The successful implementation of 'Lean Manufacturing' in several fields has inspired many businesses to adopt this model in laboratories as well. Laboratories have different challenges compared to manufacturing environments; while most of the key principles of traditional Lean still apply, there are many unique points to be adopted in laboratories.

The aim of this checklist is to give you an easy approach to help you develop your lab into a Lean LAB. Answering the simple checklist questions will give you:

a) an overview of your current status and

b) where it might be worth taking actions to improve your lab.

For each section, we have added some helpful tips on how to improve that particular aspect of your lab.

Lea LAB - fields of improvement

1. Housekeeping 3
2. Value stream mapping 4
3. Workload 5
4. Laboratory workflow 6
5. Performance management 7
6. Equipment 8
7. Skills of laboratory personnel 9
8. Laboratory chemicals / auxiliary material 10
9. CIP activities 11
Lean LAB

Potential benefits of Lean LAB approach
- More defined, structured and controlled laboratory processes delivering more consistent and predictable laboratory performance
- Significantly increased productivity
- Reduced lead-times
- Reduced costs
- Reduced levels of WIP (Work In Process)
- Improved RFT (Right First Time)
- A detailed understanding of lab capacity and resourcing requirements
- Greater empowerment of laboratory personnel
- A culture of proactive performance management and continuous improvement
- Improved customer service levels

Work smarter not harder!
From our point of view, Lean LAB is primarily an internal organization task for process optimization. The objective is to contribute towards improving the economic efficiency of an organization. The operational changes that lead to a Lean LAB (which can be initiated in small steps, module-by-module, at any time) are as follows: the standardized operation of several different devices, optimized workplaces and work processes, modular device combinations, standardized network-compatible software, and competent services. Build a culture of continuous improvement to sustain business benefits, from the customer down to the analyst level, drawing on new and innovative ideas, and sustaining its impact with mindset and behavior transformations across the laboratory. Below are some fields for improvements that we identify as important for the Lean LAB concept.

Success is measured by the ‘Magic Triangle’.
The three corners must be balanced.

![The Magic Triangle Diagram]

- Q: Quality
- R: Resources
- T: Time
1. Housekeeping

Can your employees find and fetch tools quickly and easily?

Yes No

Are the workstations clean, tidy and designed for purpose?

Yes No

Are the general laboratory tools stored in an orderly manner and are they easy to locate?

Yes No

Do you audit these conditions regularly?

Yes No

Tips for optimization

- Don’t accept untidiness anymore!
- Look on every shelf and in every drawer.
- Start a 5S program. Everything in its place!
- 5S also works on hard drives (IT).
- Is everything ‘in good order’? Nothing tidies itself, regular auditing is a must!
- Assign a supervisor for each area.
2. Value Stream Mapping

Are there target times for standard analyses?

Are the lead times measured?

Do you know the proportion of non-value adding but necessary steps in your workflow?

Do you know the proportion of non-value adding and unnecessary steps in your workflow?

Do you know the proportion of value added steps in your workflow?

Tips for optimization
• Calculate the standard times for standard analyses.
• Measure the lead time
• Determine what the value added steps are in terms of whether ‘an external customer would pay for these steps in the workflow’.
• Employ assistants or external companies for auxiliary activities (such as dishwashing, producing rinse solutions, etc.).
3. Workload

Is the workload distributed evenly over the days/week?

Is there a separate procedure for urgent jobs?

Is your workload coinciding with the previous phase (production) and are the deadlines in sync?

Are the agreed-upon deadlines being met?

