Transmitter 7500

Ihr Vertreter:

02/99 52 120 434

Mettler-Toledo GmbH, Process, Postfach, 8902 Urdorf, Schweiz Tel. +41 (01) 736 22 11, Fax +41 (01) 736 26 36

CE

Gewährleistung

Innerhalb von 3 Jahren auftretende Mängel werden bei freier Anlieferung im Werk kostenlos behoben. Zubehörteile und Displaybeleuchtung: 1 Jahr

Änderungen für Software-Version 6.0

Meßgröße " $\Omega \cdot cm$ " (spezifischer Widerstand)

Jetzt kann auch der spezifische Widerstand ($\Omega \cdot$ cm) als Meßgröße für die Hauptanzeige parametriert und für die Einstellung des Ausgangsstromes verwendet werden.

Kopplung der Anzeigenbereiche an die Zellkonstante

Die Anzeigenbereiche und damit die sichtbare Auflösung sind an die Zellkonstante gekoppelt. Damit ist gewährleistet, daß die Anzeigenauflösung der meßtechnischen Auflösung entspricht.

Erweiterung des zulässigen Bereiches der Zellkonstante

Der Bereich wurde von 0,0090 ... 200,0 cm⁻¹ auf 0,0050 ... 200,0 cm⁻¹ erweitert.

Zusätzliche Option für Konzentrationsmessung

Zur Konzentrationsbestimmung für die Substanzen HCI, NaOH, NaCI wird die Option 382 angeboten.

Keine Logbuchaufzeichnung von Meßfehlermeldungen während Wartung, Kalibrierung und Parametrierung

Während Wartungsarbeiten, z. B. bei der Reinigung des Sensors oder bei der Kalibrierung, werden oft sehr viele Fehlermeldungen erzeugt, die keinerlei Bedeutung für die Messung haben, da das Gerät sich in Funktionskontrolle befindet und der Strom eingefroren ist. Diese Fehlermeldungen werden nicht mehr im Logbuch aufgezeichnet.

Logbucheintrag bei fehlerhafter Paßzahl

Der Versuch, mit einer falschen Paßzahl eine Funktion aufzurufen, wird im Logbuch protokolliert.

Funktionskontrolle auch bei Probenkalibrierung

Bei der Kalibrierung, nach Eingabe der Paßzahl, wird generell das NAMUR-Signal "Funktionskontrolle" gesetzt, d. h. die Ausgangsströme werden eingefroren. Bisher wurde dieses Signal bei der Probenkalibrierung nicht gesetzt.

Probenkalibrierung mit TK-Einrechnung

Es kann parametriert werden, ob die Probenkalibrierung mit oder ohne TK-Einrechnung erfolgen soll.

Manuelle Auswahl des Temperaturfühlers

Die automatische Pt 100/Pt 1000-Erkennung und -Umschaltung entfällt. Die Option 355 (Eingang für Ni 100-Temperaturfühler) entfällt. Ni 100-Temperaturfühler werden standardmäßig unterstützt.

Sicherheitshinweise

Unbedingt lesen und beachten!

Vor dem Anschließen des Gerätes an die Hilfsenergie ist sicherzustellen, daß die Spannung mit der Angabe auf dem Typschild des Gerätes übereinstimmt.

Beim Öffnen des Gerätes werden spannungsführende Teile freigelegt. Daher soll das Gerät nicht geöffnet werden. Falls eine Reparatur erforderlich wird, senden Sie das Gerät ins Werk ein.

Muß das Gerät dennoch in Ausnahmefällen geöffnet werden, ist es zuvor von allen Spannungsquellen zu trennen.

Stellen Sie sicher, daß das Gerät von der Hilfsenergieversorgung getrennt ist.

Eine Reparatur oder ein Abgleich eines geöffneten, unter Spannung stehenden Gerätes darf nur von einer Fachkraft vorgenommen werden, die mit den damit verbundenen Gefahren vertraut ist.

Beachten Sie, daß bei geöffnetem Gerät an berührbaren Teilen eine lebensgefährliche Spannung liegen kann.

Das Gerät muß außer Betrieb genommen und gegen unbeabsichtigten Betrieb gesichert werden, wenn angenommen werden muß, daß ein gefahrloser Betrieb nicht mehr möglich ist.

Gründe für für diese Annahme sind:

- sichtbare Beschädigung des Gerätes
- Ausfall der elektrischen Funktion
- längere Lagerung bei Temperaturen über 70 °C
- schwere Transportbeanspruchungen

Bevor das Gerät wieder in Betrieb genommen wird, ist eine fachgerechte Stückprüfung nach DIN EN 61010 Teil 1 durchzuführen. Diese Prüfung sollte bei uns im Werk vorgenommen werden.

Installation und Inbetriebnahme

Die *Installation* des Transmitters 7500 darf nur durch ausgebildete Fachkräfte (VBG 4) unter Beachtung der einschlägigen VDE-Vorschriften und der Bedienungsanleitung erfolgen. Bei der Installation sind die technischen Daten und die Anschlußwerte zu beachten.

Hinweise zur Installation finden Sie in Kapitel 10.

Die *Inbetriebnahme* des Transmitters 7500 darf nur durch ausgebildete Fachkräfte (VBG 4) unter Beachtung der Bedienungsanleitung erfolgen. Vor der Inbetriebnahme muß eine *vollständige Parametrierung* durch einen Systemspezialisten erfolgen.

Bei Umgebungstemperaturen unter 0 °C kann die Ablesbarkeit des LC-Displays eingeschränkt sein. Die Gerätefunktionen sind dadurch *nicht* beeinträchtigt.

Echtzeituhr, Logbuch, Cal-Protokoll und Meßkettenstatistik sind für ca. 1 Jahr akkugepuffert. Bei länger andauerndem Spannungsausfall können diese Daten verlorengehen. Das Gerät bringt dann die Meldung "Warn Uhrzeit/Datum", und das Datum wird auf den 01.01.1990 zurückgesetzt. Uhrzeit und Datum müssen dann neu parametriert werden.

Hinweise zur Elektromagnetischen Verträglichkeit

Einhaltung der Störfestigkeit

Alle Ein- und Ausgänge des Transmitters 7500 sind untereinander potentialgetrennt. Die Trennspannungen werden durch Üsags (gasgefüllte Überspannungsableiter zur Einhaltung der EMV nach NAMUR) auf ca. 50 V begrenzt.

Option 351 (Schnittstelle)

Für den Anschluß der RS 485-Schnittstelle ist verdrilltes und/oder geschirmtes Kabel zu verwenden.

Um die Funkstörspannungsgrenzwerte an der RS 485-Schnittstelle einzuhalten, muß die Klemme 15 (Schirm) geerdet werden. Für die Erdung darf nicht der Schutzleiter verwendet werden!

CE

Der Transmitter 7500 erfüllt folgende Fachgrundnormen:

- Störaussendung EN 50081-1 Wohnbereich, Geschäfts- und Gewerbebereiche sowie Kleinindustrie
- Störfestigkeit EN 50082-2 Industriebereich

und kann somit im Wohnbereich, in Geschäftsund Gewerbebereichen sowie in der Kleinindustrie und im Industriebereich eingesetzt werden.

Lieferumfang und Auspacken des Gerätes

Packen Sie das Gerät vorsichtig aus. Kontrollieren Sie die Lieferung auf Transportschäden und auf Vollständigkeit. Zum Lieferumfang gehören:

- Transmitter 7500
- Diese Bedienungsanleitung
- Ggf. mitbestellte Zubehörteile (Lieferbares Zubehör s. Kap. 13)

Der Aufbau dieses Handbuchs

In diesem Handbuch wird beschrieben

- was Sie mit dem Transmitter 7500 tun können
- wie Sie den Transmitter 7500 bedienen
- was bei Installation und Montage zu beachten ist

Warnung

Eine Warnung bedeutet, daß die Nichtbefolgung zu Fehlfunktion oder Beschädigung des Gerätes und zu Sach- oder Personenschäden führen kann.

Hinweis

Durch Hinweise werden wichtige Informationen vom übrigen Text abgesetzt

Hinweise zur Darstellung

Die Tasten des Transmitters 7500 werden im Text so dargestellt:

meas, cal, maint, par, diag

◀ , ▶ , ▲ , ▼ ,enter

Fett ist ein Begriff gedruckt, der unter "Fachbegriffe" (Kap. 17) erklärt ist.

Kursiv sind Informationen gedruckt, die besonders hervorgehoben werden sollen.

Die Darstellung eines Menüs in der Bedienungsanleitung kann von der Anzeige Ihres Gerätes etwas abweichen. Das ist abhängig davon, mit welchen Optionen Ihr Gerät ausgerüstet ist.

diag Meßstellendaten	51.68mS/cm
† Zellkonstante Grenzwert 1 Grenzwert 2	+0.950 /cm +90.00 mS/cm +20.00 mS/cm
« zurück [diag] [†]	[↓] rollen

Beispiel:

Diagnosemenü "Meßstellendaten" für ein Standardgerät.

diag	Meßstellend	aten 51.68mS/c	cm
† Zell	konstaņte	+0.950 /cm	
Grer Grer	nzwert 1 nzwert 2	+90.00 mS/cm +20.00 mS/cm	1
Reg]	er-Sollwert	S/cm	
« zur	wäck [diag]	(f)(() rollen	

Beispiel:

ansehen.

Diagnosemenü "Meßstellendaten" für ein Gerät mit Option 352 (Sondenspülung) und Option 353 (Reglerfunktion).

Gliederung des Handbuchs

	Das Handbuch ist wie der Transmitter 7500 in drei Ebenen gegliedert:
Anzeigeebene:	Sie können alle Informationen über den Gerätezu stand und den Sensor sowie die Parametrierung

Lesen Sie die Kapitel 1 ... 5

Betriebsebene: Sie können ausgewählte Parameter ändern und die Meßzelle kalibrieren.

Lesen Sie die Kapitel 1 ... 7

Spezialistenebene: Sie können den Transmitter 7500 vollständig parametrieren sowie spezielle Funktionen (z. B. Schnittstellenbetrieb) nutzen.

Lesen Sie die Kapitel 1 ... 10

ihres Gerätes gehört: s. S. 3-4.

Wenn Sie Informationen zu bestimmten Themen suchen, die nicht im Inhaltsverzeichnis erscheinen, hilft Ihnen das *Stichwortverzeichnis* am Ende des Handbuches, den gesuchten Begriff zu finden.

Der Transmitter 7500 im Überblick

Die Bedienung des Transmitters 7500

Kap. **1** gibt Ihnen einen Überblick über die Leistungsfähigkeit des Transmitters 7500.

Wenn das Verhalten Ihres Gerätes von der Beschreibung in diesem Handbuch abweicht, kontrollieren Sie, ob das Handbuch zur Software-Version

Kap. **2** behandelt die Bedienoberfläche. Die Tastenfunktionen werden beschrieben. Die Auswahl von Menüpunkten und die Eingabe von Zahlenwerten wird erklärt.

Das Diagnosemenü	Kap. 3 beschreibt, wie Sie im Diagnosemenü In- formationen über den Zustand der Meßzelle und des Gerätes bekommen.
Das Wartungsmenü	Kap. 4 erläutert die Möglichkeiten zur Wartung der Meßstelle.
Die Anzeige der Parametrierung	Kap. 5 erklärt, wie Sie sich die Parametrierung des Gerätes anzeigen lassen können.
Die Kalibrierung	Kap. 6 zeigt Ihnen, wie Sie den Kalibrierablauf auswählen und wie Sie eine Kalibrierung durch- führen.
Die Parametrierung des Gerätes in der Be- triebsebene	Kap. 7 beschreibt die Parametrierung des Gerätes in der Betriebsebene
Die Parametrierung des Gerätes in der Spezialistenebene	Kap. 8 beschreibt die komplette Parametrierung des Gerätes
Die Meßmöglichkeiten des Transmitters 7500	Kap. 9 erläutert umfassend alle Meß- und Einsatz- möglichkeiten des Transmitters 7500 und was bei der Anwendung zu beachten ist.
Hinweise zur Montage, Installation und Wartung	Kap. 10 enthält alle erforderlichen Anschlußbele- gungen, Maßbilder und Installationsanweisungen, sowie Hinweise zur Wartung und Reinigung des Gerätes
Fehlermeldungen	Kap. 11 listet alphabetisch alle Fehlermeldungen auf, die im Betrieb auftreten können.
Schnittstellenbefehle	Kap. 12 enthält eine Zusammenstellung aller Be- fehle, mit denen der Transmitter 7500 über die RS 485-Schnittstelle gesteuert werden kann.
Lieferprogramm und Zubehör	Kap. 13 enthält das lieferbare Zubehör sowie die verfügbaren Optionen zur Erweiterung der Gerätefunktionen.
Technische Daten	Kap. 14 enthält die kompletten technischen Spezi- fikationen.
Kalibrierlösungs-Tabellen	Kap. 15 enthält die Leitfähigkeitstabellen der pro- grammierten Kalibrierlösungen.
Anhang	Kap. 16 enthält Anleitungen zum Wechsel des EPROMs.
Fachbegriffe	Kap. 17 erklärt Fachbegriffe
Stichwortverzeichnis	Kap. 18 hilft beim schnellen Auffinden von Begriffen im Handbuch.

Inhalt

Sich	herheitshinweise	I
Inst	allation und Inbetriebnahme	II
Hinv	weise zur Elektromagnetischen Verträglichkeit	III 111
Lief	erumfang und Auspacken des Gerätes	IV
Der	Aufbau dieses Handbuchs Hinweise zur Darstellung Gliederung des Handbuchs	IV IV V
1	Der Transmitter 7500 im Überblick	1–1 1–1 1–2 1–3 1–3
2	Die Bedienung des Transmitters 7500 Das Gerät im Meßmodus Die Bedienungselemente Die Menüstruktur	2–1 2–1 2–3 2–4
3	Das DiagnosemenüDas können Sie im Diagnosemenü tunSo gelangen Sie in das DiagnosemenüDie aktuelle MeldungslisteDie MeßstellendatenDas LogbuchDie GerätebeschreibungDie Gerätediagnose	3–1 3–2 3–2 3–2 3–3 3–4 3–5
4	Das Wartungsmenü	4–1 4–2 4–2 4–3 4–4 4–5 4–6

5	Die Anzeige der Parametrierung	5–1
	Das können Sie in der Anzeigeebene tun	5–1
	So gelangen Sie in die Anzeigeebene	5–1
6	Die Kalibrierung	6–1
	Warum muß kalibriert werden?	6–1
	Die Überwachungsfunktionen für die Kalibrierung	6–1
	So gelangen Sie in das Kalibriermenü	6–2
	So wählen Sie einen Kalibrierablauf	6–3
	Die Temperaturerfassung während der Kalibrierung	6–4
	Automatische Kalibrierung mit Standard-Kalibrierlösung	6–5
	Kalibrierung durch manuelle Eingabe des Leitfähigkeitswertes	6–7
	Kalibrierung durch Dateneingabe vorgemessener Meßzellen	6–9
	Kalibrierung durch Probennahme	6–10
	Die Kalibrierung der Meßzellen	6–12
7	Die Parametrierung in der Betriebsebene	7–1
	Das können Sie in der Betriebsebene tun	7–1
	So gelangen Sie in die Betriebsebene	7–1
8	Die Parametrierung in der Spezialistenebene	8–1
	Das können Sie in der Spezialistenebene tun	8–1
	So gelangen Sie in die Spezialistenebene	8–1
	Die Marker-Parametrierung	8–2
	Der Paßzahl-Schutz	8–4
	Werksseitig parametrierte Paßzahlen	8–6
9	Die Meßmöglichkeiten des Transmitters 7500	9–1
	Überblick	9–1
	Die Hilfsenergieversorgung für den Transmitter 7500	9–1
	Die einfache Leitfähigkeits-Meßstelle	9–2
	Beschaltungsbeispiele	9–4
	Die Meßwertanzeige	9–10

	Das Eingangsfilter	9–10
		9–11
	Temperaturkompensation für das Meßmedium	9–14
	Der Stromausgang	9–15
	Die Konzentrationsbestimmung	9–22
	Voll ausgebaute Meßstelle mit Nutzung aller Funktionen	9–25
	Die Alarmeinstellungen	9–25
	Die NAMUR-Kontakte	9–27
	Die Grenzwertkontakte	9–28
	Die Reglerfunktion	9–30
	Der Hilfsenergieausgang	9–41
	Der Stromeingang	9–41
	Die Sondenspülung	9–43
	Der Schnittstellenbetrieb	9–48
	Die Gerätediagnose	9–51
10	Historian zur Montago, Installation und Wortung	10 1
10	Montago	10-1
	So montieren Sie den Transmitter 7500 im Schutzgehäuse	10-1
		10-5
	Wartung und Reinigung	10-0
		10-10
11	Fehlermeldungen	11–1
	Alphabetisch sortiert	11–1
	Sortiert nach Schnittstellen–Fehlercode	11–4
12	Schnittstellenbefehle	12–1
	Inhaltsübersicht	12–1
	Übertragungsverhalten	12–4
	VALUE-Befehle: Meßwerte abfragen	12–5
	STATUS-Befehle: Meldungen und Zustände abfragen	12–6
	PARAMETER-Befehle: Parametrierung abfragen und Parameter setzen	12–9
	DEVICE-Befehle: Gerätebeschreibung	12–27
	COMMAND-Befehle: Steuerkommandos	12–27
	Schnittstelle Punkt-zu-Punkt	12–30
	Schnittstellen-Busprotokoll	12–31

13	Lieferprogramm und Zubehör	13–1
	Optionen	13–1
	Montagezubehör	13–2
	Meßzellen	13–2
14	Technische Daten	14–1
	Meßzellen	14–5
	Konzentrationsmessung (Opt. 359, 382)	14–12
	Konformitätsbescheinigung	14–16
15	Kalibrierlösungen	15–1
16	Anhang	16–1
	EPROM–Wechsel	16–2
17	Fachbegriffe	17–1
18	Stichwortverzeichnis	18–1

1 Der Transmitter 7500 im Überblick

Die *Inbetriebnahme* des Transmitters 7500 darf nur durch ausgebildete Fachkräfte (VBG 4) unter Beachtung der Bedienungsanleitung erfolgen. Vor der Inbetriebnahme muß eine *vollständige Parametrierung* durch einen Systemspezialisten erfolgen.

Das Gerätekonzept

Durch die weitgehende Berücksichtigung von **NA-MUR**-Empfehlungen und Kundenforderungen, insbesondere bezüglich Sicherheit, Zuverlässigkeit und Funktionsvielfalt, weist dieses Gerät den derzeit neuesten Entwicklungsstand auf und charakterisiert damit den neuen Standard für Prozeß-Meßgeräte.

Die Bedienoberfläche

Die Anzeige-Bedienoberfläche wird aus einem hinterleuchteten Grafikdisplay mit hoher Auflösung (240 x 64 Punkte) und einem Tastenfeld gebildet. Jede Taste ist einfach belegt und eindeutig einem **Menü** oder einer Eingabefunktion zugeordnet.

Im **Meßmodus** erlaubt das Grafikdisplay sowohl die simultane Darstellung des aktuellen Meßwertes in großen Ziffern (25 mm) und von zwei weiteren Werten in Nebenanzeigen, als auch von NA-MUR-gerechten **Statusmeldungen** wie **Warnung** (Wartungsbedarf) und **Ausfall** sowie von Grenzwertmeldungen.

Je nach Anwendungsfall können den Anzeigen verschiedene Meßwerte und Ausgangswerte frei zugeordnet werden: Leitfähigkeit, spez. Widerstand, Konzentration, Meß- und manuelle Temperatur, Uhrzeit, Datum, Ausgangsstromwerte 1 und 2, Eingangsstrom in % und die Regler-Stellgröße.

Die Bedienerführung wird durch eine 7-zeilige Klartext-Anzeige mit Informationstexten unterstützt. Während der Bedienung bleiben der aktuelle Meßwert und aktuelle Statusmeldungen immer sichtbar.

Das Tastenfeld enthält die Tasten **meas** (Messen), **cal** (Kalibrierung), **maint** (Wartung), **par** (Parametrierung), **diag** (Diagnose), ein Cursorfeld zur Auswahl der Menüpunkte oder zur alphanumerischen Eingabe und **enter** zur Bestätigung der Eingabe.

maint	Widersta	Indsmessung	54.40mS/cm
• Aus I Gre Ohn	gangsstro nzwerte i e Zellkon	m, Regler naktiv stante, Tk	eingefroren < = Aus
Wider « zur	stand ück Imai	018. nti	3 Ω

Die Systemfunktionen

Abb. 1–1 System-Funktionen Transmitter 7500

Abb. 1–1 zeigt die Vielfalt der System-Funktionen. Es können 2-Pol- und 4-Pol-Meßzellen (1) und ein Temperaturfühler (2) angeschlossen werden.

Mit der optionellen Konzentrationsfunktion können Stoffkonzentrationen für bestimmte Meßlösungen berechnet und angezeigt werden.

Die **Zellenanpassung** kann automatisch durch Ermittlung der Zellkonstante, durch Eingabe eines bekannten Leitfähigkeits-Wertes, durch direkte Eingabe der Zellkonstante oder durch die Probenkalibrierung erfolgen.

Durch die Möglichkeit, die *Temperaturmessung abzugleichen*, läßt sich die Genauigkeit der Leitfähigkeitsmessung und der Konzentrationsbestimmung nochmals deutlich verbessern.

Das Gerät enthält zwei galvanisch getrennte *Normstromausgänge* (0(4) ... 20 mA) (7 und 8), denen jeweils die Meßgrößen Leitfähigkeit, Konzentration oder Temperatur zugeordnet werden können. Optionell kann der Stromausgang 2 (7) auch als Analogreglerausgang eingesetzt werden. Ein (optionell galvanisch getrennter) Normstromeingang (0(4) ... 20 mA) (3) ermöglicht z. B. die Überwachung eines Drucksensorsignals mit Grenzwerten. Zudem lassen sich in Verbindung mit dem Hilfsenergieausgang (10) komplette 2-Leiter-Meßkreise realisieren, z. B. für Durchfluß- oder Füllstandsgeber. Die ermittelten Meßwerte können sowohl angezeigt als auch Grenzwertkontakten und Meldungen zugeordnet werden.

Über eine serielle RS 485-Schnittstelle (9) ist der Transmitter 7500 komplett fernsteuerbar und alle Meßdaten und Statusmeldungen können ausgelesen werden, auch über größere Entfernungen. Neben einer "Punkt zu Punkt"-Verbindung sind Busverbindungen von bis zu 31 Geräten möglich.

Mit den NAMUR-Kontakten (6) können direkt vor Ort Meldegeräte für Funktionskontrolle. Warnung (Wartungsbedarf) und Ausfall angesteuert werden. Die Grenzwert-/Regler-Kontakte (5) melden Grenzwertunter- bzw. -überschreitungen oder dienen zur Ansteuerung von Ventilen oder Pumpen zur Regelung (integrierte Regelfunktion). Die Reinigungskontakte (4) ermöglichen die Steuerung geeigneter Sonden zur Spülung und Reinigung der Meßzelle.

Die Menüstruktur

Die Menüstruktur (Abb. 2 –1, S. 2–4) läßt die streng nach Menügruppen gegliederte Bedienungs-Organisation erkennen, die trotz der Funktionsvielfalt außerordentlich übersichtlich ist.

Der Aufruf eines Menüs erfolgt durch die entsprechende Menütaste. Der direkte Rücksprung zum Meßmodus, auch aus unteren Menüebenen, ist jederzeit durch Druck auf meas möglich.

Die Bedienung ist aufgrund der eindeutigen Benutzerführung durch Klartext-Dialog selbsterklärend. Selbst die Spezialistenebene kann ohne Zuhilfenahme des Handbuchs (Bedienungsanleitung) oder eines Zusatzgerätes (Terminal, Laptop) bedient werden.

Die einzelnen Menüs

Ein Beispiel der Bedienerführung mit Informationstexten ist nebenstehend anhand des Kalibriermenüs dargestellt. Zunächst kann zwischen vier verschiedenen Kalibrierabläufen gewählt werden.

Der Zugang kann über eine abschaltbare Paßzahl verriegelt werden.

Kalibrierung

» Automatik mit Standard-Kalibrierlösg » Manuelle Vorgabe einer Kalibrierlösg » Dateneingabe – Zelle vorgemessen » Probenkalibrierung

« zurück zum Messen [cal]

cal Automatik	51.67mS/cm
• Kalibrierlösung NaCl 1 Tk wird automatisch berö	0.1 mol∕l äcksichtigt
gemessene Cal-Temperatur	∽ +025.3 °C
Kalibrierung weiter zu	ırück

par	Parametrierung	51.78mS/cm
» An » Be » Sp	zeigeebene (Ges triebsebene (Betri ezialistenebene (Ges	amtdaten) anz ebsdaten) bet amtdaten) spe
« zu	rück zum Messen [pa	r]

maint Wartung >> MeBstellen-Wartung >> Widerstandsmessung >> Stromgeber >> Abgleich Tempfühler >> Regler manuell << zurück zum Messen [maint]

diag Diagnose	51.68mS/cm
<u>» aktuelle Meldungsliste</u>	0 Meldg.
» Mepstellendaten » Logbuch	
» Gerätebeschreibung	
» Gerätediagnose	-
– « zurück zum Messen Edia	LIP

Während des **Kalibrierablaufes** erhält der Anwender Schritt-für-Schritt-Anweisungen. Am Ende werden die ermittelten Daten der Meßzelle angezeigt und übernommen.

Das **Parametriermenü** ist dem Spezialisierungsgrad des Anwenders entsprechend in die Ebenen Anzeige-, Betriebs- und Spezialistenebene aufgeteilt.

In der **Anzeigeebene** kann die Parametrierung nur angesehen, nicht aber verändert werden. In der **Betriebsebene** sind nur markierte Menüpunkte zur Parametrierung freigegeben. In der **Spezialistenebene** sind sämtliche Parametrierfunktionen erreichbar. Zudem können dort, zur Zusammenstellung eines optimalen Benutzermenüs in der Betriebsebene, für jeden Menüpunkt Marker gesetzt werden.

Gegen unbefugten Zugriff auf die Betriebs- und Spezialistenebene schützt eine **Paßzahlverriegelung**, die für die Betriebsebene bei Bedarf abschaltbar ist.

Das Wartungsmenü enthält Funktionen zur Meßstellen-Wartung (Spülung und Reinigung) und zum Abgleich des Temperaturfühlers. Ferner ermöglicht eine Stromgeberfunktion das manuelle Einstellen der Ausgangsströme, beispielsweise zur Einstellung eines Reglers oder zum Testen externer Geräte (Schreiber, Anzeiger). Der Zugang kann über eine Paßzahl verriegelt

werden, die bei Bedarf abschaltbar ist.

Im Diagnosemenü sind Sensor- und Geräte-bezogene Daten einzusehen.

Fehlermeldungen, die zur Sammelfehlermeldung Warnung oder Ausfall geführt haben, sind in der aktuellen **Meldungsliste** als Klartext aufgelistet. Außerdem läßt sich die Zellkonstante abrufen.

In Form eines **Logbuches** mit einer Speichertiefe von 200 Einträgen werden automatisch Meldungen und Funktionsaufrufe mit Datum und Uhrzeit zur Rückverfolgung und QM-Dokumentation von Ereignissen gemäß DIN ISO 9000 gespeichert. Umfangreiche Gerätetests (Speicher-, Displayund Tastaturtests) können direkt am Einsatzort mit Hilfe der Diagnosefunktion durchgeführt werden.

2 Die Bedienung des Transmitters 7500

Die *Inbetriebnahme* des Transmitters 7500 darf nur durch ausgebildete Fachkräfte (VBG 4) unter Beachtung der Bedienungsanleitung erfolgen. Vor der Inbetriebnahme muß eine *vollständige Parametrierung* durch einen Systemspezialisten erfolgen.

Das Gerät im Meßmodus

Im Meßmodus zeigt die **Hauptanzeige** den Meßwert.

Unter der Hauptanzeige befinden sich zwei **Nebenanzeigen**.

Das Symbol ★ zeigt an, daß die Nebenanzeige mit den Rolltasten geändert werden kann.

Mit den Rolltasten ▲ und ▼ können Sie auswählen, welche Meßgröße in der linken Nebenanzeige angezeigt wird.

Um die rechte Nebenanzeige zu ändern, drücken Sie die Cursortaste ►. Dann können Sie mit den Rolltasten ▲ und ▼ die angezeigte Meßgröße ändern. Mit der Cursortaste ◄ gelangen Sie zur linken

Bei Umgebungstemperaturen unter 0 °C kann die Ablesbarkeit des LC-Displays eingeschränkt sein. Die Gerätefunktionen sind dadurch *nicht* beeinträchtigt.

Folgende Meßgrößen können Sie in den Nebenanzeigen darstellen:

- Leitfähigkeit
- Konzentration (nur mit Option 359, 360 oder 382)
- Spezifischer Widerstand
- Pt bzw. Ni Gemessene Temperatur (°C)

- MAN manuelle Meßtemperatur (°C)
- I-EING Eingangsstrom
- AUSG1 Ausgangsstrom 1
- AUSG2 Ausgangsstrom 2 (nur mit Option 350)
- RGL-Y Reglerstellgröße (nur mit Option 353 oder Option 483)
- TIME Uhrzeit
- DATE Datum

Alarm-Meldungen

Wenn die parametrierten Grenzen, z. B. beim Leitfähigkeits-Meßwert, für die **Warnungs-Meldung** ("Wartungsbedarf") oder die **Ausfall-Meldung** überschritten werden, erscheint links unten im Display "WARN" oder "AUSF".

Die Meßwertanzeige blinkt.

Die entsprechenden NAMUR-Kontakte sind aktiv.

G1 G2

25.4°C

nS∕cn

Im **Diagnosemenü** können Sie in der Meldungsliste nachsehen, welche Meldungen anstehen. Siehe S. 3–2.

Wie Sie die Grenzen für die Warnungs- und Ausfall-Meldungen parametrieren können, erfahren Sie auf S. 9–26.

Grenzwertkontakte aktiv

Wenn die parametrierten **Grenzwerte**, z. B. beim Leitfähigkeits-Meßwert, über- oder unterschritten werden, erscheint rechts oben im Display "G1" und/oder "G2".

Die Grenzwert-Kontakte G1 und/oder G2 sind aktiv.

Wenn eine Probenkalibrierung durchgeführt wird, wird die Anzeige "G1/G2" durch "Probe" überdeckt!

Wenn das Gerät bei Schnittstellenbetrieb im Remotezustand ist, wird die Anzeige "G1/G2" durch "Remote" überdeckt!

Im **Diagnosemenü** können Sie in den Meßstellendaten nachsehen, wie die Grenzwerte gesetzt sind. Siehe S. 3–2. Wie Sie die Grenzwerte parametrieren können

Wie Sie die Grenzwerte parametrieren können, erfahren Sie in Kap. 9 auf S. 9–28.

\$AUSG1

2.00mA

Pt.

Die Bedienungselemente

Durch Druck auf die Menütasten **cal**, **diag**, **maint** und **par** gelangen Sie in das entsprechende Menü.

Mit den **Cursortasten ◄ und ▶** wählen Sie eine Eingabeposition im Display aus.

Mit den **Rolltasten** ▲ und ▼ wählen Sie eine Displayzeile aus. Außerdem können Sie bei numerischen Eingaben die Ziffern 0 ... 9 durchrollen und das Vorzeichen wechseln. Die Tasten besitzen eine Repeat-Funktion.

Alle Eingaben werden durch Druck auf die **enter** -Taste übernommen.

spe	Alarmeinstellungen	# 115.5mS∕cm
>> >> >>	L eitfähigkeits-Alarm Temperatur-Alarm Zellkonstanten-Alarm Stromeingangs-Alarm	(Ein) (Aus) (Ein) (Aus)
L		

Mit der **meas** -Taste gelangen Sie immer in den Meßmodus zurück, ganz gleich, in welchem Menü oder Untermenü Sie sich befinden.

Ein Menü wird durch Drücken der entsprechenden Menütaste **cal**, **diag**, **maint** oder **par** aktiviert.

Links oben werden das Menü ("spe") und die Menüebene (z. B. "Alarmeinstellungen") angezeigt, in der Sie sich gerade befinden.

Rechts oben wird der Meßwert angezeigt (wie in der großen Meßwertanzeige). Wenn Warnungs- oder Ausfallmeldungen aktiv sind, erscheinen "_W" und/oder "^A" vor dem Meßwert.

Sie können das Menü verlassen und in den Meßmodus zurückkehren,

- indem sie die Menütaste erneut drücken, evtl. mehrfach, oder
- durch Druck auf **meas** (Messen).

Bedienungshinweise erhalten Sie durch Informationstext, gekennzeichnet durch \mathbf{i} .

Die Menüstruktur

Abb. 2–1 Menüstruktur

So wählen Sie einen Menüpunkt aus

Mit den **Rolltasten** ▲ und ▼ wählen Sie eine Displayzeile aus. Die ausgewählte Zeile wird invertiert (dunkel unterlegt) dargestellt.

Die Rolltasten verfügen über eine Repeat-Funktion:

Bei längerem Drücken laufen die Zeilen durch.

Die Pfeile "↑" und "↓" zeigen an ,daß noch mehr Menüzeilen durch Rollen erreichbar sind.

Die Symbole \ll und \gg am Anfang der Displayzeile zeigen an, daß die Menüebene mit den Cursortasten ◀ und ▶ gewechselt werden kann:

- \gg mit
 oder enter gelangen Sie zur nächsten (tieferen) Menüebene,
- mit
 der der jeweiligen Menütaste ge- \ll langen Sie zurück zur vorigen (übergeordneten) Menüebene.

So ändern Sie eine Einstellung

-Alarm 58.54mS/cm Temperatur <u>Temperatur</u> Ausfall Limit Lo Warnung Limit Lo Warnung Limit Hi Ausfall Limit Hi zurück Epar

Spezialistenebene

» Ausgangsström z » Alarmeinstellungen » NAMUR-Kontakte » Grenzwerte » Sondenspülung (opt

Ausgangsstrom

Ausqanqsstrom

>>

>>

.

58.54mS/cm

(optionell)

✓ bzw. ► können Sie den Parameter Mit ändern, die angewählte Position wird invertiert dargestellt und blinkt.

So übernehmen Sie den geänderten Wert

So bleibt die alte Einstellung erhalten

Das Blinken einer Eingabeposition bedeutet: Die bisherige Einstellung wurde verändert, aber noch nicht übernommen.

Mit enter wird der neue Parameter, z. B."Ein" übernommen, das Blinken hört auf.

Mit der Menütaste (z. B. par) an Stelle von enter bleibt die alte Einstellung unverändert erhalten ("Undo"-Funktion).

So geben Sie Zahlenwerte ein

Mit ► gelangen Sie auf die Zahl, die Sie eingeben wollen. Der blinkende Cursor steht auf der ersten Ziffer.

Mit den **Cursortasten ◄ und ▶** wählen Sie eine Eingabeposition im Display aus.

Wenn Sie *Leitfähigkeitswerte und Zellkonstanten* editieren, erscheint das Symbol ≒ vor dem Zahlenwert.

Sie können jetzt mit den Cursortasten den Eingabebereich (Dezimalstelle und Meßwertzeichen) verschieben.

spe Kennli	nenparameter	59.00mS/cm
Anfang Ende	<u>0(4)m</u> A ≍ 20mA	⊞.047 mS⁄cm 100.0 mS∕cm
« zurück	[par]	

spe Kennli	nenparameter	59.00mS/cm
Anfang Ende	<u>0(4)m</u> n ≍ 20mn	01.04 mS/cm 100.0 mS/cm
« zurück	[par]	

Der Eingabebereich ändert sich auf 00,00 ... 99,99 mS/cm.

Die Ziffernfolge "104" bleibt um eine Dezimalstelle verschoben im Display, die rechte Stelle ("7") wird gelöscht.

spe Kennli	nenparameter	59.00mS/cm
Anfang Ende	<u>0(4)m</u> A ≍ 20mA	1.04团 mS∕cm 100.0 mS∕cm
« zurück	[par]	

Wenn der Cursor auf der rechten Stelle steht, verschiebt ► den Eingabebereich zur nächstniedrigeren Dezimalstelle.

spe Ken	nlinenparameter	59.0	1mS/cm
Anfang Ende	0(4)mA 20mA	≍ 047.0 μ 100.0 m	S∕om S∕om
« zurü	ck [par]		

Der Eingabebereich ändert sich auf 000,0 ... 999,9 μ S/cm.

Die Ziffernfolge "047" bleibt um eine Dezimalstelle verschoben im Display, die linke Stelle ("1") wird gelöscht.

Die Ziffern, die rechts oder links herausgeschoben werden, werden gelöscht (auf Null gesetzt). Es wird also immer der angezeigte 4-stellige Wert parametriert.

Mit **par** können Sie den alten Wert wieder in die Anzeige holen, wenn Sie noch nicht **enter** gedrückt haben.

Mit den **Rolltasten** ▲ und ▼ können Sie die Ziffern 0 ... 9 durchrollen und das Vorzeichen wechseln.

So ändern Sie ein Vorzeichen

Mit \blacktriangle oder \blacktriangledown wird zwischen "+" und "-" umgeschaltet.

Ein Beispiel

50 57mC/am

Im *Beispiel* soll der Temperatur-Alarm "Warnung Limit Hi" von 50 auf 67 °C verändert werden.

Durch zweimaliges Drücken von ► steht der blinkende Cursor auf der Ziffer "5".

Einmal ▲ drücken ("6"), einmal ► drücken, der blinkende Cursor steht auf der Ziffer "0", dreimal ▼ drücken ("7").

Mit der Menütaste (**par**) bleibt die alte Einstellung unverändert erhalten.

Mit **enter** wird der neue Zahlenwert übernommen.

Temperatur-Alarm sin Aus	spe remperator Atarm		00.00m0/ 0m
Ausfall Limit Lo +000.0 °C Warnung Limit Lo +010.0 °C Marnung Limit Hi +050.0 °C Ausfall Limit Hi +095.0 °C « zurück [par]	Temperatur-Alarm Ausfall Limit Lo Warnung Limit Lo Marnung Limit Hi Ausfall Limit Hi « zurück [par]	+000 +010 +050 +095	Aus 0 °C 0 °C 0 °C

01.

So bleibt die alte Einstellung erhalten

Toppopotup

spe Temperatur-Alarm	58.54mS/cm
Temperatur-Alarm Ausfall Limit Lo Warnung Limit Lo Marnung Limit Hi Ausfall Limit Hi « zurück [par]	Ein Aus +000.0 °C +010.0 °C +067.0 °C +095.0 °C

Diese Seite bleibt aus technischen Gründen leer.

3 Das Diagnosemenü

Das können Sie im Diagnosemenü tun

Im Diagnosemenü können alle relevanten Informationen über den Gerätestatus angezeigt werden.

- Die aktuelle Meldungsliste zeigt die Zahl der gerade aktiven Meldungen und die einzelnen Warnungs- oder Ausfall-Meldungen im Klartext.
- In den Meßstellendaten sehen Sie neben der Meßstellen-Nr. (nach DIN 19227) die parametrierte Zellkonstante, die parametrierten Grenzwerte, ggf. den Regler-Sollwert und ob die Sondenspülung eingeschaltet ist.
- Das Logbuch

zeigt Ihnen die letzten 200 Ereignisse mit Datum und Uhrzeit, z. B. Kalibrierungen, Warnungs- und Ausfallmeldungen, Hilfsenergieausfall usw. Damit ist eine Qualitätsmanagement-Dokumentation gemäß DIN ISO 9000 ff. möglich.

- In der Gerätebeschreibung erhalten Sie Informationen über Gerätetyp, Seriennummer und Optionen des Transmitters 7500.
- Mit der Gerätediagnose können Sie umfangreiche Tests durchführen, die die Funktion des Transmitters 7500 überprüfen.
 Damit ist eine Qualitätsmanagement-Dokumentation gemäß DIN ISO 9000 ff. möglich.

