Mode d'emploi Transmetteur multiparamètre M400 2 fils – M400 2(X)H Type 2 et Type 3

Mode d'emploi Transmetteur multiparamètre M400 2 fils – M400 2(X)H Type 2 et Type 3

Sommaire

1	Introduction							
2	Consi	anes de sécurité	10					
-	2.1	Définition des symboles et désignations figurant sur l'équipement et dans la documentation	10					
	2.2	Mise au rebut adéquate de l'instrument	11					
	2.3	Classification Ex	12					
3	Prése	ntation de l'instrument	12					
•	3.1	Vue d'ensemble ½ DIN	12					
	3.2	Structure du menu	13					
		3.2.1 Écran	14					
	3.3		15					
	3.4	Données de saisie	15					
	3.5	Menus de sélection	15					
	3.6	Boîte de dialogue « Enregistrer modif. »	15					
	3.7	Mots de passe de sécurité	16					
	3.8	Courbe de mesure	16					
		3.8.1 Paramètres de l'écran graphique	17					
		3.8.2 Fermer la fenêtre du graphique	17					
4	Instru	ctions d'installation	18					
	4.1	Déballage et inspection de l'équipement	18					
		4.1.1 Informations sur les dimensions de la découpe du panneau – Modèles 1/2 DIN	18					
		4.1.2 Procédure d'installation	19					
		4.1.3 Montage – Modèle ½ DIN	19					
		4.1.4 Modèle ½ DIN – Schémas de dimensions	20					
		4.1.5 Modèle ½ DIN – Montage sur canalisation	20					
	4.2	Branchement de l'alimentation	21					
		4.2.1 Boîtier (montage mural)	21					
	4.3	Définition des borniers (TB)	22					
	4.4	Bornier IBI	22					
	4.5	Bornier IB2 : Sondes analogiques	23					
		4.5.1 Conductivite (2-e/4-e) sondes analogiques	23					
		4.5.2 Sondes analogiques à evugène ampéremétriques	23					
	16	4.5.3 Sondes unulogiques a oxygene amperomemques	24					
	4.0	DUITIEL TOZ : SUITUES ISM	24					
		4.0.1 Liechoues de ph, sondes à oxygène driperonneinque, sondes de conductivile (à 4 electrodes)	24					
		4.6.2 Sondes ISM à avagère antique	24 25					
	47	7 Connexion des sondes ISM						
	4.7.1 Connexion des sondes ISM pour la mesure du pH/redox. de la conductivité à 4 électrodes							
		et sondes de mesure de l'oxygène ampérométrique	26					
		4.7.2 TB2 – Configuration du câble AK9	26					
	4.8	Connexion de sondes analogiques	27					
		4.8.1 Connexion de la sonde analogique pour pH/redox	27					
		4.8.2 TB2 – Raccordement type pour électrode						
		de pH/redox analogique	28					
		4.8.2.1 Exemple 1	28					
		4.8.2.2 Exemple 2	29					
		4.8.2.3 Exemple 3	30					
		4.8.2.4 Exemple 4	31					
		4.8.3 Connexion d'une sonde analogique pour la mesure de l'oxygène ampérométrique	32					
		4.8.4 IB2 – Cablage classique pour sonde analogique pour la mesure d'oxygène ampérométrique	33					
5	Mise	en service ou hors service du transmetteur	34					
	5.1	Mise en service du transmetteur	34					
	5.2	Mise hors service du transmetteur	34					
6	Étalo	nnage	35					
	6.1	Étalonnage de la sonde	35					
		6.1.1 Sélectionnez la tâche d'étalonnage de la sonde souhaitée	35					
		6.1.2 Fin de l'étalonnage de la sonde	36					
	6.2	Étalonnage des sondes Cond 2e ou Cond 4e	36					
		6.2.1 Étalonnage en un point	37					
		6.2.2 Etalonnage en deux points	37					
		6.2.3 Etalonnage procédé	38					

7

6.3	Étalonnaae du pH	38
	6.3.1 Étalonnage en un point	39
	6.3.2 Étalonnage en deux points	39
	6.3.3 Étalonnage procédé	40
6.4	Étalonnage redox des électrodes de pH	40
6.5	Étalonnage de sondes à oxyaène ampérométriques	41
0.0	6.5.1 Étalonnage en un point	41
	6.5.2 Étalonnage procédé	42
6.6	Étalonnage de sondes à oxygène optiques	42
	6.6.1 Étalonnaae en un point	43
	6.6.2 Étalonnage en deux points	43
	6.6.3 Étalonnage procédé	44
67	Étalonnage des sondes de CO _o dissous	44
0.1	671 Étalonnage en un point	45
	6.7.2 Étalonnage en deux points	45
	6.7.3 Étalonnage procédé	46
68	Vérification de la sonde	46
6.9	Étalonnage du transmetteur (sondes analogiques uniquement)	47
0.0	6.9.1 Resistance (sondes analogiques uniquement)	47
	6.9.2 Température (pour les sondes analogiques)	49
	6.9.3 Tension (sondes analogiques uniquement)	50
	6.9.4 Courant (sondes analogiques uniquement)	00 50
	6.9.5 Ra (sondes analogiques uniquement)	00 50
	6.0.6 Pr (sondes analogiques uniquement)	00 51
6 10	Étalonnare des sorties analogiques anquerient)	51 51
6 1 1	Étalonnage des entrées analogiques	51 51
612		52
0.12		02
CONTIQ	guration	52
7.1		
	7.1.1 Conliguration des voles	
	7.1.2 Iransmeneur MIX (analogique el ISM) el ISM	
	7.1.3 Derimitin des parameters	03
	7.1.3.1 Paramètres de conductivite	04
	7.1.3.2 Puluinelles de pri	00
	7.1.3.3 Paramètres de mesure de l'oxygène basés sur des sondes amperometiques	00 57
	7.1.3.4 Parameires de mesure de l'oxygene bases sur des sondes opliques	
	7.1.3.5 Parametres au aloxyde de carbone dissous	
7.0	7.1.4 Idble de la courbe de concentration	09
1.Z	Source de remperature (sondes analogiques uniquement)	
7.3	Somes analogiques	09
7.4	Valeurs de consigne	60
7.5		61
	7.5.2 No. max. NEP	63
	7.5.3 No. max. SEP	63
	7.5.4 No. max. d autoclavages	64
	7.5.5 Ajustement de la tension DLI	64
7.6	Alarme générale	65
1.1	ISM / Aldrme sonde	65
7.8	Nettoyage	66
7.9	Config. affichage	66
7.10	Entrées numériques	66
7.11	Système	67
7.12	Régulateur PID	67
7.13	Maintenance	71
	7.13.1 Réglage des sorties analogiques	71
	7.13.2 Lecture des sorties analogiques	71
	7.13.3 Config. OC	71
	7.13.4 Lire OC	71
	7.13.5 Lecture des entrées numériques	71
	7.13.6 Mémoire	72
	7.13.7 Affichage	72

	7.14	Gestion des utilisateurs	72
	7.15	Réinitialisation	72
		7.15.1 Réinitialisation du système	73
	7.16	Configuration touche personnalisée	73
	7.17	HART	_73
8	ISM		73
	8.1	iMonitor	73
	8.2	Messages	74
	8.3	Diagnostic ISM	75
		8.3.1 Électrodes de pH/redox, sondes à oxygène, O ₂ , Cond 4e	75
	8.4	Données d'étalonnage de toutes les sondes ISM	75
		8.4.1 Données d'étalonnage de toutes les sondes ISM	_76
	8.5	Infos sur la sonde	_76
	8.6	HW/SW Version (Version du materiel/logiciel)	_//
	8.7		_//
9	Touche	e personnalisée	_ 77
	9.1	Définition des favoris	77
10	Mainte	anance	78
	10.1	Nettoyage du panneau avant	78
11	Dónan		79
	111	liste des messages d'erreur des avertissements et des alarmes relatifs à la conductivité (résistivité) des sondes	_ /0
	11.1	analogíques	79
	112	Liste des messages d'erreur des avertissements et des alarmes relatifs à la conductivité (résistivité) des sondes ISM	
	11.3	Liste des messages d'erreur, des avertissements et des alarmes relatifs au pH	79
		11.3.1 Électrodes de pH sauf celles à double membrane	79
		11.3.2 Électrodes de pH à double membrane (pH/pNa)	80
		11.3.3 Messages redox	81
		11.3.4 Message ISM 2.0 pH	81
		11.3.5 Messages d'alerte courants de la sonde ISM	82
	11.4	Liste des messages d'erreur, des avertissements et des alarmes de la sonde ampérométrique O2	82
		11.4.1 Sondes de mesure de l'oxygène en forte concentration	_ 82
		11.4.2 Sondes de mesure de l'oxygène en faible concentration	83
		11.4.3 Sondes de mesure de l'oxygène à l'état de trace	_83
	11.5	Liste des messages d'erreur, des avertissements et des alarmes relatifs a l' O_2 optique	83
	11.0	Lisie des messages à erreur, des avenissemenis et des alarmes pour le CO ₂ alssous	84
	11.7	Signalement des avenissements et des alannes	_ 00
		11.7.1 Signalement des alarmes	_00 85
			_00
12	Référe	nces de commande, accessoires et pièces de rechange	86
13	Caract	éristiques techniques	87
	13.1	Caractéristiques techniques générales	87
	13.2	Caractéristiques électriques	_91
		13.2.1 Caractéristiques électriques générales	91
		13.2.2 4 à 20 mA (avec HART)	_91
	13.3	Caractéristiques mécaniques	_91
	13.4	Caracteristiques environnementales	92
	13.5	Schemas de conirole	_ 93
	13.0		_ 93
14	Garant	ie	98
15	Tablea	ux de tampons	99
	15.1	Tampons pH standard	99
		15.1.1 Mettler-9	_ 99
		15.1.2 Mettler-10	100
		15.1.3 Tampons techniques NIST	100
		15.1.4 Tampons standard NIST (DIN et JIS 19266 : 2000–01)	_101
		15.1.5 Tampons Hach	101
		15.1.6 Tampons Ciba (94)	102
		15.1.7 Merck Titrisole, Riedel-de-Haën Fixanale	102
		15.1.8 Tampons WTW	_103
	15.0	15.1.9 Tampons JIS Z 8802	_103
	15.2	Initipolis pour electrode de pH a double membrane	104
		15.2.1 Tumpons pH/phu Meller (Nu+ 3,9M)	104

Introduction

1

Déclaration d'utilisation prévue : le transmetteur multiparamètre à 2 fils M400 est un instrument de procédé en ligne monocanal doté de fonctionnalités de communication HART[®], qui permet de mesurer différentes propriétés des fluides et des gaz. notamment la conductivité, l'oxygène dissous et le pH/redox. Il existe deux niveaux différents pour le M400. Chaque niveau correspond aux paramètres de mesure couverts. Les paramètres sont indiqués sur une étiquette située à l'arrière du système.

Le transmetteur M400 propose un mode mixte et un mode purement ISM, capables de prendre en charge des sondes classiques (analogiques) ou des sondes ISM (numériques).

	M400 2(X)H Type2		M400 2(X)H Type:	
	Analogique	ISM	Analogique	ISM
pH/redox	•	•	•	•
pH/pNa	_	•	_	•
Conductivité à 2 électrodes	•	_	•	_
Conductivité à 4 électrodes	•	•	•	•
Oxygène amp. ppm/ppb/trace	•/•/•	●/●/●	•/•/•	•/•/•
Oxygène amp. phase gazeuse ppm/ppb/trace	_	_	•/•/•	●/●/●
Oxygène opt. ppm/ppb	•/•	•/•	•/•	•/•
CO ₂ dissous (pharma)	_	•	_	•

Guide de sélection des paramètres du transmetteur M400 à 2 fils

Un grand écran noir et blanc transmet les données de mesure et les informations de configuration. La structure du menu permet à l'opérateur de modifier tous les paramètres de fonctionnement à l'aide de touches situées sur le panneau avant. Une fonction de verrouillage des menus (protection par mot de passe) est disponible et empêche l'utilisation non autorisée de l'instrument de mesure. Le transmetteur multiparamètre M400 peut être configuré pour utiliser ses deux sorties analogiques et/ou deux sorties de collecteur ouvert (OC) pour le contrôle de procédé.

Cette description correspond à la version 1.0.01 du firmware installé sur les transmetteurs M400 2(X)H Type 2 et M400 2(X)H Type 3. Des modifications sont apportées régulièrement sans notification préalable.

2 Consignes de sécurité

Ce manuel contient des informations relatives à la sécurité présentées sous les désignations et les formats suivants.

2.1 Définition des symboles et désignations figurant sur l'équipement et dans la documentation

Avertissement : RISQUE POTENTIEL DE BLESSURES CORPORELLES.

Attention : risque de dommage ou de dysfonctionnement de l'appareil.

Remarque : informations importantes sur le fonctionnement.

Sur le transmetteur ou dans ce manuel : Attention et/ou autre risque éventuel, y compris risque d'électrocution (voir les documents connexes).

Vous trouverez ci-dessous une liste de consignes de sécurité et d'avertissements d'ordre général. Le non-respect de ces consignes risque d'endommager l'équipement et/ou de blesser l'opérateur.

- Le transmetteur M400 doit être installé et exploité uniquement par du personnel familiarisé avec ce type d'équipement et qualifié pour ce travail.
- Le transmetteur M400 doit être utilisé uniquement dans les conditions de fonctionnement spécifiées (voir section 13, « Caractéristiques techniques »).
- Le transmetteur M400 ne doit être réparé que par du personnel autorisé et formé à cet effet.
- À l'exception de la maintenance de routine, des procédures de nettoyage ou du remplacement des fusibles, conformément aux descriptions de ce manuel, il est strictement interdit d'intervenir sur le transmetteur M400 ou de le modifier.
- METTLER TOLEDO décline toute responsabilité en cas de dommages occasionnés par des modifications non autorisées apportées au transmetteur.
- Suivez les avertissements, les mises en garde et les instructions signalés sur le produit et dans la documentation qui l'accompagne.
- Pour l'installation du matériel, conformez-vous à la procédure décrite dans ce manuel d'instruction. Respectez les réglementations locales et nationales.
- Les housses de protection doivent toujours être en place en cas de fonctionnement normal.
- Si cet équipement est utilisé d'une autre manière que celle spécifiée par le fabricant, la protection que celui-ci procure contre les dangers peut être compromise.

AVERTISSEMENTS :

L'installation des raccordements de câbles et l'entretien de ce produit nécessitent l'accès à des niveaux de tension présentant un risque d'électrocution. L'alimentation et les contacts de collecteur ouvert raccordés sur différentes sources électriques doivent être déconnectés avant l'entretien.

L'interrupteur ou le disjoncteur sera situé à proximité de l'équipement et à portée de l'OPÉRATEUR ; il sera marqué en tant que dispositif de déconnexion de l'équipement. L'alimentation principale doit employer un interrupteur ou un disjoncteur comme dispositif de débranchement de l'équipement. L'installation électrique doit être conforme au Code électrique national américain et/ou à toutes autres réglementations nationales ou locales en vigueur.

 $\langle \mathcal{P} \rangle$

 $\widehat{}$

Remarque : PERTURBATIONS DU PROCÉDÉ

Étant donné que les conditions de procédé et de sécurité peuvent dépendre du fonctionnement constant du transmetteur, prévoyez les moyens appropriés pour éviter toute interruption pendant le nettoyage ou le remplacement de la sonde, ou pendant l'étalonnage de la sonde ou de l'instrument.

2.2 Mise au rebut adéquate de l'instrument

Lorsque le transmetteur est hors d'usage, respectez l'ensemble des réglementations locales en matière d'environnement pour garantir une élimination appropriée.

Remarque : Il s'agit d'un transmetteur à 2 fils équipé de deux sorties analogiques actives de 4–20 mA.

2.3 Classification Ex

Reportez-vous au document PN 30715260 pour obtenir les instructions relatives à la protection contre les explosions, y compris IECEx, ATEX, FM, qui peuvent être téléchargées à l'adresse www.mt.com/m400-downloads.

3 Présentation de l'instrument

Les modèles M400 sont fournis avec des boîtiers ½ DIN. Les modèles M400 sont munis d'un boîtier IP66/NEMA4X intégral pour montage mural ou sur canalisation.

3.1 Vue d'ensemble ½ DIN

- 1 : Boîtier en alliage d'aluminium moulé sous pression
- 2 : Quatre touches de navigation à retour tactile
- 3 : Écran haute résolution TFT

- 1 : TB1 Signal analogique d'entrée et de sortie
- 2 : TB2 Signal de la sonde

3.2 Structure du menu

Ci-dessous, l'arborescence du menu du M400 :

A. Écran d'accueil (exemple)

- 1. 1^{re} ligne, configuration standard
- 2. 2^e ligne, configuration standard
- 3. 3^e ligne, dépend de la configuration
- 4. 4^e ligne, dépend de la configuration
- 5. Touche programmable (fonctions indiquées à l'écran)
- 6. Curseur (indique l'action sélectionnée de la touche programmable)
- B. Écran de menu (exemple)
- C. Écran de menu ISM

Remarque : Si une alarme se déclenche ou si une condition d'erreur se produit, un symbole apparaît en haut de l'écran du transmetteur M400. Cet en-tête clignote jusqu'à ce que la raison de son apparition ait été résolue (voir le chapitre 11.7 « Signalement des avertissements et des alarmes » à la page 85).

Remarque : Pendant un étalonnage ou un cycle de nettoyage, ou lorsqu'une entrée numérique avec sortie analogique/état OC en mode Maintien, un « H » clignote dans le coin supérieur droit de l'écran en face de la voie correspondante. Ce symbole reste visible pendant 20 secondes après la fin de l'étalonnage. Ce symbole demeure visible pendant 20 secondes après la fin de l'étalonnage ou du nettoyage. Ce symbole disparaît également quand l'option Entrée numérique est désactivée.

3.3

Commande	Description
	Accès au menu Messages
-	Accès à l'écran de menu
1	Verrouillage/déverrouillage de l'écran
ISM	Accès au menu ISM
*	Accès au menu Favoris
<u>.</u>	Accès au menu Étalonnage
* ☆	Accès au menu Configuration
	Retour à l'écran de menu
	Accès au niveau de menu inférieur, par exemple iMonitor, Messages ou Diagnostics ISM
	Retour au niveau de menu supérieur ; appui long pour revenir à l'écran d'accueil
	Navigation dans le menu pour sélectionner une fonction
←┘	Accès au menu ou à l'élément sélectionné de la touche programmable

3.4 Données de saisie

Commandes

Le transmetteur M400 présente un clavier qui vous permet de modifier les valeurs. Appuyez sur le bouton ← pour enregistrer la valeur concernée. Si vous souhaitez quitter le clavier sans modifier les données, appuyez sur le bouton ESC.

Remarque : Il est possible de changer les unités de certaines valeurs. Dans ce cas, le clavier affiche un bouton avec un « U ». Pour choisir une autre unité pour la valeur saisie sur le clavier, appuyez sur le bouton « U ». Pour revenir à nouveau en arrière, appuyez sur le bouton 0-9.

Remarque : Pour certaines entrées, il est possible d'utiliser des lettres et/ou des chiffres. Dans ce cas, le clavier affiche un bouton A ou O. Appuyez sur ce bouton pour basculer entre les majuscules, les minuscules et les nombres sur le clavier.

3.5 Menus de sélection

Certains menus nécessitent la sélection d'un paramètre et/ou de données. Dans ce cas, le transmetteur affiche une fenêtre contextuelle. Appuyez sur le champ correspondant à la valeur pour la sélectionner. La fenêtre contextuelle se ferme et la valeur sélectionnée est enregistrée.

3.6 Boîte de dialogue « Enregistrer modif. »

Plusieurs options sont proposées lorsque la boîte de dialogue « Enregistrer modif. » s'affiche. « Non » efface les valeurs saisies, « Oui » enregistre les modifications effectuées et « Annuler » vous permet de poursuivre la configuration.

3.7 Mots de passe de sécurité

Le transmetteur M400 permet de verrouiller plusieurs menus. Si la fonction de verrouillage de sécurité du transmetteur est activée, un mot de passe doit être encodé afin d'accéder au menu. Pour en savoir plus, consulter le Chapitre 7.14 « Gestion des utilisateurs », à la page 72.

3.8 Courbe de mesure

Chaque mesure peut être affichée sous forme de courbe sur une période donnée. Les grandeurs de mesure seront placées sur l'axe des ordonnées et la période concernée sur l'axe des abscisses du graphique affiché. Une mesure réelle de la valeur sélectionnée s'affichera également sous forme numérique au-dessus du graphique. Cette grandeur de mesure est actualisée toutes les secondes.

Le graphique affichera uniquement les valeurs comprises dans la plage minimum/maximum. Les valeurs en dehors de la plage de mesure ou les valeurs non valides ne seront pas affichées. Les deux axes peuvent être configurés en termes de plage (axe Y) et de résolution (axe X). Réglez la plage de l'axe des Y de manière suffisamment étendue pour que toutes les mesures puissent être affichées. Réglez la résolution de l'axe des X sur « 1 heure » ou « 1 jour » pour afficher les valeurs de l'heure (ou de la journée, selon le cas) écoulée.

Ouvrir la fenêtre du graphique

Avec le M400 affiché sur l'écran de menu, vous pouvez utiliser la configuration de touche personnalisée pour accéder à cette fonction avec les touches tactiles CHEMIN D'ACCÈS : CONFIG\Config. touche personnalisée\Tendance. Enregistrer la modification avec Oui. Retour à l'écran principal, avec l'affichage de la courbe d'évolution sur la deuxième touche en bas, en appuyant sur la seconde touche programmable, la courbe d'évolution s'affiche.

ĥ\Trend	
M1 6.58 pH	
M2 6.0 °C	
M3 95 mV	
M4 730 days DLI	
	1

Lors de l'utilisation d'une configuration de touche personnalisée pour accéder à l'affichage des tendances, appuyez sur la deuxième touche programmable à partir de la gauche, après avoir défini Trend comme une touche personnalisée.

Pour sélectionner la mesure, utilisez ▼ et ←.

Lorsqu'une sonde est déconnectée/connectée, une fenêtre contextuelle s'affiche. Lorsque vous fermez cette fenêtre, vous revenez à l'écran de menu. En haut de l'écran, tous les messages reçus pendant l'affichage de la courbe sont indiqués. « H » et « P » s'affichent lorsque cette voie est en attente ou en cours d'utilisation.

3.8.1 Paramètres de l'écran graphique

Pour définir les configurations, cliquez sur la quatrième touche pour ouvrir la fenêtre contextuelle de ce paramètre de mesure. Les paramètres sont définis par défaut, mais ils peuvent être modifiés lorsque plusieurs options sont disponibles.

Durée : Bouton Option. Pour afficher la durée concernée (axe des x)

1 h (valeur par défaut)

1 jour

Remarque : 1 h signifie : 1 mesure enregistrée/15 secondes, soit au total 240 mesures relevées en 1 heure. 1 jour signifie : 1 mesure enregistrée/6 minutes, soit au total 240 mesures relevées en 1 jour.

Plage : Bouton Option

Défaut

Personnalisée

Lorsque les modes « Défaut » sont définis sur la valeur maximale ou minimale, cela indique la plage de mesure complète pour cette unité. Aucun bouton Max ou Min n'est affiché. Si le réglage est sélectionnable, l'utilisateur peut définir manuellement les réglages maximum et minimum.

max. : Bouton Éditer.

Valeur maximale pour cette unité sur l'axe des y. xxxxxx, virgule flottante.

Min: Bouton Éditer.

Valeur minimale pour cette unité sur l'axe des y. xxxxx, virgule flottante. Valeur max. > valeur min.

Remarque : Les réglages définis pour les axes X et Y et les grandeurs de mesure correspondantes sont stockés dans la mémoire du transmetteur. Une panne de courant rétablit les paramètres par défaut.

3.8.2 Fermer la fenêtre du graphique

Appuyez sur 🛨 dans la fenêtre du graphique pour revenir à l'écran de menu.

Remarque : Si une sonde est déconnectée/connectée, une fenêtre contextuelle s'affiche ; lorsque vous fermez cette fenêtre, vous revenez à l'écran de menu.

4 Instructions d'installation

4.1 Déballage et inspection de l'équipement

Examinez l'emballage d'expédition. S'il est endommagé, contactez immédiatement le transporteur pour connaître les instructions à suivre. Ne jetez pas l'emballage.

En l'absence de dommage apparent, ouvrez l'emballage. Vérifiez que tous les éléments figurant sur la liste de colisage sont présents.

Si des éléments manquent, avertissez-en immédiatement METTLER TOLEDO.

4.1.1 Informations sur les dimensions de la découpe du panneau – Modèles ½ DIN

Les modèles $\frac{1}{2}$ DIN du transmetteur sont conçus avec un capot arrière intégré pour permettre l'installation autonome sur un mur.

L'appareil peut également être fixé au mur à l'aide du capot arrière intégré. Voir les instructions d'installation au point section 4.1.2.

Vous trouverez ci-dessous les dimensions de découpe requises pour les modèles ½ DIN lorsqu'ils sont installés sur un panneau plat ou une porte de boîtier plane. Cette surface doit être plane et lisse. Les surfaces texturées ou rugueuses ne sont pas recommandées et risquent de limiter l'efficacité du joint fourni.

Le matériel de fixation pour un montage sur panneau ou sur conduite est disponible. Reportez-vous à section 15 au sujet des informations de commande.

4.1.2 Procédure d'installation

Questions générales :

- Orientez le transmetteur de façon à ce que les chemins de câbles soient positionnés vers le bas.
- L'acheminement du câblage dans les chemins de câbles doit convenir à une utilisation dans des emplacements humides.
- Pour obtenir un boîtier de classification IP66, tous les presse-étoupes doivent être en place. Chaque presse-étoupe doit être muni d'un câble ou d'un joint adapté à l'orifice du presse-étoupe.

Pour le montage mural :

- Retirez le capot arrière du boîtier avant.
- Commencez par dévisser les quatre vis situées sur l'avant du transmetteur, une dans chaque coin. Le capot avant peut alors basculer du boîtier arrière.
- Retirez la broche de charnière en la serrant à chaque extrémité. Le boîtier avant peut ainsi être déposé du boîtier arrière.
- Montez le boîtier arrière au mur. Reliez le kit de montage au transmetteur M400 conformément aux instructions données. Fixez l'ensemble au mur à l'aide du matériel de fixation approprié à la surface. Vérifiez le niveau et la fixation. Assurez-vous également que l'installation est conforme à toutes les dimensions d'écart requises pour l'entretien et la maintenance du transmetteur. Orientez le transmetteur de façon à ce que les chemins de câbles soient positionnés vers le bas.
- Replacez le boîtier avant sur le boîtier arrière. Serrez fermement les vis du capot arrière pour garantir la préservation de la classification environnementale IP66/NEMA4X du boîtier. L'ensemble est prêt à être câblé.

Pour le montage sur conduite :

• Utilisez uniquement les composants fournis par le fabricant en vue du montage mural du transmetteur M400 et installez-les selon les instructions fournies. Voir section 15 au sujet des informations de commande.

