nach Ablauf eines kompletten Intervalls.

Anwendungshinweise

Während die Programmschritte ablaufen, können Sie in der Parametrierung die Schrittzeiten ändern. So können Sie zu lange Schrittzeiten abkürzen oder beenden.

Parametrieren Sie eine Intervallzeit. Nach Ablauf der Intervallzeit wird automatisch das Wechselarmatur-Programm gestartet. Wenn Sie den timergesteuerten Programmstart sperren wollen (z. B. um eine wichtige Messung nicht zu unterbrechen), muß der Kontakt "Verriegelung" am InClean geschlossen werden. Solange der Kontakt geschlossen ist, wird kein Programmablauf gestartet.

Timergesteuerter Programmstart

Nach einem Hilfsenergieausfall wird der Intervall-Timer zurückgesetzt. Der nächste automatische Start erfolgt dann nach Ablauf eines kompletten Intervalls.

Ferngesteuerter Programmstart

mergesteuerter Spülzyklus gestartet. Durch Schließen des "Start"-Kontaktes am

Im Untermenü "Meßstellen-Wartung" wird kein ti-

InClean für mindestens 2 s wird das Wechselarmatur-Programm gestartet (der Intervall-Timer wird zurückgesetzt). Bleibt der Kontakt geschlossen, so verharrt die Sonde in der Warteposition, bis der Kontakt wieder geöffnet wird.

Manueller Programmstart

maint Wartung	6.95pH
Fernsonden-Programm starten » Meßstellen-Wartung » Stromgeber » Abgleich Tempfühler	
« zurück zum Messen [maint	ו

Sensorkontrolle

Starten Sie das Wechselarmatur-Programm im maint-Menü mit ▶ oder enter.

- Wenn das Spülprogramm parametriert ist, fährt die Sonde in Position "Spülen", alle Schritte werden durchlaufen und die Sonde fährt wieder in Position "Messen".
- Wenn das Meßprogramm parametriert ist, fährt die Sonde in Position "Messen". Nach Ablauf der Meßzeit fährt die Sonde in Position "Spülen", alle Schritte werden durchlaufen, die Sonde bleibt in der Warteposition.

Zur Sensorkontrolle können untere und obere Warnungs- und Ausfallgrenzen parametriert werden. Wenn das Programm bei diesem Schritt angekommen ist, wird der pH-Wert der Flüssigkeit in der Spülkammer gemessen. Liegt der Meßwert außerhalb der Alarmgrenzen, wird eine Warnungsoder Ausfallmeldung ("Sensorkontr.") erzeugt.

Wenn Sie eine Reinigungsflüssigkeit mit bekanntem pH-Wert oder eine Pufferlösung verwenden, ist eine effektive Kontrolle der Sensorfunktion möglich. Beachten Sie aber, daß eine Temperaturmessung in der Spülkammer zur Temperaturkompensation des Meßwertes nur bei Verwendung einer Elektrode mit eingebautem Temperaturfühler möglich ist.

Wenn eine Elektrode ohne Temperaturfühler verwendet wird, muß die Temperatur der Reinigungsflüssigkeit oder der Pufferlösung manuell parametriert werden (s. S. 9-9).

Achtung! Der Transmitter kompensiert nur den Temperaturgang der Elektrodensteilheit, nicht jedoch den TK der Reinigungsflüssigkeit oder der Pufferlösung!

Serviceposition

Fer	nsonde aktiv		6.95pH
i	Spülprogramm Sonde in Servicep	osition	
	letzter Meßwert	+06.95	рH

Die Warnungs- oder Ausfallmeldung wird zurückgesetzt bei:

- erfolgreicher Durchführung einer Sondenkontrolle (Meßwert innerhalb der Alarmgrenzen)
- Kalibrierung der Elektrode
- InClean auf "Aus" parametrieren
- Hilfsenergieausfall

Zum Elektrodenwechsel und für alle übrigen Wartungsarbeiten muß der Betriebsartschalter am InClean in Stellung "Service" gebracht werden.

Die Sonde fährt aus dem Prozeß, die Fernsteuerung zum pH Transmitter 2500 ist unterbrochen.

Wenn der Schalter nach Einbau der Elektrode wieder in Stellung "Run" geschaltet wird, werden die nach der Warteposition parametrierten Schritte des Wechselarmatur-Programms abgearbeitet.

Wenn ein Wechselarmatur-Programm durch einen Hilfsenergieausfall unterbrochen wird, wird der Programmablauf bei Wiedereinschalten der Hilfsenergie fortgesetzt. Die Fortsetzung erfolgt bei dem zuletzt ausgeführten Schritt, wobei nochmals die volle parametrierte Schrittzeit durchlaufen wird.

Die Sondenspülung

Sie können die Sondenspülung nur nutzen, wenn Ihr Gerät mit der Option 352 ausgerüstet ist. Ohne diese Option steht "Sondenspülung (optionell)" im Menü, eine Anwahl ist nicht möglich.

Die Sondenspülung dient z. B. zum automatischen Spülen und Reinigen der pH-Elektrode. Dazu wird ein **Spülzyklus** gestartet.

Ein Spülzyklus kann gestartet werden:

- timergesteuert nach Ablauf der parametrierbaren Intervallzeit,
- manuell im maint -Menü,
- durch einen Stromimpuls (s. S. 9–52) am Stromeingang (wenn der Stromeingang als Steuereingang parametriert ist, s. S. 9–39),
- ferngesteuert über die Schnittstelle (s. S. 9–54).

Sie können eine Intervallzeit im Bereich von 0,1...999,9 h parametrieren. Die Intervallzeit dauert vom Beginn eines Spülzyklus bis zum Beginn des nächsten Spülzyklus.

Sie können den automatischen Spülzyklus abschalten, indem Sie die Intervallzeit "000.0 h" parametrieren.

7.01pH

6.99pH

0009 s

Bevor Sie einen Spülzyklus starten, müssen Sie die einzelnen Schritte in der Parametrierung im Menüpunkt "Sondenspülung" parametrieren (s. S. 9–52)!

Ein Spülzyklus besteht aus folgenden Schritten:

 Der Spülzyklus beginnt: Der NAMUR-Kontakt "Funktionskontrolle" wird aktiv, der Kontakt "Sonde" wird aktiv, Ausgangsstrom 1 (und 2) und die Reglerstellgröße werden eingefroren, die Grenzwerte sind inaktiv, das **maint** - und das **cal** -Menü sind gesperrt,

der Intervall-Timer wird zurückgesetzt.

- Vorlaufzeit vor Spülen: Parametrierbare Wartezeit bis zum Schließen des Kontakts "Spülung". Damit können z. B. Reaktionszeiten des Ventils "Sonde" berücksichtigt werden.
- Vorspülzeit: Der Kontakt "Spülung" ist für die (parametrierbare) Dauer der Vorspülzeit geschlossen.
- Reinigungszeit: Der Kontakt "Reinigung" ist für die (parametrierbare) Dauer der Reinigungszeit geschlossen.
- Nachspülzeit: Der Kontakt "Spülung" ist für die (parametrierbare) Dauer der Nachspülzeit geschlossen.
- Warteposition: Wenn der Stromeingang als Steuereingang parametriert ist, verharrt die Sonde in der Warteposition, solange der Startstrom von 10 ... 20 mA am Stromeingang liegt.

64% 0	50		100
Condongo::lung	- let i u		01-H
Sondenspurung	aktiv		.01PH
 Spülzyklu Vorspülen 	S	0016 s	:
202 0	50		100
20%			
Sondenspülung	aktiv	ĩ	.01pH
 Spülzyklu Reinigen 	s	0015 e	

Sondenspülung aktiv

Spälzyklus Vorlauf vor Spälen

i	Reinigen	5	0015 s
50%	0	50	100

Sonde	enspülung akti	v		7.01pH
•1	Spülzyklus Nachspülen		0009	5
و 672 ا	3	50		100

Sondenspülung aktiv

Spülzyklus
 Sonde in Warteposition
 letzter Meßwert +06.99 pH

Die Warteposition kann nur über den Stromeingang gehalten werden. Wenn der Stromeingang als Meßeingang parametriert ist, entfällt die Warteposition.

Sondenspülung	aktiv		7.01pH
 Spälzyklus Vorlauf vo 	;)r Messen	0007 :	5
54%	50		100

Vorlaufzeit vor Messen: Der Kontakt "Sonde" wird inaktiv. Dann läuft die parametrierbare Wartezeit bis zum Ende des Spülzyklus ab. Danach wird "Funktionskontrolle" inaktiv.

Wenn Sie eine der Schrittzeiten auf 0000 s parametrieren, entfällt der Schritt ganz. Mit **meas** können Sie während des Spülzyklus für ca. 5 s den Meßwert anzeigen.

So arbeitet die Sondenspülung

Die Spülvorrichtung wird über drei Kontakte gesteuert:

- Kontakt "Sonde": Der Kontakt ist als Arbeits- oder Ruhekontakt parametrierbar. Er steuert z. B. ein Prozeßventil in einer Durchflußarmatur. Der Kontakt ist im Meßmodus inaktiv. Während des Spülzyklus ist er aktiv, um z. B. das Prozeßventil zu schließen.
- Kontakt "Spülung": Mit dem Kontakt kann das Ventil für das Spülmedium angesteuert werden. Der Kontakt ist beim Vorspülschritt und beim Nachspülschritt geschlossen.
- Kontakt "Reinigung": Mit dem Kontakt kann ein Ventil f
 ür die Reinigungsfl
 üssigkeit angesteuert werden. Der Kontakt ist beim Reinigungsschritt geschlossen.

Die drei Kontakte sind einseitig elektrisch verbunden.

Wenn das Gerät mit der Option 352 "Sondenspülung" ausgerüstet ist, kann der **Stromeingang** zur Fernsteuerung des Spülzyklus parametriert werden (s. S. 9–39):

 0 ... 10 mA (Normalbetrieb): Ein Strom in diesem Bereich erlaubt den Start des Spülzyklus durch die parametrierte Intervallzeit oder manuell im maint -Menü.

 10 ... 20 mA (Starten): Ein Strom in diesem Bereich startet einen Spülzyklus. Der Strom muß für minimal 2 s anliegen.

Solange der Strom anliegt, bleibt die Sonde in der Warteposition stehen. Das heißt: Vorlauf vor Spülen, Vorspülen, Reinigen und Nachspülen werden ausgeführt. Anschließend verharrt die Sonde in der Warteposition. Wird der Strom wieder weggenommen, wird der Zyklus mit Vorlauf vor Messen fortgesetzt.

 > 20 mA (Verriegeln): Ein Strom in diesem Bereich verriegelt den Start eines Spülzyklus durch die parametrierte Intervallzeit.

So parametrieren Sie den Spülzyklus

In der Parametrierung (Kap. 8) wählen Sie den Menüpunkt "Sondenspülung".

Parametrieren Sie "Sondenspülung Ein" mit und bestätigen mit **enter**.

spe Sondenspülung	6.99pH
† Vorlaufzeit vor Spülen Vorspülzeit Reinigungszeit Nachspülzeit Vorlaufzeit vor Messen « zurück [par]	0010 s 0010 s 0010 s 0010 s 0010 s

Geben Sie die Intervallzeit und die Schrittzeiten mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingaben mit **enter**.

Wenn Sie eine der Schrittzeiten auf 0000 s parametrieren, entfällt der Schritt ganz.

Nach dem Einschalten der Sondenspülung in der Parametrierung erfolgt der nächste automatische Start der Sondenspülung erst nach Ablauf eines kompletten Intervalls.

Anwendungshinweise

Während die Spülschritte ablaufen, können Sie in der Parametrierung die Schrittzeiten ändern. So können Sie zu lange Schrittzeiten abkürzen oder beenden.

Parametrieren Sie eine Intervallzeit. Nach Ablauf der Intervallzeit wird automatisch ein Spülzyklus gestartet.

Wenn Sie den automatischen Spülzyklus sperren wollen (z. B. um eine wichtige Messung nicht zu unterbrechen), geben Sie einen Strom > 20 mA auf den Stromeingang (z. B. durch direktes Verbinden des Hilfsenergieausgangs mit dem Stromeingang).

spe	Sondenspülung	6.96pH
i	Stromeingang als Steue für Sondenspülung para	reingang metrierbar
∎Sc Ko ∔ In	ndenspälung ntakt Sonde Arbe itervallzeit	in Aus it Ruhe 000.0 h

Nach einem Hilfsenergieausfall wird der Intervall-Timer zurückgesetzt. Der nächste automatische Start erfolgt dann nach Ablauf eines kompletten Intervalls.

Ferngesteuerter Spülzyklus

Manueller Start des Spülzyklus

maint S	ondenpflege	7.02pH
• Ausgan 1 Grenzw Kontak Soncenso Handbeta	gsstrom,Regler e erte inaktiv t Sonde aktiv! ülung starten tigung Aus Sp	ülen Reinigen

Manuelles Schalten von "Spülung" und "Reinigung" Intervalls. Im Untermenü "Meßstellen-Wartung" wird kein timergesteuerter Spülzyklus gestartet (s. S. 5–3).

Geben Sie einen Strom von 10...20 mA (z. B. durch Aufschalten des Hilfsenergieausgangs über einen Widerstand von 1,5 k Ω) für mindestens 2 s auf den Stromeingang. Danach wird ein Spülzyklus gestartet (der Intervall-Timer wird zurückgesetzt). Liegt der Strom länger an, so verharrt die Sonde in der Warteposition, bis der Strom wieder weggenommen wird.

Wählen Sie im **maint** -Menü mit ► oder **enter** "Meßstellen-Wartung" aus.

Sie können einen **Spülzyklus** starten: Gehen Sie mit ▲ auf "Sondenspülung starten" und bestätigen Sie mit **enter**. Danach wird ein Spülzyklus gestartet (der Intervall-Timer wird zurückgesetzt). *Nach Ablauf des Spülzyklus geht das Gerät in den Meßmodus.*

Gehen Sie mit ▲ auf "Handbetätigung". Wählen Sie mit ▶ und ◀ "Spülen" oder "Reinigen" und bestätigen Sie mit **enter**. Der entsprechende Kontakt bleibt solange geschlossen, bis Sie "Handbetätigung Aus" eingeben oder das Menü mit **maint** oder **meas** verlassen. *Es können nie zwei Kontakte gleichzeitig geschlossen sein! Wenn ein Spülzyklus läuft, ist die Handbetätigung*

gesperrt.

Die Relaiskontakte sind im Lieferzustand auch für kleine Signalströme (ab ca. 1 mA) geeignet. Wenn größere Ströme als ca. 100 mA geschaltet werden, brennt die Vergoldung beim Schaltvorgang ab. *Die Relais schalten danach kleine Ströme nicht mehr zuverlässig*.

Wenn ein Spülzyklus durch einen Hilfsenergieausfall unterbrochen wird, ist die Sondenspülung blokkiert. Die Fehlermeldung "Ausf Spülzyklus" wird ausgegeben. Alle automatischen Starts werden gesperrt!

Eine Reaktivierung erfolgt durch:

- manuellen Start im maint-Menü
- Aus- und Einschalten der Sondenspülung in der Parametrierung
- über einen Schnittstellenbefehl

Der Schnittstellenbetrieb

Sie können die Schnittstelle nur nutzen, wenn Ihr Gerät mit der Option 351 ausgerüstet ist. Ohne diese Option steht "Schnittstelle (optionell)" im Menü, eine Anwahl ist nicht möglich.

Bei Betrieb der RS 485-Schnittstelle muß Klemme 15 (RS 485 Schirm) geerdet werden, um die Funkstörungs-Grenzwerte gem. Postverfügung 243/91 einzuhalten. Für die Erdung darf nicht der Schutzleiter verwendet werden!

Um den pH Transmitter 2500 an einem PC zu betreiben, kann ein handelsüblicher RS 232 C-/ RS 485-Schnittstellen-Konverter verwendet werden.

Das können Sie mit der Schnittstelle tun

Mit der seriellen RS 485-Schnittstelle können Sie

- alle Meßwerte auslesen
- den Gerätestatus einschließlich Grenzwert- und Alarmmeldungen, Gerätediagnose und Logbuch abfragen
- das Gerät komplett parametrieren
- ferngesteuert einen Spülzyklus auslösen

Der komplette Befehlssatz und das Übertragungsprotokoll sind in Kap. 12 beschrieben.

Wenn das Gerät bei Schnittstellenbetrieb im Remote-Zustand ist, erscheint im Meßmodus rechts oben im Display die Anzeige "Remote". Die Tastatur ist für Eingaben gesperrt! Wenn sich das Gerät im Meßmodus befindet, können sie mit **meas** nach Rückfrage in den Local-Zustand zurückkehren, die Tastatur wird freigegeben.

Die Schnittstelle kann

- im Punkt-zu-Punkt-Betrieb (pH Transmitter 2500 verbunden mit einem Controller, z. B. PC) oder
- im Bus-Betrieb mit bis zu 31 Geräten und einem Controller (z. B. PC) am Bus arbeiten.

Die Schnittstellenparameter

Baudrate (Übetragungsgeschwindigkeit): Die Baudrate wird in Bit/Sekunde angegeben. Bei der Wahl der Baudrate können die Übertragungszeit (hohe Baudraten) oder die Güte der Übertragung (niedrige Baudrate) maßgebend sein. Im pH Transmitter 2500 können Baudraten zwischen 300 und 9600 Baud eingestellt werden.

Parity (Übertragungsfehler-Erkennung): Das Parity ist ein zusätzliches Bit, das die Datenbits so ergänzt, daß immer eine gerade Zahl (Parity even) oder eine ungerade Zahl (Parity odd) von logischen Einsen übertragen wird. Bei einem Parityfehler erscheint die Fehlermeldung "Warn Schnittstelle".

Datenbit (Datenbreite):

Der pH Transmitter 2500 überträgt wahlweise eine Datenbreite von 7 Bit oder 8 Bit. Der pH Transmitter 2500 verwendet ausschließlich Zeichen, die sowohl im 7-Bit als auch im 8 Bit-Modus übertragen werden können. Die Einstellung dient lediglich als Anpassung an den steuernden Rechner.

Als Baudrate können Sie 300, 600, 1200 oder 9600 Baud, als Übertragungsformate "7 Bit/Parity Even", "7 Bit/Parity Odd" oder "8 Bit/No Parity" parametrieren.

Die Schnittstelle ist fest auf 1 Stopbit eingestellt.

Um das Gerät auch im Schnittstellenbetrieb vor unbefugten Zugriffen zu schützen, können Sie einen Schreibschutz parametrieren. Ist der Schreibschutz eingeschaltet, muß vor dem ersten Parametrier- oder Steuerbefehl der Schreibschutz durch einen Schnittstellenbefehl (s. S. 12–33) zusammen mit der Spezialisten-Paßzahl aufgehoben werden. Das Lesen der Meßwerte, Parameter und Statusinformationen ist auch mit eingeschaltetem Schreibschutz möglich. Nach dem Senden des letzten Steuerbefehls kann der Schreibschutz durch einen Schnittstellenbefehl oder durch Betätigen der Taste **meas** wieder aktiviert werden.

Bei eingeschaltetem Schreibschutz werden alle Schreibversuche ohne vorheriges Aufheben des Schreibschutzes oder mit ungültiger Paßzahl im Logbuch protokolliert. Schnittstelle

spe

Kopplung

Baud-Rate Datenbit/Parity

Schreibschutz « zurück [par]

7.00pH

9600 8/No

Punkt zu Punkt Bus

1200 7/0dd

00 600 7/Even 7 Ein **Hus**

300

Bei der Auslieferung ist der Schreibschutz abgeschaltet.

So parametrieren Sie die Schnittstelle

Wählen Sie im Parametriermenü mit v den Menüpunkt "Schnittstelle" und bestätigen Sie mit enter .

Busankopplung, die Baud-Rate, die Zahl der Daten-/Parity-Bits und ob Sie den Schreibschutz benutzen wollen. Bestätigen Sie mit enter .

Anwendungshinweise

Wenn Sie den pH Transmitter 2500 über einen RS 232 C/RS 485-Schnittstellenadapter mit der RS 232-Schnittstelle eines PC oder Kompatiblen verbinden, beachten Sie folgende Hinweise:

Die Verbindungsleitung zwischen dem pH Transmitter 2500 und dem PC arbeitet bidirektional. Dem Konverter muß daher die Übertragungsrichtung bekannt sein. Wenn keine Daten gesendet werden, muß der Konverter seinen Sendetreiber abschalten. Diese Umschaltung geschieht bei handelsüblichen Konvertern über eine Handshake-Leitung (z. B. DTR oder RTS) Die Umschaltung muß vom Treiberprogramm des PC gesteuert werden. Handelsübliche PC-Terminalprogramme führen die Umschaltung nicht automatisch durch.

Einige Konverter (z. B. W&T Typ 860006) können im "Automatic-Mode" betrieben werden. Die Treiber werden dann automatisch nach kurzer Zeit ausgeschaltet. Dies kann aber zu Bus-Timing-Fehlern führen, wenn die automatische Abschaltzeit nicht zu der verwendeten Baudrate paßt. Der W&T-Konverter hat automatische Ausschaltzeiten für die Baudrate 115200 Baud.

Ein Betrieb mit der höchsten möglichen Baudrate (9600 Baud) des pH Transmitters 2500 bringt dann erfahrungsgemäß die besten Resultate.

Die Deltafunktion

Mit der Delta-Funktion können Sie Differenzwerte zu den Meßwerten pH, mV, ORP und rH bilden und diese direkt anzeigen und ausgeben. Dazu können Sie einen Deltawert eingeben, der von der parametrierten Meßgröße subtrahiert wird.

Ausgabewert = Meßwert – Deltawert

′.00p⊢

rН

Stromausgänge, Regler und Grenzwerte werden vom Ausgabewert gesteuert.

Dies wird z. B. bei der Redox-Messung gebraucht, um den Meßwert direkt auf eine Normal-Wasserstoff-Elektrode umzurechnen.

So parametrieren Sie die Deltafunktion

Wählen Sie im Parametriermenü mit V den Menüpunkt "Deltafunktion" und bestätigen Sie mit **en**ter.

Wählen Sie mit ◀ und ► die Meßgröße aus, und bestätigen Sie mit **enter**.

Mit den Rolltasten und den Cursortasten geben Sie den Deltawert ein. Bestätigen Sie die Eingaben mit **enter**.

Wenn die Deltafunktion aktiviert ist, wird in der Meßwertanzeige unterhalb des Meßwertzeichens der Schriftzug "DELTA" eingeblendet.

Gerätediagnose

Der pH Transmitter 2500 kann zyklisch einen automatischen Selbsttest (Speichertest) durchführen. Bei fehlerhaftem Speicher liefert das Gerät eine Warnungsmeldung. Der Selbsttest wird nur ausgeführt, wenn sich das Gerät im Meß-Modus befindet. Während des Tests läuft die Messung im Hintergrund weiter. Alle Ausgänge werden weiterhin bedient.

So parametrieren Sie die Gerätediagnose

Wählen Sie im Parametriermenü mit ▼ den Menüpunkt "Gerätediagnose" und bestätigen Sie mit enter .

Mit ◀ oder ▶ und **enter** schalten Sie die automatische Gerätediagnose ein oder aus. Die Intervallzeit geben Sie mit den Rolltasten und den Cursortasten ein. Bestätigen Sie die Eingabe mit **enter**.

