

Contents

1 Introduction and assembly 2
1.1 Introduction 2
1.2 Safety precautions 2
1.3 Installing ID7-Dos-R 2
2 Dispensing functions 5
2.1 Dispensing system 6
2.2 Dispensing process 7
2.3 Display of dispensing state 8
2.4 Dispensing formulas 9
2.5 Interrupting formulas 9
2.6 Cancelling formulas 10
2.7 Redispensing 10
2.8 Manual recorrection 10
2.9 Automatic totalizing 11
2.10 Multi-scale operation 12
2.11 Recalling application-specific information 12
3 Settings in the master mode 13
3.1 PAC master mode block. 13
4 Application blocks 28
4.1 PAC application blocks 28
5 What to do if ...? 35
6 Technical data 37
7 Appendix 38
7.1 Connection diagram and terminal assignment for 8-ID7 relay box 38
7.2 Sequence chart 42
8 Index 43

1 Introduction and assembly

1.1 Introduction

ID7-Dos-R is an application software for the METTLER TOLEDO ID7-... weighing terminal. The functions of the ID7-Dos-R can be used after replacing the memory module.

Documentation

The ID7-... weighing terminal is provided with operating instructions and installation information for the original configuration of the weighing terminal. Please see these operating instructions and installation information for basic information on working with the ID7-... weighing terminal.
These operating instructions and installation information contain additional information on installing and using the ID7-Dos-R application software.

1.2 Safety precautions

1.2.1 Installation in explosion protected ID7xx-... weighing terminal

EXPLOSION HAZARD

The ID7xx-... weighing terminal may only be opened by METTLER TOLEDO service technicians.
\rightarrow To install the ID7-Dos-R application software, please contact METTLER TOLEDO Service.

1.2.2 Installing in ID7-... weighing terminal

A Only authorized personnel may open the weighing terminal and install the ID7-Dos-R application software.

- Before opening the terminal, pull the power plug or switch off the power supply for terminals with a fixed connection.

1.3 Installing ID7-Dos-R

1.3.1 Opening ID7-... weighing terminal

Desk unit

1. Unscrew the screws on the underside of the cover.
2. Lay down the cover toward the front. In doing so, make sure that the cables are not damaged.

Wall unit

1. Unscrew the screws on the underside of the cover and fold the cover toward the front. When doing so, make sure that the cables are not damaged.
2. Fold open the mounting plate.

Panel unit

1. Unscrew the 10 hex bolts on cut-out on the inside of the switch cabinet.
2. Remove the cover from the switch cabinet and fold toward the front. When doing so, make sure that the cables are not damaged.
3. Fold open the mounting plate.

1.3.2 Mounting ID7-Dos-R

1. Bend the bracket of the memory module outward on both sides, tilt the memory module forward and remove.
2. Insert the ID7-Dos-R memory module tilted slightly toward the front and move it into the vertical position until it engages. The empty space of the module must be on the bottom right.

1.3.3 Closing ID7-... weighing terminal

Closing desk unit

1. Lay device on cover and fix slightly in place with 3 screws.
2. Press unit into cover so that 3 engaging springs engage.
3. Tighten screws.

CAUTION

The IP68 protection type can only be guaranteed when the weighing terminal is closed again properly.
\rightarrow The 3 engaging springs must be completely engaged.
\rightarrow Make sure that the keypad cable is not pinched.

Closing wall unit

1. Fold in the mounting plate.
2. Position the cover and screw on again. When doing so, make sure that no cables are pinched.

Closing panel unit

1. Fold in the mounting plate and position the cover on the cut-out again.
2. Secure the cover on the switch cabinet from the inside with 10 screws. When doing so, make sure that no cables are pinched.

2 Dispensing functions

With the ID7-Dos-R pasty, powdery or grainy weighing samples can be dispensed according to a formula specified in the master mode. Each of the maximum 50 formulas may consist of a maximum of 32 individual components.
With the function keys the ID7-Dos-R makes the following functions available:

N	SUM	MAN	FORM	STOP	START
Enter item counter	Display and print sum of lot weights	Manual redispensing	Load formula	Interrupt or cancel dispensing	Start dispensing; after formula is complet- ed, print lot weight

\rightarrow Select the function by pressing the function key.

Example

\rightarrow Press the N key.
Then manually enter the start and stop value of the item counter via the keypad.

Note

When PASSWORD BLOCK ON is set in the master mode, a personal code must be entered after pressing the N key.

When the function keys are otherwise allocated

\rightarrow Press the key FUNCTION CHANGE until the function keys allocation displayed above appears.

CAUTION

Danger of injury when keys are pressed which start and stop the dispensing system or control the valves!
\rightarrow Before pressing these keys, make sure that no one is in the area of moving system parts.

2.1 Dispensing system

With feed valves or feed chutes controlled with coarse and fine feed, the dispensing material of the respective components is automatically fed until the specified target weight is reached.
With the dispensing system a maximum of 32 components can be dispensed. The following example shows a 3 -component dispensing system in which the components 1 and 2 are dispensed into a container on weighing plafform 1. Component 3 is dispensed separately on weighing platform 2.

The control signals for the dispensing valves of the individual components are transmitted via the RS485-ID7 interface to up to five 8-ID7 relay boxes. The 8-ID7 relay boxes control the dispensing system either directly or via an additional external control unit (PLC). The components can be picked up directly or with binary coding (see section 7.1).
In the case of overloading or underloading of the weighing plafform, all valves are closed immediately. With the "electronic fingers" the ID7-Dos-R can be remote controlled. These electronic fingers actuate various keys on the terminal with interface commands, see section 4.1.
All formula processes should be logged on a serial printer, e. g. GA46.

Please note that the accuracy of the filling results and the filling speed are not only dependent on the scale, but also on the other system parts, and in particular on the filling device itself (valves, feed chutes etc.). Only the optimum co-ordination of all components with each other produces the best filling results.

2.2 Dispensing process

2.2.1 Dispensing in

For dispensing in an empty dispensing container is placed on the weighing plafform and the dispensing container is filled from a reservoir.

2.2.2 Dispensing out

For dispensing out a filled reservoir is placed on the weighing plafform and fed into the dispensing container.
The display shows the weight value with a negative sign during dispensing out.

2.2.3 Dispensing process

After the start of dispensing, the container is automatically tared and each component of the formula fed in 4 consecutive steps:

- Coarse feed - Dispensing with coarse feed up to coarse/fine changeover point (Limit 1)
- Fine feed - Dispensing with fine feed up to shutoff point of fine feed (Limit 2)
- Redispensing correction - Redispensing correction of fine feed beyond Limit 2
- Redispensing - If at the end of dispensing the weight value is not within the tolerance of the target value, automatic or manual redispensing up to the target value

If no limits are entered for an individual component, the ID7-Dos-R automatically determines Limit 1 and Limit 2 in the learn mode, see section 3.1.2. The target weight of the component is then exactly achieved.
To optimize the dispensing process of an individual component, Limit 2 can automatically be readjusted, see REDISPENSING CORRECTION block in section 3.1.2.

If the container is underfilled, manual or automatic redispensing can be carried out in dependence on the settings in the master mode, see section 2.7.