4.1.3 Montage – Modèle ½ DIN

4.1.4 Modèle ¹/₂ DIN – Schémas de dimensions

4.1.5 Modèle 1/2 DIN – Montage sur canalisation

4.2 Branchement de l'alimentation

Sur l'ensemble des modèles, toutes les connexions du transmetteur s'effectuent sur le panneau arrière.

Vérifiez que l'alimentation est coupée au niveau de tous les fils avant de procéder à l'installation.

Un connecteur à deux bornes situé sur le panneau arrière de tous les modèles M400 est prévu pour brancher l'alimentation. Tous les modèles M400 sont conçus pour fonctionner à partir d'une source électrique comprise entre 14 et 30 V CC. Reportez-vous aux caractéristiques techniques et aux valeurs nominales électriques, puis dimensionnez le câblage en conséquence (AWG 16–24, section de fil 0,2 mm² à 1,5 mm²).

4.2.1 Boîtier (montage mural)

- 1 : TB1 Signal analogique d'entrée et de sortie
- 2: TB2 Signal de la sonde

4.3 Définition des borniers (TB)

Les connexions d'alimentation sont étiquetées **A01+/HART** et **A01-/HART** resp. **A02+** et **A02-** pour des tensions de 14 à 30 V CC.

4.4 Bornier TB1

Terminal	Désignation	Description
1	V_EC	
2	GND_EC	Nottovara oimpla
3	485A_EC	menoyage simple
4	485B_EC	
5	DI1+	
6	DI1-	
7	DI2+	
8	DI2-	Eniree numerique z
9	OC1+	Sortia 1 collectour ouwart (interruptour)
10	OC1-	
11	0C2+	Sortia 2 collectour ouwart (interruptour)
12	0C2-	
13	AO1+/HART	Raccordement électrique 14 à 30 V CC
14	AO1-/HART	Signal de sortie analogique 1Signal HART
15	A02+	Raccordement électrique 14 à 30 V CC
16	A02-	Signal de sortie analogique 2
17	Non utilisé	_
18	Ţ	

4.5 Bornier TB2 : Sondes analogiques

4.5.1 Conductivité (2-e/4-e) sondes analogiques

Terminal	Fonction	Couleur
A	Cnd int ¹	Blanc
В	Cnd ext1 ¹⁾	Blanc/bleu
С	Cnd ext1	-
D	Non utilisé	-
E	Cnd ext2	-
F	Cnd int2 ²⁾	Bleu
G	Cnd ext2 (terre) ²⁾	Noir
Н	Non utilisé	-
	Ret. capteur de température à résistance/Terre	Blindage nu
J	Détection capteur de température	Rouge
K	Capteur de température	Vert
L	Non utilisé	-
Μ	Non utilisé	-
Ν	Non utilisé	-
0	Non utilisé	-
Р	Non utilisé	_
Q	Non utilisé	-

Pour les sondes de conductivité à 2 électrodes de fabricants tiers, un cavalier peut être nécessaire entre les bornes A et B.
 Pour les sondes de conductivité à 2 électrodes de fabricants tiers, un cavalier peut être nécessaire entre les bornes F et G.

4.5.2 Sondes analogiques pH et redox

	рН		Potentiel redox	
Terminal	Fonction	Couleur ¹⁾	Fonction	Couleur
A	Verre	Matière	Platine	Matière
		transparente		transparente
В	Non utilisé	-	-	-
С	Non utilisé	-	-	-
D	Non utilisé	_	_	_
E	Référence	Rouge	Référence	Rouge
F	Référence ²⁾	_	Référence ²⁾	_
G	Masse liquide ²⁾	Bleu ³⁾	Masse liquide ²⁾	-
Н	Non utilisé	_	_	_
I	Ret. capteur de température	Blanc	_	-
	à résistance/Terre			
J	Détection capteur	-	-	-
	de température			
K	Capteur de température	Vert	-	-
L	Non utilisé	-	-	-
М	Blindage (terre)	Vert/jaune	Blindage (terre)	Vert/jaune
Ν	Non utilisé	-	-	-
0	Non utilisé	_	_	_
Р	Non utilisé	-	_	_
Q	Non utilisé		_	_

1) Fil gris non utilisé.

2) Installer un cavalier entre les bornes F et G pour les sondes redox et les électrodes de pH sans masse liquide.

3) Fil bleu pour l'électrode avec masse liquide.

23

		InPro 6800(G)	InPro 6900	InPro 6950
Terminal	Fonction	Couleur	Couleur	Couleur
A	Non utilisé	_	_	-
В	Anode	Rouge	Rouge	Rouge
С	Anode	_1)	_1)	-
D	Référence	_1)	_1)	Bleu
E	Non utilisé	_	_	_
F	Non utilisé	_	_	_
G	Garde	_	Gris	Gris
Н	Cathode	Matière transparente	Matière transparente	Matière transparente
l	Ret. NTC (terre)	Blanc	Blanc	Blanc
J	Non utilisé	_	_	_
K	NTC	Vert	Vert	Vert
L	Non utilisé	_	_	_
Μ	Blindage (terre)	Vert/jaune	Vert/jaune	Vert/jaune
Ν	Non utilisé	_	_	-
0	Non utilisé	_	_	_
Р	+Ain ²⁾	_	_	_
Q	-Ain ²⁾	_	_	_

4.5.3 Sondes analogiques à oxygène ampérométriques

1) Installer un cavalier entre les bornes C et D pour InPro 6800(G) et InPro 6900.

2) Signal 4 à 20 mA pour la compensation de la pression

4.6 Bornier TB2 : Sondes ISM

4.6.1 Électrodes de pH, sondes à oxygène ampérométrique, sondes de conductivité (à 4 électrodes) et sondes à CO₂ dissous

Terminal	Fonction	Couleur
A	Non utilisé	_
В	Non utilisé	-
С	Non utilisé	-
D	Non utilisé	-
E	Non utilisé	-
F	Non utilisé	-
G	Non utilisé	-
Н	Non utilisé	-
	Non utilisé	-
J	Non utilisé	-
K	Non utilisé	-
L	1 fil	Transparent (âme du câble)
М	GND (terre)	Rouge (blindage)
Ν	RS485-B	_
0	RS485-A	-
Р	+Ain ¹⁾	-
Q	–Ain ¹⁾	-

1) Pour les sondes à oxygène uniquement : Signal 4 à 20 mA pour la compensation de la pression

25

Sondes ISM à oxygène optique 4.6.2

	Oxygène optique av	vec câble VP8 ¹⁾	Oxygène optique a	vec d'autres câbles ²⁾
Terminal	Fonction	Couleur	Fonction	Couleur
A	Non utilisé	_	Non utilisé	_
В	Non utilisé	_	Non utilisé	_
С	Non utilisé	_	Non utilisé	-
D	Non utilisé	_	Non utilisé	_
E	Non utilisé	_	Non utilisé	_
F	Non utilisé	-	Non utilisé	-
G	Non utilisé	_	Non utilisé	_
Н	Non utilisé	-	Non utilisé	-
I	Non utilisé	_	D_GND (blindage)	Jaune
J	Non utilisé	_	Non utilisé	-
K	Non utilisé	-	Non utilisé	-
L	Non utilisé	_	Non utilisé	_
М	D_GND (blindage)	Vert/jaune	D_GND (blindage)	Gris
Ν	RS485-B	Marron	RS485-B	Bleu
0	RS485-A	Rose	RS485-A	Blanc
Р	+Ain ³⁾	_	+Ain ³⁾	-
Q	–Ain ³⁾	-	–Ain ³⁾	-

Connecter le fil gris + 24 CC et le fil bleu GND_24 V de la sonde séparément à une source d'alimentation externe.
 Connecter le fil marron + 24 CC et le fil noir GND_24 V de la sonde séparément.
 Signal 4 à 20 mA pour la compensation de la pression

4.7 Connexion des sondes ISM

4.7.1 Connexion des sondes ISM pour la mesure du pH/ redox, de la conductivité à 4 électrodes et sondes de mesure de l'oxygène ampérométrique

Remarque : Connectez la sonde et vissez la tête d'entraînement dans le sens des aiguilles d'une montre (serrage manuel).

4.7.2 TB2 – Configuration du câble AK9

Fil de données monobrin (transparent)
 Terre/blindage

4.8 Connexion de sondes analogiques

4.8.1 Connexion de la sonde analogique pour pH/redox

Remarque : Les longueurs de câble supérieures à 20 m peuvent détériorer la réponse au cours de la mesure du pH. Veillez à respecter le manuel d'instruction de la sonde.

4.8.2 TB2 – Raccordement type pour électrode de pH/redox analogique

4.8.2.1 Exemple 1

Mesure du pH sans masse liquide

Les couleurs de fils sont valables uniquement pour la connexion avec le câble VP ; les fils bleu et gris ne sont pas connectés.

- A. Verre
- B. Référence
- C. Ret. capteur de température à résistance/Terre
- D. Capteur de température
- E. Blindage/terre

4.8.2.2 Exemple 2

Mesure du pH avec masse liquide

Remarque : Les couleurs de fils sont valables uniquement pour la connexion avec le câble VP, le fil gris n'est pas branché.

- A. Verre
- B. Référence
- C. Blindage/masse liquide
- D. Terre/ret. capteur de température à résistance
- E. Capteur de température
- F. Blindage (terre)

4.8.2.3 Exemple 3

Mesure redox (température en option)

Remarque : Installez le cavalier entre les bornes G et F

- A. Platine
- B. Référence
- C. Ret. capteur de température à résistance/Terre
- D. Capteur de température
- E. Blindage (terre)

4.8.2.4 Exemple 4

Mesure redox avec électrode de pH à masse liquide (par ex. InPro 3250 ou InPro 4800 SG)

Remarque : Installez le cavalier entre les bornes G et F

- A. Platine
- B. Référence
- C. Ret. capteur de température à résistance/Terre
- D. Capteur de température
- E. Blindage (terre)

 \sqrt{r}

4.8.4 TB2 – Câblage classique pour sonde analogique pour la mesure d'oxygène ampérométrique

Remarque : Les couleurs de fils sont valables uniquement pour la connexion avec le câble VP ; le fil bleu n'est pas branché.

Connecteur M400 :

- B. Anode
- C. Référence
- D. Cathode
- E. Ret. NTC, Garde
- K. NTC
- L. Blindage (terre)

5

Mise en service ou hors service du transmetteur

5.1 Mise en service du transmetteur

Une fois le transmetteur branché au circuit d'alimentation, il est activé dès la mise sous tension du circuit.

5.2 Mise hors service du transmetteur

Déconnectez d'abord l'appareil de la source d'alimentation principale, puis débranchez toutes les autres connexions électriques. Retirez l'appareil du mur/panneau. Utilisez les instructions d'installation de ce manuel comme référence pour démonter le matériel de fixation.

Les paramètres du transmetteur enregistrés dans la mémoire ne sont pas volatiles.

6 Étalonnage

CHEMIN D'ACCÈS : ₼\CAL.

Remarque : Pendant l'étalonnage, les sorties de la voie correspondante conservent leurs valeurs actuelles pendant 20 secondes après la fermeture du menu d'étalonnage. Un « H » clignote dans le coin supérieur droit de l'écran lorsque les sorties sont sur Maintien. Reportez-vous au Chapitre 7.3 « Sorties analogiques », à la page 59 et au Chapitre 7.4 « Valeurs de consigne », à la page 60 pour modifier l'état de maintien des sorties.

6.1 Étalonnage de la sonde

CHEMIN D'ACCÈS : CAL.\Calibrer capteur

6.1.1 Sélectionnez la tâche d'étalonnage de la sonde souhaitée

Les sondes analogiques suivantes sont disponibles en fonction du type de sonde :

Sonde analogique	Tâche d'étalonnage	
рН	pH, mV, Température, Modifier, Vérifier	
Conductivité	Conductivité, Résistivité, Température, Modifier, Vérifier	
Oxygène Amp.	Oxygène, Température, Modifier, Vérifier	

Les sondes ISM (numériques) suivantes sont disponibles en fonction du type de sonde :

Tâche d'étalonnage	
pH, redox, température 1), vérifier	
Conductivité, Résistivité, Vérifier	
Oxygène, Vérifier	
Oxygène, Vérifier	
Dioxyde de carbone, Vérifier	

1) Dépend de la version du progiciel ISM.

6.1.2 Fin de l'étalonnage de la sonde

Après chaque étalonnage réussi, plusieurs options sont disponibles. Si vous sélectionnez « Ajuster », « Enr. Cal » ou « Calibrer », le message « Cal. enregistrée ! » s'affiche. Appuyez sur la touche OK pour accéder au mode Mesure.

Option	Sondes analogiques	Sondes ISM (numériques)
Sondes analogiques : Enr. Cal Sondes ISM : Ajuster	Les valeurs d'étalonnage sont enregistrées dans le transmetteur et sont utilisées pour la mesure. Elles sont également enregistrées dans les données d'étalonnage.	Les valeurs d'étalonnage sont enregistrées dans la sonde et sont utilisées pour la mesure. Elles sont également enregistrées dans l'historique d'étalonnage.
Calibrer	La fonction « Calibrer » n'est pas applicable aux sondes analogiques.	Les valeurs d'étalonnage sont enregistrées dans l'historique d'étalonnage à titre de référence, mais elles ne sont pas utilisées pour la mesure. Les valeurs d'étalonnage du dernier ajustement valable seront utilisées par la suite pour la mesure.
Annuler	Les valeurs d'étalonnage sont effacées.	Les valeurs d'étalonnage sont effacées.

6.2 Étalonnage des sondes Cond 2e ou Cond 4e

CHEMIN D'ACCÈS :
CAL.\Calibrer capteur

Le M400 permet de réaliser un étalonnage en 1 ou 2 points ou un étalonnage procédé de la conductivité ou de la résistivité pour les sondes à 2 ou 4 électrodes.

Remarque : Lors de l'étalonnage d'une sonde de conductivité, les résultats varient en fonction de la méthode, des instruments d'étalonnage et/ou de la qualité des étalons de référence utilisés.

Remarque : Pour les tâches de mesure, il convient de prendre en compte la compensation de température pour l'application telle qu'elle est définie dans les réglages des paramètres de conductivité, et non la compensation de température sélectionnée dans le cadre de la procédure d'étalonnage (voir le chapitre 7.1.3.1 « Paramètres de conductivité » à la page 54).

Vous pouvez accéder aux menus suivants :

Unité : Vous pouvez choisir entre les unités de conductivité et de résistivité.
Méthode : Sélectionnez la procédure d'étalonnage de votre choix (1 point, 2 points ou procédé).
Options : Sélectionnez le mode de compensation souhaité pour la procédure d'étalonnage.
Les options disponibles sont : « Aucune », « Standard », « Light 84 », « Std 75 °C »,
« Linéaire 25 °C », « Linéaire 20 °C », « Glycol1 », « Cation », « Alcool », « NH₃ » et « Glycol5 ».

Avec « **Aucune** », la valeur de conductivité mesurée n'est pas compensée. La valeur non compensée sera affichée et traitée.

La compensation « **Standard** » comprend une compensation des effets de la pureté non linéaire, ainsi que des impuretés des sels neutres traditionnels et est conforme aux normes ASTM D1125 et D5391.

La compensation « Light 84 » correspond aux résultats des recherches sur l'eau pure du Dr T.S. Light publiées en 1984. Employer uniquement si votre établissement a établi des normes sur la base de ce travail.

L'option de compensation **« Std 75 °C »** est l'algorithme de compensation **standard** avec la référence de 75 °C. Cette compensation peut être privilégiée pour la mesure de l'eau ultrapure (UPW) à une température élevée (la résistivité de l'eau ultrapure compensée à 75 °C est 2,4818 Mohm-cm).

36
La compensation **« Linéaire 25 °C »** ajuste la lecture au moyen d'un coefficient ou d'un facteur exprimé en %/°C (écart par rapport à 25 °C). À utiliser uniquement si la solution a un coefficient de température linéaire bien défini. Le réglage par défaut est de 2,0 %/°C.

La compensation **« Linéaire 20 °C »** ajuste la lecture au moyen d'un coefficient ou facteur exprimé en %/ °C » (écart par rapport à 20 °C). Utiliser uniquement si la solution a un coefficient de température linéaire bien défini. La valeur usine par défaut est de 2,0 %/°C.

La compensation **« Glycol5 »** correspond aux caractéristiques thermiques de 50 % d'éthylène glycol dans de l'eau. Les mesures compensées basées sur cette solution peuvent dépasser 18 Mohm-cm.

La compensation **« Glycol1 »** correspond aux caractéristiques thermiques de l'éthylène glycol 100 %. Les mesures compensées peuvent largement dépasser 18 Mohm-cm.

La compensation **« Alcool »** correspond aux caractéristiques thermiques d'une solution contenant 75 % d'alcool isopropylique dans de l'eau pure. Les mesures compensées basées sur cette solution peuvent dépasser 18 Mohm-cm.

Compensation « Nat H_2O » : comprend une compensation jusqu'à 25 °C suivant EN27888 pour l'eau naturelle.

Remarque : Si vous avez sélectionné le mode de compensation « Linéaire 25 °C » ou « Linéaire 20 °C », vous pouvez modifier le coefficient pour l'ajustement de la valeur.

Les modifications sont valables jusqu'à ce que vous quittiez le mode d'étalonnage. Ensuite, les valeurs définies dans le menu de configuration sont de nouveau valables.

6.2.1 Étalonnage en un point

Avec les sondes à deux ou quatre électrodes, un étalonnage en un point est toujours effectué sous forme d'étalonnage de la pente. La procédure suivante décrit la méthode d'étalonnage avec une sonde à deux électrodes. L'étalonnage avec une sonde à quatre électrodes doit être adapté en conséquence.

Appuyez sur le bouton Cal pour lancer l'étalonnage.

Placez l'électrode dans la solution de référence et appuyez sur le bouton Suivant.

Saisissez la valeur du point d'étalonnage (Point 1).

Appuyez sur le bouton Suivant pour lancer le calcul des résultats de l'étalonnage.

L'écran indique la valeur de la pente et du décalage comme résultats de l'étalonnage.

Pour les sondes ISM (numériques), sélectionnez Ajuster, Calibrer ou Annuler pour terminer l'étalonnage. Pour les sondes analogiques, sélectionnez Enr. Cal ou Annuler pour mettre fin à l'étalonnage.

6.2.2 Étalonnage en deux points

Avec les sondes à deux ou quatre électrodes, un étalonnage en deux points est toujours effectué sous forme d'étalonnage du décalage et de la pente. La procédure suivante décrit la méthode d'étalonnage avec une sonde à deux électrodes. L'étalonnage avec une sonde à quatre électrodes doit être adapté en conséquence.

Appuyez sur le bouton Cal pour lancer l'étalonnage.

Placez l'électrode dans la première solution de référence et appuyez sur Suivant.

Attention : Rincez les sondes avec une solution aqueuse de pureté élevée entre les points d'étalonnage afin d'éviter toute contamination des solutions de référence.

Saisissez la valeur du premier point d'étalonnage (Point 1).

Appuyez sur Suivant pour poursuivre l'étalonnage.

Placez l'électrode dans la deuxième solution de référence et appuyez sur Suivant.

Saisissez la valeur du deuxième point d'étalonnage (Point 2).

Appuyez sur le bouton Suivant pour lancer le calcul des résultats de l'étalonnage.

L'écran indique la valeur de la pente et du décalage comme résultats de l'étalonnage.

Pour les sondes ISM (numériques), sélectionnez Ajuster, Calibrer ou Annuler pour terminer l'étalonnage. Pour les sondes analogiques, sélectionnez Enr. Cal ou Annuler pour mettre fin à l'étalonnage.

6.2.3 Étalonnage procédé

Avec les sondes à deux ou quatre électrodes, un étalonnage procédé correspond toujours à un étalonnage de la pente. La procédure suivante décrit la méthode d'étalonnage avec une sonde à deux électrodes. L'étalonnage avec une sonde à quatre électrodes doit être adapté en conséquence.

Appuyez sur le bouton Cal pour lancer l'étalonnage.

Prélevez un échantillon et appuyez de nouveau sur le bouton Terminé pour mémoriser la mesure actuelle. Pour indiquer que le procédé d'étalonnage est en cours, un « P » clignote dans la fenêtre d'accueil et l'écran de menu si la voie concernée est sélectionnée dans la fenêtre.

Après avoir déterminé la valeur de conductivité de l'échantillon, appuyez à nouveau sur l'icône de l'étalonnage dans l'écran de menu.

Appuyez sur le champ **Point 1** pour saisir la valeur de conductivité de l'échantillon. Appuyez sur le bouton Suivant pour lancer le calcul des résultats de l'étalonnage.

Les valeurs d'étalonnage sont enregistrées dans l'historique d'étalonnage. Appuyez sur Enr. Cal pour enregistrer ou sur Annuler pour annuler. Utilisez le bouton Retour pour revenir à l'étape précédente de la procédure d'étalonnage. L'écran indique la valeur de la pente et du décalage comme résultats de l'étalonnage.

Pour les sondes ISM (numériques), sélectionnez Ajuster, Calibrer ou Annuler pour terminer l'étalonnage. Pour les sondes analogiques, sélectionnez Enr. Cal ou Annuler pour mettre fin à l'étalonnage.

6.3 Étalonnage du pH

CHEMIN D'ACCÈS : CAL.\Calibrer capteur

Pour les électrodes de pH, le transmetteur M400 permet de réaliser des étalonnages en 1 point, en 2 points ou procédé, avec des jeux de tampons prédéfinis ou une saisie manuelle. Les valeurs de tampons font référence à une température de 25 °C. Pour étalonner l'instrument avec reconnaissance automatique du tampon, vous avez besoin d'une solution tampon pH standard correspondant à l'une de ces valeurs. Veuillez sélectionner le tableau de tampons adéquat avant de procéder à l'étalonnage automatique (voir le chapitre 15 « Tableaux de tampons » à la page 99). La stabilité du signal de la sonde pendant l'étalonnage peut être contrôlée par l'utilisateur ou vérifiée automatiquement par le transmetteur (voir le chapitre 7.1.3.2 « Paramètres de pH » à la page 55).

Remarque : Pour les électrodes de pH à double membrane (pH/pNa), seule la solution Na+ 3,9M est disponible.

CAL \Calibrate Sensor					
Chan	CHAN_1 pH/ORP				
Unit	рН				
Method	1-Point				
Options	Options				
Verify		Cal			
V		L			

Vous pouvez accéder aux menus suivants :

Unité : Sélectionnez pH.

Méthode : Sélectionnez la procédure d'étalonnage souhaitée (1 point, 2 points ou procédé).

Options : Vous pouvez sélectionner le tampon utilisé pour l'étalonnage, ainsi que la stabilité requise pour le signal de la sonde pendant l'étalonnage (voir aussi Chapitre 7.1.3.2 « Paramètres de pH », à la page 55). Les modifications sont valables jusqu'à ce que vous quittiez le mode d'étalonnage. Ensuite, les valeurs définies dans le menu de configuration sont de nouveau valables.

6.3.1 Étalonnage en un point

Avec les électrodes de pH, un étalonnage en 1 point est toujours effectué sous forme d'étalonnage du décalage.

Appuyez sur le bouton Cal pour lancer l'étalonnage.

Placez l'électrode dans la solution tampon et appuyez sur Suivant.

L'écran indique le tampon pris en compte par le transmetteur Point 1 ainsi que la valeur mesurée.

Le M400 contrôle la stabilité du signal de mesure et agit dès que le signal est suffisamment stable.

Remarque : Si **l'option** Stabilité est définie sur Manuel, appuyez sur Suivant une fois que le signal de mesure est suffisamment stable pour continuer l'étalonnage.

Le transmetteur affiche la valeur pour la pente et pour le décalage comme résultat de l'étalonnage.

Pour les sondes ISM (numériques), sélectionnez Ajuster, Calibrer ou Annuler pour terminer l'étalonnage. Pour les sondes analogiques, sélectionnez Enr. Cal ou Annuler pour mettre fin à l'étalonnage.

6.3.2 Étalonnage en deux points

Avec les électrodes de pH, un étalonnage en 2 points est toujours effectué sous forme d'étalonnage de la pente et du décalage.

Appuyez sur le bouton Cal pour lancer l'étalonnage.

Placez l'électrode dans la solution tampon 1 et appuyez sur Suivant.

L'écran indique le tampon pris en compte par le transmetteur **Point 1** ainsi que la valeur mesurée.

Le M400 contrôle la stabilité du signal de mesure et agit dès que le signal est suffisamment stable.

Remarque : Si **l'option** Stabilité est définie sur Manuel, appuyez sur Suivant une fois que le signal de mesure est suffisamment stable pour continuer l'étalonnage.

Le transmetteur vous invite à placer l'électrode dans la deuxième solution tampon.

Appuyez sur le bouton Suivant pour continuer l'étalonnage.

L'écran indique le tampon pris en compte par le transmetteur (**Point 2**), ainsi que la valeur mesurée.

Le M400 contrôle la stabilité du signal de mesure et agit dès que le signal est suffisamment stable.

 Remarque : Si **l'option** Stabilité est définie sur Manuel, appuyez sur Suivant une fois que le signal de mesure est suffisamment stable pour continuer l'étalonnage.

Le transmetteur affiche la valeur pour la pente et pour le décalage comme résultat de l'étalonnage.

Pour les sondes ISM (numériques), sélectionnez Ajuster, Calibrer ou Annuler pour terminer l'étalonnage. Pour les sondes analogiques, sélectionnez Enr. Cal ou Annuler pour mettre fin à l'étalonnage.

6.3.3 Étalonnage procédé

Avec les électrodes de pH, un étalonnage procédé correspond à un étalonnage du décalage.

Appuyez sur le bouton Cal pour lancer l'étalonnage.

Prélevez un échantillon et appuyez sur le bouton ← pour mémoriser la mesure actuelle. Pour indiquer que le d' est en cours, un « P » clignote dans la fenêtre d'accueil et l'écran du menu si la voie concernée est sélectionnée dans la fenêtre.

Une fois le pH de l'échantillon déterminé, appuyez de nouveau sur l'icône de l'étalonnage dans l'écran de menu.

Saisissez la valeur du pH de l'échantillon. Appuyez sur le bouton Suivant pour lancer le calcul des résultats de l'étalonnage.

L'écran indique la valeur de la pente et du décalage comme résultats de l'étalonnage.

Pour les sondes ISM (numériques), sélectionnez Ajuster, Calibrer ou Annuler pour terminer l'étalonnage. Pour les sondes analogiques, sélectionnez Enr. Cal ou Annuler pour mettre fin à l'étalonnage.

6.4 Étalonnage redox des électrodes de pH

CHEMIN D'ACCÈS : CAL.\Calibrer capteur

Pour les électrodes de pH avec masse liquide basées sur la technologie ISM, le transmetteur M400 vous permet d'effectuer un étalonnage redox en plus de l'étalonnage du pH.

