

Nitrate Determination by Standard Addition Technique: Fertilizer

The nitrate content in fertilizer was determined by multiple standard addition technique using the excellence titrator (T5, T7 or T9) performing the sample preparation type "Aliquot excl. ISA".

Sample	Fertilizer, 2.0 g	Preparation and Procedures
Compound	Nitrate, NO_3^- M = 62.0 g/mol, z=1	<p>CAUTION</p> <ul style="list-style-type: none"> - Use safety glasses, a lab coat and wear gloves. - Ensure accurate cleaning of sensor is sufficient after each titration series.
Chemicals	ISA solution: 5 mL mixture of 0.9 mol/L aluminium sulfate + 0.01 mol/L silver sulfate	<p>Sample handling</p> <ul style="list-style-type: none"> - Weigh 2.0 g of fertilizer in a 500 mL volumetric flask, add 300 mL deionized water, sonicate for 10 minutes, and make up to the mark with deionized water. - Stopper the flask and mix thoroughly. - Filter it using filter paper and use the filtrate as an aliquot.
NO_3^--Standard	2000 mg/L Nitrate in 1:10 ISA solution	<p>Reagents</p> <p>Nitrate standard: 2000 mg/L nitrate in 1:10 ISA solution: (more information please find under comments):</p> <ul style="list-style-type: none"> - Accurately weigh 3.262 g KNO_3 into a 1000 mL volumetric flask - Add 90.91 mL of ISA solution (ISA:standard =1:10) - Fill up to the 1000 mL volumetric mark with deionized H_2O - Enter the actual concentration in mg/L of your final nitrate solution (depending on the corresponding weight of KNO_3)
Indication	ISE DX262- NO_3^- Reference DX200-SC, bridge electrolyte 2 M MgSO_4 Temperature sensor DT1000	
Chemistry	A small amount of the NO_3^- -standard solution is added several times in succession. The resulting differences in potential are used to determine the original sample concentration.	
Calculation	Concentration [mg/L] $R1 = c_{\text{RawStd}}$ Content [ppm] $R2 = (c_{\text{RawStd}} * \text{VTOT} / \text{ALIQUOT}) * (\text{VDILUTION}/m)$	
Waste disposal	-	<p>Remarks</p> <ul style="list-style-type: none"> - Since there are different types of fertilizer available from different producers, it may be necessary to slightly adapt the method to your specific sample depending on its nitrate content. - Check the electrode for air bubbles adhering to the membrane surface after immersion in solution. Agitate the electrode gently to remove the air bubbles. - The polymer measurement membrane can be damaged by mechanical impact (e.g. magnetic stirrer, cleaning). Do not touch with bare hands. Remove and cleaning of water drops with a soft paper tissue.
Author, Version	Noman Khan, IMSG AnaChem, Version 1.0	

Instruments	<ul style="list-style-type: none"> - Titration Excellence T5/T7/T9 - 1 x 10 mL DV1010 glass burette (ME-51107501)
Accessories	<ul style="list-style-type: none"> - Temperature Sensor DT1000 (ME- 51108898) - 100 mL PP Titration beaker (ME- 51109388) - XS205 Balance

Results

Results

R1: 9946.508 ppm
 R2: 8927.134 ppm
 R3: 9105.524 ppm
 R4: 9437.713 ppm
 R5: 8924.692 ppm

Statistics

Method-ID	Fertilizer
Samples	5
Mean	9268.314 ppm
s	432.904
srel	4.671 %

Table of measured values

Single Results

E.g. of sample Nr.1:

Sample ID	Fertilizer
Raw Result (R1)	36.296 mg/L
Content (R2)	9946.508 ppm
Sample size	2.00699 g
Volume	4.080 mL
No. of additions	5
dE	8 mV
Termination	30 mL
Slope	59.28 mV/pX
Coefficient of determination (R2)	0.99999984

Raw results

Add. No.	cRawStd [mV]	Meas. value [mV]	dE [mV]	dV [mL]	Slope [mV/pX]	Temperature [°C]
0	NaN	221.4	NaN	0	NaN	23.2
1	NaN	213.5	7.9	0.369	NaN	23.2
2	35.40492	205.5	8.0	0.517	-58.19	23.1
3	35.71322	197.5	8.0	0.7255	-58.59	23.1
4	36.4138	189.4	8.1	1.0225	-59.40	23.1
5	36.29553	181.4	8.0	1.446	-59.28	23.1