Note

For the dispensing process for several components, see section 7.2.

2.3 Display of dispensing state

The display shows the dispensing state with texts and a 3-digit code, e. g.:

Text	Code	Meaning
READY FOR DISPENSING	010	Dispensing parameters loaded
COARSE FEED	040	Dispensing with coarse feed
FINE FEED	050	Dispensing with fine feed
DISPENSING OKAY	101	Target value achieved
UNDERFILLED	084	Target value not achieved
OVERFILLED	111	Target value exceeded
EVALUATING	070	Evaluation of dispensing resulls

Notes

- The dispensing states are listed in application block 361, see section 4.1.
- If STATUS INDICATOR WITH DELTATRAC is set in the master mode, the display also shows the DeltaTrac as an analog weigh-in aid.

2.4 Dispensing formulas

1. Place container on the weighing platform.

CAUTION

If several weighing plafforms are connected, the ID7-Dos-R may select a different weighing plafform than the one you wish to dispense on.
Which weighing plafform is activated at the moment can also be picked up at the outputs 1 and 2 of relay box 2.
2. Press FORM key and enter formula number.

The display briefly shows the formula name, then LOT and the lot weight as the sum of the target weights of all individual components.
These formula parameters are printed.
3. Confirm batch weight with ENTER without making an entry.

The display shows READY FOR DISPENSING.

- or -

Enter lot weight in the displayed unit and confirm with ENTER.
The target values of the components such as Limit 1, Limit 2 and the tolerance are adjusted in percent.
4. Press START key.

The 1st component is dispensed, the dispensing result is printed and the next component is loaded.
If the next component has the same phase no., it is dispensed without interruption.
5. If the next component has a different phase no., repeat Step 4.

When all components have been dispensed, the lot weight is printed.

Notes

- The display READY FOR DISPENSING may be overwritten by a first message assigned to the component.
- If the display UNDERFILLED or OVERFILLED appears after dispensing a component, this dispensing result must be confirmed with the START key or an external acknowledgement signal.
- If PASSWORD BLOCK ON is set in the master mode, a personal code must be entered after pressing the FORM key.

2.5 Interrupting formulas

1. Press STOP key.

The dispensing of the current component is interrupted.
2. To continue the formula, press START key.

2.6 Cancelling formulas

\rightarrow Press STOP key twice.
Dispensing is cancelled and the current lot weight is displayed.

Note

Dispensing can also be cancelled via a signal at Input IN7 of the first 8-ID7 relay box, see section 7.1. The ID7-Dos-R is then in the basic state (Code 000).

2.7 Redispensing

If, for example, the weight value briefly exceeds the target value, the fine feed is switched off prematurely and the weight value (actual value) of the current component is below the target value.
When redispensing the components, the fine feed is opened in intervals until the target value is reached. Depending on the setting in the master mode, redispensing is carried out automatically or manually, see section 3.1.2.

Manual redispensing

Prerequisite

MANUAL REDISPENSING is set in the master mode.
\rightarrow If the display shows UNDERFILLED, press MAN key and hold down.
The fine feed is switched on in pulses as long as the key remains pressed. When the weight value of the component has reached the target value, the display shows DISPENSING GOOD and dispensing is continued with the next component.

2.8 Manual recorrection

When MANUAL CORRECTION ON is set in the master mode and the current final weight of a component is outside the tolerances, the display shows MANUAL CORRECTION after the target-actual comparison of the component.
\rightarrow Manually place dispensing product of the current component on weighing plafform and confirm with START key.

- or -

Manually remove dispensing product of the current component and confirm correction with START key. When doing so, make sure that only the current component is removed!

2.9 Automatic totalizing

Several lołs of a formula can be totalized automatically. In addition, an item counter can be entered which determines the number of dispensings of a formula. When the item counter reaches its final value, the dispensing system automatically stops. The item counter can, for example, be used when the reservoir is to be refilled after a certain number of lots.

Prerequisite

TOTALIZING ON is set in the master mode.

1. To set the item counter:

- Press N key.
- Enter start value of item counter and confirm with ENTER.
- Enter stop value of item counter and confirm with ENTER.

2. Dispense formula, see section 2.4
3. After formula is completed, change container.
4. To dispense additional formulas, repeat steps 2 and 3 .

When the item counter reaches its stop value, the dispensing system stops automatically.
5. End totalizing:

- Press SUM key. The display shows the total sum of the lot weights.
- To print the total sum, press ENTER key.
- To clear the total sum, press CLEAR key.

Notes

- Cancelled lot weights are not totalized during automatic totalizing.
- If PASSWORD BLOCK ON is set in the master mode, a personal code must be entered after pressing the SUM and N keys.
- If NEXT ITEM AUTOMATIC is set in the master mode, the formula need only be started once with the START key. Then the formula will automatically be worked through repeatedly until the item counter has reached its stop value.

2.10 Multi-scale operation

If dispensing is carried out on several weighing plafforms with a different resolution, the lot weights will be rounded off in accordance with the weighing plafform with the coarsest resolution.
How the weighing platform is changed is dependent on the settings in the master mode.

MULTI-SCALE If MULTI-SCALE OPERATION ON is set in the master mode, the ID7-Dos-R OPERATION ON automatically switches to the weighing platforms entered in the formula affer loading a component, see section 3.1.

MULTI-SCALE

If MULTI-SCALE OPERATION OFF is set in the master mode, all components of the formula are dispensed on one weighing plafform.
If the weighing plafform is to be changed while weighing out the current formula, the weighing plafform must be switched over manually after loading the component, see chapter "Basic functions" in the operating instructions and installation information for the ID7... weighing terminal.

2.11 Recalling application-specific information

Information on dispensing can be recalled with the following key combinations:

INFO, SUM	Display current sum of lot weights.
INFO, N	Display item counter.
INFO, FORM	Display dispensing parameters of current components.
INFO, CODE A	Factory setting: Display item number.
INFO, CODE B	Factory setting: Display order number.
INFO, CODE C	Factory setting: Display Ident C.
INFO, CODE D	Factory setting: Display Ident D.

Notes

- If several pieces of information are recalled with one key, the display changes automatically after the set DISPLAY DURATION. It is also possible to switch back and forth between these pieces of information with the CLEAR key.
- No information can be displayed during the dispensing process (dispensing valves open).

3 Settings in the master mode

3.1 PAC master mode block

3.1.1 Overview of the PAC master mode block

In this block the following system settings can be carried out:

Legend - Blocks on a grey background are described extensively in the following.

- Factory settings are printed in bold type.
- Blocks which only appear under certain conditions appear with a dotted outline.

3.1.2 Settings in the PAC master mode block

PROCESS FORMULA	Store dispensing parameters for the components of a formula safe from a power failure in formula memories		
ENTER FORMULA	Up to 50 formulas with a maximum of 32 components each can be entered or modified (see next page).		
PRINT FORMULA	Enter formula number and print formula.		
FORMULA CATALOG	Print catalog of all formulas. The printout can be SIMPLE or DETAILED. In addition, the number of component memories not used in the formulas up to this point is printed.		
FORMULA PRINTOUT	Set up printout of the formula in dispensing mode. EXTENDED STANDARD OFF		Printout of all formula data and the dispensing result.
:---			
Printout of formula header and component header.			
No formula printout; only the dispensing result is printed.			

