METTLER TOLEDO

Content Determination of Sodium Metabisulfite

Via a iodometric back-titration with sodium thiosulfate ($Na_2S_2O_3$) the content of sodium metabisulfite ($Na_2S_2O_5$) in a solution is determined.

Sample	Metabisulfite, aqueous solution. (Used here: 12 mL of ~0.01 mol/L solution)
Compound	Sodium metabisulfite, $Na_2S_2O_5$ M = 190.10 g/mol, z = 4
Chemicals	10 mL KIO ₃ ; 0.01 mol/L 10 mL KI; 0.06 mol/L 10 mL H ₂ SO ₄ ; 0.35 mol/L
Titrant	Sodium thiosulfate, $Na_2S_2O_3$ $c(Na_2S_2O_3) = 0.01$ mol/L
Standard	Potassium iodate, KIO₃
Indication	DM140-SC
Chemistry	See comments section for complete chemical reactions.
Calculation	R1 = VEQ Consumption (mL)
	R2 = (QENDDi[2]*6-Q)*C / m $C = M/z$ $Content Na2S2O5 (g/L)$
Waste disposal	Neutralize acidic waste before disposal
Author, Version	Melanie Nijman, MSG Anachem, June 2009

Preparation and Procedures

An exact amount of metabisulfite sample solution is pipetted into a titration beaker.

Added to this are (either manually or by additional dosing units):

- 10 mL 0.01 mol/L KIO₃
- 10 mL 0.06 mol/L KI
- 10 mL 0.35 mol/L H₂SO₄

The amounts are chosen in such a way that an excess amount of iodine is generated and that consecutively a back-titration with sodium thiosulfate can be performed, to find out the iodine consumption of the sample (metabisulfite).

If larger amounts of sample are used or if the expected concentration is higher than ~ 0.01 M the amounts of KIO₃, KI and H₂SO₄ have to be adapted such that still an excess of iodine is present for a correct back-titration with sodium thiosulfate.

Remarks

When dissolved in water, sodium metabisulfite leads immediately to the formation of sulfur dioxide:

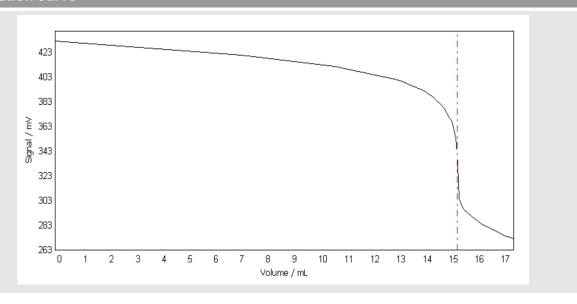
 $Na_2S_2O_5 + H_2O \rightarrow 2 NaHSO_3$

 $HSO_3^- + H_3O^+ \rightarrow SO_2 + 2 H_2O$

Literature:

http://en.wikipedia.org/wiki/Sodium_metabisulfite http://de.wikipedia.org/wiki/Natriumdisulfit Instruments

T50/T70/T90 with optionally 3 extra dosing units for dispensing of auxiliary reagents


Accessories

DV1010 burettes (3x) Titration beakers ME-101974 LabX pro titration software

Results

Samples							
1/7	$Na_2S_2O_5$	12.0 mL					
2/7	$Na_2S_2O_5$	12.0 mL					
3/7	$Na_2S_2O_5$	12.0 mL					
4/7	$Na_2S_2O_5$	12.0 mL					
5/7	$Na_2S_2O_5$	12.0 mL					
6/7	$Na_2S_2O_5$	12.0 mL					
7/7	$Na_2S_2O_5$	12.0 mL					
Results	Comment / ID	Rx	Result	Unit	Name		
1/7	$Na_2S_2O_5$	R1 =	15.408	mL	Consumpt	ion	
		R2 =	1.7660	g/L	Content Na ₂ S ₂ O ₅		
2/7	$Na_2S_2O_5$	R1 =	15.462	mL	Consumpt	ion	
		R2 =	1.7639	g/L	Content N	$a_2S_2O_5$	
3/7	$Na_2S_2O_5$	R1 =	15.412	mL	Consumpt	Consumption	
		R2 =	1.7659	g/L	Content N	$a_2S_2O_5$	
4/7	$Na_2S_2O_5$	R1 =	15.517	mL	Consumpt	ion	
		R2 =	1.7617	g/L	Content N	$a_2S_2O_5$	
5/7	$Na_2S_2O_5$	R1 =	15.529	mL	Consumption		
		R2 =	1.7612	g/L	Content Na ₂ S ₂ O ₅		
6/7	$Na_2S_2O_5$	R1 =	15.494	mL	Consumption		
		R2 =	1.7626	g/L	Content Na ₂ S ₂ O ₅		
7/7	$Na_2S_2O_5$	R1 =	15.489	mL	Consumption		
		R2 =	1.7628	g/L	Content N	$a_2S_2O_5$	
Statistics							
Rx	Name	n	Mean value	Unit	s	srel [%]	
R1	Consumption	7	15.473	mL	0.048	0.31	
R2	Content Na ₂ S ₂ O ₅	7	1.7634	g/L	0.0019	0.109	