Remarque : Si vous choisissez l'étalonnage redox, les paramètres définis pour le pH ne seront pas pris en compte. Pour les électrodes de pH, le transmetteur M400 permet de réaliser un étalonnage en 1 point ou un étalonnage procédé pour le redox.

Vous pouvez accéder aux menus suivants :

Unité : sélectionnez Redox en appuyant sur le champ correspondant.
Options : sélectionnez la stabilité souhaitée : « Manuel, Bas, Moyen, Strict ».
Méthode : l'étalonnage en 1 point ou l'étalonnage procédé s'affiche.

Appuyez sur le bouton Cal pour lancer l'étalonnage.

Saisissez la valeur du premier point d'étalonnage (**Point 1**). Si vous sélectionnez l'étalonnage procédé, passez à la touche suivante.

Appuyez sur le bouton Suivant pour lancer le calcul des résultats de l'étalonnage.

L'écran indique la valeur de la pente et du décalage comme résultats de l'étalonnage.

Pour les sondes ISM (numériques), sélectionnez Ajuster, Calibrer ou Annuler pour terminer l'étalonnage. Pour les sondes analogiques, sélectionnez Enr. Cal ou Annuler pour mettre fin à l'étalonnage.

6.5 Étalonnage de sondes à oxygène ampérométriques

CHEMIN D'ACCÈS : CAL.\Calibrer capteur

Le M400 permet de réaliser un étalonnage en 1 point ou un étalonnage procédé des sondes à oxygène ampérométriques.

Remarque : Avant d'exécuter l'étalonnage à l'air, pour une précision optimale, saisissez la pression barométrique et l'humidité relative, comme indiqué dans Chapitre 7.1.3.3 « Paramètres de mesure de l'oxygène basés sur des sondes ampérométriques », à la page 56.

Vous pouvez accéder aux menus suivants :

Unité : vous avez le choix entre plusieurs unités pour l'oxygène dissous.

- **Méthode :** sélectionnez la procédure d'étalonnage souhaitée (étalonnage en 1 point ou procédé).
- **Options :** si vous avez choisi la méthode en 1 point, il est possible de sélectionner la pression d'étalonnage, l'humidité relative et – pour l'étalonnage de la pente – le mode de stabilité du signal de la sonde pendant l'étalonnage. Pour la méthode « Procédé », vous pouvez modifier la pression du procédé, la pression de l'étalonnage et le paramètre « Pression Cal/Proc ». Consultez également le Chapitre 7.1.3.3 « Paramètres de mesure de l'oxygène basés sur des sondes ampérométriques », à la page 56. Les modifications sont valables jusqu'à ce que vous quittiez le mode d'étalonnage. Ensuite, les valeurs définies dans le menu de configuration sont de nouveau valables.

6.5.1 Étalonnage en un point

Un étalonnage en 1 point des sondes à oxygène correspond toujours à un étalonnage de la pente en 1 point (autrement dit à l'air) ou un étalonnage zéro (décalage). Un étalonnage de la pente en 1 point est effectué dans l'air et un étalonnage du décalage en 1 point est réalisé à 0 ppb d'oxygène. L'étalonnage en 1 point zéro oxygène dissous est possible, mais normalement pas recommandé, car il est extrêmement difficile d'atteindre un étal zéro oxygène. L'étalonnage zéro point est recommandé uniquement si l'on a besoin d'un degré élevé de précision à des concentrations d'oxygène faibles (inférieures à 5 % de l'air).

Choisissez un étalonnage de la pente ou du décalage en appuyant sur le champ correspondant.

Appuyez sur le bouton Cal pour lancer l'étalonnage.

Remarque : Si les tensions de polarisation pour le mode de mesure et le mode d'étalonnage sont différentes, le transmetteur attend 120 secondes avant de commencer l'étalonnage. Dans ce cas, le transmetteur continuera également de fonctionner pendant 120 secondes après la fin de l'étalonnage, jusqu'à ce qu'il passe en mode Maintien, avant de revenir au mode de mesure.

Placez la sonde dans l'air ou dans le gaz d'étalonnage, puis appuyez sur le bouton Suivant.

Saisissez la valeur du point d'étalonnage (Point 1).

Le M400 contrôle la stabilité du signal de mesure et agit dès que le signal est suffisamment stable.

Remarque : Si **l'option** Stabilité est définie sur Manuel, appuyez sur Suivant une fois que le signal de mesure est suffisamment stable pour continuer l'étalonnage.

Remarque : Pour l'étalonnage du décalage, le mode Auto n'est pas disponible. Si vous avez sélectionné le mode Auto et que par la suite le mode passe d'étalonnage de la pente à étalonnage du décalage, le transmetteur réalisera l'étalonnage en mode Manuel.

CAL Calibrate Sensor Chan CHAN_1 Ox Ni Unit % air Method 1: Point Stope Cytoms Verify Cal

42

Le transmetteur affiche la valeur pour la pente et pour le décalage comme résultat de l'étalonnage.

Pour les sondes ISM (numériques), sélectionnez Ajuster, Calibrer ou Annuler pour terminer l'étalonnage. Pour les sondes analogiques, sélectionnez Enr. Cal ou Annuler pour mettre fin à l'étalonnage.

6.5.2 Étalonnage procédé

Un étalonnage procédé des sondes à oxygène correspond à un étalonnage de la pente ou du décalage.

Choisissez un étalonnage de la pente ou du décalage en appuyant sur le champ correspondant.

Appuyez sur « Cal » pour lancer l'étalonnage.

Prélevez un échantillon et appuyez sur le bouton ← pour mémoriser la mesure actuelle. Pour indiquer que le procédé d'étalonnage est en cours, un « P » clignote dans la fenêtre d'accueil et l'écran de menu si la voie concernée est sélectionnée dans la fenêtre.

Après avoir déterminé la concentration d'oxygène de l'échantillon, appuyez à nouveau sur l'icône de l'étalonnage dans l'écran de menu.

Saisissez la concentration d'oxygène de l'échantillon. Appuyez sur le bouton Suivant pour lancer le calcul des résultats de l'étalonnage.

L'écran indique la valeur de la pente et du décalage comme résultats de l'étalonnage. Pour les sondes ISM (numériques), sélectionnez Ajuster, Calibrer ou Annuler pour terminer l'étalonnage. Pour les sondes analogiques, sélectionnez Enr. Cal ou Annuler pour mettre fin à l'étalonnage.

6.6 Étalonnage de sondes à oxygène optiques

CHEMIN D'ACCÈS : 🗥 CAL. \Calibrer capteur

L'étalonnage de l'oxygène pour les sondes optiques peut être effectué en 2 points, sur le procédé, voire également en 1 point, en fonction du modèle de sonde connecté au transmetteur.

Remarque : Avant d'exécuter l'étalonnage à l'air, pour une précision optimale, saisissez la pression barométrique et l'humidité relative, comme indiqué dans Chapitre 7.1.3.4 « Paramètres de mesure de l'oxygène basés sur des sondes optiques », à la page 57.

Vous pouvez accéder aux menus suivants :

- **Unité :** Vous avez le choix entre plusieurs unités. Les unités sont affichées pendant l'étalonnage.
- Méthode : Sélectionnez la procédure d'étalonnage souhaitée (1 point, 2 points ou procédé).
 Options : Si vous avez choisi la méthode en 1-point, vous pouvez choisir la pression d'étalonnage, l'humidité relative et le mode de stabilité pour le signal de la sonde pendant l'étalonnage. Pour la méthode « Procédé », vous pouvez modifier la pression du procédé, la pression de l'étalonnage, le paramètre « Pression Cal/ Proc » et le mode de l'étalonnage procédé. Consultez également le Chapitre 7.1.3.4 « Paramètres de mesure de l'oxygène basés sur des sondes optiques », à la page 57. Les modifications sont valables jusqu'à ce que vous quittiez le mode d'étalonnage. Ensuite, les valeurs définies dans le menu de configuration sont de nouveau valables.

ি CAL \ Calibrate S CHAN 1 Or off

.__

Chan

6.6.1 Étalonnage en un point

Généralement, un étalonnage en 1 point est effectué dans l'air. Il est néanmoins possible d'utiliser d'autres gaz ou solutions d'étalonnage.

L'étalonnage d'une sonde optique est toujours un étalonnage de la phase du signal de fluorescence en direction de la référence interne. Pendant un étalonnage en 1 point, la phase à ce point est mesurée puis extrapolée sur la plage de mesure.

Appuyez sur le bouton Cal pour lancer l'étalonnage.

Placez la sonde dans l'air ou dans le gaz d'étalonnage, puis appuyez sur le bouton Suivant.

Saisissez la valeur du point d'étalonnage (Point 1).

Le M400 contrôle la stabilité du signal de mesure et agit dès que le signal est suffisamment stable.

Remaraue : Si l'option Stabilité est définie sur Manuel, appuvez sur Suivant une fois aue le sianal de mesure est suffisamment stable pour continuer l'étalonnage.

Le transmetteur présente les valeurs pour la phase de la sonde à 100 % d'air (P100) et à 0 % d'air (PO) comme le résultat de l'étalonnage.

Appuyez sur le bouton Ajuster pour procéder à l'étalonnage et mémoriser les valeurs calculées dans la sonde. Appuyez sur le bouton Calibrer pour mémoriser les valeurs calculées dans la sonde. L'étalonnage n'est pas réalisé. Appuyez sur le bouton Annuler pour mettre fin à l'étalonnage.

Si vous sélectionnez « Ajuster » ou « Calibrer », l'écran affiche le message « Cal. enregistrée ! ». Dans tous les cas, le message « Réinstaller le capteur » s'affiche.

6.6.2 Étalonnage en deux points

L'étalonnage d'une sonde optique est toujours un étalonnage de la phase du signal de fluorescence en direction de la référence interne. Un étalonnage en 2 points est une combinaison d'un premier étalonnage à l'air (100 %), au cours duquel une nouvelle phase P100 est mesurée, et d'un étalonnage à l'azote (0 %) au cours duquel une nouvelle phase P0 est mesurée. Cette routine d'étalonnage donne la courbe d'étalonnage la plus précise sur toute la plage de mesure.

Appuyez sur le bouton Cal pour lancer l'étalonnage.

Placez la sonde dans l'air ou dans le gaz d'étalonnage, puis appuyez sur le bouton Suivant.

Saisissez la valeur du premier point d'étalonnage (Point 1).

Le M400 contrôle la stabilité du signal de mesure et agit dès que le signal est suffisamment stable.

Remarque : Si l'option Stabilité est définie sur Manuel, appuyez sur Suivant une fois que le signal de mesure est suffisamment stable pour continuer l'étalonnage.

Le transmetteur vous invite à changer de gaz.

Appuyez sur le bouton Suivant pour continuer l'étalonnage.

Le M400 contrôle la stabilité du signal de mesure et agit dès que le signal est suffisamment stable.

Remarque : Si **l'option** Stabilité est définie sur Manuel, appuyez sur Suivant une fois que le signal de mesure est suffisamment stable pour continuer l'étalonnage.

Le transmetteur présente les valeurs pour la phase de la sonde à 100 % d'air (P100) et à 0 % d'air (P0) comme le résultat de l'étalonnage.

Appuyez sur le bouton Ajuster pour procéder à l'étalonnage et mémoriser les valeurs calculées dans la sonde. Appuyez sur le bouton Calibrer pour mémoriser les valeurs calculées dans la sonde. L'étalonnage n'est pas réalisé. Appuyez sur le bouton Annuler pour mettre fin à l'étalonnage.

Si vous sélectionnez « Ajuster » ou « Calibrer », l'écran affiche le message « Cal. enregistrée ! ». Dans tous les cas, le message « Réinstaller le capteur » s'affiche.

6.6.3 Étalonnage procédé

Appuyez sur le bouton Cal pour lancer l'étalonnage.

Prélevez un échantillon et appuyez sur le bouton ← pour mémoriser la mesure actuelle. Pour indiquer que le procédé d'étalonnage est en cours, un « P » clignote dans la fenêtre d'accueil et l'écran de menu si la voie concernée est sélectionnée dans la fenêtre.

Après avoir déterminé la concentration d'oxygène de l'échantillon, appuyez sur l'icône de l'étalonnage dans l'écran de menu.

Saisissez la concentration d'oxygène de l'échantillon. Appuyez sur le bouton Suivant pour lancer le calcul des résultats de l'étalonnage.

L'écran présente désormais les valeurs pour la phase de la sonde à 100 % d'air (P100) et à 0 % d'air (P0).

Appuyez sur le bouton Ajuster pour procéder à l'étalonnage et mémoriser les valeurs calculées dans la sonde. Appuyez sur le bouton Calibrer pour mémoriser les valeurs calculées dans la sonde. L'étalonnage n'est pas réalisé. Appuyez sur le bouton Annuler pour mettre fin à l'étalonnage.

Remarque : Si vous avez sélectionné Mis à l'échelle pour l'étalonnage procédé (voir Chapitre 7.1.3.4 « Paramètres de mesure de l'oxygène basés sur des sondes optiques », à la page 57), les valeurs d'étalonnage ne sont pas enregistrées dans l'historique d'étalonnage.

Si vous sélectionnez « Ajuster » ou « Calibrer », l'écran affiche le message « Cal. enregistrée ! ».

6.7 Étalonnage des sondes de CO₂ dissous

Pour les sondes de CO₂, le transmetteur M400 propose un étalonnage en 1 point, en 2 points ou un étalonnage procédé. Pour l'étalonnage en 1 point ou en 2 points, il est possible d'utiliser la solution avec un pH = 7,00 et/ou un pH = 9,21 du tampon standard Mettler – 9 (voir le chapitre 7.1.3.5 « Paramètres du dioxyde de carbone dissous » à la page 58) ou de saisir manuellement une valeur pour le tampon.

CAL \ Calibrate Sensor					
Chan	CHAN_1 CO	la la			
Unit	рН				
Method	1-Point]			
Options	Options				
Verify			Cal	П	
V		5	L . L	٦	

Vous pouvez accéder aux menus suivants :

Unité : Vous pouvez choisir entre plusieurs unités pour la pression partielle et le dioxyde de carbone dissous.

Méthode : Sélectionnez la procédure d'étalonnage souhaitée (1 point, 2 points ou procédé).

Options : Vous pouvez sélectionner le tampon utilisé pour l'étalonnage, ainsi que la stabilité requise pour le signal de la sonde pendant l'étalonnage (voir le chapitre 7.1.3.5 « Paramètres du dioxyde de carbone dissous » à la page 58). Les modifications sont valables jusqu'à ce que vous quittiez le mode d'étalonnage. Ensuite, les valeurs définies dans le menu de configuration sont de nouveau valables.

6.7.1 Étalonnage en un point

Avec les sondes de CO₂, un étalonnage en 1 point est toujours effectué sous forme d'étalonnage du décalage.

Appuyez sur le bouton Cal pour lancer l'étalonnage.

Placez l'électrode dans la solution tampon et appuyez sur Suivant.

L'écran indique le tampon pris en compte par le transmetteur (Point 1), ainsi que la valeur mesurée.

Le M400 contrôle la stabilité du signal de mesure et agit dès que le signal est suffisamment stable.

Remarque : Si **l'option** Stabilité est définie sur Manuel, appuyez sur Suivant une fois que le signal de mesure est suffisamment stable pour continuer l'étalonnage.

Le transmetteur affiche la valeur pour la pente et pour le décalage comme résultat de l'étalonnage.

Appuyez sur le bouton Ajuster (ajuster) pour procéder à l'étalonnage et mémoriser les valeurs calculées dans la sonde. Appuyez sur le bouton Calibrer (étalonner) pour mémoriser les valeurs calculées dans la sonde. L'étalonnage n'est pas réalisé. Appuyez sur le bouton Annuler (annuler) pour mettre fin à l'étalonnage.

Si vous sélectionnez « Ajuster » ou « Calibrer », l'écran affiche le message « Cal. enregistrée ! ». Dans tous les cas, le message « Réinstaller le capteur » s'affiche.

6.7.2 Étalonnage en deux points

Avec les sondes de CO₂, un étalonnage en 2 points correspond toujours à un étalonnage de la pente et du décalage.

Appuyez sur le bouton Cal pour lancer l'étalonnage.

Placez l'électrode dans la solution tampon 1 et appuyez sur Suivant.

L'écran indique le tampon pris en compte par le transmetteur **Point 1** ainsi que la valeur mesurée.

Le M400 contrôle la stabilité du signal de mesure et agit dès que le signal est suffisamment stable.

Remarque : Si **l'option** Stabilité est définie sur Manuel, appuyez sur Suivant une fois que le signal de mesure est suffisamment stable pour continuer l'étalonnage.

Le transmetteur vous invite à placer l'électrode dans la deuxième solution tampon.

Appuyez sur le bouton Suivant pour continuer l'étalonnage.

 Chan
 CHAN_1
 COs

 Urat
 pH

 Method
 1-Point

 Options
 Options

Chan CHAN_1 00:
Unit pH
Method 2-Point
Options
Options
Cal

L'écran indique le tampon pris en compte par le transmetteur (**Point 2**), ainsi que la valeur mesurée.

Le M400 contrôle la stabilité du signal de mesure et agit dès que le signal est suffisamment stable.

Remarque : Si l'option Stabilité est définie sur Manuel, appuyez sur Suivant une fois que le signal de mesure est suffisamment stable pour continuer l'étalonnage.

Le transmetteur affiche la valeur pour la pente et pour le décalage comme résultat de l'étalonnage.

Appuyez sur le bouton Ajuster pour procéder à l'étalonnage et mémoriser les valeurs calculées dans la sonde. Appuyez sur le bouton Calibrer pour mémoriser les valeurs calculées dans la sonde. L'étalonnage n'est pas réalisé. Appuyez sur le bouton Annuler pour mettre fin à l'étalonnage.

Si vous sélectionnez « Ajuster » ou « Calibrer », l'écran affiche le message « Cal. enregistrée ! ». Dans tous les cas, le message « Réinstaller le capteur » s'affiche.

6.7.3 Étalonnage procédé

Avec les sondes de CO₂, un étalonnage procédé correspond à un étalonnage du décalage.

Appuyez sur le bouton Cal pour lancer l'étalonnage.

Prélevez un échantillon et appuyez sur le bouton ← pour mémoriser la mesure actuelle. Pour indiquer que le d'est en cours, un « P » clignote dans la fenêtre d'accueil et l'écran du menu si la voie concernée est sélectionnée dans la fenêtre.

Après avoir déterminé la valeur correspondante de l'échantillon, appuyez à nouveau sur l'icône de l'étalonnage dans l'écran de menu.

Saisissez la valeur de l'échantillon. Appuyez sur le bouton Suivant pour lancer le calcul des résultats de l'étalonnage.

L'écran indique la valeur de la pente et du décalage comme résultats de l'étalonnage.

Appuyez sur le bouton Ajuster pour procéder à l'étalonnage et mémoriser les valeurs calculées dans la sonde. Appuyez sur le bouton Calibrer pour mémoriser les valeurs calculées dans la sonde. L'étalonnage n'est pas réalisé. Appuyez sur le bouton Annuler pour mettre fin à l'étalonnage. Si vous sélectionnez « Ajuster » ou « Calibrer », l'écran affiche le message « Cal. enregistrée ! ».

6.8 Vérification de la sonde

Accédez au menu Calibrer capteur (voir le chapitre 6.1 « Étalonnage de la sonde » à la page 35 ; PATH : MCAL. Calibrer capteur) et choisissez la voie souhaitée pour la vérification.

Appuyez sur le bouton Vérifier pour lancer la vérification.

Le signal mesuré pour la mesure principale et secondaire est exprimé dans les unités de base (principalement électriques). Les facteurs d'étalonnage du transmetteur sont utilisés lors du calcul de ces valeurs.

Appuyez sur le bouton ← pour revenir au menu d'étalonnage.

46

6.9 Étalonnage du transmetteur (sondes analogiques uniquement)

Bien qu'en général il ne soit pas nécessaire de procéder au réétalonnage du transmetteur, sauf si le menu de vérification indique un fonctionnement non conforme du transmetteur dû à des conditions extrêmes, il peut s'avérer nécessaire de procéder à une vérification ou à un réétalonnage périodique pour satisfaire aux exigences de qualité. L'étalonnage de la fréquence nécessite un étalonnage en 2 points. Il est recommandé que le point 1 soit situé au niveau du seuil minimal de la plage de fréquence et le point 2 au niveau du seuil maximal.

Appuyez sur le bouton Cal.

Accès au menu Calibrer transm.

 合 ICAL	
Calibrate Sensor	•
Calibrate Meter	•
Calibrate Analog Outputs	•
Calibrate Analog Inputs	•
Maintenance	•
	L -

6.9.1 Resistance (sondes analogiques uniquement)

Le transmetteur est doté de cinq (5) plages de mesure internes. Chaque plage de résistance et de température (consistant chacune en un étalonnage en 2 points) est étalonnée séparément.

Le tableau ci-dessous indique les valeurs de résistance de toutes les plages d'étalonnage.

Plage	Point 1	Point 2	Point 4
Résistivité 1	1,0 Mohm	10,0 Mohms	_
Résistivité 2	100,0 Kohms	1,0 Mohm	_
Résistivité 3	10,0 Kohms	100,0 Kohms	_
Résistivité 4	1,0 Kohms	10,0 Kohms	_
Résistivité 5	100 ohms	1,0 Kohms	_
Température	1 000 ohms	3,0 Kohms	66 Kohms

Appuyez sur le bouton Cal.

Appuyez sur le bouton Suivant pour lancer le processus d'étalonnage.

Appuyez sur la deuxième ligne du champ de saisie pour sélectionner Resistance.

ش	CAL \Calibrate Meter	
Chao	Ch1 Resistance5	н
	Connect source 1 to inp and then press "P	ut terminals Vext".
V		
Cano	el	Next

Connectez la source 1 aux bornes d'entrée. Chaque plage de résistance requiert un étalonnage en 2 points.

Appuyez sur le bouton Suivant pour continuer.

Appuyez sur le champ Point 1 pour saisir la valeur du point d'étalonnage. Le transmetteur M400 affiche un clavier qui vous permet de modifier les valeurs. Appuyez sur le bouton 4 pour que le transmetteur reprenne la valeur.

La deuxième ligne indique la valeur actuelle.

Connectez la source 2 aux bornes d'entrée.

Appuyez sur le bouton Suivant pour continuer.

<u></u> 10	AL۱	Calib	rate N	leter			
Chan	Ch1	Ch1 Resistance5					
	Poi	112	1.0	00	kΩ		
			100	.00	Ω	1	
						1	
	\vdash						
Cano	el	E	dit	Ba	ck	Ne	xt

Appuyez sur le champ Point 2 pour saisir la valeur du point d'étalonnage. Le transmetteur M400 affiche un clavier qui vous permet de modifier les valeurs. Appuyez sur le bouton Éditer pour accepter la valeur.

La deuxième ligne indique la valeur actuelle.

<u>6</u> 10	1CAL1Calibrate Meter						
Chan	Ch1 Res	istance5		н			
	Slope	1	2300				
	Offset	0	.1230				
Cano	el S	aveCal	Back				

L'écran indique la valeur de la pente et du décalage comme résultats de l'étalonnage.

Sélectionnez « Enr. Cal » ou « Annuler » pour terminer l'étalonnage.

Utilisez la flèche de retour pour revenir à l'étape précédente de la procédure d'étalonnage.

ALICALICalibrate Meter CHAN_1 pH/ORP

Temperature

Cal

Chan

6.9.2 Température (pour les sondes analogiques)

L'étalonnage de la température s'effectue en trois points. Le tableau (Chapitre 6.9.1 « Resistance (sondes analogiques uniquement) », à la page 47) indique les valeurs de résistance de ces trois points.

Appuyez sur le champ dans la deuxième ligne pour sélectionner la température.

Appuyez sur le bouton Cal.

<u>ا</u> ش	AL\Calibrate Meter	
Chan	Ch1 Temperature	
	Connect source 1 to input terminals and then press "Next".	
Canc	el	Next

Connectez la source 1 aux bornes d'entrée. Appuyez sur le bouton Suivant pour lancer le processus d'étalonnage.

Appuyez sur le champ Point 1 pour saisir la valeur du point d'étalonnage. Le transmetteur M400 affiche un clavier qui vous permet de modifier les valeurs. Appuyez sur le bouton Éditer pour que le transmetteur reprenne la valeur.

La deuxième ligne indique la valeur actuelle.

៍ណិរេ	AL\C	alibrate	Me	ter		
Chan	Ch1 Te	mperature				
	Conr	ect source and the	e 2 to i pres	input termin s "Next".	als	
V						
Cano	el			Back	N	ext

Connectez la source 2 aux bornes d'entrée.

Appuyez sur le bouton Suivant pour continuer.

Répétez la procédure d'étalonnage pour les points 2 et 3 comme pour le point 1.

tini VC	AL I	Calibrate N	leter		
Chan	Ch1	Temperature		н	
	A	0.	0000		
	в	0	.1230		
	с	0.	4560		
	\vdash			_	
Cano	el	SaveCal	Back		

L'écran indique le résultat de l'étalonnage.

Sélectionnez Enr. Cal ou Annuler pour mettre fin à l'étalonnage. Voir Chapitre 6.1.2 « Fin de l'étalonnage de la sonde », à la page 36.

Utilisez la flèche de retour pour revenir à l'étape précédente de la procédure d'étalonnage.

6.9.3 Tension (sondes analogiques uniquement)

L'étalonnage de la tension s'effectue sous forme d'étalonnage en 2 points.

Appuyez sur le champ dans la deuxième ligne pour sélectionner la température.

Appuyez sur le bouton Cal.

Chi VCALVOIlorate Mater
Chan
Chi Valage
H
Connect source 1 to input terminals
and then press Teor?
V
Cannel
Next

Connectez la source 1 aux bornes d'entrée. Appuyez sur le bouton Suivant pour lancer le processus d'étalonnage.

<u>面</u> 10	ALI	Calibrate N	leter	
Chan	Ch1 \	votage		
C.I.M.	Poir	*1 -1.5 -1.5	000 V 000 mV	
Cano	el	Edit	Back	Next

Appuyez sur le champ Point 1 pour saisir la valeur du point d'étalonnage. Le transmetteur M400 affiche un clavier qui vous permet de modifier les valeurs. Appuyez sur le bouton 4 pour accepter la valeur.

La deuxième ligne indique la valeur actuelle.

回 IC	AL \ Calibrate	Meter	
Chan	Ch1 Voltage		н
	Connect source	2 to input termina	als
	and then	oress "Next".	
			_
Cano	4	Back	Nevt
Cano	3	Dack	NOAL

Chinologie H Stope 1.2300 Offiet 0.1230 V Cancel SayeCal Back Connectez la source 2 aux bornes d'entrée.

Appuyez sur le bouton Suivant pour continuer.

Répétez la procédure d'étalonnage pour les points 2 et 3 comme pour le point 1.

L'écran indique le résultat de l'étalonnage.

Pour les sondes analogiques, sélectionnez Enr. Cal ou Annuler pour mettre fin à l'étalonnage. Pour en savoir plus, consulter le Chapitre 6.1.2 « Fin de l'étalonnage de la sonde », à la page 36.