Enter/change formulas

After ENTER FORMULA has been selected, the entry of a formula number is requested.
\rightarrow Enter formula number and confirm with ENTER.
The entry mode is activated for the selected formula.
Function keys In the entry mode the function keys are assigned as follows:

$\langle-\boldsymbol{>}$	$<$	$\boldsymbol{>}$	F>	EDIT	\uparrow
Select parameters	Scroll: Down	Scroll: Up	Select assignment of function key F5	EDIT INSER INFO DELET OUTPUT 2	Return to higher level

EDIT Changes to input mode for selected parameters.
INSERT Inserts a new component before the displayed component.
INFO Shows the specification of the displayed components.
DELET Clears the displayed component.
OUTPUT 2 Configure function OUTPUT 2, see page 16.

Formula overview
After the formula number has been entered, the formula overview for the selected formula is shown on the display:
FO1 : LEMONADE
C3/4 : 002 SUGAR
PHASE: OTHER
TMIN : 0.4 kg

FO1	Formula number (01)
LEMONADE	Formula name
C3/4	Componentposition informula (3)/total number of components (4)
002 (SUGAR)	Component number (000...999, is assigned chronologically) and the component name (sugar)
PHASE	Entry eliminated for the first component $(\mathrm{Cl} / \mathrm{x})$. SAME: The component is dispensed without a break after the preceding component.
OTHER: Before the component is dispensed, a stop is carried out.	
TMIN, TMAX	If tare: monitoring is used: TMIN: Lower limit of the permissible tare range TMAX: Upper limit of the permissible tare range TMAX \geq TMIN.

Set dispensing parameters of a component

If entry has been opened for a component with EDIT, an overview with the dispensing parameters for this component appears on the display:

PM002 : SUGAR			MSG: 005
TARGET : 1,000 KG		TOL $: 0.050$ KG	
LIM1 : 0.500 KG		LIM2 $: 0.800$ KG	
E TIMER: 000 S	SCALE: 0	V\#: 02	OP2

PMO02 Component number: (000...999, is chronologically assigned)
SUGAR Component name
Msg Number of the message shown on the display prior to working through this component: 001 ... 200
TARGET Target weight of the component
TOL Tolerance of the component in the displayed unit:

- minimum tolerance: 1 digit
- maximum tolerance: Target weight
- Target weight + tolerance \leq maximum load

LIM1 Switchover point for coarse/fine feed
LIM2 Shutoff point of the fine feed: LIM2 \geq LIM 1
To determine Limit 1 and Limit 2 automatically, do not enter a value. To do this LEARN MODE ON must be set.
E TIMER Following dispensing of the component the end timer runs out:
0 ... 999 seconds (factory setting: 0 sec)
When the end timer is activated, the display shows the time still remaining. The end timer can be stopped or cleared with the STOP key.

SCALE Number of the scale on which the component is to be dispensed. This parameter only appears in the multi-scale mode.
V\# Number of the valve that dispenses the component: 01 ... 32
OP2 With OUTPUT 2 various additional devices can be actuated for each component.

Notes

- With the CHANGE FUNCTION key the unit of the parameters can be changed during entry.
- The parameters for components and formulas are available in the following application blocks: 323_001 ... 323_999 or 323 ... 347, 364_001 ... 364_050 or 364 ... 375, 376_001 ... 376_050 or 376 ... 387; see section 4.1 .

Configure function

With OUTPUT 2 various additional devices can be actuated. The ID7-Dos-R offers 3 OUTPUT 2 different operating modes for this purpose:

MATERIAL AGITATION, REMAINING QUANTITY and FILL QUANTITY
OUTPUT 2: While a component is being dispensed, an agitator can be switched on for material MATERIAL AGITATION agitation. The TYPE parameter specifies whether the agitator is controlled weight or time-dependent.

OUTPUT	$:$	MATERIAL AGITATION	
REF	$:$	TARGET VALUE	
TYPE	$:$	WEIGHT VALUE	
ON: 0.080 kg			OFF: 0.020 kg

OUTPUT	Current function of Output 2, here: MATERIAL AGITATION
REF	Reference quantity (TARGET VALUE, LIMIT 1 or LIMIT 2)
TYPE	Control quantity, here: WEIGHT VALUE
ON	Switch-on value as difference to reference quantity
OFF	Shutoff value as difference to reference quantity

OUTPUT	$:$	MATERIAL AGITATION	
REF	$:$	TARGET VALUE	
TYPE	$:$	WEIGHT+TIME	
ON: 0.080 kg			TIME: 0010 sec

OUTPUT Current function of Output 2, here: MATERIAL AGITATION
REF Reference quantity (TARGET VALUE, LIMIT 1 or LIMIT 2)
TYPE Control quantity, here: WEIGHT+TIME
ON \quad Switch-on value as difference to reference quantity
TIME Switch-on duration between 0 and 9999 seconds (here: 10). During the switch-on duration component dispensing is interrupted

OUTPUT	MATERIAL AGITATION
REF	target value
TYPE	PERCENT
ON: 0.1	OFF: 0.9
OUTPUT	Current function of Output 2, here: MATERIAL AGITATION
REF	Reference quantity (TARGET VALUE, LIMIT 1 or LIMIT 2)
TYPE	Control quantity, here: PERCENT
ON	Switch-on value relative to the reference quantity, setting range: $0.1 \ldots 0.9$
OFF	Shutoff value relative to the reference quantity, setting range: $0.1 \ldots 0.9$

Application blocks Theparametervalues areavailable intheapplication blocks $354 \ldots 358$, see section 4.1.
OUTPUT 2: In the REMAINING QUANTITY mode the ID7-Dos-R checks the remaining quantity of a REMAINING QUANTITY component. When the gross weight of the filling container exceeds a specified value WEIGHT affer filling a component, the output OUT 2 on the first 8 -ID7 relay box is set to HIGH and the filling container is automatically emptied. The display shows EMPTY. When the weight WEIGHT is reached, OUT 2 is set to LOW again.
To fill the next component with the START key, output OUT 2 must be set to LOW. The STOP key manually sets output OUT 2 to LOW.

OUTPUT	$:$	REMAINING QUANTITY
WEIGHT	$:$	0.050 kg

WEIGHT Absolute switch-on value of the remaining quantity check
Application block The absolute switch-on value is available in application block 356, see section 4.1.
OUTPUT 2: In the FILL QUANTITY mode the ID7-Dos-R checks the fill quantity when weighing out FILL QUANTITY a component. When the gross weight of the supply vessel drops below a specified value ALARM after filling a component, the output OUT 2 on the first 8 -ID7 relay box is set to HIGH and the supply vessel is automatically refilled. The display shows REFILL. When the specified weight value FULL is reached, the output OUT 2 is set to low. To fill the next component with the START key, output OUT 2 must be set to LOW. The STOP key manually sets output OUT 2 to LOW.

OUTPUT	$:$	FILL QUANTITY	
ALARM:	0.050 kg	FILL:	12.345 kg

ALARM Absolute switch-on value of fill quantity check
FILL Absolute shutoff value of fill quantity check
Application block ALARM VALUE and FILL QUANTITY are available in the application blocks 356 and 357, see section 4.1.