Titration curve

Table of measured values

	Volume	Increment	Signal	Change	1st deriv.	Time
	mL	mL	mV	mV	mV/mL	S
	0	NaN	432.2	NaN	NaN	0
	7.143	7.143	420.8	-11.4	NaN	16
	10.714	3.571	411.6	-9.2	NaN	52
	12.500	1.786	403.6	-8.0	NaN	58
	12.900	0.400	401.8	-1.8	NaN	72
	13.300	0.400	399.3	-2.5	-9.87	76
	13.700	0.400	395.7	-3.6	-11.85	79
	14.100	0.400	391.9	-3.8	-14.41	82
	14.500	0.400	386.4	-5.5	-20.67	86
	14.900	0.400	377.8	-8.6	-43.57	90
	15.091	0.191	371.0	-6.8	-80.60	93
	15.196	0.105	367.0	-4.0	-111.55	96
	15.340	0.144	355.8	-11.2	-134.60	100
	15.390	0.050	348.4	-7.4	-136.58	104
EQP1	15.411644	NaN	341.1	NaN	-137.66	NaN
	15.440	0.050	331.6	-16.8	-131.42	110
	15.490	0.050	304.4	-27.2	-112.35	127
	15.540	0.050	300.9	-3.5	-123.37	132
	15.664	0.124	296.3	-4.6	-99.09	139
	15.968	0.304	289.6	-6.7	NaN	147
	16.368	0.400	283.3	-6.3	NaN	156
	16.768	0.400	279.4	-3.9	NaN	161
	17.168	0.400	275.2	-4.2	NaN	167
	17.568	0.400	272.2	-3.0	NaN	172

Comments

When sodium metabisulfite is dissolved in water, the following reaction occurs:

 $Na_2S_2O_5 + H_2O \rightarrow 2 NaHSO_3$

The formed bisulfite, NaHSO₃, can be measured quantitatively via a iodometric back titration. In this titration, first an excess I_2 is generated with the chemicals added to the Na₂S₂O₅ sample, KIO₃, KI and H₂SO₄:

 $IO_3^- + 5I^- + 6H^+ \rightarrow 3I_2 + 3H_2O$ (1 IO_3^- leads to 6 I⁻-ions, thus iodine excess in R2 is 6 x IO_3^-)

Part of this excess I_2 is used by the $Na_2S_2O_5$ sample that is present in the titration beaker as $NaHSO_3$ after its reaction with water:

 $I_2 + SO_3^{2-} + H_2O \rightarrow SO_4^{2-} + 2 H^+ + 2 I^-$ (z = 4 because $S_2O_5^{2-}$ gives 2 SO_3^{2-} and SO_3^{2-} reacts with 2 I⁻)

The rest of iodine can be determined quantitatively by back-titration with sodium thiosulfate, Na₂S₂O₃:

$$I_2 + 2 S_2O_3 \rightarrow 2 I^- + S_4O_6^{2-}$$

Method

001 Title		Termination	
Type	General titration	At Vmax [mL]	40
Compatible with	T50 / T70 / T90	At potential	No
ID	Metabisulfite	At slope	No
Title	Na ₂ S ₂ O ₅ content with EQP redox	After number of	
Author	admin	recognized EQPs	Yes
Date/Time	23.06.2009 08:30:27	Number of EQPs	1
Modified at	23.06.2009 15:23:07	Combined termination	
Modified by	admin	criteria	No
Protect	No	Accompanying stating	No
SOP	None	Condition	No
002 Cample		009 Calculation R1	
002 Sample			
Number of IDs	1	Result	Consumption
ID 1	Na ₂ S ₂ O ₅	Result unit	mL
Entry type	Volume	Formula	R1=VEQ
Lower limit [mL]	5.0	Constant C=	1
Upper limit [mL]	15.0	M	M[None]
Density [g/mL]	1.0	Z	z[None]
Correction factor	1.0	Decimal places	3
Temperature [°C]	25.0°C	Result limits	No
Entry	Before	Record statistics	Yes
		Extra statistical func.	No
003 Titration stand (Manual stan	۵۱	Send to buffer	No
Type	Manual stand	Condition	No
Titration stand	Manual stand 1		
		010 Calculation R1	
004 Pi (1) [1]		Result	C
004 Dispense (normal) [1]			Consumption
Titrant	KI	Result unit	mL
Concentration [mol/L]	0.06	Formula	R2=(QENDDi[2]*6-Q)*C/m
Volume [mL]	10.0	Constant C=	M/z
Dosing rate [mL/min]	60.0	M	M[Metabisulfite]
Condition	No	Z	z[Metabisulfite]
		Decimal places	4
005 Dispense (normal) [2]		Result limits	No
Titrant	KIO ₃	Record statistics	Yes
Concentration [mol/L]	0.01	Extra statistical func.	No
Volume [mL]	10.0	Send to buffer	No
	60.0	Condition	
Dosing rate [mL/min]		Condition	No
Condition	No		
		011 End of sample	
006 Dispense (normal) [3]			
Titrant	11.00		
	H ₂ SO ₄		
Concentration [mol/L]	0.35		
Volume [mL]	10.0		
Dosing rate [mL/min]	60.0		
Condition	No		
007 Stir			
Speed [%]	30		
-			
Duration [s]	10		
Condition	No		
008 Titration (EQP) [1]			
Titrant			
Titrant	Na ₂ S ₂ O ₃		
Concentration [mol/L]	0.01		

Sensor			
Type	mV		
Sensor	DM140-SC		
Unit	mV		
Temperature acquisition			
	N-		
Temperature acquisition	INO		
Stir			
Speed [%]	30		
Predispense			
	77-1		
Mode	Volume		
Volume [mL]	150/m		
Waiting time [s]	10		
Control			
Control	User		
Titrant addition	Dynamic		
dE (set value) [mV]	6		
dV (min) [mL]	0.05		
dV (max) [mL]	0.4		
Mode	Equilibrium controlled		
dE [mV]	1.0		
dt [s]	2		
t (min) [s]	3		
t (max) [s]	30		
Evaluation and recognition			
Procedure	Standard		
Threshold [mV/mL]	50		
Tendency	None		
Ranges	0		
Add. EQP criteria	No		