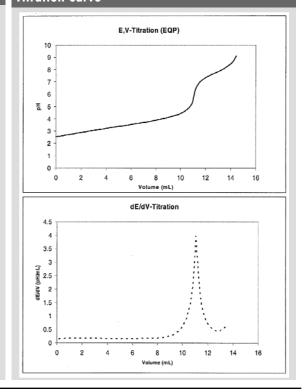
METTLER TOLEDO M351

Glycerin content determination according to USP 26

The glycerin content is determined according to USP 26 with acid base titration: Formic acid that is released from glycerin by quantitative reaction with sodium periodate is titrated with sodium hydroxide. Beforehand the suitability of the periodate solution is validated by redox titration using sodium thiosulfate as titrant.

Approx. 500 mg Glycerin (anhydrous, > 98%) Preparation and Procedures
Substance Glycerin, M = 92.10, z = 1 Chemicals Potassium hydrogen phthalate (KHP) Sodium(meta)periodate (NaIO ₄) Potassium iodide, 0.6 mol/L Sodium thiosulfate c = 0.1 mol/l Titrant Sodium hydroxide (NaOH) c(NaOH) = 0.1 mol/L Standard Potassium hydrogen phthalate, 80 mg Instruments Glycerin, M = 92.10, z = 1 1.2) Suitability test of the sodium(meta)periodate solution 10 mL of sodium periodate solution are pipetted into a 250 mL flask and filled up with water 500 mg of glycerin are dissolved in 50 mL water and 50 mL of the diluted periodate solution was added. Wait for 30 min 8 lank: 50 mL of the diluted periodate solution was added to 50 mL water. Wait for 30 min 20 mL aliquots of both solutions were acidified with 1 mL of 1.0 mol/L HCl. 10 ml 0.6 mol/L Kl-solution are added. Deion. water was added to achieve a volume of 50 mL. The released iodine was tilrated with 0.1 mol/L sodium thiosulfate. Standard Potassium hydrogen phthalate, 80 mg Instruments T50, T70 and T90 Excellence Titrators
Chemicals Potassium hydrogen phthalate (KHP) Sodium(meta)periodate (NaIO ₄) Potassium iodide, 0.6 mol/L Sodium thiosulfate c = 0.1 mol/l Titrant Sodium hydroxide (NaOH) c(NaOH) = 0.1 mol/L Standard Potassium hydrogen phthalate, 80 mg Instruments 1.2) Suitability test of the sodium(meta)periodate solution 10 mL of sodium periodate solution are pipetted into a 250 mL flask and filled up with water 500 mg of glycerin are dissolved in 50 mL water and 50 mL of the diluted periodate solution was added. Wait for 30 min 8 lank: 50 mL of the diluted periodate solution was added to 50 mL water. Wait for 30 min 20 mL aliquots of both solutions were acidified with 1 mL of 1.0 mol/L HCl. 10 ml 0.6 mol/L KI-solution are added. Deion. water was added to achieve a volume of 50 mL. The released iodine was titrated with 0.1 mol/L sodium thiosulfate. Standard Potassium hydrogen phthalate, 80 mg T50, T70 and T90 Excellence Titrators 1.2) Suitability test of the sodium periodate solution are pipetted into a 250 mL flask and filled up with water 500 mg of glycerin are dissolved in 50 mL of the diluted periodate solution was added to 50 mL on the diluted periodate solution was added to 50 mL on the diluted periodate solution was added to 50 mL on the diluted periodate solution was added to 50 mL on the diluted periodate solution and 50 mL on the diluted periodate solution and 50 mL on the diluted periodate solution and 50 mL on the diluted periodate solution was added to 50 mL on the diluted periodate solution was added to 50 mL on the diluted periodate solution was added to 50 mL on the diluted periodate solution was added to 50 mL on the diluted periodate solution was added to 50 mL on the diluted periodate solution was added to 50 mL on the diluted periodate solution was added to 60 mL on the diluted periodate solution was added to 60 mL on the diluted periodate solution was added to 60 mL on the diluted periodate solution was added to 60 mL on the diluted periodate solution was added to 60 mL on the dil