Aus pH +0000 mV

Deltafunkti

Deltafunktion

« zurück [par]

Deltawert

spe Gerät	ediagnose	7.02pH
Selbsttes Intervall:	zeit d	in Aus 0024 h
« zurück	[par]	

Diese Seite bleibt aus technischen Gründen leer.

10 Hinweise zur Montage, Installation und Wartung

Montage

- Das wetterfeste Gehäuse gestattet die direkte Wandmontage, Maßzeichnung s. Abb. 10–1.
- Mit der Montageplatte ZU 0126 und dem Mastschellensatz ZU 0125 können Sie das Gerät auch an einem Mast montieren, Maßzeichnung s. Abb. 10–2.

 Das Schutzdach ZU 0123 bietet zusätzlichen Schutz vor direkten Witterungseinflüssen und mechanischer Beschädigung, Maßzeichnung s. Abb. 10–2.

Zur Montage des Schutzdaches benötigen Sie die Montageplatte ZU 0126.

 Mit dem Schutzgehäuse ZU 0124 ist das Gerät optimal vor Staub, Nässe und mechanischer Beschädigung geschützt, Maßzeichnung s. Abb. 10–3.

Mit dem Mastschellensatz ZU 0128 können Sie das Schutzgehäuse auch am Mast montieren.

Abb. 10–1 Maßzeichnung pH Transmitter 2500

Abb. 10-2 Maßzeichnung Montageplatte ZU 0126 und Schutzdach ZU 0123

Abb. 10-3 Maßzeichnung Schutzgehäuse ZU 0124

Abb. 10-4 Mastschellen-Satz ZU 0128 für Schutzgehäuse ZU 0124

So montieren Sie den pH Transmitter 2500 im Schutzgehäuse

Aufbau

Der pH Transmitter 2500 wird über zwei Trägerbügel mit dem Unterteil des Schutzgehäuses verschraubt. Die Anschlußleitungen werden durch Verlängerungsstücke zur Unterseite des Schutzgehäuses geführt und dort mit Pg-Verschraubungen abgedichtet.

Montageanleitung

- Übertragen Sie die Daten des Typschilds vom pH Transmitter 2500 auf das beiliegende Typschild (1), s. Abb. 10–5.
- Schrauben Sie alle Pg-Verschraubungen mit Dichtungen vom pH Transmitter 2500 ab und bewahren Sie sie f
 ür die sp
 ätere Montage auf.
- Schrauben Sie an Stelle der Pg-Verschraubungen die beiliegenden Verlängerungen (3) mit den dazu gehörigen Dichtringen (2) ein.
- Schrauben Sie die beiden Trägerbügel (4) (mit je zwei Schrauben M4x8 und Zahnscheiben 4,3) gleichsinnig in das Gehäuse-Unterteil des Schutzgehäuses.
 Schrauben erst nach Ausrichten der Gesamteinheit festziehen!
- Schrauben Sie den pH Transmitter 2500 (mit 4 Schrauben M5x16 und vier Unterlegscheiben 5,3) auf den beiden Trägerbügeln fest. Schrauben erst nach Ausrichten der Gesamteinheit festziehen!
- Drücken Sie die vier Gewindeeinsätze (5) bündig in die freien Sacklöcher der Gehäusefront des Schutzgehäuses und spreizen Sie sie etwas auf.
- Kleben Sie das Typschild (1) gut sichtbar auf die Frontabdeckung (6)
- Schrauben Sie die Frontabdeckung (6) mittels vier Schrauben und Zahnscheiben an die Gehäusefront des Schutzgehäuses.
 Achtung! Die Deckelklappe des Schutzgehäuses muß nach oben öffnen!
- Legen Sie die Gehäusefront auf, um den pH Transmitter 2500 im Schutzgehäuse auszurichten.

- Schrauben Sie die Pg-Verschraubungen mit Dichtung in die Verlängerungen ein.
- Nehmen Sie die Gehäusefront ab und ziehen Sie alle Befestigungssschrauben handfest an.
- Stellen Sie die elektrischen Verbindungen zum pH Transmitter 2500 her (s. S. 10–8).
- Befestigen Sie die Gehäusefront mit den vier Verschlußschrauben auf dem Schutzgehäuse.

Abb. 10–5 Montage pH Transmitter 2500 im Schutzgehäuse

Die Installation des pH Transmitters 2500 darf nur durch ausgebildete Fachkräfte (VBG 4) unter Beachtung der einschlägigen VDE-Vorschriften und der Bedienungsanleitung erfolgen. Bei der Installation sind die technischen Daten und die Anschlußwerte zu beachten.

Die *Inbetriebnahme* des pH Transmitters 2500 darf nur durch ausgebildete Fachkräfte (VBG 4) unter Beachtung der Bedienungsanleitung erfolgen.

Vor der Inbetriebnahme muß eine *vollständige Parametrierung* durch einen Systemspezialisten erfolgen (s. Kap. 8).

Bevor Sie die Hilfsenergie anschließen, überzeugen Sie sich auf dem Typschild, daß das Gerät die richtige Netzspannung hat:

- 230 V AC
- 115 V AC (Option 363)
- 24 V AC/DC (Option 298)

Zum Anschluß des pH Transmitters 2500 öffnen Sie die Abdeckung des Klemmenraums (unterer Deckel) mit drei Schrauben.

Abb. 10–6 zeigt die Belegung der Anschlußklemmen.

Die Klemmen sind für Einzeldrähte und Litzen bis 2,5 mm² geeignet.

Links neben Klemme 1 befinden sich zwei Klemmschrauben für den Anschluß des Elektrodenkabel-Schirms.

Diese Klemmschrauben sind elektrisch mit Klemme 4 verbunden! (siehe auch Beschaltungsbeispiele S. 9–15 ff)

Im Lieferzustand sind alle Klemmen offen, um eine problemlose Einführung der Anschlußdrähte zu ermöglichen.

Bei halbgeöffneten Klemmen kann es vorkommen, daß der Draht unter den Kontaktkörper gesteckt wird und bei zugeschraubter Klemme nicht kontaktiert.

Anschlußbelegung

Abb. 10–6 Anschlußbelegung pH Transmitter 2500

Wartung und Reinigung

Der pH Transmitter 2500 ist wartungsfrei.

Zum Entfernen von Staub, Schmutz und Flecken dürfen die Außenflächen des Gerätes mit einem weichen, mit Wasser angefeuchteten fusselfreien Tuch abgewischt werden. Wenn nötig kann auch ein milder Haushaltsreiniger oder 2-Propanol (Isopropyl-Alkohol) verwendet werden.

11 Fehlermeldungen

Alphabetisch sortiert

Fehlermeldung (Anzeige im Diagnosemenü "aktuelle Meldungsliste")	Mögliche Fehlerursachen und Abhilfemaßnahmen
Ausf Datenverlust par	CRC–Datenfehler bei der Parametrierung aufgetreten: Überprü- fen sie die komplette Parametrierung in der Spezialistenebene!
Ausf Fernsonde	Wechselarmatur erreicht Endposition nicht (z. B. durch Verschmutzung, Beschädigung, Druckluft– oder Hilfsenergieausfall) oder Vorratsbehälter für Reinigungsflüssigkeit leer
Ausf Hi Bezugs-El	Ausfallgrenze Bezugselektroden-Impedanz überschritten
Ausf Hi Cal-Time	Ausfallgrenze Cal-Timer überschritten
Ausf Hi Dosierzeit	Regler: Ausfallgrenze Dosierzeit überschritten
Ausf Hi El–Npkt	Elektroden–Nullpunkt > pH 8 (Option 356: > (nomineller Nullpunkt + 1 pH–Einheit)) oder Ausfallgrenze überschritten
Ausf Hi El–Sth	Elektroden–Steilheit > 61 mV/pH (Option 356: > 61 mV/pH oder > (nominelle Steilheit + 5,5 mV/ pH)) oder Ausfallgrenze überschritten
Ausf Hi Glas-El	Ausfallgrenze Glaselektroden-Impedanz überschritten
Ausf Hi mV–Wert	Meßwert > +2000 mV oder Ausfallgrenze überschritten
Ausf Hi ORP–Wert	Meßwert > +2000 mV oder Ausfallgrenze überschritten
Ausf Hi pH–Wert	Meßwert > pH 16 oder Ausfallgrenze überschritten
Ausf Hi rH–Wert	Meßwert > 200 rH oder Ausfallgrenze überschritten
Ausf Hi Sensorkontr.	Ausfallgrenze InClean Sensorkontr. überschritten
Ausf Hi Strom–Eing	Ausfallgrenze Eingangsstrom überschritten
Ausf Hi Temperatur	Meßwert > 250 °C oder Ausfallgrenze überschritten
Ausf Lo Bezugs–El	Ausfallgrenze Bezugselektroden-Impedanz unterschritten
Ausf Lo El–Npkt	Elektroden–Nullpunkt < pH 6 (Option 356: < pH 0 oder < (nomi- neller Nullpunkt – 1 pH–Einheit)) oder Ausfallgrenze unter- schritten
Ausf Lo El–Sth	Elektroden–Steilheit < 50 mV/pH (Option 356: < 50 mV/pH oder < (nominelle Steilheit – 5,5 mV/ pH)) oder Ausfallgrenze unterschritten

Fehlermeldung (Anzeige im Diagnosemenü "aktuelle Meldungsliste")	Mögliche Fehlerursachen und Abhilfemaßnahmen
Ausf Lo Glas-El	Ausfallgrenze Glaselektroden-Impedanz unterschritten
Ausf Lo mV–Wert	Meßwert < -2000 mV oder Ausfallgrenze unterschritten
Ausf Lo ORP–Wert	Meßwert < -2000 mV oder Ausfallgrenze unterschritten
Ausf Lo pH–Wert	Meßwert < pH –2 oder Ausfallgrenze unterschritten
Ausf Lo rH–Wert	Meßwert < 0 rH oder Ausfallgrenze unterschritten
Ausf Lo Sensorkontr.	Ausfallgrenze InClean Sensorkontr. unterschritten
Ausf Lo Strom–Eing	Ausfallgrenze Eingangsstrom unterschritten
Ausf Lo Temperatur	Meßwert < -50 °C oder Ausfallgrenze unterschritten
Ausf RS485–Overflow	Schnittstellenfehler: Buffer Overflow, zu viele Zeichen ohne Schlußzeichen empfangen
Ausf RS485–Syntax	Schnittstellenfehler: Parity- oder Framing-Fehler
Ausf Sondenposition	Wechselarmatur nicht in vorgeschriebener Position (z. B. durch Druckluft– oder Hilfsenergieausfall)
Ausf Spülzyklus	Spülzyklus wurde unterbrochen, Neustart erforderlich
Ausf Strom1–Bürde	Stromausgang 1: Bürde zu groß oder Stromkreis unterbrochen
Ausf Strom2–Bürde	Stromausgang 2: Bürde zu groß oder Stromkreis unterbrochen
Ausf System-Ausfall	Uhr-Ausfall oder CRC-Fehler im Abgleichdaten-Speicher: Gerät beim Hersteller überprüfen lassen!
Warn Cal-Temperatur	manuelle Kalibriertemperatur < -50 °C oder > +250 °C (Calimatic: < 0 °C oder > +100 °C)
Warn Gleiche Puffer	Kalibrierung mit identischen Pufferlösungen
Warn Hi Bezugs–El	Warnungsgrenze Bezugselektroden-Impedanz überschritten
Warn Hi Cal–Time	Warnungsgrenze Cal–Timer überschritten
Warn Hi Dosierzeit	Regler: Warnungsgrenze Dosierzeit überschritten
Warn Hi El–Npkt	Warnungsgrenze Elektroden-Nullpunkt überschritten
Warn Hi El–Sth	Warnungsgrenze Elektroden-Steilheit überschritten
Warn Hi Glas–El	Warnungsgrenze Glaselektroden–Impedanz überschritten
Warn Hi Isothermspg	Eingabewert Isothermenschnittpunktspannung Uis > +200 mV (Option 356: > +500 mV)
Warn Hi mV–Wert	Warnungsgrenze mV–Meßwert überschritten
Warn Hi ORP–Wert	Warnungsgrenze ORP-Meßwert überschritten
Warn Hi pH–Wert	Warnungsgrenze pH-Meßwert überschritten

Fehlermeldung (Anzeige im Diagnosemenü "aktuelle Meldungsliste")	Mögliche Fehlerursachen und Abhilfemaßnahmen
Warn Hi rH–Wert	Warnungsgrenze rH–Meßwert überschritten
Warn Hi Sensorkontr.	Warnungsgrenze InClean Sensorkontr. überschritten
Warn Hi Strom–Eing	Warnungsgrenze Eingangsstrom überschritten
Warn Hi Temperatur	Warnungsgrenze Meßtemperatur überschritten
Warn Lo Bezugs–El	Warnungsgrenze Bezugselektroden-Impedanz unterschritten
Warn Lo Glas–El	Warnungsgrenze Glaselektroden-Impedanz unterschritten
Warn Lo El–Npkt	Warnungsgrenze Elektroden-Nullpunkt unterschritten
Warn Lo El–Sth	Warnungsgrenze Elektroden-Steilheit unterschritten
Warn Lo Isothermspg	Eingabewert Isothermenschnittpunktspannung Uis < –200 mV (Option 356: < –500 mV)
Warn Lo mV–Wert	Warnungsgrenze mV–Meßwert überschritten
Warn Lo ORP–Wert	Warnungsgrenze ORP-Meßwert unterschritten
Warn Lo pH–Wert	Warnungsgrenze pH–Meßwert unterschritten
Warn Lo rH–Wert	Warnungsgrenze rH-Meßwert unterschritten
Warn Lo Sensorkontr.	Warnungsgrenze InClean Sensorkontr. unterschritten
Warn Lo Strom–Eing	Warnungsgrenze Eingangsstrom unterschritten
Warn Lo Temperatur	Warnungsgrenze Meßtemperatur unterschritten
Warn Puf Unbekannt	Puffer nicht im parametrierten Calimatic-Puffersatz enthalten
Warn Puf Vertauscht	nur bei manueller Kalibrierung
Warn Reglerparameter	Parameterfehler Regler, s. S. 9–37
Warn RS485–Busadr	Schnittstellenfehler: Ungültige Geräteadresse parametriert (0 oder >31)
Warn RS485–Parameter	Schnittstellenfehler: Befehls-Parameter falsch
Warn RS485–Syntax	Schnittstellenfehler: Befehls-Syntax falsch oder Befehl nicht verfügbar
Warn Schreibschutz	Schnittstellenfehler: Schreibversuch ohne vorherige Deaktivie- rung des Schreibschutzes
Warn Sensor Instabil	stabiler Endwert bei Kalibrierung wurde nach 2 min nicht er- reicht
Warn Strom1-Spanne	Stromausgang 1: Anfangs– und Endwert haben zu geringen Abstand
Warn Strom1 <0/4 mA	Stromausgang 1: Ausgangsstrom unterhalb des parametrierten Anfangswertes

Fehlermeldung (Anzeige im Diagnosemenü "aktuelle Meldungsliste")	Mögliche Fehlerursachen und Abhilfemaßnahmen
Warn Strom1 > 20 mA	Stromausgang 1: Ausgangsstrom oberhalb des parametrierten Endwertes
Warn Strom2–Spanne	Stromausgang 2: Anfangs– und Endwert haben zu geringen Abstand
Warn Strom2 <0/4 mA	Stromausgang 2: Ausgangsstrom unterhalb des parametrierten Anfangswertes
Warn Strom2 > 20 mA	Stromausgang 2: Ausgangsstrom oberhalb des parametrierten Endwertes
Warn Uhrzeit/Datum	Uhrzeit mußte automatisch initialisiert werden: Die Uhrzeit muß neu parametriert werden!

Sortiert nach Schnittstellen-Fehlercode

Fehler- code	Fehlermeldung (Anzeige im Diagnosemenü "aktuelle Meldungsliste")	Mögliche Fehlerursachen und Abhilfemaßnahmen
001	Ausf Hi pH–Wert	Meßwert > pH 16 oder Ausfallgrenze überschritten
002	Warn Hi pH–Wert	Warnungsgrenze pH-Meßwert überschritten
003	Warn Lo pH–Wert	Warnungsgrenze pH–Meßwert unterschritten
004	Ausf Lo pH–Wert	Meßwert < pH –2 oder Ausfallgrenze unterschritten
005	Ausf Hi mV–Wert	Meßwert > +2000 mV oder Ausfallgrenze überschritten
006	Warn Hi mV–Wert	Warnungsgrenze mV–Meßwert überschritten
007	Warn Lo mV–Wert	Warnungsgrenze mV–Meßwert überschritten
008	Ausf Lo mV–Wert	Meßwert < -2000 mV oder Ausfallgrenze unterschritten
009	Ausf Hi rH–Wert	Meßwert > 200 rH oder Ausfallgrenze überschritten
010	Warn Hi rH–Wert	Warnungsgrenze rH-Meßwert überschritten
011	Warn Lo rH–Wert	Warnungsgrenze rH-Meßwert unterschritten
012	Ausf Lo rH–Wert	Meßwert < 0 rH oder Ausfallgrenze unterschritten
013	Ausf Hi ORP–Wert	Meßwert > +2000 mV oder Ausfallgrenze überschritten
014	Warn Hi ORP–Wert	Warnungsgrenze ORP-Meßwert überschritten
015	Warn Lo ORP–Wert	Warnungsgrenze ORP-Meßwert unterschritten
016	Ausf Lo ORP–Wert	Meßwert < -2000 mV oder Ausfallgrenze unterschritten
017	Ausf Hi El–Npkt	Elektroden–Nullpunkt > pH 8 (Option 356: > (nomineller Nullpunkt + 1 pH–Einheit) oder Ausfallgrenze überschritten
018	Warn Hi El–Npkt	Warnungsgrenze Elektroden-Nullpunkt überschritten
019	Warn Lo El–Npkt	Warnungsgrenze Elektroden-Nullpunkt unterschritten
020	Ausf Lo El–Npkt	Elektroden–Nullpunkt < pH 6 (Option 356: < pH 0 oder < (nomineller Nullpunkt – 1 pH– Einheit)) oder Ausfallgrenze unterschritten
021	Ausf Hi El–Sth	Elektroden–Steilheit > 61 mV/pH (Option 356: > 61 mV/pH oder > (nominelle Steilheit + 5,5 mV/pH)) oder Ausfallgrenze überschritten
022	Warn Hi El–Sth	Warnungsgrenze Elektroden-Steilheit überschritten
023	Warn Lo El-Sth	Ausfallgrenze Elektroden-Steilheit unterschritten

Fehler- code	Fehlermeldung (Anzeige im Diagnosemenü "aktuelle Meldungsliste")	Mögliche Fehlerursachen und Abhilfemaßnahmen
024	Ausf Lo El–Sth	Elektroden–Steilheit < 50 mV/pH (Option 356: < 50 mV/pH oder < (nominelle Steilheit – 5,5 mV/pH)) oder Ausfallgrenze unterschritten
026	Warn Hi Isothermspg	Eingabewert Isothermenschnittpunktspannung Uis > +200 mV (Option 356: > +500 mV)
027	Warn Lo Isothermspg	Eingabewert Isothermenschnittpunktspannung Uis < –200 mV (Option 356: < –500 mV)
029	Ausf Hi Glas–El	Ausfallgrenze Glaselektroden-Impedanz überschritten
030	Warn Hi Glas-El	Warnungsgrenze Glaselektroden-Impedanz überschritten
031	Warn Lo Glas-El	Warnungsgrenze Glaselektroden-Impedanz unterschrit- ten
032	Ausf Lo Glas-El	Ausfallgrenze Glaselektroden-Impedanz unterschritten
033	Ausf Hi Bezugs-El	Ausfallgrenze Bezugselektroden-Impedanz überschritten
034	Warn Hi Bezugs–El	Warnungsgrenze Bezugselektroden–Impedanz über- schritten
035	Warn Lo Bezugs–El	Warnungsgrenze Bezugselektroden-Impedanz unter- schritten
036	Ausf Lo Bezugs–El	Ausfallgrenze Bezugselektroden-Impedanz unterschritten
037	Warn Puf Unbekannt	Puffer nicht im parametrierten Calimatic-Puffersatz ent- halten
038	Warn Gleiche Puffer	Kalibrierung mit identischen Pufferlösungen
039	Warn Puf Vertauscht	nur bei manueller Kalibrierung
080	Ausf Hi Temperatur	Meßwert > 250 °C oder Ausfallgrenze überschritten
081	Warn Hi Temperatur	Warnungsgrenze Meßtemperatur überschritten
082	Warn Lo Temperatur	Warnungsgrenze Meßtemperatur unterschritten
083	Ausf Lo Temperatur	Meßwert < -50 °C oder Ausfallgrenze unterschritten
084	Ausf Hi Strom–Eing	Ausfallgrenze Eingangsstrom überschritten
085	Warn Hi Strom–Eing	Warnungsgrenze Eingangsstrom überschritten
086	Warn Lo Strom–Eing	Warnungsgrenze Eingangsstrom unterschritten
087	Ausf Lo Strom–Eing	Ausfallgrenze Eingangsstrom unterschritten
088	Ausf Hi Cal-Time	Ausfallgrenze CAL–Timer überschritten
089	Warn Hi Cal-Time	Warnungsgrenze CAL–Timer überschritten

Fehler- code	Fehlermeldung (Anzeige im Diagnosemenü "aktuelle Meldungsliste")	Mögliche Fehlerursachen und Abhilfemaßnahmen
092	Ausf RS485–Overflow	Schnittstellenfehler: Buffer Overflow, zu viele Zeichen ohne Schlußzeichen empfangen
093	Ausf RS485–Syntax	Schnittstellenfehler: Parity- oder Framing-Fehler
094	Warn RS485–Syntax	Schnittstellenfehler: Befehls–Syntax falsch oder Befehl nicht verfügbar
095	Warn RS485–Parameter	Schnittstellenfehler: Befehls-Parameter falsch
096	Warn RS485–Busadr	Schnittstellenfehler: Ungültige Geräteadresse parame- triert (0 oder >31)
097	Warn Strom1–Spanne	Stromausgang 1: Anfangs– und Endwert haben zu gerin- gen Abstand
098	Warn Strom1 <0/4 mA	Stromausgang 1: Ausgangsstrom unterhalb des parame- trierten Anfangswertes
099	Warn Strom1 > 20 mA	Stromausgang 1: Ausgangsstrom oberhalb des parame- trierten Endwertes
100	Ausf Strom1–Bürde	Stromausgang 1: Bürde zu groß oder Stromkreis unter- brochen
101	Warn Strom2–Spanne	Stromausgang 2: Anfangs– und Endwert haben zu gerin- gen Abstand
102	Warn Strom2 <0/4 mA	Stromausgang 2: Ausgangsstrom unterhalb des parame- trierten Anfangswertes
103	Warn Strom2 > 20 mA	Stromausgang 2: Ausgangsstrom oberhalb des parame- trierten Endwertes
104	Ausf Strom2–Bürde	Stromausgang 2: Bürde zu groß oder Stromkreis unter- brochen
105	Warn Cal–Temperatur	manuelle Kalibriertemperatur < -50 °C oder > +250°C (Calimatic: < 0 °C oder > +100°C)
106	Warn Sensor Instabil	stabiler Endwert bei Kalibrierung wurde nach 2 min nicht erreicht
108	Warn Uhrzeit/Datum	Uhrzeit mußte automatisch initialisiert werden: Die Uhrzeit muß neu parametriert werden!
109	Warn Reglerparameter	Parameterfehler Regler, s. S. 9–37
110	Ausf Datenverlust par	CRC–Datenfehler bei der Parametrierung aufgetreten: Überprüfen Sie die komplette Parametrierung in der Spe- zialistenebene!
111	Ausf Hi Dosierzeit	Regler: Ausfallgrenze Dosierzeit überschritten
112	Warn Hi Dosierzeit	Regler: Warnungsgrenze Dosierzeit überschritten
115	Ausf Spülzyklus	Spülzyklus wurde unterbrochen, Neustart erforderlich

