Table of Contents

1 **Introduction** ... 3

2 **Safety information** .. 4
 2.1 Definitions of signal words and warning symbols 4
 2.2 Product-specific safety notes .. 4

3 **Design and function** .. 6
 3.1 Instrument overview .. 6
 3.2 Connections at the back of the instrument 7
 3.3 Control panel layout ... 7
 3.4 User interface ... 8
 3.4.1 Home screen ... 8
 3.4.2 Basic elements of windows 9
 3.4.3 Information displayed during an analysis 9
 3.4.4 Menu structure .. 10

4 **Installation and commissioning** 12
 4.1 Scope of delivery .. 12
 4.2 Unpack the instrument ... 12
 4.3 Position the instrument ... 13
 4.4 Connect the instrument to the power supply 13
 4.5 Disconnect the instrument from the power supply 14

5 **Operation** .. 15
 5.1 Start up the instrument .. 15
 5.2 Log in .. 15
 5.3 Shut down the instrument .. 15
 5.4 Determine melting points or melting ranges 16
 5.4.1 Prepare samples .. 16
 5.4.1.1 Prepare samples of solid substances 16
 5.4.1.2 Prepare samples that decompose, sublime or vaporize 18
 5.4.2 Run an analysis using a manual method 18
 5.5 Determine slip melting points (MP55 only) 20
 5.5.1 Prepare samples .. 20
 5.5.2 Run an analysis using a manual method 21
 5.6 Stop an analysis .. 23

6 **Maintenance** .. 24
 6.1 Maintenance schedule .. 24
 6.2 Clean the instrument ... 24
 6.2.1 Clean the housing and control panel 25
 6.2.2 Clean the insulation glass, the capillary guide and the transmitted light holes ... 25
 6.2.2.1 Remove insulation glass and capillary guide 25
 6.2.2.2 Clean the insulation glass 26
 6.2.2.3 Clean the capillary guide and transmitted light holes ... 26
 6.2.2.4 Reinstall insulation glass and capillary guide 27
 6.3 Switch the furnace power off 27
 6.4 Check the temperature accuracy of the instrument 27
 6.5 View the inside of the furnace 28
 6.6 Prepare the instrument for storage 28
 6.7 Transport the instrument .. 28
 6.8 Dispose of the instrument .. 29

7 **Technical data** ... 30
 7.1 Instrument .. 30
Table of Contents

Melting Point Excellence System
1 Introduction

Thank you for choosing a METTLER TOLEDO Excellence Melting Point System. The Excellence Melting Point System is an easy-to-operate instrument for automated and accurate measurements of the following physical values:

- Melting point and melting range
- Slip melting point (only MP55)

About this document

This document provides you with the information you need to get started with your METTLER TOLEDO Excellence Melting Point System.

For a comprehensive description of the instrument and its functions, refer to the Operating Instructions, supplied as PDF file on the CD.

The instructions in this document refer to MP50 and MP55 instruments running firmware version 2.10 or higher.

If you have any additional questions, contact your authorized METTLER TOLEDO dealer or service representative.

▶ www.mt.com/contact

Conventions and symbols

Refer to an external document.

Note for useful information about the product.

Elements of instructions

- Prerequisites
 1 Steps
 2 ...
 ➔ Intermediate results
 ➔ Results
2 Safety information

• Read and understand the information in this User Manual before you use the instrument.
• Keep this User Manual for future reference.
• Include this User Manual if you pass on the instrument to other parties.

If the instrument is not used according to the information in the Operating Instructions or if it is modified, the safety of the instrument may be impaired and Mettler-Toledo GmbH assumes no liability.

For a comprehensive description of the instrument and its functions, refer to the Operating Instructions, supplied as PDF file on the CD.

2.1 Definitions of signal words and warning symbols

Safety notes are marked with signal words and warning symbols. These show safety issues and warnings. Ignoring the safety notes may lead to personal injury, damage to the instrument, malfunctions and false results.

Signal words

WARNING for a hazardous situation with medium risk, possibly resulting in death or severe injury if not avoided.

CAUTION for a hazardous situation with low risk, resulting in minor or moderate injury if not avoided.

NOTICE for a hazardous situation with low risk, resulting in damage to the instrument, other material damage, malfunctions and erroneous results, or loss of data.

Warning symbols

- Electrical shock
- Hot surface

2.2 Product-specific safety notes

Intended use

This instrument is designed to be used in laboratories by trained staff. The instrument is intended for performing measurements for determining the following physical values:

- Melting point and melting range
- Slip melting point (only MP55)

Any other type of use and operation beyond the limits of technical specifications without written consent from Mettler-Toledo GmbH is considered as not intended.

Responsibilities of the instrument owner

The instrument owner is the person that uses the instrument for commercial use or places the instrument at the disposal of the staff. The instrument owner is responsible for product safety and the safety of staff, users and third parties.

METTLER TOLEDO assume that the instrument owner provides the necessary protective gear, appropriate training for the daily work and for dealing with potential hazards in their laboratory.

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.
Safety notes

⚠️ **WARNING**

Danger of death or serious injury due to electric shock!
Contact with parts that contain a live current can lead to injury and death.

1. Only use a METTLER TOLEDO power cable and AC adapter designed for your instrument.
2. Connect the power cable to a grounded power outlet.
3. Keep all electrical cables and connections away from liquids.
4. Replace damaged power cables and AC adapters immediately.