DISPLAY MESSAGES	Edit display messages
	While a formula is being worked through, messages with a length of up to 24 characters can be shown in the display. They support the operator guidance. Each component can be assigned a message. Different components can access the same message. A total of 200 messages can be stored. Messages are displayed for a few seconds before the related component is dispensed. With a first component or with a different phase the display lasts until the START key is pressed.
CLEAR MESSAGES	Clear all stored messages.
EDIT MESSAGES	Edit stored or create new messages, see below.
MESSAGES ON/OFF	Switch messages on or off centrally.

Edit messages

Messages to be edited are displayed as follows:

MESSAGE: 001	MAX: 200
TEXT 1	

001	Number of selected message
200	Note that a maximum of 200 messages can be stored
TEXT 1	Contents of the selected message

VALVE ACTUATION	Configure valve actuation
	The valves can be actuated directly via up to 5 -ID7 relay boxes or with binary coding with a 2nd 8-ID7 relay box. For details, see section 7.1.
STANDARD	Direct actuation of the valves 2nd 8-ID7 relay box \quad Valves $1 \ldots 8$ 3rd 8-ID7 relay box \quad Valves $9 \ldots 16$ 4th 8-ID7 relay box \quad Valves $17 \ldots 24$ 5th 8-ID7 relay box \quad Valves $25 \ldots 32$ Only the active output is set to HIGH; all other outputs are set to LOW.
EXTENDED	The 2nd 8-ID7 relay box controls a maximum of 32 valves and a maximum of 3 weighing platforms with binary coding via the outputs 1 to 8 . The combination of HIGH and LOW at the outputs 1 and 2 determines which weighing platform is active. The combination of HIGH and LOW at the outputs 3 to 8 determines which valve is actuated.

AUTOMATIC TARE	Switch automatic taring before dispensing a formula on or off
	Factory setting: AUTOMATIC TARE ON

REDISP. CORRECTION	Switch redispensing correction on or off
	The redispensing correction optimizes the shutoff point of the fine feed (Limit 2) of a component in the formula. When CORRECTION ON is set, the target-actual difference is determined for the component and multiplied with a CORRECTION FACTOR. Target-actual difference x correction factor $=\Delta$ Limit 2 is automatically readjusted by the value Δ. Example: With a target-actual difference of 10 g and a factor of 0.5 , Limit 2 is readjusted by 5 g . Factory setting: REDISP. CORRECTION ON
CORRECTION FACTOR	Correction factor by which the target-actual difference is multiplied to determine the value Δ by which Limit 2 is readjusted. Possible values: $0.1 \ldots 0.9$ (factory setting: 0.5)
CORRECTION THRESHOLD	The correction threshold specifies the target-actual difference up to which the redispensing correction of Limit 2 is readjusted. When CORRECTION THRESHOLD OFF is set, Limit 2 is readjusted for all actual values (factory setting). When CORRECTION THRESHOLD ON is set, the tolerance is multiplied by a factor to be entered and the correction threshold calculated: Correction threshold = tolerance x factor Possible factors: $0 \ldots 99$ in multiples of the tolerance
Comment	With the redispensing correction switched off, optimized formulas or formulas changed with lot entry are not backed up, i. e. the formula appears in the original state again when it is called again. Exception: If the learn mode was active, the learned shutoff points are backed up to the component memory.

REDISPENSING	Set automatic or manual redispensing
	Factory setting: AUTOM. REDISPENSING
AUTOM. REDISPENSING	Possible entries:
MANUAL	- PULSE DURATION
REDISPENSING	During the pulse duration the fine feed is opened.
	Possible values: $1 \ldots 99$ times a measuring cycle (factory setting: 5)
	-PULSE PAUSE During the pulse pause the fine feed is closed. Possible values: $0 \ldots 99$ times a measuring cycle (factory setting: 5)

TOTALIZING	Switch totalizing of lot weights on or off Switch automatic repetition of formula processing on or off
TOTALIZING OFF	Factory setting
TOTALIZING ON	The net values of the log weights are automatically totalized. An item counter can be specified which counts the fillings in accordance with the current formula. A new formula cannot be started until the sum is deleted.
NEXT ITEM	A start signal is required for processing of the next item.
MANUAL	The formula is processed repeatedly until the stop value of the item counter is NEXT ITEM AUTOMATIC

STATUS INDICATOR	Set display of dispensing state on ID7-Dos-R
WITH DELTATRAC	The dispensing state is displayed with tests, a 3 -digit code and the DeltaTrac, see section 2.3 (factory setting). Further possible selections: ENLARGED COMP.NAME When a target memory was called up, the memory designation always appears with ENLARGED COMP. NAME ON in the display, even during the filling process. Factory setting: ENGLARGED COMP.NAME OFF
WITHOUT DELTATRAC	The dispensing process is displayed with texts and a 3-digit code.
WITH BIG WEIGHT	During the dispensing process, the weightdisplay BIG WEIGHT DISPLAY is switched on. Dispensing states such as READYFORDISPENSING orDISPENSING OKAY continueto be displayed, and the display switches over to the normal weight display for this purpose.
Note	For all settings the following selections are also possible: - NOT EXTENDED (factory setting): When the weighing plafform is ready for dispensing, the display indicates READY FOR DISPENSING. - EXTENDED: In the ready for dispensing state the memory designation appears in the display instead of READY FOR DISPENSING. However, in both cases the display may be overwritten by a message assigned to the first component.

PASSWORD BLOCK	Switch password block on or off
	Protect the keys SUM, FORM and N with a personal code which also protects the master mode, see chapter "master mode" in the operating and installation instructions for the ID7... weighing terminal. Factory setting: PASSWORD BLOCK OFF

PAC START KEY	Switch locking of the START key on or off
	When PAC START KEY OFF is set, the START key is locked and dispensing can only be started via an external switch or a relay box. This prevents double operation with external operating elements (e.g. foot switch or button). Factory setting: PAC START KEY ON

OPERATING MODE	Set operating mode with certified weighing platforms
AUTOMATIC	Dispensing is carried out automatically (factory setting).
NON AUTOMATIC	Dispensing is not carried out automatically and the permissibility of the weight values must be monitored by the operator.
Comments	- Different national tolerances are taken into account. - For certification reasons, the operating mode can only be changed over in the non-certified mode of the weighing plafform.

MANUAL CORRECTION Switch manual recorrection on or off

When MANUAL CORRECTION ON is set, the final weight can be manually recorrected, e.g. in the case of incorrect dispensing, see section 2.8.
Factory setting: MANUAL CORRECTION OFF
Comments

- It can be read off whether the dispensing lies within the tolerances (DISPENSING OKAY) or outside (DISPENSING POOR) at output OUT 4 and OUT 5 of the first 8-ID7 relay box, see section 7.1.
- Manual correction is only possible for non-certified weighing plafforms.