Utilisez la flèche de retour pour revenir à l'étape précédente de la procédure d'étalonnage.

6.9.4 Courant (sondes analogiques uniquement)

L'étalonnage du courant s'effectue sous forme d'étalonnage en 2 points.

Suivez les instructions de Chapitre 6.9.3 « Tension (sondes analogiques uniquement) », à la page 50 pour procéder à l'étalonnage du courant.

6.9.5 Rg (sondes analogiques uniquement)

L'étalonnage Diagnostic Rg s'effectue sous forme d'étalonnage en 2 points.

Suivez les instructions de Chapitre 6.9.3 « Tension (sondes analogiques uniquement) », à la page 50 pour procéder à l'étalonnage du courant.

<u>ان ان ان ا</u>	L \ Calibrate	Meter	
Chan	CHAN_1	pH/ORP	
	Voltage	,	
Verif	ý	[Cal
		t l	L -

6.9.6 **Rr (sondes analogiques uniquement)**

L'étalonnage Diagnostic Rr s'effectue sous forme d'étalonnage en 2 points.

Suivez les instructions de Chapitre 6.9.3 « Tension (sondes analogiques uniquement) », à la page 50 pour procéder à l'étalonnage du courant.

6.10 Étalonnage des sorties analogiques

CHEMIN D'ACCÈS : M\CAL.\Calibrer sorties ana.

Chaque sortie analogique peut être étalonnée à 4 et à 20 mA. Sélectionnez le signal de sortie souhaité pour l'étalonnage en appuyant sur le bouton #1 pour le signal de sortie 1, le bouton #2 pour le signal de sortie 2, etc.

Connectez un milliampèremètre précis aux bornes de sortie analogique, puis ajustez le nombre à 5 chiffres affiché à l'écran pour régler la sortie sur 4,00 mA. Répétez l'opération pour 20,00 mA.

À mesure qu'on augmente/diminue le nombre à 5 chiffres, le courant de sortie augmente/ diminue. Appuyez de manière prolongée sur + ou – pour changer rapidement de chiffre.

Une fois ces valeurs ajustées, appuyez sur le bouton Suivant pour lancer le calcul des résultats de l'étalonnage.

L'écran indique la valeur de la pente et du point zéro comme résultats de l'étalonnage du signal de sortie.

Sélectionnez Enr. Cal ou Annuler pour mettre fin à l'étalonnage. Voir Chapitre 6.1.2 « Fin de l'étalonnage de la sonde », à la page 36.

6.11 Étalonnage des entrées analogiques

CHEMIN D'ACCÈS : 🗥 CAL. Calibrer entrées ana.

L'étalonnage de l'entrée analogique peut se faire à 4 mA et à 20 mA en appuyant sur le bouton #1.

Connectez un signal de 4 mA aux bornes d'entrée analogique. Appuyez sur le bouton Suivant.

Saisissez la valeur adéquate pour le signal d'entrée (Point 1).

Appuyez sur Suivant pour poursuivre l'étalonnage.

Connectez un signal de 20 mA aux bornes d'entrée analogique. Appuyez sur le bouton Suivant.

Saisissez la valeur adéquate pour le signal d'entrée (Point 2).

Appuyez sur Suivant pour poursuivre l'étalonnage.

L'écran indique la valeur de la pente et du point zéro comme résultats de l'étalonnage du signal d'entrée.

Si vous sélectionnez Annuler, les valeurs saisies seront supprimées. Si vous appuyez sur Enr. Cal, les valeurs saisies seront utilisées.

Si vous sélectionnez Enr. Cal, le message « Cal. enregistrée ! » s'affiche.

6.12 Maintenance

CHEMIN D'ACCÈS : CAL.\Maintenance

Les différentes voies du transmetteur M400 peuvent être activées ou désactivées manuellement en mode Maintien. Vous pouvez également lancer ou arrêter manuellement un cycle de nettoyage.

Appuyez sur le bouton Start en face de **HOLD manuel** pour activer le mode Maintien sur la voie sélectionnée. Pour désactiver le mode Maintien de nouveau, appuyez sur le bouton Stop, qui apparaît maintenant à la place du bouton Start.

Appuyez sur le bouton Start en face de **Nett. manuel** pour changer de mode et lancer un cycle de nettoyage. Pour revenir en mode OC, appuyez sur le bouton Stop, qui apparaît maintenant à la place du bouton Start.

Si le collecteur ouvert n'est pas configuré dans CONFIG.\Nettoyage, l'alarme « OC non programmés, nettoyage impossible » s'affiche.

7 Configuration

Pour la structure du menu, reportez-vous à Chapitre 3.2 « Structure du menu », à la page 13.

7.1 Mesure

7.1.1 Configuration des voies

CHEMIN D'ACCÈS : CONFIG.\Mesure\Config. voie

Appuyez sur le champ de saisie à droite de la ligne de réglage du **transmetteur**. Vous pouvez choisir un paramètre pour la voie correspondante en appuyant sur le champ correspondant.

Lorsque Auto est sélectionné, le transmetteur M400 reconnaît automatiquement le type de sonde ISM. La voie peut également être définie sur un certain paramètre de mesure, selon le type de transmetteur.

7.1.2 Transmetteur MIX (analogique et ISM) et ISM

	M400 2(X)H Type2		M400 2(X)H Type	
	Analogique	ISM	Analogique	ISM
pH/redox	•	•	•	•
pH/pNa	_	•	_	•
Conductivité à 2 électrodes	•	_	•	_
Conductivité à 4 électrodes	•	•	•	•
Oxygène amp. ppm/ppb/trace	•/•/•	•/•/•	•/•/•	●/●/●
Oxygène amp. phase gazeuse ppm/ppb/trace	_	_	●/●/●	●/●/●
Oxygène opt. ppm/ppb	•/•	•/•	•/•	•/•
Oxygène opt. phase gazeuse ppm	_	_	•	•
CO ₂ dissous (pharma)	_	•	_	٠

Sélectionnez le type de sonde (analogique ou ISM).

Les types de mésure disponibles dépendent du type de transmetteur.

Lors du raccordement d'une sonde ISM, le transmetteur reconnaît automatiquement (paramètre = Auto) le type de sonde. Vous pouvez également définir un certain paramètre de mesure (par ex. « pH »), en fonction de votre type de transmetteur.

Saisissez un nom (6 caractères maximum) pour la voie en appuyant sur le champ dans la ligne **Description**. Le nom de la voie sera toujours affiché. Le nom sera également affiché sur la fenêtre d'accueil et l'écran de menu.

Sélectionnez l'une des mesures **M1 à M4** (par ex. le bouton gauche pour définir la mesure M1 et le bouton droit pour définir la mesure M2 sur la ligne correspondante).

Sélectionnez le paramètre à afficher pour Mesure dans le champ de saisie.

Remarque : En dehors des paramètres pH, O_2 , T et autres, il est également possible de relier les valeurs ISM, DLI, TTM ¹⁾ et ACT aux mesures.

Choisissez le **facteur de plage** de la mesure. Seuls certains paramètres permettent de modifier la plage.

Le menu **Résolution** permet de régler la résolution des mesures. Ce réglage ne garantit pas la précision de la mesure. Les réglages possibles sont les suivants : 1 ; 0,1 ; 0,01 ; 0,001.

Sélectionnez le menu **Filtre**. Vous pouvez sélectionner la méthode de calcul de la moyenne (filtre bruit) de la mesure. Les options disponibles sont : Aucune, Basse, Moyenne, Haute, Spéciale (option par défaut) et Personnalisée.

Option	Description
Aucune	Ni moyenne, ni filtre
Basse	Équivaut à une moyenne mobile à 3 points
Moyenne	Équivaut à une moyenne mobile à 6 points
Haute	Équivaut à une moyenne mobile à 10 points
Spéciale	Moyenne en fonction du changement de signal (normalement Moyenne haute, mais on utilisera Moyenne basse en cas de modifications importantes du signal d'entrée)
Personnalisée	Sélection d'une moyenne mobile de 1 à 15 points

1) La disponibilité du TTM dépend de la version du progiciel ISM

7.1.3 Définition des paramètres

CHEMIN D'ACCÈS : MCONFIG.\Mesure\Paramétrage

Les paramètres de mesure et d'étalonnage peuvent être définis pour les paramètres de pH, de conductivité et d'oxygène.

 Channel
 CHAN_1
 pH/CRP

 Buffer Tab
 MT-9

 Stability
 Medium

 P
 pH
 8:00

 STC
 pH/rC
 0:00

En fonction de la voie sélectionnée et de la sonde affectée, différents paramètres de mesure et d'étalonnage sont affichés.

Lisez les explications suivantes pour en savoir plus sur les différents paramètres existants.

<u> </u>	Parameter S	etting	
Channel	CHAN_1	Cond4e	
Measure	M1	S/cm	
Compen.	Standard		
V		5	ц,

7.1.3.1 Paramètres de conductivité

Sélectionnez une mesure (M1-M4). Pour en savoir plus sur les mesures, voir voir le chapitre 7.1.1 « Configuration des voies » à la page 52.

Si la mesure sélectionnée peut être compensée par la température, vous pouvez sélectionner une méthode de compensation.

Remarque : Pendant l'étalonnage, il faut également sélectionner la méthode de compensation.

Appuyez sur Comp. pour sélectionner la méthode de compensation de la température souhaitée. Vous pouvez choisir « Aucune », « Standard », « Light 84 », « Std 75 °C », « Linéaire 25 °C », « Linéaire 20 °C », « Glycol5 », « Glycol1 », « Cation », « Alcool », « NH_3 » ou « $Nat H_2O$ ».

Avec « **Aucune** », la valeur de conductivité mesurée n'est pas compensée. La valeur non compensée sera affichée et traitée.

La compensation « **Standard** » comprend une compensation des effets de la pureté élevée non linéaire, ainsi que des impuretés des sels neutres traditionnels et est conforme aux normes ASTM D1125 et D5391.

La compensation **« Light 84 »** correspond aux résultats des recherches sur l'eau pure du Dr T.S. Light publiés en 1984. À n'employer que si votre établissement a établi des normes sur la base de ce travail.

L'option de compensation **« Std 75 °C »** est l'algorithme de compensation **standard** avec la référence de 75 °C. Cette compensation peut être privilégiée pour la mesure de l'eau ultrapure (UPW) à une température élevée (la résistivité de l'eau ultrapure compensée à 75 °C est 2,4818 Mohm-cm).

La compensation **« Linéaire 25 °C »** ajuste la lecture au moyen d'un coefficient ou facteur exprimé en %/°C » (écart par rapport à 25 °C). À n'utiliser que si la solution a un coefficient de température linéaire bien défini. La valeur usine par défaut est de 2,0 %/°C.

La compensation **« Linéaire 20 °C »** ajuste la lecture au moyen d'un coefficient ou facteur exprimé en %/°C » (écart par rapport à 20 °C). À n'utiliser que si la solution a un coefficient de température linéaire bien défini. La valeur usine par défaut est de 2,0 %/°C.

La compensation **« Glycol5 »** correspond aux caractéristiques thermiques de 50 % d'éthylène glycol dans de l'eau. Les mesures compensées basées sur cette solution peuvent dépasser 18 Mohm-cm.

La compensation **« Glycol1 »** correspond aux caractéristiques thermiques de l'éthylène glycol 100 %. Les mesures compensées peuvent largement dépasser 18 Mohm-cm.

La compensation **« Cation »** est utilisée dans des applications de l'industrie de l'énergie afin de mesurer l'échantillon après un échange cationique. Elle tient compte des effets de la température sur la dissociation de l'eau pure en présence d'acides.

La compensation **« Alcool »** correspond aux caractéristiques thermiques d'une solution contenant 75 % d'alcool isopropylique dans de l'eau pure. Les mesures compensées basées sur cette solution peuvent dépasser 18 Mohm-cm.

La compensation « NH_3 » est utilisée pour les applications du secteur de l'énergie pour la conductivité spécifique mesurée sur des échantillons grâce à un traitement avec de l'eau contenant de l'ammoniaque ou de l'ETA (éthanolamine). Elle tient compte des effets de la température sur la dissociation de l'eau pure en présence de ces bases. Compensation « $Nat H_2O$ » : comprend une compensation à 25 °C conformément à la norme EN 27888 pour l'eau naturelle.

Remarque : Si vous avez sélectionné le mode de compensation « Linéaire 25 °C » ou « Linéaire 20 °C », il est possible de modifier le coefficient d'ajustement de la valeur. Dans ce cas, un champ de saisie supplémentaire sera affiché.

Appuyez sur le champ correspondant à **Coef.** et ajustez le coefficient ou le facteur de compensation.

7.1.3.2 Paramètres de pH

الله المعامة الم			
Channel	CHAN_1	pH/ORP	
Buffer Tab	MT-9		
Stability pH	Medium	089	Manual
IP pH	8.00		
STC pH/*C	0.00		
		<u>t</u>	ц

Si une électrode de pH est connectée alors que le mode Auto a été choisi pendant la configuration des voies (voir le chapitre 7.1.1 « Configuration des voies » à la page 52), vous pouvez définir ou ajuster les paramètres Table tampons, Stabilité, IP, STC et Température calibrage, ainsi que l'unité de la pente et/ou du point zéro. Les mêmes paramètres seront affichés si le mode Auto n'est pas activé, mais que le pH/redox a été défini dans le cadre de la configuration des voies.

Sélectionnez le tampon via le paramètre Table tampons.

Pour la reconnaissance automatique du tampon lors de l'étalonnage, sélectionnez le jeu de solutions tampons utilisé : Mettler-9, Mettler-10, NIST Tech, NIST Std = JIS Std, HACH, CIBA, MERCK, WTW, JIS Z 8802 ou None. Voir Chapitre 15 « Tableaux de tampons », à la page 99 pour les valeurs des tampons. Si la fonction de tampon automatique n'est pas utilisée ou si les tampons disponibles diffèrent des tampons ci-dessus, sélectionnez Aucune.

Remarque : Pour tampon (pH/pNa) d'électrodes de pH à double membrane Na+ 3.9M.

Sélectionnez la **stabilité** requise pour le signal de mesure pendant la procédure d'étalonnage. Choisissez « Manuel » si vous voulez que l'utilisateur puisse déterminer si un signal est suffisamment stable pour procéder à l'étalonnage. Choisissez Basse, Moyenne ou Strict si vous préférez que le transmetteur contrôle automatiquement la stabilité du signal de la sonde pendant l'étalonnage.

Si le paramètre de stabilité est réglé sur Moyenne (par défaut), la déviation du signal doit être inférieure à 0,8 mV sur un intervalle de 20 secondes afin que le transmetteur le considère comme stable. L'étalonnage s'effectue à partir de la dernière mesure. Si le critère n'est pas satisfait dans les 300 secondes, l'étalonnage est interrompu et le message « Cal. non effectuée » s'affiche.

Ajustez le paramètre IP pH.

IP correspond à la valeur du point isothermique (par défaut = 7 000 pour la plupart des applications). En cas de compensation spécifique ou pour une valeur de tampon interne non standard, cette valeur peut être modifiée.

Ajustez la valeur du paramètre STC pH/°C.

STC représente le coefficient de température de la solution en pH/°C par rapport à la température définie. (Par défaut = 0,000 pH/°C pour la plupart des applications). Pour l'eau pure, il convient d'utiliser un réglage de -0,016 pH/°C. Pour des échantillons de centrale électrique à faible conductivité (proche de 9 pH), il faut utiliser une valeur de -0,033 pH/°C.

Si la valeur de STC est \neq 0,000 pH/°C, un champ supplémentaire s'affichera pour la température de référence.

La valeur pour **Temp. ref pH** indique la température de référence à laquelle correspond la compensation de température de la solution. La valeur affichée et le signal de sortie renvoient à cette température. La température de référence la plus courante est 25 °C.

<u> </u>	arameter Set	ting	
Channel	CHAN_1	Os hi	
Cal Pressure	1013.0	mbar	
ProcPress	Options		
ProcCaPress	ProcPress		
Stability	Auto		
V 4	<1/2>	t I	1

\sim	
\sim	

7.1.3.3 Paramètres de mesure de l'oxygène basés sur des sondes ampérométriques

Si une sonde à oxygène ampérométrique est connectée alors que le mode Auto a été choisi dans le cadre de la configuration des voies (voir le chapitre 7.1.1 « Configuration des voies » à la page 52), il est possible de définir ou d'ajuster les paramètres Pression Cal, Pression Proc, Pression Cal/Proc, Stabilité, Salinité, Humidité rel, Mes. u pol, Cal. u pol. Les mêmes paramètres s'afficheront si les paramètres O_2 hi ou O_2 lo ont été définis lors de la configuration des voies.

Saisissez la valeur pour la pression d'étalonnage via le paramètre Pression Cal.

Remarque : Pour modifier l'unité de la pression d'étalonnage, appuyez sur U sur le clavier affiché à l'écran.

Appuyez sur le bouton Option situé en face du paramètre **Pression Proc** et sélectionnez la méthode d'application de la pression du procédé en choisissant le **Type**.

Il est possible de saisir la pression du procédé appliquée en sélectionnant Éditer ou de la mesurer par le biais de l'entrée analogique du M400 en choisissant Ain_1.

Si l'option Éditer a été choisie, un champ de saisie s'affiche pour saisir la valeur manuellement. Si l'option « Ain_1 » a été sélectionnée, deux champs de saisie s'affichent pour saisir la valeur de départ (4 mA) et la valeur de fin (20 mA) de la plage pour le signal d'entrée de 4 à 20 mA.

La pression appliquée doit être définie pour l'algorithme d'étalonnage procédé. Sélectionnez la pression via le paramètre **Pression Cal/Proc**. Pour l'étalonnage procédé, la valeur de la pression de procédé (Pression Proc) ou de la pression d'étalonnage (Pression Cal) peut être utilisée.

Sélectionnez la **stabilité** requise pour le signal de mesure pendant la procédure d'étalonnage. Choisissez Manuel si vous voulez que l'utilisateur puisse déterminer si un signal est suffisamment stable pour procéder à l'étalonnage. Choisissez Auto si vous préférez que le transmetteur contrôle automatiquement la stabilité du signal de la sonde pendant l'étalonnage.

Des paramètres supplémentaires peuvent être définis en accédant à la page suivante du menu.

La salinité de la solution mesurée peut être modifiée.

Il est également possible de saisir l'humidité relative (bouton **Humidité rel.**) du gaz d'étalonnage. Les valeurs autorisées pour l'humidité relative sont comprises entre 0 % et 100 %. Lorsqu'aucune mesure d'humidité n'est disponible, utilisez 50 % (la valeur par défaut).

Vous pouvez modifier la tension de polarisation des sondes à oxygène ampérométriques dans le mode de mesure via le paramètre **Mes. u pol**. Pour des valeurs saisies entre 0 mV et -550 mV, la sonde connectée sera réglée sur une tension de polarisation de -500 mV. Si la valeur saisie est inférieure à -550 mV, la sonde connectée sera réglée sur une tension de polarisation de -674 mV.

Vous pouvez modifier la tension de polarisation des sondes à oxygène ampérométriques via le paramètre **Cal. u pol**. Pour des valeurs saisies entre 0 mV et -550 mV, la sonde connectée sera réglée sur une tension de polarisation de -500 mV. Si la valeur saisie est inférieure à -550 mV, la sonde connectée sera réglée sur une tension de polarisation de -674 mV.

Remarque : Au cours d'un étalonnage procédé, on utilisera la tension de polarisation Mes. u pol, définie pour le mode de mesure.

<u>ווייייי</u> (Pa	rameter Sett	ing
ánity	0.00	алка
Humidity	50	%
oMeas	-674	mV
olCal	-674	тV

Remarque : Dans le cadre d'un étalonnage en 1 point, le transmetteur envoie à la sonde la tension de polarisation valable pour l'étalonnage. Si les tensions de polarisation pour le mode de mesure et le mode d'étalonnage sont différentes, le transmetteur attend 120 secondes avant de commencer l'étalonnage. Dans ce cas, le transmetteur continuera également de fonctionner 120 secondes après la fin de l'étalonnage, jusqu'à ce qu'il passe en mode Maintien, avant de revenir au mode de mesure.

7.1.3.4 Paramètres de mesure de l'oxygène basés sur des sondes optiques

Channel	CHAN_1	O2 opt.	
Cal Pressure	1280.0	mbar	
ProcPress	Options		
ProcCal	Options		
Stability	Auto		
V	<1/2>	IJ	┙

Si une sonde optique à oxygène est connectée alors que le mode Auto a été choisi dans le cadre de la configuration des voies (voir le chapitre 7.1.1 « Configuration des voies » à la page 52), il est possible de définir ou d'ajuster les paramètres Pression Cal, Pression Proc, Pression Cal/Proc, Stabilité, Salinité, Humidité rel, Taux échant, Mode LED et Textinction. Les mêmes paramètres s'afficheront si le paramètre Optical O_2 a été défini pendant la configuration des voies.

Saisissez la valeur pour la pression d'étalonnage via le paramètre Pression Cal.

Appuyez sur le bouton Option en face du paramètre **Pression Proc** et sélectionnez la méthode d'application de la pression du procédé en appuyant sur le bouton correspondant sur la ligne **Type**.

Vous pouvez saisir la pression du procédé appliquée en sélectionnant Éditer ou vous pouvez la mesurer par le biais de l'entrée analogique du M400 en choisissant Ain_1.

Si l'option Éditer a été choisie, un champ de saisie s'affiche pour saisir la valeur manuellement. Si l'option « Ain_1 » a été sélectionnée, deux champs de saisie s'affichent pour saisir la valeur de départ (4 mA) et la valeur de fin (20 mA) de la plage pour le signal d'entrée de 4 à 20 mA.

La pression appliquée doit être définie pour l'algorithme d'étalonnage procédé. Sélectionnez la pression via le paramètre **Pression Cal**. Pour l'étalonnage procédé, la valeur de la pression de procédé (Pression Proc) et la valeur de la pression d'étalonnage (Pression Cal) peuvent être utilisées. Choisissez Mis à l'échelle ou Calibration pour l'étalonnage procédé. Si vous choisissez la mise à l'échelle, la courbe d'étalonnage de la sonde reste identique, mais son signal de sortie est mis à l'échelle. Avec une valeur d'étalonnage < 1 %, le décalage du signal de sortie de la sonde est modifié pendant la mise à l'échelle, tandis qu'avec une valeur > 1 %, c'est la pente de la sortie de la sonde qui est ajustée. Pour plus d'informations concernant la mise à l'échelle, consultez le manuel de la sonde.

Sélectionnez la **stabilité** requise pour le signal de mesure pendant la procédure d'étalonnage. Choisissez Manuel si vous voulez que l'utilisateur puisse déterminer si un signal est suffisamment stable pour procéder à l'étalonnage. Choisissez Auto si vous préférez que le transmetteur contrôle automatiquement la stabilité du signal de la sonde pendant l'étalonnage.

Des paramètres supplémentaires peuvent être définis en accédant à la page suivante du menu.

La salinité de la solution mesurée peut être modifiée.

Il est également possible de saisir l'humidité relative (bouton **Humidité rel.**) du gaz d'étalonnage. Les valeurs autorisées pour l'humidité relative sont comprises entre 0 % et 100 %. Lorsqu'aucune mesure d'humidité n'est disponible, utilisez 50 % (la valeur par défaut).

Ajustez le **débit d'échantillonnage** requis pour la sonde optique pendant la mesure. L'intervalle entre deux cycles de mesure de la sonde peut être ajusté, c'est-à-dire adapté à l'application. Une valeur élevée prolongera la durée de vie de l'OptoCap de la sonde.

Sélectionnez le **mode LED** de la sonde. Les options suivantes sont disponibles. Off : La LED est désactivée en permanence.

On : La LED est activée en permanence.

<u>ጠ</u> ነነPa	rameter Set	tting	
Salinity	0.00	9/Kg	
Rel.Humidity	80	%	
Sample Rate	30	sec	
LED Mode	Auto		
Toff	39.00	°C	
▼ <	(212)	IJ	L -

Auto : La LED est activée si la température mesurée du fluide est inférieure à Textinction (voir valeur suivante) ou désactivée via le signal d'entrée numérique (Chapitre 7.10 « Entrées numériques », à la page 66).

Remarque : Aucune mesure de l'oxygène n'est effectuée si la LED est éteinte.

Saisissez le seuil de la température mesurée pour éteindre automatiquement la LED de la sonde du M400 via le paramètre **Textinction**.

Si la température du milieu est supérieure à « Textinction », la LED s'éteindra. La LED s'allume dès que la température du milieu descend en-dessous de la valeur Textinction -3 K. Cette fonction permet de prolonger la durée de vie de l'OptoCap en éteignant la LED pendant les cycles SEP ou NEP.

Remarque : Cette fonction n'est active que si le mode de la LED est réglé sur Auto.

7.1.3.5 Paramètres du dioxyde de carbone dissous

Si une sonde de CO_2 dissous est connectée alors que le mode Auto ou CO_2 a été choisi pendant la configuration des voies (voir le chapitre 7.1.1 « Configuration des voies » à la page 52), vous pouvez définir ou ajuster le tampon utilisé pour l'étalonnage ainsi que les paramètres Stabilité, salinity, HCO₃ et TotPres.

Sélectionnez le tampon via le paramètre **Table tampons**. Pour la reconnaissance automatique du tampon lors de l'étalonnage, sélectionnez la solution tampon Mettler-9 si vous comptez l'utiliser. Si la fonction de tampon automatique n'est pas utilisée ou si le tampon utilisé n'est pas le tampon Mettler-9, sélectionnez Aucune.

Sélectionnez la **stabilité** requise pour le signal de mesure pendant la procédure d'étalonnage. Choisissez « Manuel » si vous voulez que l'utilisateur puisse déterminer si un signal est suffisamment stable pour procéder à l'étalonnage. Choisissez Basse, Moyenne ou Strict si vous préférez que le transmetteur contrôle automatiquement la stabilité du signal de la sonde pendant l'étalonnage.

Si « %sat » est l'unité choisie pour le CO₂ dissous mesuré, il faut tenir compte de la pression pendant l'étalonnage ou la mesure. Pour cela, il convient de régler le paramètre **TotPres**. Si vous avez sélectionné une autre unité que « %sat », le résultat ne sera pas influencé par ce paramètre.

Le paramètre de **salinité** indique la quantité totale de sels dissous dans l'électrolyte de CO_2 de la sonde connectée au transmetteur. Il s'agit d'un paramètre spécifique à la sonde. La valeur par défaut (28,00 g/L) est valable pour le modèle InPro 5000i. Ne modifiez pas ce paramètre si vous comptez utiliser le modèle InPro 5000 i.

Des paramètres supplémentaires peuvent être définis en accédant à la page suivante du menu.

Le paramètre HCO_3 indique la concentration d'hydrogénocarbonate dans l'électrolyte de CO_2 de la sonde connectée au transmetteur. Il s'agit aussi d'un paramètre spécifique à la sonde. La valeur par défaut 0,050 Mol/L est valable pour le modèle InPro 5000i. Ne modifiez pas ce paramètre si vous comptez utiliser le modèle InPro5000i.