⚠️ **CAUTION**

Danger of burns due to hot surfaces!
The oven can reach temperatures that are high enough to cause burns and heats up parts contained in the oven, the lid and the back of the instrument.

1. Never touch a sample you have just removed from the furnace (capillary tubes, glass tubes, slides, sample cups or crucibles).
2. Do not operate the instrument without the lid.
3. Never touch the furnace, furnace lid or the back of the device before the instrument has cooled down.

⚠️ **NOTICE**

Danger of malfunction due to overheating of the instrument!
If the cooling is impeded, the instrument can overheat and malfunction.

1. Do not stack paper on top of the instrument.
2. Do not block the ventilation openings in the back and at the bottom of the instrument.
3. Respect the clearance around the instrument specified in the installation instructions.

⚠️ **NOTICE**

Danger of damage to the instrument due to incorrect parts!
Using incorrect parts with the instrument can damage the instrument or cause the instrument to malfunction.

- Only use parts supplied with the instrument, listed accessories and spare parts from METTLER TOLEDO.

⚠️ **NOTICE**

Danger of damaging the touch screen with pointed or sharp objects!
Pressing on the touch screen with pointed or sharp objects may damage it.

- Operate the touch screen by applying gentle pressure with the pad of your finger.
3 Design and function

3.1 Instrument overview

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lid</td>
<td>Protects the user from hot parts and protects the furnace from dust. The lid allows access to the measuring cell for maintenance tasks.</td>
</tr>
<tr>
<td>2</td>
<td>Safety sign for hot surfaces</td>
<td>The safety signs warns that the lid can be hot enough to cause burns.</td>
</tr>
<tr>
<td>3</td>
<td>Slot for capillaries</td>
<td>Is used to insert capillaries with the sample into the measuring cell.</td>
</tr>
<tr>
<td>4</td>
<td>Housing</td>
<td>The cylindrical part of the housing contains the measuring cell and the furnace.</td>
</tr>
<tr>
<td>5</td>
<td>Power indicator light</td>
<td>Shows the status of the instrument:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Power indication light on: The instrument is on.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Power indication light off: The instrument has shut down.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Power indication light fades on and off: The instrument is on and the screen saver is active.</td>
</tr>
<tr>
<td>6</td>
<td>Power button</td>
<td>The power button has the following functions:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Start up the instrument.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Shut down the instrument.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Activate the screen saver if the instrument is on.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Deactivate the screen saver.</td>
</tr>
<tr>
<td>7</td>
<td>USB A socket</td>
<td>Used by service technicians to update the firmware.</td>
</tr>
<tr>
<td>8</td>
<td>Slot for SD cards</td>
<td>Not functional.</td>
</tr>
<tr>
<td>9</td>
<td>Control panel</td>
<td>Consists of an integrated touchscreen and the four hard keys.</td>
</tr>
</tbody>
</table>

See also

☞ Control panel layout Page 7
3.2 Connections at the back of the instrument

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>USB type A ports</td>
<td>Connection for printers, mouse, keyboards, or USB sticks</td>
</tr>
<tr>
<td>2</td>
<td>Ethernet connection</td>
<td>Used for service purposes</td>
</tr>
<tr>
<td>3</td>
<td>USB type B port</td>
<td>Used for service purposes</td>
</tr>
<tr>
<td>4</td>
<td>Power supply connection</td>
<td>Socket for AC adapter</td>
</tr>
</tbody>
</table>

3.3 Control panel layout

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Info</td>
<td>The Info key opens a window with general information about the instrument.</td>
</tr>
<tr>
<td>2</td>
<td>Touch screen</td>
<td>The touch screen displays information and can be used to enter information.</td>
</tr>
<tr>
<td>3</td>
<td>Home</td>
<td>The home key opens the home screen.</td>
</tr>
<tr>
<td>4</td>
<td>Reset</td>
<td>The Reset key stops the task that is currently running.</td>
</tr>
</tbody>
</table>
3.4 User interface

3.4.1 Home screen

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Furnace monitor area</td>
<td>The furnace monitor area shows the current temperature of the furnace. If you tap the furnace monitor area, you can switch to a full display of the furnace temperature.</td>
</tr>
<tr>
<td>2</td>
<td>Shortcut area</td>
<td>The shortcut area holds up to twelve shortcuts for frequently used manual methods.</td>
</tr>
<tr>
<td>3</td>
<td>Indirect shortcut</td>
<td>An indirect shortcut opens the window Manual method.</td>
</tr>
<tr>
<td>4</td>
<td>Direct shortcut</td>
<td>A direct shortcut starts the manual method and opens the analysis window of the manual method.</td>
</tr>
<tr>
<td>5</td>
<td>Start</td>
<td>Opens the window Manual method of the last analysis that was run.</td>
</tr>
<tr>
<td>6</td>
<td>User data</td>
<td>Opens the window User data with information about the user that is logged in.</td>
</tr>
<tr>
<td>7</td>
<td>Log out</td>
<td>Logs the current user out and opens the window Login window.</td>
</tr>
<tr>
<td>8</td>
<td>Manual</td>
<td>Opens the window Manual operations, where you can start a manual operation.</td>
</tr>
<tr>
<td>9</td>
<td>Setup</td>
<td>Opens the window Setup where you can configure the hardware and the resources.</td>
</tr>
<tr>
<td>10</td>
<td>Results</td>
<td>Opens a window with the results of the last analysis.</td>
</tr>
<tr>
<td>11</td>
<td>Manual method</td>
<td>Opens the window Manual method where you can configure the method.</td>
</tr>
</tbody>
</table>
3.4.2 Basic elements of windows