Fehler- code	Fehlermeldung (Anzeige im Diagnosemenü "aktuelle Meldungsliste")	Mögliche Fehlerursachen und Abhilfemaßnahmen
116	Warn Schreibschutz	Schnittstellenfehler: Schreibversuch ohne vorherige Deaktivierung des Schreibschutzes
117	Ausf Fernsonde	Wechselarmatur erreicht Endposition nicht (z. B. durch Verschmutzung, Beschädigung, Druckluft– oder Hilfsenergieausfall) oder Vorratsbehälter für Reinigungsflüssigkeit leer
118	Ausf Sondenposition	Wechselarmatur nicht in vorgeschriebener Position (z. B. durch Druckluft– oder Hilfsenergieausfall)
119	Ausf Hi Sensorkontr.	Ausfallgrenze InClean Sensorkontr. überschritten
120	Warn Hi Sensorkontr.	Warnungsgrenze InClean Sensorkontr. überschritten
121	Warn Lo Sensorkontr.	Warnungsgrenze InClean Sensorkontr. unterschritten
122	Ausf Lo Sensorkontr.	Ausfallgrenze InClean Sensorkontr. unterschritten
255	Ausf System-Ausfall	Uhr–Ausfall oder CRC–Fehler im Abgleichdaten– Speicher: Gerät beim Hersteller überprüfen lassen!
12 Schnittstellenbefehle

Inhaltsübersicht

Übertragungsverhalten	12–4
Read/Write	12–4
Parametrierstrings	12–4
Numerische Parameter	12–5
VALUE-Befehle: Meßwerte abfragen	12–5
STATUS-Befehle: Meldungen und Zustände abfragen	12–6
Elektrodenstatistik abfragen	12–7
Kalibrierprotokoll der letzten Kalibrierung abfragen	12–8
Logbuch: Einträge abfragen (nur Option 354)	12–8
Carätadiagnasa: Status abfragan	12-9
	•
PARAMETER-Befehle: Parametrierung abfragen und Parameter setzen	12–10
PARAMETER-Befehle: Parametrierung abfragen und Parameter setzen	12–10 12–10
PARAMETER-Befehle: Parametrierung abfragen und Parameter setzen Meßstellen-Nummer Uhr	12–10 12–10 12–11
PARAMETER-Befehle: Parametrierung abfragen und Parameter setzen Meßstellen-Nummer Uhr Kalibrierung mit manueller Eingabe von Pufferwerten	12–10 12–10 12–11 12–11
PARAMETER-Befehle: Parametrierung abfragen und Parameter setzen Meßstellen-Nummer Uhr Kalibrierung mit manueller Eingabe von Pufferwerten Kalibrierung durch Dateneingabe vorgemessener Elektroden	12–10 12–10 12–11 12–11 12–11
PARAMETER-Befehle: Parametrierung abfragen und Parameter setzen	12–10 12–10 12–11 12–11 12–11 12–11
PARAMETER-Befehle: Parametrierung abfragen und Parameter setzen Meßstellen-Nummer Uhr Kalibrierung mit manueller Eingabe von Pufferwerten Kalibrierung durch Dateneingabe vorgemessener Elektroden Kalibrierung durch Probennahme Temperaturfühlerabgleich	12–10 12–10 12–11 12–11 12–11 12–11 12–11 12–12
PARAMETER-Befehle: Parametrierung abfragen und Parameter setzen Meßstellen-Nummer Uhr Kalibrierung mit manueller Eingabe von Pufferwerten Kalibrierung durch Dateneingabe vorgemessener Elektroden Kalibrierung durch Probennahme Temperaturfühlerabgleich Meßwertanzeige	12–10 12–10 12–11 12–11 12–11 12–11 12–12 12–12
PARAMETER-Befehle: Parametrierung abfragen und Parameter setzen Meßstellen-Nummer Uhr Kalibrierung mit manueller Eingabe von Pufferwerten Kalibrierung durch Dateneingabe vorgemessener Elektroden Kalibrierung durch Probennahme Temperaturfühlerabgleich Meßwertanzeige Linke Nebenanzeige parametrieren	12–10 12–10 12–11 12–11 12–11 12–11 12–12 12–12 12–12

Eingangsfilter	12–14
Calimatic [®] -Puffersatz	12–14
Nomineller Nullpunkt/nominelle Steilheit (Option 356)	12–14
pH-Alarm	12–15
mV-Alarm	12–15
Cal-Timer-Alarm	12–16
Steilheit-Alarm	12–16
Nullpunkts-Alarm	12–16
Tk Meßmedium	12–17
Temperaturerfassung	12–17
Temperatur-Alarm	12–18
Stromausgang 1	12–18
Stromausgang 2 (nur Option 350)	12–19
Ausgang 2/Regler (nur Option 483)	12–19
Glaselektrodenimpedanz-Alarm	12–20
Bezugselektrodenimpedanz-Alarm	12–20
rH-Messung	12–20
rH-Alarm	12–21
ORP-Alarm	12–21
Alarmeinstellungen	12–22
NAMUR-Kontakte	12–22
Grenzwertkontakte/Regler (nur mit Option 353)	12–22
Grenzwertkontakt 1	12–23
Grenzwertkontakt 2	12–23
Digitalregler (Option 353, nicht mit Opt. 483)	12–24
Analogregler (Option 483, nicht mit Opt. 353)	12–25
Dosierzeitalarm (Regler, Option 353 oder Option 483)	12–26
Stromeingang	12–27

Stromeingangsalarm 1 Wechselarmatur-Steuerung (Option 404) 1 Sondenspülung (Option 352) 1 RS 485-Schnittstelle 1 Deltafunktion 1 Automatische Gerätediagnose 1 DEVICE-Befehle: Gerätebeschreibung 1 COMMAND-Befehle: Steuerkommandos 1 Erstkalibrierung 1 Automatische Kalibrierung mit Calimatic® 1 Kalibrierung durch Probennahme 1 Gerätediagnose 1 Uhr 1 Meßstellen-Wartung 1 Wechselarmatur-Steuerung (Option 404) 1 Sondenspülung (Option 352) 1 Stromgeberfunktion 1 Temperaturfühlerabgleich 1 Digitalregler (Option 353, nicht mit Opt. 483) 1 Analogregler (Option 483, nicht mit Opt. 353) 1 Parametrierung Spezialistenebene 1 RS 485-Schnittstelle 1 Datenformat 1 Aufbau einer Nachricht 1 1, Feld: Slaveadresse, Statusflags 1 2, Feld: Länge 1 3, Fel			
Wechselarmatur-Steuerung (Option 404) 1 Sondenspülung (Option 352) 1 RS 485-Schnittstelle 1 Deltafunktion 1 Automatische Gerätediagnose 1 DEVICE-Befehle: Gerätebeschreibung 1 COMMAND-Befehle: Steuerkommandos 1 Erstkalibrierung 1 Automatische Kalibrierung mit Calimatic [®] 1 Kalibrierung mit manueller Eingabe von Pufferwerten 1 Kalibrierung durch Probennahme 1 Gerätediagnose 1 Uhr 1 Meßstellen-Wartung 1 Wechselarmatur-Steuerung (Option 404) 1 Sondenspülung (Option 352) 1 Stromgeberfunktion 1 Temperaturfühlerabgleich 1 Digitalregler (Option 353, nicht mit Opt. 483) 1 Anlogregler (Option 353, nicht mit Opt. 353) 1 Parametrierung Spezialistenebene 1 RS 485-Schnittstelle 1 Schnittsteller-Busprotokoll 1 Datenformat 1 Aufbraue iner Nachricht 1 1. Feld: Länge 1 <td></td> <td>Stromeingangsalarm</td> <td>12–27</td>		Stromeingangsalarm	12–27
Sondenspülung (Option 352) 1 RS 485-Schnittstelle 1 Deltatunktion 1 Automatische Gerätediagnose 1 DEVICE-Befehle: Gerätebeschreibung 1 COMMAND-Befehle: Steuerkommandos 1 Erstkalibrierung 1 Automatische Kalibrierung mit Calimatic [®] 1 Kalibrierung durch Probennahme 1 Kalibrierung durch Probennahme 1 Gerätediagnose 1 Uhr 1 Wechselarmatur-Steuerung (Option 404) 1 Wechselarmatur-Steuerung (Option 404) 1 Sondenspülung (Option 352) 1 Stromgeberfunktion 1 Temperaturfühleradgleich 1 Digitalregler (Option 353, nicht mit Opt. 483) 1 Analogregler (Option 483, nicht mit Opt. 483) 1 Parametrierung Spezialistenebene 1 RS 485-Schnittstelle 1 Schnittstellen-Busprotokoll 1 J. Feld: Länge 1 J. Feld: Länge 1 J. Feld: Länge 1 J. Feld: CRC16 1 Schnitts		Wechselarmatur-Steuerung (Option 404)	12–27
RS 485-Schnittstelle 1 Deltafunktion 1 Automatische Gerätediagnose 1 DEVICE-Befehle: Gerätebeschreibung 1 COMMAND-Befehle: Steuerkommandos 1 Erstkalibrierung 1 Automatische Kalibrierung mit Calimatic [®] 1 Kalibrierung mit manueller Eingabe von Pufferwerten 1 Kalibrierung durch Probennahme 1 Gerätediagnose 1 Uhr 1 Meßstellen-Wartung 1 Wechselarmatur-Steuerung (Option 404) 1 Sondenspülung (Option 352) 1 Stromgeberfunktion 1 Temperaturfühlerabgleich 1 Digitalregier (Option 353, nicht mit Opt. 483) 1 Analogregier (Option 483, nicht mit Opt. 483) 1 Analogregier (Option 483, nicht mit Opt. 483) 1 Parametrierung Spezialistenebene 1 RS 485-Schnittstelle 1 Datenformat 1 Autbau einer Nachricht 1 I. Feld: Slaveadresse, Statusflags 1 2. Feld: Länge 1 3. Feld: ASCII-Nachricht <		Sondenspülung (Option 352)	12–29
Deltafunktion 1 Automatische Gerätediagnose 1 DEVICE-Befehle: Gerätebeschreibung 1 COMMAND-Befehle: Steuerkommandos 1 Erstkalibrierung 1 Automatische Kalibrierung mit Calimatic [®] 1 Kalibrierung mit manueller Eingabe von Pufferwerten 1 Kalibrierung durch Probennahme 1 Gerätediagnose 1 Uhr 1 Meßstellen-Wartung 1 Wechselarmatur-Steuerung (Option 404) 1 Sondenspülung (Option 352) 1 Stromgeberfunktion 1 Temperaturfühlerabgleich 1 Digitalregler (Option 353, nicht mit Opt. 483) 1 Analogregler (Option 483, nicht mit Opt. 483) 1 Analogregler (Option 483, nicht mit Opt. 483) 1 Parametrierung Spezialistenebene 1 RS 485-Schnittstelle 1 Datenformat 1 Autbau einer Nachricht 1 I. Feld: Slaveadresse, Statusflags 1 2. Feld: Länge 1 3. Feld: ASCII-Nachricht 1 3. Feld: CRC16 1		RS 485-Schnittstelle	12–29
Automatische Gerätediagnose 1 DEVICE-Befehle: Gerätebeschreibung 1 COMMAND-Befehle: Steuerkommandos 1 Erstkalibrierung 1 Automatische Kalibrierung mit Calimatic [®] 1 Automatische Kalibrierung mit Calimatic [®] 1 Kalibrierung durch Probennahme 1 Gerätediagnose 1 Uhr 1 Meßstellen-Wartung 1 Wechselarmatur-Steuerung (Option 404) 1 Sondenspülung (Option 352) 1 Stromgeberfunktion 1 Temperaturfühlerabgleich 1 Digitalregler (Option 353, nicht mit Opt. 483) 1 Analogregler (Option 483, nicht mit Opt. 353) 1 Parametrierung Spezialistenebene 1 RS 485-Schnittstelle 1 Datenformat 1 Aufbau einer Nachricht 1 1. Feld: Slaveadresse, Statusflags 1 2. Feld: Länge 1 3. Feld: ASCII-Nachricht 1 4. Feld: CRC16 1 Schnittstellen-Busprotokoll des Slave (2500) 1 Schnittstellen-Busprotokoll des Slave (2500) </td <td></td> <td>Deltafunktion</td> <td>12–30</td>		Deltafunktion	12–30
DEVICE-Befehle: Gerätebeschreibung 1 COMMAND-Befehle: Steuerkommandos 1 Erstkalibrierung 1 Automatische Kalibrierung mit Calimatic [®] 1 Kalibrierung mit manueller Eingabe von Pufferwerten 1 Kalibrierung durch Probennahme 1 Gerätediagnose 1 Uhr 1 Meßstellen-Wartung 1 Wechselarmatur-Steuerung (Option 404) 1 Sondenspüllung (Option 352) 1 Stromgeberfunktion 1 Temperaturfühlerabgleich 1 Digitalregler (Option 353, nicht mit Opt. 483) 1 Analogregler (Option 483, nicht mit Opt. 353) 1 Parametrierung Spezialistenebene 1 RS 485-Schnittstelle 1 Schnittstellen-Busprotokoll 1 Datenformat 1 Aufbau einer Nachricht 1 1. Feld: Slaveadresse, Statusflags 1 2. Feld: Länge 1 3. Feld: ASCII-Nachricht 1 4. Feld: CRC16 1 Schnittstellen-Busprotokoll des Slave (2500) 1 Schnittstellen-Busprotokoll des Slav		Automatische Gerätediagnose	12–30
COMMAND-Befehle: Steuerkommandos 1 Erstkalibrierung 1 Automatische Kalibrierung mit Calimatic [®] 1 Kalibrierung mit manueller Eingabe von Pufferwerten 1 Kalibrierung durch Probennahme 1 Gerätediagnose 1 Uhr 1 Meßstellen-Wartung 1 Wechselarmatur-Steuerung (Option 404) 1 Sondenspülung (Option 352) 1 Stromgeberfunktion 1 Temperaturfühlerabgleich 1 Digitalregler (Option 353, nicht mit Opt. 483) 1 Analogregler (Option 483, nicht mit Opt. 353) 1 Parametrierung Spezialistenebene 1 RS 485-Schnittstelle 1 Datenformat 1 Aufbau einer Nachricht 1 1. Feld: Slaveadresse, Statusflags 1 2. Feld: Länge 1 3. Feld: ASCII-Nachricht 1 4. Feld: CRC16 1 Schnittstellen-Busprotokoll des Slave (2500) 1 Schnittstellen-Busprotokoll des Slave (2500) 1	DEV	ICE-Befehle: Gerätebeschreibung	12–31
Erstkalibrierung 1 Automatische Kalibrierung mit Calimatic [®] 1 Kalibrierung mit manueller Eingabe von Pufferwerten 1 Kalibrierung durch Probennahme 1 Gerätediagnose 1 Uhr 1 Meßstellen-Wartung 1 Wechselarmatur-Steuerung (Option 404) 1 Sondenspülung (Option 352) 1 Stromgeberfunktion 1 Temperaturfühlerabgleich 1 Digitalregler (Option 353, nicht mit Opt. 483) 1 Analogregler (Option 483, nicht mit Opt. 353) 1 Parametrierung Spezialistenebene 1 RS 485-Schnittstelle 1 Schnittstellen-Busprotokoll 1 1. Feld: Slaveadresse, Statusflags 1 2. Feld: Länge 1 3. Feld: ASCII-Nachricht 1 4. Feld: CRC16 1 Schnittstellen-Busprotokoll des Slave (2500) 1 Schnittstellen-Busprotokoll des Slave (2500) 1	CON	IMAND-Befehle: Steuerkommandos	12–31
Automatische Kalibrierung mit Calimatic [®] 1 Kalibrierung mit manueller Eingabe von Pufferwerten 1 Kalibrierung durch Probennahme 1 Gerätediagnose 1 Uhr 1 Meßstellen-Wartung 1 Wechselarmatur-Steuerung (Option 404) 1 Sondenspülung (Option 352) 1 Stromgeberfunktion 1 Temperaturfühlerabgleich 1 Digitalregler (Option 353, nicht mit Opt. 483) 1 Analogregler (Option 483, nicht mit Opt. 353) 1 Parametrierung Spezialistenebene 1 RS 485-Schnittstelle 1 Datenformat 1 Aufbau einer Nachricht 1 1. Feld: Slaveadresse, Statusflags 1 2. Feld: Länge 1 3. Feld: ASCII-Nachricht 1 4. Feld: CRC16 1 Schnittstellen-Busprotokoll des Slave (2500) 1		Erstkalibrierung	12–31
Kalibrierung mit manueller Eingabe von Pufferwerten 1 Kalibrierung durch Probennahme 1 Gerätediagnose 1 Uhr 1 Meßstellen-Wartung 1 Wechselarmatur-Steuerung (Option 404) 1 Sondenspülung (Option 352) 1 Stromgeberfunktion 1 Temperaturfühlerabgleich 1 Digitalregler (Option 353, nicht mit Opt. 483) 1 Analogregler (Option 483, nicht mit Opt. 353) 1 Parametrierung Spezialistenebene 1 RS 485-Schnittstelle 1 Datenformat 1 Aufbau einer Nachricht 1 1. Feld: Slaveadresse, Statusflags 1 2. Feld: Länge 1 3. Feld: ASCII-Nachricht 1 4. Feld: CRC16 1 Schnittstellen-Busprotokoll des Slave (2500) 1		Automatische Kalibrierung mit Calimatic [®]	12–31
Kalibrierung durch Probennahme 1 Gerätediagnose 1 Uhr 1 Meßstellen-Wartung 1 Wechselarmatur-Steuerung (Option 404) 1 Sondenspülung (Option 352) 1 Stromgeberfunktion 1 Temperaturfühlerabgleich 1 Digitalregler (Option 353, nicht mit Opt. 483) 1 Analogregler (Option 483, nicht mit Opt. 353) 1 Parametrierung Spezialistenebene 1 RS 485-Schnittstelle 1 Schnittstellen-Busprotokoll 1 Jatenformat 1 Aufbau einer Nachricht 1 J. Feld: Länge 1 S. Feld: Länge 1 Schnittstellen-Busprotokoll des Slave (2500) 1 Schnittstellen-Busprotokoll des Slave (2500) 1		Kalibrierung mit manueller Eingabe von Pufferwerten	12–32
Gerätediagnose 1 Uhr 1 Meßstellen-Wartung 1 Wechselarmatur-Steuerung (Option 404) 1 Sondenspülung (Option 352) 1 Stromgeberfunktion 1 Temperaturfühlerabgleich 1 Digitalregler (Option 353, nicht mit Opt. 483) 1 Analogregler (Option 483, nicht mit Opt. 353) 1 Parametrierung Spezialistenebene 1 RS 485-Schnittstelle 1 Schnittstelle Punkt-zu-Punkt 1 Datenformat 1 Aufbau einer Nachricht 1 1. Feld: Slaveadresse, Statusflags 1 2. Feld: Länge 1 3. Feld: ASCII-Nachricht 1 4. Feld: CRC16 1 Schnittstellen-Busprotokoll des Slave (2500) 1		Kalibrierung durch Probennahme	12–32
Uhr 1 Meßstellen-Wartung 1 Wechselarmatur-Steuerung (Option 404) 1 Sondenspülung (Option 352) 1 Stromgeberfunktion 1 Temperaturfühlerabgleich 1 Digitalregler (Option 353, nicht mit Opt. 483) 1 Analogregler (Option 483, nicht mit Opt. 353) 1 Parametrierung Spezialistenebene 1 RS 485-Schnittstelle 1 Schnittstellen-Busprotokoll 1 Datenformat 1 Aufbau einer Nachricht 1 1. Feld: Slaveadresse, Statusflags 1 2. Feld: Länge 1 3. Feld: ASCII-Nachricht 1 4. Feld: CRC16 1 Schnittstellen-Busprotokoll des Slave (2500) 1		Gerätediagnose	12–32
Meßstellen-Wartung 1 Wechselarmatur-Steuerung (Option 404) 1 Sondenspülung (Option 352) 1 Stromgeberfunktion 1 Temperaturfühlerabgleich 1 Digitalregler (Option 353, nicht mit Opt. 483) 1 Analogregler (Option 483, nicht mit Opt. 353) 1 Parametrierung Spezialistenebene 1 RS 485-Schnittstelle 1 Schnittstellen-Busprotokoll 1 Datenformat 1 Aufbau einer Nachricht 1 1. Feld: Slaveadresse, Statusflags 1 2. Feld: Länge 1 3. Feld: ASCII-Nachricht 1 4. Feld: CRC16 1 Schnittstellen-Busprotokoll des Slave (2500) 1		Uhr	12–32
Wechselarmatur-Steuerung (Option 404) 1 Sondenspülung (Option 352) 1 Stromgeberfunktion 1 Temperaturfühlerabgleich 1 Digitalregler (Option 353, nicht mit Opt. 483) 1 Analogregler (Option 483, nicht mit Opt. 353) 1 Parametrierung Spezialistenebene 1 RS 485-Schnittstelle 1 Schnittstelle Punkt-zu-Punkt 1 Schnittstellen-Busprotokoll 1 Datenformat 1 Aufbau einer Nachricht 1 1. Feld: Slaveadresse, Statusflags 1 2. Feld: Länge 1 3. Feld: ASCII-Nachricht 1 4. Feld: CRC16 1 Schnittstellen-Busprotokoll des Slave (2500) 1		Meßstellen-Wartung	12–32
Sondenspülung (Option 352) 1 Stromgeberfunktion 1 Temperaturfühlerabgleich 1 Digitalregler (Option 353, nicht mit Opt. 483) 1 Analogregler (Option 483, nicht mit Opt. 353) 1 Parametrierung Spezialistenebene 1 RS 485-Schnittstelle 1 Schnittstelle Punkt-zu-Punkt 1 Schnittstellen-Busprotokoll 1 Datenformat 1 Aufbau einer Nachricht 1 1. Feld: Slaveadresse, Statusflags 1 3. Feld: ASCII-Nachricht 1 4. Feld: CRC16 1 Schnittstellen-Busprotokoll des Slave (2500) 1		Wechselarmatur-Steuerung (Option 404)	12–32
Stromgeberfunktion 1 Temperaturfühlerabgleich 1 Digitalregler (Option 353, nicht mit Opt. 483) 1 Analogregler (Option 483, nicht mit Opt. 353) 1 Parametrierung Spezialistenebene 1 RS 485-Schnittstelle 1 Schnittstelle Punkt-zu-Punkt 1 Schnittstellen-Busprotokoll 1 Datenformat 1 Aufbau einer Nachricht 1 1. Feld: Slaveadresse, Statusflags 1 2. Feld: Länge 1 3. Feld: ASCII-Nachricht 1 4. Feld: CRC16 1 Schnittstellen-Busprotokoll des Slave (2500) 1		Sondenspülung (Option 352)	12–32
Temperaturfühlerabgleich 1 Digitalregler (Option 353, nicht mit Opt. 483) 1 Analogregler (Option 483, nicht mit Opt. 353) 1 Parametrierung Spezialistenebene 1 RS 485-Schnittstelle 1 Schnittstelle Punkt-zu-Punkt 1 Schnittstellen-Busprotokoll 1 Datenformat 1 Aufbau einer Nachricht 1 1. Feld: Slaveadresse, Statusflags 1 2. Feld: Länge 1 3. Feld: ASCII-Nachricht 1 4. Feld: CRC16 1 Schnittstellen-Busprotokoll des Slave (2500) 1		Stromgeberfunktion	12–33
Digitalregler (Option 353, nicht mit Opt. 483) 1 Analogregler (Option 483, nicht mit Opt. 353) 1 Parametrierung Spezialistenebene 1 RS 485-Schnittstelle 1 Schnittstelle Punkt-zu-Punkt 1 Schnittstellen-Busprotokoll 1 Datenformat 1 Aufbau einer Nachricht 1 1. Feld: Slaveadresse, Statusflags 1 2. Feld: Länge 1 3. Feld: ASCII-Nachricht 1 4. Feld: CRC16 1 Schnittstellen-Busprotokoll des Slave (2500) 1		Temperaturfühlerabgleich	12–33
Analogregler (Option 483, nicht mit Opt. 353) 1 Parametrierung Spezialistenebene 1 RS 485-Schnittstelle 1 Schnittstelle Punkt-zu-Punkt 1 Schnittstellen-Busprotokoll 1 Datenformat 1 Aufbau einer Nachricht 1 1. Feld: Slaveadresse, Statusflags 1 2. Feld: Länge 1 3. Feld: ASCII-Nachricht 1 4. Feld: CRC16 1 Schnittstellen-Busprotokoll des Slave (2500) 1		Digitalregler (Option 353, nicht mit Opt. 483)	12–33
Parametrierung Spezialistenebene 1 RS 485-Schnittstelle 1 Schnittstelle Punkt-zu-Punkt 1 Schnittstellen-Busprotokoll 1 Datenformat 1 Aufbau einer Nachricht 1 1. Feld: Slaveadresse, Statusflags 1 2. Feld: Länge 1 3. Feld: ASCII-Nachricht 1 4. Feld: CRC16 1 Schnittstellen-Busprotokoll des Slave (2500) 1		Analogregler (Option 483, nicht mit Opt. 353)	12–33
RS 485-Schnittstelle 1 Schnittstelle Punkt-zu-Punkt 1 Schnittstellen-Busprotokoll 1 Datenformat 1 Aufbau einer Nachricht 1 1. Feld: Slaveadresse, Statusflags 1 2. Feld: Länge 1 3. Feld: ASCII-Nachricht 1 4. Feld: CRC16 1 Schnittstellen-Busprotokoll des Slave (2500) 1		Parametrierung Spezialistenebene	12–33
Schnittstelle Punkt-zu-Punkt 1 Schnittstellen-Busprotokoll 1 Datenformat 1 Aufbau einer Nachricht 1 1. Feld: Slaveadresse, Statusflags 1 2. Feld: Länge 1 3. Feld: ASCII-Nachricht 1 4. Feld: CRC16 1 Schnittstellen-Busprotokoll des Slave (2500) 1		RS 485-Schnittstelle	12–33
Schnittstellen-Busprotokoll 1 Datenformat 1 Aufbau einer Nachricht 1 1. Feld: Slaveadresse, Statusflags 1 2. Feld: Länge 1 3. Feld: ASCII-Nachricht 1 4. Feld: CRC16 1 Schnittstellen-Busprotokoll des Slave (2500) 1	Schi	nittstelle Punkt-zu-Punkt	12–34
Datenformat 1 Aufbau einer Nachricht 1 1. Feld: Slaveadresse, Statusflags 1 2. Feld: Länge 1 3. Feld: ASCII-Nachricht 1 4. Feld: CRC16 1 Schnittstellen-Busprotokoll des Slave (2500) 1	Schi	nittstellen-Busprotokoll	12–34
Aufbau einer Nachricht 1 1. Feld: Slaveadresse, Statusflags 1 2. Feld: Länge 1 3. Feld: ASCII-Nachricht 1 4. Feld: CRC16 1 Schnittstellen-Busprotokoll des Slave (2500) 1 Schnittstellen-Busprotokoll des Master 1		Datenformat	12–34
1. Feld: Slaveadresse, Statusflags 1 2. Feld: Länge 1 3. Feld: ASCII-Nachricht 1 4. Feld: CRC16 1 Schnittstellen-Busprotokoll des Slave (2500) 1 Schnittstellen-Busprotokoll des Master 1		Aufbau einer Nachricht	12–34
2. Feld: Länge 1 3. Feld: ASCII-Nachricht 1 4. Feld: CRC16 1 Schnittstellen-Busprotokoll des Slave (2500) 1 Schnittstellen-Busprotokoll des Master 1		1. Feld: Slaveadresse, Statusflags	12–35
3. Feld: ASCII-Nachricht 1 4. Feld: CRC16 1 Schnittstellen-Busprotokoll des Slave (2500) 1 Schnittstellen-Busprotokoll des Master 1		2. Feld: Länge	12–35
4. Feld: CRC16 1 Schnittstellen-Busprotokoll des Slave (2500) 1 Schnittstellen-Busprotokoll des Master 1		3. Feld: ASCII-Nachricht	12–35
Schnittstellen-Busprotokoll des Slave (2500) 1		4. Feld: CRC16	12–36
Schnittstallan-Ruspratakall das Mastar		Schnittstellen-Busprotokoll des Slave (2500)	12–37
		Schnittstellen-Busprotokoll des Master	12–38