LEARN MODE	Switch learn mode on or off
	If LEARN MODE ON is set and the dispensing parameters are entered without limits or Limit $2 \leq$ Limit 1, the ID7-Dos-R determines the valve shutoff points Limit 1 and Limit 2. When LEARN MODE OFF is set, Limit 1 and Limit 2 must be entered manually. Factory setting: LEARN MODE ON The coarse feed is opened (1) in the learn mode up to the value (target value xtrip factor coarse feed) and the redispensing correction determined (2). Then the fine feed is opened (3) during the number of measuring cycles specified with the trip factor fine feed and its redispensing correction determined (4). Then Limit 1 and Limit 2 are calculated in dependence on the target value. Following this filling is carried out up to the target value (5), (6) and (7).
TRIP FACTOR COARSE	The trip factor coarse feed determines when the coarse feed is switched off in the learn mode. - Possible values: 0.1 ... 0.9 (factory setting: 0.5). - With high pressures and pulse forces or large mass feeds, reduce the trip factor.
TRIP FACTOR FINE	The trip factor fine feed specifies how long the fine feed is open in the learn mode. The larger the trip factor fine feed, the more accurately the fine feed run-on can be determined. Possible settings: TRIP FACTOR FINE FEED $=0.1 \ldots 0.9$ (factory setting: 0.5) The value 0.1 is equal to 5 measuring cycles; 0.5 is equal to 25 measuring cycles; 0.9 is equal to 45 measuring cycles.
Comments	- When SINGLE FEED OPERATION ON is set, Limit 1 is set to zero in the learn mode. - TRIP FACTOR COARSE and TRIP FACTOR FINE are available as application blocks (blocks 390 and 391).

MONITOR DISPENSING	Switch monitor dispensing on or off
	The dispensing monitor monitors the weight increase in each measuring cycle. When MONITOR DISPENSING ON is set and the weight value exceeds or drops below the value SENSITIVITY, the dispensing monitor becomes active. Factory setting: MONITOR DISPENSING OFF
SENSITIVITY	AABBCCDDEEFF - Enter response behavior of the dispensing monitor as a 12-digit number. Possible settings: - WEIGHING-IN - Dispensing monitoring during weighing-in - SUBTRACTIVE WEIGHING - Dispensing monitoring during subbractive weighing Response behavior of dispensing monitor AA $A A=00$ digit: The dispensing monitor becomes active when the weight increase per measuring cycle drops below the corresponding value (DD, EE or FF) (negative monitoring). The corresponding valve (preflow, coarse or fine feed) is automatically switched off. The display alternately shows MONITOR DISPENSING and CONTINUE WITH START. Dispensing can be ended with the STOP key or continued with the START key. $\mathrm{AA}=01$ digit: The dispensing monitor becomes active when the weight increase per measuring cycle exceeds the set value (DD, EE or FF) (positive monitoring). The corresponding valve (preflow, coarse or fine feed) is automatically switched off. Dispensing is first continued when the weighing plafform is stabile. BB Switch-on value of the dispensing monitor: Weight increase per measuring cycle at which the dispensing monitor is activated after starting or interruption of dispensing: 00 ... 99 digit (factory setting: 03) CC Number of measuring cycles during which the dispensing monitor pauses and the weight increase takes place: 01 ... 99 (factory setting: 10) DD Weight increase per measuring cycle for the fine feed: 01 ... 99 digit (factory setting: 01) EE Weight increase per measuring cycle for the coarse feed: 01 ... 99 digit (factory setting: 01) FF Weight increase per measuring cycle for the preflow: 01 ... 99 digit (factory setting: 01)
Comments	- Increase the value BB in the case of valve or material sluggishness. - Increase the value CC in the case of uneven material feed. - With an increased material flow, increase the values DD, EE and FF (minus monitoring). - In application block 361 the dispensing state minus or plus monitoring is available, and the response behaviour is available in application block 362, see section 4.1.

MULTI-SCALE OPERATION	Switch multi-scale operation on or off
	When MULTI-SCALE OPERATION ON is set, the weighing plafform automatically switches to the weighing platform specified in the formula after loading the component. When MULTI-SCALE OPERATION OFF is set and the weighing plafform is to be changed, the weighing plafform must be switched over manually after loading the component. Factory setting: MULTI-SCALE OPERATION OFF
Comment	To distribute the formulas among the weighing plafforms, see application blocks $376 _001 ~ \ldots 376 _050$ or $376 \ldots 387$ in section 4.1.

COARSE FEED	Set valves during coarse feed
COARSE	Open coarse feed up to Limit 1 (factory setting).
COARSE AND FINE	Open coarse and fine feed up to Limit 1 simultaneously.

START TIMER	Set delay time between loading of the target values of a component and opening of the coarse feed
TIME	Possible values: $0-999$ seconds (factory setting: 0)
Comments	- When the start timer is activated, the display shows the time remaining. - The start timer can be stopped or deleted with the STOP key.

PREDISPENSING	Set time for predispensing of the components
	The fine feed valve is actuated before each opening of the coarse feed. The display shows PREDISPENSING and the time TIME remaining.
TIME	Possible values: $0 \ldots 999$ seconds (factory setting: 0)
Comment	Predispensing can be stopped or deleted with the STOP key. When Limit 1 is reached, predispensing is automatically cancelled.

SINGLE FEED OPERATION	Switch single feed operation for the components on or off
	When SINGLE FEED OPERATION ON is set and the target value of the component drop below the specified LIMIT, dispensing is only carried out with fine feed. This enables smaller quantities to be dispensed as well without switching over the dispensing system (valves, pumps). Factory setting: SINGLE FEED OPERATION OFF
LIMIT	Enter threshold value for single feed operation.

OUTPUT 7	Set switch-on of the OUT 7 output to the first 8-ID7 relay box
IMPULSE ON START	OUT 7 is briefly switched on during the start-up of the ID7-Dos-R (factory setting).
ON AT STATUS X YYY	Enter up to 30 dispensing states for which OUT 7 is switched on. X is the serial number ($1 . .30$), YYY is the code for the various dispensing states ($000 \ldots 254$), see application block 361 in section 4.1. To end the entry of the dispensing states, press ENTER without making an entry.
INTERMEDIATE TIMER	Configure timer which runs out after each individual component is filled. Possible settings: 0 to 999 seconds Factory setting: 0
Notes	- ON AT STATUS X YYY and INTERMEDIATE TIMER can be used simultaneously. - When the intermediate timer is activated, the display shows the time still remaining. - The intermediate timer can be stopped or cleared with the STOP key.

RESET PAC	Reset all functions to the factory settings	
	Block DISPLAY MESSAGES VALVE ACTUATION AUTOMATIC TARE REDISP. CORRECTION REDISPENSING TOTALIZING STATUS INDICATOR PASSWORD BLOCK PAC START KEY OPERATING MODE MANUAL CORRECTION OUTPUT 2 LEARN MODE MONITOR DISPENSING MULTI-SCALE OPERATION COARSE FEED START TIMER PREDISPENSING SINGLE FEED OPERATION OUTPUT 7	Factory setting on standard on on, factor $=0.5$, correction threshold off autom. redispensing, pulse duration 5 s , pulse pause 5 s off, next item manual with DeltaTrac; not extended; enlarged comp.name off off on automatic off output 2 off on, trip factor coarse $=0.5$, trip factor fine $=0.5$ off, sensitivity 0003100101 01; weighing-in off coarse 0 0 off impulse on start; intermediate timer $=0$

4 Application blocks

In the following description, the application blocks are shown in the syntax for the MMR command set. When used with the SICS command set, please observe the SICS conventions, see Operating instructions and installation information for ID7... weighing terminal.