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Task</td>
<td>The task panel shows if a task is running or not. Blue: No task is running. Yellow: A task is running. If you tap Task while a task is running, the analysis window of the running task opens.</td>
</tr>
<tr>
<td>2</td>
<td>Scroll bar</td>
<td>The scroll bar is visible if the content of the window extends beyond the viewable area. You can use either the arrows or the slider to move the viewable area of the screen up or down. To page up and down, tap the area below or above the slider.</td>
</tr>
<tr>
<td>3</td>
<td>Footer</td>
<td>Up to five buttons are located in the footer. Which buttons are visible depends on the context of the open window.</td>
</tr>
<tr>
<td>4</td>
<td>Body</td>
<td>The body of the window shows information like the video of an ongoing analyses or items like shortcuts or parameters.</td>
</tr>
<tr>
<td>5</td>
<td>Navigation</td>
<td>The navigation shows the path to the open window.</td>
</tr>
<tr>
<td>6</td>
<td>Title bar</td>
<td>The title bar shows the name of the open window.</td>
</tr>
</tbody>
</table>

3.4.3 Information displayed during an analysis

Information on the current analysis is displayed in the analysis window. The information is constantly updated and includes the following data.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Analysis status bar</td>
<td>The analysis status bar displays the various positions reached during the analysis: Go to T(start), T(start) reached, Waiting time, Ramp, Isothermal, Create report</td>
</tr>
<tr>
<td>2</td>
<td>Remaining time</td>
<td>Remaining time until the end of the analysis. The time indicated includes the waiting time, the duration of temperature ramp and that of the isothermal segment.</td>
</tr>
<tr>
<td>3</td>
<td>Temperature</td>
<td>Current temperature reading inside the measuring cell.</td>
</tr>
<tr>
<td>Nr.</td>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| 4 | Mean value, s Mean value | Mean value, s: current mean value of all the temperature readings of the individual capillaries and the standard deviation for the method type melting point
Mean value: current mean value of all the temperature readings of the individual capillaries for the method types boiling point, cloud point and slip melting point |
| 5 | Temp. difference | Difference of the temperatures measured for the 2 capillaries for the method type slip melting point |
| 6 | MP MR SMP | Method type of the running analysis
MP: Melting point
MR: Melting range
SMP: Slip melting point |
| 7 | Temperature values [°C, °F or K] | The temperature values for the melting point or slip melting point of each capillary |
| 8 | [°C] Start of melting | The temperature values for the start of melting for each capillary for the method type Melting range |
| 9 | [°C] End of melting | The temperature values for the end of melting for each capillary for the method type Melting range |

3.4.4 Menu structure

Manual method
The menu **Manual method** has no submenus.

Results
The menu **Results** has no submenus.

Setup
The menu **Setup** has the following submenus.

<table>
<thead>
<tr>
<th>Hardware</th>
<th>Peripherals</th>
<th>Printer</th>
<th>Peripherals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Network</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SOAP Settings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Temperature sensor</td>
<td>–</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>User settings</th>
<th>System</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language</td>
<td></td>
<td>Date / Time</td>
</tr>
<tr>
<td>Screen</td>
<td></td>
<td>Header and footer</td>
</tr>
<tr>
<td>Beep</td>
<td></td>
<td>Data storage</td>
</tr>
<tr>
<td>Shortcuts</td>
<td></td>
<td>User management</td>
</tr>
<tr>
<td>Keyboards</td>
<td></td>
<td>Behavior of analyses and resources</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Analysis settings</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adjustment</th>
<th>Import / Export</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reset to factory settings</td>
</tr>
<tr>
<td></td>
<td>Update</td>
</tr>
<tr>
<td></td>
<td>Service</td>
</tr>
</tbody>
</table>

Manual
The menu Manual has the following submenus.

- Furnace power off
- Set furnace temperature
- Furnace inside view
4 Installation and commissioning

4.1 Scope of delivery

<table>
<thead>
<tr>
<th>Part</th>
<th>Order number</th>
<th>MP50 SF</th>
<th>MP55</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP50 Melting Point System</td>
<td>–</td>
<td>✤</td>
<td>–</td>
</tr>
<tr>
<td>MP55 Melting Point System</td>
<td>–</td>
<td>–</td>
<td>✤</td>
</tr>
<tr>
<td>Extern. Power Supply 120 W</td>
<td>30298362</td>
<td>✤</td>
<td>✤</td>
</tr>
<tr>
<td>Power cable</td>
<td>Country-specific</td>
<td>✤</td>
<td>✤</td>
</tr>
<tr>
<td>Melting Point capillaries (150 pcs)</td>
<td>18552</td>
<td>✤</td>
<td>✤</td>
</tr>
<tr>
<td>BP/CP/SMP outer capillaries (40 pcs)</td>
<td>18572</td>
<td>–</td>
<td>✤</td>
</tr>
<tr>
<td>Slip Melting Point inner capillaries (10 pcs)</td>
<td>30312868</td>
<td>–</td>
<td>✤</td>
</tr>
<tr>
<td>Syringe 1 mL (3 pcs)</td>
<td>–</td>
<td>–</td>
<td>✤</td>
</tr>
<tr>
<td>Syringe 1 mL (3 pcs)</td>
<td>–</td>
<td>–</td>
<td>✤</td>
</tr>
<tr>
<td>Injection Needle 80 x 0.8 (3 pcs)</td>
<td>–</td>
<td>✤</td>
<td>✤</td>
</tr>
<tr>
<td>Quick Guide</td>
<td>–</td>
<td>✤</td>
<td>✤</td>
</tr>
<tr>
<td>Declaration of conformity</td>
<td>–</td>
<td>✤</td>
<td>✤</td>
</tr>
<tr>
<td>Test report</td>
<td>–</td>
<td>✤</td>
<td>✤</td>
</tr>
</tbody>
</table>