Die Geräteeinstellung und Parametrierung werden dabei nicht verändert.

diag Diagnose	‼ 119.3µS∕cm
<u>» aktuelle Meldungsliste</u>	3 Meldg.
» Meßstellendaten	
» Logbuch » Genätebesebneibung	
» Gerätediagnose	
« zurück zum Messen [dia	ag]

diag Meldungslist	e	t 119	.3µS∕cm
∎Warn Lo LF-Wert ■Ausf Lo LF-Wert ■Warn Strom1 <0/	4 mA		
« zurück [dia9]			

So gelangen Sie in das Diagnosemenü

Mit diag rufen Sie das Diagnosemenü auf.

Mit meas oder diag verlassen Sie das Diagnosemenü.

Die aktuelle Meldungsliste

Wählen Sie mit 🕨 oder enter "aktuelle Meldungsliste" aus.

Alle aktuellen Ausfall- und Warnungs-Meldungen werden angezeigt.

Zur Erklärung der Meldungen s. Kap. 11.

Mit **diag** gelangen Sie zurück in das Diagnosemenü.

Die Meßstellendaten

Wählen Sie mit vund enter "Meßstellendaten" aus.

Die Meßstellen-Nr. (nach DIN 19227) wird angezeigt.

Darunter sehen Sie die parametrierte Zellkonstante und welche Grenzwerte parametriert sind.

Wenn das Gerät mit Option 352 (Sondenspülung) ausgerüstet ist, können Sie sehen, ob die Sondenspülung eingeschaltet ist.

Wenn das Gerät mit Option 353 (Regler) ausgestattet und der Regler aktiv ist, wird der Regler-Sollwert angezeigt.

Wenn der Regler aktiv ist, werden die Grenzwerte nicht überwacht.

Mit diag gelangen Sie zurück in das Diagnosemenü.

Zellkonstante	+0.950 /cm
Grenzwert 1	+60.00 mS/cm
Grenzwert 2	+90.00 mS/cm
« zurück [diag]	[†][↓] rollen
diag Meßstellenda	aten Spülzyklus
† Zellkonstante	+0.950 /cm
Grenzwert 1	******** S/cm
Grenzwert 2	******** S/cm
Sondenspülung	(Ein)
« zurück [diag]	[¶][↓] rollen

52.08mS/cm

DUQDCMG-27.6

diag Meßstellendaten

Meβstelle

diag Meßstellendaten	52.98mS/cm
Meßstelle Zellkenstente	EGJ/1C227/14810
Grenzwert 1	*0.550 / Cm **.***** §/Cm
Grenzwert 2 1 Regler-Sollwert	
« zurück idiagi it	il V rollen

bet	Meßstellen-Nummer	52.97mS/cm
i	Eingabe 09AZ-+. mit den Tasten [†][↓]	/
Me	<mark>βstelle</mark> EGJ∕1C:	227/14810
~	zurück [par]	

So parametrieren Sie die Meßstellen-Nummer

In der Spezialistenebene wählen Sie den Menüpunkt "Meßstellen-Nummer".

Die Zeichen .0...9 A...Z – + / können mit den Rolltasten ausgewählt werden.

Geben Sie die Meßstellen-Nummer mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingabe mit **enter**.

Das Logbuch

Sie können das Logbuch nur nutzen, wenn Ihr Gerät mit der Option 354 ausgerüstet ist. Ohne diese Option steht "Logbuch (optionell)" im Menü, eine Anwahl ist nicht möglich.

Was ist das Logbuch?

Im Logbuch werden die letzten 200 Ereignisse mit Datum und Uhrzeit gespeichert und angezeigt. Während der Parametrierung, Kalibrierung oder Wartung auftretende Fehlermeldungen werden nicht aufgezeichnet.

Folgende Ereignisse werden aufgezeichnet:

- Gerät im Meßmodus
- · Ein- und Ausschalten des Gerätes
- Beginn von Warnungs- und Ausfall-Meldungen
- Ende von Warnungs- und Ausfall-Meldungen
- Sondenspülung aktiv
- Kalibrier-Meldungen, Zellkonstante
- Parametrierung, Kalibrierung, Wartung oder Diagnose aktiv
- Eingabe einer falschen Paßzahl

Das können Sie mit dem Logbuch tun

Mit den Einträgen im Logbuch kann eine Dokumentation zum Qualitätsmanagement gemäß DIN ISO 9000 ff. und **GLP/GMP** erstellt werden.

Die Einträge im Logbuch können *nicht verändert* werden!

Wenn das Gerät mit Option 351 (Schnittstelle) ausgerüstet ist (s. S. 9–48), können Sie den Inhalt des Logbuches auslesen und automatisch dokumentieren.

So zeigen Sie die Einträge im Logbuch an

Wählen Sie mit ▼ und **enter** "Logbuch" aus.

Mit den Rolltasten können Sie sich alle Einträge ansehen.

Mit **diag** gelangen Sie zurück in das Diagnosemenü.

So parametrieren Sie Uhr und Datum und Datumformat

In der Betriebs- oder Spezialistenebene wählen Sie den Menüpunkt "Uhr stellen".

Wählen Sie mit **▼** und **enter** Datumformat, Uhrzeit oder Datum aus.

Mit den Rolltasten und den Cursortasten stellen Sie den gewünschten Wert ein (s. S. 2–6). Bestätigen Sie die Eingabe mit **enter**.

55.28mS/cm

4SL04D60000/0▶

Softw: 6.0 353;354;359 Die Uhr beginnt auf dem eingestellten Wert zu laufen, wenn **enter** gedrückt wird. Sie können Uhrzeit und Datum in der Nebenanzeige darstellen, die Uhrzeit auch in der Meßwertanzeige (s. S. 2–1).

Die Gerätebeschreibung

Wählen Sie mit ▼ und **enter** "Gerätebeschreibung" aus.

Es werden angezeigt:

- Der Gerätetyp und die Programm-Modul-Kennzeichnung,
- die Seriennummer,
- Hardware- und Software-Version und die Geräte-Optionen.

(diag Logb	ouch		58.55mS/cm
t	05.02.93	14:48	DAusf Lo L	F-Wert
	05.02.93	14:47	Messung akt	iv
	05.02.93	14:47	Diagnose ak	ctiv
ŧ	05.02.93	14:47	Messung akt	io
	05.02.93	14:47	∎Warn Lo⊔L	F-Wert

spe Uhr stellen	53.06mS/cm
Ustumformat Di M.J.T./M/J Uhrzeit 09:53:37 Datum 07.12.93	M∕T∕J J-M-T
« zurück [par]	

eibuno

51

000580

Gerätebeschr

diag

Ūē

Gerätetyp

sion

Optionen

Seriennümmer

« zurück [diag]

58.56mS/cm

Mit **diag** gelangen Sie zurück in das Diagnosemenü.

Die Software-Version muß mit der Version übereinstimmen, die unten auf der zweiten Seite dieses Handbuchs angegeben ist.

Die Optionen für die *Hilfsenergie* werden *nicht* angezeigt. Sie sind auf dem Typschild (zwischen den Pg-Verschraubungen) vermerkt.

Die Gerätediagnose

Was Sie mit der Gerätediagnose tun können

Mit der Gerätediagnose können Sie umfangreiche Tests durchführen, die die Funktion des Transmitters 7500 überprüfen.

Damit ist eine Qualitätsmanagement-Dokumentation gemäß DIN ISO 9000 ff. möglich.

Die Geräteeinstellung und Parametrierung werden dabei nicht verändert.

So führen Sie die Gerätediagnose durch

Wählen Sie mit ▼ und **enter** "Gerätediagnose" aus.

Sie sehen, wann jeder Test zuletzt durchgeführt wurde und mit welchem Ergebnis.

"RAM-Test", "EPROM-Test" oder EEPROM-Test" aus.

Mit **enter** wird der Testablauf gestartet. Ein Balken zeigt den Test-Fortschritt an.

Wenn nach Ablauf des Tests im Menü "Ausfall" erscheint, muß das Gerät zur Reparatur zum Hersteller eingeschickt werden.

Der Display-Test

Wählen Sie mit ▼ "Display-Test" aus.

Mit enter wird der Testablauf gestartet.

Das Display zeigt mehrere Testmuster, mit denen Sie überprüfen können, ob alle Bildpunkte, Zeilen und Spalten einwandfrei arbeiten.

diag Gerätediagnose

Der Speichertest

Wenn die Testmuster Störungen zeigen, sollte das Gerät zur Reparatur zum Hersteller eingeschickt werden.

Der Tastaturtest

Wählen Sie mit ▼ "Tastatur-Test" aus.

Mit enter wird der Testablauf gestartet.

Sie müssen alle Tasten *einmal* drücken. Gedrückte Tasten werden im Display invertiert angezeigt.

Wenn die Sie alle Tasten gedrückt haben, und im Menü "Tastatur-Test Ausfall" erscheint, muß das Gerät zur Reparatur zum Hersteller eingeschickt werden.

Mit **diag** gelangen Sie zurück in das Diagnosemenü.

4 Das Wartungsmenü

Das können Sie im Wartungsmenü tun

Im Wartungsmenü sind alle Funktionen zur Wartung der Sensoren und zur Einstellung angeschlossener Meßgeräte zusammengefaßt. Der Zugang zum Wartungsmenü kann durch eine Paßzahl geschützt werden.

- Die Meßstellen-Wartung erlaubt den Ausbau der Meßzelle.
- Mit der Sondenspülung (Option 352) kann die Meßzelle automatisch gespült und gereinigt werden: s. S. 9–43.
- Die Widerstandsmessung erlaubt die direkte Anzeige des ohmschen Widerstandes am Meßeingang.
- Der Stromgeber erlaubt die manuelle Einstellung der Ausgangsströme (1 und 2) zur Einstellung und Überprüfung angeschlossener Peripheriegeräte (z. B. Anzeiger oder Schreiber).
- Der Temperaturfühler-Abgleich ermöglicht die individuelle Kalibrierung desTemperaturfühlers, um die Genauigkeit der Leitfähigkeitsmessung zu erhöhen (nur wirksam bei eingeschaltetem Meßmedium-Tk).
- Wenn das Gerät mit der Reglerfunktion (Option 353) ausgerüstet ist, können Sie die Reglerstellgröße Y manuell vorgeben.

Nur bei Option 352: Im Untermenü "Meßstellen-Wartung" ist der Kontakt "Sonde" aktiv. Es wird kein timergesteuerter Spülzyklus gestartet (s. S. 9–43).

maint Wartung	62.49mS/cr
» Meßstellen-Wartung » Widerstandsmessung	
» Stromgeber	

- » Abgleich Tempfühler » Regler manuell « zurück zum Messen [maint]

maint Wartung	62.51mS/cm
» Meßstellen-Wartung » Widerstand » Stromgeber Paßzahl:	2958
» Regler manuell	. 7

<u> « zurück zum Messen</u> <u>Emaint</u>

maint Meßstellen-Wartung

« zurück [maint]

62.52mS/cm

So gelangen Sie in das Wartungsmenü

Mit **maint** wird das Wartungsmenü aufgerufen.

Wenn eine Paßzahleingabe gefordert wird, müssen Sie die Wartungs-Paßzahl kennen:

Geben Sie die Wartungs-Paßzahl mit den Rolltasten und den Cursortasten ein (s. S. 2-6) und bestätigen Sie die Eingabe mit enter .

In der Spezialistenebene kann die Wartungs-Paßzahl parametriert oder abgeschaltet werden (s. S. 8-4).

Die Meßstellen-Wartung

Wählen Sie mit
 oder enter "Meßstellen-Wartung" aus.

Jetzt können Sie die Meßzelle ausbauen, um sie zu reinigen oder auszuwechseln.

Der Ausgangsstrom (1 und 2) und die Reglerstellgröße sind auf dem letzten Wert eingefroren, die Grenzwertkontakte sind inaktiv, der NAMUR-Kontakt "Funktionskontrolle" ist aktiv.

Wenn Ihr Gerät mit Option 352 (Sondenspülung) ausgerüstet ist, erhalten Sie eine der beiden folgenden Anzeigen.

Die Sondenspülung ist in der Parametrierung ausgeschaltet.

Weitere Informationen finden Sie auf S. 9-43.

Die Sondenspülung ist eingeschaltet. Sie können einen Spülzyklus starten: Gehen Sie mit 🔺 auf "Sondenspülung starten" und bestätigen Sie mit enter . Nach Ablauf des Spülzyklus geht das Gerät in den Meßmodus.

Mit maint gelangen Sie zurück in das Wartungsmenü.

Mit **meas** gelangen Sie zurück in den Meßmodus. Dabei werden Sie nochmals gefragt, ob Sie die Funktion verlassen wollen. Wenn ja, gehen Sie mit auf "Ja" und bestätigen mit enter.

Gerät mit Sondenspülung (Option 352)

Ausgangsstrom, Regler eingefroren Grenzwerte inaktiv

maint	Meßstellen-Wartung	62.52mS/cm
• Ausg I Gren	angsstrom, Regler einge zwerte inaktiv	efroren
Sond	enspülung aus	
« zurü	ck [maint]	
maint	Meßstellen-Wartung	62.52mS/cm
e Ausa	angsstrom, Regler einge	efroren
I Gren Kont Sonden	zwerte inaktiv akt Sonde aktiv! spälung starten	
Kont Sonden Handbe	zwerte inaktiv akt Sonde aktiv! spülung starten tätigung Hus Spülen gkulmaint!	Reinigen

maint Widerstandsmessung	61.64mS/cm			
• Ausgangsstrom, Regler eingefroren I Grenzwerte inaktiv The Ous				
Widerstand 016.2	Ω			

Die Widerstandsmessung

Wählen Sie mit ▼ und **enter** "Widerstandsmessung" aus.

Jetzt wird der am Meßeingang angeschlossene Widerstand direkt angezeigt. Damit können Sie die Meßeinrichtung überprüfen, indem z. B. ein bekannter ohmscher Widerstand an Stelle der Meßzelle angeschlossen wird.

Die Zellkonstante und der Tk werden nicht in den angezeigten Widerstandswert eingerechnet! Der Ausgangsstrom (1 und 2) ist eingefroren.

Mit **maint** gelangen Sie zurück in das Wartungsmenü.

Mit **meas** gelangen Sie zurück in den Meßmodus. maint

Stromgeber

<u>Ausgangsstrom 1</u>

Ausgangsstrom 2 « zurück [maint]

Die Stromgeberfunktion

58.56mS/cm

In der Stromgeberfunktion folgen die Ausgangsströme *nicht* mehr dem Meßwert! Die Werte können manuell vorgegeben werden. Der NAMUR-Kontakt "Funktionskontrolle" ist aktiv.

Daher muß sichergestellt sein, daß die angeschlossenen Geräte (Meßwarte, Regler, Anzeiger) den Stromwert nicht als Meßwert interpretieren!

Wählen Sie mit ▼ und **enter** "Stromgeber" aus.

Jetzt können Sie die Werte für den Ausgangsstrom 1 (und 2) manuell einstellen, um angeschlossene Peripheriegeräte zu überprüfen.

Geben Sie den gewünschten Stromwert mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingabe mit **enter**.

maint	Stromgeber	52.12mS/cm
e Aus	gangsstrom einstellba	ar 020.5mA
.	Funktion abbrechen; ist die Anlage meßbe Ja Nein	ereit ?

• Ausgangsstrom einstellbar 0..20.5mA] übernahme mit [enter]

> 10.79 mA 06.07 mA

> > Mit **maint** gelangen Sie zurück in das Wartungsmenü.

Mit **meas** gelangen Sie zurück in den Meßmodus. Dabei werden Sie nochmals gefragt, ob Sie die Funktion verlassen wollen. Wenn ja, gehen Sie mit ◀ auf "Ja" und bestätigen mit **enter**.
Der Temperaturfühler-Abgleich

Diese Funktion dient dazu, die individuelle Toleranz des Temperaturfühlers und den Einfluß der Zuleitungswiderstände abzugleichen, um die Genauigkeit der Temperaturmessung zu erhöhen. Damit werden bei eingeschaltetem Meßmedium-Tk die Genauigkeit des angezeigten Leitfähigkeitswertes und vor allem der Konzentrationsbestimmung erhöht.

Der Abgleich darf nur erfolgen, wenn eine genaue Messung der Prozeßtemperatur mit einem kalibrierten Vergleichsthermometer erfolgt ist! Der Meßfehler des Vergleichsthermometers sollte unter 0,1 °C. liegen.

Ein Abgleich ohne genaue Messung kann den angezeigten Meßwert u. U. stark verfälschen!

Zur Erleichterung des Abgleichvorgangs parametrieren Sie "Meßwertanzeige: Meßgröße °C" (s. S. 9–10).

maint	Abgleich	Tempfühler	58.56mS/cm

• Fühlertoleranz- u.Zuleitungsabgleich 1 Gemessene Prozeßtemperatur eingeben

Installationsabgleich Ein Aus

« zurück [maint]

maint	Abgleich	Tempfühler	25.1°C
• Fühl I Geme	ertoleran: ssene Pro:	z- u.Zuleit zeßtemperat	ungsabgleich ur eingeben
Instal P « zurü	lationsaby nozesteme: ck [maint	aleich E enatur: +(in Aus 024.7 °C

Wählen Sie mit ▼ und **enter** "Abgleich Tempfühler" aus.

Oben rechts wird die *vom Temperaturfühler gemessene Temperatur* angezeigt, wenn die Meßwertanzeige entsprechend parametriert wurde.

Wenn der Abgleich aktiviert werden soll, gehen Sie mit \triangleleft auf "Installationsabgleich Ein" und bestätigen mit **enter**.

Geben Sie die mit dem Vergleichsthermometer gemessene Prozeßtemperatur mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingabe mit **enter**.

Oben rechts wird jetzt die vom Temperaturfühler gemessene, abgeglichene Temperatur angezeigt.

Der zulässige Abgleichbereich beträgt ± 5 °C um den Meßwert des Temperaturfühlers.

Mit **maint** gelangen Sie zurück in das Wartungsmenü.

Mit **meas** gelangen Sie zurück in den Meßmodus.

Manuelle Eingabe der Reglerstellgröße

Wenn das Gerät mit der Reglerfunktion (Option 353 oder Option 483) ausgerüstet und der Regler in der Parametrierung eingeschaltet ist, können Sie zu Testzwecken oder zum Anfahren eines Prozesses die Stellgröße Y manuell einstellen.

Wenn Sie die Reglerstellgröße manuell einstellen, folgt die Stellgröße *nicht* mehr der Regelgröße!

Daher muß sichergestellt sein, daß die angeschlossenen Stellglieder und der Regelkreis entsprechend überwacht werden!

Wählen Sie mit ▼ und **enter** "Stellgröße manuell" aus.

Jetzt können Sie die Stellgröße manuell im Bereich –100 % ... +100 % vorgeben, um z. B. angeschlossene Stellglieder zu überprüfen.

Geben Sie die gewünschte Stellgröße mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingabe mit **enter**.

Mit **maint** gelangen Sie zurück in das Wartungsmenü.

Mit **meas** gelangen Sie zurück in den Meßmodus. Dabei werden Sie nochmals gefragt, ob Sie die Funktion verlassen wollen. Wenn ja, gehen Sie mit ◀ auf "Ja" und bestätigen mit **enter**.

maint Regler manuell	52.12mS/cm
● ∢Kontakt 2: -1000 ?	
▲ ♦Kontakt 1: 0+100 >	
Stellgröße manuell +062	2.8 %
« zurück [maint]	

maint	Regler manuell 52.10)mS/cm
. • . ⊀K	Contakt 2: -1000 %	
	Funktion abbrechen; ist die Anlage meßbereit ? Ja Nein	

5 Die Anzeige der Parametrierung

(Gesamtdaten)

[par]

anz

bet spe

Das können Sie in der Anzeigeebene tun

In der Anzeigeebene können Sie die gesamte Parametrierung des Gerätes ansehen. Die Parametrierung kann nicht verändert werden!

So gelangen Sie in die Anzeigeebene

Mit par rufen Sie das Parametriermenü auf.

Mit meas verlassen Sie das Parametriermenü.

anz Anzeigeebene	58.55mS/cm
 X Meswertanzeige > Eingangsfilter > Temperaturerfassung > Tk Meßmedium > Kalibrierlösung > Konzentration (optic 	onell)

Parametrierung

» Betriebsebene (Betriebsdaten) » Spezialistenebene (Gesamtdaten)

Anzeigeebene

« zurück zum Messen

Wählen Sie mit ▶ oder **enter** "Anzeigeebene (Gesamtdaten) " aus.

Mit **par** gelangen Sie zurück in das Parametriermenü.

Sie können jetzt alle Einstellungen ansehen

So wählen Sie einen Menüpunkt aus

Mit den **Rolltasten** ▲ und ▼ wählen Sie eine Displayzeile aus. Die ausgewählte Zeile wird invertiert (dunkel unterlegt) dargestellt.

Die Rolltasten verfügen über eine Repeat-Funktion:

Bei längerem Drücken laufen die Zeilen durch.

Die Pfeile "↑" und "↓" zeigen an, daß noch mehr Menüzeilen durch Rollen erreichbar sind.

Die Symbole \ll und \gg am Anfang der Displayzeile zeigen an, daß die Menüebene mit den Cursortasten \triangleleft und \blacktriangleright gewechselt werden kann:

- ≫ mit ▶ oder enter gelangen Sie zur nächsten (tieferen) Menüebene,

Ein Beispiel

Sie wollen die Parametrierung für den Temperatur-Alarm ansehen.

Rufen Sie mit par das Parametriermenü auf.

Wählen Sie mit ► oder **enter** "Anzeigeebene (Gesamtdaten) " aus.

par Parametrierung	58.55mS/cm
» Anzeigeebene (Gesam » Betriebsebene (Betriebs » Spezialistenebene (Gesam « zurück zum Messen [par]	t <mark>daten) anz</mark> sdaten) bet tdaten) spe

anz Anzeigeebene	58.55mS/cm
 » MeBwertanzeige » Eingangsfilter » Temperaturerfassung » Tk MeBmedium » Kalibrierlösung > Konzentration (optic 	onell)

Mit den **Rolltasten** ▲ und ▼ wählen Sie "Alarmeinstellungen" aus. Die ausgewählte Zeile wird invertiert (dunkel unterlegt) dargestellt.

Die Rolltasten verfügen über eine Repeat-Funktion:

Bei längerem Drücken laufen die Zeilen durch.

	anz	ĥ	Anze:	igee	bene				58.61mS/cm
t	0	»	Kon:	zenți	rati	on	(opt	ic	onell)
	•	\gg	Stro	omei	ngạn	9			
	•	×	HUS	gang:	sştrj	om_	1		
	Ξ.	<i>>></i>	HUS	anig Smeil	né é	N N N	ngen		
ŧ	•	»	NAMU	JR-K	onta	ktë			

anz	Alarmeinstellungen	58.56mS/cm
>> >> >>	Leitfähigkeits-Alarm Temperatur-Alarm Zellkonstanten-Alarm Stromeingangs-Alarm	(Ein) (Ein) (Ein) (Aus)

anz Alarmeinstellungen	58.56mS/cm
» Leitfähigkeits-Alarm	(Ein)
» Temparatur-Alarm	(Ein)
» Zellkonstanten-Alarm	(Ein)
» Stromeingangs-Alarm	(Aus)

anz Temperatur-Alarm		58.55mS/cm
Temperatur-Alarm Ausfall Limit Lo Warnung Limit Lo Warnung Limit Hi Ausfall Limit Hi « zurück [par]	+000 +010 +050 +055	Aus 00 00 00 00 00 00

≫ mit ► oder enter gelangen Sie zur nächsten (tieferen) Menüebene

Mit den **Rolltasten** ▲ und ▼ wählen Sie "Temperatur-Alarm" aus. Die ausgewählte Zeile wird invertiert (dunkel unterlegt) dargestellt.

Sie können hier schon erkennen, ob der Alarm eingeschaltet ist.

≫ mit ► oder enter gelangen Sie zur untersten Menüebene

Hier wird die Parametrierung für den Temperatur-Alarm angezeigt.

≪ mit ◀ oder par gelangen Sie zurück zur vorigen (übergeordneten) Menüebene.

Mit meas verlassen Sie das Parametriermenü.

6 Die Kalibrierung

Warum muß kalibriert werden?

Jede **Meßzelle** besitzt eine individuelle **Zellkonstante**. Je nach Konstruktion der Meßzelle kann die Zellkonstante in einem weiten Bereich variieren. Da der Leitfähigkeitswert aus dem gemessenen Leitwert und der Zellkonstante errechnet wird, muß die Zellkonstante des Transmitters 7500 bekannt sein.

Bei der **Kalibrierung** oder **Zellenanpassung** wird entweder die bekannte (aufgedruckte) Zellkonstante der verwendeten Meßzelle in den Transmitter 7500 eingegeben oder diese automatisch durch Messung einer Kalibrierlösung mit bekannter Leitfähigkeit ermittelt.

Ohne Kalibrierung liefert jedes Leitfähigkeits-Meßgerät einen falschen Meßwert! Besonders nach dem Austausch der Meßzelle sollte eine Kalibrierung durchgeführt werden, wenn die Zellkonstanten der beiden Meßzellen nicht im Rahmen der geforderten Meßgenauigkeit übereinstimmen.

Die Überwachungsfunktionen für die Kalibrierung

Der Transmitter 7500 verfügt über Funktionen, die die ordnungsgemäße Durchführung der Kalibrierungen und den Zustand der Meßzelle überwachen. Damit ist eine Dokumentation zur Qualitätssicherung gemäß DIN ISO 9000 und nach **GLP/ GMP** möglich.

- Das Logbuch zeigt mit Datum und Uhrzeit an, wenn innerhalb der letzten 200 Ereignisse eine Kalibrierung durchgeführt wurde. Siehe S. 3–3.
- Für die Zellkonstante können Sie Grenzen für eine Warnungs- und Ausfallmeldung parametrieren (s. S. 9–26). Damit können Sie den bei der Kalibrierung ermittelten Wert für die Zellkonstante automatisch überwachen.

So	gelangen	Sie	in	das	Kalibrier-
me	nü				

Mit **cal** wird das Kalibriermenü aufgerufen.

Mit meas wird das Kalibriermenü verlassen.

Wenn eine Paßzahleingabe gefordert wird, müssen Sie die Kalibrier-Paßzahl kennen:

Geben Sie die Kalibrier-Paßzahl mit den Rolltasten ▲ ▼ und den Cursortasten ◀ ein (s. S. 2-6) und bestätigen Sie die Eingabe mit enter .

Nach Eingabe der Paßzahl ist der Ausgangsstrom (1 und 2) auf den letzten Wert eingefroren.

In der Spezialistenebene kann die Kalibrier-Paßzahl parametriert oder abgeschaltet werden (s. S. 8–4).

Wenn Sie das Kalibriermenü aktivieren (durch Druck auf cal bzw. nach Eingabe der Kalibrier-Paßzahl), ist der NAMUR-Kontakt "Funktionskontrolle" aktiv, bis Sie das Menü wieder verlassen. Wenn Sie einen Kalibrierablauf (Automatik, Manuell oder Dateneingabe) wählen, ist der Kontakt "Sonde" für die Dauer des Kalibrierablaufs aktiv (nur bei Option 352 (Sondenspülung), s. S. 9-43). Die Sondenspülung ist verriegelt, es wird kein Spülzyklus gestartet. Die Kalibrierung ist gesperrt, solange ein timergesteuerter Spülzyklus läuft.

al Automatik 52.13m	ns∕om Wer
e Kalibrierlösung NaCl gesättig	nt rung
Funktion abbrechen; Ei st die Anlage meßbereit ? Ja Nein	get gefr Wer gen

nn Sie meas drücken, bevor Sie die Kalibrieg durchgeführt haben, werden Sie nochmals agt, ob Sie die Kalibrierung abbrechen wollen. nn ja, gehen Sie mit 🔺 auf "Ja" und bestätimit enter

Die alte Zellkonstante bleibt gültig.

» Automatik m » Manuelle Vr » Dateneinga » Probenkali	nit Stan Paβz	dard-H ahl:	Kalibrie 1147	rlösg] ^{ösg}
<u>« zurück zum</u>	Messen _	[cal]		n l

Kalibrierung

C

59.00mS/cm

» Automatik mit Standard-Kalibrierlösg	Verfügung:	
» Manuelle vorgabe einer Kalibrierlosg » Dateneingabe – Zelle vorgemessen » Probenkalibrierung « zurück zum Messen [cal]	 Automatische Ermittlung der Zellkonstante mit Standard-Kalibrierlösung 	
	 Automatische Ermittlung der Zellkonstante durch manuelle Eingabe des Leitfähigkeitswer- tes der Kalibrierlösung 	
	 Dateneingabe (Zellkonstante) von vorgemesse- nen Meßzellen 	
	Kalibrierung durch Probennahme	
	Der zuletzt durchgeführte Kalibrierablauf wird au- tomatisch vorgeschlagen, wenn Sie cal drücken.	

Wenn Sie nicht kalibrieren wollen, drücken Sie cal oder gehen Sie mit ▼ auf "zurück zum Messen" und bestätigen mit enter .

Um eine Kalibrierung zu starten: Wählen Sie mit 🔻 👗 einen Kalibrierablauf und bestätigen Sie mit enter .

cal Automatik	59.01mS/cm
• Kalibrierlösung NaCl 1 Tk wird automatisch berü	0.1 mol∕l icksichtigt
gemessene Cal-Temperatur	∽ +025.4 °C
Kalibrierung weiter zu	ırück

cal Kalibrierung

Ein Informationsdisplay informiert Sie über den Zustand des Transmitters 7500 während der Kalibrierung und gibt Ihnen Hinweise zur Durchführung und zur parametrierten Kalibrierlösung.

So wählen Sie einen Kalibrierablauf

59.01mS/cm Es stehen vier verschiedene Kalibrierabläufe zur

- e mit
- e tswer-

Die Temperaturerfassung während der Kalibrierung

Wozu dient die Temperaturerfassung?

Die Erfassung der Temperatur der Kalibrierlösung ist wichtig, weil die Leitfähigkeit der Kalibrierlösung temperaturabhängig ist.

- Bei automatischer Kalibrierung muß daher die Temperatur der Kalibrierlösung bekannt sein, um deren temperraturrichtigen Leitfähigkeitswert aus der Tabelle zu ermitteln.
- Bei manueller Kalibrierung und bei Probennahme muß die Leitfähigkeit *temperaturrichtig* eingegeben werden.

In der Parametrierung legen Sie fest, ob die Cal-Temperatur automatisch gemessen wird oder manuell eingegeben werden muß (s. S. 9–12).

Automatische Temperaturerfassung

Bei der automatischen Erfassung der Cal-Temperatur mißt der Transmitter 7500 die Temperatur der Kalibrierlösung mit einem Pt 100, Pt 1000 oder Ni 100-Temperaturfühler.

Wenn Sie mit automatischer Temperaturerfassung bei der Kalibrierung arbeiten, *muß* ein Temperaturfühler in der Kalibrierlösung sein, der mit dem Temperatur-Eingang des Transmitters 7500 verbunden ist!

Ansonsten muß mit manueller Eingabe der Kalibriertemperatur gearbeitet werden.

Wenn "Cal-Temperatur automatisch" parametriert ist, erscheint "gemessene Cal-Temperatur" im Menü.

Wenn "Cal-Temperatur manuell" parametriert ist, erscheint "Kalibriertemperatur" im Menü.

Manuelle Temperatureingabe

Sie müssen die Temperatur der Kalibrierlösung manuell eingeben:

Messen Sie die Temperatur der Kalibrierlösung, z. B. mit einem Glasthermometer.

Gehen Sie im Kalibriermenü mit ▲ und ► zur Eingabe der Kalibriertemperatur.

Geben Sie die gemessene Temperatur mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingabe mit **enter**.

cal Automatik	59.01mS/cm
• Kalibrierlösung NaCl] Tk wird automatisch berg	0.1 mol∕l icksichtigt
Kalibriertemperatur +0	22.4 °C
Kalibrierung weiter zu	ırück

Automatische Kalibrierung mit Standard-Kalibrierlösung

Bei der automatischen Kalibrierung wird die Meßzelle in eine Standard-Kalibrierlösung getaucht. Der Transmitter 7500 berechnet anhand des gemessenen Leitwertes und der gemessenen Temperatur *automatisch* die Zellkonstante. Die Temperaturabhängigkeit des Leitwertes der Kalibrierlösung wird von dem Transmitter 7500 berücksichtigt.

Der Ausgangsstrom (1 und 2) und die Reglerstellgröße sind während der Kalibrierung auf dem letzten Wert eingefroren, die Grenzwertkontakte sind inaktiv, der Kontakt "Sonde" ist aktiv.

Das müssen Sie bei der Kalibrierung beachten

Verwenden Sie nur frische Kalibrierlösungen! Die verwendete Kalibrierlösung muß parametriert sein, s. S. 9–11.

Die Genauigkeit der Kalibrierung hängt entscheidend von der genauen Erfassung der Kalibrierlösungs-Temperatur ab: Anhand der gemessenen oder eingegebenen Temperatur ermittelt der Transmitter 7500 den Sollwert der Kalibrierlösung aus einer gespeicherten Tabelle.

Beachten Sie die Einstellzeit des Temperaturfühlers!

Zur genauen Bestimmung der Zellkonstanten warten Sie vor der Kalibrierung den Temperaturausgleich von Temperaturfühler und Kalibrierlösung ab.

So führen Sie eine automatische Kalibrierung durch

Meßzelle ausbauen Untermenü "Automatik" wählen **enter** drücken

cal Automatik 10.63mS/cm Meßzelle in Kalibrierlösung tauchen! • Ausgangsstrom, Regler eingefroren • Grenzwerte inaktiv Kalibrierung starten zurück

Meßzelle in die Kalibrierlösung tauchen enter drücken

ca	l Automatik	10.63mS/cm
i	Kalibrierung läuft Korrektur der Zellko	nstante
÷	Kalibriertemperatur Tabellenwert Lösung Finstellzeit	+025.0 °C 1.186 mS∕cm 0001 5

Mit **cal**, ggf. ▲ und **enter** gelangen Sie in das Untermenü "Automatik".

Die parametrierte Kalibrierlösung wird angezeigt.

Tauchen Sie die Meßzelle in die Kalibrierlösung und bestätigen Sie "Kalibrierung starten" mit **en-ter**.

Die Anzeige der **Einstellzeit** gibt an, wie lange die Meßzelle braucht, bis der Meßwert stabil ist.

 -	
Γ	IJ
	3

cal Automatik	10.63mS/cm
• Cal-Temperatur ¶ Leitfähigkeit Zellkonstante	+025.4 °C 10.76 mS/cm 1.012 /cm
Kalibrierung beer	den wiederholen

enter drücken Meßzelle gut abspülen und wieder einbauen

Falls der gemessene Leitwert oder die gemessene Temperatur stark schwanken, wird der Kalibriervorgang nach 2 min. abgebrochen.

Wenn die Kalibrierung erfolgreich beendet wurde, wird die ermittelte Zellkonstante angezeigt. Mit **enter** oder **cal** gelangen Sie zurück in das Kalibriermenü. Mit **meas** gelangen Sie in den Meßmodus.

Wenn Sie die Kalibrierung wiederholen wollen, gehen Sie mit ▶ auf "wiederholen" und bestätigen Sie mit **enter**.

Wenn eine Fehlermeldung erscheint, müssen Sie die Kalibrierung wiederholen.

Kalibrierung durch manuelle Eingabe des Leitfähigkeitswertes

Bei der Kalibrierung mit manueller Eingabe des Leitfähigkeitswertes der Kalibrierlösung wird die Meßzelle in eine Kalibrierlösung getaucht. Der Transmitter 7500 ermittelt ein Wertepaar Leitfähigkeit/Kalibriertemperatur. Dann ist der *temperaturrichtige Leitfähigkeitswert* der Kalibrierlösung manuell einzugeben. Lesen Sie dazu aus der Tk-Tabelle der Kalibrierlösung den Leitfähigkeitswert ab, der zur angezeigten Temperatur gehört. Zwischenwerte der Temperatur müssen interpoliert werden. Der Transmitter 7500 berechnet dann *automatisch* die Zellkonstante.

Der Ausgangsstrom (1 und 2) und die Reglerstellgröße sind während der Kalibrierung auf dem letzten Wert eingefroren, die Grenzwertkontakte sind inaktiv, der Kontakt "Sonde" ist aktiv (nur bei Option 352).

Verwenden Sie nur frische Kalibrierlösungen! Zur genauen Bestimmung der Zellkonstanten warten Sie vor der Kalibrierung den Temperaturausgleich von Temperaturfühler und Kalibrierlösung ab.

So führen Sie eine Kalibrierung mit Eingabe des Leitfähigkeitswertes durch

Mit **cal**, ggf. ▲ oder ▼ und **enter** gelangen Sie in das Untermenü "Manuelle Vorgabe".

Tauchen Sie die Meßzelle in die Kalibrierlösung und bestätigen Sie "Kalibrierung starten" mit **en**ter

Untermenü "Manuelle Vorgabe" wählen enter drücken

cal Manuelle Vorgabe	15.37mS/cm
Meβzelle in Kalibrierlös ● Ausgangsstrom, Regler ei ∎ Grenzwerte inaktiv	sung tauchen! Ingefroren
Kalibrierung starten z	urück

Meßzelle in die Kalibrierlösung tauchen enter drücken

Die Anzeige der **Einstellzeit** gibt an, wie lange die Meßzelle braucht, bis der Meßwert stabil ist.

Falls der gemessene Leitwert oder die gemessene Temperatur stark schwanken, wird der Kalibriervorgang nach 2 min. abgebrochen.

cal Manuelle Vorgabe15.37mS/cm• Kalibrierlösung temperaturrichtigI eingeben! Cal-Temperatur+025.4 °CLeitfähigkeit‡ 14.64 mS/cm Kalibrierungbeendenwiederholen	Wenn die Kalibrierung erfolgreich beendet wurde, wird die gemessene Leitfähigkeit angezeigt.
Leitfähigkeitswert der Kalibrierlösung ein- geben	Geben Sie jetzt den Leitfähigkeitswert der Kali- brierlösung mit den Rolltasten und den Cursorta- sten ein (s. S. 2–6) und bestätigen Sie die Ein- gabe mit enter .
cal Manuelle Vorgabe15.37mS/cm• Kalibrierlösung temperaturrichtig• eingeben! Cal-Temperatur+025.4 °C Zellkonstante1.000 /cmKalibrierungbeendenwiederholen	Die neu errechnete Zellkonstante wird angezeigt. Mit enter oder cal gelangen Sie zurück in das Kalibriermenü. Mit meas gelangen Sie in den Meßmodus.
enter drücken Meßzelle gut abspülen und wieder einbauen	Wenn Sie die Kalibrierung wiederholen wollen, gehen Sie mit auf "wiederholen" und bestäti- gen Sie mit enter .
cal Manuelle Vorgabe 12.76mS/cm • Warn Zellkonst • Kalibrierung beenden wiederholen	Wenn eine Fehlermeldung erscheint, müssen Sie die Kalibrierung wiederholen.

Kalibrierung durch Dateneingabe vorgemessener Meßzellen

Sie können direkt die Zellkonstante der verwendeten Meßzelle eingeben. Die Zellkonstante ist meistens auf der Meßzelle aufgedruckt. Die aufgedruckte Zellkonstante ist fertigungsbedingten Streuungen unterworfen und kann sich bei manchen Meßzellen auch durch die Einbauverhältnisse ändern. *Daher sollte die Meßzelle für genaue Messungen individuell kalibriert werden* (Automatik, Manuell oder Probennahme).

Die Kalibrierung der InPro[®] 7000 Meßzellen *muß* durch direkte Eingabe der Zellkonstante erfolgen, da Kalibrierlösungen im μ S/cm-Bereich nicht stabil sind.