4.1 PAC application blocks

No.	Content	Format
301	Pac version	Response: $\quad\left\|A_{1} B\right\|_{-}\left\|I_{1} D_{1} 7_{1}-D_{1}, O_{1}, R_{1} R_{1}, V_{1} x_{1}, x_{1} \mathrm{x}\right\|_{-}$
302	Program number	Response: $\quad \mathrm{A},\left.\mathrm{B}\right\|_{-}\left\|I_{1} \mathrm{P}, 7,8,-, 0,-\mathrm{x}_{1} \mathrm{x}, \mathrm{x}, \mathrm{x}\right\|$ -
305	Keyboard entry or read-in barcode	Response: $\|A, B\|-\mid$ Entry Write: $\|A, W\| 3,0,5\|-\|\$\| \$\|$ Entry Comment: Entry = Text_20, number or weight value
306	Electronic finger	Response: $\left.\|A, B\|-T, a_{1}, t, e, n_{1-1-1} 1_{1}-1,2\right]_{-}^{-}$ Keys for the electronic finger Write: \quad Actuate keys for the electronic finger A $\mathrm{A}, \mathrm{W}\|3,0,6\| \ldots \mid \$ \operatorname{Number}(1 \ldots 12$; integral) Each number is assigned a key: 1: N key 7: STOP key 2: SUM key 8: CODE C key 3: CODE A key 9: START key 4: MAN key 10: CODE D key 5: FORM key 11: CLEAR key 6: CODE B key 12: ENTER key Correct actuation of a key is confirmed with a beep tone. Call formula memory [$\mathrm{A}, \mathrm{W} \mid 3,0,6$ _ $\|\$\| \$ \mid$ Number Number: 64 _001 ... 64_050: Call formula memory 1 ... 50 ; 64 ...75: Call formula memory $1 . . .12$; A new formula can only be loaded in the basic state (code 000). If Block 388 is assigned a weight value when the formula is called, this value is used as the lot specification. If Block 388 is not assigned when the formula is called, the sum of the individual components is used as the lot specification. The formula memories are available in the application blocks 364_001 ... 364_999 or 364 ... 375.
310	Item counter	

No.	Content	Format	
311	Start value item counter	Response: Write:	$\begin{aligned} & \left.\hline A_{1} B \mid \text { - Number_4 }\right]^{\prime} \\ & \hline A, W\|3,1,1\| _\mid N u m b e r_{-} 4 \\ & \hline \end{aligned}$
312	Stop value item counter	Response: Write:	
313	Sum net weight	Response:	$\|A, B\|$ _ Weight value _ Unit]
314	Sum gross weight	Response:	\| $\mathrm{A},\left.\mathrm{B}\right\|_{\text {_ Weight value _ _ Unit }}$
315	Correction factor for redispensing correction	Response: Write:	$\begin{aligned} & \hline \mathrm{A}, \mathrm{~B}\|-\| \text { Factor }(0.0 \ldots 0.9 \text {; step size } 0.1) \\ & \hline \mathrm{A}, \mathrm{~W}\|3,1,5\|-\mid \text { Factor }(0.0 \ldots 0.9 ; \text { step size } 0.1)] \end{aligned}$
316	Current weight value (actual value)	Response:	$\|A, B\|_{\text {_ }}$ Weight value _ ${ }_{\text {U }}$ Unit $]$
317	Target - actual difference of last filling	Response:	$\|A, B\|_{-}$Weight value _ ${ }_{\text {U }}$ Unit $]$
$\begin{aligned} & 318 \\ & \ldots \\ & 321 \end{aligned}$	Identification data Code A ... Code D	Response: Write: Comment:	$\begin{aligned} & \|\mathrm{A}, \mathrm{~B}\|-\mid \text { Name (text_20)\|_-\| \|dentification (text_20)] } \\ & \begin{array}{l} \mathrm{A}, \mathrm{~W}\|3\| \mathrm{x}, \mathrm{x}\left\|_\right\| \text {Name (text_20)\|\$\|\$\|dentification (text_20)] } \\ \mathrm{xx}=18 \ldots 21 ; \end{array} \end{aligned}$ corresponds to the application blocks 094 ... 097
322	Dispensing parameters of current component	Response:	

No.	Content	Format		
$\begin{aligned} & 323 _001 \\ & \ldots \\ & 323 _999 \end{aligned}$	Component memory 1... 999	Response: Write: Note:		
$\begin{aligned} & 323 \\ & \ldots \\ & 347 \end{aligned}$	Component memories 1 ... 25	Response: Write: Comment:	equal to 322 equal to 322 $x x=23 \ldots 47$	
348	Mean value \bar{x}	Response:	[A, B _ Weight value _ \Unit]	
349	Standard deviation s	Response:	$\triangle \mathrm{A}, ~ \mathrm{~B} \mid$ \| Weight value _ U Unit $]$	

No.	Content	Format		
350	Minimum $\mathrm{x}_{\text {Min }}$	Response:	\| $\mathrm{A},\left.\mathrm{B}\right\|_{\text {_ }}$ Weight value _ \| Unit	
351	Maximum $\mathrm{x}_{\text {Max }}$	Response:	[$A, B]_{-}$Weight value $\\|_{\text {- Unit }}$	
352	Start/Stop	Response: Write: Comment:	$\begin{aligned} & \|A, B\|-\mid x \\ & \|A, W\| 3,5,2\|-\|x\| \\ & \text { Start: } x=1, \text { Stop: } x=0 \end{aligned}$	
354	Current component, relative switch-on value for Output 2	Response: Write: Comment:	A, B Factor (0.0 .. 0.9 ; step size 0.1$)$ $\%_{1}$ $-1-$ A, W $3,5,4$ Factor ($0.0 \ldots 0.9$; step size 0.1) $\mid ~$ Only for output 2 = material agitation The value is only valid as long as the component for dispensing is loaded. The block can only be written in the ready for dispensing state (010).	
355	Relative switch-off value for output 2	Response: Write: Comment:	A, B Factor (0.0 ... 0.9; step size 0.1$)$ \circ $1-1-$ A, W $3,5,5$ Factor $(0.0 \ldots 0.9$; step size 0.1$)$ $\%_{1}$ - -1 Only for output 2 = material agitation The value is only valid as long as the component for dispensing is loaded. The block can only be written in the ready for dispensing state (010).	
356	Absolute switch-on value for output 2	Response: Write: Comment:	The value is only valid as long as the component for dispensing is loaded. The block can only be written in the ready for dispensing state (010).	
357	Absolute switch-off value for output 2	Response: Write: Comment:	Only for output 2 = material agitation, fill quantity The value is only valid as long as the component for dispensing is loaded. The block can only be written in the ready for dispensing state (010).	
358	Switch-on time for output 2	Response: Write: Comment:	A, B Number_4 A, W $3,5,8$ Number_4 Only for output 2 = material agitation The value is only valid as long as the component for dispensing is loaded. The block can only be written in the ready for dispensing state (010).	