Übertragungsverhalten

Für einen fehlerfreien Datenaustausch zwischen dem angeschlossenen Rechner und der pH Transmitter 2500 müssen die Parametereinstellungen beider Geräte übereinstimmen (s. a. S. 9–56).

Read/Write

- Readbefehle: Readbefehle (Abfragen) liefern immer eine Antwort.
- Writebefehle: Bei Writebefehlen ist die Antwort abhängig von der Parametrierung.

Mit dem Befehl "WPMSR1" schalten Sie die Rückmeldung nach Writebefehlen ein. Die Rückmeldung erfolgt als Leerstring (nur Schlußzeichen). Die Rückmeldung quittiert die komplette Bearbeitung des empfangenen Befehls. Der Empfangsbuffer ist wieder freigegeben. Eine Rückmeldung bedeutet nicht, daß der Befehl fehlerfrei übertragen wurde! Bei abgeschalteter Rückmeldung muß die Bearbeitungszeit der pH Transmitter 2500 abgewartet werden. Sie kann stark variieren. Zur Vermeidung von Übertragungsfehlern sollte

eine minimale Wartezeit von einer Sekunde nicht unterschritten werden.

Parametrierstrings

Als Zeichen für die Übertragung dient der normale ASCII-Zeichensatz (Ziffern 0 ... 9; Klein- und Großbuchstaben; Sonderzeichen wie +, -, ...). Leerzeichen (Blanks) im Parametrierstring werden überlesen. Sie können daher beliebig zur Formatierung benutzt werden. In numerischen Parametern dürfen keine Leerzeichen verwendet werden. Antworten der pH Transmitter 2500 enthalten nur Großbuchstaben.

Jeder Parametrierstring muß mit einem Schlußzeichen abgeschlossen sein. Als Schlußzeichen können <cr> (Carriage Return), <lf> (Line Feed) oder eine Kombination aus beiden gesendet werden. Erst nach dem Empfang des Schlußzeichens beginnt die pH Transmitter 2500 mit der Bearbeitung des empfangenen Befehls. Ohne Schlußzeichen füllt sich der Empfangsbuffer. Bei vollem Empfangsbuffer erscheint die Fehlermeldung "Warn RS 485-Overflow".

Numerische Parameter

Numerische Parameter können beliebig mit oder ohne Exponent eingegeben werden. Weitere Nachkommastellen werden nicht berücksichtigt. Parameter könne nur in Ihrer Grundeinheit übertragen werden, z. B. "124 mV" werden als "124E-3" in Volt dargestellt.

Die pH Transmitter 2500 wählt immer die kürzeste mögliche Darstellungsform, d. h. "pH 7,00" wird als "7" übertragen

VALUE-Befehle: Meßwerte abfragen

Mit den Value-Befehlen können Sie alle Meßwerte der pH Transmitter 2500 abfragen. Value-Befehle sind Lesebefehle. Der Gerätestatus der pH Transmitter 2500 wird daher nicht verändert.

Befehl	Bedeutung
RV0	pH-Meßwert abfragen
RV1	mV-Meßwert abfragen
RV2	°C-Meßwert abfragen
RV5	Eingangsstrom abfragen
RV6	rH-Meßwert abfragen
RVUH	ORP-Meßwert abfragen
RVI1	Ausgangsstrom 1 abfragen
RVI2	Ausgangsstrom 2 abfragen (nur Opt. 350)
RVRR	Bezugselektroden-Impedanz abfragen
RVRG	Glaselektroden-Impedanz abfragen
RVTRT	Uhrzeit "hhmmss" abfragen
RVDRT	Datum "ddmmyy" abfragen (Reihenfolge je nach parametriertem Datumsformat)
RVTCA	Cal-Timer-Stand abfragen
RVYCI	Digitalregler-Stellgröße abfragen (nur Opt. 353)
RVYCN	Analogregler-Stellgröße abfragen (nur Opt. 483)

STATUS-Befehle: Meldungen und Zustände abfragen

Mit den Status-Befehlen können Sie Gerätemeldungen wie z. B. die NAMUR-Meldungen Funktionskontrolle, Warnung (Wartungsbedarf) und Ausfall auslesen, Gerätezustände überwachen und die Protokolle abfragen. Mit den Status-Befehlen erreichen Sie Daten, die Sie zur QM-Dokumentation gemäß DIN ISO 9000 verwenden können. Status-Befehle sind Lesebefehle. Der Gerätestatus der pH Transmitter 2500 wird daher nicht verändert.

Befehl	Funktion	Antwort	Bedeutung
RSF1	Abfrage der ersten Ausfallmeldung	хх	
RSFA	Abfrage aller Ausfallmeldungen	xx;xx	
RSW1	Abfrage der ersten Warnungsmeldung	хх	
RSWA	Abfrage aller Warnungsmeldungen	xx;xx	
RSP Abfrage des Gerätezustands ("Menü") 00 Meßmodu		Meßmodus	
		01	Parametrierung bet, spe
		02	Kalibrierung cal
		08	Wartung maint
		10	Meßmodus, Sondenspülung läuft, durch Timer gestartet
		11	Parametrierung bet, spe & Son- denspülung läuft durch Timer gestartet
		18	Wartung, Sondenspülung läuft manuell gestartet
RSL	Grenzwertmeldungen abfragen	0	wenn keine Grenzwertmeldung
		1	Grenzwert 1 aktiv
		2	Grenzwert 2 aktiv
		3	beide Grenzwerte aktiv

Befehl	Funktion	Bit	Bedeutung
RSU Gerätestatus abfragen (Meldungen, Grenzwert, SRQS)		1	"1" wenn eine oder mehrere Ausfallmeldungen aktiv sind
		2	"1" wenn eine oder mehrere Warnungsmeldungen aktiv sind
		3	"1" bei Funktionskontrolle aktiv
		4	"1" bei Grenzwert 1 und/oder Grenzwert 2 aktiv
		5	"1" wenn Ausgänge eingefroren sind (z. B. bei Kalibrierung)
		6	immer "1"
		7	"1" falls seit letzter Abfrage eine Statusänderung aufgetreten ist
		8	immer "0"

Elektrodenstatistik abfragen

Befehl	Funktion	Parameter
RSSTTm	Uhrzeit der Kalibrierung abfragen	<i>m</i> = 03
RSSTDm	Datum der Kalibrierung abfragen	<i>m</i> = 03
RSSTZ0	Elektrodennullpunkt abfragen	
RSSTS0	Elektrodensteilheit abfragen	
RSSTRG0	Glaselektrodenimpedanz abfragen	
RSSTRR0	Bezugselektrodenimpedanz abfragen	
RSSTTR <i>m</i>	Elektroden-Einstellzeit abfragen	<i>m</i> = 03
RSSTZDm	Nullpunkt-Differenz abfragen	<i>m</i> = 13
RSSTSDm	Steilheit-Differenz abfragen	<i>m</i> = 13
RSSTRGDm	Differenz Glaselektrodenimpedanz ab- fragen	<i>m</i> = 13
RSSTRRDm	Differenz Bezugselektrodenimpedanz abfragen	<i>m</i> = 13

Kalibrierprotokoll der letzten Kalibrierung abfragen

Befehl	Funktion
RSCPT	Kalibrier-Uhrzeit abfragen
RSCPD	Kalibrierdatum abfragen
RSCP1NB	1. Puffernennwert abfragen
RSCP11	1. Puffer Elektrodenspannung abfragen
RSCP12	1. Puffer Kalibriertemperatur abfragen
RSCP1TR	1. Puffer Einstellzeit abfragen
RSCP2NB	2. Puffernennwert abfragen
RSCP21	2. Puffer Elektrodenspannung abfragen
RSCP22	2. Puffer Kalibriertemperatur abfragen
RSCP2TR	2. Puffer Einstellzeit abfragen

Befehl	Funktion	Ant- wort	Bedeutung
RSCPA	Kalibriermodus abfragen	"0"	Calimatic®
		"1"	Manuelle Eingabe
		"2"	Dateneingabe
		"3"	Probenkalibrierung

Logbuch: Einträge abfragen (nur Option 354)

Zur kompletten Abfrage des Logbuchs verwenden Sie zuerst den Befehl "RSLOO" um den ältesten Eintrag zu lesen. Dann verwenden Sie den Befehl "RSLOOC" solange, bis Sie einen Leerstring (nur Schlußzeichen) als Antwort empfangen. Der Leerstring bedeutet, daß kein weiterer Eintrag vorhanden ist.

Wenn Sie nur neue Einträge des Logbuchs lesen möchten, die noch nicht über die Schnittstelle ausgelesen wurden, Verwenden Sie gleich den Befehl "RSLOOC".

Befehl	Funktion
RSLON	jüngsten Eintrag abfragen
RSLONC	nächst-älteren Eintrag abfragen (Beginn bei zweitjüngstem Eintrag)
RSLOO	ältesten Eintrag abfragen
RSLOOC	nächst-jüngeren Eintrag abfragen (Beginn bei zweitältestem Eintrag)

Gerätediagnose: Status abfragen

Befehl	Funktion	Antwort	Bedeutung
RSTETR	Uhrzeit RAM-Test abfragen	hhmmss	
RSTEDR	Datum RAM-Test abfragen	ddmmyy ^{*)}	
RSTERR	Ergebnis RAM-Test abfragen	"0"	ok
		"2"	Ausfall
RSTETP	Uhrzeit EPROM-Test abfragen	hhmmss	
RSTEDP	Datum EPROM-Test abfragen	ddmmyy ^{*)}	
RSTERP	Ergebnis EPROM-Test abfragen	"0"	ok
		"2"	Ausfall
RSTETE	Uhrzeit EEPROM-Test abfragen	hhmmss	
RSTEDE	Datum EEPROM-Test abfragen	ddmmyy ^{*)}	
RSTERE	Ergebnis EEPROM-Test abfragen	"0"	ok
		"2"	Ausfall
RSTETDI	Uhrzeit Display-Test abfragen	hhmmss	
RSTEDDI	Datum Display-Test abfragen	ddmmyy ^{*)}	
RSTERDI	Ergebnis Display-Test abfragen	"0"	Test wurde durchgeführt
		"2"	Ausfall
RSTETKY	Uhrzeit Tastatur-Test abfragen	hhmmss	
RSTEDKY	Datum Tastatur-Test abfragen	ddmmyy ^{*)}	
RSTERKY	Ergebnis Tastatur-Test abfragen	"0"	ok
		"2"	Ausfall

*) im gewählten Datumformat

PARAMETER-Befehle: Parametrierung abfragen und Parameter setzen

Mit den Parameter-Befehlen können Sie alle Funktionen der pH Transmitter 2500 über die Rechner-Schnittstelle parametrieren (ausgenommen der Übertragungsparameter der Schnittstelle).

Mit den Parameter-Befehlen können Sie alle Geräteparameter lesen und schreiben! Daher ist die Richtigkeit der gesendeten Befehle besonders wichtig. Die Übertragung im Punkt-zu-Punkt-Betrieb ist nicht mit Prüfsummen gesichert. Zur Vermeidung von Fehleinstellungen ist es daher ratsam, wichtige Parameter zum Vergleich zurückzulesen.

Mit dem ersten Write-Befehl übernimmt der steuernde Rechner (PC, SPS, ...) die Kontrolle über die pH Transmitter 2500. Viele Sicherheitsabfragen müssen dann im Rechner realisiert werden! Mit dem Befehl "WCOMINO" (goto Local) gibt der Rechner seine Kontrolle an die pH Transmitter 2500 zurück. Die pH Transmitter 2500 setzt im Meß-Modus auf.

Read-Befehle bewirken keine Statusänderungen und beeinflussen keine der Systemfunktionen. Die Kontrolle bleibt bei der pH Transmitter 2500.

Bei eingeschaltetem Schreibschutz werden alle Schreibversuche ohne vorheriges Aufheben des Schreibschutzes oder mit ungültiger Paßzahl im Logbuch protokolliert. Bei der Auslieferung ist der Schreibschutz abgeschaltet.

Wenn Sie die Parametrierung über die Gerätetastatur aufrufen, wird die NAMUR-Meldung Funktionskontrolle gesetzt. Warnungs- und Ausfallkontakt werden deaktiviert bis die Parametrierung abgeschlossen ist.

Wenn Sie über die RS 485-Schnittstelle Geräteparameter verändern, sind alle Meldungen freigegeben. Somit können beim Ändern von Parametern zeitweise Meldungen auftreten, die bei Tastaturbedienung unterdrückt würden.

- WCOM01 Mit dem Schnittstellen-Befehl "WCOM01" können Sie das Gerät in den Parametriermodus versetzen. Die NAMUR-Meldung Funktionskontrolle wird dann gesetzt und damit Warnungs- und Ausfallkontakt auch im Schnittstellenbetrieb deaktiviert. Rückkehr in den Meß-Modus mit "WCOM00".
- WCOU1 Wenn Sie während der Parametrierung sämtliche Gerätefunktionen einfrieren möchten, verwenden Sie den Befehl "WCOU1". Die Funktionskontrolle wird gesetzt, Warnungs- und Ausfallkontakt deaktiviert. Zusätzlich sind Ausgangsstrom und Regler eingefroren und die Grenzwertkontakte inaktiv. Auftauen der Gerätefunktionen mit "WCOU0".

Meßstellen-Nummer

RPUAM	Marker abfragen
WPUAM0	Marker "Aus" setzen
WPUAM1	Marker "Ein" setzen
RPUAW	Parametrierte Meßstellen-Nummer abfragen
WPUAWaaaaaaaaaaaaaaaaaa	Meßstellen-Nummer parametrieren a = ASCII-Zeichen: Blank, "0" "9", "A " "Z", "-", "+", "/"

Uhr

RPRTM	Marker abfragen
WPRTM0	Marker "Aus" setzen
WPRTM1	Marker "Ein" setzen
RPRTDF	Datumformat abfragen
WPRTDF0	Datumformat "T.M.J" setzen
WPRTDF1	Datumformat,,T/M/J" setzen
WPRTDF2	Datumformat "M/T/J" setzen
WPRTDF3	Datumformat "J-M-T" setzen

Uhrzeit/Datum setzen: s. S. 12–32 Uhrzeit/Datum abfragen: s. S. 12–5

Kalibrierung mit manueller Eingabe von Pufferwerten

RPCAB <i>b</i>	Parametrierung manueller Puffer b abfragen
WPCAB <i>b p</i>	manuellen Puffer p parametrieren ($b = 0$ oder 1)

Kalibrierung durch Dateneingabe vorgemessener Elektroden

RPCA0Z	Aktuellen Nullpunkt abfragen
WPCA0Zp	Nullpunkt <i>p</i> parametrieren
RPCA0S	Aktuelle Steilheit abfragen
WPCA0Sp	Steilheit <i>p</i> parametrieren
RPCA0U	Aktuelle Isothermenschnittpunktspannung Uis abfragen

WPCA0U*p* Uis *p* parametrieren

Kalibrierung durch Probennahme

RPCAP	Probenwert abfragen
WPCAP <i>p</i>	Probenwert <i>p</i> setzen

Temperaturfühlerabgleich

RPTFS	ParametrierungTemperaturfühlerabgleich abfragen
WPTFS0	Temperaturfühlerabgleich ausschalten
WPTFS1	Temperaturfühlerabgleich einschalten

Abgleichwert setzen: s. S. 12-33

Meßwertanzeige

RPDIMM	Marker abfragen
WPDIMM0	Marker "Aus" setzen
WPDIMM1	Marker "Ein" setzen
RPDIMA	Parametrierte Meßgröße abfragen
WPDIMA0	pH-Wert als angezeigte Meßgröße parametrieren
WPDIMA1	mV-Meßwert als angezeigte Meßgröße parametrieren
WPDIMA2	Meßtemperatur als angezeigte Meßgröße parametrieren
WPDIMAUH	ORP als angezeigte Meßgröße parametrieren
WPDIMA6	rH-Wert als angezeigte Meßgröße parametrieren
WPDIMATRT	Zeit als angezeigte Meßgröße parametrieren
RPDIMD	Meßwertanzeige: Zahl der angezeigten pH-Stellen abfragen
WPDIMD0	pH-Wert mit 1 Nachkommastelle (xx.x) anzeigen
WPDIMD1	pH-Wert mit 2 Nachkommastellen (xx.xx) anzeigen
RPDIMVA	Blickwinkel abfragen
WPDIMVA <i>n</i>	Blickwinkel einstellen (n = $-2 \dots 0 \dots +2$)

Linke Nebenanzeige parametrieren

RPDISLA	Zugewiesene Meßgröße abfragen
WPDISLA0	pH-Wert anzeigen
WPDISLA1	mV-Meßwert anzeigen
WPDISLA2	Meßtemperatur anzeigen
WPDISLA5	Eingangsstrom anzeigen
WPDISLA6	rH-Wert anzeigen
WPDISLAUH	ORP anzeigen
WPDISLAI1	Ausgangsstrom 1 anzeigen

WPDISLAI2	Ausgangsstrom 2 anzeigen (nur Opt. 350)
WPDISLARR	Bezugselektrodenimpedanz anzeigen
WPDISLARG	Glaselektrodenimpedanz anzeigen
WPDISLATRT	Uhr anzeigen
WPDISLADRT	Datum anzeigen
WPDISLATCA	Kalibrier-Timer anzeigen
WPDISLADCI	Digitalregler-Sollwert anzeigen (nur Opt. 353)
WPDISLADCN	Analogregler-Sollwert anzeigen (nur Opt. 483)
WPDISLAYCI	Digitalregler-Stellgröße anzeigen (nur Opt. 353)
WPDISLAYCN	Analogregler-Stellgröße anzeigen (nur Opt. 483)
WPDISLATM	man. eingestellte Temperatur anzeigen