Der Ausgangsstrom (1 und 2) und die Reglerstellgröße sind während der Kalibrierung eingefroren, die Grenzwertkontakte sind inaktiv, der Kontakt "Sonde" ist aktiv (nur bei Option 352).

cal Dateneingabe		15.37mS/cr
• Ausgangsstrom,] Grenzwerte inak	Regler ein tiv	ige froren
Zellkonstante « zurück [cal]	¤ 0. 950) /cm

So geben Sie vorgemessene Daten ein

Mit **cal** und **enter** gelangen Sie in das Untermenü "Dateneingabe". Geben Sie die Zellkonstante mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingaben mit **enter**.

Kalibrierung durch Probennahme

Wenn ein Ausbau der Meßzelle z. B. aus Sterilitätsgründen nicht möglich ist (bei biotechnischen Prozessen), kann die Zellkonstante der Meßzelle durch "Probennahme" ermittelt werden.

Dazu wird der aktuelle Meßwert des Prozesses von dem Transmitter 7500 gespeichert. Direkt danach entnehmen Sie dem Prozeß eine Probe. Der Wert der Probe wird im Labor ausgemessen.

Der Laborwert wird in den Transmitter 7500 eingegeben. Aus der Abweichung zwischen Meßwert und Laborwert errechnet der Transmitter 7500 die Zellkonstante der Meßzelle.

Der Ausgangsstrom (1 und 2) und die Reglerstellgröße sind während der Kalibrierung eingefroren, die Grenzwertkontakte sind inaktiv, der Kontakt "Sonde" ist aktiv (nur bei Option 352).

So führen Sie eine Kalibrierung mit Probennahme durch

Mit **cal** und **enter** gelangen Sie in das Untermenü "Probenkalibrierung".

Die gemessene Probentemperatur und der aktuelle Leitfähigkeitswert des Meßgutes werden angezeigt und gespeichert.

Außerdem wird angegeben, ob die Kalibrierung mit oder ohne Tk-Verrechnung durchgeführt wird (Parametrierung s. S. 9–15).

Mit **enter** oder **cal** gelangen Sie zurück in das Kalibriermenü.

Mit meas gelangen Sie in den Meßmodus.

Im Meßmodus weist die Anzeige "Probe" rechts oben im Display daraufhin, daß ein Probenwert für die Kalibrierung gespeichert wurde. Das Gerät erwartet die Eingabe des Laborwertes, mißt aber mit der alten Zellkonstanten weiter.

(Wenn das Gerät bei Schnittstellenbetrieb im Remotezustand ist, wird die Anzeige "Probe" durch "Remote" überdeckt.)

Entnehmen Sie dem Prozeß eine Probe und messen Sie den Wert der Probe bei möglichst genau der Temperatur, bei der die Probe entnommen wurde ("Probentemperatur", s. Display). Hierzu kann es erforderlich sein, die Probe im Labor entsprechend zu thermostatisieren. Die Temperaturkompensation des Vergleichsmeßgerätes muß abgeschaltet sein (Tk = 0 %/K).

ohne Tk-Verrechnung

mit Tk-Verrechnung $T_{Bez} = 25 \ ^{\circ}C$

mit Tk-Verrechnung $T_{Bez} \neq 25 \ ^{\circ}C$

Entnehmen Sie dem Prozeß eine Probe. Der Wert der Probe kann vor Ort mit einem Batterie-Meßgerät oder im Labor gemessen werden. Hierbei müssen sowohl im Vergleichsmeßgerät als auch im Transmitter 7500 die gleichen Werte für Bezugstemperatur und Temperaturkoeffizient parametriert sein. Außerdem sollte die Meßtemperatur möglichst mit der Probentemperatur (s. Display) übereinstimmen. Daher transportieren Sie die Probe möglichst in einem Isoliergefäß (Dewar).

Entnehmen Sie dem Prozeß eine Probe. Der Wert der Probe kann z. B. mit einem weiteren Transmitter 7500 (im Labor installiert) gemessen werden. Hierbei müssen sowohl im Vergleichsmeßgerät als auch im Transmitter 7500 die gleichen Werte für Bezugstemperatur und Temperaturkoeffizient parametriert sein. Außerdem sollte die Meßtemperatur möglichst mit der Probentemperatur (s. Display) übereinstimmen. Daher transportieren Sie die Probe möglichst in einem Isoliergefäß (Dewar).

Probenkalibrierung ist nur möglich, wenn das Prozeßmedium stabil ist, das heißt z. B. keine chemischen Reaktionen ablaufen, die die Leitfähigkeit verändern.

Bei höheren Temperaturen können auch Verfälschungen durch Verdunstung auftreten.

cal Probenkalibrierung	15.37mS/cm
 Probentemperatur +/ gespeicherte Probe ohne Temperaturkompens 	025.4 °C 15.36 mS/cm ation
Laborwert « zurück [cal]	14.96 mS⁄cm

Wenn Sie den Wert der Probe ermittelt haben, rufen Sie erneut das Untermenü "Probenkalibrierung" auf.

Die gemessene Probentemperatur und der gespeicherte Wert werden angezeigt. Außerdem wird angegeben, ob die Kalibrierung mit oder ohne Tk-Verrechnung durchgeführt wird. Geben Sie den gemessenen Wert der Probe ("Laborwert") ein. Die neue Zellkonstante wird automa-

Mit **enter** oder **cal** gelangen Sie zurück in das Kalibriermenü.

Mit meas gelangen Sie in den Meßmodus.

tisch berechnet und gespeichert.

Die Kalibrierung der Meßzellen

Meßzellen der Serie InPro[®] 7000 (2-Pol-Meßzellen)

Die Zellkonstante der Meßzellen der InPro[®] 7000 Serie ist von der Einbaugeometrie unabhängig und beträgt nominal 0,1 cm⁻¹. Die vorkalibrierte Zellkonstante M ist auf den Meßzellen aufgedruckt und kann direkt in das Meßgerät eingegeben werden. Die Meßzelle erfordert in der Regel keine weitere Kalibrierung.

Durch die Vorkalibrierung beim Hersteller und die einbauunabhängige Bauweise dieser Meßzellen kann eine sehr hohe Meßgenauigkeit erreicht werden.

Kalibrierlösungen sind im Meßbereich (μ S/cm) der InPro[®] 7000 Meßzellen nicht stabil und sind nicht zu empfehlen.

Meßzellen der Serie InPro[®] 7100 (4-Pol-Meßzellen)

Die Zellkonstante der Meßzellen der InPro[®] 7100 Serie beträgt nominal 0,6 cm⁻¹.

Die Zellkonstante der Meßzellen ist von der Einbaugeometrie abhängig. Wenn beim Einbau die Mindestabstände (s. S. 14–11) unterschritten werden, muß die Meßzelle im eingebauten Zustand kalibriert werden, da sich die Zellkonstante verändert hat.

Als Kalibrierablauf wählen Sie "Probennahme".

Bei freiem Einbau der Zelle (Mindestabstände überschritten), kann die auf der Meßzelle aufgedruckte Zellkonstante M direkt in das Meßgerät eingegeben werden. Durch herstellungsbedingte Toleranzen kann der exakte Wert der Zellkonstante bis zu 10% vom Nominalwert abweichen.

Für den Meßbereich dieser Meßzellen sind im Handel Kalibrierlösungen erhältlich oder können selber hergestellt werden. Zur Kalibrierung eignet sich z. B. 0,1 Mol/I NaCI-Lösung. Achten Sie beim Kalibrieren auf die Mindestabstände und auf die Einbaugeometrie.

7 Die Parametrierung in der Betriebsebene

Das können Sie in der Betriebsebene tun

In der Betriebsebene können Sie bestimmte Einstellungen (Menüpunkte) des Gerätes parametrieren.

Der Zugang zur Betriebsebene kann durch eine Paßzahl geschützt werden.

So gelangen Sie in die Betriebsebene

Mit par rufen Sie das Parametriermenü auf.

Mit meas verlassen Sie das Parametriermenü.

par Parametrierung 58.57mS∕cm » Anzeigeeben » Betriebsebe Paβzahl: 1246 et » Spezialiste ______ ≪ zurück zum Messen [par]

» Betriebsebene (Betriebsdaten) » Spezialistenebene (Gesamtdaten)

par Parametrierung

« zurück zum Messen

Anzeigeebene

58.55mS/cm

anz

bet

(Gesamtdaten)

[par]

Wählen Sie mit ▼ und **enter** "Betriebsebene" aus.

Geben Sie ggf. die **Betriebs–Paßzahl** mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingabe mit **enter**.

In der Spezialistenebene kann die Betriebs–Paßzahl parametriert oder abgeschaltet werden (s. S. 8–4).

Mit **par** gelangen Sie zurück in das Parametriermenü.

Sie können die markierten Menüpunkte parametrieren:

- Dieser Menüpunkt wurde in der Spezialistenebene freigegeben: er kann parametriert werden.
- Dieser Menüpunkt wurde in der Spezialistenebene gesperrt : er kann nicht parametriert werden. Beim Durchrollen wird der Menüpunkt übersprungen. Der Menüpunkt kann jedoch in der Anzeigeebene angesehen werden.

So wählen Sie einen Menüpunkt aus

Mit den **Rolltasten** ▲ und ▼ wählen Sie eine Displayzeile aus. Die ausgewählte Zeile wird invertiert (dunkel unterlegt) dargestellt.

Die Pfeile "↑" und "↓" zeigen an, daß noch mehr Menüzeilen durch Rollen erreichbar sind.

Die Symbole \ll und \gg am Anfang der Displayzeile zeigen an, daß die Menüebene mit den Cursortasten \triangleleft und \blacktriangleright gewechselt werden kann:

- ≫ mit ► oder enter gelangen Sie zur nächsten (tieferen) Menüebene,

Ein Beispiel

Sie wollen die Parametrierung für das Eingangsfilter ändern.

Mit par wird das Parametriermenü aufgerufen.

par Parametrierung	58.55mS/cm
» Anzeigeebene (Gesamt » Betriebsebene (Betriebs » Spezialistenebene (Gesamt	d aten) anz daten) bet daten) spe
« zurück zum Messen [par]	

Wählen Sie mit ▼ und **enter** "Betriebsebene" aus.

Geben Sie die **Betriebs–Paßzahl** mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingabe mit **enter**.

Wählen Sie mit ▼ den Menüpunkt "Eingangsfilter " aus.

≫ mit ► oder enter gelangen Sie zur nächsten (tieferen) Menüebene.

Wenn das Eingangsfilter aktiviert werden soll, gehen Sie mit \triangleleft auf "Impulsunterdrückung Ein" und bestätigen mit **enter**.

So bleibt die alte Einstellung erhalten

Mit **par** an Stelle von **enter** bleibt die alte Einstellung unverändert erhalten ("Undo"–Funktion).

≪ mit ◀ oder par gelangen Sie zurück zur vorigen (übergeordneten) Menüebene.

Mit meas wird das Parametriermenü verlassen.

« zurück [par]

8 Die Parametrierung in der Spezialistenebene

Vor der Inbetriebnahme des Transmitters 7500 muß eine *vollständige Parametrierung* durch einen Systemspezialisten erfolgen.

Das können Sie in der Spezialistenebene tun

In der Spezialistenebene können Sie alle Einstellungen des Gerätes einschließlich der Paßzahlen parametrieren. Außerdem können Sie mit der Marker-Parametrierung einzelne Menüpunkte sperren, die in der Betriebsebene nicht zugänglich sein sollen.

Bei Auslieferung des Geräts sind alle Menüpunkte freigegeben.

Der Zugang zur Spezialistenebene ist durch eine Paßzahl geschützt.

So gelangen Sie in die Spezialistenebene

Mit par rufen Sie das Parametriermenü auf.

Mit meas verlassen Sie das Parametriermenü.

Wählen Sie mit ▼ und **enter** "Spezialistenebene" aus.

Geben Sie die **Spezialisten-Paßzahl** mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingabe mit **enter**.

Mit **par** gelangen Sie zurück in das Parametriermenü.

×	Be [*] Spi	triebseb ezialist	ene () enebene	Betriebs (Gesamt	:daten) .daten)	bet spe
~	zu	∿ück zum	n Messen	[par]		
L						
Р	ar	Paramet	rierung		58.55	imS∕cm
»	An:	zeigeebe	ene	(Gesamt	daten)	anz

(Gecentdaten)

Parametrierung

» Onzejgeehene

» Anzeigeebene	(Gesamt	daten)	anz
» Spezialisten	Paßzahl:	1989	e e
« zurück zum Me	ssen [par]		

spe	Spezialistenebene 58.55mS/cr
i	Marker-Parametrierung: [+] Markerparametrierung [↑][↓] Einstellung ändern [enter] Einstellung setzen
- « z	urück [par] 🛛 » weiter [enter]

Die Marker-Parametrierung

Ein Informationstext erklärt die Marker-Parametrierung in der Spezialistenebene.

Was Sie mit der Marker-Parametrierung tun können

Mit der Marker-Parametrierung können Sie jeden Menüpunkt der obersten Menüebene der Parametrierung (außer "Paßzahl-Eingabe") für die Betriebsebene freigeben oder sperren:

 Dieser Menüpunkt ist freigegeben: er kann in der Betriebsebene parametriert werden.

 Dieser Menüpunkt ist gesperrt: er kann in der Betriebsebene *nicht* parametriert werden. Der Menüpunkt kann jedoch in der Anzeigeebene angesehen werden.

Bei Auslieferung des Geräts sind alle Menüpunkte freigegeben.

So parametrieren Sie den Marker

Gehen Sie mit ◀ auf den Marker. Mit ▼ oder ▲ können Sie den Menüpunkt freigeben (●) oder sperren (○). Bestätigen Sie die Einstellung mit **enter**.

So wählen Sie einen Menüpunkt aus

Mit den **Rolltasten** ▲ und ▼ wählen Sie eine Displayzeile aus. Die ausgewählte Zeile wird invertiert (dunkel unterlegt) dargestellt.

Die Pfeile "↑" und "↓" zeigen an, daß noch mehr Menüzeilen durch Rollen erreichbar sind.

Die Symbole \ll und \gg am Anfang der Displayzeile zeigen an, daß die Menüebene mit den Cursortasten \triangleleft und \blacktriangleright gewechselt werden kann:

- ≫ mit ► oder enter gelangen Sie zur nächsten (tieferen) Menüebene,

Ein Beispiel

58.55mS/cm

(Coenset also

Parametrierung

par

Sie wollen die Parametrierung für das Eingangsfilter ändern.

Mit **par** rufen Sie das Parametriermenü auf.

» Betriebsebene (Betriebsdaten) bet » Spezialistenebene (Gesamtdaten) spe « zurück zum Messen [par]	
par Parametrierung 58.55mS/cm » Anzeigeebene (Gesamtdaten) anz » Betriebseben Paßzahl: 1989 « zurück zum Messen [par]	 Wählen Sie mit ▼ und enter "Spezialistenebene" aus. Geben Sie die Spezialisten-Paßzahl mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingabe mit enter .
spe Spezialistenebene 58.55mS/cm Marker-Parametrierung: • [+] Markerparametrierung I [†][↓] Einstellung ändern [enter] Einstellung setzen « zurück [par] » weiter [enter]	Bestätigen Sie den Informationstext mit enter .
spe Spezialistenebene 58.55mS/cm • > Meβwertanzeige • > Singangsfilter • > Temperaturerfassung • > Tk Meβmedium • > Kalibrierlösung ↓ o > Konzentration (optionell)	 Wählen Sie mit ▼ den Menüpunkt "Eingangsfilter " aus. mit ► oder enter gelangen Sie zur nächsten (tieferen) Menüebene.
spe Eingangsfilter 58.55mS/cm Impulsunterdrückung Ein Aus « zurück [par]	Wenn das Eingangsfilter aktiviert werden soll, gehen Sie mit <i>auf</i> "Impulsunterdrückung Ein" und bestätigen mit enter .
So bleibt die alte Einstellung erhalten	Mit par an Stelle von enter bleibt die alte Ein- stellung unverändert erhalten ("Undo"-Funktion). ≪ mit ◀ oder par gelangen Sie zurück zur vorigen (übergeordneten) Menüebene.

Mit meas verlassen Sie das Parametriermenü.

Der Paßzahl-Schutz

Der Zugang zum Kalibriermenü, Wartungsmenü, zur Parametrierung in der Betriebsebene und in der Spezialistenebene kann jeweils durch eine Paßzahl geschützt werden. Sie können alle Paßzahlen individuell parametrieren oder abschalten (Die Spezialisten-Paßzahl ist nicht abschaltbar).

Bei abgeschalteten Paßzahlen besteht kein Schutz gegen unbefugten Zugang zu den Menüs!

Die werksseitig parametrierten Paßzahlen sind bei allen Geräten gleich. Es ist daher empfehlenswert, daß Sie Ihre eigenen Paßzahlen parametrieren.

So parametrieren Sie die Paßzahlen

Wählen Sie mit ▼ und **enter** "Spezialistenebene" aus.

Wählen Sie mit vund enter

"Paßzahl-Eingabe" aus.

Geben Sie die **Spezialisten-Paßzahl** mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingabe mit **enter**.

spe	Spezialistenebene	58.63mS/cm
† o	» Sondenspülung » Schnittstelle » Gerätediagnose	
0 4 0	» Uhr stellen » Meßstellen-Nummer » Paßzahl-Eingabe	

spe Paß	zahl-Eingabe	58.55mS/cm
cal	Kalibrierung	Ein Aus
maint	Wartung Papzahl ändern	Ein Aus 2958
bet	Betriebsebene	Ein Aus

Wählen Sie mit ▼ "cal", "maint" oder "bet" aus.

Sie können die Kalibrier-Paßzahl, die Wartungs-Paßzahl und die Betriebs-Paßzahl einzeln einoder ausschalten.

Nur wenn eine Paßzahl eingeschaltet ist, erscheint die Zeile "Paßzahl ändern". Die Paßzahl bleibt parametriert, auch wenn sie ausgeschaltet wurde.

Ändern Sie die Paßzahlen mit den Rolltasten und den Cursortasten (s. S. 2–6) und bestätigen Sie die Eingabe mit **enter**.

Mit **par** an Stelle von **enter** bleibt die alte Paßzahl unverändert erhalten ("Undo"-Funktion).

So bleibt die Paßzahl unverändert

Spezialistenebene ist dann nicht mehr möglich. Alle gesperrten (○) Menüpunkte können auch in der Betriebsebene nicht mehr parametriert wer-

So parametrieren Sie die Spezialisten-

Bei Verlust der Spezialisten-Paßzahl ist der Systemzugang gesperrt! Eine Parametrierung in der

Wenden Sie sich in diesem Fall an: Mettler Toledo GmbH Hotline Im Hackacker 15 8902 Urdorf Switzerland Tel.: +41-1-736 2214 Telefax: +41-1-736 2210

Paßzahl

den.

Wählen Sie mit ▼ und **enter** "spe" aus.

Ändern Sie die Spezialisten-Paßzahl mit den Rolltasten und den Cursortasten (s. S. 2–6) und bestätigen Sie die Eingabe mit **enter**.

Zur Sicherheit müssen Sie die Spezialisten-Paßzahl ein zweites Mal eingeben.

Wenn die zweite Eingabe nicht mit der ersten übereinstimmt oder Sie mit **par** abbrechen, bleibt die Spezialisten-Paßzahl unverändert.

Wenn Sie die Spezialisten-Paßzahl auf "0000" parametrieren, kann die Spezialistenebene ohne Zahleneingabe bei der Paßzahl-Abfrage, nur mit **enter**, erreicht werden.

Wenn Sie die Spezialisten-Paßzahl auf "0000" parametrieren, besteht kein Schutz gegen unbefugten Zugang zu den Menüs und zur Geräte-Parametrierung!

Unsachgemäße Veränderung der Parametrierung kann eine Fehlfunktion des Gerätes und falsche Meßwert-Ausgaben zur Folge haben!

spe	Paβzahl-Eingabe	58.55mS/cm
i	Bei Verlust der spe-Pa ist der Systemzugang g	βzahl jesperrt!
SP	e Spezialistenebene	1989
«	zurück [par]	
spe	Paβzahl-Eingabe	58.55mS/cm
i	Bei Verlust der spe-Pa ist der Systemzugang g	aßzahl Jesperrt!
	Eingabe wiederholen:	1989

[par]

zunück

Werksseitig parametrierte Paßzahlen

Bei Auslieferung des Gerätes sind folgende Paßzahlen parametriert:

- Kalibrier-Paßzahl: 1 1 4 7
- Wartungs-Paßzahl: 2 9 5 8
- Betriebs-Paßzahl: 1 2 4 6
- Spezialisten-Paßzahl: 1 9 8 9

9 Die Meßmöglichkeiten des Transmitters 7500

Die *Inbetriebnahme* des Transmitters 7500 darf nur durch ausgebildete Fachkräfte (VBG 4) unter Beachtung der Bedienungsanleitung erfolgen. Vor der Inbetriebnahme muß eine *vollständige Parametrierung* durch einen Systemspezialisten erfolgen.

Überblick

Der Transmitter 7500 verfügt über eine Vielzahl von Eigenschaften und Meßmöglichkeiten. In diesem Kapitel erfahren Sie

- welche Meßmöglichkeiten das Gerät bietet
- wie Sie das Gerät beschalten
- wie Sie das Gerät parametrieren

Die Hilfsenergieversorgung für den Transmitter 7500

Bevor Sie die Hilfsenergieversorgung anschließen, lesen Sie unbedingt Kap. 10 "Installationshinweise"!

Überzeugen Sie sich auf dem Typschild, daß das Gerät die richtige Netzspannung hat:

- 230 V AC
- 115 V AC (Option 363)
- 24 V AC/DC (Option 298)

Nach dem Anlegen der Hilfsenergie sind die Stromausgänge und die Kontakte für ca. 10 Sekunden auf dem Stand vor dem Hilfsenergieausfall eingefroren. Dies garantiert, daß nach dem Einschalten keine ungültigen Meldungen erzeugt werden.

Die einfache Leitfähigkeits-Meßstelle

Abb. 9–1, S. 9–3, zeigt die Beschaltung des Transmitters 7500 für eine einfache Leitfähigkeits-Meßstelle mit automatischer Temperaturerfassung und Auswertung des Leitfähigkeits-Signals durch einen angeschlossenen Schreiber.

Sie können **2-Pol-Meßzellen** oder **4-Pol-Meßzel-Ien** an den Transmitter 7500 anschließen. Die Wahl der Meßzelle hängt dabei vom Meßbereich ab:

- Zur Messung kleiner Leitfähigkeitswerte verwenden Sie vorzugsweise 2-Pol-Meßzellen (z. B. InPro[®] 7000 oder InPro[®] 7001, s. S. KEIN MERKER)
- Zur Messung großer Leitfähigkeitswerte verwenden Sie vorzugsweise 4-Pol-Meßzellen (z. B. InPro[®] 7100 oder InPro[®] 7104, s. S. KEIN MERKER ff)

Insbesondere bei 2-Pol-Meßzellen hängt der Meßbereich außer von der Zellkonstante auch von der Elektrodenoberfläche ab. Hinweise für die Auswahl der geeigneten Zellkonstante gibt z. B. DIN 38404 Teil 1.

Abb. 9–1 Leitfähigkeits-Messung mit Schreiberauswertung

Beschaltungsbeispiele

Leitfähigkeitsmessung mit der 2-Pol-Meßzelle InPro[®] 7000

Leitfähigkeitsmessung mit der 2-Pol-Meßzelle InPro[®] 7001

Leitfähigkeitsmessung mit den 2-Pol-Meßzellen InPro[®] 7002, 7003

Abb. 9–2 Beschaltungsbeispiel für andere 2-Pol-Koaxialmeßzellen

Leitfähigkeitsmessung mit den 4-Pol-Meßzellen InPro[®] 7100, 7104

4-Pol-Meßzelle

Abb. 9–3 Beschaltung des Transmitters 7500 mit einer 4-Pol-Meßzelle und Potentialausgleich

Die Meßwertanzeige

In der Parametrierung können Sie festlegen, welcher Meßwert im Meßmodus auf der großen Anzeige erscheinen soll. Folgende Meßgrößen können angezeigt werden:

- Leitfähigkeits-Meßwert
- Spezifischer Widerstand
- Gemessene Temperatur (°C)
- Uhrzeit
- Konzentration (nur Option 359, 360, 382)

So parametrieren Sie die Meßwertanzeige

bet Meßwertanzeige	42.78mS/cm
Mesoröße Szcm °C Zeit Blickwinkel –2 –1 Ø « zurück [par]	Ω•cm Gew% ■ +1 +2

Wählen Sie im Parametriermenü mit ▼ den Menüpunkt "Meßwertanzeige" und bestätigen Sie mit enter .

Wählen Sie mit ◀ und ► die Meßgröße aus, die im Meßmodus angezeigt werden soll, und bestätigen Sie die Auswahl mit **enter**. Die Meßgröße erscheint rechts oben im Display.

bet Meßwertanzeige	42.78mS/cm
Meβgröße S∕cm °C Zeit Blickwinkel -2 -1 Ø « zurück [par]	Ω•cm Gew% ∎ ±1 ∎ +2

Im Menüpunkt "Blickwinkel" können Sie den Blickwinkel des Displays verändern.

Wenn das Gerät sehr hoch oder sehr niedrig an einer Montagewand befestigt ist, können Sie den Blickwinkel des Displays für Ihre Erfordernisse optimieren.

Wählen Sie mit ◀ und ► den gewünschten Blickwinkel aus (+ bedeutet Blickwinkel nach oben und – Blickwinkel nach unten), und bestätigen Sie die Auswahl mit **enter**.

Die Veränderung sehen Sie sofort im Display.

Das Eingangsfilter

Zur Erhöhung der Störsicherheit der Leitfähigkeits-Messung kann ein Eingangsfilter eingeschaltet werden. Wenn das Filter eingeschaltet ist, werden kurzzeitige Störimpulse unterdrückt, langsame Meßwertänderungen jedoch erfaßt.

Wenn Sie schnelle Meßwertänderungen erfassen wollen, muß das Eingangsfilter abgeschaltet werden.

bet Eingangsfilter 42.78mS/cm

Impulsunterdrückung Ein Aus

« zurück [par]

bet Kalibrierlösung

Sättigung KCl

« zurück [par]

Lösung

So parametrieren Sie das Eingangsfilter

Wählen Sie im Parametriermenü mit ▼ den Menüpunkt "Eingangsfilter", und bestätigen Sie mit enter .

Die Kalibrierlösung für automatische Kalibrierung

Für die automatische Kalibrierung der Meßzelle muß die verwendete Kalibrierlösung angegeben werden.

So parametrieren Sie die Kalibrierlösung

Wählen Sie im Parametriermenü mit v den Menüpunkt "Kalibrierlösung", und bestätigen Sie mit enter.

Wählen Sie mit ◀ und ► die Kalibrierlösung aus, und bestätigen Sie die Auswahl mit **enter**.

Wählen Sie mit ◀ und ► die Konzentration der Kalibrierlösung aus, und bestätigen Sie die Auswahl mit **enter**.

42.73mS/cm

mo1/1

NaCl KOL

0.01 0.1 🔳

Die Temperaturtabellen der Kalibrierlösungen sind in Kap. 15 zusammengestellt.

Die Temperaturerfassung

Wozu dient die Temperaturerfassung?

Die Erfassung der Temperatur des Prozesses bzw. der Kalibrierlösung ist aus zwei Gründen wichtig:

 Kompensation der Temperaturabhängigkeit der Meßlösung:

Die Leitfähigkeit der Meßlösung ist temperaturabhängig. Durch Parametrierung eines Temperaturkoeffizienten für die Meßlösung und einer Bezugstemperatur können alle Leitfähigkeitswerte auf die Bezugstemperatur umgerechnet werden.

 Die Leitfähigkeit der Kalibrierlösung ist temperaturabhängig. Bei der Kalibrierung muß daher die Temperatur der Kalibrierlösung bekannt sein, um deren temperraturrichtigen Leitfähigkeitswert aus der im Gerät gespeicherten Tabelle zu ermitteln.

In der Parametrierung legen Sie fest, ob die Prozeß-Temperatur und/oder die Cal-Temperatur automatisch gemessen werden oder manuell eingegeben werden müssen.

Automatische Temperaturkompensation

Bei der automatischen Temperaturkompensation wird die Prozeßtemperatur mit einem Pt 100-, Pt 1000- oder Ni 100-Temperaturfühler von dem Transmitter 7500 gemessen.

Wenn Sie mit automatischer Temperaturkompensation arbeiten, *muß* ein Temperaturfühler im Prozeß sein, der mit dem Temperatur-Eingang des Transmitters 7500 verbunden ist! Wenn kein Temperaturfühler an dem Transmitter 7500 angeschlossen ist, muß mit manueller Eingabe der Meßtemperatur gearbeitet werden.

Abb. 9–1 zeigt, wie Sie den Temperaturfühler im **3-Leiter-Anschluß** an den Transmitter 7500 anschließen. Durch den 3-Leiter-Anschluß des Temperaturfühlers wird der Temperatur-Meßfehler eliminiert, der durch den Zuleitungswiderstand erzeugt wird. Die Leitungen zu den Klemmen 6 und 7 müssen den gleichen Querschnitt aufweisen.

Bei 2-Leiter-Anschluß wird der Pt 100/Pt 1000/ Ni 100 mit den Klemmen 6 und 7 verbunden. *Zwi*schen Klemme 7 und 8 muß eine Brücke eingesetzt werden.

So parametrieren Sie die Meßtemperatur-Erfassung

Wählen Sie im Parametriermenü mit ▼ den Menüpunkt "Temperaturerfassung" und bestätigen Sie mit **enter**. Wählen Sie mit ◀ und ► den verwendeten Temperaturfühler, bestätigen Sie mit **enter** und gehen Sie mit ▼ auf den Menüpunkt "Meßtemperatur". Wählen Sie mit ◀ und ► zwischen "Meßtemperatur auto" und "Meßtemperatur manuell" und bestätigen Sie mit **enter**.

bet Temperaturerfass	ung 42.78mS/cm
TempFühler Pt100 Meßtemperatur au	8 Philsis Ni100 Manuell
Cal-Temperatur au	o manuell
« zurück [par]	

Manuelle Temperaturkompensation

Manuelle Temperaturkompensation ist nur sinnvoll, wenn der Prozeß bei konstanter Temperatur läuft!

Wenn "Meßtemperatur manuell" parametriert ist, erscheint im Meßmodus "MAN.TEMP" unten rechts im Display. Der Hinweis "MAN.TEMP" erscheint nicht, wenn die Meßwertanzeige die Meßtemperatur zeigt. Sie können die parametrierte manuelle Temperatur in einer Nebenanzeige anzeigen (s. S. 2-1).

42.78mS/cm

Pt100 Pt1000 Ni100 manuell °C

manuell

. Ø

auto +025.

auto

Wenn "Meßtemperatur manuell" parametriert ist, läuft die automatische Temperaturmessung weiter, die Anzeige, Grenzwerte und Alarmmeldungen werden vom Meßwert (nicht von der manuell eingestellten Temperatur) gesteuert.

Sie müssen die Prozeßtemperatur eingeben:

Messen Sie die Temperatur des Meßgutes, z. B. mit einem Glasthermometer, oder

stellen Sie sicher, daß die Meßguttemperatur einen konstanten Wert hat, z. B. durch einen Thermostaten.

Geben Sie die gemessene Temperatur mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingabe mit enter .

So parametrieren Sie die Kalibriertemperatur-Erfassung

bet	Temper	rature	fassung	42.78mS/cm
Temp Meßt	Fühl empera	ler atur	Pt100 P auto	aluuu N i100 manuell
Cal-	Temper	atur	auto	manuell
« zu	rück	[par]		

Temperaturerfassung

manuell:

bet

Temp.-Fühler Meßtemperatur

Cal-Temperatur

« zurück [par]

Manuelle Kalibriertemperatur ist dann sinnvoll, wenn der Temperaturfühler bei der Kalibrierung im Prozeß verbleibt, die Meßzelle zur Kalibrierung aber ausgebaut wird.

Wählen Sie mit 🔻 den Menüpunkt "Cal-Temperatur".

Wählen Sie mit ◀ und ► zwischen "Cal-Temperatur auto" und "Cal-Temperatur manuell" und bestätigen Sie mit enter .

Die manuelle Eingabe der Kalibriertemperatur ist auf S. 6-4 beschrieben.

Temperaturkompensation für das Meßmedium

Die Leitfähigkeit der Meßlösung ist temperaturabhängig. Durch Parametrierung eines Temperaturkoeffizienten für die Meßlösung und einer Bezugstemperatur können alle Leitfähigkeitswerte auf die Bezugstemperatur umgerechnet werden. In der Parametrierung können Sie die Art der Temperaturkompensation wählen:

- Keine Temperaturkompensation
- Lineare Temperaturkompensation mit Eingabe des Temperaturkoeffizienten und der Bezugstemperatur.

Die Abhängigkeit des Leitfähigkeitswertes von der Temperatur ist mehr oder weniger nichtlinear. Legen Sie daher die Bezugstemperatur in die Nähe der Prozeßtemperatur. Dort sind die Abweichungen des linear kompensierten Meßwertes vom "wahren" Leitfähigkeitswert am kleinsten.

- Temperaturkompensation f
 ür nat
 ürliche W

 ässer nach EN 278888. Die Kompensation ist im Bereich 0 ... 35 °C wirksam, die Bezugstemperatur betr

 ägt 25 °C.
- Bei Opt. 392 zusätzlich: Temperaturkompensation für spurenverunreinigtes Reinstwasser (Kesselspeisewasser o. ä.) bis hinab zu ultrareinem H₂O mit 0,055 μS/cm (25 °C). Die Kompensation ist im Bereich von 0 ... 158 °C wirksam. Die Bezugstemperatur beträgt 25 °C. Je nach Art der vorhandenen VerunreinigungsSpuren können Sie wählen:
 - ammoniakalisches Reinstwasser (NH₃) für normales Kesselspeisewasser oder Kondensat, bei Leitfähigkeitsmessung ohne Kationenfilter
 - saures Reinstwasser (HCI), bei Leitfähigkeitsmessung hinter Kationenfilter
 - neutrales Reinstwasser (NaCl), bei Leitfähigkeitsmessung in der Wasseraufbereitung hinter Mischbettfilter
 - alkalisches Reinstwasser (NaOH)

bet Tk Meßmedium	42.70mS/cm
• EN 27888: natürliche Wä] (035°C) Bezugstempera	isser itur = 25°C
Tk-Verrechnung Aus	linear EN
Probenkalibr. Ohne TK « zurück [par]	mit Tk

bet Tk-linear	42.73mS/cm
T <u>k der Lösung</u> Bezugstemperatur	05.00 %∕K +025.0 °C
« zurück [par]	

So parametrieren Sie die Temperaturkompensation

Wählen Sie im Parametriermenü mit	▼	den
Menüpunkt "Tk Meßmedium " aus.		
Gehen Sie mit auf "Tk-Verrechn	ung	Aus",
"linear" oder "EN" (bei Opt. 392 auch ,	"Reir	nstw"),
und bestätigen Sie mit enter.		-

Wenn Sie "Tk-Verrechnung linear" parametriert haben, drücken Sie **enter**. Sie können jetzt den Tk der Lösung und die Bezugstemperatur mit den Rolltasten und den Cursortasten eingeben (s. S. 2–6). Bestätigen Sie die Eingaben mit **enter**.

EN 27888: natürliche Wässer (0..35°C) Bezugstemperatur = 25°C

Aus linear EN

ohne Ik mit Tk

Tk-Verrechnung » Tk-linear Probenkalior.

« zurück

Wenn Sie "Tk-Verrechnung Reinstw" parametriert haben (nur bei Opt. 392), drücken Sie **enter**. Sie können jetzt mit den Cursortasten die Art der Verunreinigung auswählen und die Auswahl mit **enter** bestätigen.

Wenn eine der oben genannten Tk-Verrechnungen eingestellt ist, erscheint "Probenkalibr." als zusätzlicher Menüpunkt.

Hier können Sie wählen, ob die Probenkalibrierung mit oder ohne Tk-Verrechnung durchgeführt wird (siehe S. 6–10).

Der Stromausgang

Am Stromausgang steht ein eingeprägter Normstrom vom 0 ... 20 mA oder 4 ... 20 mA potentialfrei zur Verfügung. Der Ausgangsstrom kann in einer Nebenanzeige dargestellt werden (s. S. 2–1).

Sie können dem Ausgangsstrom eine der folgenden Meßgrößen zuordnen:

- Leitfähigkeits-Wert
- Spez. Widerstand
- Gemessene Temperatur (°C)
- Konzentration (nur Option 359, 360)

Ausgangsstrom

» Kennlinienparameter « zurück [par]

spe

Meßgröße Ausgang Kennlinie Der Ausgangsstrom ist auf dem letzten Wert eingefroren:

- Während der Kalibrierung
- In der Stromgeberfunktion (manuelle Eingabe)
- Im Menü "maint Meßstellen-Wartung"
- Im Menü "maint Widerstandsmessung"
- Nach dem entsprechenden Schnittstellenbefehl

Ausgangskennlinien des Stromausgangs

Sie können für den Stromausgang drei Ausgangskennlinien parametrieren:

- linear
- trilinear (bilinear)
- Funktion

58.63mS/cm

SZCm °C Ω·cm Gew% 0...20mA 4...20m linear trilinear Funktion

Lineare Ausgangskennlinie

Die Meßspanne, die dem Strombereich 0 (4) ... 20 mA entspricht, können Sie bestimmen, indem Sie einen Anfangs- und einen Endwert für die Meßgröße parametrieren.

Die zulässigen Meßspannen finden Sie in den Technischen Daten, Kap. 14.

Trilineare Ausgangskennlinie

Die Meßspanne, die dem Strombereich 0 (4) ... 20 mA entspricht, können Sie bestimmen, indem Sie einen Anfangs- und einen Endwert für die Meßgröße parametrieren.

Außerdem können Sie zwei Eckpunkte parametrieren. Dadurch wird die Ausgangskennlinie in drei Bereiche unterschiedlicher Steigung aufgeteilt.

Beispiel:	
Anfang:	0 mS
1. Eckpunkt X:	20 mS/cm
1. Eckpunkt Y:	40 %
2. Eckpunkt X:	80 mS/cm
2. Eckpunkt Y:	60 %
Ende:	100 mS

Bilineare Ausgangskennlinie

Sie können eine bilineare Ausgangskennlinie parametrieren, indem Sie bei der trilinearen Ausgangskennlinie für beide Eckpunkte die gleichen X- und Y-Werte parametrieren.

Die Meßspanne, die dem Strombereich 0 (4) ... 20 mA entspricht, können Sie bestimmen, indem Sie einen Anfangs- und einen Endwert für die Meßgröße parametrieren.

Außerdem können Sie einen Eckpunkt parametrieren. Dadurch wird die Ausgangskennlinie in zwei Bereiche unterschiedlicher Steigung aufgeteilt.

Beispiel: Anfang: 1. Eckpunkt X: 1. Eckpunkt Y: 2. Eckpunkt X: 2. Eckpunkt Y: Ende:

0 mS 20 mS/cm 40 % 20 mS/cm 40 % 100 mS

Ausgangskennlinie,, Funktion"

Besonders bei der Messung kleiner Leitfähigkeiten ist es sinnvoll, über mehrere Dekaden zu messen und dennoch bei kleinen Leitfähigkeiten eine hohe Auflösung zu haben.

Mit der Ausgangskennlinie "Funktion" wird ein nichtlinearer Verlauf des Ausgangsstroms realisiert. Durch Parametrierung eines 50 %-Punktes wird eine beliebige Spreizung am Meßanfang und ein zusammengedrängtes Meßende erzielt. Damit können insbesondere *logarithmische Ausgangskennlinien* in guter Näherung erzeugt werden.

Die Meßspanne, die dem Strombereich 0 (4) ... 20 mA entspricht, können Sie bestimmen, indem Sie einen Anfangs- und einen Endwert für die Meßgröße parametrieren. Zusätzlich können Sie einen 50 %-Punkt (bei 10 bzw. 12 mA) parametrieren.