4.2 Unpack the instrument

1. Remove the instrument (and accessories) from the protective packing material.
2. Store the packing material for later transport over long distances.
3. Check whether you received all parts listed in the scope of delivery.
4. Remove the adhesive seal from the slot for capillaries.
5. Inspect the parts visually for flaws or damage.
6. If parts are missing or damaged, report it immediately and file a freight claim if needed.

4.3 Position the instrument

The instrument has been developed for indoor operation in a well-ventilated area. The following site requirements apply:

- The ambient conditions are within the limits specified in the technical data.
- No powerful vibrations
- No direct sunlight
- No corrosive gas atmosphere
- No explosive atmosphere
- No powerful electric or magnetic fields

1. Place the instrument on a level surface.
2. Make sure that there are at least 15 cm clearance in front, above and behind the instrument.
3. Make sure that nothing blocks the ventilation openings at the bottom and the back of the instrument.

4.4 Connect the instrument to the power supply

The AC adapter is suitable for all supply line voltages ranging from 100...240 V AC and 50/60 Hz.

WARNING

Danger of death or serious injury due to electric shock!

Contact with parts that contain a live current can lead to injury and death.

1. Only use a METTLER TOLEDO power cable and AC adapter designed for your instrument.
2. Connect the power cable to a grounded power outlet.
3. Keep all electrical cables and connections away from liquids.
4. Replace damaged power cables and AC adapters immediately.

NOTICE

Danger of damage to the AC adapter due to overheating!

If the AC adapter is covered or in a container, it is not sufficiently cooled and overheats.

1. Do not cover the AC adapter.
2. Do not put the AC adapter in a container.

1. Install the cables in such a way that they cannot be damaged or interfere with operation.
2. Insert the plug of the power cable in the socket of the AC adapter.
3. Insert the plug of the AC adapter in the socket **24V** at the back of the instrument.
4. Insert the plug of the power cable in a grounded power outlet that is easily accessible.
See also

- Start up the instrument ➔ Page 15
- Log in ➔ Page 15

4.5 **Disconnect the instrument from the power supply**

- The instrument has shut down.
 1. Pull the plug of the power cable out of the power outlet.
 2. Pull the plug of the AC adapter out of the socket 24V at the back of the instrument.
5 Operation

5.1 Start up the instrument

- The instrument is connected to the power supply
- No samples are inserted.

1. Press \[\text{Start up the instrument} \]
 → METTLER TOLEDO logo appears and the fan starts.
 → The screen darkens and the fan stops.
 → The screen Starting up the system appears; the red light and white light flash alternately.
 → The home screen or the window Login appears.

2. Login if the window Login appears.

See also
- Log in Page 15

5.2 Log in

- The window Login is open.

1. Tap \[\text{Login} \]
 → The window User opens.

2. Select your name from the list.

3. Tap Login.
 → The Home screen appears.

5.3 Shut down the instrument

NOTICE

Danger of losing data due to wrong shut down procedure.

If you press \[\text{Shut down the instrument} \]
longer than 5 seconds, the instrument performs a forced shut down. If an analysis is running, it will be terminated prematurely and any data produced during this time will be lost.

- Do not press \[\text{Shut down the instrument} \]
 for more than 5 seconds unless you need to force the instrument to shut down.

Shut down the instrument using the touch screen

- You are on the home screen.
- No task is running.
- No samples are inserted.

1. Press Log out.
 → The Login window opens.

2. Press Shut down.
 → The screen Shutting down the system appears and then the screen turns dark.
 → An acoustical signal informs you that you are logged out and the instrument has shut down.
 → The AC adapter and the control circuit for the power button are energized. The rest of the instrument is no longer energized.
Shut down the instrument using the power button
- No task is running.
- No samples are inserted.
 - Press for 1...4 seconds.
 - The screen **Shutting down the system** appears and then the screen turns dark.
 - An acoustical signal informs you that you are logged out and the instrument has shut down.
 - The AC adapter and the control circuit for the power button are energized. The rest of the instrument is no longer energized.

Forced shut down
The instrument should only be shut down in this way if it is absolutely necessary.
1. Press for more than 5 seconds.
 - The instrument performs a forced shut down.
 - If an analysis is running, it is terminated prematurely and any data produced during this time is lost.
 - The AC adapter and the control circuit for the power button are energized. The rest of the instrument is no longer energized.
2. Remove all samples.

Shut down of the instrument in emergency situations
- Pull the plug of the power cable out of the power outlet.