No.	Content	Format
359	Status of output 2	Read: $\|\mathrm{A}, \mathrm{B}\|$ _ Code (Number_4) Code Meaning 0000 Output 2 off 0001 Remaining quantity 0002 Fill quantity 0013 Material agitation - target weight - percent 0014 Material agitation - target weight - weight value 0015 Material agitation - target weight - weight + time 0024 Material agitation - Limit 1 - weight value 0025 Material agitation - Limit 1 - weight + time 0033 Material agitation - Limit 2 - percent 0034 Material agitation - Limit 2 - weight value 0035 Material agitation - Limit 2 - weight + time Write: $\begin{array}{\|l\|} \hline A, W\|3,5,9\| _\mid C o d e ~\left(N u m b e r _4\right) \\ \hline \end{array}$ Comment: The value is only valid as long as the component for dispensing is loaded. The block can only be written in the ready for dispensing state (010).
360	Items poor (Items outside tolerance)	Response: A_{1}, B - Number_4
361	Dispensing state	

No.	Content	Format
361	Dispensing state	Code Meaning 101 Display DISPENSING OKAY 111 Display OVERFILLED 130 Empty during remaining quantity 140 Redispensing for fill quantity 187 Item counter has reached stop value 200 Formula start: 1st component loaded and ready for dispensing, End of formula: Display of the lot sum 235 Coarse feed off through overload or underload 242 Learn mode: Coarse feed off 245 Learn mode: Fine feed on 246 Learn mode: Fine feed off through overload or underload 250 Learn mode: Fine feed off with STOP key 253 Monitor dispensing: Positive monitoring 254 Monitor dispensing: Negative monitoring Write: A, W\| $3,6,1\left\|_\right\| 0,0,0$ Reset to basic state. In the process, the current dispensing parameters are deleted and impermissible steps possible carried out, e.g. deleting the sum, when TOTALIZING ON is set.
362	Sensitivity of monitor dispensing	Read: A $B\|-\|$ Number_12 Write: $A, W\|3,6,2\|$ _ Number_12
363	Trip factor in learn mode	Read: $\quad\|A, B\|-\mid$ Factor $(0.1 \ldots 0.9$; step size 0.1$)]$ Write: $\quad A, W\|3,6,3\| _\mid$Factor $(0.1 \ldots 0.5$ s step size 0.1$)$
$\begin{aligned} & 364 _001 \\ & \ldots \\ & 364 _050 \end{aligned}$	Formula memory $1 \ldots 50$	

No.	Content	Format
$\begin{aligned} & 364 \\ & \ldots \\ & 375 \end{aligned}$	Formula memory $1 \ldots 12$	Response: equal to 364_001 Write: equal to 364_001 Comment: $x x=64 \ldots 75$
$\begin{aligned} & 376 _001 \\ & \text {... } \\ & 376 _050 \end{aligned}$	Weighing plafform No. for the components of formula 1 ... 50	
$\begin{aligned} & 376 \\ & \ldots \\ & 387 \end{aligned}$	Weighing plafform No. for the components of formula 1 ... 12	Response: equal to 376_001 Write: equal to 376_001 Comment: $x x=76 \ldots 87$
388	Lot weight	
389	Sum of lot weights	Response: $\quad\|A, B\|_{-}$Weight value $]_{-}$Unit $]$
390	Trip factor coarse feed	Response: $\|A, B\|-\mid$ Factor $(0.1 \ldots 0.9$; step size 0.1$)]$ Write: $\quad A, W\|3,9,0\| _\mid$Factor $(0.1 \ldots . .0 .9$ s step size 0.1$)$
391	Trip factor fine feed	Response: $\|A, B\| _\mid$Factor $(0.1 \ldots 0.9 ;$ step size 0.1$\left.)\right]$ Write: $A, W\|3,9,1\| _\mid$Factor $(0.1 \ldots 0.9$ s step size 0.1$)$

5 What to do if ...?

Error / Display	Possible causes	Remedy
- EMPTY -	- Output 2 = Remaining quantity, container is automatically emptied	\rightarrow Wait until the container is empty
- REFILL -	- Output 2 = Fill quantity, container is refilled	\rightarrow Wait until the fill quantity is reached
- TARE -	- Automatic taring during start of dispensing process	\rightarrow Wait until scale is stabilized and tared
ENDVALUE REACHED	- Item counter has reached end-value	\rightarrow Recall sum and delete
MANUAL	- Underfilled, manual redispensing possible	\rightarrow Press MAN key until target weight is reached
LEARN MODE IS OFF	- Learn mode switched off and limit 1 and/or limit 2 not entered	\rightarrow Switch on learn mode or enter limit
LIMIT 2 TOO LARGE	- Value for limit 2 too large	\rightarrow Decrease limit 2
LIM 2 EXCEEDS MAXLOAD	- Limit 2 is greater than the maximum load of the active weighing plafform	\rightarrow Select limit 2 less than the maximum load of this weighing plafform
MANUAL CORRECTION	- Container overfilled or underfilled	\rightarrow Manually remove or add dispensing product
MAX LIM	- Limit 1 or limit 2 too large	\rightarrow Decrease limit 1 or limit 2
MAX TOL	- Tolerance too large	\rightarrow Decrease tolerance
ZERO NOT ALLOWED	- Entered value smaller than 1	\rightarrow Increase value
CLEAR SUM	- Totalizing function switched on	\rightarrow Clear sum
MEMORY FULL	- Memory has reached maximum value	\rightarrow Clear sum
WRONG TARE	- Container on weighing plafform outside entered tare limits	\rightarrow Place correct filling container on weighing plafform
TMAX EXCEEDS MAXLOAD TMIN EXCEEDS MAXLOAD	- Entered tare limits above weighing plafform maximum load	\rightarrow Decrease values for tare min. and tare max. accordingly
TMAX LESS THAN TMIN	- Maximum tare value is less than minimum tare value	\rightarrow Increase max. tare value and decrease min. tare value
TOLERANCE INADMISS.	- Tolerance too small for weighing plafform or too large for tolerance table	\rightarrow Enter tolerance in permissible range
OVERFILLED	- Filling container overfilled	\rightarrow Confirm or correct manually

Error / Display	Possible causes	Remedy
UNDERFILLED	- Filling container underfilled	\rightarrow Confirm or correct manually
CONTINUE WITH START	- Filling process interrupted with STOP key	$\boldsymbol{\rightarrow}$ START key continues dispensing process, STOP key ends dispensing process
NO VALUE	- 0 was entered for a dispensing parameter	\rightarrow Enter value greater than 0
BUFFER IS FULL	- Buffer has reached capacity limit	$\boldsymbol{\rightarrow}$ Delete buffer
VALVE ERROR	- Configured valve number does not exist	\rightarrow For valve actuation select the EXTENDED setting

6 Technical data

Dispensing functions			
Dispensing	$\begin{array}{l}\text { - Controlling of coarse and fine flow of material feed for liquid, pasty and pourable } \\ \text { weighing samples } \\ \text { - Learn mode: automatic determination of dispensing parameters (coarse and fine } \\ \text { feed) } \\ \text { - Redispensing correction: Optimisation of the fine-feed shutoff point (Limit 2) } \\ \text { - Tolerance check with automatic redispensing } \\ \text { - Manual redispensing via keypad }\end{array}$		
Dispensing parameters	$\begin{array}{l}\text { - Entry of formula parameters either directly via keyboard, by calling from one of } \\ 50 \text { formula memories or via serial data port }\end{array}$		
- Input format: up to 8 places including decimal point		$\}$	- Tolerance input for certified scales \leq national calibration regulations, for non-
:---			
certified scales up to maximum target value	$	$	- Automatic taring during start of dispensing process for the 1st component
:---			
- Tare monitoring in accordance with specified value			

7 Appendix

7.1 Connection diagram and terminal assignment for 8-ID7 relay box

The following terminal diagram is a wiring suggestion for an 8-component dispensing system without an external controller (PLC). All valves (coarse and fine feed of each component) are controlled directly by the ID7-Dos-R for STANDARD valve actuation. The isolating diodes are required for decoupling the individual solenoid valves.