Zwischen Anfangs- und Endwert wird der Ausgangsstrom nach folgenden Formeln berechnet:

Ausgangsstrom $(0 \dots 20 \text{ mA}) =$

<u>(1 + K) * x</u> * 20 mA 1 + K * x Ausgangsstrom $(4 \dots 20 \text{ mA}) =$ (1 + K) * x * 16 mA + 4 mA 1 + K^{*} x K = E + A - 2 * X50%X50% – A x = M - AЕ Α A: Anfangswert bei 0 (4) mA X50%: 50%–Wert bei 10 (12) mA E: Endwert bei 20 mA M: Meßwert

Näherung einer logarithmischen Ausgangskennli-
nie im Bereich 10 ... 100 μ S/cm (eine Dekade):Anfang:10,0 μ S/cm50 %-Punkt:31,6 μ S/cmEnde:100,0 μ S/cm

Näherung einer logarithmischen Ausgangskennli-
nie im Bereich 1 ... 100 μ S/cm (zwei Dekaden):Anfang:1,00 μ S/cm50 %-Punkt:10,0 μ S/cmEnde:100,0 μ S/cm

Beispiel: logarithmische Ausgangskennlinie über eine Dekade

Beispiel: logarithmische Ausgangskennlinie über zwei Dekaden

Der 2. Stromausgang

Wenn Ihr Gerät mit der Option 350 ausgerüstet ist, können Sie eine weitere Meßgröße parallel über den zweiten Stromausgang ausgeben (s. a. Abb. 9–4, S. 9–24).

Wenn das Gerät keinen 2. Stromausgang besitzt, erscheint im Parametriermenü die Menüzeile "Ausgangsstrom 2 (optionell)".

So parametrieren Sie den Stromausgang

spe opezialiscenebene oo.oomovcm	vvarme
<pre>↑ o » Tk Meßmedium o » Kalibrierlösung o » Konzentration (optionell) • » Stromeingang • » Ausgangsstrom 1 ↓ • » Ausgangsstrom 2</pre>	nüpur ente
spe Ausgang 2 / Regler 58.60mS/cm Ausgang 2 Strom 2 Regler » Ausgangsstrom 2 « zurück [par]	Falls tion 4 ansta "Ausg ggf. n wahl
	"Ausg Für d
ieBørðβe Szom °C Ω·cm Gew% Ausgang Ø20mA 420mA Kennlinie linear trilinear Funktion » Kennlinienparameter	der S bestä
« Zurück Lparj	Gehe Wähle Strom 4 2

Wählen Sie im Parametriermenü mit ▼ den Menüpunkt "Ausgangsstrom 2" und bestätigen Sie mit enter .

Falls der Transmitter 7500 zusätzlich mit der Option 483 (Analogregler) ausgestattet ist, erscheint anstatt "Ausgangsstrom 2" das Zwischenmenü "Ausgang 2 / Regler". In diesem Fall wählen Sie ggf. mit ◀ "Strom 2" aus, bestätigen die Auswahl mit **enter** und öffnen das Parametriermenü "Ausgangsstrom 2" mit **enter**.

Für die Parametrierung als Regler s. S. 9–30.

Wählen Sie mit ◀ und ▶ die Meßgröße aus, der Sie den Ausgangsstrom zuordnen wollen und bestätigen Sie mit **enter**.

Gehen Sie mit ▼ zu "Ausgang". Wählen Sie mit ◀ und ▶ aus, ob der Stromausgang von 0 ... 20 mA oder von 4 ... 20 mA (Live Zero) arbeiten soll und bestätigen Sie mit **enter**.

Gehen Sie mit ▼ zu "Kennlinie". Wählen Sie mit ◀ und ▶ aus, ob die Kennlinie linear, trilinear oder eine Funktion sein soll und bestätigen Sie mit **enter**.

Gehen Sie mit ▼ zu "Kennlinienparameter" und bestätigen Sie mit **enter**.

linear

bet Kennli	nenparameter	43.68mS/cm
Anfang Ende	0(4)mA 20mA	0.000 µS/cm 100.0 mS/cm
« zurück	[par]	

Geben Sie den Anfangswert der Meßgröße (entspricht 0 bzw. 4 mA) und den Endwert der Meßgröße (entspricht 20 mA) mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingabe mit **enter**.

trilinear

bet K	ennlinen	parameter	43	.25mS/cm
<u>Ąnf</u> a	ng	0(4)mA	0.000	νS∕cm
1.EC 1.EC	kpunkt X kpunkt Y		+000.0	µs∕cm X
2.Ec	kpunkt X kpunkt Y		0.500 +000.0	µS∕cm %
↓ Ende		20mA	100.0	mS/cm

Geben Sie den Anfangswert der Meßgröße (entspricht 0 bzw. 4 mA) und den Endwert der Meßgröße (entspricht 20 mA) sowie die Eckpunkte mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingabe mit **enter**.

bilinear

bet	Kennline	nparameter		43.25mS	∕cm
Ar 1. 1. 2.	ifang Eckpunkt Eckpunkt Eckpunkt	0(4)mA X X	0000 +000).000 µS/c).500 µS/c)00.0 %).500 µS/c	0 00
∔∎⊒	Eckpunkt Ide	Y 20ma	+0)00.0 % .00.0 mS∕c	m

Geben Sie den Anfangswert der Meßgröße (entspricht 0 bzw. 4 mA) und den Endwert der Meßgröße (entspricht 20 mA) sowie die Eckpunkte mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingabe mit **enter** . *Parametrieren Sie jeweils den gleichen Wert für* 1. Eckpunkt X und 2. Eckpunkt X sowie 1. Eckpunkt Y und 2. Eckpunkt Y.

"Funktion"

bet	Kennlin	enparameter	w 42	.70mS/cm
An: 50: En:	fang K-Punkt de	0(4)mA 10(12)mA 20mA	10.00 31.60 100.0	S∕cm S∕cm S∕cm
<pre></pre>	zurück	[par]		

Geben Sie den Anfangswert der Meßgröße (entspricht 0 bzw. 4 mA) und den Endwert der Meßgröße (entspricht 20 mA) sowie den 50 %-Punkt mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingabe mit **enter**.

Fehlermeldungen bei der Parametrierung der Stromausgänge

Der Ausgangsstrom wird linear ausgegeben (nur mit Anfangs- und Endwert bestimmt) und die Alarmmeldung "Warn Stromparameter" wird erzeugt, wenn bei der Parametrierung eine der folgenden Bedingungen erfüllt ist:

Trilineare (bilineare) Kennlinie (steigend, Anfang < Ende):

- 1. Eckpunkt X ≤ Anfang
- 2. Eckpunkt $X \ge$ Ende
- 1. Eckpunkt X > 2. Eckpunkt X
- 1. Eckpunkt Y ≤ 0 %
- 2. Eckpunkt $Y \ge 100 \%$
- 1. Eckpunkt Y > 2. Eckpunkt Y

Bilineare Kennlinie (steigend, Anfang < Ende):

1. Eckpunkt X = 2. Eckpunkt X und
 1. Eckpunkt Y ≠ 2. Eckpunkt Y

Trilineare (bilineare) Kennlinie (fallend, Anfang > Ende):

(Anfang ist immer bei 0 % Ende ist immer bei 100 % 1. Eckpunkt X ist immer beim Anfang

- 2. Eckplunkt X ist immer beim Ende)
- 1. Eckpunkt $X \ge$ Anfang
- 2. Eckpunkt $X \leq$ Ende
- 1. Eckpunkt X < 2. Eckpunkt X
- 1. Eckpunkt $Y \le 0 \%$
- 2. Eckpunkt $Y \ge 100 \%$
- 1. Eckpunkt Y < 2. Eckpunkt Y

Bilineare Kennlinie (fallend, Anfang > Ende):

1. Eckpunkt X = 2. Eckpunkt X und
 1. Eckpunkt Y ≠ 2. Eckpunkt Y

Kennlinie "Funktion" (steigend, Anfang < Ende):

- 50%-Punkt \leq Anfang
- 50%-Punkt \geq Ende

Kennlinie "Funktion" (fallend, Anfang > Ende):

- 50%-Punkt \geq Anfang
- 50%-Punkt \leq Ende

Die Konzentrationsbestimmung

Sie können die Konzentrationsbestimmung nur nutzen, wenn Ihr Gerät mit der Option 359, 360 oder 382 ausgerüstet ist. Ohne diese Option steht "Konzentration (optionell)" im Menü, eine Anwahl ist nicht möglich.

Der Transmitter 7500 bestimmt aus den gemessenen Leitfähigkeits- und Temperaturwerten die Stoffkonzentration in Gewichtsprozent (Gew%) für H_2SO_4 , HNO₃, HCI (Opt. 359) oder HCI, NaOH, NaCI (Opt. 382) (bei Option 360: kundenspezifische Stoffgemische).

Voraussetzungen zur Konzentrationsbestimmung

Auf Seite 14–13 ist eine Tabelle mit den Konzentrationsmeßbereichen der vorgegebenen Stoffe abgebildet. Auf den Seiten 14–13 ff. ist der Verlauf der Leitfähigkeit für die drei Stoffe in Abhängigkeit von der Stoffkonzentration und der Mediumtemperatur wiedergegeben.

Für eine zuverlässige Konzentrationsbestimmung müssen Sie u. a. folgende Randbedingungen einhalten:

- Die Grundlage der Konzentrationsberechnung ist das Vorliegen eines reinen Zweistoffgemisches (z. B. Wasser–Salzsäure). Bei Anwesenheit anderer gelöster Stoffe, z. B. von Salzen, werden falsche Konzentrationswerte vorgetäuscht.
- Im Bereich kleiner Kurvensteigungen (z. B. an den Bereichsgrenzen) können kleine Änderungen des Leitfähigkeitswertes großen Konzentrationsänderungen entsprechen. Dies führt u. U. zu einer unruhigen Anzeige des Konzentrationswertes.
- Da der Konzentrationswert aus den gemessenen Leitfähigkeits- und Temperaturwerten berechnet wird, kommt einer genauen Temperaturmessung große Bedeutung zu. Daher ist auch auf thermisches Gleichgewicht zwischen Meßzelle und Meßmedium zu achten.

Besonders bei Konzentrationsbestimmungen ist ein Abgleich des Temperaturfühlers zur Erhöhung der Meßgenauigkeit anzuraten, s. S. 4–5.

bet Konzentrati	on		42.78mS/cm
Lösung	H2S04	HN03	HC1
Bereich HCl « zurück [par]	0-18%	22-3	9%

So parametrieren Sie die Konzentrationsbestimmung

Wählen Sie im Parametriermenü mit ▼ den Menüpunkt "Konzentration" und bestätigen Sie mit enter .

Wählen Sie mit ◀ und ► die Lösung aus und bestätigen Sie die Auswahl mit **enter**.

Wählen Sie mit ◀ und ► den Konzentrationsbereich aus und bestätigen Sie die Auswahl mit **enter**.

Der Konzentrationsalarm

Sie können für den Konzentrationswert Grenzen für eine **Warnungs**- und **Ausfallmeldung** parametrieren (s. S. 9–26).

bet	Konzentrations-A	larm	н	42.78mS/cm
Ко	<u>nzentrations-Alar</u>	n 📕 🖃	in	Aus
Au Ma	sfall Limit Lo roupg Limit Lo	021. 027.	0 Å	2
Ŵa	rnung Limit Hi	<u>030</u> .	ğ	2
Au	sfall Limit Hi zurück [par]	035.	.0	%

Wählen Sie im Untermenü "Alarmeinstellungen" mit ▼ "Konzentrationsalarm und bestätigen Sie mit **enter**.

Geben Sie die Warnungs- und Ausfallgrenzen mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingaben mit **enter**.

Konzentrationsbestimmung nicht benutzt

Nur wenn der Konzentrationsalarm eingeschaltet ist, werden auch die Bereichsgrenzen (0 ... 100 %) für Konzentrationsbestimmung des Transmitters 7500 überwacht.

Wenn Sie bei einem Gerät mit Option 359, 360 oder 382 die Konzentrationsbestimmung *nicht benutzen*, sollten Sie den Konzentrations-Alarm abschalten, da ansonsten bei bestimmten Leitfähigkeits-Meßwerten (z. B. > 800 mS/cm) die Fehlermeldung "Ausfall Konzentration" erzeugt würde.

Abb. 9–4 Meßstelle mit Durchflußüberwachung, Sondenreinigung, Rechneranschluß, Schreiber-Auswertung von Leitfähigkeit und Temperatur und Überwachung über NAMUR-Kontakte

Voll ausgebaute Meßstelle mit Nutzung aller Funktionen

Abb. 9–4, S. 9–24, zeigt die Beschaltung des Transmitters 7500, wenn Sie alle Meß- und Steuerungsmöglichkeiten nutzen wollen.

Die Alarmeinstellungen

Für jede der folgenden Meßgrößen können Sie **Alarmgrenzen** parametrieren:

- Leitfähigkeits-Wert
- Konzentration (nur Option 359, 360, 382)
- Temperatur-Meßwert
- Zellkonstante
- Eingangsstrom am Stromeingang (bei Verwendung als Meßeingang)
- Dosierzeit (Reglerstellgröße auf ±100 %) (nur bei eingeschaltetem Regler)

Für jede Meßgröße (außer Dosierzeit) können Sie unabhängig vier Alarmgrenzen parametrieren:

- Ausfall Limit Lo Unterschreitet der Meßwert die parametrierte Grenze, wird der NAMUR-Kontakt "Ausfall" aktiv, im Display erscheint "AUSF"
- Warnung Limit Lo Unterschreitet der Meßwert die parametrierte Grenze, wird der NAMUR-Kontakt "Warnung" aktiv, im Display erscheint "WARN"
- Warnung Limit Hi Überschreitet der Meßwert die parametrierte Grenze, wird der NAMUR-Kontakt "Warnung" aktiv, im Display erscheint "WARN"
- Ausfall Limit Hi Überschreitet der Meßwert die parametrierte Grenze, wird der NAMUR-Kontakt "Ausfall" aktiv, im Display erscheint "AUSF"

Die gerade aktiven Alarmmeldungen können Sie im Diagnosemenü "aktuelle Meldungsliste" ansehen (s. S. 3–2).

Außerdem können Sie in der Parametrierung die Alarmmeldungen für jede Meßgröße ein- oder

ausschalten. Die Alarmgrenzen bleiben auch bei ausgeschalteter Meldung gespeichert.

Alarmmeldungen für die Temperatur sind nur möglich, wenn "Meßtemperatur auto" parametriert wurde (s. S. 9–12) und der Alarm eingeschaltet ist.

Nur wenn der Konzentrationsalarm eingeschaltet ist, werden auch die Meßbereichsgrenzen (0 ... 100 %) für Konzentrationsmessung des Transmitters 7500 überwacht.

Wenn Sie bei einem Gerät mit Option 359, 360 oder 382 die Konzentrationsmessung *nicht benutzen*, sollten Sie den Konzentrations-Alarm abschalten, da ansonsten bei bestimmten Leitfähigkeits-Meßwerten (z. B. > 800 mS/cm) die Fehlermeldung "Ausfall Konzentration" erzeugt würde.

Beispiel: Alarmeinstellung Leitfähigkeits-Alarm

bet	Leit	fähigke	its-Ala	arm	42.68mS/cr
Le	itfäh	i <u>gkeits</u>	-Alarm	Ein	Aus
Hu Wa	rnung	Limit	Lo	1.500	ms∕cm m§∕cm
l Wa Au	rnung sfall	Limit Limit	H1 Hi	85.00 105.0	mS/cm mS/cm
~	zurüc	k [par]		

Meßwert [mS/cm]	Meldung
≤ 1,000	Ausf Lo LF-Wert und Warn Lo LF-Wert
1 1,500	Warn Lo LF-Wert
1,501 84,99	
85,00 104,9	Warn Hi LF-Wert
≥ 105,0	Ausf Hi LF-Wert und Warn Hi LF-Wert

bet	Alarmeinstellungen	42.76mS/cm
≫ >> >> >>	Leitfähigkeits-Alarm Temperatur-Alarm Zellkonstanten-Alarm Stromeingangs-Alarm Konzentrations-Alarm	(Ein) (Ein) (Ein) (Aus) (Aus)

bet Zellkonstanten-Alarm	42.72mS/cm
Zellkonstanten-Alarm Ausfall Limit Lo 0.60 Warnung Limit Lo 0.80	n Aus 10 /cm 10 /cm
Warnung Limit Hi 1.20 Ausfall Limit Hi 1.30 « zurück [par]	10 /cm 10 /cm

So parametrieren Sie die Alarmeinstellungen

Wählen Sie im Parametriermenü mit v den Menüpunkt "Alarmeinstellungen" und bestätigen Sie mit **enter**.

Sie können in dieser Menüebene sehen, welche Alarme eingeschaltet sind.

Wählen Sie mit ▼ die Alarmeinstellung, die Sie parametrieren wollen (z. B. "Zellkonstanten-Alarm") und bestätigen Sie mit **enter**.

Geben Sie die Warnungs- und Ausfallgrenzen mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingaben mit **enter**.

Mit **par** gelangen Sie zurück in die Menüebene "Alarmeinstellungen" und können weitere Alarme parametrieren.

Die NAMUR-Kontakte

Der Transmitter 7500 verfügt standardmäßig über die drei NAMUR-Kontakte Funktionskontrolle, Warnung (Wartungsbedarf) und Ausfall.

- Funktionskontrolle ist aktiv: bei der Kalibrierung (cal), bei der Wartung (maint): Stromgeber, Meßstellen-Wartung bei der Parametrierung (par) in der Betriebsebene (bet) und der Spezialistenebene (spe) und während eines automatischen Spülzyklus.
- Warnung (Wartungsbedarf) ist aktiv, wenn ein parametrierter Wert "Warnung Limit Hi" oder "Warnung Limit Lo" über- bzw. unterschritten wurde oder bei anderen Warnungsmeldungen.

Das bedeutet, daß die Meßeinrichtung noch ordnungsgemäß arbeitet, aber gewartet werden sollte oder, daß Prozeßparameter einen Wert erreicht haben, der ein Eingreifen erfordert. Warnung ist *nicht* aktiv bei "Funktionskontrolle".

• Ausfall ist aktiv,

wenn ein parametrierter Wert "Ausfall Limit Hi" oder "Ausfall Limit Lo" über- bzw. unterschritten wurde,

wenn die Meßbereichsgrenzen des Transmitters 7500 überschritten wurden oder bei anderen Ausfallmeldungen.

Das bedeutet, daß die Meßeinrichtung *nicht mehr* ordnungsgemäß arbeitet oder, daß Prozeßparameter einen kritischen Wert erreicht haben.

Ausfall ist nicht aktiv bei "Funktionskontrolle".

Sie können die drei NAMUR-Kontakte als Arbeitskontakte (aktiv geschlossen) oder Ruhekontakte (aktiv geöffnet) parametrieren.

Für einen sicheren Betrieb müssen die NAMUR-Kontakte als *Ruhekontakte* parametriert werden. Nur dann erfolgt bei Netzausfall eine Alarm-Meldung!

Für den Warnungskontakt und den Ausfallkontakt kann jeweils eine **Verzögerungszeit** parametriert werden. Wenn eine Alarmmeldung auftritt, wird der Kontakt erst nach Ablauf der Verzögerungszeit aktiv.

Die Relaiskontakte sind im Lieferzustand auch für kleine Signalströme (ab ca. 1 mA) geeignet. Wenn größere Ströme als ca. 100 mA geschaltet werden, brennt die Vergoldung beim Schaltvorgang ab. *Die Relais schalten danach kleine Ströme nicht mehr zuverlässig.*

So parametrieren Sie die NAMUR-Kontakte

:M	Wählen Sie im Parametriermenü mit 🔻 den Me-
	nüpunkt "NAMUR-Kontakte" und bestätigen Sie
	mit enter .

Wählen Sie mit ◀ und ► zwischen "NAMUR-Kontakte Arbeit" und "NAMUR-Kontakte Ruhe", und bestätigen Sie mit **enter**.

Geben Sie die Ausfall-Verzögerungszeit und die Warnung-Verzögerungszeit mit den Rolltasten und den Cursortasten ein (s. S. 2–6), und bestätigen Sie die Eingaben mit **enter**.

Die Grenzwertkontakte

Der Transmitter 7500 verfügt standardmäßig über zwei Grenzwertkontakte. Die Grenzwertkontakte können von folgenden Meßgrößen gesteuert werden:

- Leitfähigkeits-Wert
- spezifischer Widerstand
- Konzentration (nur Option 359, 360, 382)
- Temperatur-Meßwert (°C)
- Eingangsstrom des Stromeingangs

bet	NAMUR-Kontakte	42.68mS/cn
	3 Kontakte: Funktionsko	ntrolle,
ŇÞ	Warnung (Wartungsbedarf MUR-Kontakte	eit Ruhe
Au Wa	sfall Verzögerungszeit rnung Verzögerungszeit	0010 s 0010 s
~	zurück [par]	

Grenzwerte und Hysterese

Jeden der beiden Kontakte können Sie unabhängig parametrieren:

- Die Meßgröße steuert den Grenzwertkontakt.
- Die *Wirkrichtung* gibt an, ob der Kontakt beim Unterschreiten (Min) oder beim Überschreiten (Max) des Grenzwertes aktiv wird.
- Der *Grenzwert 1 bzw. 2* (GW1, GW2) legt die Schaltschwelle fest.
- Die Hysterese bestimmt, um wieviel der Grenzwert unterschritten (Max) oder überschritten (Min) sein muß, bevor der Kontakt zurückschaltet.
- Arbeitskontakt oder Ruhekontakt legt fest, ob der aktive Kontakt geschlossen (Arbeit) oder geöffnet (Ruhe) ist.

Wenn der Meßwert die parametrierten Grenzwerte unter- bzw. überschreitet, erscheint rechts oben im Display "G1" und/oder "G2". Kontakt 1 und/oder Kontakt 2 sind aktiv.

Während der Kalibrierung sind die Grenzwertkontakte inaktiv!

Wenn eine Probenkalibrierung durchgeführt wird, wird die Anzeige "G1/G2" durch "Probe" überdeckt!

Wenn das Gerät bei Schnittstellenbetrieb im Remotezustand ist, wird die Anzeige "G1/G2" durch "Remote" überdeckt!

Die Relaiskontakte sind im Lieferzustand auch für kleine Signalströme (ab ca. 1 mA) geeignet. Wenn größere Ströme als ca. 100 mA geschaltet werden, brennt die Vergoldung beim Schaltvorgang ab. *Die Relais schalten danach kleine Ströme nicht mehr zuverlässig.*

So parametrieren Sie die Grenzwertkontakte

spe Grenzwerte 42.75mS/cm » Grenzwert 1 » Grenzwert 2 « zurück [par] Wählen Sie im Parametriermenü mit ▼ den Menüpunkt "Grenzwerte" und bestätigen Sie mit **en-**ter .

Wählen Sie mit ▼ und ▲ zwischen "Grenzwert 1" und "Grenzwert 2", und bestätigen Sie mit **enter**.

spe Grenzwert 1	42.79mS∕cm
Meßgröße Szom °C Wirkrichtung Grenzwert 1 Hysterese Grenzwertkontakt « zurück [par]	I-Eing o.cm Gew% Min Max 50.00 mS/cm 5.000 mS/cm Hrbeit Ruhe

Wählen Sie jeweils die Meßgröße, die Wirkrichtung und Arbeits-/Ruhekontakt mit ◀ und ▶ aus, und bestätigen Sie die Auswahl mit **enter**. Geben Sie den Grenzwert und die Hysterese jeweils mit den Rolltasten und den Cursortasten ein (s. S. 2–6), und bestätigen Sie die Eingaben mit **enter**.

Mit **par** gelangen Sie zurück in die Menüebene "Grenzwerte" und können den anderen Grenzwert parametrieren.

bet Grenzwerte ∕ Regler	42.79mS/cm
Grenzwertkontakte Grenzu	ert Regler
» Grenzwert 1 » Grenzwert 2	

Falls Ihr Gerät mit der Reglerfunktion (Option 353) ausgerüstet ist, erscheint nebenstehendes Menü.

Um die Grenzwertkontakte zu parametrieren, gehen Sie mit ◀ auf "Grenzwert" und bestätigen mit **enter**.

Die Reglerfunktion

Sie können die Reglerfunktion nur nutzen, wenn Ihr Gerät mit der Option 353 für den Digitalregler, **oder** mit den Optionen 350 und 483 für den Analogregler (Ausgang 2) ausgerüstet ist. Ohne diese Optionen erscheint im Parametriermenü nur der Menüpunkt "Grenzwerte", sonst "Grenzwerte/Regler", bzw. "Ausgangsstrom 2" oder "Ausgangsstrom 2 (optionell)" anstatt "Ausgang 2 / Regler" für den Analogregler.

Der Digitalregler

Den Digitalregler parametrieren Sie im Menüpunkt "Grenzwerte / Regler". Der zweiseitige PI-Regler ermöglicht eine quasistetige (getaktete) Regelung. Es sind zwei Reglertypen parametrierbar:

- Typ A: Impulslängenregler (s. S. 9–36)
- Typ B: Impulsfrequenzregler (s. S. 9–36)

Der Analogregler

Den Analogregler parametrieren Sie im Menüpunkt "Ausgang 2 / Regler". Es sind drei Reglertypen parametrierbar:

- Typ A: 3-Wege-Mischventil (s. S. 9–37)
- Typ B: Durchgangsventil (< Sollwert) (s. S. 9–38)
- Typ C: Durchgangsventil (> Sollwert) (s. S. 9–39)

Regelgrößen

Als Regelgrößen können Sie parametrieren:

- Leitfähigkeits-Wert
- spezifischer Widerstand
- Temperatur-Meßwert (°C)

Eine Regelung mit der Konzentration als Regelparameter ist nicht möglich, da dies wegen des stark nichtlinearen, teilweise mehrdeutigen Zusammenhangs zwischen Leitfähigkeitswert und Stoffkonzentration nicht sinnvoll ist.

Der aktuelle Wert der Stellgröße kann im Meßmodus in der Nebenanzeige dargestellt werden (RGL-Y [%]).

Zu Testzwecken können Sie die Reglerstellgröße Y im Wartungsmenü manuell eingeben (s. S. 4–6).

Mit dem parametrierbaren **Dosierzeitalarm** können Sie die Zeit überwachen, für die die Stellgröße auf +100 % oder -100 % steht, also das Ventil voll geöffnet ist.

Wenn diese Zeit überschritten wird, kann das z. B. ein Hinweis auf fehlendes Titrans oder ein defektes Ventil sein.

Die Regelkennlinie

Abb. 9–5 zeigt die Kennlinie des Reglers in dem Transmitter 7500 . Folgende Punkte der Kennlinie können parametriert werden:

- Regelanfang und
- Regelende legen den Regelbereich fest. Außerhalb des Regelbereiches bleibt die Stellgröße fest auf +100 % bzw. - 100 %.
- Auf den Sollwert wird geregelt.
- In der *Neutralzone* wird nicht geregelt. Die Neutralzone liegt symmetrisch zum Sollwert, ihre Breite kann parametriert werden.
- Mit Eckpunkt X und Eckpunkt Y können Sie für beide Regelbereiche (◄: Regelgröße < Sollwert und ►: Regelgröße > Sollwert) einen Eckpunkt parametrieren. So lassen sich jeweils zwei unterschiedliche Regelsteilheiten realisieren, um z. B. bei stark nichtlinearen Prozeßkennlinien eine optimale Regelcharakteristik zu erzielen.
- Die Nachstellzeit bestimmt den I-Anteil des Reglers. Wenn Sie "Nachstellzeit 0000 s" parametrieren, ist der I-Anteil abgeschaltet. Die Nachstellzeit kann für beide Regelbereiche (◄: Regelgröße < Sollwert und ►: Regelgröße > Sollwert) getrennt parametriert werden.

Zu Testzwecken können Sie die Reglerstellgröße Y im Wartungsmenü manuell eingeben (s. S. 4–6).

Die Stellgröße

Die Ermittlung der Stellgröße ist für den Digitalregler und den Analogregler gleich. Die Ausgabe der Stellgröße auf die Grenzwertkontakte bzw. auf den Ausgang 2 unterscheidet sich jedoch wie folgt:

Digitalregler

Die Stellgröße wird über die beiden Grenzwertkontakte 1 und 2 ausgegeben.

- Grenzwertkontakt 1 arbeitet im Stellgrößenbereich 0 ... +100 % Regelgröße < Sollwert
- Grenzwertkontakt 2 arbeitet im Stellgrößenbereich 0 ... -100 % Regelgröße > Sollwert

Mit den Kontakten können z. B. Ventile oder Dosierpumpen gesteuert werden. Dabei variiert die Einschaltdauer bzw. die Schaltfrequenz der Kontakte entsprechend der Stellgröße. Die aktuelle Stellgröße kann in der Nebenanzeige dargestellt werden (s. S. 2–1).

Die Relaiskontakte sind im Lieferzustand auch für kleine Signalströme (ab ca. 1 mA) geeignet. Wenn größere Ströme als ca. 100 mA geschaltet werden, brennt die Vergoldung beim Schaltvorgang ab. *Die Relais schalten dann kleine Ströme nicht mehr zuverlässig.*

Analogregler

Die Stellgröße wird proportional als analoger Strom über den Ausgang 2 ausgegeben.

- Reglertyp A (3-Wege-Mischventil) arbeitet im Stellgrößenbereich -100 ... +100 %
- Reglertyp B (Durchgangsventil) arbeitet im Stellgrößenbereich 0 ... +100 % Regelgröße < Sollwert
- Reglertyp C (Durchgangsventil) arbeitet im Stellgrößenbereich 0 ... -100 % Regelgröße > Sollwert

Mit dem Ausgang 2 können Ventile gesteuert werden. Dabei variiert der Strom entsprechend der Stellgröße.

Die aktuelle Stellgröße kann in der Nebenanzeige dargestellt werden (s. S. 2–1).

Abb. 9-5 Regelkennlinie

bet Gren	zwerte / Re	egler	9.736mS/cm
Grenzwer » Regier	tkontakte	Grenzu	vert <u>Regler</u>
// Negler	-		
« zurück	[par]		

bet	Regler	9.743mS/
i	A Impulslängenregler B Impulsfrequenzregle	r
Re >> ~	glertyp A B Regelparameter zurück [par]	

Der Impulslängenregler (nur mit Option 353)

Der Impulslängenregler dient zur Ansteuerung von Ventilen als Stellglieder.

Der Impulslängenregler schaltet die Kontakte für eine Zeit ein, deren Dauer von der Stellgröße abhängt.

Die *Periodendauer* ist dabei konstant. Sie kann getrennt für beide Regelbereiche parametriert werden, um z. B. die Anpassung an zwei verschiedene Ventiltypen zu ermöglichen.

Die *minimale Einschaltdauer* wird nicht unterschritten, auch wenn die Stellgröße entsprechende Werte annimmt. Damit kann z. B. die Reaktionszeit eines Ventils berücksichtigt werden. Ist die minimale Einschaltzeit auf 0 parametriert, so ist eine systembedingte minimale Einschaltzeit von 0,25 s wirksam.

Der Impulsfrequenzregler

(nur mit Option 353)

Der Impulsfrequenzregler dient zur Ansteuerung von (frequenzgesteuerten) Dosierpumpen als Stellglieder.

Der Impulsfrequenzregler variiert die Frequenz, mit der die Kontakte eingeschaltet werden. Die maximale Impulsfrequenz [Imp/min] kann parametriert werden. Sie ist abhängig von der verwendeten Dosierpumpe. Die Einschaltdauer ist konstant. Sie wird automatisch aus der parametrierten maximalen Impulsfrequenz abgeleitet:

Einschaltdauer [s] = 30 / max. Impulsfrequenz [Imp/min]

So parametrieren Sie die Reglerfunktion

Wählen Sie im Parametriermenü mit v den Menüpunkt "Grenzwerte/Regler" und bestätigen Sie mit **enter**.

Gehen Sie mit ▶ auf "Regler" und bestätigen Sie mit **enter** .

Mit ► oder **enter** gelangen Sie in das Untermenü "Regler".

Wählen Sie mit ◀ und ► den Reglertyp aus und bestätigen Sie mit **enter**.

Um die Regelparameter zu parametrieren, gehen Sie mit ▶ oder **enter** in das Untermenü "Regelparameter".

bet	Impulslängen	regler	9.312mS/cm
i	∢Kontakt 2: ▶Kontakt 1:	-1000 0+100	ž
∎RB So ∔ Ne	gelgräße llwert Xw utralzone	S∕cm 7.9 2.9	Ω∙cm °C 300 mS∕cm 300 mS∕cm

Der Informationstext zeigt die Kontaktbelegung: Kontakt 2 arbeitet im Stellgrößenbereich 0 ... -100 % (z. B. Säureventil), Kontakt 1 arbeitet im Stellgrößenbereich 0 ... +100 % (z. B. Laugenventil).

Typ A: Impulslängenregler

gen Sie die Eingaben mit enter .

größe, die den Regler steuert.

Ŀ	pet Impulslängenregl	er 9.313mS/cm
t	Regelgröße	Szem Ω.cm °C
	Neutralzone	2.000 mS/cm
	<pre>Allegelanfang</pre>	0015 ≤ 2.000 mS∕cm
÷		4.000 mS∕cm

ł	oet	Impulslängenregl	er	9.805mS/cm
t	Min	n. Einschaltzeit	001	5 s
	_ ₽	egelanfang Skoupkt Y	2.0	100 mS/cm 100 mS/cm
	- AE	ckpunkt Y	+040	1.0 %
	_ €N	<u>achstellzeit</u>	000	10 s
÷	- P	eriodendauer	010	10 s

Geben Sie für den linken Regelbereich (Regel-
größe < Sollwert) Regelanfang, Eckpunkt X, Eck-
punkt Y, Nachstellzeit und Periodendauer ein.

Mit ◀ und ▶ parametrieren Sie die Regel-

Geben Sie den Sollwert, die Neutralzone und die minimale Einschaltzeit jeweils mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestäti-

bet Impulsi	ängenregler	9.810mS/cm
 Teckpunkt Eckpunkt Eckpunkt Nachstell: Periodend: « zurück 	13. X 11. Y -040 zeit 000 auer 005	00 mS/cm 00 mS/cm).0 %)0 s)0 s

Geben Sie für den rechten Regelbereich (▶: Regelgröße > Sollwert) Regelende, Eckpunkt X, Eckpunkt Y, Nachstellzeit und Periodendauer ein.

bet	Impulsfrequ	enzregler	9.313mS/cm
t Re So Nei ∎ie ∢Ri	gelgröße Ilwert Xw utralzone X. I MPUlsfre egelanfang ckpunkt X	S/cm 7.0 2.0 quenz 001 2.0 4.0	a.cm °C 300 mS/cm 300 mS/cm 55 Imp/min 300 mS/cm 300 mS/cm

Ł	oet	Impulsfrequenzreg	ler	9.806mS/cm
t	Ne	utralzone	2.0	000 mS∕cm
	Ma	x. Impulsfrequenz	្តឲ្យ	l5 Imp∕min
	- ₽Ĕ	egelanfang ckounkt X	4.6	900 m5/cm 300 mS/cm
	₹Ē	ckpunkt Y	+040	3.0 %
ŧ	<n.< th=""><th>achstellzeit</th><th>- 000</th><th>30 s</th></n.<>	achstellzeit	- 000	30 s

bet	Impulsfrequen	zregler	9.804mS/cm
↑	achstellzeit agelende okpunkt X okpunkt Y achstellzeit zurück [par]	000 13 11 -040 000	00 s .00 mS/cm .00 mS/cm 3.0 % 30 s

Typ B: Impulsfrequenzregler

Mit ◀ und ▶ parametrieren Sie die Regelgröße, die den Regler steuert. Geben Sie den Sollwert, die Neutralzone und die maximale Impulsfrequenz jeweils mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingaben mit **enter**.

Geben Sie für den linken Regelbereich (◀: Regelgröße < Sollwert) Regelanfang, Eckpunkt X, Eckpunkt Y und Nachstellzeit ein.

Geben Sie für den rechten Regelbereich (►: Regelgröße > Sollwert) Regelende, Eckpunkt X, Eckpunkt Y und Nachstellzeit ein.

spe Ausgang 2	∕ Regler	58.61mS/cm
Ausgang 2 » Ausgangsstro	Strom 2 ∎ m 2	Regler
« zurück [par	3	
Husgang 2 » Ausgangsstro « zurück [par	Strom 2 ∎ m 2]	Regler

spe	Regler	58.61mS/cm
i Re » «	A 3-Wege-Mischventil B Durchgangsventil (< C Durchgangsventil () glentup B Regelparameter zurück [par]	Sollwert) Sollwert) C

s	pe	Regler	58.62mS/cm
	i	A 3-Wege-Mischver Ausgang 2: -100	til .+100 %
Ŧ	Re So Ne	g elgröße S / llwert Xw utralzone	©m Ω∙cm °C 50.00 mS∕cm 4.700 mS∕cm

So parametrieren Sie den Analogregler (nur mit Option 483)

Wählen Sie im Parametriermenü mit ▼ den Menüpunkt "Ausgang 2 / Regler" und bestätigen Sie mit **enter**.

Gehen Sie mit ► auf "Regler" und bestätigen Sie mit **enter** .

Mit \blacktriangleright oder **enter** gelangen Sie in das Untermenü \gg "Regler".

Wählen Sie mit ◀ und ► den Reglertyp A, B oder C aus und bestätigen Sie mit **enter**. Um die Regelparameter zu parametrieren, gehen Sie mit ▼ oder **enter** in das Untermenü ≫ "Regelparameter" und bestätigen mit **enter**..

Der Informationstext zeigt den ausgewählten Reglertyp und den Bereich der Stellgröße an.

9	spe Regler	58.62mS/cm
t	Sollwert Xw	50 <u>.00</u> mS/cm
	Neutralzone (Regelanfang	4.700 mS/cm 10.00 mS/cm
	Eckpunkt X	25.00 mS/cm
ŧ	<pre>Anachstellzeit</pre>	0000 s

Typ A: 3-Wege-Mischventil

Für das 3-Wege-Mischventil arbeitet der Analogreglerausgang im Stellgrößenbereich -100 % ... +100 %^{*}). Eine Reglerstellgröße Y = 0 % entspricht einem Strom von 10 bzw. 12 mA.

*) Stellgrößenbereich entspricht 0(4) ... 20 mA

Mit ◀ und ► parametrieren Sie die Regelgröße, die den Regler steuert.

Mit ▲ und ▼ wählen Sie zwischen den Regelparametern. Geben Sie die Regelparameter jeweils mit den Rolltasten und den Cursortasten ein (s. a. S. 2–6) und bestätigen Sie die Eingaben mit **enter**.

Geben Sie für den linken Regelbereich (◀: Regelgröße < Sollwert) Regelanfang, Eckpunkt X, Eckpunkt Y und Nachstellzeit ein.

spe Reg	gler –		58.63mS/cm
↑ Dicester →Eckpu →Eckpu →Nachs Ausgar « zuri	ende Inkt X Inkt Y stellzeit Ng Ø20mH ick [par]	99.00 75.00 -025.0 0005 ∎ 42	mS∕cm mS∕cm % ØmA

Geben Sie für den rechten Regelbereich (▶: Regelgröße > Sollwert) Regelende, Eckpunkt X, Eckpunkt Y und Nachstellzeit ein.