5.4 Determine melting points or melting ranges

5.4.1 Prepare samples
When you prepare the samples, pay attention to the rules listed below.
- The amount of substance is the same across all capillaries. Slight differences in the amounts could cause deviations in the measured melting point temperatures.
- The melted substance still covers the hole for transmission light.
We recommend using capillaries from METTLER TOLEDO for compliance with standards.

5.4.1.1 Prepare samples of solid substances
In the following procedures, a sample height of 3 mm is used. If you need to use a different height, you need to adjust the procedure.

Prepare the substance
1. If your sample is moist, dry it in a desiccator.
2. If you have a coarse crystalline substances, grind it in an agate mortar to a fine powder.

Fill the melting point capillaries without the sample preparation tool
- The substance and melting point capillaries are dry.
- The substance is a fine powder.
1. Press the open end of the capillary into the substance.
2 To move the substance to the bottom of the melting point capillary, turn over the melting point capillary and tap the bottom of the melting point capillary on a hard surface.
⇒ The substance slides to the bottom of the capillary.
3 If the sample does not move to the capillary bottom, you can run the bottom of the capillary along the ribbed part of tweezers or tamp it down using a minimum amount of force with the tamping wire supplied.
4 To compact the substance tap the bottom of the melting point capillary several times on a hard surface.
⇒ The substance is compacted.
5 Check the sample height with a ruler.
6 If the sample height is less than 3 mm, repeat the steps above.
⇒ 3 mm of compacted substance fill the bottom of the melting point capillary.

Fill the melting point capillaries with the sample preparation tool

- The substance and melting point capillaries are dry.
- The substance is a fine powder.
1 Press the blue (1) and the gray part together and insert the closed end of the melting point capillaries you need to fill with the same substance into the sample preparation tool.
2 Make sure that the open ends of the melting point capillaries are on the same height.
3 Turn over the sample preparation tool and press the open ends of the capillaries into the substance.
4 To move the substance to the bottom of the melting point capillary, turn over sample preparation tool and hold it about 10 mm above a hard surface and press the blue (1) and the gray part together.
 ⇒ The capillaries fall towards the hard surface and bounces up and down a few times.
 ⇒ The substance slides to the bottom of the capillary.

5 Press the blue (1) and the gray part together and lower the sample preparation tool to the surface.
 ⇒ The melting point capillaries are pushed up into the sample preparation tool.

6 To compact the substance, hold it about 10 mm above a hard surface and press the blue (1) and the gray part together.
 ⇒ The capillaries fall towards the hard surface and bounces up and down a few times.
 ⇒ The substance is compacted.

7 Press the blue (1) and the gray part together and lower the sample preparation tool to the surface.
 ⇒ The melting point capillaries are pushed up into the sample preparation tool.

8 Check if the fill height of all capillaries is 3 mm.

9 If the sample height is less than 3 mm, repeat the steps above.
 ⇒ 3 mm of compacted substance fill the bottom of the melting point capillary.

5.4.1.2 Prepare samples that decompose, sublime or vaporize

When a sealed capillary is heated, the volatile components evolved by the sample produce an over pressure that might inhibit further decomposition or sublimation.

- The melting point capillary is filled with the substance.
 1 Make sure that the upper part of the melting point capillary is free from sample.
 2 Seal the melting point capillary in a gas flame properly and rapidly.

5.4.2 Run an analysis using a manual method

The following procedure shows you how to run an analysis using an indirect shortcut. The procedure is based on an example. Some steps may differ if the manual method you use is configured differently. Aside of an indirect shortcut you can also start a manual method using a direct shortcut or the button Manual method. Some differences are described after the example below.
Start an analysis using an indirect shortcut

- At least one indirect shortcut of a manual method is defined.
- The samples are prepared.

1. Select the indirect shortcut (1) of the manual method you want to run.
 - The window Manual method opens.

2. If needed, enter comments to the method.
3. Tap Start.
 - The analysis window opens.
 - The instrument heats up to the start temperature.

4. If needed, enter comments to the analysis or the samples.
5. Wait until $T(\text{start})$ reached (1) is displayed.

6. Insert the samples.
7. Tap Start.
 - The waiting time starts.
 - The instrument performs the measurement.
8 Wait until the results are displayed.

9 CAUTION Danger of burns due to hot capillaries
Do not remove the capillaries until the instruments has cooled down or take care not to touch the tips of the capillaries you removed.

10 Let the samples cool down and dispose of them according to the safety data sheet of the substance that you measured.

11 Tap Back.
⇒ The home screen opens.

Start the analysis using the button Manual method
1 Go to Home > Manual method.
⇒ The window Manual method opens with the setting of the last manual method you started with the button Manual method.

2 Continue with step 2 of the procedure for an indirect shortcut.

Start the analysis using a direct shortcut
1 Go to Home and select the direct shortcut of the manual method you want to run.
⇒ The analysis window opens.
⇒ The instrument heats up to the start temperature.

2 Continue with step 4 of the procedure for an indirect shortcut.

See also
⇒ Prepare samples ⇒ Page 16

5.5 Determine slip melting points (MP55 only)

5.5.1 Prepare samples
The height of the sample influences the slip melting point. For this reason the sample height needs to be defined and constant. Most norms and standards require a height of 10 mm.

To fill the boiling point outer capillary, you can either use the supplied syringe or a pipette. Both procedures are described in this chapter.