First 8-ID7 relay box

Terminal KL2	Assign- ment	Inputs from dispensing system	Meaning
8	IN1	Not assigned	-
7	IN2	Start	For starting dispensing
6	IN3	Stop	For stopping dispensing
5	IN4	Confirm	Confirmation of underfilling/overfilling/acceptable dispensing
4	IN5	Tare	Manual external taring
3	IN6	Not assigned	-
2	IN7	Cancel	Immediate cancelling of dispensing (emergency stop), then ID7-Dos-R returns to READY FOR DISPENSING status
1	IN8	Lock keypad	When IN 8 is set to HIGH, the keypad of the ID7-Dos-R is locked

Terminal KL4	Assign- ment	Outputs to dispensing system	Meaning
8	OUT1	Fine feed	For connecting fine feed valve/feed chute, etc.
7	OUT2	Output 2	For configurating OUTPUT 2, see page 16
6	OUT3	Coarse feed	For connecting coarse feed valve/ coarse feed chute, etc.
5	OUT4	Poor	Reporting of poor dispensing result (UNDERFILLED, OVERFILLED)
4	OUT5	Acceptable	Reporting of acceptable dispensing result
3	OUT6	End of dispensing	Dispensing completed
2	OUT7	Start/output 7	Start pulse for OUTPUT 7, see page 26
1	OUT8	Ready	Ready to start dispensing

The 8-ID7 relay box corresponds to the Binary Interface Unit (BIU). For additional information see the operating instructions and installation information for the Binary Interface Unit 505981.

Second 8-ID7 relay box

Terminal KL2	Assign- ment	Inputs from dispensing system	Meaning
8	IN1	not assigned	-
7	In2	not assigned	-
6	IN3	not assigned	-
5	IN4	not assigned	-
4	IN5	not assigned	-
3	IN6	not assigned	-
2	IN7	not assigned	-
1	IN8	not assigned	-

The setting for VALVE ACTUATION, see section 3.1.2, determines the behaviour of the outputs to the dispensing system on terminal KL4. There are two possible settings:

- STANDARD Actuate a maximum of 32 components
- EXTENDED Actuate a maximum of 32 components and 3 scales with binary coding

STANDARD valve actuation			
Terminal KL4	Assign- ment	Outputs to dispensing system	Meaning
8	OUT1	Component 1	Control of 1st component
7	OUT2	Component 2	Control of 2nd component
6	OUT3	Component 3	Control of 3rd component
5	OUT4	Component 4	Control of 4th component
4	OUT5	Component 5	Control of 5th component
3	OUT6	Component 6	Control of 6th component
2	OUT7	Component 7	Control of 7th component
1	OUT8	Component 8	Control of 8th component

Corresponding actuation of additional components with additional 8-ID7 relay boxes
3rd 8-ID7 relay box Component 9 ... 16
4th 8-ID7 relay box Component 17 ... 24
5th 8-ID7 relay box Component 25 ... 32

Binary coding for the actuation of scales and components with the 2nd 8-ID7 relay box, EXTENDED VALVE ACTUATION	Terminal KL4							
	8	7	6	5	4	3	2	1
	Assignment							
	OUT1	OUT2	OUT3	OUT4	OUT5	OUT6	OUT7	OUT8
Scale								
1	1	0	-	-	-	-	-	-
2	1	1	-	-	-	-	-	-
3	0	1	-	-	-	-	-	-
Component								
1	-	-	0	0	0	0	0	1
2	-	-	0	0	0	0	1	0
3	-	-	0	0	0	0	1	1
4	-	-	0	0	0	1	0	0
5	-	-	0	0	0	1	0	1
6	-	-	0	0	0	1	1	0
7	-	-	0	0	0	1	1	1
8	-	-	0	0	1	0	0	0
9	-	-	0	0	1	0	0	1
\ldots	\ldots	\ldots
31	-	-	0	1	1	1	1	1
32	-	-	1	0	0	0	0	0

The 8-ID7 relay box corresponds to the Binary Interface Unit (BIU). For additional information see the operating instructions and installation information for the Binary Interface Unit 505981.

7.2 Sequence chart

Formula with 2 components	1 st rela	lay box						2nd re	lay box
	OUT1	OUT3	OUT4	OUT5	OUT6	OUT7	OUT8	OUT1	OUT2
	Fine feed	$\begin{aligned} & \text { Coarse } \\ & \text { feed } \end{aligned}$	Poor	Acceptable	End of dispens ing	Output 7	Ready	Component	Component
1st component loaded									
Start pulse output, coarse feed switched on		4				\square			
Limit 1 reached: coarse feed switched off, fine feed switched on									
Limit 2 reached: fine feed switched off, wait for stabilization of weighing plafform									
Stabilization of weighing plafform, dispensing result evaluated and printed out				$\sqrt{7}$			\|		
2nd component loaded									
Start pulse output, coarse feed switched on									
Limit 1 reached: coarse feed switched off, fine feed switched on									
Limit 2 reached: fine feed switched off, wait for stabilization of weighing plafform									
Stabilization of weighing platform, dispensing result evaluated and printed out									
End of formula: lot sum evaluated and printed		1	\rceil	\rceil		1		\rceil	\bigcirc

8 Index

Numerics

8-ID7 relay box 6

A

Automatic tare 19

C

Coarse feed 7, 23

D

Dispensing 7
Dispensing functions 5
Dispensing process 7
Dispensing system 6
Display 8
Display messages 18
Documentation 2
E
Electronic fingers 6, 28
Error messages 35
F
Fill quantity 17
Fine feed 7, 23
Formula overview 15
Function keys 5, 14

I

Installation 2
Item counter 5, 11

L
Learn mode 8, 15, 23

M

Manual recorrection 10, 22
Material agitation 16
Monitor dispensing 24
Multi-scale operation 25

0

Operating mode 22
Outputs 26

P

Pac start key 21
Password block 21
Predispensing 25
Process formulas 14

R

Recall information 12
Redispensing 7, 10, 20

Redispensing correction 8, 19
Remaining quantity 17
Reset Pac 27

S

Safety precautions 2
Sequence charts 42
Single feed operation 26
Start timer 25
Status indicator 21

T

Technical data 37
Totalizing 11, 20

v

Valve actuation 18

W

What to do if ...? 35