Typ B: Durchgangsventil (< Sollwert)

Für das Durchgangsventil Typ B arbeitet der Analogreglerausgang im Stellgrößenbereich 0 ... +100 %. Dabei entsprechen +100 % einem Strom von 20 mA. Der Regler gibt nur die Stellgröße für die gewählte Seite aus, auf der anderen Seite des Sollwertes kann die Stellgröße nicht ausgegeben werden, der Ausgang bleibt auf 0 (4) mA.

spe	Regler	58.61mS/cn
i	Regelbereich ∢Ausgang 2:	unterhalb Sollwert 0+100 %
∎R8 So ∔ Ne	egelgräße Dllwert Xw Putralzone	S∕cm °C 50.00 mS∕cm 4.700 mS∕cm

s	pe Regler	58.61mS/cm
t	Sollwert Xw	50.00 mS/cm
	<u>Neutralzone</u>	4.700 mS∕cm
	Regelanfang	10.00 mS/cm
	Eckpunkt X	23.00 m5/cm
ŧ	<pre>{Nachstellzeit</pre>	0000 s

spe	Regler			58.62mS/cm
↑ N AU	egelend ckpunkt ckpunkt achstel: sgang zurück	lzeit [Par]	99.00 75.00 -025.0 0005 s 42	mS/cm mS/cm % 2 2 2 mA

Mit ◀ und ▶ parametrieren Sie die Regelgröße, die den Regler steuert.

Mit ▲ und ▼ wählen Sie zwischen den Regelparametern. Geben Sie die Regelparameter jeweils mit den Rolltasten und den Cursortasten ein (s. a. S. 2–6) und bestätigen Sie die Eingaben mit **enter**.

Geben Sie für den linken Regelbereich (◀: Regelgröße < Sollwert) Regelanfang, Eckpunkt X, Eckpunkt Y und Nachstellzeit ein.

Bei einem reinen P-Regler (Nachstellzeit = 0s), muß nur der benutzte Regelbereich parametriert werden. Für den unbenutzten Bereich ist es jedoch erforderlich, sinnvolle Parameter einzugeben, da sonst die Fehlermeldung "Warn Regelparameter" auftritt.

Bei Benutzung als PI-Regler (Nachstellzeit $\neq 0$ s) ist es zwingend erforderlich, auch den unbenutzten Bereich zu parametrieren. Durch die Integrationszeit wird die Stellgröße von beiden Regelbereichen beeinflußt.

spe	Regler		58.61mS/cm
i	Regelbereich	oberhalb	Sollwert
	⊅Ausgang 2:	-1000	%
∎	egelgröße	S/er	n∎ °C
S	ollwert Xw	50,	.00 mS∕cm
↓ N	eutralzone	4,	700 mS∕cm

spe Regler	58.62mS/cm
† Reselende 99.	00 mS∕cm
Rekounkt X 75.	00 mS∕cm
►Eckpunkt Y -025	0 %
Nachstellzeit 000	5 5
Ausgang <u>020mH</u> 4	.20mA

e Regler	58.64mS/cm
Sollwert Xw	50.00 mS/cm
<u>Neutralzone</u>	4.700 mS∕cm
Regelanfang	10.00 mS/cm
Leckpunkt X	23.00 ms/cm
Nachetellzeit	0000 c
	e Regler Sollwert Xw Neutralzone Negelanyang Eckpunkt X Eckpunkt X Eckpunkt Y

Typ C: Durchgangsventil (> Sollwert)

Für das Durchgangsventil Typ C arbeitet der Analogreglerausgang im Stellgrößenbereich 0 ... -100 %. Dabei entsprechen -100 % einem Strom von 20 mA.

Der Regler gibt nur die Stellgröße für die gewählte Seite aus. Auf der anderen Seite des Sollwertes kann die Stellgröße nicht ausgegeben werden, der Ausgang bleibt auf 0 (4) mA.

Mit ◀ und ▶ parametrieren Sie die Regelgröße, die den Regler steuert. Geben Sie den Sollwert und die Neutralzone jeweils mit den Rolltasten und den Cursortasten ein

(s. S. 2–6) und bestätigen Sie die Eingaben mit enter .

Geben Sie für den rechten Regelbereich (►: Regelgröße > Sollwert) Regelende, Eckpunkt X, Eckpunkt Y und Nachstellzeit ein.

Bei einem reinen P-Regler (Nachstellzeit = 0s), muß nur der benutzte Regelbereich parametriert werden. Für den unbenutzten Bereich ist es jedoch erforderlich, sinnvolle Parameter einzugeben, da sonst die Fehlermeldung "Warn Regelparameter" auftritt.

Bei Benutzung als PI-Regler (Nachstellzeit $\neq 0$ s) ist es zwingend erforderlich, auch den unbenutzten Bereich zu parametrieren. Durch die Integrationszeit wird die Stellgröße von beiden Regelbereichen beeinflußt.

Dosierzeitalarm

Wählen Sie im Parametriermenü mit ▼ den Menüpunkt "Alarmeinstellungen" und bestätigen Sie mit **enter**.

Gehen Sie mit ▼ zu "Dosierzeit-Alarm" und bestätigen Sie mit **enter** ..

Geben Sie die Werte für die Warnungsmeldung (Warnung Limit Hi) und die Ausfallmeldung (Ausfall Limit Hi) mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingaben mit **enter**.

bet Dosierzeit-Alarm	9.743mS/cm
D <mark>osierzeit-Alarm Ein</mark> Warnung Limit Hi 0100 Ausfall Limit Hi 0150	Aus S S
« zurück [par]	

Fehlermeldungen bei der Parametrierung des Reglers

Der Regler wird abgeschaltet (beide Kontakte sind geöffnet) und die Alarmmeldung "Warn Regelparameter" wird erzeugt, wenn bei der Parametrierung eine der folgenden Bedingungen erfüllt ist:

Beide Reglertypen:

- Anfang \geq Sollwert Neutrale Zone / 2
- Eckpunkt X > Sollwert Neutrale Zone / 2
- Ende < Sollwert + Neutrale Zone/2
- Eckpunkt X < Sollwert + Neutrale Zone / 2
- Eckpunkt X > Ende
- Neutrale Zone < 0
- Eckpunkt Y > 100 %

A Impulslängenregler:

- Periodendauer < Min. Einschaltzeit * 2</p>
- Periodendauer < Min. Einschaltzeit * 2

B Impulsfrequenzregler:

- Max. Pulsfrequenz \leq 0 Imp/min
- Max. Pulsfrequenz > 120 Imp/min

Der Hilfsenergieausgang

Der Transmitter 7500 verfügt standardmäßig über einen potentialfreien, kurzschlußfesten Hilfsenergieausgang.

Mit dem Hilfsenergieausgang können Sie z. B. Sensoren oder Schaltkontakte mit 24 V DC, 30 mA versorgen (s. Abb. 9–4, S. 9–24).

Die Verwendung des Hilfsenergieausgangs zur Realisierung eines "2-Leiter-Speise-Meßumformers" zusammen mit dem Stromeingang ist im folgenden Abschnitt beschrieben.

Der Stromeingang

Der Transmitter 7500 verfügt standardmäßig über einen Stromeingang. Der Stromeingang verarbeitet Normstromsignale von 0 ... 20 mA oder 4 ... 20 mA.

Der Eingangsstrom kann in der Nebenanzeige dargestellt werden (s. S. 2–1).

Außerdem kann der Eingangsstrom durch Alarm-
grenzen überwacht werden (s. S. 9–26). In den
"Alarmeinstellungen" können Sie Warnungs-und
Ausfallgrenzen parametrieren.
Die Eingabe der Alarmgrenzen erfolgt in Prozent
vom Eingangsstrombereich.
Dabei entsprechen
0 % 0 oder 4 mA,
100 % 20 mA.

Wenn der Stromeingang auf "Eingang 0...100% 4...20mA" parametriert ist, können Sie negative Prozentwerte parametrieren. -25 % entsprechen 0 mA.

Die gerade aktiven Alarmmeldungen können Sie im Diagnosemenü "aktuelle Meldungsliste" ansehen (s. S. 3–2).

Abb. 9–4, S. 9–24, zeigt als Anwendungsbeispiel den Anschluß eines 2-Leiter-Durchflußgebers. Der Durchflußgeber dient z. B. zur Überwachung, ob das Meßmedium in einer Bypass-Meßstelle den erforderlichen Durchfluß aufweist.

Der Durchflußgeber wird aus dem Hilfsenergieausgang versorgt.

Der Strom des Durchflußgebers wird über den Stromeingang gemessen. Durch Parametrierung von vier Alarmgrenzen für den Stromeingang kann das Meßsignal des Durchflußgebers überwacht werden.

Anwendungsbeispiel

bet Stromeingang	9.411mS/cm
n Meβeingang für Grenzwerte	e∕Alarme
Eingang 0100% 020	18 420mA
« zurück [par]	

bet	Stromeingangs-P	larm	42.81mS/cm
St Au Wa Au Au	romeing-Alarm sfall Limit Lo rnung Limit Lo rnung Limit Hi sfall Limit Hi zurück [par]	Ein -0020 +0000 +0080 +0100	Hus X X X X

So parametrieren Sie den Stromeingang

Wenn das Gerät mit Option 352 ausgerüstet und die Sondenspülung in der Parametrierung eingeschaltet ist, kann der Stromeingang zur Steuerung der Sondenspülung parametriert werden (s. u.).

Wählen Sie im Parametriermenü mit ▼ den Menüpunkt "Stromeingang" und bestätigen Sie mit enter .

Wählen Sie mit ◀ und ► zwischen "Eingang 0...100% 0...20mA" oder "Eingang 0...100% 4...20mA" aus und bestätigen Sie die Auswahl mit **enter**.

Wenn Sie den Stromeingang mit Alarmgrenzen überwachen wollen, wählen Sie im Parametriermenü "Alarmeinstellungen" den Menüpunkt Stromeingangs-Alarm".

Geben Sie die Alarmgrenzen jeweils mit den Rolltasten und den Cursortasten ein (s. S. 2–6), und bestätigen Sie die Eingaben mit **enter**.

Sie können mit dem Eingangsstrom auch die Grenzwertkontakte steuern. Die Parametrierung ist auf S. 9–29 beschrieben.

Wenn Ihr Gerät mit der Option 352 "Sondenspülung" ausgerüstet ist, können Sie den Stromeingang zur Fernsteuerung der Sondenspülung benutzen (s. S. 9–43).

Die Menüzeile "Stromeingangs-Alarm" bei den Alarmeinstellungen erscheint nicht bei Verwendung als Steuereingang.

bet Stromeingang	9.411mS/cm
• Steuereingang für Sondensp 1 Meßeingang für Grenzwerte	pülung oder /Alarme
Eingang 0100% 020m Verwendung Steuereingang « zurück [par]	📕 420mΑ Meβeingang

Stromeingang als Steuereingang für Son-

denspülung

Um den Stromeingang als Steuereingang zu parametrieren, wählen Sie im Parametriermenü mit
✓ den Menüpunkt "Stromeingang" und bestätigen Sie mit enter .
Wählen Sie im Parametriermenü mit ✓ den Menüpunkt "Verwendung".
Wählen Sie mit ◄ und ► "Steuereingang" aus, und bestätigen Sie die Auswahl mit enter (eine Live-zero-Parametrierung des Stromeingangs ist dann nur für die Stromanzeige wirksam,

der Stromeingangsalarm ist abgeschaltet).

Die Sondenspülung

Sie können die Sondenspülung nur nutzen, wenn Ihr Gerät mit der Option 352 ausgerüstet ist. Ohne diese Option steht "Sondenspülung (optionell)" im Menü, eine Anwahl ist nicht möglich.

Die Sondenspülung dient z. B. zum automatischen Spülen und Reinigen der Leitfähigkeits-Meßzelle. Dazu wird ein **Spülzyklus** gestartet.

Ein Spülzyklus kann gestartet werden:

- timergesteuert nach Ablauf der parametrierbaren Intervallzeit,
- manuell im maint -Menü,
- durch einen Stromimpuls (s. S. 9–45) am Stromeingang (wenn der Stromeingang als Steuereingang parametriert ist, s. S. 9–42),
- ferngesteuert über die Schnittstelle (s. S. 9–48).

Sie können eine Intervallzeit im Bereich von 0,1...999,9 h parametrieren. Die Intervallzeit dauert vom Beginn eines Spülzyklus bis zum Beginn des nächsten Spülzyklus.

Sie können den automatischen Spülzyklus abschalten, indem Sie die Intervallzeit "000,0 h" parametrieren.

Bevor Sie einen Spülzyklus starten, müssen Sie die einzelnen Schritte in der Parametrierung im Menüpunkt "Sondenspülung" parametrieren (s. S. 9–46)!

Ein Spülzyklus besteht aus folgenden Schritten:

 Der Spülzyklus beginnt: Der NAMUR-Kontakt "Funktionskontrolle" wird aktiv, der Kontakt "Sonde" wird aktiv, Ausgangsstrom 1 (und 2) und die Reglerstellgröße werden eingefroren, die Grenzwerte sind inaktiv, das **maint** - und das **cal** -Menü sind gesperrt, der Inter will Timer wird zur
üblichgebotzt.

der Intervall-Timer wird zurückgesetzt.

Vorlaufzeit vor Spülen:

Parametrierbare Wartezeit bis zum Schließen des Kontakts "Spülung". Damit können z. B. Reaktionszeiten des Ventils "Sonde" berücksichtigt werden.

Son	denspülung akti	V	42.77	'mS∕cm
i	Spülzyklus Vorlauf vor Sp	ülen 00)10 s	
50%	0	50		100

Sondenspülung aktiv 42.70mS/cm Spülzyklus Vorspülen 0019 s 0 50 100 24%	 Vorspülzeit: Der Kontakt "Spülung" ist für die (parametrier- bare) Dauer der Vorspülzeit geschlossen.
Sondenspülung aktiv 42.72mS/cm Spülzyklus 0009 s Reinigen 0009 s 0 50 100 70%	 Reinigungszeit: Der Kontakt "Reinigung" ist für die (parametrier- bare) Dauer der Reinigungszeit geschlossen.
Sondenspülung aktiv 42.75mS/cm • Spülzyklus 1 Nachspülen 0005 s 0 50 100 67%	 Nachspülzeit: Der Kontakt "Spülung" ist für die (parametrier- bare) Dauer der Nachspülzeit geschlossen.
Sondenspülung aktiv 43.44mS/cm • Spülzyklus I Sonde in Warteposition letzter Meßwert 43.45 mS/cm	 Warteposition: Wenn der Stromeingang als Steuereingang pa- rametriert ist, verharrt die Sonde in der Warte- position, solange der Startstrom von 10 20 mA am Stromeingang liegt.
	Die Warteposition kann nur über den Stromein- gang gehalten werden. Wenn der Stromeingang als Meßeingang parametriert ist, entfällt die Warte- position.
Sondenspülung aktiv 42.77mS/cm • Spülzyklus • Vorlauf vor Messen 0018 s 0 50 100 10%	 Vorlaufzeit vor Messen: Der Kontakt "Sonde" wird inaktiv. Dann läuft die parametrierbare Wartezeit bis zum Ende des Spülzyklus ab. Danach wird "Funktionskontrolle" inaktiv.
	Wenn Sie eine der Schrittzeiten auf 0000 s para- metrieren, entfällt der Schritt ganz. Mit meas können Sie während des Spülzyklus für ca. 5 s den Meßwert anzeigen.

So arbeitet die Sondenspülung

Die Spülvorrichtung wird über drei Kontakte gesteuert:

- Kontakt "Sonde": Der Kontakt ist als Arbeits- oder Ruhekontakt parametrierbar. Er steuert z. B. ein Prozeßventil in einer Durchflußarmatur. Der Kontakt ist im Meßmodus inaktiv. Während des Spülzyklus ist er aktiv, um z. B. das Prozeßventil zu schließen.
- Kontakt "Spülung": Mit dem Kontakt kann das Ventil für das Spülmedium angesteuert werden. Der Kontakt ist beim Vorspülschritt und beim Nachspülschritt geschlossen.
- Kontakt "Reinigung": Mit dem Kontakt kann ein Ventil f
 ür die Reinigungsfl
 üssigkeit angesteuert werden. Der Kontakt ist beim Reinigungsschritt geschlossen.

Die drei Kontakte sind einseitig elektrisch verbunden.

Wenn das Gerät mit der Option 352 "Sondenspülung" ausgerüstet ist, kann der **Stromeingang** zur Fernsteuerung des Spülzyklus parametriert werden (s. S. 9–42):

- O ... 10 mA (Normalbetrieb): Ein Strom in diesem Bereich erlaubt den *Start des Spülzyklus* durch die parametrierte *Intervallzeit* oder *manuell* im **maint** -Menü.
- 10 ... 20 mA (Starten):

Ein Strom in diesem Bereich *startet* einen Spülzyklus. Der Strom muß für minimal 2 s anliegen.

Solange der Strom anliegt, bleibt die Sonde in der Warteposition stehen. Das heißt: Vorlauf vor Spülen, Vorspülen, Reinigen und Nachspülen werden ausgeführt. Anschließend verharrt die Sonde in der Warteposition. Wird der Strom wieder weggenommen, wird der Zyklus mit Vorlauf vor Messen fortgesetzt.

 > 20 mA (Verriegeln): Ein Strom in diesem Bereich verriegelt den Start eines Spülzyklus durch die parametrierte Intervallzeit.

spe	Sondenspülung	43.50mS/cm
i	Stromeingang als Steuer für Sondenspülung param	reingang Metrierbar
∎So Ko ∔ In	ondenspölung s ontakt Sonde Arbe htervallzeit	in Aus it Ruhe 024.0 h

bet Sondenspülung	42.79mS/cm
 Vorlaufzeit vor Spülen	0020 s
Vorspülzeit	0025 s
Reinigungszeit	0030 s
Nachspülzeit	0015 s
Vorlaufzeit vor Messen	0020 s

So parametrieren Sie den Spülzyklus

In der Parametrierung wählen Sie den Menüpunkt "Sondenspülung".

Parametrieren Sie "Sondenspülung Ein" mit und bestätigen mit **enter**.

Geben Sie die Intervallzeit und die Schrittzeiten mit den Rolltasten und den Cursortasten ein (s. S. 2–6) und bestätigen Sie die Eingaben mit **enter**.

Wenn Sie eine der Schrittzeiten auf 0000 s parametrieren, entfällt der Schritt ganz.

Nach dem Einschalten der Sondenspülung in der Parametrierung erfolgt der nächste automatische Start der Sondenspülung erst nach Ablauf eines kompletten Intervalls.

Anwendungshinweise

Während die Spülschritte ablaufen, können Sie in der Parametrierung die Schrittzeiten ändern. So können Sie zu lange Schrittzeiten abkürzen oder beenden.

Parametrieren Sie eine Intervallzeit. Nach Ablauf der Intervallzeit wird automatisch ein Spülzyklus gestartet.

Wenn Sie den automatischen Spülzyklus sperren wollen (z. B. um eine wichtige Messung nicht zu unterbrechen), geben Sie einen Strom > 20 mA auf den Stromeingang (z. B. durch direktes Verbinden des Hilfsenergieausgangs mit dem Stromeingang).

Nach einem Hilfsenergieausfall wird der Intervall-Timer zurückgesetzt. Der nächste automatische Start erfolgt dann nach Ablauf eines kompletten Intervalls.

Stellen Sie die Intervallzeit "0000" ein. Geben Sie einen Strom von 10 ... 20 mA (z. B. durch Aufschalten des Hilfsenergieausgangs über einen Widerstand von 1,5 k Ω) für mindestens 2 s auf den Stromeingang. Danach wird ein Spülzyklus gestartet (der Intervall-Timer wird zurückgesetzt). Liegt der Strom länger an, so verharrt die Sonde in Warteposition, bis der Strom wieder weggenommen wird.

Wählen Sie im **maint** -Menü mit ► oder **enter** "Meßstellen-Wartung" aus.

Timer-gesteuerter Spülzyklus

Ferngesteuerter Spülzyklus

Manueller Start des Spülzyklus

maint Meßstellen-Wartung 62.52mS/cm	Sie können einen Spülzyklus starten:
• Ausgangsstrom, Regler eingefroren 1 Grenzwerte inaktiv	Gehen Sie mit A auf "Sondenspülung starten" und bestätigen Sie mit enter.
Kontakt Sonde aktiv! Sondenspülung starten Handbetätigung Hus Spülen Reinigen	Danach wird ein Spülzyklus gestartet (der Inter- vall-Timer wird zurückgesetzt) Nach Ablauf des
« zurück [maint]	Spülzyklus geht das Gerät in den Meßmodus.

Manuelles Schalten von "Spülung" und "Reinigung" und bestatigen Sie mit **enter**. Danach wird ein Spülzyklus gestartet (der Intervall-Timer wird zurückgesetzt). *Nach Ablauf des Spülzyklus geht das Gerät in den Meßmodus*. Gehen Sie mit ▲ auf "Handbetätigung". Wählen Sie mit ▶ und ◄ "Spülen" oder

"Reinigen" und bestätigen Sie mit **enter**. Der entsprechende Kontakt bleibt solange geschlossen, bis Sie "Handbetätigung Aus" eingeben oder das Menü mit **maint** oder **meas** verlassen. *Es können nie mehrere Kontakte gleichzeitig geschlossen sein! Wenn ein Spülzyklus läuft, ist die Handbetätigung*

Wenn ein Spülzyklus läuft, ist die Handbetätigung gesperrt.

Die Relaiskontakte sind im Lieferzustand auch für kleine Signalströme (ab ca. 1 mA) geeignet. Wenn größere Ströme als ca. 100 mA geschaltet werden, brennt die Vergoldung beim Schaltvorgang ab. *Die Relais schalten danach kleine Ströme nicht mehr zuverlässig.*

Wenn ein Spülzyklus durch einen Hilfsenergieausfall unterbrochen wird, ist die Sondenspülung blokkiert. Die Fehlermeldung "Ausf Spülzyklus" wird ausgegeben. Alle automatischen Starts werden gesperrt!

Eine Reaktivierung erfolgt durch:

- manuellen Start im maint-Menü
- Aus- und Einschalten der Sondenspülung in der Parametrierung
- über einen Schnittstellenbefehl

Der Schnittstellenbetrieb

Sie können die Schnittstelle nur nutzen, wenn Ihr Gerät mit der Option 351 ausgerüstet ist. Ohne diese Option steht "Schnittstelle (optionell)" im Menü, eine Anwahl ist nicht möglich.

Bei Betrieb der RS 485-Schnittstelle muß Klemme 15 (RS 485 Schirm) geerdet werden, um die Funkstörungs-Grenzwerte gem. Postverfügung 243/91 einzuhalten. Für die Erdung darf nicht der Schutzleiter verwendet werden!

Um den Transmitter 7500 an einem PC zu betreiben, kann ein handelsüblicher RS 232 C-/ RS 485-Schnittstellen-Konverter verwendet werden.

Das können Sie mit der Schnittstelle tun

Mit der seriellen RS 485-Schnittstelle können Sie

- Alle Meßwerte auslesen
- Den Gerätestatus einschließlich Grenzwertund Alarmmeldungen, Gerätediagnose und Logbuch abfragen
- Das Gerät komplett parametrieren
- ferngesteuert einen Spülzyklus auslösen

Der komplette Befehlssatz und das Übertragungsprotokoll sind in Kap. 12 beschrieben.

Wenn das Gerät bei Schnittstellenbetrieb im Remote-Zustand ist, erscheint im Meßmodus rechts oben im Display die Anzeige "Remote". Die Tastatur ist für Eingaben gesperrt! Wenn sich das Gerät im Meßmodus befindet, können sie mit **meas** nach Rückfrage in den Local-Zustand zurückkehren, die Tastatur wird freigegeben.

Die Schnittstelle kann

- im Punkt-zu-Punkt-Betrieb (Transmitter 7500 verbunden mit einem Controller, z. B. PC) oder
- im Bus-Betrieb mit bis zu 31 Geräten und einem Controller (z. B. PC) am Bus arbeiten.
Schnittstellenparameter

Baudrate (Übertragungsgeschwindigkeit): Die Baudrate wird in Bit/Sekunde angegeben. Bei der Wahl der Baudrate können die Übertragungszeit (hohe Baudraten) oder die Güte der Übertragung (niedrige Baudrate) maßgebend sein. In dem Transmitter 7500 können Baudraten zwischen 300 und 9600 Baud eingestellt werden.

Parity (Übertragungsfehler-Erkennung): Das Parity ist ein zusätzliches Bit, das die Datenbits so ergänzt, daß immer eine gerade Zahl (Parity even) oder eine ungerade Zahl (Parity odd) von logischen Einsen übertragen wird. Bei einem Parityfehler erscheint die Fehlermeldung "Warn Schnittstelle".

Datenbit (Datenbreite):

Der Transmitter 7500 überträgt wahlweise eine Datenbreite von 7 Bit oder 8 Bit. Der Transmitter 7500 verwendet ausschließlich Zeichen, die sowohl im 7-Bit als auch im 8 Bit-Modus übertragen werden können. Die Einstellung dient lediglich als Anpassung an den steuernden Rechner.

Als Baudrate können Sie 300, 600, 1200 oder 9600 Baud, als Übertragungsformate "7 Bit/Parity Even", "7 Bit/Parity Odd" oder "8 Bit/No Parity" parametrieren.

Die Schnittstelle ist fest auf 1 Stopbit eingestellt. Um das Gerät auch im Schnittstellenbetrieb vor unbefugten Zugriffen zu schützen, können Sie einen Schreibschutz parametrieren. Ist der Schreibschutz eingeschaltet, muß vor dem ersten Parametrier- oder Steuerbefehl der Schreibschutz durch einen Schnittstellenbefehl zusammen mit der Spezialisten-Paßzahl aufgehoben werden. Das Lesen der Meßwerte, Parameter und Statusinformationen ist auch mit eingeschaltetem Schreibschutz möglich.

Nach dem Senden des letzten Steuerbefehls kann der Schreibschutz durch einen Schnittstellenbefehl oder durch Betätigen der Taste **meas** wieder aktiviert werden.

Bei eingeschaltetem Schreibschutz werden alle Schreibversuche ohne vorheriges Aufheben des Schreibschutzes oder mit ungültiger Paßzahl im Logbuch protokolliert.

Bei der Auslieferung ist der Schreibschutz abgeschaltet.

bet Schnittstel	le 53.05mS/c
Kopplung	Punkt zu Punkt Bus
Baud-Rate Datenbit/Parity Schreibschutz « zurück [par]	300 600 1200 9600 7/Even 7/Odd 8/No Ein Hus

So parametrieren Sie die Schnittstelle

Wählen Sie im Parametriermenü mit ▼ den Menüpunkt "Schnittstelle" und bestätigen Sie mit **en**ter .

Wählen Sie jeweils mit ◀ und ► die Art der Busankopplung, die Baud-Rate, die Zahl der Daten-/Parity-Bits und ob Sie den Schreibschutz benutzen wollen. Bestätigen Sie mit **enter**.

Anwendungshinweise

Wenn Sie den Transmitter 7500 über einen RS 232 C/RS 485-Schnittstellenadapter mit der RS 232-Schnittstelle eines PC oder Kompatiblen verbinden, beachten Sie folgende Hinweise:

Die Verbindungsleitung zwischen dem Transmitter 7500 und dem PC arbeitet bidirektional. Dem Konverter muß daher die Übertragungsrichtung bekannt sein. Wenn keine Daten gesendet werden, *muß* der Konverter seinen Sendetreiber abschalten. Diese Umschaltung geschieht bei handelsüblichen Konvertern über eine Handshake-Leitung (z. B. DTR oder RTS).

Die Umschaltung muß vom Treiberprogramm des PC gesteuert werden. Handelsübliche PC-Terminalprogramme führen die Umschaltung nicht automatisch durch.

Einige Konverter (z. B. W&T Typ 86000) können im "Automatic-Mode" betrieben werden. Die Treiber werden dann automatisch nach kurzer Zeit ausgeschaltet. Dies kann aber zu Bus-Timing-Fehlern führen, wenn die automatische Abschaltzeit nicht zu der verwendeten Baudrate paßt. Der W&T-Konverter hat automatische Ausschaltzeiten für die Baudrate 115200 Baud.

Ein Betrieb mit der höchsten möglichen Baudrate (9600 Baud) des Transmitters 7500 bringt dann erfahrungsgemäß die besten Resultate.

Die Gerätediagnose

Der Transmitter 7500 kann zyklisch einen automatischen Selbsttest (Speichertest) durchführen. Bei fehlerhaftem Speicher liefert das Gerät eine Warnungsmeldung. Der Selbsttest wird nur ausgeführt, wenn sich das Gerät im Meß-Modus befindet. Während des Tests läuft die Messung im Hintergrund weiter. Alle Ausgänge werden weiterhin bedient.

So parametrieren Sie die Gerätediagnose

Wählen Sie im Parametriermenü mit	▼	den	Me
nüpunkt "Gerätediagnose" und bestäti	gen	Sie	mit
enter			

Mit ◀ oder ▶ und **enter** schalten Sie die automatische Gerätediagnose ein oder aus. Die Intervallzeit geben Sie mit den Rolltasten und den Cursortasten ein. Bestätigen Sie die Eingabe mit **enter**.

spe	Gerät	ediagnose	62.52mS/cm
Sel Int	ervall	t zeit	n Aus 1000 h
« z	urück	[par]	
		-	

Diese Seite bleibt aus technischen Gründen leer.

10 Hinweise zur Montage, Installation und Wartung

Montage

- Das wetterfeste Gehäuse gestattet die direkte Wandmontage, Maßzeichnung s. Abb. 10–1.
- Mit der Montageplatte ZU 0126 und dem Mastschellensatz ZU 0125 können Sie das Gerät auch an einem Mast montieren, Maßzeichnung s. Abb. 10–2.

 Das Schutzdach ZU 0123 bietet zusätzlichen Schutz vor direkten Witterungseinflüssen und mechanischer Beschädigung, Maßzeichnung s. Abb. 10–2. Zur Montage des Schutzdaches benötigen Sie

Zur Montage des Schutzdaches benotigen Sie die Montageplatte ZU 0126.

 Mit dem Schutzgehäuse ZU 0124 ist das Gerät optimal vor Staub, Nässe und mechanischer Beschädigung geschützt, Maßzeichnung s. Abb. 10–3.

Mit dem Mastschellensatz ZU 0128 können Sie das Schutzgehäuse auch am Mast montieren.

Abb. 10–1 Maßzeichnung Transmitter 7500

Abb. 10-2 Maßzeichnung Montageplatte ZU 0126 und Schutzdach ZU 0123

Abb. 10–3 Maßzeichnung Schutzgehäuse ZU 0124

Abb. 10-4 Mastschellen-Satz ZU 0128 für Schutzgehäuse ZU 0124

So montieren Sie den Transmitter 7500 im Schutzgehäuse

Aufbau

Der Transmitter 7500 wird über zwei Trägerbügel mit dem Unterteil des Schutzgehäuses verschraubt. Die Anschlußleitungen werden durch Verlängerungsstücke zur Unterseite des Schutzgehäuses geführt und dort mit Pg–Verschraubungen abgedichtet.

Montageanleitung

- Übertragen Sie die Daten des Typschilds vom Transmitter 7500 auf das beiliegende Typschild (1), s. Abb. 10–5.
- Schrauben Sie alle Pg–Verschraubungen mit Dichtungen von dem Transmitter 7500 ab und bewahren Sie sie für die spätere Montage auf.
- Schrauben Sie an Stelle der Pg–Verschraubungen die beiliegenden Verlängerungen (3) mit den dazu gehörigen Dichtringen (2) ein.
- Schrauben Sie die beiden Trägerbügel (4) (mit je zwei Schrauben M4x8 und Zahnscheiben 4,3) gleichsinnig in das Gehäuse–Unterteil des Schutzgehäuses.
 Schrauben erst nach Ausrichten der Gesamteinheit festziehen!
- Schrauben Sie den Transmitter 7500 (mit 4 Schrauben M5x16 und vier Unterlegscheiben 5,3) auf den beiden Trägerbügeln fest. Schrauben erst nach Ausrichten der Gesamteinheit festziehen!
- Drücken Sie die vier Gewindeeinsätze (5) bündig in die freien Sacklöcher der Gehäusefront des Schutzgehäuses und spreizen Sie sie etwas auf.
- Kleben Sie das Typschild (1) gut sichtbar auf die Frontabdeckung (6)
- Schrauben Sie die Frontabdeckung (6) mittels vier Schrauben und Zahnscheiben an die Gehäusefront des Schutzgehäuses. Achtung! Die Deckelklappe des Schutzgehäuses muß nach oben öffnen!
- Legen Sie die Gehäusefront auf, um den Transmitter 7500 im Schutzgehäuse auszurichten.

- Schrauben Sie die Pg–Verschraubungen mit Dichtung in die Verlängerungen ein.
- Nehmen Sie die Gehäusefront ab und ziehen Sie alle Befestigungssschrauben handfest an.
- Stellen Sie die elektrischen Verbindungen zum Transmitter 7500 her (s. S. 10–8).
- Befestigen Sie die Gehäusefront mit den vier Verschlußschrauben auf dem Schutzgehäuse.

Installation

Die Installation des Transmitters 7500 darf nur durch ausgebildete Fachkräfte (VBG 4) unter Beachtung der einschlägigen VDE–Vorschriften und der Bedienungsanleitung erfolgen. Bei der Installation sind die technischen Daten und die Anschlußwerte zu beachten.

Die Inbetriebnahme des Transmitters 7500 darf nur durch ausgebildete Fachkräfte (VBG 4) unter Beachtung der Bedienungsanleitung erfolgen. Vor der Inbetriebnahme muß eine *vollständige Parametrierung* durch einen Systemspezialisten erfolgen (s. Kap. 9).

Bevor Sie die Hilfsenergie anschließen, überzeugen Sie sich auf dem Typschild, daß das Gerät die richtige Netzspannung hat:

- 230 V AC
- 115 V AC (Option 363)
- 24 V AC/DC (Option 298)

Zum Anschluß des Transmitters 7500 öffnen Sie die Abdeckung des Klemmenraums (unterer Dekkel) mit drei Schrauben.

Abb. 10–6 zeigt die Belegung der Anschlußklemmen.

Die Klemmen sind für Einzeldrähte und Litzen bis 2,5 mm² geeignet.

Links neben Klemme 1 befinden sich zwei Klemmschrauben für den Anschluß des Meßzellenkabel– Schirms.

Diese Klemmschrauben sind elektrisch mit Klemme 5 verbunden! (siehe auch Beschaltungsbeispiele S. KEIN MERKER ff)

Im Lieferzustand sind alle Klemmen offen, um eine problemlose Einführung der Anschlußdrähte zu ermöglichen.

Bei halbgeöffneten Klemmen kann es vorkommen, daß der Draht unter den Kontaktkörper gesteckt wird und bei zugeschraubter Klemme nicht kontaktiert.

Abb. 10-6 Anschlußbelegung Transmitter 7500

Anschlußbelegung

Anschluß der Meßzellen aus dem Zubehörprogramm

Meßzellen der Serie InPro[®] 7000 (2-Pol-Meßzellen)

Klemme	Anschluß	
1 — 7	weiß/blau	(Nr. 1)
2 —	weiß	(Nr. 3)
3 —	blau	(Nr. 7)
4	Klemme 5	. ,
5 —	klar & schwarz	(Nr.2 & Nr.6)
6	rot	(Nr. 5)
7 —	grün	(Nr. 4)
8 —	Klemme 7	

Meßzellen der Serie InPro[®] 7100 (4-Pol-Meßzellen)

Klemme	Anschluß	
1	weiß/blau	(Nr. 1)
2	weiß	(Nr. 3)
3	blau	(Nr. 7)
4	Klemme 5	
5 —	klar & schwarz	(Nr.2 & Nr.6)
6	rot	(Nr. 5)
7	grün	(Nr. 4)
8 —	Klemme 7	

Wartung und Reinigung

Der Transmitter 7500 ist wartungsfrei.

Zum Entfernen von Staub, Schmutz und Flecken dürfen die Außenflächen des Gerätes mit einem weichen, mit Wasser angefeuchteten fusselfreien Tuch abgewischt werden. Wenn nötig, kann auch ein milder Haushaltsreiniger oder 2-Propanol (Isopropyl-Alkohol) verwendet werden.

11 Fehlermeldungen

Nur wenn der Konzentrationsalarm eingeschaltet ist, werden auch die Meßbereichsgrenzen (0 ... 100 %) für Konzentrationsmessung des Transmitters 7500 überwacht.

Wenn Sie bei einem Gerät mit Option 359, 360, 382 die Konzentrationsmessung *nicht benutzen*, sollten Sie den Konzentrations-Alarm abschalten, da ansonsten bei bestimmten Leitfähigkeits-Meßwerten (z. B. > 800 mS/cm) die Fehlermeldung "Ausfall Konzentration" erzeugt würde.

Alphabetisch sortiert

Fehlermeldung (Anzeige im Diagnosemenü "aktuelle Meldungsliste")	Mögliche Fehlerursachen und Abhilfemaßnahmen
Ausf Datenverlust par	CRC–Datenfehler bei der Parametrierung aufgetreten: Überprü- fen sie die komplette Parametrierung in der Spezialistenebene!
Ausf Hi Dosierzeit	Regler: Ausfallgrenze Dosierzeit überschritten
Ausf Hi Konz–Wert	Meßwert > 100 Gew% oder Ausfallgrenze überschritten
Ausf Hi LF–Wert	Meßwert > 2 S/cm oder Ausfallgrenze überschritten
Ausf Hi Strom–Eing	Ausfallgrenze Eingangsstrom überschritten
Ausf Hi Temperatur	Meßwert > 250 °C oder Ausfallgrenze überschritten
Ausf Hi Zellkonst	Zellkonstante > 200 1/cm oder Ausfallgrenze überschritten
Ausf Konzentration	Meßwerte für Konzentrationsberechnung im unzulässigen Be- reich
Ausf Lo Konz–Wert	Meßwert < 0 Gew% oder Ausfallgrenze unterschritten
Ausf Lo LF–Wert	Ausfallgrenze Leitfähigkeit unterschritten
Ausf Lo Strom–Eing	Ausfallgrenze Eingangsstrom unterschritten
Ausf Lo Temperatur	Meßwert < -50 °C oder Ausfallgrenze unterschritten
Ausf Lo Zellkonst	Zellkonstante < 0,005 1/cm oder Ausfallgrenze unterschritten
Ausf Sensor Ausfall	Meßwert nicht stabil für > 60 s
Ausf Spülzyklus	Spülzyklus wurde unterbrochen, Neustart erforderlich
Ausf Strom1–Bürde	Stromausgang 1: Bürde zu groß oder Stromkreis unterbrochen
Ausf Strom2–Bürde	Stromausgang 2: Bürde zu groß oder Stromkreis unterbrochen
Ausf System-Ausfall	Uhr-Ausfall oder CRC-Fehler im Abgleichdaten-Speicher: Gerät beim Hersteller überprüfen lassen!