<u> </u>	arameter Setti	ng
Channel	CHAN_1	CO ₂
Buffer Tab	MT-9	
Stability	Medium	
TotPres	1000.0	mbar
Salinity	6.00	gi.
V	<1/2>	

7.1.4 Table de la courbe de concentration

Pour spécifier une courbe de concentration pour des solutions spécifiques aux clients, il est possible de modifier jusqu'à 5 valeurs de concentration et jusqu'à 5 températures dans une matrice. Pour ce faire, les valeurs souhaitées sont modifiées sous le menu de la table de la courbe de concentration. Outre les valeurs de température, les valeurs de conductivité et de concentration pour la température correspondante sont modifiées. La courbe de concentration peut être sélectionnée ou utilisée avec les sondes de conductivité.

Saisissez le nom de la courbe de concentration (6 caractères maximum) en appuyant sur le champ dans la ligne **Description**.

Saisissez le nombre de points de température (**PointTemp**) et de points de concentration (**PointConc**) souhaités.

Les différentes valeurs peuvent être saisies en accédant à la page suivante dumenu.

Saisissez les valeurs de température (T1...T5), de concentration (Conc1...Conc5) et de

conductivité correspondante en appuyant sur le champ de saisie correspondant. Il est également possible d'ajuster l'unité de la valeur de conductivité dans le champ de saisie correspondant.

 1
 Concentration
 Curve
 Table

 Cond
 Concl
 Concl

 \bigcirc

Remarque : Les valeurs de température doivent augmenter de T1 à T2 à T3, etc. Les valeurs de la concentration doiventaugmenter de Conc1 à Conc2 à Conc3, etc.

Remarque : Les valeurs de conductivité aux différentes températures doivent augmenter ou diminuer de Conc1 à Conc2 à Conc3, etc. Les minima et/ou les maxima ne sont pas autorisés. Si les valeurs de conductivité à T1 augmentent avec les différentes concentrations, elles doivent également augmenter aux autres températures. Si les valeurs de conductivité à T1 diminuent avec les différentes concentrations, elles doivent également diminuer aux autres températures.

7.2 Source de température (sondes analogiques uniquement)

CHEMIN D'ACCÈS : MCONFIG.\Mesure\Source de température

Source : « Auto » (par défaut), « Pt100 », « Pt1000 », « NTC22K », « Fixe »

Si vous sélectionnez Fixed, la troisième ligne indique le réglage de température associé. Plage : -40 à 200 °C, par défaut : 25 °C.

7.3 Sorties analogiques

CHEMIN D'ACCÈS : CONFIG.\Sorties ana.

Lisez les explications suivantes pour en savoir plus sur les différents réglages des sorties analogiques.

<u>៏</u> ែ <u>CONF</u>	IG1Analog Outputs
Aout	#1
Chan	CHAN_1 HPa
Range	4-20mA
Alarm	Off
Hold Mode	Last Value
	<1/2>

Appuyez sur le champ de saisie sur la ligne du réglage pour **Sortie ana** et sélectionnez le signal de sortie souhaité pour la configuration en appuyant sur le bouton #1 pour le signal de sortie 1, #2 pour le signal de sortie 2, etc. Appuyez sur le bouton correspondant pour assigner la voie. Sélectionnez la voie que vous souhaitez associer au signal de sortie.

Appuyez sur le bouton permettant d'affecter un paramètre de mesure (en fonction de la voie sélectionnée) au signal de sortie.

60

CONFIG14

Remarque : En dehors des grandeurs de mesure pH, O2, T, etc. il est également possible de relier les valeurs ISM DLI, TTM et ACT au signal de sortie.

Sélectionnez la **plage** du signal de sortie.

Pour ajuster la valeur du signal de sortie analogique en cas d'alarme, appuyez sur le champ dans la ligne de réglage **Alarme**. La mention Off signifie que l'alarme n'a aucune influence sur le signal de sortie.

Remarque : Outre les alarmes survenant sur la voie affectée, toutes les alarmes qui se déclenchent sur le transmetteur seront prises en compte.

Vous pouvez définir la valeur du signal de sortie si le transmetteur passe en mode Maintien. Vous pouvez choisir entre la dernière valeur (c'est-à-dire la valeur affichée avant que le transmetteur ne passe en mode Maintien) ou une valeur fixe.

Appuyez sur le champ dans la ligne de réglage du mode Maintien et sélectionnez la valeur souhaitée. Si vous choisissez une valeur fixe, le transmettre indique un autre champ de saisie.

Des paramètres supplémentaires peuvent être définis en accédant à la page suivante du menu.

Le Type sortie ana peut être Normal. La plage peut être comprise entre 4 et 20 mA. Le type Normal fournit une mise à l'échelle linéaire entre les limites de mise à l'échelle minimale et maximale et constitue la valeur par défaut.

Appuyez sur le champ Valeur min., qui correspond à la valeur de début de la plage de sortie analogique.

Appuyez sur le champ Valeur max., qui correspond à la fin de précipitation du signal de sortie analogique.

Selon le type de sortie analogique sélectionné, des valeurs supplémentaires peuvent être saisies.

7.4 Valeurs de consigne

CHEMIN D'ACCÈS : 10 CCONFIG. Vals de consigne

Lisez les explications suivantes pour en savoir plus sur les différents paramètres des valeurs de consigne.

fill CONFIG \Set Points Set Po pН Appuyez sur le champ de la ligne du paramètre Valeur Seuil, puis sélectionnez le seuil que vous souhaitez configurer en appuyant sur #1 pour le seuil 1, #2 pour le seuil 2, etc.

Appuyez sur le bouton correspondant pour assigner une Voie. Sélectionnez la voie que vous souhaitez associer à la valeur de consigne.

Appuyez sur le bouton permettant d'affecter un paramètre de mesure (en fonction de la voie sélectionnée) à associer à la valeur de consigne.

La mention Mx indique la mesure affectée au point de consigne (chapitre 7.1.1 « Configuration des voies »).

Remarque : En dehors des paramères pH, O₂, T, mS/cm, %EP WFI et autres, il est également possible de relier les valeurs ISM DLI, TTM et ACT au seuil.

Le **Type** de seuil peut être Haut, Basse, Between, Outside ou Off. Une valeur réglée sur « Outside » déclenchera une alarme dès que la mesure dépasse sa limite maximale ou minimale. Un seuil réglé sur « Between » déclenchera une alarme dès que la mesure se trouve entre sa limite maximale et sa limite minimale.

Remarque : Si le type de seuil n'est pas réglé sur Off, vous pouvez définir des paramètres supplémentaires. Voir la description suivante.

En fonction du type de valeur de consigne sélectionnée, vous pouvez saisir les valeurs en fonction des limites.

Des paramètres supplémentaires peuvent être définis en accédant à la page suivante du menu.

Une fois la configuration terminée, un collecteur ouvert peut être activé si la condition Hors limite d'une sonde est détectée sur la voie d'entrée assignée.

Pour sélectionner le collecteur ouvert à activer si les conditions définies sont remplies, appuyez sur le champ dans la ligne de réglage **SP OC**. Si le collecteur ouvert choisi est utilisé pour une autre tâche, le transmetteur affiche à l'écran un message signalant un conflit OC.

Il est possible de définir le mode de fonctionnement du collecteur ouvert.

Les contacts du collecteur ouvert restent en mode normal jusqu'à ce que le seuil soit dépassé, puis le collecteur ouvert est activé et l'état des contacts change. Sélectionnez « Inversé » pour inverser l'état de fonctionnement normal du collecteur ouvert (par exemple, les contacts normalement ouverts sont en position fermée et les contacts normalement fermés sont en position ouverte, jusqu'à ce que le seuil soit dépassé).

Saisissez le **délai** en secondes. Il s'agit du laps de temps durant lequel le seuil doit être dépassé de manière continue avant l'activation du collecteur ouvert. Si l'état disparaît avant que ce délai soit écoulé, le collecteur ouvert n'est pas activé.

Saisissez une valeur pour **Hystérèse**. Une valeur d'hystérésis nécessite que la mesure revienne dans les limites de la valeur de seuil selon un pourcentage spécifié avant la désactivation du collecteur ouvert.

Lorsque la valeur de seuil est élevée, la mesure doit diminuer davantage que le pourcentage indiqué en-dessous de la valeur de seuil avant la désactivation du collecteur ouvert. Lorsque la valeur de consigne est faible, la mesure doit augmenter davantage que le pourcentage indiqué au-dessus de la consigne avant la désactivation du collecteur ouvert. Par exemple, avec un seuil élevé de 100, lorsque cette valeur est dépassée, la mesure doit descendre en dessous de 90 avant que le collecteur ouvert ne soit désactivé.

Sélectionnez le mode **Maintien** (« Off », « Dernière valeur » ou « On »). Il s'agit de l'état du connecteur ouvert lorsqu'il se trouve en mode Maintien.

7.5 Configuration d'ISM (sondes ISM uniquement)

CHEMIN D'ACCÈS : CONFIG.\Config. ISM

Lisez les explications suivantes pour en savoir plus sur les différents réglages de paramètres pour configurer ISM.

7.5.1 Dispositif de contrôle de la sonde

Si une sonde ISM est connectée alors que le mode Auto a été choisi pendant la configuration des voies (voir le chapitre 7.1.1 « Configuration des voies » à la page 52), vous pouvez définir ou ajuster le paramètre « Surveill. capteur ». Le menu « Surveill. capteur » s'affichera également si l'une des sondes susmentionnées a été installée pendant la configuration des voies.

Appuyez sur le bouton Surveill. capteur.

Saisissez la valeur pour définir le délai de maintenance initial (**TTM Initial**) en jours. La valeur initiale pour TTM peut être modifiée en fonction de l'utilisation de l'application.

Pour les sondes à oxygène ampérométriques, le délai de maintenance représente un cycle de maintenance pour la membrane et l'électrolyte.

Appuyez sur le champ **Réinit. TTM**. Sélectionnez Oui pour réinitialiser le délai de maintenance (TTM) de la sonde à sa valeur initiale.

Le délai de maintenance doit être réinitialisé après les opérations suivantes.

Sonde à oxygène : Cycle de maintenance manuelle sur la sonde ou remplacement de la membrane de la sonde.

Remarque : Lorsque vous connectez une sonde, celle-ci affiche le délai avant sa prochaine maintenance.

Saisissez la valeur **ACT Initial** en jours. La nouvelle valeur sera transmise à la sonde une fois les modifications enregistrées.

Le minuteur d'étalonnage adaptatif (ACT) estime le moment où doit être effectué le prochain étalonnage pour garantir les meilleures performances de mesure. Elle tient compte des modifications importantes apportées aux paramètres DLI. ACT reprendra sa valeur initiale une fois l'étalonnage effectué. La valeur initiale de l'ACT peut être modifiée en fonction de l'utilisation de l'application et transmise à la sonde.

Remarque : Lorsque vous connectez une sonde, celle-ci affiche le délai avant sa prochaine maintenance.

Appuyez sur le champ de saisie pour **réinitialiser la DLI**. Sélectionnez Oui pour réinitialiser l'Indicateur dynamique de durée de vie (DLI) de la sonde à sa valeur initiale. La réinitialisation sera effectuée une fois les modifications enregistrées.

Le DLI permet d'estimer, d'après les contraintes réelles subies, à quel moment l'électrode de pH, l'élément sensible d'une sonde à oxygène ampérométrique ou d'une sonde à ozone, arrive en fin de vie. La sonde prend toujours en compte la contrainte moyenne des derniers jours et peut augmenter/réduire la durée de vie en fonction du résultat.

Les paramètres suivants affectent l'indicateur de durée de vie :

Paramètre dynamique

- Température
- Valeur de pH ou d'oxygène
- Impédance du verre (uniquement pH)
- Résistance de référence (uniquement pH)

La sonde conserve les informations enregistrées dans les circuits intégrés ; celles-ci peuvent être récupérées via un transmetteur ou via le logiciel de gestion des actifs iSense.

Pour les sondes à oxygène ampérométriques, le DLI dépend de l'élément sensible de la sonde. Une fois que vous avez remplacé l'élément sensible de la sonde, réinitialisez le DLI (Réinit. DLI).

Remarque : Lorsque vous connectez une sonde, celle-ci affiche sa durée de vie restante.

Remarque : Le menu Réinit. DLI n'est pas disponible pour les sondes de pH. Si la valeur réelle du DLI d'une électrode de pH est égale à 0, vous devez remplacer l'électrode.

Remarque : En raccordant une sonde de pH 2.0, affiche ACT Initial, ne comprend pas TTM Initial, Réinit. TTM, Réinit. DLI.

56

Paramètres fixes

- Historique des étalonnages
- Zéro et pente
- Cycles NEP/SEP/d'autoclavage

7.5.2 No. max. NEP

Si une électrode de pH/redox, une sonde à oxygène ou une sonde de conductivité est connectée alors que le mode Auto a été choisi dans le cadre de la configuration des voies (voir le chapitre 7.1.1 « Configuration des voies » à la page 52), vous pouvez définir ou ajuster le paramètre « No. max. NEP ». Le paramètre « No. max. NEP » s'affichera également si l'une des sondes susmentionnées a été installée pendant la configuration des voies.

Appuyez sur le bouton No. max. NEP.

Appuyez sur le bouton dans le champ correspondant au paramètre **Cycles max.** et saisissez la valeur pour le nombre de cycles NEP maximum. La nouvelle valeur sera transmise à la sonde une fois les modifications enregistrées.

Les cycles NEP sont comptabilisés par le transmetteur. Si la limite (valeur saisie dans Cycles max.) est atteinte, une alarme peut être indiquée et définie pour certains collecteurs ouverts de sortie.

Si la valeur indiquée dans « Cycles max. » est égale à 0, le compteur est désactivé.

Appuyez sur le bouton dans le champ du paramètre **Temp** pour saisir la température qui doit être dépassée pour lancer le décompte d'un cycle NEP

Les cycles NEP sont automatiquement reconnus par le transmetteur. L'intensité des cycles NEP étant variable (durée et température) selon les applications, l'algorithme du compteur reconnaît l'augmentation de la température de mesure au-dessus de la valeur saisie dans « Temp. ». Si la température ne descend pas en dessous de la température définie – 10 °C dans les 5 minutes suivant la première température atteinte, le compteur augmente d'une unité. Il est également verrouillé pendant les deux heures qui suivent. Si le NEP dure plus de deux heures, le compteur est à nouveau incrémenté d'une unité.

Appuyez sur le champ de saisie pour réinitialiser (**RAZ**). Sélectionnez Oui si le compteur NEP de la sonde doit être remis à zéro. La réinitialisation sera effectuée une fois les modifications enregistrées.

Si une sonde à oxygène est connectée, la réinitialisation doit être effectuée après les opérations suivantes. Sonde ampérométrique : remplacement de l'élément sensible de la sonde.

Remarque : Le menu de réinitialisation n'est pas disponible pour l'électrode de pH/ORP. Une électrode de pH/redox doit être remplacée si le nombre de cycles max. a été dépassé.

7.5.3 No. max. SEP

Si une électrode de pH/redox, une sonde à oxygène ou une sonde de conductivité est connectée alors que le mode Auto a été choisi dans le cadre de la configuration des voies (voir le chapitre 7.1.1 « Configuration des voies » à la page 52), vous pouvez définir ou ajuster le paramètre No. max. SEP. Le paramètre No. max. SEP s'affichera également si l'une de ces sondes/ électrodes a été installée pendant la configuration des voies.

Appuyez sur « No. max. SEP ».

Appuyez sur le bouton dans le champ du paramètre **Cycles max.** et saisissez la valeur correspondant au nombre de cycles SEP maximum. La nouvelle valeur sera transmise à la sonde une fois les modifications enregistrées.

Les cycles SEP sont comptabilisés par le transmetteur. Si la limite (valeur saisie dans Cycles max.) est atteinte, une alarme peut être indiquée et définie pour certains collecteurs ouverts de sortie.

Si la valeur indiquée dans « Cycles max. » est égale à 0, le compteur est désactivé.

Appuyez sur le champ « Temp. » pour saisir la température qui doit être dépassée pour lancer le décompte d'un cycle NEP.

Les cycles NEP sont automatiquement reconnus par le transmetteur. L'intensité des cycles SEP étant variable (durée et température) selon les applications, l'algorithme du compteur reconnaît l'augmentation de la température de mesure au-dessus de la valeur saisie dans « Temp. ». Si la température ne descend pas en dessous de la température définie – 10 °C dans les 5 minutes suivant la première température atteinte, le compteur augmente d'une unité. Il est également verrouillé pendant les deux heures qui suivent. Si le NEP dure plus de deux heures, le compteur est à nouveau incrémenté d'une unité.

Appuyez sur le champ de saisie pour **réinitialiser**. Sélectionnez Oui si le compteur SEP de la sonde doit être remis à zéro. La réinitialisation sera effectuée une fois les modifications enregistrées.

Lorsqu'une sonde à oxygène est connectée, le compteur doit être réinitialisé après les opérations suivantes. Sonde ampérométrique : remplacement de l'élément sensible.

Remarque : Le menu de réinitialisation n'est pas disponible pour l'électrode de pH/ORP. Une électrode de pH/redox doit être remplacée si le nombre de cycles max. a été dépassé.

7.5.4 No. max. d`autoclavages

Si une électrode de pH/redox ou une sonde à oxygène ampérométrique est connectée alors que le mode Auto a été choisi pendant la configuration des voies (voir le chapitre 7.1.1 « Configuration des voies » à la page 52), vous pouvez définir ou ajuster le paramètre No. max. d'autoclavages. Le menu No. max. d'autoclavages s'affichera également si l'une des sondes mentionnées ci-dessus a été installée pendant la configuration des voies.

Appuyez sur le bouton No. max. d'autoclavages.

Appuyez sur le bouton du champ **Cycles max.** et saisissez la valeur pour le nombre maximum de cycles d'aautoclavage. La nouvelle valeur sera transmise à la sonde une fois les modifications enregistrées.

Si la valeur indiquée dans « Cycles max. » est égale à 0, le compteur est désactivé.

Comme la sonde n'est pas connectée au transmetteur pendant le cycle d'autoclavage, le système vous demandera pour chaque sonde connectée si elle a été passée en autoclave. Selon votre réponse, le compteur sera incrémenté ou non. Si la limite (valeur saisie dans Cycles max.) est atteinte, une alarme peut être indiquée et définie pour un collecteur ouvert de sortie. Appuyez sur le champ de saisie pour **réinitialiser**. Sélectionnez Oui si le compteur d'autoclavage de la sonde doit être remis à zéro. La réinitialisation sera effectuée une fois les modifications enregistrées.

Lorsqu'une sonde à oxygène est connectée, le compteur doit être réinitialisé après les opérations suivantes. Sonde ampérométrique : remplacement de l'élément sensible.

Remarque : Le menu de réinitialisation n'est pas disponible pour l'électrode de pH/ORP. Une électrode de pH/redox doit être remplacée si le nombre de cycles max. a été dépassé.

7.5.5 Ajustement de la tension DLI

Si une électrode de pH/redox est connectée alors que le mode Auto a été choisi dans le cadre de la configuration des voies (voir le chapitre 7.1.1 « Configuration des voies » à la page 52), vous pouvez ajuster le paramètre Ajustage DLI. Ce paramètre permet à l'utilisateur d'ajuster la sensibilité de la sonde à la tension exercée par son application spécifique pour calculer le DLI.

ظıα	ONFIG \ISM :	Setup	
Charge	Ch1 O ₂ hi Autor	clave Limit	
EMD	Max Cycles	0	n
ISM P3	Reset	No	
			5
			Done

Allez à la page 2 de la configuration d'ISM.

Appuyez sur le bouton Ajustage DLI.

Sélectionnez le type d'ajustement de votre choix : bas/moyen/haut.

BAS :	DLI étendu (-30 % de sensibilité)
MOYENNE :	DLI standard (par défaut)
HAUT :	DLI réduit (+30 % de sensibilité)

Appuyez sur ← pour valider le réglage.

7.6 Alarme générale

CHEMIN D'ACCÈS : AlconFIG. Alarme générale

Lisez les explications suivantes pour en savoir plus sur les différents réglages de l'alarme générale.

Appuyez sur le bouton Événements sur la ligne des paramètres pour **Option** et sélectionnez les événements qui déclencheront une alarme.

Pour activer un collecteur ouvert si les conditions définies sont remplies, appuyez sur le champ dans la ligne des paramètres de **OC**. Seul OC 1 peut être affecté à l'alarme générale. Pour les alarmes générales, le mode de fonctionnement du collecteur ouvert assigné est toujours inversé.

Saisissez le **délai** en secondes. Il s'agit du laps de temps durant lequel le seuil doit être dépassé de manière continue avant l'activation du collecteur ouvert. Si l'état disparaît avant que ce délai soit écoulé, le collecteur ouvert n'est pas activé.

7.7 ISM / Alarme sonde

CHEMIN D'ACCÈS : MCONFIG. Alarme ISM / capteur

Lisez les explications suivantes pour en savoir plus sur les différents paramètres de l'alarme ISM/sonde.

∰\CONFI	G\ISM / Sensor	Alarm
Options	CHAN_1	Events
Alarm OC	#2	Normal
Delay	1	sec
Hold OC	None	
	A +	

Vous pouvez sélectionner différents **Événements** qui déclencheront une alarme en fonction de la sonde affectée. Certaines alarmes seront prises en compte dans n'importe quelles circonstances et ne doivent pas être sélectionnées ou désactivées.

Pour sélectionner le collecteur ouvert souhaité qui sera activé si un événement se produit, appuyez sur le champ dans la ligne des paramètres pour **OC**.

Il est possible de définir le mode de fonctionnement du collecteur ouvert.

Les contacts CO sont en mode normal jusqu'à ce que l'un des événements sélectionnés se produise. Ensuite, le collecteur ouvert est activé et l'état du contact change. Sélectionnez « Inversé » pour inverser le mode de fonctionnement normal du collecteur ouvert (par exemple, les contacts normalement ouverts sont en position ouverte et les contacts normalement fermés en position fermée si un événement s'est produit).

Saisissez le **délais** en secondes. Un délai nécessite que l'événement se produise de manière continue pendant le laps de temps spécifié avant que le collecteur ouvert ne s'active. Si l'état disparaît avant que ce délai soit écoulé, le collecteur ouvert n'est pas activé.

7.8 Nettoyage

CHEMIN D'ACCÈS : CONFIG.\Nettoyage

Lisez les explications suivantes pour en savoir plus sur les différents réglages du nettoyage.

Saisissez l'intervalle de nettoyage en heures. L'intervalle de nettoyage peut être défini entre 0,000 et 99 999 heures. Un réglage sur 0 désactive le cycle de nettoyage.

Saisissez la durée du nettoyage **Temps Nett.** en secondes. La durée du nettoyage peut être comprise entre 0 et 9 999 secondes et doit être inférieure à l'intervalle de nettoyage.

Assignez la ou les voie(s) pour les cycles de nettoyage. Les voies assignées passeront en mode Maintien pendant le cycle de nettoyage.

Choisissez un **OC**. Les contacts CO sont en mode normal jusqu'à ce que le cycle de nettoyage commence, ensuite le collecteur ouvert est activé et l'état du contact change. Sélectionnez « Inversé » pour inverser le mode de fonctionnement normal du collecteur ouvert (par exemple, les contacts normalement ouverts sont en position ouverte et les contacts normalement fermés en position fermée lorsque le cycle de nettoyage commence).

7.9 Config. affichage

CHEMIN D'ACCÈS : CONFIG.\Config. affichage

Lisez les explications suivantes pour en savoir plus sur les différents réglages de la configuration de l'affichage.

Saisissez le nom du transmetteur M400 (**N° Instrument**). Le numéro de l'instrument sera également affiché en haut de la fenêtre d'accueil et de l'écran de menu.

Remarque : La luminosité du rétroéclairage est déterminée automatiquement par Sortie ana.

7.10 Entrées numériques

CHEMIN D'ACCÈS : CONFIG.\Entrées num.

Lisez les explications suivantes pour en savoir plus sur les différents paramètres des entrées numériques.

 ICONFIG Digital Inputs

 Channel
 CHAN_1

 Mode
 Hold

 Digital Inputs
 #1

 State
 High

Appuyez sur le champ dans la ligne du paramètre **Mode** et sélectionnez l'impact d'un signal d'entrée numérique actif. Choisissez HOLD pour mettre la voie assignée en mode Maintien.

Appuyez sur le bouton correspondant pour assigner des **entrées numériques** (#1 pour EN1, #2 pour EN2, etc.), puis sélectionnez le signal d'entrée numérique à associer à la voie.

Vous pouvez définir un autre paramètre si un signal d'entrée numérique a été sélectionné.

Appuyez sur le champ dans la ligne du paramètre **État** et sélectionnez si l'entrée numérique est active pour un signal d'entrée de tension élevé ou faible.

ff1CONFIG1C

terval

7.11 Système

CHEMIN D'ACCÈS : ₼\CONFIG.\Système

Lisez les explications suivantes pour en savoir plus sur les différents réglages du système.

Sélectionnez la langue souhaitée. Les langues suivantes sont disponibles : Anglais, français, allemand, italien, espagnol, portugais, russe, chinois, coréen ou japonais.

Saisissez la date et l'heure.

Le passage automatique de l'heure d'hiver à l'heure d'été (et vice versa) évite à l'utilisateur de modifier l'heure deux fois par an.

Le passage à l'heure d'été s'effectue automatiquement grâce à l'horloge de douze mois intégrée dans le transmetteur. Vous pouvez définir la date du changement d'heure avec le paramètre **Été**.

Sous réserve que ce soit un dimanche, le changement d'heure s'effectuera le jour correspondant à la valeur saisie. À défaut, le changement d'heure se produira le dimanche suivant. Le changement d'heure d'hiver/d'été a lieu à 2 h.

Le passage à l'heure d'hiver s'effectue automatiquement grâce à l'horloge de douze mois intégrée dans le transmetteur. Vous pouvez définir la date du changement d'heure avec le paramètre **Hiver**.

Sous réserve que ce soit un dimanche, le changement d'heure s'effectuera le jour correspondant à la valeur saisie. À défaut, le changement d'heure se produira le dimanche suivant. Le changement d'heure d'hiver/d'été a lieu à 3 h 00.

Vous pouvez choisir le nombre d'heures à ajouter ou à retirer lors du changement d'heure saisonnier. Appuyez sur le bouton correspondant pour le réglage de l'**Heure de travail**.

7.12 Régulateur PID

CHEMIN D'ACCÈS : [™]\CONFIG.\Contrôleur PID

La régulation du PID est une action de contrôle proportionnelle, intégrale et dérivée capable de réguler en douceur un procédé. Avant de configurer le transmetteur, les caractéristiques de procédé suivantes doivent être définies.

Identifiez le sens de contrôle du procédé :

• Conductivité :

Dilution : action directe dans laquelle une mesure en augmentation produit une augmentation de la sortie de contrôle, telle que le contrôle de l'alimentation en eau de dilution de faible conductivité pour le rinçage de moteur, les tours de refroidissement ou les chaudières.