Tips for optimization
- Set laboratory service hours, for example to at least 6 am to 6 pm.
- Synchronize your workload with the previous phase.
- Set up an option for urgent analysis.
- Assign someone to distribute the samples according to the current capacity and urgency.
- Keep a workflow plan for the HPLC/GC.
- Optimize the set-up times (eg. for HPLC or GC).
4. Laboratory Workflow

Is the analytical equipment arranged in a logical sequence?
Yes No

Is the analytical equipment consistently arranged according to technology?
Yes No

Are the distances between individual steps in the workflow short and sensible?
Yes No

Do the samples flow through the laboratory?
Yes No

Tips for optimization
- Optimize the travel distance.
- Arrange your analytical equipment according to technology or in work cells; it may be necessary to change the layout of the laboratory.
- When you build a new laboratory, take the unique opportunity to apply Lean principles.
- Make sure that samples flow through the laboratory.
5. Performance Management

Are the most important indicators such as OOS, RFT, etc. regularly determined and used to optimize processes?

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>

Are the indicators analyzed, visualized and included in a report?

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>

Can you report on productivity without investing additional time and effort?

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>

Is the available laboratory capacity being managed effectively?

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>

Tips for optimization

- Measure your KPIs.
- Lead time is a possible KPI.
- First pass rate is another.
- Visualize the KPIs.
- Discuss KPIs regularly with your staff.
- Ask your management for the ‘GEMBA WALK’.

RFT (Right First Time)

Lead Time
6. Equipment

Is your most important equipment in TOP condition?

Are the present equipment capabilities and technologies adequate and regularly assessed?

Can calibration/qualification of the most important equipment be carried out efficiently?

Are replacement parts or important components managed properly?

Does the ease of operation match the level of competency and knowledge of the staff?

Tips for optimization

• Perform regular maintenance on your equipment. No unplanned breakdowns!
• Make sure any necessary accessories are also stored on site.
• Automate existing systems whenever possible (such as an autosampler and quicker data transfer).
• Reduce sources of contamination (such as water baths).
• Practice active obsolescence management.
7. Skills of Laboratory Personnel

Is there an overview stating which employees can perform which activities at what level?

Yes ☒ No ☐

Is staff employment flexible enough?

Yes ☐ No ☐

Is enough time and money being spent on staff training?

Yes ☐ No ☐

Tips for optimization

- Keep skill matrices, not only stating yes/no, but including details on skill levels of each employee.
- Determine how many cross-skills are necessary.
- Make enough time and money available.
- Make regular fitness checks, for example, for HPLC.
- Monitor unplanned absenteeism.
8. Laboratory Chemicals / Auxiliary Material

Are laboratory chemicals and other materials re-ordered systematically, immediately and without great expense?

Are the expiry dates of laboratory chemicals and reagents systematically checked?

Are the inventories of reagents and consumables managed effectively?

Tips for optimization
- Use an appropriate laboratory labeling system.
- Manage your materials using the KANBAN method.
- Avoid excessive inventories.
- Reduce the number of articles to be used.
9. CIP Activities

Are systematic methods such as value flow analyses, CIP/KAIZEN, etc., used for process improvement?

Yes | No

Are staff sufficiently involved in these processes?

Yes | No

Are there dedicated staff who have been trained in systematic process optimization (black/green belts or similar)?

Yes | No

Tips for optimization

- Train staff in root cause investigation methods.
- Motivate your employees to get involved with CIP/KAIZEN activities.
- Measure the progress.
- Be good to yourselves and talk about it!
Checklist Analysis and Feedback

Count the number of questions you answered with a 'Yes' and add them up.

1-15 Yes ×
Start a Lean project in your laboratory. Start with small steps. 5S is an effective way to start. Assign a project leader who can dedicate approximately 20-50 % of their time to this project. Analyses are also good to see where the greatest deficits lie.

16-28 Yes ×
You are on the right track, but there is still room for improvement. You may want to reclarify the question of resources or assign priorities differently.