Rechte Nebenanzeige parametrieren

RPDISRA	Zugewiesene Meßgröße abfragen
WPDISRA0	pH-Wert anzeigen
WPDISRA1	mV-Meßwert anzeigen
WPDISRA2	Meßtemperatur anzeigen
WPDISRA5	Eingangsstrom anzeigen
WPDISRA6	rH-Wert anzeigen
WPDISRAUH	ORP anzeigen
WPDISRAI1	Ausgangsstrom 1 anzeigen
WPDISRAI2	Ausgangsstrom 2 anzeigen (nur Opt. 350)
WPDISRARR	Bezugselektrodenimpedanz anzeigen
WPDISRARG	Glaselektrodenimpedanz anzeigen
WPDISRATRT	Uhr anzeigen
WPDISRADRT	Datum anzeigen
WPDISRATCA	Kalibrier-Timer anzeigen
WPDISRADCI	Digitalregler-Sollwert anzeigen (nur Opt. 353)
WPDISRADCN	Analogregler-Sollwert anzeigen (nur Opt. 483)
WPDISRAYCI	Digitalregler-Stellgröße anzeigen (nur Opt. 353)
WPDISRAYCN	Analogregler-Stellgröße anzeigen (nur Opt. 483)
WPDISRATM	man. eingestellte Temperatur anzeigen

Eingangsfilter

RPIFM	Marker abfragen
WPIFM0	Marker "Aus" setzen
WPIFM1	Marker "Ein" setzen
RPIF	Parametrierung Eingangsfilter abfragen
WPIF0	Eingangsfilter ausschalten
WPIF1	Eingangsfilter einschalten

Calimatic[®]-Puffersatz

RPCASM	Marker abfragen
WPCASM0	Marker "Aus" setzen
WPCASM1	Marker "Ein" setzen
RPCASA	Parametrierten Calimatic [®] -Puffersatz abfragen
WPCASA0	Kundenspezifischen Puffersatz (Opt.) parametrieren (nur Opt. 370 379)
WPCASA1	Puffersatz Merck/Riedel parametrieren
WPCASA2	Puffersatz Ingold parametrieren
WPCASA3	Puffersatz DIN parametrieren (nicht bei Opt.370 379)

Nomineller Nullpunkt/nominelle Steilheit (Option 356)

RPCA0NM	Marker abfragen
WPCA0NM0	Marker "Aus" setzen
WPCA0NM1	Marker "Ein" setzen
RPCA0NZ	Parametrierten nominellen Nullpunkt abfragen
WPCA0NZp	Nominellen Nullpunkt parametrieren
RPCA0NS	Parametrierte nominelle Steilheit abfragen
WPCA0NSp	Nominelle Steilheit parametrieren

pH-Alarm

RPALF0S	Parametrierung abfragen
WPALF0S0	Alarm abschalten
WPALF0S1	Alarm einschalten
RPALF0FL	Parametrierung Ausfallgrenze Lo abfragen
WPALF0FLp	Ausfallgrenze Lo p parametrieren
RPALF0WL	Parametrierung Warnungsgrenze Lo abfragen
WPALF0WLp	Warnungsgrenze Lo <i>p</i> parametrieren
RPALF0WH	Parametrierung Warnungsgrenze Hi abfragen
WPALF0WH <i>p</i>	Warnungsgrenze Hi <i>p</i> parametrieren
RPALF0FH	Parametrierung Ausfallgrenze Hi abfragen
WPALF0FHp	Ausfallgrenze Hi <i>p</i> parametrieren

mV-Alarm

RPALF1S	Parametrierung abfragen
WPALF1S0	Alarm abschalten
WPALF1S1	Alarm einschalten
RPALF1FL	Parametrierung Ausfallgrenze Lo abfragen
WPALF1FLp	Ausfallgrenze Lo <i>p</i> parametrieren
RPALF1WL	Parametrierung Warnungsgrenze Lo abfragen
WPALF1WLp	Warnungsgrenze Lo <i>p</i> parametrieren
RPALF1WH	Parametrierung Warnungsgrenze Hi abfragen
WPALF1WHp	Warnungsgrenze Hi <i>p</i> parametrieren
RPALF1FH	Parametrierung Ausfallgrenze Hi abfragen
WPALF1FHp	Ausfallgrenze Hi <i>p</i> parametrieren

Cal-Timer-Alarm

RPALFTS	Parametrierung abfragen
WPALFTS0	Alarm abschalten
WPALFTS1	Alarm einschalten
RPALFTWH	Parametrierung Warnungsgrenze Hi abfragen
WPALFTWHp	Warnungsgrenze Hi <i>p</i> parametrieren
RPALFTFH	Parametrierung Ausfallgrenze Hi abfragen
WPALFTFHp	Ausfallgrenze Hi <i>p</i> parametrieren

Steilheit-Alarm

RPALFSS	Parametrierung abfragen
WPALFSS0	Alarm abschalten
WPALFSS1	Alarm einschalten
RPALFSFL	Parametrierung Ausfallgrenze Lo abfragen
WPALFSFLp	Ausfallgrenze Lo <i>p</i> parametrieren
RPALFSWL	Parametrierung Warnungsgrenze Lo abfragen
WPALFSWL <i>p</i>	Warnungsgrenze Lo <i>p</i> parametrieren
RPALFSWH	Parametrierung Warnungsgrenze Hi abfragen
WPALFSWHp	Warnungsgrenze Hi <i>p</i> parametrieren
RPALFSFH	Parametrierung Ausfallgrenze Hi abfragen
WPALFSFH <i>p</i>	Ausfallgrenze Hi <i>p</i> parametrieren

Nullpunkts-Alarm

RPALFZS	Parametrierung abfragen
WPALFZS0	Alarm abschalten
WPALFZS1	Alarm einschalten
RPALFZFL	Parametrierung Ausfallgrenze Lo abfragen
WPALFZFLp	Ausfallgrenze Lo <i>p</i> parametrieren

RPALFZWL	Parametrierung Warnungsgrenze Lo abfragen
WPALFZWLp	Warnungsgrenze Lo <i>p</i> parametrieren
RPALFZWH	Parametrierung Warnungsgrenze Hi abfragen
WPALFZWHp	Warnungsgrenze Hi p parametrieren
RPALFZFH	Parametrierung Ausfallgrenze Hi abfragen
WPALFZFH <i>p</i>	Ausfallgrenze Hi <i>p</i> parametrieren

Tk Meßmedium

RPTCM	Marker abfragen
WPTCM0	Marker "Aus" setzen
WPTCM1	Marker "Ein" setzen
RPTCS	Parametrierung Tk-Einstellung abfragen
WPTCS0	Tk aus parametrieren
WPTCS1	Tk "Reinstwasser" parametrieren

Temperaturerfassung

RPTOMM	Marker abfragen
WPTOMM0	Marker "Aus" setzen
WPTOMM1	Marker "Ein" setzen
RPTOT	Temperaturfühler abfragen
WPTOT1	Pt 1000 parametrieren
WPTOT2	Pt 100 parametrieren
RPTOMA	Parametrierung Meßtemperaturerfassung abfragen
WPTOMA0	Meßtemperaturerfassung manuell parametrieren
WPTOMA1	Meßtemperaturerfassung auto parametrieren
RPTMMV	Parametrierung manuelle Meßtemperatur abfragen
WPTMMVp	manuelle Meßtemperatur <i>p</i> parametrieren
RPTOCA	Parametrierung Kalibriertemperaturerfassung abfragen

pH Transmitter 2500

WPTOCA0	Kalibriertemperaturerfassung manuell parametrieren
WPTOCA1	Kalibriertemperaturerfassung auto parametrieren
RPTMCV	Parametrierung manuelle Kalibriertemperatur abfragen
WPTMCV <i>p</i>	manuelle Kalibriertemperatur <i>p</i> schreiben

Temperatur-Alarm

RPALF2S	Parametrierung abfragen
WPALF2S0	Alarm abschalten
WPALF2S1	Alarm einschalten
RPALF2FL	Parametrierung Ausfallgrenze Lo abfragen
WPALF2FLp	Ausfallgrenze Lo <i>p</i> parametrieren
RPALF2WL	Parametrierung Warnungsgrenze Lo abfragen
WPALF2WLp	Warnungsgrenze Lo <i>p</i> parametrieren
RPALF2WH	Parametrierung Warnungsgrenze Hi abfragen
WPALF2WHp	Warnungsgrenze Hi <i>p</i> parametrieren
RPALF2FH	Parametrierung Ausfallgrenze Hi abfragen
WPALF2FHp	Ausfallgrenze Hi <i>p</i> parametrieren

Stromausgang 1

RPOC1M	Marker abfragen
WPOC1M0	Marker "Aus" setzen
WPOC1M1	Marker "Ein" setzen
RPOC1A	Zugewiesene Meßgröße abfragen
WPOC1A0	pH-Meßwert als Meßgröße zuweisen
WPOC1A1	mV-Meßwert als Meßgröße zuweisen
WPOC1A2	Meßtemperatur als Meßgröße zuweisen
WPOC1A6	rH-Meßwert als Meßgröße zuweisen
WPOC1AUH	ORP-Meßwert als Meßgröße zuweisen

RPOC1Z	Betriebsart 020mA / 420mA abfragen
WPOC1Z0	Betriebsart 020mA parametrieren
WPOC1Z1	Betriebsart 420mA parametrieren
RPOC1L	Parametrierten Anfangswert abfragen
WPOC1Lp	Anfangswert <i>p</i> parametrieren
RPOC1H	Parametrierten Endwert abfragen
WPOC1Hp	Endwert <i>p</i> parametrieren

Stromausgang 2 (nur Option 350)

RPOC2M	Marker abfragen
WPOC2M0	Marker "Aus" setzen
WPOC2M1	Marker "Ein" setzen
RPOC2A	Zugewiesene Meßgröße abfragen
WPOC2A0	pH-Meßwert als Meßgröße zuweisen
WPOC2A1	mV-Meßwert als Meßgröße zuweisen
WPOC2A2	Meßtemperatur als Meßgröße zuweisen
WPOC2A6	rH-Meßwert als Meßgröße zuweisen
WPOC2AUH	ORP-Meßwert als Meßgröße zuweisen
RPOC2Z	Betriebsart 020mA / 420mA abfragen
WPOC2Z0	Betriebsart 020mA parametrieren
WPOC2Z1	Betriebsart 420mA parametrieren
RPOC2L	Parametrierten Anfangswert abfragen
WPOC2Lp	Anfangswert <i>p</i> parametrieren
RPOC2H	Parametrierten Endwert abfragen
WPOC2Hp	Endwert <i>p</i> parametrieren

Ausgang 2/Regler (nur Option 483)

RPCNS	Parametrierung (Strom 2 oder Analogregler) abfragen (nur Option 483)
WPCNS0	Betrieb Ausgang 2 als Steuerausgang parametrieren (nur Option 483)
WPCNS1	Analogreglerbetrieb parametrieren (nur Option 483)

Glaselektrodenimpedanz-Alarm

RPALFGS	Parametrierung abfragen
WPALFGS0	Alarm abschalten
WPALFGS1	Alarm einschalten
RPALFGFL	Parametrierung Ausfallgrenze Lo abfragen
WPALFGFL <i>p</i>	Ausfallgrenze Lo <i>p</i> parametrieren
RPALFGWL	Parametrierung Warnungsgrenze Lo abfragen
WPALFGWL <i>p</i>	Warnungsgrenze Lo <i>p</i> parametrieren
RPALFGWH	Parametrierung Warnungsgrenze Hi abfragen
WPALFGWH <i>p</i>	Warnungsgrenze Hi <i>p</i> parametrieren
RPALFGFH	Parametrierung Ausfallgrenze Hi abfragen
WPALFGFH <i>p</i>	Ausfallgrenze Hi <i>p</i> parametrieren

Bezugselektrodenimpedanz-Alarm

RPALFRS	Parametrierung abfragen
WPALFRS0	Alarm abschalten
WPALFRS1	Alarm einschalten
RPALFRFL	Parametrierung Ausfallgrenze Lo abfragen
WPALFRFL <i>p</i>	Ausfallgrenze Lo <i>p</i> parametrieren
RPALFRWL	Parametrierung Warnungsgrenze Lo abfragen
WPALFRWL <i>p</i>	Warnungsgrenze Lo <i>p</i> parametrieren
RPALFRWH	Parametrierung Warnungsgrenze Hi abfragen
WPALFRWH <i>p</i>	Warnungsgrenze Hi <i>p</i> parametrieren
RPALFRFH	Parametrierung Ausfallgrenze Hi abfragen
WPALFRFH <i>p</i>	Ausfallgrenze Hi <i>p</i> parametrieren

rH-Messung

RPREM	Marker abfragen
WPREM0	Marker "Aus" setzen
WPREM1	Marker "Ein" setzen

RPREFS	Abfrage "rH mit Korrekturfaktor berechnen" parametriert?
WPREFS0	"rH mit Faktor berechnen aus" parametrieren
WPREFS1	"rH mit Faktor berechnen ein" parametrieren
RPREFV	Parametrierung Korrekturfaktor abfragen
WPREFVp	Korrekturfaktor <i>p</i> parametrieren
RPRERT	Parametrierung Bezugselektrodentyp abfragen
WPRERT0	Typ A Silberchlorid (Ag/AgCl, KCl 1m) parametrieren
WPRERT1	Typ B Silberchlorid (Ag/AgCl, KCl 3m) parametrieren
WPRERT2	Typ C Thalamid (Hg, TI/TICI, KCI 3.5m) parametrieren
WPRERT3	Typ D Quecksilbersulfat (Hg/Hg ₂ SO ₄ , K ₂ SO ₄ ges.) parametrieren

rH-Alarm

RPALF6S	Parametrierung abfragen
WPALF6S0	Alarm abschalten
WPALF6S1	Alarm einschalten
RPALF6FL	Parametrierung Ausfallgrenze Lo abfragen
WPALF6FLp	Ausfallgrenze Lo <i>p</i> parametrieren
RPALF6WL	Parametrierung Warnungsgrenze Lo abfragen
WPALF6WLp	Warnungsgrenze Lo <i>p</i> parametrieren
RPALF6WH	Parametrierung Warnungsgrenze Hi abfragen
WPALF6WHp	Warnungsgrenze Hi <i>p</i> parametrieren
RPALF6FH	Parametrierung Ausfallgrenze Hi abfragen
WPALF6FHp	Ausfallgrenze Hi <i>p</i> parametrieren

ORP-Alarm

RPALFUS	Parametrierung abfragen
WPALFUS0	Alarm abschalten
WPALFUS1	Alarm einschalten

RPALFUFL	Parametrierung Ausfallgrenze Lo abfragen
WPALFUFL <i>p</i>	Ausfallgrenze Lo p parametrieren
RPALFUWL	Parametrierung Warnungsgrenze Lo abfragen
WPALFUWL <i>p</i>	Warnungsgrenze Lo <i>p</i> parametrieren
RPALFUWH	Parametrierung Warnungsgrenze Hi abfragen
WPALFUWH <i>p</i>	Warnungsgrenze Hi <i>p</i> parametrieren
RPALFUFH	Parametrierung Ausfallgrenze Hi abfragen
WPALFUFH <i>p</i>	Ausfallgrenze Hi <i>p</i> parametrieren

Alarmeinstellungen

RPALM	Marker abfragen
WPALM0	Marker "Aus" setzen
WPALM1	Marker "Ein" setzen

NAMUR-Kontakte

RPCNM	Parametrierung Marker abfragen
WPCNM0	Marker "Aus" setzen
WPCNM1	Marker "Ein" setzen
RPCNUO	Parametrierung Arbeits/Ruhekontakt abfragen
WPCNUO0	Ruhekontakte parametrieren
WPCNUO1	Arbeitskontakte parametrieren
RPCNUOTF	Parametrierung Ausfall-Verzögerungszeit abfragen
WPCNUOTF <i>p</i>	Ausfall-Verzögerungszeit p parametrieren
RPCNUOTW	Parametrierung Warnungs-Verzögerungszeit abfragen
WPCNUOTW <i>p</i>	Warnungs-Verzögerungszeit p parametrieren

Grenzwertkontakte/Regler (nur mit Option 353)

RPCIM	Marker abfragen
WPCIM0	Marker "Aus" setzen
WPCIM1	Marker "Ein" setzen
RPCIS	Parametrierung (Grenzwertkontakte oder Regler) abfragen
WPCIS0	Betrieb Grenzwertkontakt parametrieren
WPCIS1	Reglerbetrieb parametrieren

Grenzwertkontakt 1

RPLI1A	Grenzwert 1 zugewiesene Meßgröße abfragen
WPLI1A0	pH als Meßgröße zu Grenzwert 1 zuweisen
WPLI1A1	mV als Meßgröße zu Grenzwert 1 zuweisen
WPLI1A2	Meßtemperatur als Meßgröße zu Grenzwert 1 zuweisen
WPLI1A5	Eingangsstrom als Meßgröße zu Grenzwert 1 zuweisen
WPLI1A6	rH als Meßgröße zu Grenzwert 1 zuweisen
WPLI1AUH	ORP als Meßgröße zu Grenzwert 1 zuweisen
RPLI1D	Parametrierung Wirkrichtung Grenzwert 1 abfragen
WPLI1D0	Grenzwert 1 Wirkrichtung Min parametrieren
WPLI1D1	Grenzwert 1 Wirkrichtung Max parametrieren
RPLI1V	Parametrierung Grenzwert 1 abfragen
WPLI1V <i>p</i>	Grenzwert 1 p parametrieren
RPLI1H	Parametrierung Hysterese Grenzwert 1 abfragen
WPLI1Hp	Hysterese Grenzwert 1 p parametrieren
RPLI1CN	Parametrierung Grenzwertkontakt 1 abfragen
WPLI1CN0	Grenzwertkontakt 1 als Ruhekontakt parametrieren
WPLI1CN1	Grenzwertkontakt 1 als Arbeitskontakt parametrieren

Grenzwertkontakt 2

RPLI2A	Grenzwert 2 zugewiesene Meßgröße abfragen
WPLI2A0	pH als Meßgröße zu Grenzwert 2 zuweisen
WPLI2A1	mV als Meßgröße zu Grenzwert 2 zuweisen
WPLI2A2	Meßtemperatur als Meßgröße zu Grenzwert 2 zuweisen
WPLI2A5	Eingangsstrom als Meßgröße zu Grenzwert 2 zuweisen
WPLI2A6	rH als Meßgröße zu Grenzwert 2 zuweisen
WPLI2AUH	ORP als Meßgröße zu Grenzwert 2 zuweisen
RPLI2D	Parametrierung Wirkrichtung Grenzwert 2 abfragen

WPLI2D0	Grenzwert 2 Wirkrichtung Min parametrieren
WPLI2D1	Grenzwert 2 Wirkrichtung Max parametrieren
RPLI2V	Parametrierung Grenzwert 2 abfragen
WPLI2Vp	Grenzwert 2 p parametrieren
RPLI2H	Parametrierung Hysterese Grenzwert 2 abfragen
WPLI2Hp	Hysterese Grenzwert 2 p parametrieren
RPLI2CN	Parametrierung Grenzwertkontakt 2 abfragen
WPLI2CN0	Grenzwertkontakt 2 als Ruhekontakt parametrieren
WPLI2CN1	Grenzwertkontakt 2 als Arbeitskontakt parametrieren

Digitalregler (Option 353, nicht mit Opt. 483)

RPCITA	Parametrierung Reglertyp abfragen
WPCITA0	Typ A: Impulslängenregler parametrieren
WPCITA1	Typ B: Impulsfrequenzregler parametrieren
RPCIA	Parametrierte Regelgröße abfragen
WPCIA0	pH als Regelgröße parametrieren
WPCIA1	mV als Regelgröße parametrieren
WPCIA2	Meßtemperatur als Regelgröße parametrieren
WPCIA6	rH als Regelgröße parametrieren
WPCIAUH	ORP als Regelgröße parametrieren
RPCID	Parametrierten Sollwert abfragen
WPCIDp	Sollwert <i>p</i> parametrieren
RPCINZ	Parametrierte neutrale Zone abfragen
WPCINZp	Neutrale Zone <i>p</i> parametrieren
RPCILT	Parametrierte minimale Einschaltzeit abfragen
WPCILTp	Minimale Einschaltzeit <i>p</i> parametrieren
RPCILF	Parametrierte maximale Impulsfrequenz abfragen
WPCILFp	Maximale Pulsfrequenz p parametrieren

RPCIBV	Parametrierung
WPCIBV <i>p</i>	 Regelanfang p parametrieren
RPCIBX	Parametrierung ┥ Eckpunkt X abfragen
WPCIBX <i>p</i>	Eckpunkt X p parametrieren
RPCIBY	Parametrierung ┥ Eckpunkt Y abfragen
WPCIBY <i>p</i>	Eckpunkt Y p parametrieren
RPCIBT	Parametrierung ┥ Nachstellzeit abfragen
WPCIBT <i>p</i>	 Nachstellzeit p parametrieren
RPCIBP	Parametrierung
WPCIBP <i>p</i>	 Periodendauer p parametrieren
RPCIEV	Parametrierung - Regelende abfragen
WPCIEVp	Regelende p parametrieren
RPCIEX	Parametrierung 🕨 Eckpunkt X abfragen
WPCIEXp	Eckpunkt X p parametrieren
RPCIEY	Parametrierung - Eckpunkt Y abfragen
WPCIEYp	Eckpunkt Y p parametrieren
RPCIET	Parametrierung - Nachstellzeit abfragen
WPCIET <i>p</i>	Nachstellzeit p parametrieren
RPCIEP	Parametrierung ► Periodendauer abfragen
WPCIEP <i>p</i>	Periodendauer p parametrieren

Analogregler (Option 483, nicht mit Opt. 353)

RPCNTA	Parametrierung Reglertyp abfragen
WPCNTA0	Typ A: 3-Wege-Mischventil parametrieren
WPCNTA1	Typ B: Durchgangsventil parametrieren (< Sollwert)
WPCNTA2	Typ C: Durchgangsventil parametrieren (> Sollwert)
RPCNA	Parametrierte Regelgröße abfragen
WPCNA0	pH als Regelgröße parametrieren
WPCNA1	mV als Regelgröße parametrieren
WPCNA2	Meßtemperatur als Regelgröße parametrieren
WPCNA6	rH als Regelgröße parametrieren
WPCNAUH	ORP als Regelgröße parametrieren