Concentration : action inversée dans laquelle la mesure en augmentation produit une diminution de la sortie de contrôle, telle que le contrôle de l'alimentation en produit chimique pour atteindre la concentration souhaitée.

• Oxygène dissous :

Désaération : action directe dans laquelle l'augmentation de la concentration en oxygène dissous produit une augmentation de la sortie de contrôle, telle que le contrôle de l'alimentation en agent réducteur pour éliminer l'oxygène de l'eau alimentant les chaudières.

Aération : action inversée dans laquelle l'augmentation de la concentration en O_2 dissous produit une diminution de la sortie de contrôle, telle que le contrôle de la vitesse d'un ventilateur d'aération pour maintenir la concentration en O_2 dissous souhaitée dans la fermentation ou le traitement des eaux usées.

• pH/redox :

Alimentation en acide uniquement : action directe dans laquelle l'augmentation du pH produit l'augmentation de la sortie de contrôle, également pour l'alimentation en réactif réduisant le redox.

Alimentation en base uniquement : action inversée dans laquelle l'augmentation du pH produit la diminution de la sortie de contrôle, également pour l'alimentation en réactif réduisant le redox.

Alimentation en acide et base : action directe et inversée.

Définissez le type de sortie de contrôle en fonction du dispositif de contrôle utilisé :

- Fréquence d'impulsion : utilisée avec une pompe doseuse à entrée d'impulsion.
- Longueur d'impulsion : utilisée avec une électrovanne.

Les réglages du contrôle par défaut fournissent un contrôle linéaire adapté à la conductivité, à l'oxygène dissous. Par conséquent, pour la configuration de ces paramètres du PID (ou pour le contrôle simple du pH), il est inutile de vous préoccuper des réglages de la zone morte et des points excentrés dans la section Paramètres de réglage ci-dessous. Les réglages de contrôle non linéaires sont utilisés dans des situations de contrôle de pH/redox plus délicates.

Si vous le souhaitez, définissez la non-linéarité du procédé pH/redox. Il est possible d'obtenir un meilleur contrôle si la non-linéarité correspond à une non-linéarité contraire dans le système de contrôle. Une courbe de titrage (graphique du pH ou redox/volume de réactif) réalisée sur un échantillon du procédé fournit les meilleures informations. Il existe souvent un gain ou une sensibilité de procédé très important(e) à proximité du seuil et un gain qui diminue avec l'éloignement par rapport au seuil. Pour contrecarrer ce phénomène, l'instrument permet d'ajuster le contrôle non linéaire en réglant une zone morte autour du seuil, des points excentrés et des limites proportionnelles en bouts de contrôle, tel qu'illustré dans la figure ci-dessous.

Déterminez les réglages appropriés pour chacun de ces paramètres de contrôle établis selon la forme de la courbe de titrage du procédé pH.

Système de contrôle avec points excentrés

 MICONFIGUED Controller

 PD
 #1

 Chan
 None

 Draphy For
 M2

 PD Hold
 Off

 PD AM
 Auto

습\CONFIG	PID Controller	
PD	#1	
Chan	None	
Display For	M2	
PID Hold	or	
PD A/M	Auto	
▼ <	<1/2> □	L -

Lisez les explications suivantes pour en savoir plus sur les différents réglages du régulateur PID.

Le M400 est équipé d'un régulateur PID.

Appuyez sur le bouton correspondant pour assigner une **Voie**. Sélectionnez la voie que vous souhaitez associer au régulateur PID. Pour désactiver le régulateur PID, appuyez sur Aucune.

Appuyez sur le bouton permettant d'affecter un paramètre de mesure (en fonction de la voie sélectionnée) à associer au régulateur PID. Choisissez le paramètre de mesure en appuyant sur le champ correspondant. La mention Mx indique la mesure assignée au régulateur PID (chapitre 7.1.1 « Configuration des voies »).

Le M400 permet d'afficher la sortie de contrôle (%PID) du régulateur PID dans la fenêtre d'accueil et la fenêtre de menu. Appuyez sur le bouton correspondant à **Affichage pour** et sélectionnez la ligne, la sortie de contrôle devrait s'afficher en appuyant sur le champ correspondant.

Remarque : La sortie de contrôle du régulateur PID s'affichera à la place de la mesure qui a été définie pour s'afficher sur la ligne correspondante (voir le chapitre 7.1.1 « Configuration des voies » à la page 52).

Avec le paramètre **PID HOLD**, sélectionnez l'état de la sortie de contrôle du régulateur PID si le transmetteur M400 est en mode Maintien. L'option Off signifie que la sortie de contrôle sera 0 % PID si le transmetteur est en mode Maintien. Si vous avez choisi Dernière valeur, la valeur du signal de sortie de contrôle avant que le transmetteur ne passe en mode Maintien sera utilisée.

Le paramètre **PID A/M** permet de sélectionner le mode de fonctionnement du régulateur PID (automatique ou manuel). Si vous choisissez « Auto », le transmetteur calcule le signal de sortie à partir de la valeur mesurée et des paramètres du régulateur PID. Si vous sélectionnez « Manuel », deux autres boutons fléchés apparaissent dans l'écran de menu à l'endroit où le signal de sortie est affiché. Appuyez sur les touches fléchées pour augmenter ou diminuer le signal de sortie PID.

Remarque : Si vous avez choisi « Manuel », les valeurs indiquées pour les constantes de temps, le gain, les points excentrés, les limites proportionnelles, le seuil et la zone morte n'influencent pas le signal de sortie.

Des paramètres supplémentaires peuvent être définis en accédant à la page suivante du menu.

Le mode PID assigne un collecteur ouvert pour l'action régulateur PID. En fonction du dispositif de contrôle utilisé, sélectionnez l'une des trois options OC PL, OC PF.

« OC PL » (COLLECTEUR OUVERT PL) :	Si vous utilisez une électrovanne, sélectionnez OC PL
	(longueur d'impulsion).
OC PF :	Si vous utilisez une pompe doseuse à entrée
	d'impulsion, sélectionnez OC PF (fréquence d'impulsion).

Associez le signal de sortie Sortie 1, 2 du régulateur PID à la sortie du transmetteur souhaitée. Appuyez sur le bouton correspondant à Out 1 et Out 2 et sélectionnez le nombre correspondant à la sortie en appuyant sur le champ approprié. #1 signifie OC 1, #2 signifie OC 2.

Remarque : Faites attention si les collecteurs ouverts sont reliés à la fonction de contrôle. Les collecteurs ouverts peuvent être utilisés par les dispositifs de contrôle de la fréquence d'impulsion et les applications peu exigeantes. Le courant est limité à 0,1 ampère. Ne branchez pas des dispositifs utilisant un courant plus élevé sur ces collecteurs ouverts.

Si le mode PID est défini sur OC PL, il est possible d'ajuster la longueur d'impulsion du signal de sortie du transmetteur. Appuyez sur le bouton **Long impulsion** et le M400 affiche un clavier pour modifier la valeur. Saisissez la nouvelle valeur en secondes en vous aidant du tableau ci-dessous, puis appuyez sur 4.

Remarque : Une longueur d'impulsion plus importante réduit l'usure de l'électrovanne. Le pourcentage de temps « actif » du cycle est proportionnel à la sortie de contrôle. 69

	1 ^{re} position collecteur ouvert (Sortie 1)	2° position collecteur ouvert (Sortie 2)	Longueur d'impulsion (PL)
Conductivité	Contrôle d'alimentation en réactif concentré	Contrôle de l'eau de dilution	Une faible longueur d'impulsion (PL) assure une alimentation plus uniforme. Point de départ suggéré = 30 secondes
pH/redox	Alimentation en base	Alimentation en acide	Cycle d'ajout de réactif : une faible longueur d'impulsion assure un ajout de réactif plus uniforme. Point de départ suggéré = 10 s
Oxygène dissous	Contrôle en action inversée	Contrôle en action directe	Durée du cycle d'alimentation : une faible longueur d'impulsion (PL) assure une alimentation plus uniforme. Point de départ suggéré = 30 s

Si le mode PID est défini sur OC PF, il est possible d'ajuster la fréquence d'impulsion du signal de sortie du transmetteur. Appuyez sur le bouton **Fréq. impulsion** et saisissez la nouvelle valeur en impulsion/minute en vous aidant du tableau ci-dessous.

Remarque : Réglez la fréquence d'impulsion sur la valeur maximale admise pour la pompe spécifique utilisée ; en général 60 à 100 impulsions/minute. La régulation produit cette fréquence lorsque la sortie est optimale.

Attention : Un réglage trop élevé de la fréquence d'impulsion peut entraîner une surchauffe de la pompe.

	1 ^{re} position collecteur ouvert (Sortie 1)	2° position collecteur ouvert (Sortie 2)	Fréquence d'impulsion (PF)
Conductivité	Contrôle de l'alimentation en produit chimique concentré	Contrôle de l'eau de dilution	Max. autorisé pour la pompe utilisée (généralement 60 à 100 imp./minute)
pH/redox	Alimentation en base	Alimentation en acide	Max. autorisé pour la pompe utilisée (généralement 60 à 100 imp./minute)
Oxygène dissous	Contrôle en action inversée	Contrôle en action directe	Max. autorisé pour la pompe utilisée (généralement 60–100 impulsions/minute)

Appuyez sur le champ du paramètre **Gain** pour saisir le gain du régulateur PID (sans unité). « Gain » représente la valeur maximale du signal de sortie du régulateur PID en pourcentage (valeur 1 équivaut à 100 %).

Appuyez sur le champ correspondant sur la ligne **min** pour ajuster le paramètre intégral ou le temps de réinitialisation **Tr** (bouton gauche) et/ou le temps dérivé **Td** (bouton droit).

Remarque : Le gain, le temps intégral et le temps dérivé sont généralement ajustés ultérieurement en tâtonnant en fonction de la réaction du procédé. Il est recommandé de commencer avec la valeur Td = 0.

Des paramètres supplémentaires peuvent être définis en accédant à la page suivante du menu.

L'écran affiche la courbe du régulateur PID, avec des boutons permettant de saisir les points excentrés, le seuil et la limite proportionnelle pour 100 %.

Appuyez sur le bouton CP pour accéder au menu où vous pouvez modifier les points excentrés.

La page 1 comporte les paramètres de la valeur minimale des points excentrés. Appuyez sur le bouton correspondant pour modifier la valeur du paramètre du procédé et du signal de sortie associé en %.

Allez à la page 2 pour consulter les paramètres de la valeur maximale des points excentrés. Appuyez sur le bouton correspondant pour modifier la valeur du paramètre du procédé et du signal de sortie associé en %.

Appuyez sur le bouton SP pour modifier le seuil et la zone morte.

Appuyez sur le bouton **Lim** pour modifier les limites proportionnelles maximale et minimale ; elles correspondent à la plage où une régulation est nécessaire.

7.13 Maintenance

CHEMIN D'ACCÈS : 恐\CONFIG.\Service

Ce menu est un outil précieux pour le dépannage et permet de diagnostiquer les éléments suivants : Définir sorties analogiques, Lire sorties analogiques, Lire entrées analogiques, Définir collecteur ouvert, Lire collecteur ouvert, Lire entrées numériques, Mémoire, Affichage et Clavier.

Sélectionnez l'élément souhaité pour le diagnostic via le paramètre **Système** en appuyant sur le champ correspondant.

Dans **Voie**, sélectionnez la voie pour consulter les informations de diagnostic de la sonde. Ce menu apparaît uniquement si une sonde est connectée.

Il est désormais possible de sélectionner la fonction de diagnostic via le bouton Diagnostic.

Remarque : L'option Voie dépend du type de sonde.

7.13.1 Réglage des sorties analogiques

Ce menu permet à l'utilisateur de régler toutes les sorties analogiques sur une valeur en mA comprise dans la plage 0-22 mA. Utilisez les boutons + et – pour ajuster le signal de sortie en mA. Le transmetteur ajustera les signaux de sortie en fonction de la mesure et de la configuration des signaux de sortie analogiques.

7.13.2 Lecture des sorties analogiques

Ce menu affiche la valeur en mA des sorties analogiques.

7.13.3 Config. OC

Ce menu permet à l'utilisateur d'ouvrir et de fermer chaque collecteur ouvert manuellement. Si l'utilisateur quitte le menu, le transmetteur ouvrira ou fermera le collecteur ouvert en fonction de sa configuration.

7.13.4 Lire OC

Ce menu affiche l'état de chaque collecteur ouvert. La mention ON indique que le collecteur ouvert est fermé ; OFF indique qu'il est ouvert.

7.13.5 Lecture des entrées numériques

Ce menu affiche l'état des signaux d'entrée numérique.

30 748 780 A

7.13.6 Mémoire

Si vous sélectionnez Mémoire, le transmetteur testera la mémoire de toutes les cartes des sondes ISM et des transmetteurs connectés.

7.13.7 Affichage

Le transmetteur affiche un écran noir et blanc toutes les 5 secondes, puis revient à l'écran principal de maintenance. Dans les 5 secondes, l'utilisateur peut appuyer sur n'importe quel bouton pour passer à l'écran suivant. S'il s'agit du dernier écran, il accède à l'écran principal de maintenance.

7.14 Gestion des utilisateurs

CHEMIN D'ACCÈS :
CONFIG.\Gestion utilisateur

Ce menu permet de configurer les différents mots de passe de l'utilisateur et de l'administrateur, et de dresser une liste des menus auxquels peuvent accéder les utilisateurs. L'administrateur dispose de droits pour accéder à tous les menus. Pour les transmetteurs neufs, tous les mots de passe par défaut sont « 00000000 ».

Appuyez sur le champ **Protection** pour sélectionner le type de protection souhaité Les options suivantes sont disponibles :

Protection	Off
Options	ADMIN
UserID	ADMIN
Password	Change Password

Off : Aucune protection

Actif : l'ouverture de l'écran de menu (voir chapitre 3.2.1 « Écran ») doit être confirmée Mot de passe : l'écran de menu s'active uniquement avec un mot de passe

Appuyez sur le bouton **Option** correspondant pour sélectionner le profil de l'administrateur (Admin) ou celui d'un des utilisateurs.

Remarque : L'administrateur dispose des droits pour accéder à tous les menus. Il est possible de définir les droits d'accès de plusieurs utilisateurs.

Appuyez sur le bouton **ID utilisateur** pour saisir le nom de l'utilisateur ou de l'administrateur. Le nom de l'utilisateur ou de l'administrateur s'affichera si la protection par mot de passe est sélectionnée pour ouvrir l'écran de menu.

Pour changer le mot de passe de l'utilisateur ou de l'administrateur sélectionné, appuyez sur le champ correspondant à **Mot de passe**. Saisissez l'ancien mot de passe dans le champ « Ancien mdp », le nouveau mot de passe dans le champ « Nouveau mdp », puis confirmez le mot de passe dans le champ « Confirmer mdp ». « 00000000 » est le mot de passe par défaut pour l'administrateur et tous les utilisateurs.

Si vous sélectionnez un profil d'utilisateur, un champ supplémentaire apparaît pour définir les droits d'accès.

Pour attribuer les droits d'accès, vous devez appuyer sur le bouton du menu correspondant. Lors de l'attribution des droits d'accès, le symbole ☑ apparaît sur le bouton associé.

7.15 Réinitialisation

CHEMIN D'ACCÈS : ₼\CONFIG.\RAZ

Différentes options de réinitialisation sont disponibles en fonction de la version et de la configuration du transmetteur.

Lisez les explications suivantes pour en savoir plus sur les différentes options pour réinitialiser les données et/ou les configurations.
7.15.1 Réinitialisation du système

Cette option de menu permet de réinitialiser le transmetteur M400 aux paramètres d'usine par défaut (seuils désactivés, sorties analogiques désactivées, mots de passe, etc.). Par ailleurs, les facteurs d'étalonnage des sorties et des entrées analogiques, et du transmetteur peuvent être réinitialisés aux dernières valeurs d'usine.

Appuyez sur le champ Options et sélectionnez Système.

Appuyez sur le champ **Points** (bouton configurer) et sélectionnez les différents éléments de configuration à réinitialiser.

Si vous avez sélectionné un élément, le menu Action s'affiche. Appuyez sur le bouton « RAZ » (réinitialiser).

7.16 Configuration touche personnalisée

CHEMIN D'ACCÈS : ACONFIG.\Config. touche personnalisée

Ce menu permet de sélectionner l'option souhaitée.

7.17 HART

CHEMIN D'ACCÈS : 恐\CONFIG.\HART

Ce menu est toujours actif pour le mode HART.

8 ISM

Pour consulter la structure du menu, reportez-vous à chapitre 3.8 « Courbe de mesure ». CHEMIN D'ACCÈS : CANSM

8.1 iMonitor

CHEMIN D'ACCÈS : M\ISM\iMonitor

iMonitor permet à l'utilisateur de connaître l'état de l'enchaînement en un coup d'œil.

L'interface iMonitor de la première voie s'affiche à l'écran. Pour naviguer dans l'interface des différentes voies, appuyez sur > en bas de l'écran.

Les valeurs « DLI », « TTM » et « ACT » sont affichées dans un bargraphe.

Pour les sondes de conductivité à 4 électrodes, les jours de fonctionnement de la sonde sont affichés.

En outre, les valeurs SIP, CIP, Autoclave, ainsi que les valeurs pour Rg et Rref peuvent être affichées.

Le voyant Diagnostic Rg/pNa Rg/Rref s'affiche en fonction de la sélection dans le réglage de l'alarme. Si cette option est sélectionnée, chaque état peut être trouvé dans iMonitor.

Si Rg/pNa Rg/Rref Diagnostic est désactivé dans le paramètre d'alarme, ces éléments seront masqués en présence d'un avertissement et l'icône d'avertissement. Si un évènement d'alarme existe, l'icône « alarme » s'affiche, sinon l'icône « ok » s'affiche.

73

Selon le paramètre mesuré (sonde connectée), les données suivantes sont disponibles dans le menu iMonitor :

pH :DLI, TTM (pour pH/PNA uniquement), ACT, CIP, Autoclave, SIP 1), Rg 2), Rref 2)O2 ampérométrique :DLI, TTM, ACT, CIP, Autoclave, SIP 1), Electrolyte 3)Conductivité :jours de fonctionnement, NEP, SEP

- 1) Si le mode AutoClave n'a pas été activé (voir le chapitre 7.7 « ISM / Alarme sonde » à la page 65)
- 2) Si l'alarme pour Rg et/ou Rref a été activée (voir le chapitre 7.7 « ISM / Alarme sonde » à la page 65)
- Si l'alarme d'erreur du niveau d'électrolyte a été activé (voir le chapitre 7.7 « ISM / Alarme sonde » à la page 65)

8.2 Messages

CHEMIN D'ACCÈS : 🗥 \ISM \Messages

Ce menu contient les messages affichés lorsqu'un avertissement ou une alarme se déclenche. Il peut afficher jusqu'à 100 messages.

5 messages sont affichés sur chaque page. S'il y a plus de 5 messages, d'autres pages sont accessibles.

Les alarmes et/ou les avertissements non acquittés seront affichés au début de la liste. Viendront ensuite les alarmes ou les avertissements acquittés, mais toujours en cours. À la fin de la liste sont décrits les alarmes et les avertissements résolus. Les messages sont triés dans l'ordre chronologique à l'intérieur de chaque groupe.

L'état de l'avertissement ou de l'alarme est indiqué de la manière suivante :

Symbole	Description	Signification
	Le symbole d'alarme clignote	Une alarme est présente et n'a pas été acquittée
	Le symbole d´alarme ne clignote pas	Une alarme est présente et a été acquittée
	Le symbole d'avertissement clignote	Un avertissement est présent et n'a pas été acquitté
	Le symbole d'avertissement ne clignote pas	Un avertissement est présent et a été acquitté
	Le symbole OK ne clignote pas	Un avertissement ou une alarme a été résolu

Pour reconnaître une alarme ou un avertissement, vous devez appuyer sur le bouton **Info** situé sur la ligne correspondante.

Vous pouvez appuyer sur le bouton **Info** correspondant à chaque message. Vous y trouverez la description du message, la date et l'heure à laquelle l'alarme ou l'avertissement s'est déclenché et l'état de l'alarme ou du message.

Si l'avertissement ou l'alarme a déjà été résolu, la fenêtre déroulante du message affiche un autre bouton pour effacer le message (c'est-à-dire pour le supprimer de la liste des messages).

🛗 \Messages	
Ch1Warning pHGIs change<0.3	🛕 info
Ch1Warning pH Offset<7.50pH	🛕 info
Ch1Error ORP Offset<-60mV	🖉 info
SP1High	🏈 info
SP4Between	🖉 info
Clear All	
< 1/2 >	t I

8.3 Diagnostic ISM

CHEMIN D'ACCÈS : 1/ISM\Diagnostics ISM

Le transmetteur M400 propose un menu de diagnostic pour toutes les sondes ISM. Allez dans le menu Channel et sélectionnez la voie correspondante en appuyant sur le champ associé.

Différents menus de diagnostic s'affichent en fonction de la voie sélectionnée et de la sonde affectée.

Lisez les explications suivantes pour en savoir plus sur les différents menus de diagnostic.

8.3.1 Électrodes de pH/redox, sondes à oxygène, O_2 , Cond 4e

 ISM ISM Disgroetics

 Chan
 CHAN_1 pHORP

 Disgroitic
 Ordes

 Sensor Monitor
 Max. Temperature

Si une électrode de pH/redox, une sonde à oxygène, une sonde à O₂ ou une sonde de conductivité à 4 électrodes est connectée, les cycles de menus de diagnostic, le dispositif de contrôle de la sonde (sensor monitor) et la température maximale sont disponibles.

Appuyez sur le bouton Cycle pour afficher les informations sur les cycles NEP, SEP et Autoclavage de la sonde connectée. Les informations affichées indiquent le nombre de cycles effectués par la sonde et la limite max. du cycle correspondant, comme défini dans le menu de configuration ISM.

Remarque : Pour les sondes de conductivité à 4 électrodes, qui ne sont pas autoclavables, le menu AutoClave Cycles ne s'affiche pas.

Appuyez sur le bouton **Surveill. capteur** pour afficher les informations DLI, TTM et ACT de la sonde connectée. Les valeurs « DLI », « TTM » et « ACT » sont affichées dans un bargraphe.

Remarque : Pour les sondes de conductivité à 4 électrodes, les heures de fonctionnement sont affichées.

Appuyez sur le bouton **Température max.** pour afficher les informations concernant la température maximale connue par la sonde connectée, ainsi que la date et l'heure à laquelle est survenu cet événement. Cette valeur est enregistrée dans la sonde et ne peut pas être modifiée. La température maximale n'est pas enregistrée pendant l'autoclavage.

8.4 Données d'étalonnage de toutes les sondes ISM

CHEMIN D'ACCÈS : 础\ISM\Données cal.

Le transmetteur M400 propose un historique d'étalonnage pour toutes les sondes ISM. L'historique d'étalonnage fournit différentes données en fonction de la sonde affectée.

Lisez les explications suivantes pour en savoir plus sur les différentes données de l'historique d'étalonnage.

<u>信</u> 1 <u>ISM</u> 1	Calibration Data
Chan	CHAN_1 pH/ORP
	Actual
	Cal Data
V	

8.4.1 Données d'étalonnage de toutes les sondes ISM

Actuel (ajustage réel) :	jeu de données d'étalonnage utilisé pour les mesures. Ce jeu de données passe en position « Cal1 » après un nouveau réglage.
Usine (étalonnage usine) :	jeu de données d'origine, déterminé en usine. Ce jeu de données est conservé dans la sonde à titre de référence et ne peut pas être effacé.
Ajustage 1 (Premier ajustage) :	premier réglage après l'étalonnage usine. Ce jeu de données est conservé dans la sonde à titre de référence et ne peut pas être effacé.
Cal 1 (dernier étalonnage/réglage) :	jeu de données du dernier étalonnage/réglage exécuté. Ce jeu de données passe en position « Cal2 », puis « Cal3 » lorsqu'un nouvel étalonnage ou un nouveau réglage est effectué. Après ce niveau, le jeu de données n'est plus disponible. « Cal2 » et « Cal3 » fonctionnent de la même manière que « Cal1 ».

Cal2, Cal3 et **Temp Cal** peuvent être sélectionnés. Pour sélectionner le jeu de données d'étalonnage, appuyez sur le champ correspondant.

Remarque : La sonde à oxygène ampérométrique de THORNTON ne fournit pas le jeu de données Cal1, Cal2, Cal3 et Ajustage 1.

Appuyez sur le bouton **Données Cal.** pour afficher le jeu de données d'étalonnage correspondant. En outre, l'horodatage de l'étalonnage et l'ID utilisateur sont affichés.

Remarque : Cette fonction nécessite le réglage adéquat de la date et de l'heure pendant les tâches d'étalonnage et/ou d'ajustage.

8.5 Infos sur la sonde

CHEMIN D'ACCÈS : 恐\ISM\Info capteur

Vous pouvez afficher sur l'écran le modèle, la version du matériel et du logiciel, la dernière date d'étalonnage ainsi que le numéro de produit et de série des sondes ISM connectées au transmetteur M400.

Appuyez sur « Info capteur ».

Les informations de la voie à laquelle est connectée une sonde sont affichées à l'écran.

Les informations suivantes sont affichées pour la sonde sélectionnée : modèle de données, date d'étalonnage (date du dernier ajustement), numéro de série, numéro du produit, version logicielle et version matérielle.

Pour quitter le menu Info capteur, appuyez sur ←. Pour revenir à l'écran de menu, appuyez sur 奋.

ISM\Sensor Info		
Chan	CHAN_1 pH/ORP	
Model	Inpro-3250i	
Cal Date:	30/Jul/2012 14:22	
S/N	1139999	
P/N	52005378	
SW Ver.	7.0	
HW Ver.	2.0	

8.6 HW/SW Version (Version du matériel/logiciel)

CHEMIN D'ACCÈS : M\ISM\Version logiciels

Vous pouvez afficher sur l'écran la version du matériel et du logiciel ainsi que le numéro de produit et de série du transmetteur M400 ou des différentes cartes qui y sont connectées.

Les informations du transmetteur sont affichées à l'écran. Appuyez sur le champ dans la ligne du M400. Pour sélectionner les informations sur la carte souhaitée ou sur le transmetteur lui-même, appuyez sur le champ correspondant.

Les informations de la carte sélectionnée ou du transmetteur suivantes sont affichées : S/N (numéro de série), P/N (numéro du produit), SW Ver (version du logiciel) et HW Ver (version du matériel).

8.7 Info DLI/ACT

Les données détaillées concernant DLI et ACT s'affichent. Cette fonction dépend du modèle d'électrode de pH.

Touche personnalisée

CHEMIN D'ACCÈS : MCONFIG. Config. touche personnalisée

Ce menu permet de configurer un menu personnalisé sur le deuxième bouton de gauche sur l'écran de menu comme raccourci. La touche personnalisée est très pratique pour les touches tactiles programmables, particulièrement lorsque l'écran tactile n'est pas utilisé.