Fill the slip melting point inner capillary
⇒ The substance used in the analysis can be melted.
⇒ The height of the sample needed for the analysis is defined.

1 Fill at least 10 mm of the substance that you want to analyse into an appropriate container.

2 Heat the substance until it is melted.

3 Insert the slip melting point inner capillary (1) into the substance until it reaches the mark indicating 10 mm (2) on the slip melting point inner capillary.

4 Pull the slip melting point inner capillary out and let it cool down.

5 When the substance has cooled down, check that the substance height is close to the mark indicating 10 mm (2) on the slip melting point inner capillary.
Fill the boiling point outer capillary using a syringe

- The solution used in the analysis is prepared.
- The volume needed for the analysis is defined.
1 Fill the syringe with the defined volume of the solution.
2 Insert the needle of the syringe (2) into the boiling point outer capillary so that it reaches all the way to the tip of the outer boiling point capillary (1).
3 Inject the solution into the boiling point outer capillary.

Fill the boiling point outer capillary using a pipette

- The solution used in the analysis is prepared.
- The volume needed for the analysis is defined.
- A Pipet-Lite Pipette and a Tips GelWell pipette tip are available.
1 Fill the pipette tip with the defined volume of the solution.
2 Insert the tip of the pipette (2) into the boiling point outer capillary (1) so that it touches the inner surface of the capillary.
3 Slowly push one drop of the solution into the outer boiling point capillary and let it slide down to the bottom of the capillary.
 ✰ The inner surface of the capillary is coated with the solution, thus allowing for easier filling of the capillary and also minimizing the chance of air being trapped at the bottom of the capillary.
4 Pipette the remaining solution into the boiling point outer capillary and let it slide down to the bottom of the capillary.

Insert the slip melting point inner capillary into the boiling point outer capillary

- The slip melting point inner capillary is prepared.
- The boiling point outer capillary is filled.
1 Insert the slip melting point inner capillary (1) with the sample (3) into the boiling point outer capillary (2).
2 Carefully push the slip melting point inner capillary (1) down until it touches the bottom of the boiling point outer capillary.
 ✰ The level of the solution in the boiling point outer capillary is higher than the height of the sample (3).

5.5.2 Run an analysis using a manual method

The following procedure shows you how to run an analysis using an indirect shortcut. The procedure is based on an example. Some steps may differ if the manual method you use is configured differently.
Aside of an indirect shortcut you can also start a manual method using a direct shortcut or the button Manual method. Some differences are described after the example below.

Start the analysis using an indirect shortcut
- At least one indirect shortcut of a manual method is defined.
- The samples are prepared.

1. Select the indirect shortcut (1) of the manual method you want to run.
 - The window Manual method opens.
2. If needed, enter comments to the method.
3. Tap Start.
 - The analysis window opens.
 - The instrument heats up to the start temperature.
4. If needed, enter comments to the analysis or the samples.
5. Wait until T\((\text{start})\) reached (1) is displayed.
6. Insert the samples.
7. Tap Start.
 - The waiting time starts.
 - The instrument performs the measurement.
8 Wait until the results are displayed.
9 **CAUTION** Danger of burns due to hot capillaries
 Do not remove the capillaries until the instruments has cooled down or take care not to touch the tips of the capillaries you removed.
10 Let the samples cool down and dispose of them according to the safety data sheet of the substance that you measured.
11 Tap **Back**.
 ⇰ The home screen opens.

Results

<table>
<thead>
<tr>
<th>Cap.</th>
<th>Slip melting point</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>70.1 °C</td>
<td>included</td>
</tr>
<tr>
<td>2</td>
<td>70.3 °C</td>
<td>included</td>
</tr>
</tbody>
</table>

| Mean value | 70.2 °C |
| Difference | 0.2 °C |

Start the analysis using the button **Manual method**

1 Go to **Home > Manual method**.
 ⇰ The window **Manual method** opens with the setting of the last manual method you started with the button **Manual method**.
2 Continue with step 2 of the procedure for an indirect shortcut.

Start the analysis using a direct shortcut

1 Go to **Home** and select the direct shortcut of the manual method you want to run.
 ⇰ The analysis window opens.
 ⇰ The instrument heats up to the start temperature.
2 Continue with step 4 of the procedure for an indirect shortcut.

See also

- Prepare samples » Page 20

5.6 Stop an analysis

If you stop a running analysis, you still have the opportunity to save the results up to the point of interruption.

- An analysis is running in the analysis window.
1 Tap **Stop** or press the key **Reset**.
 ⇰ The analysis is interrupted.
 ⇰ The message **Do you want to stop the analysis?** is displayed.
2 To stop the analysis, tap **Yes**.
 ⇰ The analysis is stopped.
 ⇰ The message **Do you want to save the results?** is displayed.
3 To save and print the results, tap **Yes**.
 ⇰ The results are save and printed according to you setting.
4 If you do not want to save the results, tap **No**.
 ⇰ The homescreen opens.
6 Maintenance

In this chapter you find descriptions of the maintenance tasks you should perform on your instrument. Any other maintenance tasks need to be performed by a service technician that has been qualified by METTLER TOLEDO.

Do not open the housing of the instrument; it does not contain any parts that can be maintained, repaired or replaced by the user. If you experience problems with your instrument, contact your authorized METTLER TOLEDO dealer or service representative.

METTLER TOLEDO recommends that a preventive maintenance and calibration certification is done at least once a year through your authorized METTLER TOLEDO dealer or service representative.