Fehlermeldung (Anzeige im Diagnosemenü "aktuelle Meldungsliste")	Mögliche Fehlerursachen und Abhilfemaßnahmen
Ausf Tk–Bereich	Temperatur außerhalb der Tk-Tabellen für EN oder Reinstwasser (s. S. 9–14)
Warn Cal–Temperatur	Kalibriertemperatur außerhalb des gültigen Bereiches
Warn Hi Dosierzeit	Regler: Warnungsgrenze Dosierzeit überschritten
Warn Hi Konz–Wert	Warnungsgrenze Konzentration überschritten
Warn Hi LF–Wert	Warnungsgrenze Leitfähigkeit überschritten
Warn Hi Strom–Eing	Warnungsgrenze Eingangsstrom überschritten
Warn Hi Temperatur	Warnungsgrenze Meßtemperatur überschritten
Warn Hi Zellkonst	Warnungsgrenze Zellkonstante überschritten
Warn Lo Konz–Wert	Warnungsgrenze Konzentration unterschritten
Warn Lo LF–Wert	Warnungsgrenze Leitfähigkeit unterschritten
Warn Lo Temperatur	Warnungsgrenze Meßtemperatur unterschritten
Warn Lo Strom–Eing	Warnungsgrenze Eingangsstrom unterschritten
Warn Lo Zellkonst	Warnungsgrenze Zellkonstante unterschritten
Warn Bezugstemperatur	Bezugstemperatur < -50 °C oder > 250 °C
Warn Reglerparameter	Parameterfehler Regler, s. S. 9–40
Warn RS485–Busadr	Schnittstellenfehler: Ungültige Geräteadresse parametriert (0 oder >31)
Warn RS485–Overflow	Schnittstellenfehler: Buffer Overflow, zu viele Zeichen ohne Schlußzeichen empfangen
Warn RS485–Parameter	Schnittstellenfehler: Befehls-Parameter falsch
Warn RS485–Syntax	Schnittstellenfehler: Befehls-Syntax falsch oder Befehl nicht verfügbar
Warn Schnittstelle	Schnittstellenfehler: Parity- oder Framing-Fehler
Warn Schreibschutz	Schnittstellenfehler: Schreibversuch ohne vorherige Deaktivie- rung des Schreibschutzes
Warn Sensor Instabil	Meßwert nicht stabil für > 10 s
Warn Strom1–Spanne	Stromausgang 1: Anfangs– und Endwert haben zu geringen Abstand
Warn Strom1 <0/4 mA	Stromausgang 1: Ausgangsstrom unterhalb des parametrierten Anfangswertes
Warn Strom1 > 20 mA	Stromausgang 1: Ausgangsstrom oberhalb des parametrierten Endwertes

Fehlermeldung (Anzeige im Diagnosemenü "aktuelle Meldungsliste")	Mögliche Fehlerursachen und Abhilfemaßnahmen
Warn Strom2–Spanne	Stromausgang 2: Anfangs– und Endwert haben zu geringen Abstand
Warn Strom2 <0/4 mA	Stromausgang 2: Ausgangsstrom unterhalb des parametrierten Anfangswertes
Warn Strom2 > 20 mA	Stromausgang 2: Ausgangsstrom oberhalb des parametrierten Endwertes
Warn Stromparameter	Parameterfehler Stromausgang, s. S. 9–20
Warn Uhrzeit/Datum	Uhrzeit mußte automatisch initialisiert werden: Die Uhrzeit muß neu parametriert werden!
Warn Zellkonst	Zellkonstante bei Kalibrierung < 0,005 oder > 200 1/cm

Sortiert nach Schnittstellen-Fehlercode

Fehler- code	Fehlermeldung (Anzeige im Diagnosemenü "aktuelle Meldungsliste")	Mögliche Fehlerursachen und Abhilfemaßnahmen
050	Ausf Hi LF–Wert	Meßwert > 2 S/cm oder Ausfallgrenze überschritten
051	Warn Hi LF–Wert	Warnungsgrenze Leitfähigkeit überschritten
052	Warn Lo LF–Wert	Warnungsgrenze Leitfähigkeit unterschritten
053	Ausf Lo LF–Wert	Ausfallgrenze Leitfähigkeit unterschritten
054	Ausf Hi Konz–Wert	Meßwert > 100 Gew% oder Ausfallgrenze überschritten
055	Warn Hi Konz–Wert	Warnungsgrenze Konzentration überschritten
056	Warn Lo Konz–Wert	Warnungsgrenze Konzentration unterschritten
057	Ausf Lo Konz–Wert	Meßwert < 0 Gew% oder Ausfallgrenze unterschritten
058	Ausf Hi Zellkonst	Zellkonstante > 200 1/cm oder Ausfallgrenze überschrit- ten
059	Warn Hi Zellkonst	Warnungsgrenze Zellkonstante überschritten
060	Warn Lo Zellkonst	Warnungsgrenze Zellkonstante unterschritten
061	Ausf Lo Zellkonst	Zellkonstante < 0,005 1/cm oder Ausfallgrenze unter- schritten
062	Ausf Konzentration	Meßwerte für Konzentrationsberechnung im unzulässigen Bereich
063	Warn Bezugstemperatur	Bezugstemperatur < -50 °C oder > 250 °C
065	Warn Stromparameter	Parameterfehler Stromausgang, s. S. 9–20
067	Warn Zellkonst	Zellkonstante bei Kalibrierung < 0,005 oder > 200 1/cm
069	Ausf Tk–Bereich	Temperatur außerhalb der Tk–Tabellen für EN oder Reinstwasser (s. S. 9–14)
080	Ausf Hi Temperatur	Meßwert > 250 °C oder Ausfallgrenze überschritten
081	Warn Hi Temperatur	Warnungsgrenze Meßtemperatur überschritten
082	Warn Lo Temperatur	Warnungsgrenze Meßtemperatur unterschritten
083	Ausf Lo Temperatur	Meßwert < -50 °C oder Ausfallgrenze unterschritten
084	Ausf Hi Strom–Eing	Ausfallgrenze Eingangsstrom überschritten
085	Warn Hi Strom–Eing	Warnungsgrenze Eingangsstrom überschritten
086	Warn Lo Strom–Eing	Warnungsgrenze Eingangsstrom unterschritten
087	Ausf Lo Strom–Eing	Ausfallgrenze Eingangsstrom unterschritten
092	Warn RS485–Overflow	Schnittstellenfehler: Buffer Overflow, zu viele Zeichen ohne Schlußzeichen empfangen

Fehler- code	Fehlermeldung (Anzeige im Diagnosemenü "aktuelle Meldungsliste")	Mögliche Fehlerursachen und Abhilfemaßnahmen
093	Warn Schnittstelle	Schnittstellenfehler: Parity- oder Framing-Fehler
094	Warn RS485–Syntax	Schnittstellenfehler: Befehls-Syntax falsch oder Befehl nicht verfügbar
095	Warn RS485–Parameter	Schnittstellenfehler: Befehls-Parameter falsch
096	Warn RS485–Busadr	Schnittstellenfehler: Ungültige Geräteadresse parame- triert (0 oder >31)
097	Warn Strom1–Spanne	Stromausgang 1: Anfangs– und Endwert haben zu gerin- gen Abstand
098	Warn Strom1 <0/4 mA	Stromausgang 1: Ausgangsstrom unterhalb des parame- trierten Anfangswertes
099	Warn Strom1 > 20 mA	Stromausgang 1: Ausgangsstrom oberhalb des parame- trierten Endwertes
100	Ausf Strom1–Bürde	Stromausgang 1: Bürde zu groß oder Stromkreis unter- brochen
101	Warn Strom2–Spanne	Stromausgang 2: Anfangs– und Endwert haben zu gerin- gen Abstand
102	Warn Strom2 <0/4 mA	Stromausgang 2: Ausgangsstrom unterhalb des parame- trierten Anfangswertes
103	Warn Strom2 > 20 mA	Stromausgang 2: Ausgangsstrom oberhalb des parame- trierten Endwertes
104	Ausf Strom2–Bürde	Stromausgang 2: Bürde zu groß oder Stromkreis unter- brochen
105	Warn Cal–Temperatur	Kalibriertemperatur außerhalb des gültigen Bereiches
106	Warn Sensor Instabil	Meßwert nicht stabil für > 10 s
107	Ausf Sensor Ausfall	Meßwert nicht stabil für > 60 s
108	Warn Uhrzeit/Datum	Uhrzeit mußte automatisch initialisiert werden: Die Uhrzeit muß neu parametriert werden!
109	Warn Reglerparameter	Parameterfehler Regler, s. S. 9–40
110	Ausf Datenverlust par	CRC–Datenfehler bei der Parametrierung aufgetreten: Überprüfen Sie die komplette Parametrierung in der Spe- zialistenebene!
111	Ausf Hi Dosierzeit	Regler: Ausfallgrenze Dosierzeit überschritten
112	Warn Hi Dosierzeit	Regler: Warnungsgrenze Dosierzeit überschritten
115	Ausf Spülzyklus	Spülzyklus wurde unterbrochen, Neustart erforderlich

Fehler- code	Fehlermeldung (Anzeige im Diagnosemenü "aktuelle Meldungsliste")	Mögliche Fehlerursachen und Abhilfemaßnahmen
116	Warn Schreibschutz	Schnittstellenfehler: Schreibversuch ohne vorherige Deaktivierung des Schreibschutzes
255	Ausf System–Ausfall	Uhr–Ausfall oder CRC–Fehler im Abgleichdaten– Speicher: Gerät beim Hersteller überprüfen lassen!

12 Schnittstellenbefehle

Inhaltsübersicht

Übertragungsverhalten	12–4
Read/Write	12–4
Parametrierstrings	12–4
Numerische Parameter	12–5
VALUE-Befehle: Meßwerte abfragen	12–5
STATUS-Befehle: Meldungen und Zustände abfragen	12–6
Logbuch: Einträge abfragen (nur Option 354)	12–7
Gerätediagnose: Status abfragen	12–8
PARAMETER-Befehle: Parametrierung abfragen und Parameter setzen	12–9
Meßstellen-Nummer	12–9
Uhr	12–10
Temperaturfühlerabgleich	12–10
Automatische Kalibrierung	12–10
Kalibrierung durch Eingabe der Zellkonstante	12–11
Kalibrierung durch Probennahme	12–11
Meßwertanzeige	12–11
Linke Nebenanzeige parametrieren	12–11
Rechte Nebenanzeige parametrieren	12–12
Eingangsfilter	12–13
Tk Meßmedium	12–13
Temperaturerfassung	12–14
Temperaturalarm	12–14
Leitfähigkeitsalarm	12–15
Konzentrationsalarm	12–15

Zellkonstantenalarm	. 12–15
Ausgangsstrom 1	. 12–16
Ausgangsstrom 2 (nur Option 350)	. 12–17
Ausgang 2/Regler (nur Option 483)	. 12–18
Konzentrationsbestimmung (nur Option 359)	. 12–18
Konzentrationsbestimmung (nur Option 382)	. 12–19
Alarmeinstellungen	. 12–19
NAMUR-Kontakte	. 12–20
Grenzwertkontakte/Regler (nur mit Option 353)	. 12–20
Grenzwertkontakt 1	. 12–20
Grenzwertkontakt 2	. 12–21
Digitalregler (Option 353, nicht mit Opt. 483)	. 12–22
Analogregler (Option 483, nicht mit Opt. 353)	. 12–23
Dosierzeitalarm (Regler, Option 353 oder Option 483)	. 12–24
Stromeingang	. 12–24
Stromeingangsalarm	. 12–25
Sondenspülung (Option 352)	. 12–25
RS 485-Schnittstelle	. 12–26
Automatische Gerätediagnose	. 12–27
Automatische Gerätediagnose DEVICE-Befehle: Gerätebeschreibung	. 12–27 . 12–27
Automatische Gerätediagnose DEVICE-Befehle: Gerätebeschreibung COMMAND-Befehle: Steuerkommandos	. 12–27 . 12–27 . 12–27
Automatische Gerätediagnose DEVICE-Befehle: Gerätebeschreibung COMMAND-Befehle: Steuerkommandos Gerätediagnose	. 12–27 . 12–27 . 12–27 . 12–27
Automatische Gerätediagnose DEVICE-Befehle: Gerätebeschreibung COMMAND-Befehle: Steuerkommandos Gerätediagnose Uhr	. 12–27 . 12–27 . 12–27 . 12–27 . 12–28
Automatische Gerätediagnose	. 12–27 . 12–27 . 12–27 . 12–27 . 12–28 . 12–28
Automatische Gerätediagnose	. 12–27 . 12–27 . 12–27 . 12–27 . 12–28 . 12–28 . 12–28
Automatische Gerätediagnose	. 12–27 . 12–27 . 12–27 . 12–27 . 12–28 . 12–28 . 12–28 . 12–28
Automatische Gerätediagnose	. 12–27 . 12–27 . 12–27 . 12–27 . 12–28 . 12–28 . 12–28 . 12–28 . 12–28
Automatische Gerätediagnose	. 12–27 . 12–27 . 12–27 . 12–27 . 12–28 . 12–28 . 12–28 . 12–28 . 12–28 . 12–28
Automatische Gerätediagnose DEVICE-Befehle: Gerätebeschreibung COMMAND-Befehle: Steuerkommandos Gerätediagnose Uhr Meßstellen-Wartung Sondenspülung (Option 352) Widerstandsmessung Stromgeberfunktion Temperaturfühlerabgleich Digitalregler (Option 353, nicht mit Opt. 483)	. 12–27 12–27 12–27 12–27 12–28 12–28 12–28 12–28 12–28 12–28 12–28 12–28 12–28 12–28 12–28
Automatische Gerätediagnose DEVICE-Befehle: Gerätebeschreibung COMMAND-Befehle: Steuerkommandos Gerätediagnose Uhr Meßstellen-Wartung Sondenspülung (Option 352) Widerstandsmessung Stromgeberfunktion Temperaturfühlerabgleich Digitalregler (Option 353, nicht mit Opt. 483) Analogregler (Option 483, nicht mit Opt. 353)	. 12–27 12–27 12–27 12–27 12–28 12–28 12–28 12–28 12–28 12–28 12–28 12–28 12–28 12–29 12–29
Automatische Gerätediagnose DEVICE-Befehle: Gerätebeschreibung COMMAND-Befehle: Steuerkommandos Gerätediagnose Uhr Meßstellen-Wartung Sondenspülung (Option 352) Widerstandsmessung Stromgeberfunktion Temperaturfühlerabgleich Digitalregler (Option 353, nicht mit Opt. 483) Analogregler (Option 483, nicht mit Opt. 353) Automatische Kalibrierung	. 12–27 12–27 12–27 12–27 12–28 12–28 12–28 12–28 12–28 12–28 12–28 12–28 12–29 12–29 12–29 12–29
Automatische Gerätediagnose DEVICE-Befehle: Gerätebeschreibung COMMAND-Befehle: Steuerkommandos Gerätediagnose Uhr Meßstellen-Wartung Sondenspülung (Option 352) Widerstandsmessung Stromgeberfunktion Temperaturfühlerabgleich Digitalregler (Option 353, nicht mit Opt. 483) Analogregler (Option 483, nicht mit Opt. 353) Automatische Kalibrierung Kalibrierung durch Eingabe der Zellkonstante	. 12–27 12–27 12–27 12–27 12–28 12–28 12–28 12–28 12–28 12–28 12–28 12–29 12–29 12–29 12–29 12–29 12–29
Automatische Gerätediagnose DEVICE-Befehle: Gerätebeschreibung COMMAND-Befehle: Steuerkommandos Gerätediagnose Uhr Meßstellen-Wartung Sondenspülung (Option 352) Widerstandsmessung Stromgeberfunktion Temperaturfühlerabgleich Digitalregler (Option 353, nicht mit Opt. 483) Analogregler (Option 483, nicht mit Opt. 353) Automatische Kalibrierung Kalibrierung durch Eingabe der Zellkonstante Kalibrierung durch Probennahme	12–27 12–27 12–27 12–27 12–28 12–28 12–28 12–28 12–28 12–28 12–28 12–28 12–28 12–28 12–28 12–28 12–29 12–29 12–29 12–29 12–29 12–29 12–29 12–29 12–29 12–29 12–29
Automatische Gerätediagnose DEVICE-Befehle: Gerätebeschreibung COMMAND-Befehle: Steuerkommandos Gerätediagnose Uhr Meßstellen-Wartung Sondenspülung (Option 352) Widerstandsmessung Stromgeberfunktion Temperaturfühlerabgleich Digitalregler (Option 353, nicht mit Opt. 483) Analogregler (Option 483, nicht mit Opt. 353) Automatische Kalibrierung Kalibrierung durch Eingabe der Zellkonstante Kalibrierung Spezialistenebene	12–27 12–27 12–27 12–27 12–28 12–28 12–28 12–28 12–28 12–28 12–28 12–28 12–28 12–28 12–28 12–29 12–29 12–29 12–29 12–29 12–29 12–29 12–29 12–29 12–29 12–29 12–29 12–29

Schnittstelle Punkt-zu-Punkt	12–30
Schnittstellen-Busprotokoll	12–31
Datenformat	12–31
Aufbau einer Nachricht	12–31
1. Feld: Slaveadresse, Statusflags	12–32
2. Feld: Länge	12–32
3. Feld: ASCII-Nachricht	12–32
4. Feld: CRC16	12–33
Schnittstellen-Busprotokoll des Slave (7500)	12–34
Schnittstellen-Busprotokoll des Master	12–35

Übertragungsverhalten

Für einen fehlerfreien Datenaustausch zwischen dem angeschlossenen Rechner und dem Transmitter 7500 müssen die Parametereinstellungen beider Geräte übereinstimmen (s. a. S. 9–50).

Read/Write

- Readbefehle: Readbefehle (Abfragen) liefern immer eine Antwort.
- Writebefehle: Bei Writebefehlen ist die Antwort abhängig von der Parametrierung.

Mit dem Befehl "WPMSR1" schalten Sie die Rückmeldung nach Writebefehlen ein. Die Rückmeldung erfolgt als Leerstring (nur Schlußzeichen). Die Rückmeldung quittiert die komplette Bearbeitung des empfangenen Befehls. Der Empfangsbuffer ist wieder freigegeben. Eine Rückmeldung bedeutet nicht, daß der Befehl fehlerfrei übertragen wurde! Bei abgeschalteter Rückmeldung muß die Bearbeitungszeit des Transmitters 7500 abgewartet werden. Sie kann stark variieren. Zur Vermeidung von Übertragungsfehlern sollte eine minimale Wartezeit von einer Sekunde nicht unterschritten werden.

Parametrierstrings

Als Zeichen für die Übertragung dient der normale ASCII-Zeichensatz (Ziffern 0 ... 9; Klein- und Großbuchstaben; Sonderzeichen wie +, -, ...). Leerzeichen (Blanks) im Parametrierstring werden überlesen. Sie können daher beliebig zur Formatierung benutzt werden. In numerischen Parametern dürfen keine Leerzeichen verwendet werden. Antworten des Transmitters 7500 enthalten nur Großbuchstaben.

Jeder Parametrierstring muß mit einem Schlußzeichen abgeschlossen sein. Als Schlußzeichen können <cr> (Carriage Return), <lf> (Line Feed) oder eine Kombination aus beiden gesendet werden. Erst nach dem Empfang des Schlußzeichens beginnt der Transmitter 7500 mit der Bearbeitung des empfangenen Befehls.

Ohne Schlußzeichen füllt sich der Empfangsbuffer. Bei vollem Empfangsbuffer erscheint die Fehlermeldung "Warn RS 485-Overflow".

Numerische Parameter

Numerische Parameter können beliebig mit oder ohne Exponent eingegeben werden. Weitere Nachkommastellen werden nicht berücksichtigt. Parameter könne nur in Ihrer Grundeinheit übertragen werden, z. B. "124 mV" werden als "124E-3" in Volt dargestellt.

Der Transmitter 7500 wählt immer die kürzeste mögliche Darstellungsform, d. h. "23,0 °C" wird als "23" übertragen

VALUE-Befehle: Meßwerte abfragen

Mit den Value-Befehlen können Sie alle Meßwerte des Transmitters 7500 abfragen. Value-Befehle sind Lesebefehle. Der Gerätestatus des Transmitters 7500 wird daher nicht verändert.

Befehl	Bedeutung
RV2	°C-Meßwert abfragen
RV3	Leitfähigkeits-Meßwert abfragen
RV4	Konzentrationswert abfragen (nur Option 359, 360, 382)
RV5	Eingangsstrom abfragen
RVI1	Ausgangsstrom 1 abfragen
RVI2	Ausgangsstrom 2 abfragen (nur Opt. 350)
RVR3	Spezifischen Widerstand abfragen
RVTRT	Uhrzeit "hhmmss" abfragen
RVDRT	Datum "ddmmyy" abfragen
RVYCI	Digitalregler-Stellgröße abfragen (nur Opt. 353)
RVYCN	Analogregler-Stellgröße abfragen (nur Opt. 483)

STATUS-Befehle: Meldungen und Zustände abfragen

Mit den Status-Befehlen können Sie Gerätemeldungen wie z. B. die NAMUR-Meldungen Funktionskontrolle, Warnung (Wartungsbedarf) und Ausfall auslesen, Gerätezustände überwachen und die Protokolle abfragen. Mit den Status-Befehlen erreichen Sie Daten, die Sie zur QM-Dokumentation gemäß DIN ISO 9000 verwenden können. Status-Befehle sind Lesebefehle. Der Gerätestatus des Transmitters 7500 wird daher nicht verändert.

Befehl	Funktion	Antwort	Bedeutung
RSF1	Abfrage der ersten Ausfallmeldung	хх	
RSFA	Abfrage aller Ausfallmeldungen	xx;xx	
RSW1	Abfrage der ersten Warnungsmeldung	хх	
RSWA	Abfrage aller Warnungsmeldungen	xx;xx	
RSP	Abfrage des Gerätezustands ("Menü")	00	Meßmodus
		01	Parametrierung bet, spe
		02	Kalibrierung cal
		08	Wartung maint
		10	Meßmodus, Sondenspülung läuft, durch Timer gestartet
		11	Parametrierung bet, spe & Son- denspülung läuft durch Timer gestartet
		18	Wartung, Sondenspülung läuft manuell gestartet
RSL	Grenzwertmeldungen abfragen	0	wenn keine Grenzwertmeldung
		1	Grenzwert 1 aktiv
		2	Grenzwert 2 aktiv
		3	beide Grenzwerte aktiv

RSU	Gerätestatus abfragen (Meldungen, Grenzwert, SRQS)	1. Bit	"1" wenn eine oder mehrere Ausfallmeldungen aktiv sind
		2. Bit	"1" wenn eine oder mehrere Warnungsmeldungen aktiv sind
		3. Bit	"1" bei Funktionskontrolle aktiv
		4. Bit	"1" bei Grenzwert 1 und/oder Grenzwert 2 aktiv
		5. Bit	"1" wenn Ausgänge eingefroren sind (z. B. bei Kalibrierung)
		6. Bit	immer "1"
		7. Bit	"1" falls seit letzter Abfrage eine Statusänderung aufgetreten ist
		8. Bit	immer "0"

Logbuch: Einträge abfragen (nur Option 354)

Zur kompletten Abfrage des Logbuchs verwenden Sie zuerst den Befehl "RSLOO", um den ältesten Eintrag zu lesen. Dann verwenden Sie den Befehl "RSLOOC" solange, bis Sie einen Leerstring (nur Schlußzeichen) als Antwort empfangen. Der Leerstring bedeutet, daß kein weiterer Eintrag vorhanden ist.

Wenn Sie nur neue Einträge des Logbuchs lesen möchten, die noch nicht über die Schnittstelle ausgelesen wurden, verwenden Sie gleich den Befehl "RSLOOC".

Befehl	Funktion
RSLON	jüngsten Eintrag abfragen
RSLONC	nächst-älteren Eintrag abfragen (Beginn bei zweitjüngstem Eintrag)
RSLOO	ältesten Eintrag abfragen
RSLOOC	nächst-jüngeren Eintrag abfragen (Beginn bei zweitältestem Eintrag)

Gerätediagnose: Status abfragen

Befehl	Funktion	Antwort	Bedeutung
RSTETR	Uhrzeit RAM-Test abfragen	hhmmss	
RSTEDR	Datum RAM-Test abfragen	ddmmyy	
RSTERR	Ergebnis RAM-Test abfragen	"0"	ok
		"2"	Ausfall
RSTETP	Uhrzeit EPROM-Test abfragen	hhmmss	
RSTEDP	Datum EPROM-Test abfragen	ddmmyy	
RSTERP	Ergebnis EPROM-Test abfragen	"0"	ok
		"2"	Ausfall
RSTETE	Uhrzeit EEPROM-Test abfragen	hhmmss	
RSTEDE	Datum EEPROM-Test abfragen	ddmmyy	
RSTERE	Ergebnis EEPROM-Test abfragen	"0"	ok
		"2"	Ausfall
RSTETDI	Uhrzeit Display-Test abfragen	hhmmss	
RSTEDDI	Datum Display-Test abfragen	ddmmyy	
RSTERDI	Ergebnis Display-Test abfragen	"0"	Test wurde durchgeführt
		"2"	Ausfall
RSTETKY	Uhrzeit Tastatur-Test abfragen	hhmmss	
RSTEDKY	Datum Tastatur-Test abfragen	ddmmyy	
RSTERKY	Ergebnis Tastatur-Test abfragen	"0"	ok
		"2"	Ausfall

Diagnose starten: s. S. 12–27

PARAMETER-Befehle: Parametrierung abfragen und Parameter setzen

Mit den Parameter-Befehlen können Sie alle Funktionen des Transmitters 7500 über die Rechner-Schnittstelle parametrieren (ausgenommen der Übertragungsparameter der Schnittstelle).

Mit den Parameter-Befehlen können Sie alle Geräteparameter lesen und schreiben! Daher ist die Richtigkeit der gesendeten Befehle besonders wichtig. Die Übertragung im Punkt-zu-Punkt-Betrieb ist nicht mit Prüfsummen gesichert. Zur Vermeidung von Fehleinstellungen ist es daher ratsam, wichtige Parameter zum Vergleich zurückzulesen.

Mit dem ersten Write-Befehl übernimmt der steuernde Rechner (PC, SPS, ...) die Kontrolle über den Transmitter 7500. Viele Sicherheitsabfragen müssen dann im Rechner realisiert werden! Mit dem Befehl "WCOMINO" (goto Local) gibt der Rechner seine Kontrolle an den Transmitter 7500 zurück. Der Transmitter 7500 setzt im Meß-Modus auf.

Read-Befehle bewirken keine Statusänderungen und beeinflussen keine der Systemfunktionen. Die Kontrolle bleibt bei dem Transmitter 7500.

Bei eingeschaltetem Schreibschutz werden alle Schreibversuche ohne vorheriges Aufheben des Schreibschutzes oder mit ungültiger Paßzahl im Logbuch protokolliert. Bei der Auslieferung ist der Schreibschutz abgeschaltet.

Wenn Sie die Parametrierung über die Gerätetastatur aufrufen, wird die NAMUR-Meldung Funktionskontrolle gesetzt. Warnungs- und Ausfallkontakt werden deaktiviert bis die Parametrierung abgeschlossen ist.

Wenn Sie über die RS 485-Schnittstelle Geräteparameter verändern, sind alle Meldungen freigegeben. Somit können beim Ändern von Parametern zeitweise Meldungen auftreten, die bei Tastaturbedienung unterdrückt würden.

- WCOM01 Mit dem Schnittstellen-Befehl "WCOM01" können Sie das Gerät in den Parametriermodus versetzen. Die NAMUR-Meldung Funktionskontrolle wird dann gesetzt und damit Warnungs- und Ausfallkontakt auch im Schnittstellenbetrieb deaktiviert. Rückkehr in den Meß-Modus mit "WCOM00".
- WCOU1 Wenn Sie während der Parametrierung sämtliche Gerätefunktionen einfrieren möchten, verwenden Sie den Befehl "WCOU1". Die Funktionskontrolle wird gesetzt, Warnungs- und Ausfallkontakt deaktiviert. Zusätzlich sind Ausgangsstrom und Regler eingefroren und die Grenzwertkontakte inaktiv. Auftauen der Gerätefunktionen mit "WCOU0".

Meßstellen-Nummer

RPUAM	Marker abfragen
WPUAM0	Marker "Aus" setzen
WPUAM1	Marker "Ein" setzen
RPUAW	Parametrierte Meßstellen-Nummer abfragen
WPUAW <i>aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa</i>	Meßstellen-Nummer parametrieren <i>a</i> = ASCII-Zeichen: Blank, "0" "9", "A " "Z", "-", "+", "/"

Uhr

RPRTM	Marker abfragen	
WPRTM0	Marker "Aus" setzen	
WPRTM1	Marker "Ein" setzen	
RPRTDF	Datumformat abfragen	
WPRTDF0	Datumformat "T.M.J" setzen	
WPRTDF1	Datumformat,,T/M/J" setzen	
WPRTDF2	Datumformat "M/T/J" setzen	
WPRTDF3	Datumformat "J-M-T" setzen	
		Uhrzeit/Date
		Librzoit/Dot

Uhrzeit/Datum setzen: s. S. 12–28 Uhrzeit/Datum abfragen: s. S. 12–5

Temperaturfühlerabgleich

RPTFS	ParametrierungTemperaturfühlerabgleich abfragen
WPTFS0	Temperaturfühlerabgleich ausschalten
WPTFS1	Temperaturfühlerabgleich einschalten
	Abgleichwert setzen: s. S. 12–28

Automatische Kalibrierung

RPCAMM	Marker abfragen
WPCAMM0	Marker "Aus" setzen
WPCAMM1	Marker "Ein" setzen
RPCAMA	Parametrierung Kalibrierlösung abfragen
WPCAMA1	Kalibrierlösung NaCI parametrieren
WPCAMA2	Kalibrierlösung KCI parametrieren
RPCAM1	Parametrierung NaCI-Konzentration abfragen
WPCAM10	Gesättigte Kalibrierlösung parametrieren
WPCAM11	Konzentration 0,1 mol/l parametrieren
WPCAM12	Konzentration 0,01 mol/l parametrieren
RPCAM2	Parametrierung KCI-Konzentration abfragen
WPCAM20	Konzentration 1 mol/l parametrieren
WPCAM21	Konzentration 0,1 mol/l parametrieren
WPCAM22	Konzentration 0,01 mol/l parametrieren
	Automatische Kalibrierung starten: s. S. 12–29

12–10 Schnittstellenbefehle

Kalibrierung durch Eingabe der Zellkonstante

- RPCAC Parametrierte Zellkonstante abfragen
- WPCAC*p* Zellkonstante *p* parametrieren

Kalibrierung starten: s. S. 12-29

Kalibrierung durch Probennahme

- RPCAP Probenwert abfragen
- WPCAP*p* Probenwert *p* parametrieren

Kalibrierung starten: s. S. 12-29

Meßwertanzeige

RPDIMM	Marker abfragen
WPDIMM0	Marker "Aus" setzen
WPDIMM1	Marker "Ein" setzen
RPDIMA	Parametrierte Meßgröße abfragen
WPDIMA2	Meßtemperatur als angezeigte Meßgröße parametrieren
WPDIMA3	Leitfähigkeit als angezeigte Meßgröße parametrieren
WPDIMA4	Konzentration als angezeigte Meßgröße parametrieren (nur Option 359, 360, 382)
WPDIMAR3	Spezifischen Widerstand als angezeigte Meßgröße parametrieren
WPDIMATRT	Zeit als angezeigte Meßgröße parametrieren
RPDIMVA	Blickwinkel abfragen
WPDIMVA <i>n</i>	Blickwinkel einstellen (n = $-2 \dots 0 \dots +2$)

Linke Nebenanzeige parametrieren

- RPDISLA Zugewiesene Meßgröße abfragen
- WPDISLA2 Meßtemperatur anzeigen
- WPDISLA3 Leitfähigkeit anzeigen

WPDISLA4	Konzentration anzeigen (nur Option 359, 360, 382)
WPDISLA5	Eingangsstrom anzeigen
WPDISLAI1	Ausgangsstrom 1 anzeigen
WPDISLAI2	Ausgangsstrom 2 anzeigen (nur Opt. 350)
WPDISLAR3	Spezifischen Widerstand anzeigen
WPDISLATRT	Uhr anzeigen
WPDISLADRT	Datum anzeigen
WPDISLADCI	Digitalregler-Sollwert anzeigen (nur Opt. 353)
WPDISLADCN	Analogregler-Sollwert anzeigen (nur Opt. 483)
WPDISLAYCI	Digitalregler-Stellgröße anzeigen (nur Opt. 353)
WPDISLAYCN	Analogregler-Stellgröße anzeigen (nur Opt. 483)
WPDISLATM	manuelle Temperatur anzeigen

Rechte Nebenanzeige parametrieren

RPDISRA	Zugewiesene Meßgröße abfragen
WPDISRA2	Meßtemperatur anzeigen
WPDISRA3	Leitfähigkeit anzeigen
WPDISRA4	Konzentration anzeigen (nur Option 359, 360, 382)
WPDISRA5	Eingangsstrom anzeigen
WPDISRAI1	Ausgangsstrom 1 anzeigen
WPDISRAI2	Ausgangsstrom 2 anzeigen (nur Opt. 350)
WPDISRAR3	Spezifischen Widerstand anzeigen
WPDISRATRT	Uhr anzeigen
WPDISRADRT	Datum anzeigen
WPDISRADCI	Digitalregler-Sollwert anzeigen (nur Opt. 353)
WPDISRADCN	Analogregler-Sollwert anzeigen (nur Opt. 483)
WPDISRAYCI	Digitalregler-Stellgröße anzeigen (nur Opt. 353)
WPDISRAYCN	Analogregler-Stellgröße anzeigen (nur Opt. 483)
WPDISRATM	manuelle Temperatur anzeigen

Eingangsfilter

RPIFM	Marker abfragen
WPIFM0	Marker "Aus" setzen
WPIFM1	Marker "Ein" setzen
RPIF	Parametrierung Eingangsfilter abfragen
WPIF0	Eingangsfilter ausschalten
WPIF1	Eingangsfilter einschalten

Tk Meßmedium

RPTCM	Marker abfragen
WPTCM0	Marker "Aus" setzen
WPTCM1	Marker "Ein" setzen
RPTCS	Parametrierung Tk-Einstellung abfragen
WPTCS0	Tk ausschalten
WPTCS1	Tk "Reinstwasser" parametrieren (nur Option 392)
WPTCS3	Tk linear parametrieren
RPTCVR	Parametrierten Wert für Tk linear (bei Referenztemperatur) abfragen
RPTCR	Parametrierung Referenztemperatur für TK linear abfragen
WPTCVR <i>p</i>	Tk p der Lösung parametrieren
WPTCR <i>p</i>	Referenztemperatur <i>p</i> parametrieren
WPTCS4	Tk gemäß EN 27888 (natürliche Wässer) parametrieren
RPTC1	Tk Meßmedium, Verunreinigung abfragen (nur Option 392)
WPTC10	Verunreinigung NaOH (nur Option 392)
WPTC11	Verunreinigung NaCl (nur Option 392)
WPTC12	Verunreinigung HCI (nur Option 392)
WPTC12	Verunreinigung NH ₃ (nur Option 392)
RPTCC	Probenkalibrierung mit Tk / ohne Tk abfragen
WPTCC0	Probenkalibrierung ohne Tk parametrieren
WPTCC1	Probenkalibrierung mit Tk parametrieren

Temperaturerfassung

RPTOMM	Marker abfragen
WPTOMM0	Marker "Aus" setzen
WPTOMM1	Marker "Ein" setzen
RPTOT	Temperaturfühler abfragen
WPTOT1	Pt 1000 parametrieren
WPTOT2	Pt 100 parametrieren
WPTOT3	Ni 100 parametrieren
RPTOMA	Parametrierung Meßtemperaturerfassung abfragen
WPTOMA0	Meßtemperaturerfassung manuell parametrieren
WPTOMA1	Meßtemperaturerfassung auto parametrieren
RPTMMV	Parametrierung manuelle Meßtemperatur abfragen
WPTMMV <i>p</i>	manuelle Meßtemperatur p parametrierern
RPTOCA	Parametrierung Kalibriertemperaturerfassung abfragen
WPTOCA0	Kalibriertemperaturerfassung manuell parametrieren
WPTOCA1	Kalibriertemperaturerfassung auto parametrieren
RPTMCV	Parametrierung manuelle Kalibriertemperatur abfragen
WPTMCV <i>p</i>	manuelle Kalibriertemperatur <i>p</i> schreiben

Temperaturalarm

RPALF2S	Parametrierung abfragen
WPALF2S0	Alarm abschalten
WPALF2S1	Alarm einschalten
RPALF2FL	Parametrierung Ausfallgrenze Lo abfragen
WPALF2FLp	Ausfallgrenze Lo p parametrieren
RPALF2WL	Parametrierung Warnungsgrenze Lo abfragen
WPALF2WLp	Warnungsgrenze Lo <i>p</i> parametrieren
RPALF2WH	Parametrierung Warnungsgrenze Hi abfragen
WPALF2WHp	Warnungsgrenze Hi <i>p</i> parametrieren
RPALF2FH	Parametrierung Ausfallgrenze Hi abfragen
WPALF2FHp	Ausfallgrenze Hi p parametrieren

Leitfähigkeitsalarm

RPALF3S	Parametrierung abfragen
WPALF3S0	Alarm abschalten
WPALF3S1	Alarm einschalten
RPALF3FL	Parametrierung Ausfallgrenze Lo abfragen
WPALF3FLp	Ausfallgrenze Lo <i>p</i> parametrieren
RPALF3WL	Parametrierung Warnungsgrenze Lo abfragen
WPALF3WLp	Warnungsgrenze Lo <i>p</i> parametrieren
RPALF3WH	Parametrierung Warnungsgrenze Hi abfragen
WPALF3WHp	Warnungsgrenze Hi <i>p</i> parametrieren
RPALF3FH	Parametrierung Ausfallgrenze Hi abfragen
WPALF3FHp	Ausfallgrenze Hi <i>p</i> parametrieren

Konzentrationsalarm

RPALF4S	Parametrierung abfragen
WPALF4S0	Alarm abschalten
WPALF4S1	Alarm einschalten
RPALF4FL	Parametrierung Ausfallgrenze Lo abfragen
WPALF4FLp	Ausfallgrenze Lo <i>p</i> parametrieren
RPALF4WL	Parametrierung Warnungsgrenze Lo abfragen
WPALF4WLp	Warnungsgrenze Lo p parametrieren
RPALF4WH	Parametrierung Warnungsgrenze Hi abfragen
WPALF4WHp	Warnungsgrenze Hi <i>p</i> parametrieren
RPALF4FH	Parametrierung Ausfallgrenze Hi abfragen
WPALF4FHp	Ausfallgrenze Hi <i>p</i> parametrieren

Zellkonstantenalarm

RPALFCS	Parametrierung abfragen
WPALFCS0	Alarm abschalten
WPALFCS1	Alarm einschalten
RPALFCFL	Parametrierung Ausfallgrenze Lo abfragen
WPALFCFL <i>p</i>	Ausfallgrenze Lo p parametrieren
RPALFCWL	Parametrierung Warnungsgrenze Lo abfragen

WPALFCWLp	Warnungsgrenze Lo <i>p</i> parametrieren
RPALFCWH	Parametrierung Warnungsgrenze Hi abfragen
WPALFCWH <i>p</i>	Warnungsgrenze Hi p parametrieren
RPALFCFH	Parametrierung Ausfallgrenze Hi abfragen
WPALFCFHp	Ausfallgrenze Hi <i>p</i> parametrieren

Ausgangsstrom 1

RPOC1M	Marker abfragen
WPOC1M0	Marker "Aus" setzen
WPOC1M1	Marker "Ein" setzen
RPOC1A	Zugewiesene Meßgröße abfragen
WPOC1A2	Meßtemperatur als Meßgröße zuweisen
WPOC1A3	Leitfähigkeit als Meßgröße zuweisen
WPOC1A4	Konzentration als Meßgröße zuweisen (nur Option 359, 360, 382)
WPOC1AR3	Spezifischen Widerstand als Meßgröße zuweisen
RPOC1Z	Betriebsart 020mA / 420mA abfragen
WPOC1Z0	Betriebsart 020mA parametrieren
WPOC1Z1	Betriebsart 420mA parametrieren
RPOC1L	Parametrierten Anfangswert abfragen
WPOC1Lp	Anfangswert p parametrieren
RPOC1H	Parametrierten Endwert abfragen
WPOC1Hp	Endwert <i>p</i> parametrieren
RPOC1F	Parametrierung Kennlinie abfragen
WPOC1F0	Kennlinie linear parametrieren
WPOC1F1	Kennlinie trilinear parametrieren
RPOC1BX	Kennlinie trilinear, Parametrierung 1. Eckpunkt X abfragen
WPOC1BXp	Kennlinie trilinear, 1. Eckpunkt X p parametrieren
RPOC1BY	Kennlinie trilinear, Parametrierung 1. Eckpunkt Y abfragen
WPOC1BYp	Kennlinie trilinear, 1. Eckpunkt Y p parametrieren
----------	--
RPOC1EX	Kennlinie trilinear, Parametrierung 2. Eckpunkt X abfragen
WPOC1EXp	Kennlinie trilinear, 2. Eckpunkt X p parametrieren
RPOC1EY	Kennlinie trilinear, Parametrierung 2. Eckpunkt Y abfragen
WPOC1EYp	Kennlinie trilinear, 2. Eckpunkt Y p parametrieren
WPOC1F2	Kennlinie "Funktion" parametrieren
RPOC1PX	Kennlinie "Funktion", Parametrierung 50%-Punkt abfragen
WPOC1PXp	Kennlinie "Funktion", 50%-Punkt <i>p</i> parametrieren

Ausgangsstrom 2 (nur Option 350)

RPOC2M	Marker abfragen (nicht bei Option 483)
WPOC2M0	Marker "Aus" setzen (nicht bei Option 483)
WPOC2M1	Marker "Ein" setzen (nicht bei Option 483)
RPOC2A	Zugewiesene Meßgröße abfragen
WPOC2A2	Meßtemperatur als Meßgröße zuweisen
WPOC2A3	Leitfähigkeit als Meßgröße zuweisen
WPOC2A4	Konzentration als Meßgröße zuweisen (nur Option 359, 360, 382)
WPOC1AR3	Spezifischen Widerstand als Meßgröße zuweisen
RPOC2Z	Betriebsart 020mA / 420mA abfragen
WPOC2Z0	Betriebsart 020mA parametrieren
WPOC2Z1	Betriebsart 420mA parametrieren
RPOC2L	Parametrierten Anfangswert abfragen
WPOC2Lp	Anfangswert <i>p</i> parametrieren
RPOC2H	Parametrierten Endwert abfragen
WPOC2Hp	Endwert <i>p</i> parametrieren
RPOC2F	Parametrierung Kennlinie abfragen
WPOC2F0	Kennlinie linear parametrieren
WPOC2F1	Kennlinie trilinear parametrieren

RPOC2BX	Kennlinie trilinear, Parametrierung 1. Eckpunkt X abfragen
WPOC2BXp	Kennlinie trilinear, 1. Eckpunkt X p parametrieren
RPOC2BY	Kennlinie trilinear, Parametrierung 1. Eckpunkt Y abfragen
WPOC2BYp	Kennlinie trilinear, 1. Eckpunkt Y p parametrieren
RPOC2EX	Kennlinie trilinear, Parametrierung 2. Eckpunkt X abfragen
WPOC2EXp	Kennlinie trilinear, 2. Eckpunkt X p parametrieren
RPOC2EY	Kennlinie trilinear, Parametrierung 2. Eckpunkt Y abfragen
WPOC2EYp	Kennlinie trilinear, 2. Eckpunkt Y p parametrieren
WPOC2F2	Kennlinie "Funktion" parametrieren
RPOC2PX	Kennlinie "Funktion", Parametrierung 50%-Punkt abfragen
WPOC2PXp	Kennlinie "Funktion", 50%-Punkt <i>p</i> parametrieren

Ausgang 2/Regler (nur Option 483)

RPCNM	Marker abfragen
WPCNM0	Marker "Aus" setzen
WPCNM1	Marker "Ein" setzen
RPCNS	Parametrierung (Strom 2 oder Analogregler) abfragen (nur Option 483)
WPCNS0	Betrieb Ausgang 2 als Steuerausgang parametrieren (nur Option 483)
WPCNS1	Analogreglerbetrieb parametrieren (nur Option 483)

Konzentrationsbestimmung (nur Option 359)

RPCRMM	Marker abfragen
WPCRMM0	Marker "Aus" setzen
WPCRMM1	Marker "Ein" setzen
RPCRMA	Parametrierung Meßlösung abfragen
WPCRMA1	Meßlösung H ₂ SO ₄ parametrieren
WPCRMA2	Meßlösung HNO3 parametrieren
WPCRMA3	Meßlösung HCI parametrieren

RPCRM1	Parametrierung Konzentrationsbereich H_2SO_4 abfragen
WPCRM10	Konzentrationsbereich 00-30 Gew% parametrieren
WPCRM11	Konzentrationsbereich 32-84 Gew% parametrieren
WPCRM12	Konzentrationsbereich 92–99 Gew% parametrieren
RPCRM2	Parametrierung Konzentrationsbereich HNO_3 abfragen
WPCRM20	Konzentrationsbereich 00-30 Gew% parametrieren
WPCRM21	Konzentrationsbereich 35–96 Gew% parametrieren
RPCRM3	Parametrierung Konzentrationsbereich HCI abfragen
WPCRM30	Konzentrationsbereich 00–18 Gew% parametrieren
WPCRM31	Konzentrationsbereich 22–39 Gew% parametrieren

Konzentrationsbestimmung (nur Option 382)

RPCRMM	Marker abfragen
WPCRMM0	Marker "Aus" setzen
WPCRMM1	Marker "Ein" setzen
RPCRMA	Parametrierung Meßlösung abfragen
WPCRMA3	Meßlösung HCI parametrieren
WPCRMA4	Meßlösung NaOH parametrieren
WPCRMA5	Meßlösung NaCl parametrieren
RPCRM3	Parametrierung Konzentrationsbereich HCI abfragen
WPCRM30	Konzentrationsbereich 00–18 Gew% parametrieren
WPCRM31	Konzentrationsbereich 22–39 Gew% parametrieren
RPCRM4	Parametrierung Konzentrationsbereich NaOH abfragen
WPCRM40	Konzentrationsbereich 00–14 Gew% parametrieren
WPCRM41	Konzentrationsbereich 18–50 Gew% parametrieren
(Konzentration NaCl hat nur einen Bereich, daher keine Schnittstellenbefehle.)	