Options : la touche « FAV » (Favoris) est l'option par défaut. Voir chapitre 9.1 « Définition des favoris » pour le réglage de favoris.

- pour accéder au menu des messages.
- Vous pouvez sélectionner « PID » pour l'ajustage PID manuel.
- Vous pouvez sélectionner « Info » pour vérifier ACT/DLI.

sur le deuxième bouton gauche de l'écran de menu.

6.58 DH 60 °C 95 mV info day DLI N 10" at

Remarque : L'option « PID » s'affichera uniquement si le régulateur PID est réglé en mode manuel.

Après le réglage de touches personnalisées, les touches sélectionnées apparaîtront

9.1 Définition des favoris

CHEMIN D'ACCÈS : A FAVORI/Sélectionner Favori

Le transmetteur M400 permet de configurer jusqu'à 4 favoris pour accéder rapidement aux fonctions fréquemment utilisées.

m Kev Se Т

9

S/N	000000001
P/N	30655905
SW Ver:	0.0.00.54
HW Vec	A

습\ISM\DLI / ACT Info

Dynamic Lifetime Indicato

Adaptive Calibration Timer

fill CONFIG \ Cu

1FAVORITE \Set Favorite	
ISM	•
CAL	٢
CONFIG	۲
	L, L

Les menus principaux s'affichent. Choisissez le menu contenant la fonction que vous souhaitez définir comme favori. Par exemple, ISM en appuyant sur la flèche correspondante ► sur la même ligne.

Choisissez la fonction que vous souhaitez désigner en favori en activant l'option. Une fonction définie comme favori est affiche le symbole ★.

Remarque : Désactivez l'option en appuyant à nouveau sur le symbole. L'icône 🖈 du favori disparaît.

Allez dans le menu « Sélectionner Favori ». Les favoris définis sont affichés sur cette page. Appuyez sur la flèche correspondante ► pour la fonction sur la même ligne.

10 Maintenance

10.1 Nettoyage du panneau avant

Nettoyez les surfaces avec un chiffon doux humide et séchez-les soigneusement.

11 Dépannage

Si l'équipement est utilisé d'une manière différente de celle spécifiée par METTLER TOLEDO, cela peut compromettre la protection assurée par l'équipement. Consultez le tableau ci-dessous pour connaître les causes possibles des problèmes courants :

Problème	Cause possible
L'affichage est vierge.	Absence d'alimentation du M400
	Panne matérielle
Lectures de mesure incorrectes.	 Sonde mal installée. Multiplicateur d'unités saisi incorrect. Compensation de température mal réglée ou désactivée. Étalonnage de la sonde ou du transmetteur requis. Câble de raccordement ou de la sonde défectueux ou plus long que la recommandation. Panne matérielle.
Lectures de mesure instables.	 Sondes ou câbles installés trop près de l'équipement, ce qui génère beaucoup de bruit électrique. Câble plus long que celui recommandé. Réglage trop bas de la moyenne. Câble de raccordement ou de la sonde défectueux.
Alarme 1 symbole s'affiche.	 Le seuil est en état d'alarme (seuil dépassé). Une alarme a été sélectionnée (voir chapitre 7.7 « ISM / Alarme sonde ») et s'est déclenchée.
Impossible de modifier les réglages du menu.	Utilisateur exclu pour des raisons de sécurité.

11.1 Liste des messages d'erreur, des avertissements et des alarmes relatifs à la conductivité (résistivité) des sondes analogiques

Alarmes	Description
Dépass. temps 1)	Défaut logiciel/système
Sonde sèche	La cellule tourne à sec (absence de solution de mesure) ou des fils sont rompus.
Sonde court-circ. ¹⁾	Court-circuit causé par la sonde ou le câble

1) En fonction du paramétrage du transmetteur.

11.2 Liste des messages d'erreur, des avertissements et des alarmes relatifs à la conductivité (résistivité) des sondes ISM

Alarmes	Description
Dépass. temps 1)	Défaut logiciel/système
Cell cond sèche 1)	La cellule tourne à sec (absence de solution de mesure)
Déviation cellule 1)	Multiplicateur hors tolérances ²⁾ (selon le modèle de sonde)
Sonde court-circ.	Court-circuit causé par la sonde ou le câble

1) En fonction du paramétrage du transmetteur (voir chapitre 7.7« ISM / Alarme sonde »).

2) Pour plus d'informations, reportez-vous à la documentation de la sonde.

11.3 Liste des messages d'erreur, des avertissements et des alarmes relatifs au pH

11.3.1 Électrodes de pH sauf celles à double membrane

Avertissements	Description
Avertissement pH Pente trop élevée	Pente > 102 %
Avertissement pH Pente trop faible	Pente < 90 %
Avertissement pH décalage trop élevé	pH ZéroPt > mmmpH
Avertissement pH décalage trop faible	pH ZéroP < nnnpH
Avertissement résistance du verre faible ²⁾	Résistance de l'électrode de verre modifiée selon un facteur inférieur à 0,3
Avertissement résistance du verre élevée ²⁾	Résistance de l'électrode de verre modifiée d'un facteur supérieur à 3
Avertissement de résistance de référence faible	Résistance de l'électrode de référence modifiée d'un facteur inférieur à 0,3
Avertissement résistance de référence élevée ²⁾	Résistance de l'électrode de référence modifiée d'un facteur supérieur à 3

Alarmes	Description
Dépass. temps	Défaut logiciel/système
Erreur pH Pente trop élevée	Pente > 103 %
Erreur pH Pente trop faible	Pente < 80 %
Erreur pH Décalage trop élevé	pH ZéroPt > xxxpH
Erreur pH Décalage trop faible	pH ZéroPt < yyypH
Erreur résistance de référence élevée 1)	Résistance de l'électrode de référence > 150 KΩ (coupure)
Erreur résistance de référence faible 1)	Résistance de l'électrode de référence > 1 000 KΩ (court-circuit)
Erreur résistance du verre élevée 1)	Résistance de l'électrode de verre > 2 000 KΩ (coupure)
Erreur résistance du verre faible 1)	Résistance de l'électrode de verre < 5 KΩ (court-circuit)

1) Activez cette fonction dans les paramètres du transmetteurvoir le chapitre 7.7 « ISM / Alarme sonde » à la page 65 (CHEMIN D'ACCÈS : Menu\Alarme ISM / capteur).

11.3.2 Électrodes de pH à double membrane (pH/pNa)

Avertissements	Description
Avertissement pH Pente trop élevée	Pente > 102 %
Avertissement pH Pente trop faible	Pente < 90 %
Avertissement pH décalage trop élevé	pH ZéroPt > mmmpH
Avertissement pH décalage trop faible	pH ZéroP < nnnpH
Avertissement de résistance du verre pNa faible	Résistance de l'électrode de verre modifiée selon un facteur inférieur à 0,3
Avertissement résistance du verre pNa élevée	Résistance de l'électrode de verre modifiée d'un facteur supérieur à 3
Alarmes	Description
Dépass. temps	Défaut logiciel/système
Erreur pH Pente trop élevée	Pente > 103 %
Erreur pH Pente trop faible	Pente < 80 %
Erreur pH Décalage trop élevé	pH ZéroPt > xxxpH
Erreur pH Décalage trop faible	pH ZéroPt < yyypH
Erreur résistance de verre pNa élevée	Résistance de l'électrode de verre > 2 000 KΩ (coupure)
Erreur de résistance du verre pNa faible	Résistance de l'électrode de verre $< 5 \text{ K}\Omega$ (court-circuit)

1) Activez cette fonction dans les paramètres du transmetteur (voir le chapitre 7.7 « ISM / Alarme sonde » à la page 65 (CHEMIN D'ACCÈS : Menu\Alarme ISM / capteur).

11.3.3 Messages redox

Avertissements ¹⁾	Description
Avertissement décalage redox trop élevé	Décalage redox proche de la limite spécifiée
Avertissement de redox point zéro trop faible	Décalage redox proche de la limite spécifiée

Alarmes 1)	Description
Erreur de redox point zéro trop élevé	Le décalage redox est supérieur à la limite spécifiée
Erreur de redox point zéro trop faible	Le décalage redox est inférieur à la limite spécifiée

1) Sondes ISM uniquement.

11.3.4 Message ISM 2.0 pH

Alarmes	Description
Erreur temp. procédé trop basse	Température à l'extrémité de la sonde inférieure à la limite spécifiée
Erreur temp. procédé trop élevée	Température à l'extrémité de la sonde supérieure à la limite spécifiée
Erreur remplacement de l'électrode	Les composants électroniques de la sonde ont détecté une erreur interne irrécupérable
Erreur mesure hors limite	Circuit de mesure de la sonde saturé, impossible de calculer des valeurs de pH/redox/température fiables
Erreur temp. élect. sonde trop élevée	La température des éléments électroniques de la sonde dépasse la limite spécifiée

Avertissements	Description
Avertissement durée de stockage expirée	La durée de stockage a expiré (s'applique uniquement aux sondes dont la durée de vie est spécifiée)
Avertissement mesure hors limite	Circuit de mesure des sondes presque saturé, impossible de calculer des valeurs de pH/redox/ température fiables
Avertissement temp. élect. trop élevée	Température des composants électroniques de la sonde proche de la limite spécifiée
Avertissement remplacement membrane en verre	La membrane en verre a atteint sa durée de vie prévue et doit être remplacée (valable uniquement pour les sondes dotées du système de détection correspondant)
Avertissement remplacement de référence	La référence a atteint sa durée de vie prévue et doit être remplacée (valable uniquement pour les sondes dotées du circuit de détection correspondant)
Avertissement temp. procédé trop basse	Température à l'extrémité de l'électrode proche de la limite spécifiée
Avertissement temp. procédé trop élevée	Température à l'extrémité de l'électrode proche de la limite spécifiée

11.3.5 Messages d'alerte courants de la sonde ISM

Pour les messages d'alerte courants de la sonde ISM :

1 : Non connecté	
2 : Étalonnage de l'électrode requis	ACT < = 0
3 : a) Durée de vie de l'électrode expirée	$DLI < = 0 (pH, pH/pNa, O_2 hi, O_2 faible, Trace O_2, CO_2)$
b) Changer l'élément de détection	DLI < =0 (0 pt 0 ₂)
4 : Maint. requise	TTM < = 0 (opt O_2 et pH non utilisés)
5 : Remplacement de la sonde	 pour toutes les sondes, ne connectez aucune sonde configurée. Voici les conditions à remplir pour afficher ce message : a) Connexion de sonde inconnue b) Connexion de sonde non acceptée c) Erreur somme de contrôle de la sonde d) Sonde désactivée e) Ancienne sonde optique O₂ FW < 2,13 f) L'utilisateur sélectionne « Non » dans la situation suivante : Numéro de module différent, même paramètre de connexion de la sonde ; Paramètre de connexion de la sonde différent
6 : Compteur NEP expiré	NEP > = Limite NEP max.
7 : Compteur SEP expiré	SEP > = limite SEP max.
8 : AutoClave Counter Expired (Compteur autoclave expiré)	Autoclave > = Limite max. autoclave

11.4 Liste des messages d'erreur, des avertissements et des alarmes de la sonde ampérométrique O₂

11.4.1 Sondes de mesure de l'oxygène en forte concentration

Avertissements	Description
Avertissement O_2 Pente élevée < - 90 nA	Pente trop faible
Avertissement O_2 Pente élevée > -35 nA	Pente trop importante
Avertissement O_2 Pente élevée > 0,3 nA	Décalage du zéro trop important
Avertissement O_2 Pente élevée < -0,3 nA	Décalage du zéro trop faible
Alarmes	Description
Dépass. temps 1)	Défaut logiciel/système
Erreur O_2 Pente élevée < – 110 nA	Pente trop faible
Erreur O_2 Pente élevée > -30 nA	Pente trop importante
Erreur O_2 Pente élevée > 0,6 nA	Décalage du zéro trop important
Erreur O_2 Pente élevée < -0,6 nA	Décalage du zéro trop faible
Erreur de niveau d'électrolvte	Niveau d'électrolyte trop bas

1) Sondes ISM uniquement.

11.4.2 Sondes de mesure de l'oxygène en faible concentration

Avertissements	Description
Avertissement O_2 Pente faible < -460 nA	Pente trop faible
Avertissement O_2 Pente faible > -250 nA	Pente trop importante
Avertissement O_2 Décalage faible > 0,5 nA	Décalage du zéro trop important
Avertissement Chx O_2 Décalage faible < -0.5 nA	Décalage du zéro trop faible
Alarmes	Description
Dépass. temps 1)	Défaut logiciel/système
Erreur O_2 Pente faible < -525 nA	Pente trop faible
Erreur O_2 Pente taible > -220 nA	Pente trop importante
$\frac{\text{Erreur O}_2 \text{ Pente faible > -220 nA}}{\text{Erreur O}_2 \text{ Décalage faible > 1,0 nA}}$	Pente trop importante Décalage du zéro trop important
Erreur O_2 Pente faible > -220 nAErreur O_2 Décalage faible > 1,0 nAErreur O_2 Décalage faible < -1,0 nA	Pente trop importante Décalage du zéro trop important Décalage du zéro trop faible

1) Sondes ISM uniquement.

11.4.3 Sondes de mesure de l'oxygène à l'état de trace

Avertissements	Description
Avertissement O_2 Pente trace < -5 uA	Pente trop faible
Avertissement O_2 Pente trace > -3 uA	Pente trop importante
Avertissement O_2 Décalage trace > 0,5 nA	Décalage du zéro trop important
Avertissement O_2 Décalage trace < -0.5 nA	Décalage du zéro trop faible

Alarmes	Description
Dépass. temps	Défaut logiciel/système
Erreur O_2 Pente trace < -6000 nA	Pente trop faible
Erreur O_2 Pente trace > -2000 nA	Pente trop importante
Erreur O_2 Décalage trace > 1,0 nA	Décalage du zéro trop important
Erreur O_2 Décalage trace < $-1,0$ nA	Décalage du zéro trop faible
Erreur de niveau d'électrolyte	Niveau d'électrolyte trop bas

11.5 Liste des messages d'erreur, des avertissements et des alarmes relatifs à l'O₂ optique

	Description
LED éteinte	
Avertissements	

Alarmes	Description
Étalonnage de l'électrode requis	ACT = 0 ou valeurs mesurées hors limite
Changer l'élément de détection	DLI < = 0
Compteur NEP expiré	Limite de cycles NEP atteinte
Compteur SEP expiré	Limite de cycles SEP atteinte
Autoclave Counter Expired (Compteur autoclave expiré)	Limite de cycles d'autoclavage atteinte

Dépass. temps	Défaut logiciel/système
Erreur signal	Signal ou valeur de température hors limite
Erreur corps de l'électrode	Température hors limite, lumière directe trop intense (à cause d'une fibre optique cassée, par exemple) ou bien le corps de l'électrode a été enlevé
Erreur matérielle	Défaillance de composants électroniques
Non connecté	
Remplacement de la sonde	Pour toutes les sondes, ne connectez aucune sonde configurée. Voici les conditions à remplir pour afficher ce message :
	 a) Connexion de sonde inconnue b) Connexion de sonde non acceptée c) Erreur somme de contrôle sonde d) Sonde désactivée e) Ancienne sonde optique O₂ FW < 2,13 f) L'utilisateur sélectionne « Non » dans la situation suivante : Numéro de module différent, même paramètre de connexion de la sonde. Connexion de différents paramètres de la sonde.

* Si cet avertissement s'affiche, vous trouverez d'autres renseignements sur la cause possible dans Menu/Service/ Diagnostic/O2 optical.

Si une alarme se produit, vous trouverez d'autres renseignements sur la cause possible dans Menu/Service/Diagnostics/O $_2$ optical.

11.6 Liste des messages d'erreur, des avertissements et des alarmes pour le CO₂ dissous

Avertissements	Description
Avertissement de résistance de référence faible	Variation pHGIs < 0,3 (analogique seulement)
Avertissement de résistance du verre élevée	Variation pHGIs > 3 (analogique seulement)
Avertissement de pente de pH trop élevée	Pente de pH > 102 %
Avertissement de pente de pH trop faible	Pente de pH < 90 %
Avertissement pH décalage trop élevé	pH ZéroPt > mmmpH
Avertissement pH décalage trop faible	pH ZéroPt < nnnpH

Alarmes	Description
Dépass. temps 1)	Défaut logiciel/système
Erreur de résistance du verre élevée	Rés. verre pH > 2 000 M Ω (analogique seulement)
Erreur de résistance du verre faible	Rés. verre pH < 5 M Ω (analogique seulement)
Erreur pH pente trop élevée	Pente pH > 103 %
Erreur pH pente trop faible	Pente pH < 80 %
Erreur pH Décalage trop élevé	pH ZéroPt > xxxpH
Erreur pH Décalage trop faible	pH ZéroPt < yyypH

 En fonction du paramétrage du transmetteur (voir chapitre 7.7 « ISM / Alarme sonde »; CHEMIN D'ACCÈS : Menu/Configurer/Alarme).

11.7 Signalement des avertissements et des alarmes

11.7.1

Les avertissements sont signalés par le symbole d'avertissement 🛆 en haut de l'écran du transmetteur. Un message d'avertissement est enregistré et peut être sélectionné via le menu

Signalement des avertissements

« Messages » (CHEMIN D'ACCÈS : 🗥 ISM\Messages).

Remarque : Si l'avertissement n'est pas acquitté, l'en-tête de l'écran clignote. Si l'avertissement a déià été acquitté, l'en-tête de l'écran s'affiche en continu. Consultez également le chapitre 8.2 « Messages ». Si une alarme ou un avertissement n'est pas pris(e) en compte par l'utilisateur, l'écran du transmetteur ne s'éteindra pas même si la durée d'éclairage est écoulée (voir le chapitre 7.9 « Config. affichage » à la page 66).

Remarque : Si une voie génère simultanément une alarme et un avertissement, l'alarme sera signalée en priorité. L'alarme sera indiquée (voir le chapitre 11.7 « Signalement des avertissements et des alarmes » à la page 85) sur l'écran de menu ou la fenêtre d'accueil, tandis que l'avertissement n'apparaîtra pas.

h1Warning pHGIs change<0.3 ж Ch1Warning pH Offset<7.50pH л Ch1Error ORP Offset<-60m SP1High Clear All 1/2

Appuyez sur l'en-tête de l'écran de menu pour accéder aux messages. Reportez-vous à chapitre 8.2 « Messages » pour consulter la description de la fonctionnalité de ce menu.

Remarque : Il est possible d'activer/de désactiver la détection de certains avertissements en activant/désactivant l'alarme correspondante. Consultez les chapitre 7.7 « ISM / Alarme sonde ».

11.7.2 Signalement des alarmes

Les alarmes sont indiquées par un symbole d'alarme en haut de l'écran du transmetteur. Un message d'alarme est enregistré et peut être sélectionné via le menu Messages (CHEMIN D'ACCÈS : Alson Messages).

Remarque : Si l'alarme n'a pas été acquittée, l'en-tête de l'écran clignote. Si l'alarme a été acquittée, l'en-tête de l'écran s'affiche en continu. Consultez également le chapitre 8.2 « Messages ». Si une alarme ou un avertissement n'est pas pris(e) en compte par l'utilisateur, l'écran du transmetteur ne s'éteindra pas même si la durée d'éclairage est écoulée (voir chapitre 7.9« Config. affichage »).

Remarque : Si une voie génère simultanément une alarme et un avertissement, l'alarme sera signalée en priorité. L'alarme sera indiquée sur l'écran de menu ou la fenêtre d'accueil et l'avertissement ne sera pas affiché.

8.31 DH

info

🛱 \Messages	
Ch1Warning pHGIs change<0.3	<u>∧</u> info
Ch1Warning pH Offset<7.50pH	\Lambda info
Ch1Error ORP Offset<-60mV	🏈 info
SP1High	🕜 🛛 info
SP4 Between	🏈 🛛 info
Clear All	
< 1/2 >	£

Appuyez sur l'en-tête de l'écran de menu pour accéder aux messages. Reportez-vous à chapitre 8.2 « Messages »pour lire la description de ce menu.

Remarque : La détection de certaines alarmes peut être activée/désactivée. Pour cela, reportezvous à chapitre 7.7 « ISM / Alarme sonde ».

Remarque : Les alarmes provoquées par un dépassement de la limite du seuil ou de la plage de valeurs admises(CHEMIN D'ACCÈS ACONFIG.\Vals de consigne ; voir aussi chapitre 7.4 « Valeurs de consigne ») sera également indiqué sur l'écran et enregistré via le menu Messages (CHEMIN D'ACCÈS : ASM\Messages ; voir aussi chapitre 8.2 « Messages »).

12 Références de commande, accessoires et pièces de rechange

Contactez votre bureau de vente ou votre représentant local METTLER TOLEDO pour obtenir un complément d'information sur les autres accessoires et pièces de rechange.

Description	Réf. commande
Kit de montage sur canalisation pour modèle ½ DIN pour diamètre de conduite entre 40 et 60 mm	30 300 480
Kit de montage sur panneau pour versions DIN 1/2	30 300 481
Cache de protection pour versions 1/2 DIN	30 073 328
Kit de montage mural pour modèle DIN ½	30 300 482
Transmetteur	Réf. commande
M400 2XH Type2	30 655 901
M400 2H Type2	30 655 902
M400 2XH Type2 ISM	30 655 903
M400 2H Type2 ISM	30 655 904
M400 2XH Type3	30 655 905
M400 2XH Type3 ISM	30 655 908

13 Caractéristiques techniques

13.1 Caractéristiques techniques générales

Conductivité à 2 ou 4 électrodes

Paramètres de mesure	Conductivité/rési	stivité et température
Plages de conductivité		0,02 à 2 000 µS/cm
sonde à 2 électrodes		$(500 \ \Omega \times \text{cm} \ a \ 50 \ \text{M}\Omega \times \text{cm})$
	C = 0,01	0,002 à 200 µS/cm
		(5 000 12 × cm d 500 Mt2 × cm)
	C = 0, I	0,02 å 2 000 µS/cm
	0 1	$(500 \Omega \times \text{cm} 0.50 \text{ M}\Omega \times \text{cm})$
	$\frac{U=1}{2}$	
	C = 3	
	C = 10	10 a 40 000 μS/cm (25 0 ··· cm à 100 k0 ··· cm)
		$(2502 \times \text{cm} \text{ a} 100 \text{ k} 2 \times \text{cm})$
Sonde à 4 électrodes	0,01 0 650 116/	$(1,54 \ \Omega \times GH \ 0.0,1 \ M\Omega \times GH)$
Plage d'affichage pour sonde à 2 électrodes	0 à 40 000 mS/	cm (25 Ω × cm à 100 MΩ × cm)
Plage d'affichage pour sonde à 4 électrodes	0,01 à 650 mS/	cm (1,54 × cm à 0,1 M Ω × cm)
Courbes de concentration chimique	NaCl :	0-26 % à 0 °C jusqu'à 0-28 % à 100 °C
	• NaOH :	0-12 % à 0 °C jusqu'à 0-16 % à 40 °C
		à 0–6 % à +100 °C
	• HCI :	0−18 % à −20 °C jusqu′à 0−18 % à +0 °C à 0−5 % à +50 °C
	• HNO ₃ :	0-30 % à -20 °C jusqu'à 0-30 % à +0 °C à 0-8 % à +50 °C
	• H ₂ SO ₄ :	0-26 % à -12 °C à 0-26 % à +5 °C à 0-9 % à +100 °C
	• H ₃ PO ₄ :	0–35 % à 5 °C jusqu'à 80 °C
	Tableau de cor	ncentration défini par l'utilisateur (matrices 5×5)
Plages des solides totaux dissous	NaCl, CaCO ₃	
Précision Cond/Rés ¹⁾	Analogique : ± 0 selon la valeur la	,5 % par rapport à la valeur affichée ou 0,25 Ω, a plus élevée, jusau'à 10 MΩ-cm
Répétabilité Cond/Rés ¹⁾	Analoaiaue : ±0	,25 % de la valeur affichée ou 0,25 Ω
•	selon la valeur la	a plus élevée
Résolution Cond/Rés	Auto/0,001/0,01	/0,1/1 (peut être sélectionnée)
Entrée de température	Pt1000/Pt100/NTC22K	
Plage de mesure de la température	-40 à +200 °C	
Résolution de température	Auto/0,001/0,01	1/0,1/1 (peut être sélectionnée)
Précision des mesures	• ISM :	±1 digit
de température	Analogique :	±0,25 °C dans la plage comprise entre
		−30 à +150 °C ;
		±0,50 °C extérieur
Répétabilité de la température 1)	±0,13°C	
Longueur max. du câble de sonde	• ISM :	80 m
	Analogique :	61 m ; avec des sondes à 4 électrodes : 15 m
Étalonnage	1 point, 2 points	ou procédé

1) Le signal d'entrée ISM ne génère pas d'erreur supplémentaire.

87

pH/redox	
Paramètres de mesure	pH, mV et température
Plage d'affichage du pH	-2,00 à +20,00 pH
Résolution pH	Auto/0,001/0,01/0,1/1 (peut être sélectionnée)
Précision pH ¹⁾	Analogique : ±0,02 pH
Gamme mV	-1 500 - +1 500 mV
Résolution mV	Auto/0,001/0,01/0,1/1 mV (sélectionnable)
Précision mV ¹⁾	Analogique : ± 1 mV
Saisie de la température ²⁾	Pt1000/Pt100/NTC30K
Plage de mesure de la température	–30 à 130 °C
Résolution de température	Auto/0,001/0,01/0,1/1 (peut être sélectionnée)
Précision des mesures de température ¹⁾	Analogique : $\pm 0,25$ °C dans la plage comprise entre - 10 et + 150 °C
Répétabilité de la température 1)	±0,13°C
Compensation de température	Automatique/manuelle
Longueur max. du câble de sonde	Analogique : 10 à 20 m selon la sonde
	• ISM : 80 m
Étalonnage	pH : 1 point (décalage) ou 2 points (pente et décalage) ou procédé (décalage) Redox : 1 point (décalage) ou procédé (décalage) Température ³⁾ : 1 point (décalage)

1) Le signal d'entrée ISM ne génère pas d'erreur supplémentaire.

2) Non requis avec les sondes ISM3) Appliqué sur ISM pH 2,0.

