METTLER TOLEDO

Silver Content Determination by Volhard Titration

The silver content is determined by precipitation titration with potassium thiocyanate KSCN as a titrant. The titration is monitored by a combined silver ring electrode.

Sample	Approx. 0.1 M silver nitrate sol., 3 mL AgNO_3
Compound	Silver, Ag^+ M = 107.88 g/mol, z = 1
Chemicals	10 mL 0.1 M Nitric acid, HNO ₃ 50 mL Deionized water
Titrant	Potassium thiocyanate, KSCN c(KSCN) = 0.1 mol/L
Standard	5 mL 0.1 M AgNO ₃
Indication	DMi148-SC combined silver ring electrode
Chemistry	$Ag^+ + SCN^- \rightarrow AgSCN$
Calculation	R = Q*C/m, mol/L C = 1/z
Waste disposal	Filtrate the solution and dispose the precipitate as special waste.
Author, Version	Thomas Hitz, MSG AnaChem, Version 1.0

Preparation and Procedures

CAUTION

- Use safety goggles, a lab coat and wear gloves. If possible, work in a fume hood.
- Ensure accurate cleaning of sensor is sufficient after each titration.

Preparation of 0.1 mol/L KSCN:

 Weigh 2.430 g of solid KSCN and dissolve it in 100 mL deionized water in a 250 mL volumetric flask. After complete dissolution, fill up to the mark with deionized water.

Sample titration:

- Pipette 5 mL 0.1 mol/L into the titration beaker
- Add 10 mL 0.1 HNO₃
- Add 50 mL deionized water
- Connect the beaker to the titration stand, and start the method.
- After titration, rinse accurately with deionized water the electrode, the stirrer and the dispensing tube with water, and if necessary clean them with e.g. a paper tissue before starting next sample.

Remarks

- The application method has been developed for the mentioned sample. It may be necessary to optimize the method for your sample.
- The AgSCN-precipitate may be sticking onto the electrode, tube and stirrer surfaces. To improve the efficacy of the cleaning procedure, the precipitate can be dissolved with diluted ammonia solution.

Instruments

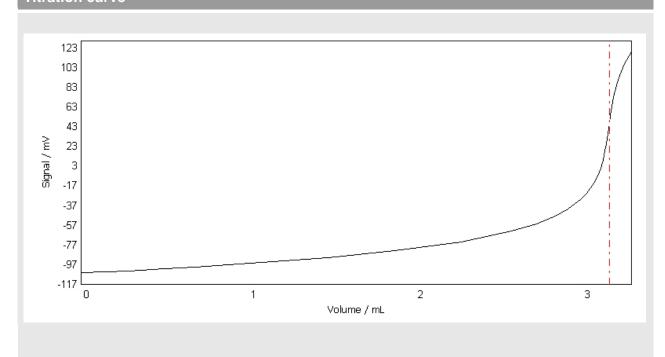
- Titration Excellence T50/T70/T90
 (Other Titrators: depending on instrument type, manual operation and method changes are necessary)
- XS205 Balance

Accessories

- 1 x 10 mL DV1010 glass burette
- PP Titration beakers ME-101974
- $\mathsf{LabX}^{\mathbb{R}}$ pro titration
- Spatula

Results

0.1 M AgNO₃


All results

Method-ID	AgDM148	
Sample	Silver	(1/3)
R1 (Content)	0.089	mol/L
Sample	Silver	(2/3)
R1 (Content)	0.090	mol/L
Sample	Silver	(3/3)
R1 (Content)	0.090	mol/L

Statistics

Method-ID	AgDM148	
R1	Content	
Samples	3	
Mean	0.090	mol/L
S	0.001	mo1/1
srel	0.644	용

Titration curve

Table of measured values

	Volume	Increment	Signal	Change	1st deriv.	Time
	mL	mL	mV	mV	mV/mL	s
	0.0000	NaN	105.3	NaN	NaN	0
	0.2855	0.2855	103.7	1.6	NaN	2
	0.4285	0.1430	101.6	2.1	NaN	5
	0.5000	0.0715	100.8	0.8	NaN	8
	0.6790	0.1790	99.1	1.7	NaN	16
	1.0790	0.4000	95.0	4.1	10.62	20
	1.4790	0.4000	89.9	5.1	12.66	22
	1.8790	0.4000	82.9	7.0	19.38	26
	2.2790	0.4000	73.7	9.2	34.35	29
	2.5780	0.2990	63.1	10.6	55.50	33
	2.7265	0.1485	55.7	7.4	76.38	36
	2.8390	0.1125	47.6	8.1	102.90	39
	2.9175	0.0785	40.6	7.0	135.97	42
	2.9885	0.0710	30.9	9.7	189.18	46
	3.0275	0.0390	24.8	6.1	245.61	49
	3.0715	0.0440	14.0	10.8	353.37	53
	3.0920	0.0205	7.4	6.6	450.07	56
	3.1115	0.0195	0.6	8.0	583.66	60
	3.1265	0.0150	8.8	8.2	715.51	63
	3.1375	0.0110	18.5	9.7	823.83	67
	3.1455	0.0080	25.5	7.0	950.42	70
	3.1550	0.0095	36.1	10.6	1077.87	74
EQP1	3.162279	NaN	44.8	NaN	1132.68	NaN
	3.1630	0.0080	45.7	9.6	1132.59	78
	3.1710	0.0080	55.1	9.4	1084.79	82
	3.1790	0.0080	63.1	8.0	980.99	85
	3.1885	0.0095	72.4	9.3	850.62	89
	3.1970	0.0085	79.2	6.8	751.00	92
	3.2095	0.0125	87.8	8.6	NaN	95
	3.2230	0.0135	95.0	7.2	NaN	99
	3.2420	0.0190	103.0	8.0	NaN	102
	3.2660	0.0240	111.1	8.1	NaN	105
	3.2955	0.0295	119.0	7.9	NaN	108

\sim	100 10		140
Co		ner	เเร

__

Method 001 Title Type Compatible with ID

General titration T50 / T70 / T90 AgDM148

Title AgCont

002 Sample

Number of IDs ID 1 SILVER Entry type Fixed volume Volume 3.0 mL Density 1.0 g/mL Correction factor 1.0 Temperature 25.0°C

003 Titration stand (Manual stand)

Type Manual stand
Titration stand Manual stand 1

004 Stir

Speed Duration 15 s Condition No

005 Titration (EQP) [1]

Titrant

Titrant KSCN Concentration 0.1 mol/L

Sensor Type Sensor Unit. Temperature acquisition

Temperature measurement No

Speed

Predispense

Mode Volume Volume 0.5 mL Wait time 5 s Control

| User | Titrant addition | Dynamic | dE (set value) | 8.0 mV | dV (min) | 0.008 mT | dV (re.) 0.008 mL dV (max) 0.4 mL

Meas. val. Acquisition Equilibrium controlled

mV DM148

mV

dЕ 1.0 mV dt 1 s t (min) t (max) 30 s

Evaluation and recognition Procedure Standard

Threshold 200.0 mV/mL Tendency Positive Ranges No Add. EQP criteria Termination 10.0 mL At Vmax

At potential No At slope No After number of recognized EQPs Yes Number of EQPs 1 Combined termination criteria No

006 Calculation R1

Result Content Result unit mol/L Formula R1=Q*C/m Constant C=1 M[None] z[None] Decimal places Result limits Record statistics Extra statistical func. No Send to buffer No Condition No

007 End of sample