Alarmeinstellungen

RPALM	Marker abfragen
WPALM0	Marker "Aus" setzen
WPALM1	Marker "Ein" setzen

NAMUR-Kontakte

RPCNM	Parametrierung Marker abfragen
WPCNM0	Marker "Aus" setzen
WPCNM1	Marker "Ein" setzen
RPCNUO	Parametrierung Arbeits/Ruhekontakt abfragen
WPCNUO0	Ruhekontakte parametrieren
WPCNUO1	Arbeitskontakte parametrieren
RPCNUOTF	Parametrierung Ausfall-Verzögerungszeit abfragen
WPCNUOTFp	Ausfall-Verzögerungszeit p parametrieren
RPCNUOTW	Parametrierung Warnungs-Verzögerungszeit abfragen
WPCNUOTW <i>p</i>	Warnungs-Verzögerungszeit <i>p</i> parametrieren

Grenzwertkontakte/Regler (nur mit Option 353)

RPCIM	Marker abfragen
WPCIM0	Marker "Aus" setzen
WPCIM1	Marker "Ein" setzen
RPCIS	Parametrierung (Grenzwertkontakte oder Regler) abfragen
WPCIS0	Betrieb Grenzwertkontakt parametrieren
WPCIS1	Reglerbetrieb parametrieren
	Regler aktivieren: s. S. KEIN MERKER

Grenzwertkontakt 1

RPLI1A	Grenzwert 1 zugewiesene Meßgröße abfragen
WPLI1A2	Meßtemperatur als Meßgröße zu Grenzwert 1 zuweisen
WPLI1A3	Leitfähigkeit als Meßgröße zu Grenzwert 1 zuweisen
WPLI1AR3	Spezifischen Widerstand als Meßgröße zu Grenzwert 1 zuweisen
WPLI1A4	Konzentration als Meßgröße zu Grenzwert 1 zuweisen (nur Option 359, 360, 382)
WPLI1A5	Eingangsstrom als Meßgröße zu Grenzwert 1 zuweisen

RPLI1D	Parametrierung Wirkrichtung Grenzwert 1 abfragen
WPLI1D0	Grenzwert 1 Wirkrichtung Min parametrieren
WPLI1D1	Grenzwert 1 Wirkrichtung Max parametrieren
RPLI1V	Parametrierung Grenzwert 1 abfragen
WPLI1V <i>p</i>	Grenzwert 1 p parametrieren
RPLI1H	Parametrierung Hysterese Grenzwert 1 abfragen
WPLI1Hp	Hysterese Grenzwert 1 p parametrieren
RPLI1CN	Parametrierung Grenzwertkontakt 1 abfragen
WPLI1CN0	Grenzwertkontakt 1 als Ruhekontakt parametrieren
WPLI1CN1	Grenzwertkontakt 1 als Arbeitskontakt parametrieren

Grenzwertkontakt 2

Grenzwert 2 zugewiesene Meßgröße abfragen
Meßtemperatur als Meßgröße zu Grenzwert 2 zuweisen
Leitfähigkeit als Meßgröße zu Grenzwert 2 zuweisen
Spezifischen Widerstand als Meßgröße zu Grenzwert 2 zuweisen
Konzentration als Meßgröße zu Grenzwert 2 zuweisen (nur Option 359, 360, 382)
Eingangsstrom als Meßgröße zu Grenzwert 2 zuweisen
Parametrierung Wirkrichtung Grenzwert 2 abfragen
Grenzwert 2 Wirkrichtung Min parametrieren
Grenzwert 2 Wirkrichtung Max parametrieren
Parametrierung Grenzwert 2 abfragen
Grenzwert 2 p parametrieren
Parametrierung Hysterese Grenzwert 2 abfragen
Hysterese Grenzwert 2 p parametrieren
Parametrierung Grenzwertkontakt 2 abfragen
Grenzwertkontakt 2 als Ruhekontakt parametrieren
Grenzwertkontakt 2 als Arbeitskontakt parametrieren

Digitalregler (Option 353, nicht mit Opt. 483)

RPCITA	Parametrierung Reglertyp abfragen
WPCITA0	Typ A: Impulslängenregler parametrieren
WPCITA1	Typ B: Impulsfrequenzregler parametrieren
RPCIA	Parametrierte Regelgröße abfragen
WPCIA2	Meßtemperatur als Regelgröße parametrieren
WPCIA3	Leitfähigkeit als Regelgröße parametrieren
WPCIAR3	Spezifischen Widerstand als Regelgröße parametrieren
RPCID	Parametrierten Sollwert abfragen
WPCIDp	Sollwert <i>p</i> parametrieren
RPCINZ	Parametrierte neutrale Zone abfragen
WPCINZp	Neutrale Zone <i>p</i> parametrieren
RPCILT	Parametrierte minimale Einschaltzeit abfragen
WPCILTp	Minimale Einschaltzeit p parametrieren
RPCILF	Parametrierte maximale Impulsfrequenz abfragen
WPCILFp	Maximale Impulsfrequenz p parametrieren
RPCIBV	Parametrierung
WPCIBVp	Regelanfang p parametrieren
RPCIBX	Parametrierung
WPCIBXp	Eckpunkt X p parametrieren
RPCIBY	Parametrierung
WPCIBYp	Eckpunkt Y p parametrieren
RPCIBT	Parametrierung
WPCIBT <i>p</i>	Nachstellzeit p parametrieren
RPCIBP	Parametrierung Periodendauer abfragen
WPCIBPp	Periodendauer p parametrieren
RPCIEV	Parametrierung - Regelende abfragen
WPCIEVp	► Regelende <i>p</i> parametrieren
RPCIEX	Parametrierung - Eckpunkt X abfragen

WPCIEXp	Eckpunkt X p parametrieren
RPCIEY	Parametrierung - Eckpunkt Y abfragen
WPCIEYp	Eckpunkt Y p parametrieren
RPCIET	Parametrierung > Nachstellzeit abfragen
WPCIETp	Nachstellzeit p parametrieren
RPCIEP	Parametrierung ► Periodendauer abfragen
WPCIEPp	Periodendauer p parametrieren

Analogregler (Option 483, nicht mit Opt. 353)

RPCNTA	Parametrierung Reglertyp abfragen
WPCNTA0	Typ A: 3-Wege-Mischventil parametrieren
WPCNTA1	Typ B: Durchgangsventil parametrieren (< Sollwert)
WPCNTA2	Typ C: Durchgangsventil parametrieren (> Sollwert)

RPCNA	Parametrierte Regelgröße abfragen
WPCNA2	Meßtemperatur als Regelgröße parametrieren
WPCNA3	Leitfähigkeit als Regelgröße parametrieren
WPCNAR3	Spezifischen Widerstand als Regelgröße parametrieren
RPCND	Parametrierten Sollwert abfragen
WPCNDp	Sollwert <i>p</i> parametrieren
RPCNNZ	Parametrierte neutrale Zone abfragen
WPCNNZp	Neutrale Zone <i>p</i> parametrieren
RPCNBV	Parametrierung
WPCNBV <i>p</i>	Regelanfang p parametrieren
RPCNBX	Parametrierung
WPCNBX <i>p</i>	Eckpunkt X p parametrieren
RPCNBY	Parametrierung
WPCNBY <i>p</i>	Eckpunkt Y p parametrieren

RPCNBT	Parametrierung Nachstellzeit abfragen
WPCNBT <i>p</i>	◄ Nachstellzeit <i>p</i> parametrieren
RPCNEV	Parametrierung > Regelende abfragen
WPCNEVp	► Regelende <i>p</i> parametrieren
RPCNEX	Parametrierung > Eckpunkt X abfragen
WPCNEXp	Eckpunkt X p parametrieren
RPCNEY	Parametrierung > Eckpunkt Y abfragen
WPCNEYp	Eckpunkt Y p parametrieren
RPCNET	Parametrierung ► Nachstellzeit abfragen
WPCNET <i>p</i>	► Nachstellzeit <i>p</i> parametrieren
RPCNZ	Ausgang 0/4 20 mA abfragen
WPCNZ0	Ausgang 0 20 mA parametrieren
WPCNZ1	Ausgang 4 20 mA parametrieren

Dosierzeitalarm (Regler, Option 353 oder Option 483)

RPALFYTS	Parametrierung abfragen
WPALFYTS0	Alarm abschalten
WPALFYTS1	Alarm einschalten
RPALFYTWH	Parametrierung Warnungsgrenze Hi abfragen
WPALFYTWHp	Warnungsgrenze Hi p parametrieren
RPALFYTFH	Parametrierung Ausfallgrenze Hi abfragen
WPALFYTFHp	Ausfallgrenze Hi <i>p</i> parametrieren

Stromeingang

RPICM	Marker abfragen
WPICM0	Marker "Aus" setzen
WPICM1	Marker "Ein" setzen
RPICZ	Parametrierte Betriebsart 0 20 mA / 4 20 mA abfragen

WPICZ0	Betriebsart 0 20 mA parametrieren
WPICZ1	Betriebsart 4 20 mA parametrieren
RPICA	Verwendung abfragen (nur bei Opt. 352 "Sondenspülung")
WPICA0	Verwendung als Meßeingang (nur bei Opt. 352 "Sondenspülung")
WPICA1	Verwendung als Steuereingang für Sondenspülung (nur bei Opt. 352 "Sondenspülung")

Stromeingangsalarm

Nicht verfügbar bei eingeschalteter Sondenspülung!

RPALF5S	Parametrierung abfragen
WPALF5S0	Alarm abschalten
WPALF5S1	Alarm einschalten
RPALF5FL	Parametrierung Ausfallgrenze Lo abfragen
WPALF5FLp	Ausfallgrenze Lo p parametrieren
RPALF5WL	Parametrierung Warnungsgrenze Lo abfragen
WPALF5WLp	Warnungsgrenze Lo <i>p</i> parametrieren
RPALF5WH	Parametrierung Warnungsgrenze Hi abfragen
WPALF5WHp	Warnungsgrenze Hi <i>p</i> parametrieren
RPALF5FH	Parametrierung Ausfallgrenze Hi abfragen
WPALF5FHp	Ausfallgrenze Hi <i>p</i> parametrieren

Sondenspülung (Option 352)

- RPUCM Marker abfragen
- WPUCM0 Marker "Aus" setzen
- WPUCM1 Marker "Ein" setzen
- RPUCCN Kontakt Sonde abfragen
- WPUCCN0 Kontakt Sonde als Ruhekontakt parametrieren
- WPUCCN1 Kontakt Sonde als Arbeitskontakt parametrieren

RPUCS	Parametrierung Sondenspülung abfragen
WPUCS0	Sondenspülung ausschalten
WPUCS1	Sondenspülung einschalten
RPUCTI	Parametrierung Intervallzeit abfragen
WPUCTIp	Intervallzeit p parametrieren [h]
RPUCT01	Parametrierung Vorlaufzeit vor Spülen abfragen
WPUCT01p	Vorlaufzeit vor Spülen <i>p</i> parametrieren [s]
RPUCT02	Parametrierung Vorspülzeit abfragen
WPUCT02p	Vorspülzeit <i>p</i> parametrieren [s]
RPUCT03	Parametrierung Reinigungszeit abfragen
WPUCT03p	Reinigungszeit p parametrieren [s]
RPUCT04	Parametrierung Nachspülzeit abfragen
WPUCT04p	Nachspülzeit <i>p</i> parametrieren [s]
RPUCT05	Parametrierung Vorlaufzeit vor Messen abfragen
WPUCT05p	Vorlaufzeit vor Messen p parametrieren [s]
	Sondenspülung starten: s. S. 12–28

RS 485-Schnittstelle

RPINM	Parametrierung Marker abfragen
WPINM0	Marker "Aus" setzen
WPINM1	Marker "Ein" setzen
RPMSR	Parametrierung Ready-Meldung abfragen
WPMSR0	Parametrieren: keine Rückmeldung nach Write-Befehl
WPMSR1	Parametrieren: Rückmeldung nach Write-Befehl, der Transmitter 7500 sendet ein Schlußzeichen nach Abarbeitung des Befehls (nicht bei Busbetrieb, nur bei Punkt-zu-Punkt Betrieb)
RPINWP	Schreibschutz abfragen
WPINWP0	Schreibschutz "aus" setzen
WPINWP1	Schreibschutz "ein" setzen

Automatische Gerätediagnose

RPTEM	Marker abfragen
WPTEM0	Marker "Aus" setzen
WPTEM1	Marker "Ein" setzen
RPTES	Selbsttest abfragen
WPTES0	Selbsttest ausschalten
WPTES1	Selbsttest einschalten
RPTETI	Intervallzeit abfragen
WPTETIp	Intervallzeit p parametrieren (h)

DEVICE-Befehle: Gerätebeschreibung

Mit den Device-Befehlen können Sie die Gerätebeschreibung auslesen

RDMF	Hersteller abfragen
RDUN	Gerätetyp abfragen
RDUS	Seriennummer abfragen
RDUV	Version Software / Hardware abfragen: "60;01" bedeutet "Softwareversion 6.0, Hardwareversion 1
RDUP	Optionsnummern abfragen

COMMAND-Befehle: Steuerkommandos

Mit Command-Befehlen können Sie den Transmitter 7500 steuern. Command-Befehle sind Writebefehle, die Funktionen aufrufen oder Gerätezustände verändern.

Mit dem ersten Write-Befehl übernimmt der steuernde Rechner (PC, SPS, ...) die Kontrolle über den Transmitter 7500. Viele Sicherheitsabfragen müssen dann im Rechner realisiert werden! Mit dem Befehl "WCOMINO" (goto Local) gibt der Rechner seine Kontrolle an den Transmitter 7500 zurück. Der Transmitter 7500 setzt im Meß-Modus auf.

Bei eingeschaltetem Schreibschutz werden alle Schreibversuche ohne vorheriges Aufheben des Schreibschutzes oder mit ungültiger Paßzahl im Logbuch protokolliert. Bei der Auslieferung ist der Schreibschutz ausgeschaltet.

Gerätediagnose

WCTEA Gerätediagnose starten (ohne Display-, Keyboardtest)

,,

Uhr

WCRTT*hhmmss* Uhrzeit *hhmmss* setzen WCRTD*ddmmyy* Datum *ddmmyy* setzen

Meßstellen-Wartung

WCOM08MA Meßstellen-Wartung aktivieren (Ausgangsströme und Regler-Stellgröße sind eingefroren, Grenzwerte sind inaktiv)

Sondenspülung (Option 352)

WCUCR Spülzyklus starten

Folgende Befehle nur wenn Sondenpflege aktiv (WCOM08MA, RSP = 08):

- WCUCCNR0 Spülkontakt öffnen
- WCUCCNR1 Spülkontakt schließen
- WCUCCNC0 Reinigungskontakt öffnen
- WCUCCNC1 Reinigungskontakt schließen

Sondenspülung parametrieren: s. S. 12-25

Widerstandsmessung

WCOM08R3 Widerstandsmessung aktivieren

Stromgeberfunktion

WCOM08CS	Stromgeberfunktion aktivieren	
WCCSI1p	Ausgangsstrom 1 auf Wert p setzen	
WCCSI2p	Ausgangsstrom 2 auf Wert <i>p</i> setzen	(nur Opt. 350)

Temperaturfühlerabgleich

WCTFV*p* Abgleich Temperaturfühler, Prozeßtemperatur *p* setzen

Temperaturfühlerabgleich parametrieren: s. S. 12–10

Digitalregler (Option 353, nicht mit Opt. 483)

WCOM08CI Regler manuell aktivieren

WCCIMp Reglerstellgröße auf Wert p setzen

Digitalregler parametrieren: s. S. 12-22

Analogregler	(Option 483,	nicht mit	Opt. 353)
--------------	--------------	-----------	-----------

WCOM08CN	Regler manuell aktivieren
WCCNMp	Reglerstellgröße auf Wert p setzen
	Analogregler parametrieren: s. S. 12–23

Automatische Kalibrierung

WCOU1	Ausgangsströme und Regler-Stellgröße einfrieren, Grenzwerte sind inaktiv
WCCAA1	Kalibrieren automatisch
WCOU0	Ausgangsströme, Regler-Stellgröße und Grenzwerte freigeben
	Kalibrierung parametrieren: s. S. 12–10

Kalibrierung durch Eingabe der Zellkonstante

WCOU1	Ausgangsströme und Regler-Stellgröße einfrieren, Grenzwerte sind inaktiv
WCCAM1	Kalibrieren manuell
WCOU0	Ausgangsströme, Regler-Stellgröße und Grenzwerte freigeben
	Kalibrierung parametrieren: s. S. 12–11

Kalibrierung durch Probennahme

WCCAPT Probe entnehmen

WCCAPC Probe verarbeiten

Kalibrierung parametrieren: s. S. 12-11

Parametrierung Spezialistenebene

WCOM01	Parametriermenü aktivieren (Funktionskontrolle aktiv)
WCPZM0	alle Marker löschen
WCPZM1	alle Marker setzen
WCOM00	Rückkehr zum Meßmodus

RS 485-Schnittstelle

WCOMIN0	Goto Local, Tastatur komplett freigeben, Schreibschutz aktivieren wenn parametriert
WCDIW0 <i>aaaa</i>	Freitext als Display-Meldung schreiben: max. 40 Zeichen, nur in Funktionen wie Stromgeber, Wartung, usw. in die unterste Displayzeile schreibbar! <i>a</i> = ASCII-Zeichen: Blank, "0" "9", "A" "Z", "-", "+", "/"
WCINPWpppp	Schreibschutz deaktivieren, <i>pppp</i> = Spezialisten-Paßzahl, Vorbereitung zum Schreiben von Parametern und Steuerbefehlen
WCINPD	Schreibschutz aktivieren

Schnittstelle Punkt-zu-Punkt

Wenn Sie die Kopplung "Punkt-zu-Punkt" parametriert haben, werden die Daten im ASCII-Zeichensatz übertragen. Es ist keine Prüfsumme (CRC) notwendig. Die Umschaltung der Datenrichtung auf der RS 485 ist zu beachten (siehe Seite 9–50).

Abfrage

PC → Transmitter 7500:	R	V	2	<cr></cr>	(ASCII)
	52	56	32	OD	(Hexadezimal)

Antwort

Transmitter 7500 → PC:	2	5	•	3	<cr></cr>	(ASCII)
	32	35	2E	33	OD	(Hexadezimal)

Schnittstellen-Busprotokoll

Gilt nur, wenn Sie die Kopplung BUS parametriert haben!

Das Protokoll arbeitet nach dem Master/Slave-Prinzip. Die Teilnehmer, die vom Master (Steuerrechner) mit einer Übertragung angesprochen werden, bezeichnet man als **Slave**. Sie müssen den Kommunikationsablauf so durchführen, wie er vom steuernden **Master** vorgegeben wird.

Jeder Kommunikationsablauf zwischen Teilnehmern auf dem Bus wird im wesentlichen durch zwei Abschnitte festgelegt, durch den Kommandoteil und Antwortteil:

Durch den *Kommandoteil* (Command) legt der Master die Bedeutung und die Funktion der augenblicklich transferierten Nachricht fest. Die Kommandoinformation wird vom Slave übernommen und entsprechend ausgewertet.

Der Antwortteil (Response) ist nötig, um dem Master anzuzeigen, ob ein Bustransfer ordnungsgemäß abgewickelt wurde und kann gegebenenfalls auch Daten enthalten.

Datenformat

Hardware: RS485 2-Draht.

Das Datenformat ist fest auf 9600 Baud, 8 Datenbit, No Parity eingestellt.

Jeder Slave besitzt eine Busadresse, die im Bereich 01...31 liegen darf. Es dürfen nicht zwei Slaves mit gleicher Adresse auf einem Bussystem existieren.

Die Adresse 00 ist eine Broadcast-Adresse (Meldung für ALLE).

Aufbau einer Nachricht

1 Byte	1 Byte	n Bytes	2 Byte
Slaveadresse Statusflags	Länge: n + 2	ASCII-Nachricht, wie bei Punkt-zu-Punkt-Verbindung, jedoch ohne Schlußzeichen	CRC16 nach CCITT-X.25

1. Feld: Slaveadresse, Statusflags

	7	6	5	4	3	2	1	0
	"1"	/ Master Slave	Error		Slave	-Adresse 0 ⁻	131, 00 =	Broadcast
Bit 7:	"1"		Dieses Bit <u>muß</u>	auf logisch	i Eins geset	tzt sein.		
Bit 6:	Maste	r / Slave:	"1"bedeutet, da Die Slave-Adre "0" bedeutet, da Die Slave-Adre	uß die Nach sse adress aß die Nach sse gibt da	richt vom M iert die Date nricht eine A nn die Date	laster zum S ensenke. Antwort vom nquelle an.	Slave geser Slave zum	ndet wurde. Master ist.
Bit 5:	Error		beim Senden M Bei Antwort Slav (z. B. Syntaxfeh	⁄laster→Slav /e→Master g ler, nicht bei	ve immer "1" elöscht, wer CRC-Fehler	nn ein Fehler , da dann ke	r aufgetreten eine Antwort	ist kommt).

Die Slaveadresse 00 hat eine Sonderfunktion:

Diese Adresse spricht <u>alle</u> Slaves an. Es darf von <u>keinem</u> Slave eine Antwort gesendet werden. Es ist daher für den Master nicht ersichtlich, ob die Nachricht von allen Teilnehmern richtig verstanden wurde. Diese Funktion ist trotzdem sinnvoll für eine mögliche Synchronisation von allen Teilnehmern (z.B. Uhrzeit setzen). Die Teilnehmer können danach einzeln überprüft werden, ob die betreffende Nachricht erfolgreich empfangen wurde.

2. Feld: Länge

7	6	5	4	3	2	1	0
"0"	Folge			Länge	des Nachric	htenfeldes ι	und CRC16

Das Längenfeld gibt die noch verbleibende Länge der Nachricht an, d. h. die Länge des Nachrichtenblocks und des CRC (Nachricht + 2 Bytes). Nach dem Lesen der Länge müssen bei korrektem Empfang noch genau *Länge* Bytes folgen.

In jedem Block lassen sich maximal 63 Bytes (61 Datenbytes + 2 Byte CRC) übertragen. Längere Übertragungsstrings müssen in Blocks unterteilt werden.

Das Folge-Bit ist gesetzt, wenn ein weiterer kompletter Datenblock folgt. Bei einer Blockfolge hat der letzte Block das Folge-Bit gelöscht. Bei gelöschtem Folge-Bit (Normalfall) ist die Nachricht mit diesem Block komplett.

3. Feld: ASCII-Nachricht

In diesem Nachrichtenfeld steckt der Befehl an das 7500-Gerät. Die Nachricht ist vom Aufbau identisch mit dem String der Punkt-zu-Punkt Verbindung (z.B. RV2). Das Schlußzeichen entfällt, dafür folgt der Nachricht sofort der CRC16.

Alle Zeichen in diesem Feld müssen Bit 7 gelöscht haben (wie 7 Datenbit, Space Parity).

4. Feld: CRC16

Der CRC16 (16-bit Cyclic Redundancy Check) wird gemäß CCITT-X.25 gebildet.

Prüfpolynom nach CCITT-X.25 = $x^{16} + x^{12} + x^5 + 1$

Der CRC ist die Prüfsumme aller übertragenen Bytes. Der CRC wird als 2 Binärbytes übertragen. Es wird erst das höherwertige und dann das niederwertige Byte übertragen. Der übertragene CRC16 ist so aufgebaut, daß er den Gesamt-CRC immer zu 0000_{hex} ergänzt. Der gesamte empfangene String ist nur dann gültig und zu interpretieren, wenn der CRC = 0000_{hex} ist. Andernfalls ist die ganze Nachricht zu ignorieren.

Der CRC16 besitzt die **Hamming-Distanz 4** und wird unter anderem in den Busprotokollen HDLC, SDLC und ADCP verwendet.

Verfahren zur Erzeugung eines CRC:

Zur Ergänzung des Strings zum CRC = 0000_{hex} wird der CRC im String erst auf 0000_{hex} gesetzt. Der über diesen String (incl. CRC) gebildete CRC wird dann im String eingetragen. Damit ergänzt sich der CRC zu dem Gesamt-CRC von 0000_{hex} .

Bildung eines CRC:

Variablen:

BUFFER =	Speicherbereich der kompletten Nachricht incl. Header und CRC-Feld
BUFPOINTER =	Zeiger auf Zeichen im BUFFER
LÄNGE =	Länge der kompletten Nachricht (Felder 1 bis 4)
BYTE =	Zeichen aus BUFFER in Bearbeitung
MERKER =	Zwischenspeicher für das höchstwertige Bit (MSB)
CRC =	CRC16
BEGIN crc . CRC = 0000 _{hex} . BUFPOINTER = zeigt au . WHILE (LÄNGE != 0) . bitcounter = 0 . BYTE = Zeichen, auf da . BUFPOINTER auf näch . DO MERKER = höchstes I CRC um 1 Bit nach lin IF (höchstes Bit _{Bit 7} vo CRC = CRC + 1 ENDIF BYTE um 1 Bit nach I IF (MERKER == "1") CRC = CRC Exclusiv ENDIF bitcounter = bitcounter . WHILE (bitcounter < 8) LÄNGE = LÄNGE - 1 . END WHILE END crc	as BUFPOINTER zeigt hstes Zeichen (increment) Bit _{Bit 15} vom CRC hss schieben (CRC = CRC * 2) on BYTE == "1") inks schieben (BYTE = BYTE * 2) ye-Oder 1021_{hex} y + 1

Schnittstellen-Busprotokoll des Slave (7500)

Timeoutzeiten:

A = 3 Byte-Übertragungszeiten (ca. 3,1 ms bei 9600 Baud)

Fehlerzustände beim Slave:

- Timeout A abgelaufen (ca. 3 Byte-Übertragungszeiten)
- 2) CRC-Fehler
- 3) fremde Zieladresse (nicht adressiert)
- 4) Framing-(UART-) Fehler

Reaktion auf Fehler:

keine Antwort senden, Empfangsstring verwerfen, Rückkehr in den Standby-Modus, warten auf neue Empfangszeichen.

Schnittstellen-Busprotokoll des Master

Timeoutzeiten:

A = 3 Byte-Übertragungszeiten (ca. 3,1 ms bei 9600 Baud)

B = ca. 1 s

Diese Seite bleibt aus technischen Gründen leer.

13 Lieferprogramm und Zubehör

Gerät Beste	∍II—Nr.
Transmitter 7500	7500
Optionen	
Anzeigentexte englisch	348
Anzeigentexte französisch	362
zweiter Stromausgang	350
Hilfsenergie 24 V AC/DC	298
Hilfsenergie 115 V AC	363
RS 485-Schnittstelle	351
Sondenspülung	352
Digitalreglerfunktion (nicht zusammen mit Option 483)	353
Logbuch	354
Konzentrationsbestimmung H ₂ SO ₄ , HCl, HNO ₃ (nicht zusammen mit Opt. 360, 361, 382 oder 392)	359
Konzentrationsbestimmung nach Kundenwunsch (nicht zusammen mit Opt. 359, 361, 382 oder 392)	360
Tk für Lösungen nach Kundenwunsch (nicht zusammen mit Opt. 359, 360, 382 oder 392)	361
Konzentrationsbestimmung HCI, NaOH, NaCI (nicht zusammen mit Opt. 359, 360, 361 oder 392) 382
Tk für spurenverunreinigtes Reinstwasser (nicht zusammen mit Opt. 359, 360, 361 oder 382)	392
Ex II T6 (Ex-geprüft Zone 2)	403
Erweiterter Temperaturbereich bis 350 °C (nur für Pt 100/Pt 1000)	424
Analogreglerfunktion (nur mit Option 350, nicht zusammen mit Option 353)	483

Montagezubehör

Mastschellen-Satz (nur in Verbindung mit Montageplatte ZU 0126, s. Abb. 10–2, S. 10–2)ZU 012Schutzdach (nur in Verbindung mit Montageplatte ZU 0126, s. Abb. 10–2, S. 10–2)ZU 012Schutzgehäuse aus Polyester, IP 65, Schutzklappe aus Polycarbonat, komplett mit Montagesatz, s. Abb. 10–3, S. 10–3ZU 012Mastschellen-Satz für Schutzgehäuse (nur in Verbindung mit ZU 0124)ZU 012	Montageplatte (für direkte Wandmontage nicht erforderlich, s. Abb. 10–2, S. 10–2)	ZU 0126
Schutzdach (nur in Verbindung mit Montageplatte ZU 0126, s. Abb. 10–2, S. 10–2)ZU 012Schutzgehäuse aus Polyester, IP 65, Schutzklappe aus Polycarbonat, komplett mit Montagesatz, s. Abb. 10–3, S. 10–3ZU 012Mastschellen-Satz für Schutzgehäuse (nur in Verbindung mit ZU 0124)ZU 012	Mastschellen-Satz (nur in Verbindung mit Montageplatte ZU 0126, s. Abb. 10-2, S. 10-2)	ZU 0125
Schutzgehäuse aus Polyester, IP 65, Schutzklappe aus Polycarbonat, komplett mit Montagesatz, s. Abb. 10–3, S. 10–3ZU 012Mastschellen-Satz für Schutzgehäuse (nur in Verbindung mit ZU 0124)ZU 012	Schutzdach (nur in Verbindung mit Montageplatte ZU 0126, s. Abb. 10-2, S. 10-2)	ZU 0123
Mastschellen-Satz für Schutzgehäuse (nur in Verbindung mit ZU 0124) ZU 012	Schutzgehäuse aus Polyester, IP 65, Schutzklappe aus Polycarbonat, komplett mit Montagesatz, s. Abb. 10–3, S. 10–3	ZU 0124
	Mastschellen-Satz für Schutzgehäuse (nur in Verbindung mit ZU 0124)	ZU 0128

Meßzellen

Meßzellen	Bestell-Nr.
InPro [®] 7000 (2-Pol-Meßzelle)	52 000 230
InPro [®] 7001/120 (2-Pol-Meßzelle)	52 000 231
InPro [®] 7001/225 (2-Pol-Meßzelle)	52 000 232
InPro [®] 7002 (2-Pol-Meßzelle)	52 000 233
InPro [®] 7003 (2-Pol-Meßzelle)	52 000 234
InPro [®] 7100 (4-Pol-Meßzelle)	52 000 235
InPro [®] 7104 (4-Pol-Meßzelle)	52 000 236

Die technischen Daten finden Sie ab der Seite 14–5 ff.

Die Meßzellen InPro[®] 7001 können mit verschiedenen Einbau-Armaturen eingesetzt werden.