RPCND	Parametrierten Sollwert abfragen
WPCND <i>p</i>	Sollwert <i>p</i> parametrieren
RPCNNZ	Parametrierte neutrale Zone abfragen
WPCNNZp	Neutrale Zone <i>p</i> parametrieren
RPCNBV	Parametrierung
WPCNBV <i>p</i>	Regelanfang p parametrieren
RPCNBX	Parametrierung
WPCNBX <i>p</i>	Eckpunkt X p parametrieren
RPCNBY	Parametrierung
WPCNBY <i>p</i>	Eckpunkt Y p parametrieren
RPCNBT	Parametrierung
WPCNBT <i>p</i>	Nachstellzeit p parametrieren
RPCNEV	Parametrierung ► Regelende abfragen
WPCNEV <i>p</i>	▶ Regelende <i>p</i> parametrieren
RPCNEX	Parametrierung Eckpunkt X abfragen
WPCNEX <i>p</i>	Eckpunkt X <i>p</i> parametrieren
RPCNEY	Parametrierung - Eckpunkt Y abfragen
WPCNEY <i>p</i>	Eckpunkt Y <i>p</i> parametrieren
RPCNET	Parametrierung > Nachstellzeit abfragen
WPCNET <i>p</i>	Nachstellzeit p parametrieren
RPCNZ	Ausgang 0/4 20 mA abfragen
WPCNZ0	Ausgang 0 20 mA parametrieren
WPCNZ1	Ausgang 4 20 mA parametrieren

Dosierzeitalarm (Regler, Option 353 oder Option 483)

RPALFYTS	Parametrierung abfragen
WPALFYTS0	Alarm abschalten
WPALFYTS1	Alarm einschalten
RPALFYTWH	Parametrierung Warnungsgrenze Hi abfragen
WPALFYTWHp	Warnungsgrenze Hi <i>p</i> parametrieren
RPALFYTFH	Parametrierung Ausfallgrenze Hi abfragen
WPALFYTFH <i>p</i>	Ausfallgrenze Hi <i>p</i> parametrieren

Stromeingang

RPICM	Marker abfragen
WPICM0	Marker "Aus" setzen
WPICM1	Marker "Ein" setzen
RPICZ	Parametrierte Betriebsart 0 20 mA / 4 20 mA abfragen
WPICZ0	Betriebsart 0 20 mA parametrieren
WPICZ1	Betriebsart 4 20 mA parametrieren
RPICA	Verwendung abfragen (nur bei Opt. 352 "Sondenspülung")
WPICA0	Verwendung als Meßeingang (nur bei Opt. 352 "Sondenspülung")
WPICA1	Verwendung als Steuereingang für Sondenspülung (nur bei Opt. 352 "Sondenspülung")

Stromeingangsalarm

Nicht verfügbar bei eingeschalteter Sondenspülung/Wechselarmatur-Steuerung!		
RPALF5S	Parametrierung abfragen	
WPALF5S0	Alarm abschalten	
WPALF5S1	Alarm einschalten	
RPALF5FL	Parametrierung Ausfallgrenze Lo abfragen	
WPALF5FLp	Ausfallgrenze Lo <i>p</i> parametrieren	
RPALF5WL	Parametrierung Warnungsgrenze Lo abfragen	
WPALF5WLp	Warnungsgrenze Lo <i>p</i> parametrieren	
RPALF5WH	Parametrierung Warnungsgrenze Hi abfragen	
WPALF5WHp	Warnungsgrenze Hi <i>p</i> parametrieren	
RPALF5FH	Parametrierung Ausfallgrenze Hi abfragen	
WPALF5FHp	Ausfallgrenze Hi <i>p</i> parametrieren	

Wechselarmatur-Steuerung (Option 404)

RPUCM	Marker abfragen
WPUCM0	Marker "Aus" setzen
WPUCM1	Marker "Ein" setzen
RPUCS	Parametrierung Wechselarmatur abfragen
WPUCS0	Wechselarmatur aussschalten
WPUCS1	Wechselarmatur einschalten

RPUCTI	Parametrierung Intervallzeit abfragen
WPUCTIp	Intervallzeit <i>p</i> parametrieren [h]
RPUCT02	Parametrierung Spülzeit (1) abfragen
WPUCT02p	Spülzeit (1) <i>p</i> parametrieren [s]
RPUCT03	Parametrierung Reinigungszeit abfragen
WPUCT03p	Reinigungszeit <i>p</i> parametrieren [s]
RPUCT04	Parametrierung Spülzeit (2) abfragen
WPUCT04p	Spülzeit (2) <i>p</i> parametrieren [s]
RPUCT05	Parametrierung Vorlaufzeit vor Messen abfragen
WPUCT05p	Vorlaufzeit vor Messen <i>p</i> parametrieren [s]
RPUCT06	Parametrierung Spülzeit (3) abfragen
WPUCT06 <i>p</i>	Spülzeit (3) <i>p</i> parametrieren [s]
RPUCT07	Parametrierung Spülzeit (4) abfragen
WPUCT07p	Spülzeit (4) <i>p</i> parametrieren [s]
RPUCTM	Meßzeit abfragen
WPUCTMp	Meßzeit <i>p</i> parametrieren [s]
RPUCCS	Sensorkontrolle abfragen
WPUCCS0	Sensorkontrolle aussschalten
WPUCCS1	Sensorkontrolle einschalten
RPUCCT	Parametrierung Kontrollvorlaufzeit abfragen
WPUCCTp	Kontrollvorlaufzeit <i>p</i> parametrieren [s]
RPUCCFL	Parametrierung Sensorkontrolle Ausfallgrenze Lo abfragen
WPUCCFLp	Sensorkontrolle Ausfallgrenze Lo p parametrieren
RPUCCWL	Parametrierung Sensorkontrolle Warnungsgrenze Lo abfragen
WPUCCWLp	Sensorkontrolle Warnungsgrenze Lo p parametrieren
RPUCCWH	Parametrierung Sensorkontrolle Warnungsgrenze Hi abfragen
WPUCCWHp	Sensorkontrolle Warnungsgrenze Hi p parametrieren
RPUCCFH	Parametrierung Sensorkontrolle Ausfallgrenze Hi abfragen
WPUCCFHp	Sensorkontrolle Ausfallgrenze Hi p parametrieren

Sondenspülung (Option 352)

RPUCM	Marker abfragen
WPUCM0	Marker "Aus" setzen
WPUCM1	Marker "Ein" setzen
RPUCCN	Kontakt Sonde abfragen
WPUCCN0	Kontakt Sonde als Ruhekontakt parametrieren
WPUCCN1	Kontakt Sonde als Arbeitskontakt parametrieren
RPUCS	Parametrierung Sondenspülung abfragen
WPUCS0	Sondenspülung ausschalten
WPUCS1	Sondenspülung einschalten
RPUCTI	Parametrierung Intervallzeit abfragen
WPUCTIp	Intervallzeit <i>p</i> parametrieren [h]
RPUCT01	Parametrierung Vorlaufzeit vor Spülen abfragen
WPUCT01p	Vorlaufzeit vor Spülen p parametrieren [s]
RPUCT02	Parametrierung Vorspülzeit abfragen
WPUCT02p	Vorspülzeit <i>p</i> parametrieren [s]
RPUCT03	Parametrierung Reinigungszeit abfragen
WPUCT03p	Reinigungszeit <i>p</i> parametrieren [s]
RPUCT04	Parametrierung Nachspülzeit abfragen
WPUCT04p	Nachspülzeit p parametrieren [s]
RPUCT05	Parametrierung Vorlaufzeit vor Messen abfragen
WPUCT05p	Vorlaufzeit vor Messen <i>p</i> parametrieren [s]

RS 485-Schnittstelle

RPINM	Parametrierung Marker abfragen
WPINM0	Marker "Aus" setzen
WPINM1	Marker "Ein" setzen
RPMSR	Parametrierung Ready-Meldung abfragen

pH Transmitter 2500

WPMSR0	Parametrieren: keine Rückmeldung nach Write-Befehl
WPMSR1	Parametrieren: Rückmeldung nach Write-Befehl, der pH Transmitter 2500 sendet ein Schlußzeichen nach Abarbeitung des Befehls (nicht bei Busbetrieb, nur bei Punkt-zu-Punkt Betrieb)
RPINWP	Schreibschutz abfragen
WPINWP0	Schreibschutz "aus" setzen
WPINWP1	Schreibschutz "ein" setzen

Deltafunktion

RPFDM	Parametrierung Marker abfragen
WPFDM0	Marker "Aus" setzen
WPFDM1	Marker "Ein" setzen
RPFDA	Parametrierung Deltafunktion abfragen
WPFDAN	Parametrieren: "Deltafunktion aus"
WPFDA0	Parametrieren: "Deltafunktion pH"
WPFDA1	Parametrieren: "Deltafunktion mV"
WPFDAUH	Parametrieren: "Deltafunktion ORP"
WPFDA6	Parametrieren: "Deltafunktion rH"
RPFDV	Parametrierung Deltawert abfragen
WPFDVp	Deltawert <i>p</i> parametrieren

Automatische Gerätediagnose

RPTEM	Marker abfragen
WPTEM0	Marker "Aus" setzen
WPTEM1	Marker "Ein" setzen
RPTES	Selbsttest abfragen
WPTES0	Selbsttest ausschalten
WPTES1	Selbsttest einschalten
RPTEI	Intervallzeit abfragen
WPTEI <i>p</i>	Intervallzeit <i>p</i> parametrieren (h)

DEVICE-Befehle: Gerätebeschreibung

Mit den Device-Befehlen können Sie die Gerätebeschreibung auslesen

RDMF	Hersteller abfragen
RDUN	Gerätetyp abfragen
RDUS	Seriennummer abfragen
RDUV	Version Software / Hardware abfragen: "60;01" bedeutet "Softwareversion 6.0, Hardwareversion 1"
RDUP	Optionsnummern abfragen

COMMAND-Befehle: Steuerkommandos

Mit Command-Befehlen können Sie die pH Transmitter 2500 steuern. Command-Befehle sind Writebefehle, die Funktionen aufrufen oder Gerätezustände verändern.

Mit dem ersten Write-Befehl übernimmt der steuernde Rechner (PC, SPS, ...) die Kontrolle über die pH Transmitter 2500. Viele Sicherheitsabfragen müssen dann im Rechner realisiert werden! Mit dem Befehl "WCOMINO" (goto Local) gibt der Rechner seine Kontrolle an die pH Transmitter 2500 zurück. Die pH Transmitter 2500 setzt im Meß-Modus auf.

Bei eingeschaltetem Schreibschutz werden alle Schreibversuche ohne vorheriges Aufheben des Schreibschutzes oder mit ungültiger Paßzahl im Logbuch protokolliert. Bei der Auslieferung ist der Schreibschutz ausgeschaltet.

Erstkalibrierung

WCCASTI aktuellen Datensatz als Erstkalibrierung übernehmen (gesperrt, wenn Wechselarmatur eingeschaltet)

Automatische Kalibrierung mit Calimatic®

WCOU1	Ausgangsströme und Regler-Stellgröße einfrieren, Grenzwerte sind inaktiv
WCCAA1	Kalibrieren Calimatic [®] mit Puffer 1 (gesperrt, wenn Wechselarmatur eingeschaltet)
WCCAA2	Kalibrieren Calimatic [®] mit Puffer 2 (gesperrt, wenn Wechselarmatur eingeschaltet)
WCOU0	Ausgangsströme, Regler-Stellgröße und Grenzwerte freigeben

Kalibrierung mit manueller Eingabe von Pufferwerten

WCOU1	Ausgangsströme und Regler-Stellgröße einfrieren, Grenzwerte sind inaktiv
WCCAM1	Kalibrieren manuell Puffer 1 (gesperrt, wenn Wechselarmatur eingeschaltet)
WCCAM2	Kalibrieren manuell Puffer 2 (gesperrt, wenn Wechselarmatur eingeschaltet)
WCOU0	Ausgangsströme, Regler-Stellgröße und Grenzwerte freigeben

Kalibrierung durch Probennahme

WCCAPT	Probe entnehmen (gesperrt, wenn Wechselarmatur eingeschaltet)
WCCAPC	Probe verarbeiten (gesperrt, wenn Wechselarmatur eingeschaltet)

Gerätediagnose

WCTEA	Gerätediagnose starten	(ohne Displav	Kevboardtest)
	doratoalagriood diartorr	(onno biopidy ,	i loybour alooly

Uhr

WCRTT <i>hhmmss</i>	Uhrzeit hhmmss setzen
WCRTD <i>ddmmyy</i>	Datum <i>ddmmyy</i> setzen

Meßstellen-Wartung

WCOM08MA Meßstellen-Wartung aktivieren (Ausgangsströme und Regler-Stellgröße sind eingefroren, Grenzwerte sind inaktiv)

Wechselarmatur-Steuerung (Option 404)

WCUCR	Wechselarmatur-Programm starten
WCOM08MA	Wechselarmatur in Position "Spülen" fahren (Ausgangsströme und Regler-Stellgröße sind eingefroren, Grenzwerte sind inaktiv)
WCOM00	Wechselarmatur in Position "Messen" fahren

Sondenspülung (Option 352)

WCUCR	Spülzyklus starten
Folgende Befehle	nur wenn Meßstellen-Wartung aktiv (WCOM08MA, RSP = 08):
WCUCCNR0	Spülkontakt öffnen
WCUCCNR1	Spülkontakt schließen
WCUCCNC0	Reinigungskontakt öffnen
WCUCCNC1	Reinigungskontakt schließen

Stromgeberfunktion

WCOM08CS	Stromgeberfunktion aktivieren	
WCCSI1p	Ausgangsstrom 1 auf Wert p setzen	
WCCSI2p	Ausgangsstrom 2 auf Wert <i>p</i> setzen	(nur Opt. 350)

Temperaturfühlerabgleich

WCTFV*p* Abgleich Temperaturfühler, Prozeßtemperatur *p* setzen

Digitalregler (Option 353, nicht mit Opt. 483)

- WCOM08CI Regler manuell aktivieren
- WCCIMp Reglerstellgröße auf Wert p setzen

Analogregler (Option 483, nicht mit Opt. 353)

- WCOM08CN Regler manuell aktivieren
- WCCNMp Reglerstellgröße auf Wert p setzen

Parametrierung Spezialistenebene

WCOM01	Parametriermenü aktivieren (Funktionskontrolle aktiv)
WCPZM0	alle Marker löschen
WCPZM1	alle Marker setzen
WCOM00	Rückkehr zum Meßmodus

RS 485-Schnittstelle

WCOMIN0	Goto Local, Tastatur komplett freigeben, Schreibschutz aktivieren wenn parametriert
WCDIW0aaaa	Freitext als Display-Meldung schreiben: max. 40 Zeichen, nur in Funktionen wie Stromgeber, Wartung, usw. in die unterste Displayzeile schreibbar! a = ASCII-Zeichen: Blank, "0" "9", "A" "Z", "-", "+", "/"
WCINPWpppp	Schreibschutz deaktivieren, <i>pppp</i> = Spezialisten-Paßzahl, Vorbereitung zum Schreiben von Parametern und Steuerbefehlen
WCINPD	Schreibschutz aktivieren

Schnittstelle Punkt-zu-Punkt

Wenn Sie die Kopplung "Punkt-zu-Punkt" parametriert haben, werden die Daten im ASCII-Zeichensatz übertragen. Es ist keine Prüfsumme (CRC) notwendig. Die Umschaltung der Datenrichtung auf der RS 485 ist zu beachten (siehe Seite 9–56).

Abfrage

$PC \rightarrow Transmitter:$	R	V	2	<cr></cr>	(ASCII)
	52	56	32	OD	(Hexadezimal)

<u>Antwort</u>

Transmitter \rightarrow PC:	2	5	•	3	<cr></cr>	(ASCII)
	32	35	2E	33	OD	(Hexadezimal)

Schnittstellen-Busprotokoll

Gilt nur, wenn Sie die Kopplung BUS parametriert haben!

Das Protokoll arbeitet nach dem Master/Slave-Prinzip. Die Teilnehmer, die vom Master (Steuerrechner) mit einer Übertragung angesprochen werden, bezeichnet man als **Slave**. Sie müssen den Kommunikationsablauf so durchführen, wie er vom steuernden **Master** vorgegeben wird.

Jeder Kommunikationsablauf zwischen Teilnehmern auf dem Bus wird im wesentlichen durch zwei Abschnitte festgelegt, durch den Kommandoteil und Antwortteil:

Durch den *Kommandoteil* (Command) legt der Master die Bedeutung und die Funktion der augenblicklich transferierten Nachricht fest. Die Kommandoinformation wird vom Slave übernommen und entsprechend ausgewertet.

Der Antwortteil (Response) ist nötig, um dem Master anzuzeigen, ob ein Bustransfer ordnungsgemäß abgewickelt wurde und kann gegebenenfalls auch Daten enthalten.

Datenformat

Hardware: RS485 2-Draht.

Das Datenformat ist fest auf 9600 Baud, 8 Datenbit, No Parity eingestellt.

Jeder Slave besitzt eine Busadresse, die im Bereich 01...31 liegen darf. Es dürfen nicht zwei Slaves mit gleicher Adresse auf einem Bussystem existieren.

Die Adresse 00 ist eine Broadcast-Adresse (Meldung für ALLE).

Aufbau einer Nachricht

1 Byte	1 Byte	n Bytes	2 Byte
Slaveadresse Statusflags	Länge: n + 2	ASCII-Nachricht, wie bei Punkt-zu-Punkt-Verbindung, jedoch ohne Schlußzeichen	CRC16 nach CCITT-X.25

1. Feld: Slaveadresse, Statusflags

	7	6	5	4	3	2	1	0
	"1"	/ Master Slave	Error		Slave	-Adresse 0 ⁻	131, 00 =	Broadcast
Bit 7:	"1"		Dieses Bit <u>muß</u>	auf logisch	n Eins geset	tzt sein.		
Bit 6:	Maste	r / Slave:	"1"bedeutet, da Die Slave-Adre "0" bedeutet, da Die Slave-Adre	B die Nach sse adress aß die Nach sse gibt da	richt vom N iert die Date nricht eine A nn die Date	laster zum S ensenke. Antwort vom nquelle an.	Slave geser I Slave zum	ndet wurde. Master ist.
Bit 5:	Error		beim Senden M Bei Antwort Slav (z. B. Syntaxfeh	laster→Slav ve→Master g ler, nicht bei	ve immer "1" elöscht, wer CRC-Fehler	1n ein Fehlei 7, da dann ke	r aufgetreten eine Antwort	ist kommt).

Die Slaveadresse 00 hat eine Sonderfunktion:

Diese Adresse spricht <u>alle</u> Slaves an. Es darf von <u>keinem</u> Slave eine Antwort gesendet werden. Es ist daher für den Master nicht ersichtlich, ob die Nachricht von allen Teilnehmern richtig verstanden wurde. Diese Funktion ist trotzdem sinnvoll für eine mögliche Synchronisation von allen Teilnehmern (z.B. Uhrzeit setzen). Die Teilnehmer können danach einzeln überprüft werden, ob die betreffende Nachricht erfolgreich empfangen wurde.

2. Feld: Länge

7	6	5	4	3	2	1	0
"0"	Folge			Länge	des Nachric	htenfeldes ι	und CRC16

Das Längenfeld gibt die noch verbleibende Länge der Nachricht an, d. h. die Länge des Nachrichtenblocks und des CRC (Nachricht + 2 Bytes). Nach dem Lesen der Länge müssen bei korrektem Empfang noch genau *Länge* Bytes folgen.

In jedem Block lassen sich maximal 63 Bytes (61 Datenbytes + 2 Byte CRC) übertragen. Längere Übertragungsstrings müssen in Blocks unterteilt werden.

Das Folge-Bit ist gesetzt, wenn ein weiterer kompletter Datenblock folgt. Bei einer Blockfolge hat der letzte Block das Folge-Bit gelöscht. Bei gelöschtem Folge-Bit (Normalfall) ist die Nachricht mit diesem Block komplett.

3. Feld: ASCII-Nachricht

In diesem Nachrichtenfeld steckt der Befehl an den pH Transmitter 2500. Die Nachricht ist vom Aufbau identisch mit dem String der Punkt-zu-Punkt Verbindung (z.B. RV2). Das Schlußzeichen entfällt, dafür folgt der Nachricht sofort der CRC16.

Alle Zeichen in diesem Feld müssen Bit 7 gelöscht haben (wie 7 Datenbit, Space Parity).

4. Feld: CRC16

Der CRC16 (16-bit Cyclic Redundancy Check) wird gemäß CCITT-X.25 gebildet.

Prüfpolynom nach CCITT-X.25 = $x^{16} + x^{12} + x^5 + 1$

Der CRC ist die Prüfsumme aller übertragenen Bytes. Der CRC wird als 2 Binärbytes übertragen. Es wird erst das höherwertige und dann das niederwertige Byte übertragen. Der übertragene CRC16 ist so aufgebaut, daß er den Gesamt-CRC immer zu 0000_{hex} ergänzt. Der gesamte empfangene String ist nur dann gültig und zu interpretieren, wenn der CRC = 0000_{hex} ist. Andernfalls ist die ganze Nachricht zu ignorieren.

Der CRC16 besitzt die **Hamming-Distanz 4** und wird unter anderem in den Busprotokollen HDLC, SDLC und ADCP verwendet.

Verfahren zur Erzeugung eines CRC:

Zur Ergänzung des Strings zum CRC = 0000_{hex} wird der CRC im String erst auf 0000_{hex} gesetzt. Der über diesen String (incl. CRC) gebildete CRC wird dann im String eingetragen. Damit ergänzt sich der CRC zu dem Gesamt-CRC von 0000_{hex} .

Bildung eines CRC:

Variablen:

BUFFER =	Speicherbereich der kompletten Nachricht incl. Header und CRC-Feld
BUFPOINTER =	Zeiger auf Zeichen im BUFFER
LÄNGE =	Länge der kompletten Nachricht (Felder 1 bis 4)
BYTE =	Zeichen aus BUFFER in Bearbeitung
MERKER =	Zwischenspeicher für das höchstwertige Bit (MSB)
CRC =	CRC16
BEGIN crc . CRC = 0000 _{hex} . BUFPOINTER = zeigt au . WHILE (LÄNGE != 0) . bitcounter = 0 . BYTE = Zeichen, auf da . BUFPOINTER auf näch . DO . MERKER = höchstes I . CRC um 1 Bit nach lin . IF (höchstes Bit _{Bit 7} vo . CRC = CRC + 1 . ENDIF . BYTE um 1 Bit nach I . IF (MERKER == "1") . CRC = CRC Exclusiv . ENDIF . bitcounter = bitcounter . WHILE (bitcounter < 8)	as BUFPOINTER zeigt hstes Zeichen (increment) Bit _{Bit 15} vom CRC hs schieben (CRC = CRC * 2) on BYTE == "1") inks schieben (BYTE = BYTE * 2) ye-Oder 1021_{hex} r + 1
\therefore LÄNGE = LÄNGE – 1	

. END WHILE

END crc
Schnittstellen-Busprotokoll des Slave (2500)

Timeoutzeiten:

A = 3 Byte-Übertragungszeiten (ca. 3,1 ms bei 9600 Baud)

Fehlerzustände beim Slave:

- 1) Timeout A abgelaufen (ca. 3 Byte-Übertragungszeiten)
- 2) CRC-Fehler
- 3) fremde Zieladresse (nicht adressiert)
- 4) Framing-(UART-) Fehler

Reaktion auf Fehler:

keine Antwort senden, Empfangsstring verwerfen, Rückkehr in den Standby-Modus, warten auf neue Empfangszeichen.