29-35 Yes ×
Congratulations! Your LAB is lean. Keep it up. Continuous improvement and follow-ups are crucial. Share your knowledge with your colleagues. Your efforts should be visible in terms of costs, quality and lead times.
Helpful Lab Weighing Solutions, Training and Services from METTLER TOLEDO

Data integrity, data recording and transfer
- Balance with remote function
- Paperless using external software
- Easy connectivity with a range of interfaces and data connections
- Data input/output accessories eg. barcode, readers and printers

Automation of repetitive workflows
- Automated liquid and solid dosing systems
- Semi-automated liquid dosing systems
- One Click™ weighing solutions
- Configurable infrared sensors and footswitches
- ErgoClip tare container holder for direct weighing

Harsh or difficult conditions
- Wall-mounted display
- Fast and stable weighing using unique grid weighing pan up to six decimal places
- StaticDetect™ technology, AntiStatic kits and SmartPrep™ weighing funnels
- Optional draftshields, MinWeigh™ Door for accurate dispensing

Reliable results
- Accredited calibration services
- Qualification, maintenance and repair services 24/7
- Global reach – local presence, specialists in more than 140 countries

Skills improvement
- Extended training programs with eLearning
- Internal and external courses and seminars
- Free expertise eg. white papers, checklists, SOP templates
- On-demand webinars and videos

For more information about lean laboratories and lean production with METTLER TOLEDO solutions visit: www.mt.com.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>5S/5A</td>
<td>Workplace organization method, Japanese: Seiri (sort), seiton (set in order), seiso (shine), seiketsu (standardize), and shitsuke (sustain)</td>
</tr>
<tr>
<td>CAPEX</td>
<td>Capital Expenditure</td>
</tr>
<tr>
<td>CIP</td>
<td>Continuous Improvement Process</td>
</tr>
<tr>
<td>CpK</td>
<td>The process capability indices Cp and CpK are parameters used in statistical evaluation of a process in production technology</td>
</tr>
<tr>
<td>DLZ</td>
<td>Lead time, German: Durchlaufzeit</td>
</tr>
<tr>
<td>ERP</td>
<td>Enterprise Resource Planning, eg. SAP</td>
</tr>
<tr>
<td>GEMBA</td>
<td>Japanese term meaning 'the actual place' or 'the real place': the place where manufacturing takes place or a service is provided</td>
</tr>
<tr>
<td>KPI</td>
<td>Key Performance Indicator</td>
</tr>
<tr>
<td>KVP/Kaizen</td>
<td>Continuous Improvement Process</td>
</tr>
<tr>
<td>LIMS</td>
<td>Laboratory Information and Management System</td>
</tr>
<tr>
<td>MES</td>
<td>Manufacturing Execution System</td>
</tr>
<tr>
<td>MUDA</td>
<td>Japanese word for a pointless activity = waste</td>
</tr>
<tr>
<td>Obsolescence</td>
<td>Ensures that discontinued components of products are replaced promptly with suitable alternatives, or otherwise are specifically stockpiled</td>
</tr>
<tr>
<td>OEE</td>
<td>Overall Equipment Effectiveness</td>
</tr>
<tr>
<td>OLE</td>
<td>Overall Laboratory Effectiveness</td>
</tr>
<tr>
<td>OOS</td>
<td>Out of Specification</td>
</tr>
<tr>
<td>OPEX</td>
<td>Operational Excellence (a term of Lean Laboratory and Production), Operational Expenditure (a term of business economics)</td>
</tr>
<tr>
<td>POBOS</td>
<td>Pharma Operations Benchmarking (McKinsey & Company)</td>
</tr>
<tr>
<td>Poka Yoke</td>
<td>Prevention of unfortunate errors</td>
</tr>
<tr>
<td>RCI</td>
<td>Root Cause Investigation or Analysis</td>
</tr>
<tr>
<td>RFT</td>
<td>Right First Time</td>
</tr>
<tr>
<td>Six Sigma</td>
<td>A set of techniques and tools for process improvement</td>
</tr>
<tr>
<td>SMED</td>
<td>Single Minute Exchange of Die = set-up time optimisation</td>
</tr>
<tr>
<td>TPM</td>
<td>Total Productive Maintenance</td>
</tr>
<tr>
<td>TPS</td>
<td>Toyota Production System</td>
</tr>
<tr>
<td>WIP</td>
<td>Work in Process</td>
</tr>
</tbody>
</table>