6.1 Maintenance schedule

Note

If the standard operating procedures of your company require other maintenance intervals, use the intervals of the standard operating procedures.

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Task</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily</td>
<td>Switch the furnace off at the end of the work day</td>
<td>[Switch the furnace power off ▶ Page 27]</td>
</tr>
<tr>
<td>Weekly</td>
<td>Clean housing and control panel</td>
<td>[Clean the housing and control panel ▶ Page 25]</td>
</tr>
<tr>
<td></td>
<td>Check transmitted light holes</td>
<td>[View the inside of the furnace ▶ Page 28]</td>
</tr>
<tr>
<td>Monthly</td>
<td>Check the temperature accuracy of the instrument</td>
<td>Check the temperature accuracy of the instrument</td>
</tr>
</tbody>
</table>

6.2 Clean the instrument

⚠️ CAUTION

Danger of injuries due to hot surfaces

If the instrument is accidently turned on during the cleaning, hot surfaces can cause burns.

1. Before you clean the instrument, shut down the instrument and disconnect the power cable.

2. Before you clean the instrument, make sure the instrument has cooled off to room temperature.

NOTICE

Danger of damage to the instrument due to inappropriate cleaning methods!

Attempts to remove debris from the camera lens can damage the camera lens.

− If debris is on the camera lens, contact your authorized METTLER TOLEDO dealer or service representative.

Markings on the lid

The metal lid has 3 different markings on it. Each marking indicates the possibility of specific operations.

- Filled circle: You can insert capillaries into the capillary guide.
- Open circle: The furnace is protected and you cannot insert capillaries into the capillary guide.
- Wrench: The metal lid can be removed for cleaning and servicing.
6.2.1 **Clean the housing and control panel**

To keep the instrument looking good and functioning properly, clean the housing and control panel as needed.

- The instrument is switched off and disconnected from the power supply.
- The instrument has cooled off to room temperature.
- All samples have been removed.
1. Remove any loose particles from the housing and control panel with a fine brush.
2. Turn the metal lid to the position.
 - No cleaning agent can enter the instrument.
3. Moisten a soft cloth with water and a mild detergent.
4. Clean the housing with the soft, slightly moist cloth.
5. Dry off any residual moisture.
6. Turn the metal lid to the position.
7. Reconnect the instrument to the power supply and switch on the instrument.
 - The instrument housing is clean and the instrument ready for your next analyses.

6.2.2 **Clean the insulation glass, the capillary guide and the transmitted light holes**

To prevent false readings, the insulation glass should be checked regularly and cleaned as needed. Particles and smudges on the insulation glass can block the light, cause bothersome spots in the pictures or cause false readings.

Clean the insulation glass, if the light does not appear homogeneous and bright for all holes. Occasionally, tiny particles can fall into the capillary guide or glass splitters of broken capillaries can remain in the capillary guide. This debris can either result in black spots in the videos or prevent adequate light exposure for the substances under investigation. In most cases, you can remove this debris.

The following chapters describe how to remove and reinstall the insulation glass and the capillary guide and how to clean the parts.

See also

- View the inside of the furnace » Page 28

6.2.2.1 **Remove insulation glass and capillary guide**

- The instrument has shut down and is disconnected from the power supply.
- The instrument has cooled off to room temperature.
- All whole capillaries are removed.
1. Gently press the release latch inside the opening (2) with a long object (1) such as a screw driver and turn the lid (3) to.
 - The lid pops up slightly.
2 Lift out the screw driver and insert your finger in the recess (1) at the top of the measuring cell and lift off the lid (2) with two hands.

3 Gently press the clamping plate (1) between your thumb and fingers. This loosens the 4 small hooks (2) on either side of the clamping plate.
4 Lift off the clamping plate.

5 Lift the insulation glass (2) carefully out of the recess (4).
6 Lift the capillary guide (3) carefully out of its recess.

6.2.2.2 Clean the insulation glass
- The insulation glass has been removed.
 1 Moisten a soft cloth with water and a mild detergent.
 2 Clean the insulation glass with the soft, slightly moist cloth.
 3 Dry the insulation glass so that no humidity enters the instrument.

6.2.2.3 Clean the capillary guide and transmitted light holes
- The insulation glass and the capillary guide have been removed.
 - You can dislodge and remove debris or broken capillaries from the transmitted light holes in several ways:
 - Turn the instrument upside down and gently shake out the particles.
 - Use a very thin cleaning wire to lift out the particles.
 - Use a syringe with a needle to crush the particles and aspirate them into the syringe.
6.2.2.4 Reinstall insulation glass and capillary guide

- The instrument is switched off and the power cable is disconnected.
- The instrument has cooled off to room temperature.
1. Carefully place the capillary guide (3) into its recess.
2. Orient the insulation glass so that the white bar (1) faces toward the capillary guide (3).
3. Carefully place the insulation glass (2) into the recess (4) behind the capillary guide (3).
4. Orient the clamping plate so that the two tongues (2) look towards the control panel.
5. Lower the clamping plate and make sure that the slot fits (1) over the capillary guide.
6. **NOTICE** Danger of damage to the instrument due to improperly inserted clamping plate
 Push the clamping plate down, making sure the 4 small metal hooks fit back into the respective openings (3).
7. Replace the metal lid and turn it to or to.
8. Reconnect the power cable and switch on the instrument.
 ⇒ The instrument is ready for your next analyses.