Schnittstellen-Busprotokoll des Master

Timeoutzeiten:

A = 3 Byte-Übertragungszeiten (ca. 3,1 ms bei 9600 Baud)

B = ca. 1 s

13 Lieferprogramm und Zubehör

Gerät	Bestell-Nr.
pH Transmitter 2500	2500
Optionen	
Anzeigentexte englisch	348
Anzeigentexte französisch	362
zweiter Stromausgang	350
Hilfsenergie 24 V AC/DC	298
Hilfsenergie 115 V AC	363
RS 485-Schnittstelle	351
InClean-Funktion	404
Digitalreglerfunktion (nicht zusammen mit Option 483)	353
Logbuch	354
nomineller Elektrodennullpunkt und -steilheit parametrierbar (standardmäßig integriert)	356
Puffersatz nach Kundenwunsch	370 379
Ex II T6 (Ex-geprüft Zone 2)	403
Puffersatz Ciba (94)	458
Analogreglerfunktion (nur mit Option 350, nicht zusammen mit Option 353)	483
Montagezubehör	
Montageplatte (für direkte Wandmontage nicht erforderlich, s. Abb. 10–2, S. 10–2)	ZU 0126
Mastschellen-Satz (nur in Verbindung mit Montageplatte ZU 0126, s. Abb. 10-2, S. 10-2)	ZU 0125
Schutzdach (nur in Verbindung mit Montageplatte ZU 0126, s. Abb. 10–2, S. 10–2)	ZU 0123
Schutzgehäuse aus Polyester, IP 65, Schutzklappe aus Makrolon,	

Mastschellen-Satz für Schutzgehäuse (nur in Verbindung mit ZU 0124) ZU 0128

komplett mit Montagesatz, s. Abb. 10-3, S. 10-3

ZU 0124

Weiteres Zubehör

Eingangsbuchse für eine Einstabmeßkette oder Glaselektrode mit DIN-Stecker	ZU 0160
Eingangsbuchse für eine Einstabmeßkette oder Glaselektrode	
mit Schraubstecker Ingold SK 7 und äquivalente Typen	ZU 0161

14 Technische Daten

Eingänge	 Eingang für pH oder mV Eingang für ORP¹⁾ (Redoxpotential) Stromeingang mit Auswertung 0100% z. B. für Grenzwertüberwachung In Verbindung mit Hilfsenergieausgang kompletter 2-Leiter-Meßkreis, z.B. für Durchflußgeber oder Füllstandsgeber Eingang für Pt 100/Pt 1000, automatische Umschaltung Anschluß in 2-Leiter- oder 3-Leitertechnik 		
Меßumfang	pH-/mV-Wert ORP (Redoxpotential) rH-Wert Temperatur Stromeingang Glasimpedanz Bezugsimpedanz	pH -2,00 +16,00 -2000 +2000 mV -2000 +2000 mV 0,0 42,5 -50,0 +250,0 °C 0(4) 20 mA / 50 Ω 0,1 2000 MΩ 0,1 200,0 kΩ	/ / Ω (0 100 %)
Anzeige	Grafik-LCD, 240 x 64 Pun Hauptanzeige Nebenanzeige Parametrieranzeige	kte mit CFL ²⁾ -Hinter Zeichenhöhe ca. 25 Zeichenhöhe ca. 6 7 Zeilen, Zeichenhö	leuchtung 5 mm mm bhe ca. 4 mm
Anzeigemöglichkeiten	Hauptanzeige pH-Wert mV-Wert ORP (Redoxpotential) rH-Wert Temperatur Uhrzeit	Nebenanzeige pH-Wert mV-Wert ORP rH-Wert Temperatur Uhrzeit Datum Stromausgang 1 Stromausgang 2 Stromeingang Regler-Sollwert Regler-Stellgröße CAL-Timer Glasimpedanz Bezugsimpedanz man. Temperatur	[pH] [mV] [rH] [°C] [h,min] [t,m,j] ^{*)} [mA] [mA] [%] [%] [%] [h] [MΩ] [kΩ] [°C]
Ausgang 1 ^{*)}	0 20 mA oder 4 20 m parametrierbar für die Mef Fehlermeldung bei Bürder	IA, max. 10 V, potent Bgrößen pH, mV, OF nüberschreitung	tialfrei RP, rH, °C
Ausgang 2 ^{*)} (Option 350)	0 20 mA oder 4 20 m parametrierbar für die Mef optionell als Analog-Regle Fehlermeldung bei Bürder	A, max. 10 V, potent Bgrößen pH, mV, OF erausgang (Option 48 nüberschreitung	tialfrei RP, rH, °C 33)
Meßanfang/Meßende ^{*)}	beliebig innerhalb des Mel	ßbereiches für pH, n	nV, ORP, rH, °C
Meßspannen ^{*)}	pH-Wert Elektrodenspannung ORP (Redoxpotential) rH-Wert Temperatur	1,00 20,00 100 2000 mV 100 2000 mV 10,0 200,0 10,0 300,0 °C	

Elektrodenanpassung	 Betriebsarten[*]) automatische Kalibrierung mit selbsttätiger Pufferfindung Calimatic[®] mit drei festen Puffersätzen: Ingold technische Puffer 2,00/4,01/7,00/9,21 Merck/Riedel de Haën 2,00/4,00/7,00/9,00/12,00 Techn. Puf. DIN 19267 1,09/4,65/6,79/9,23/12,75 kundenspezifische Puffersätze (Opt. 370 379) Eingabe individueller Pufferwerte Probenkalibrierung Eingabe vorgemessener Kalibrierdaten 		
Kalibrierbereiche	Nullpunkt Steilheit U _{is}	pH 6 8 50 61 mV/pH (25 -200 +200 mV	5°C)
nomineller Elektrodennullpunkt- und -steilheit ^{*)} (Opt. 356)	Nullpunkt Steilheit U _{is} z. B. für Pfaudler- und Ant	pH 0 14 25 61 mV/pH -500 +500 mV imon-Sonden	
Stromeingang	0(4) 20 mA (0 100 % Überlastbarkeit 100 mA), Eingangswidersta	nd 50 Ω
Temperatureingang	Pt 100 / Pt 1000 Anschluß 2- oder 3-Leiter Meßstrom ca. 4 mA (Pt 10 Temperaturfühler abgleich	00) bzw. ca. 0,4 mA Ibar	(Pt 1000)
Temperaturkompensation ^{*)}	automatisch manuell	mit Pt 100 oder Pt -50,0 +250 °C	1000
Temperaturkompensation medienbezogen ^{*)}	ohnespurenverunreinigtes Re	einstwasser	
Glaselektrodeneingang	Eingangswiderstand Eingangsstrom (20 °C) ³⁾ Offsetspannung TK der Offsetspannung	> 1*10 ¹² Ω < 1*10 ⁻¹² A < 0,5 mV < 10 μV/K	
Bezugselektrodeneingang	Eingangswiderstand Eingangsstrom (20 °C) ³⁾ Offsetspannung TK der Offsetspannung	> 1*10 ¹¹ Ω < 1*10 ⁻¹⁰ A < 0,5 mV < 10 μV/K	
Meßfehler (± 1 Digit)	pH-Wert Elektrodenspannung Temperatur Stromeingang	< 0,01 < 0,1 % vom Meßw < 0,2 % vom Meßw < 1% vom Endwert	vert vert, + 0,2 K
Fehler Impedanzmessung	Glaselektrode Bezugselektrode	< 10 % < 20 % < 10 % < 20 %	5 500 ΜΩ < 5 ΜΩ / > 500 ΜΩ 0,5 50 kΩ < 0,5 kΩ / > 50 kΩ
zulässige Kabelkapazität	< 2 nF (ca. 20m Me Kabeltyp ST	ßkabellänge, -TRIAX 7 Fabrikat N	lettler-Toledo)
zulässige Spannung ORP + pH (mV)	± 2 V, Klemmen 1,3 gege	n Klemme 4	
Stromgeberfunktion	0,00 mA 20,50 mA getrennt eingebbar für Strom 1 und 2		

Ausgangsstromfehler	< 0,25 % vom Meßwert +	20 μΑ	
Schaltkontakte ^{*)}	8 Schaltkontakte, potentialfrei, Überspannungskategorie II bis 250 V≂ Kontaktbelastbarkeit AC < 250 V/5 A < 1250 VA ohmsch DC < 120 V/5 A <120 W		
	NAMUR-Kontakte ⁴⁾ Varnung (Wartungsbedarf) Ausfall		Funktionskontrolle Warnung (Wartungsbedarf) Ausfall
	Ausfall/Warnung:		Verzögerungszeiten einzeln parametrierbar
	Grenzwert-/Regler-Kontal (Digital-Regler optionell, C	kte Opt. 353)	Grenzwert 1 Grenzwert 2
	Sondenspülung (Option 352 oder 404)		Spülung Reinigung Sonde
PI-Regler ^{*)} (Option 353)	Quasistetiger Schaltregler Impulsdauer oder Impulsf Regelbereich innerhalb de parametrierbar	r über Grenzwert-Kor requenz parametrierl er Meßbereiche für p	ntakte oar H/mV/ORP/rH/°C
Analog-Regler ^{*)} (Option 483)	gibt proportional die Stellgröße als analogen Strom über Ausgang 2 aus Drei-Wege-Mischventil und Durchgangsventil parametrierbar Regelbereich innerhalb der Meßbereiche für pH/mV/ORP/rH/°C parametrierbar		
Schnittstelle ^{*)} (Option 351)	RS 485, galvanisch getrer Baud-Rate Data-Bit/Parity Punkt zu Punkt-Verbindur	nnt 300/600/1200/9600 7/Even, 7/Odd, 8/No ng oder Busverbindur	o ng von bis zu 31 Geräten
Logbuch (Option 354)	Aufzeichnung von	Funktionsaufrufen, Ausfallmeldungen b beim Wegfall, mit D	Warnungs- und peim Auftreten und atum und Uhrzeit
	Speichertiefe Abrufbar über	200 Einträge verfüg Tastatur/Display od	bar er Schnittstelle
Reinigungsfunktion ^{*)} (Option 352)	automatische Sondenrein über timergesteuerte Kon	igung und -spülung takte, z. B. Spritzspü	lung
InClean-Funktion ^{*)} (Option404)	automatische Steuerung e	einer Wechselarmatu	r InClean
Datenerhaltung	Parameter und Abgleichd Uhr und Logbuch, Statisti	aten: k	> 10 Jahre (EEPROM) > 1 Jahr (akkugepuffert)
Geräteselbsttest	Test von RAM, EPROM, EEPROM, Display und Tastatur, Protokoll zur Qualitätsmanagement-Dokumentation (QM) gemäß DIN ISO 9000 Daten abrufbar über Display und Schnittstelle		
Hilfsenergie-Ausgang	24 V DC / 30 mA, potentialfrei, kurzschlußfest Verwendungsbeispiele: Schleifenstrom für Universaleingang, Signalstrom für Schaltausgänge oder Versorgung für pH-Trennverstärker		
Uhr	Zeituhr mit Datum, netzun	abhängig	

Ex-Schutz (Option 403)	Ex II T6 (Ex-geprüft Zone 2), TÜV Hannover Sachsen-Anhalt Nr. 1004/3		
Funkentstörung	nach EN 50 081-1		
Störfestigkeit	nach EN 50 082-2 und gemäß NAMUR-Empfehlung: EMV von Betriebsmitteln der Prozeß- und Laborleittechnik		
Schutz gegen gefährliche Körperströme	Alle Ein- und Ausgänge, außer Hilfsenergieeingang, sind in Schutz- maßnahme Funktionskleinspannung mit sicherer Trennung im Sinne von DIN 57 100 / VDE 0100 Teil 410 und DIN VDE 0106 Teil 101 ausgeführt. Bei Option 298 "Hilfsenergie 24 V AC/DC" gilt dies – dann unter Ein- schluß des Hilfsenergieeingangs – nur, wenn auch die einspeisende Quelle diese Bestimmungen erfüllt.		
Hilfsenergie	AC 230 V -15 % +10 % < 10 VA 4862 Hz Opt. 363 AC 115 V -15 % +10 % < 10 VA 4862 Hz		
Schutzklasse	II 回 Überspannungskategorie III / I		
Betriebs-/Umgebungstemperatur ⁵⁾ Transport- und Lagertemperatur	-20 +50 °C -20 +70 °C		
Gehäuse	Gehäuse mit separatem Anschlußraum, geeignet für Außenmontage Material: Acryl-Butadien-Styrol, Front: Polyester Schutzart: IP 65		
Kabeldurchführungen	10 Pg-Verschraubungen, Pg 13,5 (Zusatzdichtungen für Kabeldurchmesser < 6 mm sind im Lieferumfang enthalten)		
Abmessungen	siehe Maßzeichnung 10–1, S. 10–2		
Gewicht	ca. 3 kg		
	 *) parametrierbar 1) Oxidations-/Reduktions-Potential 2) Cold Fluorescent Lamp (Leuchtstoffröhre) 3) Verdopplung alle 10 K 4) Normenarbeitsgemeinschaft für Meß- und Regeltechnik in der chemischen Industrie 5) Bei Umgebungstemperaturen unter 0 °C kann die Ablesbarkeit des Displays eingeschränkt sein. Die Gerätefunktionen sind dadurch <i>nicht</i> beeinträchtigt. 		

15 Puffertabellen

°C	рН			
0	2,03	4,01	7,12	9,52
5	2,02	4,01	7,09	9,45
10	2,01	4,00	7,06	9,38
15	2,00	4,00	7,04	9,32
20	2,00	4,00	7,02	9,26
25	2,00	4,01	7,00	9,21
30	1,99	4,01	6,99	9,16
35	1,99	4,02	6,98	9,11
40	1,98	4,03	6,97	9,06
45	1,98	4,04	6,97	9,03
50	1,98	4,06	6,97	8,99
55	1,98	4,08	6,98	8,96
60	1,98	4,10	6,98	8,93
65	1,99	4,13	6,99	8,90
70	1,99	4,16	7,00	8,88
75	2,00	4,19	7,02	8,85
80	2,00	4,22	7,04	8,83
85	2,00	4,26	7,06	8,81
90	2,00	4,30	7,09	8,79
95	2,00	4,35	7,12	8,77

"Mettler Toledo" Mettler Toledo technische Puffer, (entspricht Ingold technische Puffer) °C pH

"Merck/Riedel"	Merck Puffer-Titrisole und gebrauchsfertige Pufferlösungen,
Riedel Puffer-F	ixanale und gebrauchsfertige Pufferlösungen

°C	рН					_
0	2,01	4,05	7,13	9,24	12,58	-
5	2,01	4,04	7,07	9,16	12,41	
10	2,01	4,02	7,05	9,11	12,26	
15	2,00	4,01	7,02	9,05	12,10	
20	2,00	4,00	7,00	9,00	12,00	
25	2,00	4,01	6,98	8,95	11,88	
30	2,00	4,01	6,98	8,91	11,72	
35	2,00	4,01	6,96	8,88	11,67	
40	2,00	4,01	6,95	8,85	11,54	
45	2,00	4,01	6,95	8,82	11,44	
50	2,00	4,00	6,95	8,79	11,33	
55	2,00	4,00	6,95	8,76	11,19	
60	2,00	4,00	6,96	8,73	11,04	
65	2,00	4,00	6,96	8,72	10,97	
70	2,01	4,00	6,96	8,70	10,90	
75	2,01	4,00	6,96	8,68	10,80	
80	2,01	4,00	6,97	8,66	10,70	
85	2,01	4,00	6,98	8,65	10,59	
90	2,01	4,00	7,00	8,64	10,48	
95	2,01	4,00	7,02	8,64	10,37	_
						-

°C	pН				
0	1,08	4,67	6,89	9,48	13,95*
5	1,08	4,67	6,87	9,43	13,63*
10	1,09	4,66	6,84	9,37	13,37
15	1,09	4,66	6,82	9,32	13,16
20	1,09	4,65	6,80	3,27	12,96
25	1,09	4,65	6,79	9,23	12,75
30	1,10	4,65	6,78	9,18	12,61
35	1,10	4,65	6,77	9,13	12,45
40	1,10	4,66	6,76	9,09	12,29
45	1,10	4,67	6,76	9,04	12,09
50	1,11	4,68	6,76	9,00	11,98
55	1,11	4,69	6,76	8,96	11,79
60	1,11	4,70	6,76	8,92	11,69
65	1,11	4,71	6,76	8,90	11,56
70	1,11	4,72	6,76	8,88	11,43
75	1,11	4,73	6,77	8,86	11,31
80	1,12	4,75	6,78	8,85	11,19
85	1,12	4,77	6,79	8,83	11,09
90	1,13	4,79	6,80	8,82	10,99
95	1,13*	4,82*	6,81*	8,81*	10,89*

"DIN" technische Pufferlösungen nach DIN 19 267

* extrapoliert

"Ciba (94)"	Ciba (94) Puffer,	
Nennwerte:	2,06, 4,00, 7,00, 1	0,00

°C	рН				
0	2,04	4,00	7,10	10,30	
5	2,09	4,02	7,08	10,21	
10	2,07	4,00	7,05	10,14	
15	2,08	4,00	7,02	10,06	
20	2,09	4,01	6,98	9,99	
25	2,08	4,02	6,98	9,95	
30	2,06	4,00	6,96	9,89	
35	2,06	4,01	6,95	9,85	
40	2,07	4,02	6,94	9,81	
45	2,06	4,03	6,93	9,77	
50	2,06	4,04	6,93	9,73	
55	2,05	4,05	6,91	9,68	
60	2,08	4,10	6,93	9,66	
65	2,07 ₅	4,10 ₅	6,92 ₅	9,61 ₅	
70	2,07	4,11	6,92	9,57	
75	2,04 ₅	4,13 ₅	6,92 ₅	9 ,54 ₅	
80	2,02	4,15	6,93	9,52	
85	2,03	4,17 ₅	6,95	9,47 ₅	
90	2,04	4,20	6,97	9,43	
95	2,05*	4,22 ₅ *	6,99*	9,38 ₅ *	

* extrapoliert 5 interpoliert

16 Anhang

Achtung

Beachten Sie, daß bei geöffnetem Gerät an berührbaren Teilen eine lebensgefährliche Spannung liegen kann.

Muß das Gerät geöffnet werden, ist es zuvor von allen Spannungsquellen zu trennen.

Stellen Sie sicher, daß das Gerät von der Hilfsenergieversorgung getrennt ist.

Arbeiten am geöffneten Gerät sollten nur von einer Fachkraft vorgenommen werden, die mit den damit verbundenen Gefahren vertraut ist.

Achtung

Beachten Sie bei allen Arbeiten am offenen Gerät die Handhabungsvorschriften für elektrostatisch gefährdete Bauelemente!

EPROM–Wechsel

Bauen Sie das Gerät in umgekehrter Reihenfolge wieder zusammen. Diese Seite bleibt aus technischen Gründen leer.

17 Fachbegriffe

3-Leiter-Anschluß	Anschluß des Pt 100/Pt 1000-Temperaturfühlers mit einer (dritten) Fühlerleitung zum Ausgleich der Zuleitungswiderstände. Erforderlich für genaue Temperaturmessung bei großen Leitungslängen.
Anzeigeebene	"anz", Menüebene in der Parametrierung. Anzeige der gesamten Parametrierung des Gerätes, aber keine Änderungsmöglichkeit.
Alarmgrenze	Für alle Meßgrößen kann je eine untere und eine obere Warnungs- und eine Ausfallgrenze parame- triert werden. Der Alarm kann für jede Meßgröße einzeln aktiviert werden. Bei Überschreiten einer Alarmgrenze erscheint eine Fehlermeldung und der entsprechende NAMUR-Kontakt wird aktiv.
Ausfall	Alarmmeldung und NAMUR-Kontakt. Bedeutet, daß die Meßeinrichtung nicht mehr ord- nungsgemäß arbeitet oder, daß Prozeßparameter einen kritischen Wert erreicht haben. Ausfall ist <i>nicht</i> aktiv bei "Funktionskontrolle".
Betriebsartschalter	Der Betriebsartschalter am InClean erlaubt die Umschaltung zwischen "Run" (Normalbetrieb) und "Service" (Wechselarmatur in Position "Spülen, Fernsteuerung abgeschaltet, Elektrode kann ge- wechselt werden).
Betriebsebene	"bet", Menüebene in der Parametrierung. Parametrierung derjenigen Einstellungen des Gerätes möglich, die in der Spezialistenebene freigegeben wurden.
Betriebs-Paßzahl	Schützt den Zugang zur Betriebsebene. Kann in der Spezialistenebene parametriert oder abge- schaltet werden.
cal	Menütaste für das Kalibriermenü
Cal-Timer	Zählt die Zeit seit der letzten Kalibrierung. Der Stand des Cal-Timers kann mit Alarmgrenzen überwacht werden.
Cursortasten	◀ und ▶ , dienen zur Auswahl von Eingabe- positionen oder Stellen bei Zahleneingabe.
diag	Menütaste für das Diagnosemenü
Diagnosemenü	Anzeige aller relevanten Informationen über den Gerätestatus.
Dosierzeitalarm	Überwacht die Zeit, während der die Reglerstell- größe auf 100 % steht.

Einstabelektrode	Glas- und Bezugselektrode kombiniert in einem System.
Einstellzeit	Zeit vom Start eines Kalibrierschrittes bis zur Sta- bilisierung der Elektrodenspannung.
Elektrodenstatistik	Die Elektrodenstatistik zeigt die Elektrodendaten der drei letzten Kalibrierungen und der Erstkali- brierung.
Elektrodensteilheit	Wird angeben in mV/pH. Ist bei jeder Elektrode verschieden und ändert sich alterungs- und ver- schleißabhängig.
enter	Taste zur Bestätigung von Eingaben.
Erstkalibrierung	Bei einer Erstkalibrierung werden die Elektroden- daten als Referenzwerte für die Elektrodenstatistik abgespeichert.
Funktionskontrolle	NAMUR-Kontakt. Immer aktiv, wenn das Gerät nicht den parametrierten Meßwert liefert.
GLP	Good Laboratory Practice: Regeln zur Durchfüh- rung und Dokumentation von Messungen im La- bor.
GMP	Good Manufacturing Practice: Regeln zur Durch- führung und Dokumentation von Messungen in der Fertigung.
Grenzwertkontakte	Werden von einer beliebig parametrierbaren Meß- größe gesteuert. Je nach parametrierter Wirkrich- tung aktiv bei Über- oder Unterschreiten des Grenzwertes.
Hauptanzeige	Große Meßwertanzeige im Meßmodus. Die ange- zeigte Meßgröße kann parametriert werden.
Hilfselektrode	Metallstab (z. B. Platin), erforderlich zur Überwa- chung der Bezugselektroden-Impedanz
InClean	Wechselarmatur zum automatischen Spülen, Rei- nigen und Kontrollieren der pH-Elektrode. Fern- steuerung durch den pH Transmitter 2500 mit Op- tion 404 möglich.
Informationsdisplay	Informationstext zur Bedienerführung oder Anzeige des Gerätestatus. Gekennzeichnet mit ${f i}$.
Intervallzeit	Zeit vom Beginn eines Spülzyklus oder eines Wechselarmatur-Programms bis zum Beginn des nächsten Spülzyklus oder Wechselarmatur-Pro- gramms, parametrierbar.