Jeux de tampons existants

Tampons standard	Tampons MT-9, tampons MT-10, tampons techniques NIST, Tampons standard NIST (DIN 19266:2000-01), tampons JIS Z 8802, tampons Hach, tampons CIBA (94), Merck Titrisols-Reidel Fixanals, tampons WTW
Électrode à double membrane Tampons pH (pH/pNa)	Tampons pH/pNa Mettler (Na+ 3,9M)

Oxygène ampérométrique		
Paramètres de mesure	Oxygène dissous : saturation ou concentration et température	
	Oxygène gazeux : concentration et température	
Plage de courant	Analogique : 0 à - 7 000 nA	
Plages de mesure de l'oxygène,	• Saturation : 0 à 500 % d'air, 0 à 200 % d'0 $_{\rm 2}$	
oxygène dissous	 Concentration : 0 ppb (µg/I) à 50,00 ppm (mg/I) 	
Plages de mesure de l'oxygène, oxygène dans le gaz	0 à 9 999 ppm 0 ₂ gazeux, 0 à 100 vol % d'0 ₂	
Précision des mesures d'oxygène, oxygène dissous ¹⁾	 Saturation ±0,5 % de la valeur mesurée ou ±0,5 % suivant la valeur la plus élevée 	
	 Valeurs de concentration élevées : ±0,5 % de la valeur mesurée ou ±0,050 ppm/±0,050 mg/l, suivant la valeur la plus élevée 	
	 Valeurs de concentration faibles : ±0,5 % de la valeur mesurée ou ±0,001 ppm/±0,001 mg/l, suivant la valeur la plus élevée 	
	 Concentration à l'état de traces : ±0,5 % de la valeur mesurée ou ±0,100 ppb/±0,1 μg/l suivant la valeur la plus élevée 	
Précision des mesures d'oxygène, oxygène gazeux 1)	• ± 0.5 % par rapport à la valeur mesurée ou ± 5 ppb suivant la valeur la plus élevée pour l'O ₂ gazeux de niveau ppm	
	• ± 0.5 % de la valeur mesurée ou ± 0.01 %, suivant la valeur la plus élevée pour le % de vol O_2	
Résolution courant ¹⁾	Analogique : 6 pA	
Tension de polarisation	Analogique : – 1 000 à 0 mV	
	 ISM : - 550 mV ou - 674 mV (configurable) 	
Entrée de température	ΝΤC 22 kΩ, Ρt1000, Ρt100	
Compensation de température	Automatique	
Plage de mesure de la température	De - 10 à + 80 °C	
Précision des mesures de température	±0,25 K dans la plage - 10 à +80 °C	
Longueur max. du câble de sonde	Analogique : 20 m	
	• ISM : 80 m	
Étalonnage	1 point (pente et décalage) ou procédé (pente et décalage)	

1) Le signal d'entrée ISM ne génère pas d'erreur supplémentaire.

Oxygène optique

Paramètres de mesure	Saturation ou concentration en O2 dissous et température
Gamme de concentration d'O ₂	0,1 ppb (µg/L) à 50,00 ppm (mg/l)
dissous	
Gamme de saturation d'O ₂ dissous	0 à 500 % d'air, 0 à 100 % d'O ₂
Résolution O ₂ dissous	Auto/0,001/0,01/0,1/1 (peut être sélectionnée)
Précision O ₂ dissous	± 1 digit
Plage de mesure de la température	– 30 à + 150 °C
Résolution de température	Auto/0,001/0,01/0,1/1 (peut être sélectionnée)
Précision des mesures	±1 digit
de température	
Répétabilité de la température	± 1 digit
Compensation de température	Automatique
Longueur max. du câble de sonde	15 m (50 pi)
Étalonnage	1 point (selon le modèle de sonde), 2 points, procédé

Ονυσόρο σπρότοπότείσμο

CO ₂ dissous	
Paramètres de mesure	CO ₂ dissous et température
Gammes de mesure du CO ₂	• 0 à 5 000 mg/l
	• 0 à 200 %sat
	• 0 à 1 500 mm Hg
	• 0 à 2 000 mbar
	• 0 à 2 000 hPa
Précision CO ₂	± 1 digit
Résolution CO ₂	Auto/0,001/0,01/0,1/1 (peut être sélectionnée)
Gamme mV	– 1 500 à + 1 500 mV
Résolution mV	Auto/0,01/0,1/1 mV
Précision mV	± 1 digit
Domaine de pression totale (TotPres)	0 à 4 000 mbar
Entrée de température	Pt1000/NTC22K
Plage de mesure de la température	0 à +60 °C
Résolution de température	Auto/0,001/0,01/0,1/1 (peut être sélectionnée)
Précision des mesures de température	±1 digit
Répétabilité de la température	±1 digit
Longueur max. du câble de sonde	80 m
Étalonnage	1 point (décalage), 2 points (pente ou décalage) ou procédé (décalage)

Jeux de tampons existants

Tampon	Tampons MT-9 avec une solution de $pH = 7,00$ et $pH = s9,21$
	à 25 °C

13.2 Caractéristiques électriques

13.2.1 Caractéristiques électriques générales

Interface utilisateur	TFT 4,4"		
	Noir et blanc		
	 Résolution : ¼ VGA (320 x 240 pixels) 		
Durée de fonctionnement	4 jours environ		
Clavier	4 touches à retour tactile		
Langues	10 (anglais, allemand, français, italien, espagnol, portugais, russe, japonais, coréen et chinois)		
Borniers de raccordement	Bornes cage à ressorts, appropriées pour section de fil de 0,2 à 1,5 mm² (AWG 16-24)		
Entrée analogique	4 à 20 mA (pour la compensation de pression)		

13.2.2 4 à 20 mA (avec HART)

Tension d'alimentation	14 à 30 V CC
Nombre de sorties (analogiques)	2
Sorties de courant	Courant de boucle 4 à 20 mA, avec isolation galvanique jusqu'à 60 V de l'entrée et de la terre, protection contre les erreurs de polarité et tension d'alimentation comprise entre 14 et 30 V CC.
Erreur de mesure par sorties analogiques	$< \pm 0.05$ mA sur la plage comprise entre 1 et 20 mA
Configuration des sorties analogiques	Linéaire
Régulateur PID	Longueur d'impulsion, fréquence d'impulsion
Entrée Hold/Contact d'alarme	Oui/Oui (temporisation d'alarme : 0 à 999 s)
Sorties numériques	2 collecteurs ouverts (OC), 30 V CC, 100 mA, 0,8 W
Entrée numérique	2 entrées avec isolation galvanique jusqu'à 60 V de la sortie, entrée analogique et terre avec limites de commutation de 0,00 V CC à 1,00 V CC et de 2,30 V CC en inactif à 30,00 V CC en actif
Temporisation de sortie d'alarme	0 à 999 s

13.3 Caractéristiques mécaniques

Dimensions	Boîtier – Hauteur × Largeur × Profondeur	150 × 150 × 105 mm
	Profondeur max. – en cas de montage sur panneau	74 mm
Poids		1,50 kg
Matériau		Fonte d'aluminium
Classification du boîtier		IP 66/NEMA4X

13.4 Caractéristiques environnementales

Température de stockage	–40 à +70 °C	
Température ambiante de fonctionnement	-20 à +60 °C	
Humidité relative	0 à 95 % sans condensation	
CEM	Conforme à la norme EN 61326-1 (exigences générales) Émission : classe B, immunité : classe A	
Certificats et conformité	M400 2H	
	 Classe I cCSAus/FM, division 2, groupes A, B, C, D T4A Classe I cCSAus/FM, zone 2, groupes IIC T4 	
	M400 2XH	
	• ATEX/IECEx Zone 1 Ex ib [ia Ga] IIC T4 Gb	
	• ATEX/IECEx Zone 21 Ex ib [ia Da] IIIC T80 °C Db IP 66	
	• Classe I cCSAus/FM, division 1, groupes A, B, C, D T4A	
	 Classe II cCSAus/FM, division 1, groupes E, F, G 	
	Classe III cCSAus/FM	
	 Classe I cCSAus/FM, zone 0, AEx ia IIC T4 Ga 	
Marque CE	Le système de mesure est conforme aux exigences réglementaires des directives CE. METTLER TOLEDO confirme la réussite des tests effectués sur le dispositif en y apposant la marque CE.	
Référence d'information des certificats détaillés à documenter	Instructions Ex (PN 30715260)	

13.5 Schémas de contrôle

Pour le contenu détaillé, reportez-vous au document PN 30715260 pour les instructions Ex.

13.6 Tableau des valeurs par défaut

Paramètres communs

Paramètre	Sous-paramètre	Valeur	Unité
Alarme générale	OC (collecteur ouvert)	1	
	Delay (Temporisation)	1	
	Hystérèse	0	
	État inversé	Inversé	
	Panne de courant	Oui	
	« Software Failure » (Erreur Logiciel)	Oui	
ISM/Alarme sonde	OC (collecteur ouvert)	2	
Nettoyage	OC (collecteur ouvert)	Aucune	
	Temps de pause	20	
	Intervalle	0	
	Temps Nett.	0	
	Assigner un canal	Aucune	
« Hold outputs » (Sorties Hold)		Oui	
« Digitalln » (Numér.In)		Off	
« Lockout » (Verrouillage)		Non	
Moniteur ISM	Ind. Durée de vie	Oui	N° alarme
	Temps avant Maint	Oui	N° alarme
	Adapt Timer Cal	Oui	N° alarme
	Compteur de cycles NEP	100	N° alarme
	Compteur de cycles SEP	100	N° alarme
	Compteur de cycles autoclave	0	N° alarme
	OC (collecteur ouvert)	Aucune	
Langue		English (Anglais)	
Passwords (Mots de passe)	Administrateur	0000000	
	Opérateur	0000000	
	Délai	1	S
« All OCs » (Tous les	Hystérésis	0	Pour l'unité de mesure pH, mV, °C, la même unité. Pour une autre unité de mesure, 5 %.
ouverts)	État	OC#1 est interverti, OC#2 est normal	
	Mode Hold	Last Value (Dernière valeur)	

Toutes les sorties courant	Mode	4 20 mA	
	Туре	Normal	
	Alarme	Off	
	Mode Hold	« Last value » (Dernière valeur)	

рΗ

Paramètre	Sous-paramètre	Valeur	Unité
Voie X	M1	рН	рН
	M2	Température	°C
	M3	Tension	Volts
	M4	DLI (aucun pour sonde analogique)	DLI
Source de température		Auto	
		Mattler_Q	
		Movenne	
		7 0 (valour afficiés our la condo ISM)	
		0,000	pH/°C
		Non	
Constantes d'étal. (pour sonde analogique)		S = 100,0 %, Z = 7 000 pH	
	Température	M = 1,0, A = 0,0	
Constantes d'étal. (pour sonde ISM)		Affichage sur la sonde	
Résolution	рН	0,01	рН
	Température	0,1	°C
	Volts	1,0	mV
	DLI	1,0	jour
Sorfies analogiques	1	M1	
	2	M2	
рН	Valeur 4 mA	2	рН
	Valeur 20 mA	12	рН
Température	Valeur 4 mA	0	°C
	Valeur 20 mA	100	°C
Valeur de consigne 1	Mesure	M1	
	Туре	Off	
	OC (collecteur ouvert)	Aucune	
Valeur de consigne 2	Mesure	M2	
	Туре	Off	
	OC (collecteur ouvert)	Aucune	
Alarme	Diagnostic Rg	Non	
	Diagnostic Rr	Non	

pH/pNa

Paramètre	Sous-paramètre	Valeur	Unité
Voie X	M1	pH	рН
	M2	Température	°C
	M3	Tension	Volts
	M4	DLI (aucun pour sonde analogique)	DLI
Source de température (sonde analogique)		Auto	
Tampon pH		Na+ 3,9 M	
Contrôle dérive		Moyenne	
IP		Affichage sur la sonde	рН
STC		0,000	pH/°C
Temp. cal. fixe		Non	
Constantes d'étal.		Affichage sur la sonde	
Résolution	рН	0,01	рН
	Température Volts	0,1 1,0	°C mV
	DLI	1,0	jour
Sorties analogiques	1	M1	
	2	M2	
рН	Valeur 4 mA	2	рН
	Valeur 20 mA	12	рН
Température	Valeur 4 mA	0	°C
	Valeur 20 mA	100	°C
Valeur de consigne 1	Mesure	M1	
	Туре	Off	
	OC (collecteur ouvert)	Aucune	
Valeur de consigne 2	Mesure	M2	
	Туре	Off	
Alarme	OC (collecteur ouvert)	Aucune	
	Diagnostic Rg	Non	

Oxygène

Paramètre	Sous-paramètre	Valeur	Unité
Voie X	M1	02	% air (O ₂ faible : ppb)
	M2	Température	°C
	M3	DLI (Aucun pour sonde analogique)	DLI
	M4	TTM (Aucun pour sonde analogique)	TTM
Source de température (sonde analogique)		Auto	
Pression Cal		1.013	mbar
Pression Proc		1.013	mbar
Pression Cal/Proc		ProcPres	
Contrôle de la dérive		Auto	
Salinité		0,0	g/Kg
Humidité		50	%
Mes. u pol		Affichée sur la sonde	
Cal u pol		-674	mV
Constantes d'étal. (pour sonde analogique)	O ₂ élevé :	S = -70,00 nA, Z = 0,00 nA	
	Trace O_2 O_2 bas	$\begin{array}{l} S = -4000 \text{ nA}, Z = 0,00 \text{ nA} \\ S = -350,00 \text{ nA}, Z = 0,00 \text{ nA} \end{array}$	
Constantes d'étal. (pour sonde ISM)		Affichage sur la sonde	
Résolution	02	0,1	% air
		1	ppb
	Température	0,1	°C
Sorties analogiques	1	M1	
	2	M2	
02	Valeur 4 mA	0	% air (O ₂ faible : ppb)
	Valeur 20 mA	100 (0 ₂ faible : 20)	% air (O_2 faible : ppb)
Température	Valeur 4 mA	0	°C
	Valeur 20 mA	100	°C
Valeur de consigne 1	Mesure	M1	
	Туре	Off	
	OC (collecteur ouvert)	None	
Valeur de consigne 2	Mesure	M2	
	Туре	Off	
	OC (collecteur ouvert)	None	
Alarme	Niv. électrolyte bas (Sonde ISM)	Non	

Résistivité/conductivité

Paramètre Sous-paramètre		Valeur Unité	
Voie X	M1	Conductivité	S/cm
	M2	Température	°C
	МЗ	Résistivité	Ω-cm
	M4	Température	°F
Source de température (sonde analogique)		Auto	
Compensation		Standard	
Constantes d'étal.	Cond./Rés.	M = 0,1, A = 0,0	
(pour sonde analogique)	Température	M = 1,0, A = 0,0	
Constantes d'étal. (pour sonde ISM)		Affichage sur la sonde	
Résolution	Résistivité	0,01	Ω-cm
	Température	0,1	°C
	Conductivité	0,01	Ω-cm
	Température	0,1	°F
Sorties analogiques	1	M1	
	2	M2	
Conductivité	Valeur 4 mA	100 nS/cm	
	Valeur 20 mA	10 µS/cm	
Température	Valeur 4 mA	0	°C
	Valeur 20 mA	100	°C
Valeur de consigne 1	Mesure	M1	
	Туре	Off	
	OC (collecteur ouvert)	None	
Valeur de consigne 2	Mesure	M2	
	Туре	Off	
	OC (collecteur ouvert)	None	
Alarme	Cond Sensor Shorted	Non	
	Sonde Cond sèche	Non	
	Déviation de la constante de cellule de conductivité (sonde ISM)	Non	

CO_2

Paramètre	Sous-paramètre	Valeur	Unité
Voie X	M1	Pression	hPa
	M2	Température	°C
	M3	mV	Volts (Auto)
	M4	DLI	
Tampon pH		Mettler-9	
Contrôle dérive		Moyenne	
Salinité		28,00	g/L
HCO ₃		0,050	mol/L
TotPres		1 000	mbar
Constantes d'étal.	CO ₂	Affichage sur la sono	de
Résolution	hPa	1	hPa
	Température	0,1	°C
	Tension	1,0	mV
	DLI	1	jour

Remarque : prend uniquement en charge ISM CO2.

14 Garantie

METTLER TOLEDO garantit que ce produit est exempt de tout vice matériel et de conception pour une période d'une (1) année à compter de la date d'achat. Au cours de la période de garantie, si des réparations sont nécessaires sans pour autant résulter d'une mauvaise utilisation du produit, veuillez le retourner avec les frais de transport prépayés. Les modifications seront effectuées sans frais. Le service client de METTLER TOLEDO déterminera si le problème rencontré par le produit résulte d'une mauvaise utilisation ou d'un vice de fabrication. Les produits hors garantie seront réparés à vos frais sur la base d'un remplacement à l'identique.

La garantie ci-dessus est la garantie exclusive de METTLER TOLEDO et remplace toutes les autres garanties, expresses ou tacites, y compris mais sans s'y limiter, les garanties implicites de qualité marchande et de convenance à une fin particulière. METTLER TOLEDO ne sera pas considéré comme responsable pour tout dommage, perte, réclamation, manque à gagner fortuit ou induit, découlant des actes ou omissions de l'acquéreur ou de tiers, que ce soit par négligence ou autre. METTLER TOLEDO est dégagé de toute responsabilité en termes de réclamation, quelle qu'elle soit, qu'elle repose sur un contrat, une garantie, une indemnisation ou un délit (y compris la négligence), se révélant supérieure au prix d'achat du produit.

15 Tableaux de tampons

Les transmetteurs M400 ont la possibilité de reconnaître automatiquement un tampon pH. Les tableaux suivants indiquent les différents tampons standard reconnus automatiquement.

15.1 Tampons pH standard

15.1.1 Mettler-9

Temp. (°C)	pH de solutions tampons			
0	2,03	4,01	7,12	9,52
5	2,02	4,01	7,09	9,45
10	2,01	4,00	7,06	9,38
15	2,00	4,00	7,04	9,32
20	2,00	4,00	7,02	9,26
25	2,00	4,01	7,00	9,21
30	1,99	4,01	6,99	9,16
35	1,99	4,02	6,98	9,11
40	1,98	4,03	6,97	9,06
45	1,98	4,04	6,97	9,03
50	1,98	4,06	6,97	8,99
55	1,98	4,08	6,98	8,96
60	1,98	4,10	6,98	8,93
65	1,98	4,13	6,99	8,90
70	1,99	4,16	7,00	8,88
75	1,99	4,19	7,02	8,85
80	2,00	4,22	7,04	8,83
85	2,00	4,26	7,06	8,81
90	2,00	4,30	7,09	8,79
95	2,00	4,35	7,12	8,77

Temp. (°C)	pH de solutions to	Impons		
0	2,03	4,01	7,12	10,65
5	2,02	4,01	7,09	10,52
10	2,01	4,00	7,06	10,39
15	2,00	4,00	7,04	10,26
20	2,00	4,00	7,02	10,13
25	2,00	4,01	7,00	10,00
30	1,99	4,01	6,99	9,87
35	1,99	4,02	6,98	9,74
40	1,98	4,03	6,97	9,61
45	1,98	4,04	6,97	9,48
50	1,98	4,06	6,97	9,35
55	1,98	4,08	6,98	
60	1,98	4,10	6,98	
65	1,99	4,13	6,99	
70	1,98	4,16	7,00	
75	1,99	4,19	7,02	
80	2,00	4,22	7,04	
85	2,00	4,26	7,06	
90	2,00	4,30	7,09	
95	2,00	4,35	7,12	

15.1.2 Mettler-10

15.1.3 Tampons techniques NIST

Temp. (°C)	pH de solution	s tampons			
0	1,67	4,00	7,115	10,32	13,42
5	1,67	4,00	7,085	10,25	13,21
10	1,67	4,00	7,06	10,18	13,01
15	1,67	4,00	7,04	10,12	12,80
20	1,675	4,00	7,015	10,07	12,64
25	1,68	4,005	7,00	10,01	12,46
30	1,68	4,015	6,985	9,97	12,30
35	1,69	4,025	6,98	9,93	12,13
40	1,69	4,03	6,975	9,89	11,99
45	1,70	4,045	6,975	9,86	11,84
50	1,705	4,06	6,97	9,83	11,71
55	1,715	4,075	6,97		11,57
60	1,72	4,085	6,97		11,45
65	1,73	4,10	6,98		
70	1,74	4,13	6,99		
75	1,75	4,14	7,01		
80	1,765	4,16	7,03		
85	1,78	4,18	7,05		
90	1,79	4,21	7,08		
95	1,805	4,23	7,11		

101

15.1.4	Tampons standard NIST	(DIN et JIS	19266 :	2000–01)
--------	-----------------------	-------------	---------	----------

Temp. (°C)	pH de soluti	pH de solutions tampons				
0						
5	1,668	4,004	6,950	9,392		
10	1,670	4,001	6,922	9,331		
15	1,672	4,001	6,900	9,277		
20	1,676	4,003	6,880	9,228		
25	1,680	4,008	6,865	9,184		
30	1,685	4,015	6,853	9,144		
37	1,694	4,028	6,841	9,095		
40	1,697	4,036	6,837	9,076		
45	1,704	4,049	6,834	9,046		
50	1,712	4,064	6,833	9,018		
55	1,715	4,075	6,834	8,985		
60	1,723	4,091	6,836	8,962		
70	1,743	4,126	6,845	8,921		
80	1,766	4,164	6,859	8,885		
90	1,792	4,205	6,877	8,850		
95	1,806	4,227	6,886	8,833		

Remarque : Les valeurs de pH(S) des différentes charges des matériaux de référence secondaires sont documentées dans un certificat établi par un laboratoire agréé. Ce certificat est fourni avec le matériau correspondant du tampon. Seules ces valeurs pH(S) doivent être utilisées comme valeurs standard pour les matériaux de tampons de référence secondaires. En conséquence, cette valeur standard n'inclut pas de tableau avec des valeurs de pH standard pour l'application pratique. Le tableau ci-dessus propose des exemples de valeurs de pH(PS) à titre d'information uniquement.

15.1.5 **Tampons Hach**

Valeurs de tampons jusqu'à 60 °C, comme spécifié par Bergmann & Beving Process AB.

iemp. (°C)	ph ae solutions tampor	15	
0	4,00	7,14	10,30
5	4,00	7,10	10,23
10	4,00	7,04	10,11
15	4,00	7,04	10,11
20	4,00	7,02	10,05
25	4,01	7,00	10,00
30	4,01	6,99	9,96
35	4,02	6,98	9,92
40	4,03	6,98	9,88
45	4,05	6,98	9,85
50	4,06	6,98	9,82
55	4,07	6,98	9,79
60	4,09	6,99	9,76

-----.

Temp. (°C)	pH de solutions	tampons		
0	2,04	4,00	7,10	10,30
5	2,09	4,02	7,08	10,21
10	2,07	4,00	7,05	10,14
15	2,08	4,00	7,02	10,06
20	2,09	4,01	6,98	9,99
25	2,08	4,02	6,98	9,95
30	2,06	4,00	6,96	9,89
35	2,06	4,01	6,95	9,85
40	2,07	4,02	6,94	9,81
45	2,06	4,03	6,93	9,77
50	2,06	4,04	6,93	9,73
55	2,05	4,05	6,91	9,68
60	2,08	4,10	6,93	9,66
65	2,071)	4,101)	6,92 ¹⁾	9,611)
70	2,07	4,11	6,92	9,57
75	2,041)	4,131)	6,92 ¹⁾	9,54 ¹⁾
80	2,02	4,15	6,93	9,52
85	2,031)	4,17 ¹⁾	6,95 ¹⁾	9,47 ¹⁾
90	2,04	4,20	6,97	9,43
95	2,051)	4,221)	6,991)	9,381)

15.1.6 Tampons Ciba (94)

1) Extrapolé.

15.1.7 Merck Titrisole, Riedel-de-Haën Fixanale

Temp. (°C)	pH de solutions t	ampons		
0	2,01	4,05	7,13	12,58
5	2,01	4,05	7,07	12,41
10	2,01	4,02	7,05	12,26
15	2,00	4,01	7,02	12,10
20	2,00	4,00	7,00	12,00
25	2,00	4,01	6,98	11,88
30	2,00	4,01	6,98	11,72
35	2,00	4,01	6,96	11,67
40	2,00	4,01	6,95	11,54
45	2,00	4,01	6,95	11,44
50	2,00	4,00	6,95	11,33
55	2,00	4,00	6,95	11,19
60	2,00	4,00	6,96	11,04
65	2,00	4,00	6,95	10,97
70	2,01	4,00	6,95	10,90
75	2,01	4,00	6,95	10,80
80	2,01	4,00	6,97	10,70
85	2,01	4,00	6,98	10,59
90	2,01	4,00	7,00	10,48
95	2,01	4,00	7,02	10,37

Temp. (°C)	pH de solutions tampons					
0	2,03	4,01	7,12	10,65		
5	2,02	4,01	7,09	10,52		
10	2,01	4,00	7,06	10,39		
15	2,00	4,00	7,04	10,26		
20	2,00	4,00	7,02	10,13		
25	2,00	4,01	7,00	10,00		
30	1,99	4,01	6,99	9,87		
35	1,99	4,02	6,98	9,74		
40	1,98	4,03	6,97	9,61		
45	1,98	4,04	6,97	9,48		
50	1,98	4,06	6,97	9,35		
55	1,98	4,08	6,98			
60	1,98	4,10	6,98			
65	1,99	4,13	6,99			
70		4,16	7,00			
75		4,19	7,02			
80		4,22	7,04			
85		4,26	7,06			
90		4,30	7,09			
95		4,35	7,12			

15.1.8 Tampons WTW

15.1.9 Tampons JIS Z 8802

Temp. (°C)	pH de solutio	pH de solutions tampons					
0	1,666	4,003	6,984	9,464			
5	1,668	3,999	6,951	9,395			
10	1,670	3,998	6,923	9,332			
15	1,672	3,999	6,900	9,276			
20	1,675	4,002	6,881	9,225			
25	1,679	4,008	6,865	9,180			
30	1,683	4,015	6,853	9,139			
35	1,688	4,024	6,844	9,102			
38	1,691	4,030	6,840	9,081			
40	1,694	4,035	6,838	9,068			
45	1,700	4,047	6,834	9,038			
50	1,707	4,060	6,833	9,011			
55	1,715	4,075	6,834	8,985			
60	1,723	4,091	6,836	8,962			
70	1,743	4,126	6,845	8,921			
80	1,766	4,164	6,859	8,885			
90	1,792	4,205	6,877	8,850			
95	1,806	4,227	6,886	8,833			

15.2 Tampons pour électrode de pH à double membrane

15.2.1 Tampons pH/pNa Mettler (Na+ 3,9M)

Temp. (°C)	pH de solutions ta	mpons		
0	1,98	3,99	7,01	9,51
5	1,98	3,99	7,00	9,43
10	1,99	3,99	7,00	9,36
15	1,99	3,99	6,99	9,30
20	1,99	4,00	7,00	9,25
25	2,00	4,01	7,00	9,21
30	2,00	4,02	7,01	9,18
35	2,01	4,04	7,01	9,15
40	2,01	4,05	7,02	9,12
45	2,02	4,07	7,03	9,11
50	2,02	4,09	7,04	9,10

Remarques

Remarques

Remarques

Vous trouverez les adresses des organisations commerciales METTLER TOLEDO sur le site à l'adresse suivante : www.mt.com/contacts

Management System certified according to ISO 9001/ISO 14001 Groupe METTLER TOLEDO Process Analytics Contact local : www.mt.com/pro-MOs

Sous réserve de modifications techniques © 03/2023 METTLER TOLEDO Tous droits réservés. 30 748 780fr A Imprimé en Suisse www.mt.com/pro

Pour plus d'informations