Comments

- Multiple standard addition gives three or more measurement points. Thereof, sensor calibration values (slope and intercept) are obtained during the determination and saved as results. Additional calibration is not necessary. Matrix effects are reduced using the multiple standard addition due to the calibration within the sample matrix.
- Before starting a measurement series, sensors must be conditioned. The nitrate content of the conditioning solution should be chosen in the same range as the nitrate concentration of the sample to be measured (e.g. 50 mL of 100 ppm NO_3^- and 5 mL ISA solution). For highly reproducible and accurate results, perform the conditioning in a low nitrate concentration (approx. 20 ppm NO_3^-).
- The sample to be measured should be diluted down to approx. 30 – 100 mg/L (corresponds to $\text{R1}=\text{cRawStd}$) in order to get as accurate results as possible.
- To obtain accurate results, the total potential range ΔE_{total} during the standard addition should cover 30 – 100 mV using 5 – 6 additions. Please note that in order to obtain accurate results the no. of additions must be ≥ 3 ($\Delta E_{\text{total}} \geq 30 \text{ mV}$)
- For good reproducibility, the dispensed amount of nitrate standard solution should not exceed 25 – 35 % of the sample volume used for the titration.
- To improve the results, use the control mode Cautious for the standard addition. The control mode Fast is used for approximate nitrate determination only.
- In case the slope is $< 54 \text{ mV}/\log(\text{c})$, the sensor should be checked and the sample analysis repeated
- The total ion activity of the sample and standard solution must be constant. By adding a constant amount of ionic strength adjustment (ISA) solution to all samples and the standard solution, a constant ionic strength is attained. The ratio of ISA solution to sample and standard is 1:10:
 - o ISA : sample=5 mL : 50 mL ($V_{\text{tot}}=55 \text{ mL}$)
 - o ISA : standard solution = 90.9 mL : 909.1 mL ($V_{\text{tot}}=1000 \text{ mL}$)
- The reference electrode DX200 can also be filled with the bridging electrolyte Aluminium sulfate 0.9 mol/L instead of 2M MgSO_4 . The solution must be renewed daily. The inner electrolyte (KCl solution 3 mol/L saturated in AgCl) is renewed monthly.
- It is better to filter the sample using suction pump to reduce the filtration time.

Method

001 Title	Type Compatible with ID Title	General titration T5 / T7 / T9 M720_2015 Nitrate in fertilizer	007 Calculation R1	Result type Result Result unit Formula Constant C=	Predefined Concentration mg/L R1=cRawStd 1
002 Conditioning (controlled)	Titration stand Speed Sensor type Sensor Unit Acquisition dE dt t(min) t(max) Action Temperature acquisition Temperature Condition	Manual stand 1 30 % ISE DX262-NO ₃ ⁻ mV Equilibrium controlled 0.1 mV 60 s 120 s 240 s None No 25.0 °C No	008 Calculation R2	Result type Result Result unit Formula Constant C=	Predefined Content ppm R2=(cRawStd*VTOT/VALIQUOT)* (VDILUTION/m) 1
003 Sample (Standard Addition)	Number of IDs ID 1 Analysis type Sample type Entry type Weight Correction factor Temperature Sampling ISA volume Dilution volume Aliquot volume Titration reader	1 Fertilizer Direct Solid Fixed weight 2.00699 g 1.0 25.0 °C Aliquot excl. ISA 5 mL 500 mL 50 mL None	009 End of sample	M z Decimal places Result limits Record statistics Extra statistical func. Send to buffer Write to RFID Condition	M[None] z[None] 3 No Yes No No None No
004 Titration stand (Manual stand)	Type Titration stand	Manual stand Manual stand 1	010 Record	Summary Results Raw results Resource data Calibration curve Method Series data Condition	Yes No No No No No No
005 Stir	Speed Duration Condition	30 % 60 s No			
006 Standard Addition[1]	Titrant Titrant Concentration Sensor Type Sensor Unit Ion charge Temperature acquisition Temperature measurement Temperature sensor Unit Stir Speed Control Control dE (potential difference) Number of additions Show parameters Meas. val. acquisition dE dt t(min) t (max) Show parameters for first addition Titrant addition dE (set value) dV (min) dV (max) Meas. val. acquisition dE dt t (min) t (max) Termination At Vmax Condition Condition	Nitrate 2000.00 mg/L ISE DX262-NO ₃ ⁻ mV -1 Yes DT1000 °C 30 % Normal 8 mV 5 Yes Equilibrium controlled 0.03 mL 10 s 30 s 120 s Yes Dynamic 0.5 mL 0.02 mL 0.2 mL Equilibrium controlled 0.1 mV 5 s 5 s 20 s 30 mL No			