Isothermenschnittpunktspannung	Der Isothermenschnittpunkt ist der Schnittpunkt zweier Kalibriergeraden bei zwei verschiedenen Temperaturen. Die Spannungsdifferenz zwischen dem Elektrodennullpunkt und diesem Schnittpunkt ist die Isothermenschnittpunktspannung " U_{IS} ". Sie kann temperaturabhängig Meßfehler verursachen. Diese Meßfehler können durch Parametrieren des " U_{IS} "-Wertes kompensiert werden. Vermieden werden diese Meßfehler durch Kali- brieren bei Meßtemperatur oder bei unveränderli- cher Temperatur.
Kalibrierablauf	Im Kalibriermenü können Sie vier Abläufe wählen: Automatische Kalibrierung mit Calimatic [®] , Kalibrierung mit manueller Eingabe von Pufferwer- ten, Dateneingabe vorgemessener Elektroden, Probenkalibrierung.
Kalibriermenü	Dient zur Kalibrierung des Gerätes.
Kalibrier-Paßzahl	Schützt den Zugang zur Kalibrierung. Kann in der Spezialistenebene parametriert oder abgeschaltet werden.
Kalibrierprotokoll	Das Kalibrierprotokoll zeigt alle relevanten Daten der letzten Kalibrierung zur Dokumentation gemäß GLP/GMP.
Logbuch	Das Logbuch zeigt Ihnen die letzten 200 Ereig- nisse mit Datum und Uhrzeit, z. B. Kalibrierungen, Warnungs- und Ausfallmeldungen, Hilfsener- gieausfall usw. Damit ist eine Qualitätsmanage- ment-Dokumentation gemäß DIN ISO 9000 ff. möglich. Die Aufzeichnung der Fehlermeldungen erfolgt nur im Meßmodus.
maint	Menütaste für das Wartungsmenü.
meas	Menütaste. Mit meas ist die Rückkehr aus allen anderen Menüs in den Meßmodus möglich.
Meldungsliste	Die aktuelle Meldungsliste zeigt die Zahl der ge- rade aktiven Meldungen und die einzelnen War- nungs- oder Ausfall-Meldungen im Klartext.
Menü	Durch Drücken einer Menütaste (cal , diag , maint , oder par) gelangen Sie in ein Menü, in dem Sie die entsprechenden Funktionen aufrufen können.
Menüebene	Das Menü ist in mehrere Menüebenen gegliedert. Zwischen den Menüebenen kann mit der Menüta- ste oder den Cursortasten ◀ und ▶ gewech- selt werden.
Meßmodus	Wenn keine Menüfunktion aktiviert ist, befindet sich das Gerät im Meßmodus. Das Gerät liefert den parametrierten Meßwert. Mit meas gelangt man immer zurück in den Meßmodus.

Меßprogramm	Anwender-definierter Ablauf zum Spülen und Rei- nigen der Elektrode mit der Wechselarmatur InClean: die Elektrode befindet sich normaler- weise in der Spülkammer.
Meßstellen-Nummer	Kann zur Identifikation des Gerätes parametriert und im diag-Menü angezeigt oder über die Schnitt- stelle ausgelesen werden.
Nachspülzeit	Parametrierbare Zeit, für die der Kontakt "Spü- lung" am Ende des Spülzyklus geschlossen ist.
NAMUR	Normenarbeitsgemeinschaft für Meß- und Regel- technik in der chemischen Industrie
NAMUR-Kontakte	"Funktionskontrolle", Warnung" und "Ausfall". Die- nen zur Statusmeldung über Meßgröße und Meß- gerät.
Nebenanzeige	Zwei kleine Anzeigen, die im Meßmodus unten links und rechts erscheinen. Die angezeigten Meßgrößen können mit ▲ und ▼ bzw. ◀ und ▶ ausgewählt werden.
Nullpunkt	pH-Wert, bei dem die pH-Elektrode die Spannung 0 liefert. Der Nullpunkt ist bei jeder Elektrode ver- schieden und ändert sich alterungs- und verschlei- ßabhängig.
ORP	Oxidation Reduction Potential: Redox-Spannung.
par	Menütaste für das Parametriermenü
Parametriermenü	Das Parametriermenü ist in drei Untermenüs auf- gegliedert: Anzeigeebene (anz), Betriebsebene (bet) und Spezialistenebene (spe)
Paßzahlverriegelung	Die Paßzahlverriegelung schützt den Zugang zur Kalibrierung, Wartung, Betriebs- und Spezialisten- ebene. Die Paßzahlen können in der Spezialisten- ebene parametriert oder abgeschaltet werden.
pH-Elektrode	Eine pH-Elektrode besteht aus Glas- und Bezugs- elektrode. Sind beide Elektroden in einem System vereinigt, spricht man von Einstabelektrode.
Potentialausgleichselektrode	Dient zur Verbindung der Meßlösung mit der Meß- schaltung des pH Transmitters.
Puffersatz	Enthält ausgewählte Puffer, die zur automatischen Kalibrierung mit Calimatic [®] benutzt werden können. Der Puffersatz muß parametriert sein.
Redox-Spannung	(auch ORP) Spannung, gemessen zwischen der Bezugselektrode und einer Hilfs- (Platin-)elek- trode.
Reinigungszeit	Parametrierbare Zeit, für die der Reinigungskon- takt während eines Spülzyklus geschlossen ist.

Regelgröße	Parametrierbare Meßgröße, die den Regler steu- ert.
Rolltaste	▲ und ▼ :Tasten zur Auswahl von Menüzei- len oder zur Eingabe von Ziffern bei numerischen Eingaben.
Sensorkontrolle	Im Wechselarmatur-Programm wird beim Schritt "Sensorkontrolle" der von der pH-Elektrode gelie- ferte Meßwert mit parametrierten Grenzwerten verglichen. Bei Unter- oder Überschreitung der Warnungs- oder Ausfallgrenzen erfolgt eine Feh- lermeldung.
Serviceposition	Der Betriebsartschalter an der Wechselarmatur InClean wurde auf "Service" gestellt (Wechselar- matur in Position "Spülen, Fernsteuerung abge- schaltet, Elektrode kann gewechselt werden).
Spezialistenebene	"spe", Menüebene in der Parametrierung. Alle Ein- stellungen des Gerätes und die Paßzahlen können parametriert werden.
Spezialisten-Paßzahl	Schützt den Zugang zur Spezialistenebene. Kann in der Spezialistenebene parametriert werden.
Spülprogramm	Anwender-definierter Ablauf zum Spülen und Rei- nigen der Elektrode mit der Wechselarmatur InClean: die Elektrode befindet sich normaler- weise im Prozeß
Spülzyklus	Parametrierbarer Ablauf zur Reinigung der Elek- trode oder anderer Sensoren. Steuert die Kontakte "Sonde", "Spülung" und "Reinigung"
Stellgröße	Ausgangsgröße des Reglers, steuert die Grenz- wertkontakte 1 und 2.
Stromeingang	Verarbeitet einen Eingangsstrom von 0 (4) 20 mA. Der Strom kann (in % vom Endwert) ange- zeigt und mit Alarmgrenzen überwacht werden. Bei der Wechselarmatur InClean (Opt. 404) dient er zur Auswertung der Rückmeldungen der Arma- tur.
Verzögerungszeit	Parametrierbare Zeit bis zum Ansprechen der Kontakte "Warnung" und "Ausfall" nach Auftreten einer Alarmmeldung.
Vorlaufzeit vor Messen	Parametrierbare Zeit am Ende des Spülzyklus, nach dem Deaktivieren des Kontakts "Sonde".
Vorlaufzeit vor Spülen	Parametrierbare Zeit am Beginn des Spülzyklus, nach dem Aktivieren des Kontakts "Sonde", vor dem Schließen des Kontakts "Spülung".
Vorspülzeit	Parametrierbare Zeit, für die der Kontakt "Spü- lung" am Anfang des Spülzyklus geschlossen ist.

Warnung (Wartungsbedarf)	Alarmmeldung und NAMUR-Kontakt. Bedeutet, daß die Meßeinrichtung noch ordnungs- gemäß arbeitet, aber gewartet werden sollte, oder daß Prozeßparameter einen Wert erreicht haben, der ein Eingreifen erfordert. Warnung ist <i>nicht</i> aktiv bei "Funktionskontrolle".
Warteposition	Sondenspülung: Position zwischen "Nachspülzeit" und "Vorlaufzeit vor Messen", in der die Sonde verharrt, solange der Startstrom von 10 20 mA am Stromeingang liegt (nur wenn der Stromeingang als Steuerein- gang parametriert ist). InClean: Ruheposition der Wechselarmatur in der Spülkammer.
Wartungsmenü	Im Wartungsmenü sind alle Funktionen zur War- tung der Sensoren und zur Einstellung ange- schlossener Meßgeräte zusammengefaßt.
Wartungs-Paßzahl	Schützt den Zugang zur Wartung. Kann in der Spezialistenebene parametriert oder abgeschaltet werden.
Wechselarmatur	siehe InClean
Wechselarmatur-Programm	Anwender-definierter Ablauf zum Spülen und Rei- nigen der Elektrode: s. a. Meßprogramm und Spülprogramm

18 Stichwortverzeichnis

3–Leiter–Anschluß, 9–8 Erklärung, 17–1

Α

Alarmeinstellungen, 9–22 Parametrierung, 9–23 Schnittstellenbefehle, 12–22

Alarmgrenze, 2–2 Erklärung, 17–1

Analogregler, Schnittstellenbefehle, 12-25, 12-33

Anhang, 16-1

Anschlußbelegung, 10-9

anz, 6–1

Anzeigeebene, 6–1 Beispiel, 6–2 Erklärung, 17–1

Ausfall, 9–24 Erklärung, 17–1

Ausgang 2/Regler, Schnittstellenbefehle, 12-19

Ausgangsstrom 1 Parametrierung, 9–12 Schnittstellenbefehle, 12–18

Ausgangsstrom 2 Parametrierung, 9–12 Schnittstellenbefehle, 12–19

В

Bedienoberfläche, 1–1

Bedienungselemente, 2-3

bet, 7-1

Betriebs–Paßzahl Erklärung, 17–1 Parametrierung, 8–4 Betriebsartschalter, Erklärung, 17-1

Betriebsebene, 7–1 Beispiel, 7–2 Erklärung, 17–1

Bezugselektrodenimpedanz–Alarm Parametrierung, 9–16 Schnittstellenbefehle, 12–20

Blickwinkeleinstellung, 9–2 Schnittstellenbefehle, 12–12

С

cal, Erklärung, 17–1

Cal–Timer, 9–6 Erklärung, 17–1 Schnittstellenbefehle, 12–16

Cal-Timer-Alarm, 9-22

Calimatic, 3-8

Calimatic–Puffersatz, 3–8 Parametrierung, 9–7 Schnittstellenbefehle, 12–14

COMMAND, Schnittstellenbefehle, 12-31

Cursortaste, Erklärung, 17-1

D

Datum Parametrierung, 4–6 Schnittstellenbefehle, 12–11, 12–32

Datumformat, Parametrierung, 4-6

Deltafunktion Parametrierung, 9–57 Schnittstellenbefehle, 12–30

DEVICE, Schnittstellenbefehle, 12-31

diag, Erklärung, 17-1

Diagnosemenü, 4–2 Erklärung, 17–1 Möglichkeiten, 4–1

Digitalregler, Schnittstellenbefehle, 12–24, 12–33

Display, Blickwinkeleinstellung, 9-2

Dosierzeitalarm, 9–29 Erklärung, 17–1 Parametrierung, 9–36

Ε

Eckpunkt, 9-29

Eingangsfilter, 9–5 Schnittstellenbefehle, 12–14

Einpunktkalibrierung, 3-7

Einschaltdauer, Wasserventil, 9-46

Einstellzeit, Erklärung, 17-2

Elektrodenstatistik, 4–4 Erklärung, 17–2 Schnittstellenbefehle, 12–7

Elektrodensteilheit, Erklärung, 17-2

Elektrodenüberwachung, 9–14

enter, Erklärung, 17-2

EPROM, Wechsel, 16-2

Erstkalibrierung, 3–5 Erklärung, 17–2 Schnittstellenbefehle, 12–31

F

Fachbegriffe, 17–1

Fehlerbehebung, Sonde klemmt, 9-44

Fehlermeldung, Sonde klemmt, 9–44

Fehlermeldungen alphabetisch, 11–1 nach Fehlercode, 11–5 Funktionskontrolle, 9–24 Erklärung, 17–2

G

Gerätebeschreibung, 4–6

Gerätediagnose, 4–7 automatische, 9–57 Schnittstellenbefehle, 12–30 Schnittstellenbefehle, 12–9, 12–32

Gerätekonzept, 1-1

Glaselektrodenimpedanz–Alarm Parametrierung, 9–15 Schnittstellenbefehle, 12–20

GLP, Erklärung, 17-2

GMP, Erklärung, 17–2

Grenzwertkontakte, 9–26 Display–Anzeige, 2–2 Erklärung, 17–2 Hysterese, 9–26 Parametrierung, 9–27 Schnittstellenbefehle, 12–23 Wirkrichtung, 9–26

Grenzwertkontakte/Regler Parametrierung, 9–27 Schnittstellenbefehle, 12–22

Н

Hauptanzeige, Erklärung, 17–2 Hilfselektrode, Erklärung, 17–2 Hilfsenergieausgang, 9–37 Hilfsenergieversorgung, 9–1, 10–8 Hysterese, 9–26

I

Impedanzmessung, Hinweise, 9-16

InClean Erklärung, 17–2 Wartungsmenü, 5–1 Installation, 10–8 Anschlußklemmen, 10–8

Intervallzeit, 9–46 Erklärung, 17–2

Isothermenschnittpunktspannung, 3–12 Erklärung, 17–3

Κ

Kalibrier–Paßzahl Erklärung, 17–3 Parametrierung, 8–4

Kalibrier-Protokoll, Erklärung, 17-3

Kalibrierablauf auswählen von, 3–4 Erklärung, 17–3

Kalibriermenü, 3–3 Erklärung, 17–3

Kalibrierprotokoll, 4–3 Schnittstellenbefehle, 12–8

Kalibrierung, 3–1
Ausgänge einfrieren, 3–8, 3–10, 3–12
Automatisch, Schnittstellenbefehle, 12–31
Dateneingabe vorgemessener Elektroden, 3–12
Dateneingabe vorgemessener Meßketten,
Schnittstellenbefehle, 12–11
manuelle Eingabe von Pufferwerten, 3–10
Schnittstellenbefehle, 12–11, 12–32
Probennahme, 3–13
Schnittstellenbefehle, 12–11, 12–32
Überwachungsfunktionen, 3–2
Wechselarmatur, 3–15
Spülprogramm, 3–15

L

Logbuch, 4–5 Erklärung, 17–3 Schnittstellenbefehle, 12–8

Μ

maint, Erklärung, 17-3 Marker-Parametrierung, 8-2 Mastschellensatz, 10-1, 13-1 meas, Erklärung, 17-3 Meldungsliste, 4-2 Erklärung, 17–3 Menü, Erklärung, 17-3 Menüebene, Erklärung, 17-3 Menüstruktur, 1-4, 2-4 Meßmodus, 2-1 Erklärung, 17-3 Meßprogramm, Erklärung, 17-4 Meßspanne, 9-11 Meßstellen-Nummer, 4-3 Erklärung, 17-4 Schnittstellenbefehle, 12-10 Meßstellen-Wartung, 5-2 Schnittstellenbefehle, 12-32 Meßstellendaten, 4-2 Meßwertanzeige, 9-2 Schnittstellenbefehle, 12-12 Montage, 10-1 Montageplatte, 10-1, 13-1 Montagezubehör, Verzeichnis, 13-1 mV-Alarm, 9-22 Schnittstellenbefehle, 12–15

Ν

Nachspülzeit, Erklärung, 17–4 Nachstellzeit, 9–29 NAMUR, Erklärung, 17–4

- NAMUR–Kontakte, 9–24 Erklärung, 17–4 Parametrierung, 9–25 Schnittstellenbefehle, 12–22
- Nebenanzeige, 2–1 Erklärung, 17–4 Schnittstellenbefehle, 12–12, 12–13

Neutralzone, 9-29

- Nominelle Steilheit parametrieren, 9–7 Schnittstellenbefehle, 12–14
- Nomineller Nullpunkt parametrieren, 9–7 Schnittstellenbefehle, 12–14
- Nullpunkt abweichend von pH 7, 9–7 Erklärung, 17–4
- Nullpunktsalarm, 3–2, 9–22 Schnittstellenbefehle, 12–16

0

Optionen, Verzeichnis, 13-1

ORP, Erklärung, 17-4

ORP–Alarm, 9–22 Schnittstellenbefehle, 12–21

Ρ

par, Erklärung, 17-4

Parametriermenü, Erklärung, 17-4

Parametrierung Anzeigeebene, 6–1 Betriebsebene, 7–1 Schnittstellenbefehle, 12–10 Spezialistenebene, 8–1 Marker–Parametrierung, 8–2 Paßzahlen, 8–4 Schnittstellenbefehle, 12–33 Paßzahlen Parametrierung, 8-4 werksseitig parametriert, 8-6 Paßzahlverriegelung, Erklärung, 17-4 pH-Alarm, 9-22, 9-23 Schnittstellenbefehle, 12-15 pH-Elektrode, Erklärung, 17-4 pH-Meßstelle Beschaltung, 9-3, 9-4, 9-13 Beschaltung mit geerdetem Meßgut, 9-5 pH-Messung, simultan mit Redox-Messung, 9 - 18Potentialausgleichselektrode, Erklärung, 17-4 Probenkalibrierung, Wechselarmatur, 3-17 Puffersatz, Erklärung, 17-4 Puffertabellen, 15-1

R

Redox-Messung, 9-17 Beschaltung, 9–17 simultan mit pH-Wert, 9-18 Redox-Spannung, Erklärung, 17-4 Regelanfang, 9-29 Regelende, 9-29 Regelgröße, Erklärung, 17-5 Regler, 9-28 Analogregler, 9-28 Parametrierung, 9-34 Digitalregler, 9-28 Dosierzeitalarm, Schnittstellenbefehle, 12-26 Impulsfrequenzregler, 9-32 Impulslängenregler, 9-32 manuell, 5-6 Parametrierung, 9-32 Fehlermeldungen, 9-37 Regelgröße, 9-28 Regelkennlinie, 9-29 Stellgröße, 9-30

Reinigung, 10-10

Reinigungszeit, Erklärung, 17-4

rH–Alarm, 9–22 Schnittstellenbefehle, 12–21

rH–Messung, 9–19 Hinweise, 9–19 Parametrierung, 9–21 Schnittstellenbefehle, 12–20

Rolltaste, Erklärung, 17–5

RS 485–Schnittstelle, 9–54 Befehlssatz, 12–5 Inhaltsübersicht, 12–1 Busprotokoll, 12–34 Hinweise, 9–56 Parametrierung, 9–56 Punkt–zu–Punkt, 12–34 Schnittstellenbefehle, 12–29, 12–33 Schreibschutz, 9–55 Übetragungsverhalten, 12–4

S

Schnittstelle Parametrierung, 9–56 Schnittstellenbefehle, 12–29, 12–33 Schreibschutz, 9–55 Übetragungsverhalten, 12–4

Schnittstellenbefehle, 12-1

Schutzdach, 10-1, 13-1

Schutzgehäuse, 10–1, 13–1 Montage, 10–5

Sensocheck, 9–14 Parametrierung, 9–15

Sensorkontrolle, 9–45 Erklärung, 17–5 Fehlermeldung rücksetzen, 9–49 Wechselarmatur, 9–43

Sollwert, 9-29

Sondenspülung, 9–49 Arbeitsweise, 9–51 Hinweise, 9–52 Parametrierung, 9–52 Schnittstellenbefehle, 12–29, 12–32 spe, 8–1

Spezialisten–Paßzahl Erklärung, 17–5 Parametrierung, 8–5

Spezialistenebene, 8–1 Beispiel, 8–3 Erklärung, 17–5

Spülprogramm, Erklärung, 17–5

Spülzyklus, 9–50 abschalten, 9–50 Erklärung, 17–5

STATUS, Schnittstellenbefehle, 12-6

Steilheitsalarm, 3–2 Schnittstellenbefehle, 9–22, 12–16

Stellgröße, Erklärung, 17–5

Stromausgang, 9–11 fallende Kennlinie, 9–11 Meßspanne, 9–11 Parametrierung, 9–12

Stromausgang 1, Schnittstellenbefehle, 12–18

Stromausgang 2, 9–12 Schnittstellenbefehle, 12–19

- Stromeingang, 9–38 Erklärung, 17–5 Parametrierung, 9–38 Schnittstellenbefehle, 12–27
- Stromeingangsalarm, 9–22 Parametrierung, 9–39 Schnittstellenbefehle, 12–27

Stromgeberfunktion, 5–4 Schnittstellenbefehle, 12–33

Т

Technische Daten, 14–1

Temperaturalarm, 9–22 Schnittstellenbefehle, 12–18

Temperaturerfassung, 3–6, 9–8 Schnittstellenbefehle, 12–17 Temperaturfühler, Anschluß, 9-8

Temperaturfühlerabgleich, 5–5 Schnittstellenbefehle, 12–12, 12–33

Temperaturkompensation, 9–8 automatisch, 9–8 manuell, 9–9

Tk Meßmedium Parametrierung, 9–10 Schnittstellenbefehle, 12–17

U

Uhr Parametrierung, 4–6 Schnittstellenbefehle, 12–11, 12–32

V

VALUE, Schnittstellenbefehle, 12-5

Verzögerungszeit, 9–24 Erklärung, 17–5

Vorlaufzeit vor Messen, Erklärung, 17-5

Vorlaufzeit vor Spülen, Erklärung, 17-5

Vorspülzeit, Erklärung, 17-5

Vorzeichen, ändern, 2-6

W

Warnung, 9–24 Erklärung, 17–6 Warteposition Erklärung, 17–6 Sondenspülung, 9–50

Wechselarmatur, 9-43

Wartung, 10-10

Wartungs–Paßzahl Erklärung, 17–6 Parametrierung, 8–4 Wartungsmenü, 5-1 Erklärung, 17–6 Wechselarmatur -Programmstart, 5-2 Anwendungshinweise, 9-47 Beschreibung, 9-40 Einschaltdauer Wasserventil, 9-46 Fehlerbehebung, 9-42, 9-43, 9-45 Hilsenergieausfall, Wiedereinschalten, 9-49 Intervallzeit. 9-47 Kalibrierung, 3-15 Meßprogramm, 3–16 Kontrollvorlaufzeit, 9-43, 9-45 Meßprogramm, 9-44 Meßstellen-Wartung, 5-1, 5-3 Parametrierung, 9-46 Probenkalibrierung, 3–17 Meßprogramm, 3-18 Spülprogramm, 3–17 Rückmeldungen, 9-41 Schnittstellenbefehle, 12-32 Sensorkontrolle, Anwendungshinweise, 9-48 Serviceposition, 9-49 Sonde klemmt, 9-42, 9-43, 9-45 Spülprogramm, 9-42 Warteposition, 9-46

Wechselarmatur–Programm, 9–41 abschalten, 9–40 Erklärung, 17–6

Wechselarmatur–Steuerung Arbeitsweise, 9–40 Schnittstellenbefehle, 12–27

Wirkrichtung, 9-26

Ζ

Zahlenwert, Eingabe, 2–6 Zubehör, Verzeichnis, 13–2 Zweipunktkalibrierung, 3–7