14 Technische Daten

Leitfähigkeitseingang	4-polig oder 2-polig beschaltbar			
Meßumfang	Leitfähigkeit	0,001 μS/cm 2000 mS/cm		
-	spez. Widerstand (1/x)	0,5 Ωcm 1000 MΩcm		
	Konzentration	0,00 200,0 Gew %		
Meßbereich	0,1 μS · c 1999 mS ·c	(Zellkonstante c = $0,0050200,0 \text{ cm}^{-1}$)		
Meßfehler (± 1 Digit)	< 1 % vom Meßwert + 0,2	μS·c		
	max. zul. Gleichspannung gegen Melserde ±2 V			
	(Insbesondere bei Streufe	Idsonden ist ein rlich)		
Auflösung		$a = 0.0050 = 0.1100 \text{ cm}^{-1}$		
Autosung	0.00 µS/cm	$c = 0.1200 mtext{ 1 99 cm}^{-1}$		
	0,0 μS/cm	$c = 1,200 \dots 11,99 \text{ cm}^{-1}$		
	0,000 mS/cm	c = 12,00 119,9 cm ⁻¹		
	0,00 mS/cm	$c = 120,0 \dots 200,0 \text{ cm}^{-1}$		
Zellenanpassung	Betriebsarten ^{*)}			
	automatisch durch Ermi	ittlung der Zellkonstante		
	Fingabo individuallar La	ung sitfäbiakoitsworto		
	zur Ermittlung der Zellko	onstante		
	direkte Eingabe der Zellkonstante			
	 Kalibrierung durch Probennahme 			
zulässige Zellkonstante	0,0050 200,0 cm ⁻¹			
Konzentrationsbestimmung (Option 359, 360, 382)	g Berechnung und Anzeige der Konzentration [Gew %] aus den Leitfähigkeits- und Temperaturmeßwerten für vorgegebene Substanz-Lösungen (siehe Tabellen im Anhang) kundenspezifische Tabellen auf Anfrage (Opt. 360)			
Temperatureingang	Pt 100 / Pt 1000 / Ni 100			
	Anschluß 2- oder 3-Leiter			
	Temperaturfühler abgleich	bar		
Meßbereich	Pt 100/1000	-50,0 +250,0 °C		
	Ni 100	-50,0 +180,0 °C		
Meistenler (\pm 1 Digit)	< 0,2 % vom Meiswert, + 0,2 K			
remperaturkompensation /	automatisch mit Pt 100/Pt 1000/Ni 100			
medienbezogen	Manuell -50,0 +250 C Retriebsarten:			
	• ohne			
	 linear 0,00 20,00 %/K, Bezugstemperatur parametrierbar 			
	 natürliche Wässer nach 	EN 27888		
	optionell: nach Kundenwunsch (Opt. 361)			
	spurenverunreinigtes R	einstwasser (Opt. 392)		
Stromeingang	0(4) 20 MA Auswertung 0 100%			
	Eingangswiderstand 50 Ω . Überlastbarkeit 100 mA			
	z. B. für Grenzwertüberwachung			
	In Verbindung mit Hilfsenergieausgang kompletter			
	2-Leiter-Meßkreis, z. B. fü	r Durchflußgeber oder Füllstandsgeber		
Neistenier	< 1 % vom Endwert			

Anzoigo	Crofik I CD 240 y 64 Dura	kto mit CEL 1) Llinterla	uchtung		
Anzeige	Grank-LCD, 240 x 64 Puni	Zeichenhähe en 25			
	Nabapanzaiga	Zeichenhöhe ca. 25			
	Nebenanzeige Deremetrierenzeige	Zeichennone ca. o n Z Zeilen Zeichenhöh			
A i i - li - li - i		7 Zellen, Zeichennor	ie ca. 4 mm		
Anzeigemöglichkeiten	Hauptanzeige	Nebenanzeige	[0/am]		
			[S/cm]		
	spez. widerstand	spez. widerstand			
	Konzentration	Konzentration			
			[°C]		
	Unrzeit	Unrzeit	[n,min]		
		Stromoungong 1	[[,[]],]] [m ^]		
		Stromousgang 7			
		Stromoingang 2	[11]A] [0/]		
		Suomeingang Poglor-Stollarößo	[/0] [0/_]		
		Regier-Stellyroise	[70]		
		man Temperatur	႞ႍၟ		
Augener 1*)		A max 10 V notantic			
	0 20 MA Odel 4 20 M	A, max. TO V, potentia	diretand		
	Konzontration °C	sgruisen LF, spez. wid	derstand,		
	Stromkonnlinio paramotrio	urbar: linoar bilinoar t	rilingar Euroption		
	Fehlermeldung bei Bürder	nüberschreitung			
Ausgang $2^{*)}$	0 20 mA oder 4 20 m	A max 10 V potentia	alfrei		
	parametrierbar für die Meßgrößen LF spez. Widerstand				
	Konzentration °C		uorotaria,		
	ontionell als Analog-Reglerausgang (Ontion 483)				
	Stromkennlinie parametrie	rbar linear bilinear t	rilinear. Funktion		
	Fehlermeldung bei Bürder	nüberschreitung			
Meßanfang/Meßende ^{*)}	beliebig innerhalb des Mel	Sbereiches			
Meßspannen [*])	Leitfähigkeit	> 0.20 uS/cm min 2	0 % vom Meßende		
Meloopannen	spez Widerstand	$100 \text{ O} \cdot \text{cm} \text{ min} 20 \%$	vom Meßende		
	Konzentration	10 200 0 %			
	Temperatur	10.0 300.0 °C			
Ausgangsstromfehler	< 0.25 % yom Meßwert +	20 µA			
Stromgeberfunktion	0.00 mA 20.50 mA	20 μπ			
	0,00 IIIA 20,30 IIIA	lfrei laur-eeblu.0feet			
Hilfsenergie-Ausgang	24 V DC / 30 mA, potentia	alifei, kurzschluisiest	orooloingong		
	Signalstrom für Schaltaus		ersaleingang,		
Sabaltkantokta*)	Signalstronn für Schaltause	yanye Ifrai			
Schaltkontakte /	8 Schaltkontakte, potentia	llfel, Il bio 250 V —			
Kontaktbelastbarkeit	AC < 250 V/5 A < 1250 V/	A onmsch			
2)	DC < 120 V/5 A <120 W				
NAMUR-Kontakte ²⁾	Funktionskontrolle				
	Warnung (Wartungsbedarf)				
			a tuli a ula a u		
	Austall/warnung: verzo	gerungszeiten parame	etrierbar		
Grenzwert-/Regler-Kontakte	Grenzwert 1				
(Digital-Regier optionell, Opt. 353)	Grenzwert 2				
Reinigungskontakte	Spülung				
(Option 352)	Reinigung				
	Sonde				

PI-Regler ^{*)} digital (Option 353) analog (Option 483)	Quasistetiger Schaltregler über Grenzwert-Kontakte Impulsdauer oder Impulsfrequenz parametrierbar Regelbereich innerhalb der Meßbereiche für LF/spez. Widerstand/°C parametrierbar Stetiger Regler (0/4 20 mA) über Ausgang 2 Drei-Wege-Mischventil und Durchgangsventil parametrierbar Regelbereich innerhalb der Meßbereiche für LF/spez. Widerstand/ Konzentration/°C parametrierbar		
(Option 351)	Baud-Rate Data-Bit/Parity Punkt zu Punkt-Verbindun 31 Geräten	300/600/1200/9600 7/Even, 7/Odd, 8/No g oder Busverbindung von bis zu	
Logbuch (Option 354)	Aufzeichnung von Speichertiefe Abrufbar über	Funktionsaufrufen, Warnungs- und Ausfallmeldungen beim Auftreten und beim Wegfall, mit Datum und Uhrzeit 200 Einträge verfügbar Tastatur/Display oder Schnittstelle	
Sondenspülung ^{*)} (Option 352)	automatische Sondenreinigung und -spülung über timergesteuerte Kontakte, z. B. Spritzspülung		
Datenerhaltung bei Netzausfall	I Parameter und Abgleichdaten > 10 Jahre (EEPROM) Uhr. Logbuch. Statistik > 1 Jahr (akkugepuffert)		
Geräteselbsttest	Test von RAM, EPROM, E Protokoll zur Qualitätsmar gemäß DIN ISO 9000, Daten abrufbar über Displa	EPROM, Display und Tastatur, nagement-Dokumentation (QM) ay und Schnittstelle	
Uhr	Zeituhr mit Datum, netzunabhängig		
Ex-Schutz (Option 403)	Ex II T6 (Ex-geprüft Zone TÜV Hannover/Sachsen-A	2), Anhalt Nr. 1004/3	
Funkentstörung	EN 50 081-1		
Störfestigkeit	EN 50 082-2 und gemäß N EMV von Betriebsmitteln o	NAMUR ²⁾ -Empfehlung: der Prozeß- und Laborleittechnik	
Schutz gegen gefährliche Körperströme	Ein- und Ausgänge sind gegen die Hilfsenergie 230 V und 115 V und gegen die Schaltkontakte durch die Schutzmaßnahme "Funktionskleinspannung mit sicherer Trennung" im Sinne von DIN 57 100 / VDE 0100 Teil 410 und DIN VDE 0106 Teil 101 ge- trennt.		
Hilfsenergie	AC 230 V Opt. 363 AC 115 V Opt. 415 AC/DC 24V	-15 % +10 % < 4 VA 4862 Hz -15 % +10 % < 4 VA 48 62 Hz AC: -15 % +10 % < 10 VA DC: -15 % +25 % < 10 W	
Schutzklasse	II 🔲 Überspannungskategorie III / I		
Umgebungstemperatur	Betrieb ³⁾ Transport/Lagerung	-20 +50 °C -20 +70 °C	
Gehäuse	Gehäuse mit separatem A geeignet für Außenmontag Material: Acryl-Butadien-S Schutzart: IP 65	nschlußraum, ge Styrol	

Kabeldurchführungen	10 Pg-Verschraubungen, Pg 13,5
Abmessungen	siehe Maßzeichnung 10–1, S. 10–2
Gewicht	ca. 3 kg

*) parametrierbar

1) Cold Fluorescent Lamp (Leuchtstoffröhre)

2) Normenarbeitsgemeinschaft für Meß- und Regeltechnik

3) Bei Umgebungstemperaturen unter 0 °C kann die Ablesbarkeit des Displays eingeschränkt sein. Die Gerätefunktionen sind dadurch *nicht* beeinträchtigt.

Meßzellen

InPro[®] 7000 (2-Pol-Meßzelle)

Zellkonstante	ca. 0,1 cm ⁻¹ (genauer Wert auf Typschild aufgedruckt)		
Meßbereich	0,02 1000 μS/cm		
Material	Schaft	PVDF	
	Elektroden	Titan	
max. Temperatur	100 °C		
max. Druck	34 bar (25 °C)		
Temperaturfühler	Pt 1000 (IEC Klasse A)		
Abmessungen	siehe Maßzeic	hnung Abb. 14–1	

InPro[®] 7001 (2-Pol-Meßzelle)

Zellkonstante	ca. 0,1 cm ⁻¹ (genauer Wert auf Typschild aufgedruckt		
Meßbereich	0,02 100 μS/cm		
Material	Schaft	rostfreier Stahl AISI 316L (1.4435)	
	Elektroden	rostfreier Stahl AISI 316L (1.4435)	
max. Temperatur	100 °C		
max. Druck	14 bar (25 °C)		
Temperaturfühler	Pt 1000 (IEC I	Klasse A)	
Abmessungen siehe Maß		eichnung Abb. 14–2	

InPro® 7002 / 7003 (2-Pol-Meßzelle)

Zellkonstante	ca. 0,1 cm ⁻¹ (genauer Wert auf Typschild aufgedruckt)			
Meßbereich	0,02 1000 μS/cm			
Material	Schaft	rostfreier Stahl AISI 316L (1.4435)		
	Elektroden	rostfreier Stahl AISI 316L (1.4435)		
max. Temperatur	100 °C			
max. Druck	14 bar (25 °C)			
Temperaturfühler	Pt 1000 (IEC Klasse A)			
Abmessungen	siehe Maßzeichnung Abb. 14–3			

InPro[®] 7100 (4-Pol-Meßzelle)

Zellkonstante	ca. 0,6 cm ⁻¹ (genauer Wert auf Typschild aufgedruckt)		
Meßbereich	ca. 10 μS/cm 300 mS/cm		
Material	Schaft	CPVC	
	Elektroden	rostfreier Stahl AISI 316L (1.4435)	
max. Temperatur	80 °C		
max. Druck	7 bar (25 °C)		
Temperaturfühler	Pt 1000 (IEC Klasse A)		
Abmessungen	siehe Maßzeichnung Abb. 14–4		

InPro[®] 7104 (4-Pol-Meßzelle)

Zellkonstante	ca. 0,6 cm ⁻¹ (genauer Wert auf Typschild aufgedruckt)			
Meßbereich	ca. 10 μS/cm 300 mS/cm			
Material	Schaft	CPVC		
	Elektroden	rostfreier Stahl AISI 316L (1.4435)		
max. Temperatur	120 °C			
max. Druck	14 bar (25 °C)			
Temperaturfühler	Pt 1000 (IEC Klasse A)			
Abmessungen	siehe Maßzeichnung Abb. 14–4			

Abb. 14–1 Maßzeichnung InPro® 7000

Abb. 14–2 Maßzeichnung InPro® 7001

Abb.14–3 Maßzeichnung InPro® 7002 / 7003

Abb. 14–4 Maßzeichnung InPro[®] 7100 / 7104

Konzentrationsmessung (Opt. 359, 382)

Stoff	Konzentrations	-Meßbereiche			
HNO ₃	0 30	35 96		Gew %	
	-20 50	-20 50		С°	
HCI	0 18	22 39		Gew %	
	-20 50	-20 50		C°	
$H_2SO_4^{3)}$	0 30	32 84	92 99	Gew %	
	–17,8 110	–17,8 115,6	–17,8 115,6	So	
NaOH ⁴⁾	0 14	18 50		Gew %	
	0 100	0 100		So	
NaCl	0 26			Gew %	
	0 100			C°	

Konzentrations-Meßbereiche

3) Die Meßbereichsgrenzen gelten für 27 °C $\,$ 4) Die Meßbereichsgrenzen gelten für 25 °C $\,$

Konzentrationsverläufe

- Bei vielen Substanzen tritt ein Maximum der Leitfähigkeit auf. Das heißt, daß bei weiter steigender Stoffkonzentration und konstanter Temperatur der Leitfähigkeitswert wieder sinkt.
- Der Kurvenverlauf ist temperaturabhängig.
- Die Lage des Konzentrationsmaximums verschiebt sich z. B. bei Schwefelsäure temperaturabhängig.
- Im Bereich des Maximums (oder evtl. des Minimums wie bei Schwefel) ist der Kurvenverlauf so flach, daß sich die Leitfähigkeit in einem größeren Konzentrationsbereich kaum ändert.

Daraus ergibt sich, daß eine sinnvolle Konzentrationsbestimmung nur in Teilbereichen möglich ist:

- In den grau hinterlegten Bereichen der Konzentrationsverläufe ist keine Konzentrationsberechnung möglich
- Wegen der Mehrdeutigkeit der Kurven (der gleiche Leitfähigkeitswert kann mehreren Konzentrationswerten entsprechen) muß der Meßbereich der Konzentration parametriert werden.

Abb. 14–5 Leitfähigkeit in Abhängigkeit von Stoffkonzentration und Mediumtemperatur für Salzsäure (HCI), Quelle: Haase/Sauermann/Dücker; Z. phys. Chem. Neue Folge, Bd. 47 (1965)

Abb. 14–6 Leitfähigkeit in Abhängigkeit von Stoffkonzentration und Mediumtemperatur für Salpetersäure (HNO₃), Quelle: Haase/Sauermann/Dücker; Z. phys. Chem. Neue Folge, Bd. 46 (1965)

Abb. 14–7 Leitfähigkeit in Abhängigkeit von Stoffkonzentration und Mediumtemperatur für Schwefelsäure (H₂SO₄), Quelle: Darling; Journal of Chemical and Engineering Data; Vol. 9 No.3, July 1964

Abb. 14–8 Leitfähigkeit in Abhängigkeit von Stoffkonzentration und Mediumtemperatur für Natronlauge (NaOH)

Abb. 14–9 Leitfähigkeit in Abhängigkeit von Stoffkonzentration und Mediumtemperatur für Kochsalzlösung (NaCl)

Konformitätsbescheinigung

VERLÄNGERUNG ZUM ZERTIFIKAT

Registrier-Nr.:	08 / 220 / 1004 / 3
Erstausstellung:	07.09.1993
Produkt:	ProzeßMeter Typ 73 Opt
Geprüft nach:	DIN VDE 0165/02.91 Abschnitt 6.3
Kennzeichnung:	Ex II T6
Firma:	Knick Elektronische Meßgeräte GmbH & Co. Beuckestr. 22 D-14163 Berlin
Fertigungsstätte:	D-14163 Berlin Beuckestr. 22

TÜV Hannover/Sachsen-Anhalt e.V.

TÜV CERT-Zertifizierungsstelle für Produkte Am TÜV 1 30519 Hannover

Showled

Der Leiter

10/014d IÜV Nord o DAB 5.97

Hannover, 26.05.1998

gültig bis: 07.09.2003

Am TÜV 1 • 30519 Hannover • Tel. (0511) 986-1470 • Fax (0511) 986-1459

Diese Seite bleibt aus technischen Gründen leer.

15 Kalibrierlösungen

Kaliumchlorid-Lösungen Elektrische Leitfähigkeit in mS/cm

Temperatur	K	onzentration	
[°C]	0,01 mol/l	0,1 mol/l	1 mol/l
0	0,776	7,15	65,41
5	0,896	8,22	74,14
10	1,020	9,33	83,19
15	1,147	10,48	92,52
16	1,173	10,72	94,41
17	1,199	10,95	96,31
18	1,225	11,19	98,22
19	1,251	11,43	100,14
20	1,278	11,67	102,07
21	1,305	11,91	104,00
22	1,332	12,15	105,94
23	1,359	12,39	107,89
24	1,386	12,64	109,84
25	1,413	12,88	111,80
26	1,441	13,13	113,77
27	1,468	13,37	115,74
28	1,496	13,62	
29	1,524	13,87	
30	1,552	14,12	
31	1,581	14,37	
32	1,609	14,62	
33	1,638	14,88	
34	1,667	15,13	
35	1,696	15,39	
36		15,64	

Datenquelle: K. H. Hellwege (Hrsg.), H. Landolt, R. Börnstein: Zahlenwerte und Funktionen ..., Band 2, Teilband 6

Natriumchlorid-Lösungen Elektrische Leitfähigkeit in mS/cm

Temperatur		Konzentration	
[°C]	gesättigt* ⁾	0,1 mol/l** ⁾	0,01 mol/l** ⁾
0	134,5	5,786	0,631
1	138,6	5,965	0,651
2	142,7	6,145	0,671
3	146,9	6,327	0,692
4	151,2	6,510	0,712
5	155,5	6,695	0,733
6	159,9	6,881	0,754
7	164,3	7,068	0,775
8	168,8	7,257	0,796
9	173,4	7,447	0,818
10	177,9	7,638	0,839
11	182,6	7,831	0,861
12	187,2	8,025	0,883
13	191,9	8,221	0,905
14	196,7	8,418	0,927
15	201,5	8,617	0,950
16	206,3	8,816	0,972
17	211,2	9,018	0,995
18	216,1	9,221	1,018
19	221,0	9,425	1,041
20	226,0	9,631	1,064
21	231,0	9,838	1,087
22	236,1	10,047	1,111
23	241,1	10,258	1,135
24	246,2	10,469	1,159
25	251,3	10,683	1,183
26	256,5	10,898	1,207
27	261,6	11,114	1,232
28	266,9	11,332	1,256
29	272,1	11,552	1,281
30	277,4	11,773	1,306
31	282,7	11,995	1,331
32	288,0	12,220	1,357
33	293,3	12,445	1,382
34	298,7	12,673	1,408
35	304,1	12,902	1,434
36	309,5	13,132	1,460

Datenquellen: *) K. H. Hellwege (Hrsg.), H. Landolt, R. Börnstein: Zahlenwerte und Funktionen ..., Band 2, Teilband 6

**) Prüflösungen gemäß DIN IEC 746, Teil 3 berechnet

16 Anhang

Achtung

Beachten Sie, daß bei geöffnetem Gerät an berührbaren Teilen eine lebensgefährliche Spannung liegen kann.

Muß das Gerät geöffnet werden, ist es zuvor von allen Spannungsquellen zu trennen.

Stellen Sie sicher, daß das Gerät von der Hilfsenergieversorgung getrennt ist.

Arbeiten am geöffneten Gerät sollten nur von einer Fachkraft vorgenommen werden, die mit den damit verbundenen Gefahren vertraut ist.

Achtung

Beachten Sie bei allen Arbeiten am offenen Gerät die Handhabungsvorschriften für elektrostatisch gefährdete Bauelemente!

EPROM–Wechsel

Bauen Sie das Gerät in

8. umgekehrter Reihenfolge wieder zusammen. Diese Seite bleibt aus technischen Gründen leer.

17 Fachbegriffe

2-Pol-Meßzelle	Leitfähigkeitsmeßzelle mit 2 Elektroden. Geeignet zur Messung kleiner Leitfähigkeitswerte.
3-Leiter-Anschluß	Anschluß des Temperaturfühlers mit einer (dritten) Fühlerleitung zum Ausgleich der Zuleitungswider- stände. Erforderlich für genaue Temperaturmes- sung bei großen Leitungslängen.
4-Pol-Meßzelle	Leitfähigkeitsmeßzelle mit 4 (2 Strom- und 2 Spannungs-) Elektroden. Geeignet zur Messung großer Leitfähigkeitswerte.
Anzeigeebene	"anz", Menüebene in der Parametrierung. Anzeige der gesamten Parametrierung des Gerätes, aber keine Änderungsmöglichkeit.
Alarmgrenze	Für alle Meßgrößen kann je eine untere und eine obere Warnungs- und eine Ausfallgrenze parame- triert werden. Der Alarm kann für jede Meßgröße einzeln aktiviert werden. Bei Überschreiten einer Alarmgrenze erscheint eine Fehlermeldung und der entsprechende NAMUR-Kontakt wird aktiv.
Ausfall	Alarmmeldung und NAMUR-Kontakt. Bedeutet, daß die Meßeinrichtung nicht mehr ord- nungsgemäß arbeitet oder, daß Prozeßparameter einen kritischen Wert erreicht haben. Ausfall ist <i>nicht</i> aktiv bei "Funktionskontrolle".
Betriebsebene	"bet", Menüebene in der Parametrierung. Parametrierung derjenigen Einstellungen des Gerätes möglich, die in der Spezialistenebene freigegeben wurden.
Betriebs-Paßzahl	Schützt den Zugang zur Betriebsebene. Kann in der Spezialistenebene parametriert oder abge- schaltet werden.
Bezugstemperatur	Bei eingeschalteter Temperaturkompensation wird der Meßwert mit dem Temperaturkoeffizienten auf den Wert bei der Bezugstemperatur (üblicher- weise 20 oder 25 °C) umgerechnet.
cal	Menütaste für das Kalibriermenü
Cursortasten	◀ und ▶ , dienen zur Auswahl von Eingabe- positionen oder Stellen bei Zahleneingabe.
diag	Menütaste für das Diagnosemenü
Diagnosemenü	Anzeige aller relevanten Informationen über den Gerätestatus.

Dosierzeitalarm	Überwacht die Zeit, während der die Reglerstell- größe auf 100 % steht.
enter	Taste zur Bestätigung von Eingaben.
Funktionskontrolle	NAMUR-Kontakt. Immer aktiv, wenn das Gerät nicht den parametrierten Meßwert liefert.
GLP	Gute Labor-Praxis: Regeln zur Durchführung und Dokumentation von Messungen.
GMP	Good Manufacturing Practice: Regeln zur Durch- führung und Dokumentation von Messungen in der Fertigung.
Grenzwertkontakte	Werden von einer beliebig parametrierbaren Meß- größe gesteuert. Je nach parametrierter Wirkrich- tung aktiv bei Über- oder Unterschreiten des Grenzwertes.
Hauptanzeige	Große Meßwertanzeige im Meßmodus. Die ange- zeigte Meßgröße kann parametriert werden.
Informationsdisplay	Informationstext zur Bedienerführung oder An- zeige des Gerätestatus. Gekennzeichnet mit 1
Intervallzeit	Zeit vom Beginn eines Spülzyklus bis zum Beginn des nächsten Spülzyklus, parametrierbar.
Kalibrierablauf	Im Kalibriermenü können Sie vier Abläufe wählen: Automatische Kalibrierung, Kalibrierung mit manueller Eingabe des Leitfähig- keitswertes, Eingabe der Zellkonstante der Meßzelle, Probenkalibrierung.
Kalibriermenü	Dient zur Kalibrierung der Meßzelle.
Kalibrier-Paßzahl	Schützt den Zugang zur Kalibrierung. Kann in der Spezialistenebene parametriert oder abgeschaltet werden.
Leitfähigkeit	Leitfähigkeit \varkappa [S/cm] = G [S] * c [1/cm]
Leitwert	Leitwert $G[S] = 1 / R[\Omega]$
Logbuch	Das Logbuch zeigt Ihnen die letzten 200 Ereig- nisse mit Datum und Uhrzeit, z. B. Kalibrierungen, Warnungs- und Ausfallmeldungen, Hilfsener- gieausfall usw. Damit ist eine Qualitätsmanage- ment-Dokumentation gemäß DIN ISO 9000 ff. möglich.
maint	Menütaste für das Wartungsmenü.
meas	Menütaste. Mit meas ist die Rückkehr aus allen anderen Menüs in den Meßmodus möglich.

Meldungsliste	Die aktuelle Meldungsliste zeigt die Zahl der ge- rade aktiven Meldungen und die einzelnen War- nungs- oder Ausfall-Meldungen im Klartext.
Menü	Durch drücken einer Menütaste (cal , diag , maint , oder par) gelangen Sie in ein Menü, in dem Sie die entsprechenden Funktionen aufrufen können.
Menüebene	Das Menü ist in mehrere Menüebenen gegliedert. Zwischen den Menüebenen kann mit der Menüta- ste oder den Cursortasten ◀ und ▶ gewech- selt werden.
Meßmodus	Wenn keine Menüfunktion aktiviert ist, befindet sich das Gerät im Meßmodus. Das Gerät liefert den parametrierten Meßwert. Mit meas gelangt man immer zurück in den Meßmodus.
Meßstellen-Nummer	Kann zur Identifikation des Gerätes parametriert und im diag-Menü angezeigt oder über die Schnitt- stelle ausgelesen werden.
Meßzelle	Es können 2-Pol- oder 4-Pol-Meßzellen ange- schlossen werden. Die Zellkonstante der verwen- deten Meßzelle muß parametriert oder automa- tisch ermittelt werden.
Nachspülzeit	Parametrierbare Zeit, für die der Kontakt "Spü- lung" am Ende des Spülzyklus geschlossen ist.
NAMUR	Normenarbeitsgemeinschaft für Meß- und Regel- technik in der chemischen Industrie
NAMUR-Kontakte	"Funktionskontrolle", Warnung" und "Ausfall". Die- nen zur Statusmeldung über Meßgröße und Meß- gerät.
Nebenanzeige	Zwei kleine Anzeigen, die im Meßmodus unten links und rechts erscheinen. Die angezeigten Meßgrößen können mit ▲ und ▼ bzw. ◀ und ▶ ausgewählt werden.
par	Menütaste für das Parametriermenü
Parametriermenü	Das Parametriermenü ist in drei Untermenüs auf- gegliedert: Anzeigeebene (anz), Betriebsebene (bet) und Spezialistenebene (spe)
Paßzahlverriegelung	Die Paßzahlverriegelung schützt den Zugang zur Kalibrierung, Wartung, Betriebs- und Spezialisten- ebene. Die Paßzahlen können in der Spezialisten- ebene parametriert oder abgeschaltet werden.
Potentialausgleich	Bei Messungen potentialfreier Medien mit Streu- feldzellen muß ein Potentialausgleich zwischen Medium und Meßeingang erfolgen, da sonst er- hebliche Meßfehler auftreten können.

Reinigungszeit	Parametrierbare Zeit, für die der Reinigungskon- takt während eines Spülzyklus geschlossen ist.
Regelgröße	Parametrierbare Meßgröße, die den Regler steu- ert.
Rolltaste	▲ und ▼ :Tasten zur Auswahl von Menüzei- len oder zur Eingabe von Ziffern bei numerischen Eingaben.
Spezialistenebene	"spe", Menüebene in der Parametrierung. Alle Ein- stellungen des Gerätes und die Paßzahlen können parametriert werden.
Spezialisten-Paßzahl	Schützt den Zugang zur Spezialistenebene. Kann in der Spezialistenebene parametriert werden.
Spülzyklus	Parametrierbarer Ablauf zur Reinigung der Meß- zelle oder anderer Sensoren. Steuert die Kontakte "Sonde", "Spülung" und "Reinigung"
Stellgröße	Ausgangsgröße des Reglers, steuert die Grenz- wertkontakte 1 und 2.
Stromeingang	Verarbeitet einen Eingangsstrom von 0 (4) 20 mA. Der Strom kann (in % vom Endwert) ange- zeigt und mit Alarmgrenzen überwacht werden.
Temperaturkoeffizient	Bei eingeschalteter Temperaturkompensation wird der Meßwert mit dem Temperaturkoeffizienten auf den Wert bei der Bezugstemperatur umgerechnet.
Temperaturkompensation	Dient zur Umrechnung des Leitfähigkeits-Meßwer- tes auf eine Bezugstemperatur.
Verzögerungszeit	Parametrierbare Zeit bis zum Ansprechen der Kontakte "Warnung" und "Ausfall" nach Auftreten einer Alarmmeldung.
Vorlaufzeit vor Messen	Parametrierbare Zeit am Ende des Spülzyklus, nach dem Öffnen des Kontakts "Sonde".
Vorlaufzeit vor Spülen	Parametrierbare Zeit am Beginn des Spülzyklus, nach dem Schließen des Kontakts "Sonde", vor dem Schließen des Kontakts "Spülung".
Vorspülzeit	Parametrierbare Zeit, für die der Kontakt "Spü- lung" am Anfang des Spülzyklus geschlossen ist.
Warnung (Wartungsbedarf)	Alarmmeldung und NAMUR-Kontakt. Bedeutet, daß die Meßeinrichtung noch ordnungs- gemäß arbeitet, aber gewartet werden sollte oder, daß Prozeßparameter einen Wert erreicht haben, der ein Eingreifen erfordert. Warnung ist <i>nicht</i> aktiv bei "Funktionskontrolle".
Warteposition	Position zwischen "Nachspülzeit" und "Vorlaufzeit vor Messen", in der die Sonde verharrt, solange der Startstrom von 10 20 mA am Stromeingang liegt (nur wenn der Stromeingang als Steuerein- gang parametriert ist).

Wartungsmenü	Im Wartungsmenü sind alle Funktionen zur War-
	tung der Sensoren und zur Einstellung ange- schlossener Meßgeräte zusammengefaßt.
Wartungs-Paßzahl	Schützt den Zugang zur Wartung. Kann in der Spezialistenebene parametriert oder abgeschaltet werden.
Zellkonstante	c = d / A (theoretisch) d: Elektrodenabstand A: Elektrodenfläche
Zellenanpassung	Automatische Ermittlung oder manuelle Eingabe der Zellkonstante in den Transmitter 7500 .

Diese Seite bleibt aus technischen Gründen leer.

18 Stichwortverzeichnis

- 2-Pol-Meßzelle, Erklärung, 17-1
- 3-Leiter-Anschluß, 9-12 Erklärung, 17–1
- 4-Pol-Meßzelle Beschaltungsbeispiel, 9-9 Erklärung, 17–1

Α

Alarmeinstellungen, 9-25 Parametrierung, 9-26 Schnittstellenbefehle, 12–19

Alarmgrenze, 2–2 Erklärung, 17–1

Anhang, 16-1

Anschlußbelegung, 10-9

anz, 5–1

Anzeigeebene, 5-1 Beispiel, 5-2 Erklärung, 17-1

Ausfall, 9-27 Erklärung, 17–1

Ausgang 2/Regler, Schnittstellenbefehle, 12–18

Ausgangskennlinie bilinear, 9–17 Funktion, 9-18 linear, 9–16 logarithmisch, 9–18 trilinear, 9-17

Ausgangsstrom 1, Schnittstellenbefehle, 12-16

Ausgangsstrom 2 Parametrierung, 9-19 Schnittstellenbefehle, 12–17

automatische Kalibrierung, 6-5

В

Bedienoberfläche, 1-1 Bedienungselemente, 2-3 Beschaltungsbeispiele, 9-4 bet, 7-1

Betriebs-Paßzahl Erklärung, 17-1 Parametrierung, 8-4

Betriebsebene, 7-1 Beispiel, 7-2 Erklärung, 17-1

Bezugstemperatur, 9-14 Erklärung, 17–1

Analogregler, Schnittstellenbefehle, 12-23, 12-29 Blickwinkeleinstellung, 9-10 Schnittstellenbefehle, 12-11

С

cal, Erklärung, 17-1 CE-Zeichen, III COMMAND, Schnittstellenbefehle, 12-27 Cursortaste, Erklärung, 17-1

D

Datum Parametrierung, 3-4 Schnittstellenbefehle, 12-10, 12-28 Datumformat, Parametrierung, 3-4 DEVICE, Schnittstellenbefehle, 12-27 diag, Erklärung, 17-1 Diagnosemenü, 3-2 Erklärung, 17–1 Möglichkeiten, 3-1

Digitalregler, Schnittstellenbefehle, 12–22, 12–29 Grenzwertkontakte, 9–28

Display, Blickwinkeleinstellung, 9-10

Dosierzeitalarm, 9–31 Erklärung, 17–2 Parametrierung, 9–39

Е

Eckpunkt Bilineare Ausgangskennlinie, 9–17 Regler, 9–32 Trilineare Ausgangskennlinie, 9–17

Eingangsfilter, 9–10 Schnittstellenbefehle, 12–13

enter, Erklärung, 17-2

EPROM, Wechsel, 16-2

F

Fachbegriffe, 17-1

Fehlermeldungen alphabetisch, 11–1 nach Fehlercode, 11–4

Funktionskontrolle, 9–27 Erklärung, 17–2

G

Gerätebeschreibung, 3-4

Gerätediagnose, 3–5 automatische, 9–51 Schnittstellenbefehle, 12–27 Schnittstellenbefehle, 12–8, 12–27

Gerätekonzept, 1-1

GLP, Erklärung, 17-2

GMP, Erklärung, 17-2

Grenzwertkontakte, 9–28 Display–Anzeige, 2–2 Erklärung, 17–2 Hysterese, 9–29 Parametrierung, 9–29 Schnittstellenbefehle, 12–20 Wirkrichtung, 9–29

Grenzwertkontakte/Regler Parametrierung, 9–30 Schnittstellenbefehle, 12–20

Η

Hauptanzeige, Erklärung, 17–2 Hilfsenergieausgang, 9–41 Hilfsenergieversorgung, 9–1, 10–8 Hysterese, 9–29

I

I-EING, 2-2

Installation, 10–8 Anschlußklemmen, 10–8

Intervallzeit, Erklärung, 17-2

Κ

Kalibrier–Paßzahl Erklärung, 17–2 Parametrierung, 8–4 Kalibrierablauf auswählen von, 6–3 Erklärung, 17–2 Kalibrierlösung, Parametrierung, 9–11 Kalibrierlösungen, Temperaturtabellen, 15–1 Kalibriermenü, 6–2 Erklärung, 17–2

Kalibrierung, 6–1 Μ Ausgänge einfrieren, 6–5, 6–7, 6–9, 6–10 automatische, 6-5 maint, Erklärung, 17-2 Schnittstellenbefehle, 12-10, 12-29 Dateneingabe vorgemessener Meßzellen, 6–9 Marker-Parametrierung, 8-2 Kalibrierlösungen, Schnittstellenbefehle, 12-10 manuelle Eingabe der Zellkonstante, Schnittstel-Mastschellensatz, 10-1, 13-2 lenbefehle, 12-11, 12-29 manuelle Eingabe des Leitfähigkeitswertes, 6-7 meas, Erklärung, 17-2 Probennahme, 6–10 Meldungsliste, 3-2 Schnittstellenbefehle, 12-11, 12-29 Reinstwasser, 6-9 Erklärung, 17–3 Überwachungsfunktionen, 6-1 Menü, Erklärung, 17-3 Konformitätsbescheinigung, 14–16 Menüebene, Erklärung, 17-3 Konzentrationsalarm, Schnittstellenbefehle, 12–15 Menüstruktur, 1–3, 2–4 Meßmodus, 2-1 Erklärung, 17-3 Konzentrationsbestimmung Konzentrationsalarm, 9–23 Meßspanne, 9–16 Meßbereiche, 14-12 nicht benutzt, 9-23 Meßstelle, Beschaltung, 9-24 Parametrierung, 9–23 Schnittstellenbefehle, 12-18, 12-19 Meßstellen-Nummer, 3-3 Voraussetzungen, 9-22 Erklärung, 17–3 Schnittstellenbefehle, 12-9 Konzentrationsverlauf Kochsalzlösung, 14-15 Meßstellen-Wartung, 4-2 Natronlauge, 14–14 Schnittstellenbefehle, 12-28 Salpetersäure, 14–13 Salzsäure, 14–13 Meßstellendaten, 3-2 Schwefelsäure, 14-14 Meßwertanzeige, 9-10 Schnittstellenbefehle, 12-11 Meßzelle Beschaltung, 9-4 L Erklärung, 17–3 Meßzelle InPro 7000 Leitfähigkeit, Erklärung, 17–2 Beschaltung, 9–4 Kalibrierung, 6–9 Leitfähigkeitsalarm, 9-25, 9-26 Maßzeichnung, 14-8 Schnittstellenbefehle, 12-15 Technische Daten, 14–5 Meßzelle InPro 7001 Leitfähigkeitswert, Eingabe, 2-6 Beschaltung, 9-5 Maßzeichnung, 14-9 Technische Daten, 14–5 Leitwert, Erklärung, 17-2 Meßzelle InPro 7002/7003 Logbuch, 3–3 Beschaltung, 9–6 Erklärung, 17–2 Maßzeichnung, 14–10 Schnittstellenbefehle, 12-7 Technische Daten, 14-6

- Meßzelle InPro 7100 Beschaltung, 9–8 Maßzeichnung, 14–11 Technische Daten, 14–7
- Meßzelle InPro 7104 Beschaltung, 9–8 Maßzeichnung, 14–11 Technische Daten, 14–7

Meßzellen, Kalibrierung, 6-12

Montage, 10–1

Montageplatte, 10-1, 13-2

Montagezubehör, Verzeichnis, 13-2

Ν

Nachspülzeit, Erklärung, 17-3

Nachstellzeit, 9-32

NAMUR, Erklärung, 17-3

NAMUR–Kontakte, 9–27 Erklärung, 17–3 Parametrierung, 9–28 Schnittstellenbefehle, 12–20

Nebenanzeige, 2–1 Erklärung, 17–3 Schnittstellenbefehle, 12–11, 12–12

Neutralzone, 9–32

0

Optionen, Verzeichnis, 13-1

Ρ

par, Erklärung, 17–3

Parametriermenü, Erklärung, 17-3

Parametrierung Anzeigeebene, 5–1 Betriebsebene, 7–1 Schnittstellenbefehle, 12–9 Spezialistenebene, 8–1 Marker–Parametrierung, 8–2 Paßzahlen, 8–4 Schnittstellenbefehle, 12–30

Paßzahlen Parametrierung, 8–4 werksseitig parametriert, 8–6

Paßzahlverriegelung, Erklärung, 17–3 Potentialausgleich, Erklärung, 17–3

R

Regelanfang, 9-32 Regelende, 9-32 Regelgröße, Erklärung, 17-4 Regler, 9–30 Analogregler, 9-30 Parametrierung, 9-37 Digitalregler, 9-30 Dosierzeitalarm, Schnittstellenbefehle, 12–24 Impulsfrequenzregler, 9-35 Impulslängenregler, 9-35 Parametrierung, 9-35 Fehlermeldungen, 9-40 Regelgröße, 9-31 Regelkennlinie, 9-32 Stellgröße, 9-33 Reinigung, 10-10

Reinigungszeit, Erklärung, 17–4

Reinstwasser, spurenverunreinigtes, Kalibrierung, 6–9

RGL-Y, 2-2

Rolltaste, Erklärung, 17-4

RS 485–Schnittstelle, 9–48 Befehlssatz, 12–5 Busprotokoll, 12–31 Hinweise, 9–50 Parametrierung, 9–50 Punkt–zu–Punkt, 12–30 Schnittstellenbefehle, 12–26, 12–30 Schreibschutz, 9–49 Übetragungsverhalten, 12–4

S

Schnittstelle, 9–48 Hinweise, 9–50 Parameter, 9–49 Parametrierung, 9–50 Schnittstellenbefehle, 12–26, 12–30 Schreibschutz, 9–49 Übetragungsverhalten, 12–4

Schnittstellenbefehle, Inhaltsübersicht, 12-1

Schutzdach, 10–1, 13–2

Schutzgehäuse, 10–1, 13–2 Montage, 10–5

Sollwert, 9-32

Sondenspülung, 9–43 Arbeitsweise, 9–45 Hinweise, 9–46 Parametrierung, 9–46 Schnittstellenbefehle, 12–25, 12–28

spe, 8-1

Spezialisten–Paßzahl Erklärung, 17–4 Parametrierung, 8–5

Spezialistenebene, 8–1 Beispiel, 8–3 Erklärung, 17–4

Spülzyklus, 9–43 abschalten, 9–43 Erklärung, 17–4

STATUS, Schnittstellenbefehle, 12-6

Stellgröße, Erklärung, 17–4

Stromausgang, 9–15 Ausgangskennlinie, 9–16 fallende Kennlinie, 9–16 Meßspanne, 9–16, 9–17, 9–18 Parametrierung, 9–19 Fehlermeldungen, 9–20

Stromausgang 1, Schnittstellenbefehle, 12-16

Stromausgang 2, 9–19 Schnittstellenbefehle, 12–17

- Stromeingang, 9–41 Erklärung, 17–4 Parametrierung, 9–42 Schnittstellenbefehle, 12–24
- Stromeingangsalarm, 9–25 Parametrierung, 9–42 Schnittstellenbefehle, 12–25

Stromgeberfunktion, 4–4 Schnittstellenbefehle, 12–28

Т

Technische Daten, 14-1 Temperaturalarm, 9-25 Schnittstellenbefehle, 12–14 Temperaturerfassung, 6–4, 9–11 Schnittstellenbefehle, 12-14 Temperaturfühler, Anschluß, 9–12 Temperaturfühlerabgleich, 4–5 Schnittstellenbefehle, 12-10, 12-28 Temperaturkoeffizient, Erklärung, 17-4 Temperaturkompensation, 9-11, 9-14 abgeschaltet, 9-14 automatisch, 9-12 Erklärung, 17–4 linear, 9-14 manuell, 9-13 natürliche Wässer (EN 27888), 9-14 Parametrierung, 9–15 spurenverunreinigtes Reinstwasser, 9-14

Tk Meßmedium, Schnittstellenbefehle, 12-13

U

Uhr Parametrierung, 3–4 Schnittstellenbefehle, 12–10, 12–28

V

VALUE, Schnittstellenbefehle, 12-5

Verzögerungszeit, 9–27 Erklärung, 17–4

Vorlaufzeit vor Messen, Erklärung, 17-4

Vorlaufzeit vor Spülen, Erklärung, 17-4

Vorspülzeit, Erklärung, 17-4

Vorzeichen, ändern, 2-7

W

Warnung, 9–27 Erklärung, 17–4 Warteposition, 9-44

Wartung, 10-10

Wartungs–Paßzahl Erklärung, 17–5 Parametrierung, 8–4

Wartungsmenü, 4–1 Erklärung, 17–5

Widerstandsmessung, 4–3 Schnittstellenbefehle, 12–28

Wirkrichtung, 9-29

Ζ

Zahlenwert Eingabe, 2–6 Eingabebereich verschieben, 2–6 Zellenanpassung, Erklärung, 17–5 Zellkonstante, Erklärung, 17–5 Zellkonstantenalarm, 6–1 Schnittstellenbefehle, 12–15