6.3 Switch the furnace power off

- No analysis is running.
- The furnace temperature control is switched on.
2. Tap **Furnace power off**.
 ⇒ The furnace power is switched off.
 ⇒ The button **Furnace power off** becomes inactive.
 ⇒ The measuring cell cools down to room temperature without an active fan.

6.4 Check the temperature accuracy of the instrument

To check if the temperature accuracy of your instrument is still within the specified tolerance limits, you need to perform a calibration. To perform a calibration, you run a melting point method for a reference substance and compare the results with the values on the Certificate of Analysis of the reference substance.

Perform the calibration

- A shortcut for a calibration method for the relevant reference substance is available.
- The tolerance limits for the reference substance are defined.
1. Run an analysis using the appropriate calibration method.
2. Check if the mean value of the analysis lies within the tolerance limits for the reference substance.
3. If the calibration results are not within the tolerance limits, inform the person responsible for the adjustment of the instrument.

See also

- Prepare samples » Page 16
- Run an analysis using a manual method » Page 18
6.5 View the inside of the furnace

You can view a live video of the inside of the furnace to check the currently reflected light (2) and transmitted light (1). If any of the holes for the transmitted light are clogged, this is noticeable in the lower image (1). In this case you must clean the holes.

- No analysis is running.
1 Go to Home > Manual.
2 Tap Furnace inside view.

⇒ The window shows the transmitted light (1), the reflected light (2) and the furnace temperature (3).

See also
★ Clean the insulation glass, the capillary guide and the transmitted light holes » Page 25

6.6 Prepare the instrument for storage

If you do not use the instrument for a longer period of time, you should do the following:
1 Remove all samples.
2 Shut down the instrument.
3 Disconnect the instrument from the power supply.
4 Turn the lid to the ⊗ position to protect the instrument.
5 Clean the instrument.

6.7 Transport the instrument

If you have questions about transporting your instrument, contact your authorized METTLER TOLEDO dealer or service representative.

Note
When you send or transport the instrument over long distances, please use all of the original packing material and shipping carton.
1 Remove all samples.
2 Shut down the instrument.
3 Disconnect the instrument from the power supply.
4 Disconnect any accessories like keyboard and mouse.
5 To prevent the capillary guide from falling out of the instrument, turn the metal lid to ⊗.
6 Clean the instrument.
7 Move the instrument to the new location.

See also
★ Clean the instrument » Page 24
6.8 Dispose of the instrument

In conformance with the European Directive 2012/19/EU on Waste Electrical and Electronic Equipment (WEEE) this device may not be disposed of in domestic waste. This also applies to countries outside the EU, per their specific requirements.

Please dispose of this product in accordance with local regulations at the collecting point specified for electrical and electronic equipment. If you have any questions, please contact the responsible authority or the distributor from which you purchased this device. Should this device be passed on to other parties (for private or professional use), the content of this regulation must also be related.

Thank you for your contribution to environmental protection.
7 Technical data

7.1 Instrument

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power rating instrument</td>
<td>Input values 24 V DC ±5 %, 5 A</td>
</tr>
<tr>
<td></td>
<td>Connector type 4-pin, power Mini-DIN female</td>
</tr>
<tr>
<td>Power rating AC adapter</td>
<td>Input values 100...240 V AC, 1.8 A ±10 %</td>
</tr>
<tr>
<td></td>
<td>Input frequency 50 - 60 Hz</td>
</tr>
<tr>
<td></td>
<td>Output values 24 V DC, 5 A</td>
</tr>
<tr>
<td>Dimensions</td>
<td>Width 180 mm</td>
</tr>
<tr>
<td></td>
<td>Depth 350 mm</td>
</tr>
<tr>
<td></td>
<td>Height 190 mm</td>
</tr>
<tr>
<td></td>
<td>Weight 4000 g</td>
</tr>
<tr>
<td>Display</td>
<td>Technology VGA color with touch screen</td>
</tr>
<tr>
<td></td>
<td>Size 5.7” VGA</td>
</tr>
<tr>
<td>Materials</td>
<td>Housing Crastin® PBT</td>
</tr>
<tr>
<td></td>
<td>Measuring cell Stainless steel</td>
</tr>
<tr>
<td></td>
<td>Chassis Stainless steel</td>
</tr>
<tr>
<td></td>
<td>Protective film PET</td>
</tr>
<tr>
<td></td>
<td>(touch screen)</td>
</tr>
<tr>
<td>Ambient conditions</td>
<td>Ambient temperature 10…35 °C</td>
</tr>
<tr>
<td></td>
<td>Relative humidity Noncondensing, max. 80 % for temperatures up to 31 °C, decreasing linearly to 50 % at 40 °C</td>
</tr>
<tr>
<td></td>
<td>Altitude Up to 2000 m above sea level</td>
</tr>
<tr>
<td></td>
<td>Use Interior spaces</td>
</tr>
<tr>
<td></td>
<td>Pollution degree 2</td>
</tr>
<tr>
<td></td>
<td>Overvoltage category II</td>
</tr>
</tbody>
</table>

Directives and standards

To protect your product’s future:
METTLER TOLEDO Service assures
the quality, measuring accuracy and
preservation of value of this product
for years to come.

Please request full details about our
attractive terms of service.