Potassium hydrogen phthalate (KHP) Sodium(meta)periodate (NalO₄) Potassium iodide, 0.6 mol/L Sodium thiosulfate c − 0.1 mol/l Titrant Sodium hydroxide (NaOH) c(NaOH) = 0.1 mol/L Standard Potassium hydrogen phthalate, 80 mg Instruments Potassium hydrogen phthalate, 80 mg Potassium hydrogen phthalate, 80 mg T50, T70 and T90 Excellence Titrators Sodium hydrogen phthalate (KHP) Sodium thiosulfate (NaOH) c(NaOH) = 0.1 mol/L Standard Potassium hydrogen phthalate, 80 mg T50, T70 and T90 Excellence Titrators T50 mL water and description are dissolved in 50 mL water and 50 mL of the diluted periodate solution was added. Wait for 30 min. Blank: 50 mL of the diluted periodate solution was added. Wait for 30 min. Do mL water. Wait for 30 min. 20 mL aliquots of both solutions were acidified with 1 mL of 1.0 mol/L HCl. 10 ml 0.6 mol/L KI-solution are added. Deion. water was added to achieve a volume of 50 mL. The released iodine was titrated with 0.1 mol/L sodium thiosulfate. 21) Acid base titration. 500 mg glycerin are weighed in a titration beaker and 50 mL deion. water were added. For a blank determination 50 mL deionized water were added separately into a titration beaker. The pH was adjusted to 7.8 for both solutions. 50 mL of the sodium periodate solution was pipetted into each beaker and covered wih a watch glass. Both solutions
Titrant Sodium hydroxide (NaOH) c(NaOH) = 0.1 mol/L Standard Potassium hydrogen phthalate, 80 mg Instruments Sodium hydroxide (NaOH) c(NaOH) = 0.1 mol/L Potassium hydrogen phthalate, 80 mg 1.0 mol/L HCl. 10 ml 0.6 mol/L Kl-solution are added. Deion. water was added to achieve a volume of 50 mL. The released iodine was titrated with 0.1 mol/L sodium thiosulfate. 2) Acid base titration. 500 mg glycerin are weighed in a titration beaker and 50 mL deion. water were added. For a blank determination 50 mL deionized water were added separately into a titration beaker. The pH was adjusted to 7.8 for both solutions. 50 mL of the sodium periodate solution was pipetted into each beaker and covered wih a watch glass. Both solutions
beaker and 50 mL deion, water were added. For a blank determination 50 mL deionized water were added separately into a titration beaker. The pH was adjusted to 7.8 for both solutions. 50 mL of the sodium periodate solution was pipetted into each beaker and covered wih a watch glass. Both solutions
Instruments T50, T70 and T90 Excellence Titrators into a titration beaker. The pH was adjusted to 7.8 for both solutions. 50 mL of the sodium periodate solution was pipetted into each beaker and covered wih a watch glass. Both solutions
were allowed to stand for 30 min at room temperature. 10 mL
Accessories Titration beakers ME-101974 OKI B4250 Printer (parallel cable ME-51 108 780) of a PEG (polyethyleneglycol)/water mixture (1:1, v:v) were added to both solutions and allowed to stand for 20 min.
Remarks
DM140-SC (Redox titration) DG111-SC (Acid base titration) 1) Suitability test. According to USP26 the ratio between the volume of 0.1 mol/L sodium thiosulfate required for the glycerin containing mixture to that for the blank should be between
Chemistry 1) Suitability test (Redox): $ O_4^- + 7I^- + 6H^+ + H_2O = 4I_2 + 20H^- + 3H_2O$ $ AI_2 + 8S_2O_3^- = 4S_4O_6^{-2} + 8I, O_4^- : z = 8$ 2) Acid base titration: 0.750 and 0.765. The obtained ratio was 0.750. This ratio was regarded as a proof that the periodate solution is suitable for the analysis of the glycerin content.
HCOOH + OH ⁻ = H2O + HCOO ⁻ 2) Acid base titration: The nominal concentration of the glycerin solution was 0.04995 mol/L (0.5061 g in 110 mL). This corresponds to a recovery of 98.90% (see results: mean value
Calculation R1=Q-B[Glycerin]; mmol R1=Q-B[Glycerin]; mmol determinations were performed in the same EQP-titration mode
R2=(Q-B[Glycerin])*C/m C=1/z; mol/L R2=(Q-B[Glycerin])*C/m sample value (mmol) in order to account for the acidity in the solvent not corresponding to the released formic acid.
B[Glycerin]: Blank value 3) Oxidation of glycerin with periodate:
CH ₂ OH-CHOH-CH ₂ OH + 2IO ₄ = HCOOH + 2 HCHO + 2 IO ₃ + H ₂ O One mole of glycerin corresponds therefore to one mole of formi
CH ₂ OH-CHOH-CH ₂ OH + 2IO ₄ = HCOOH + 2 HCHO + 2 IO ₃ + H ₂ O One mole of glycerin corresponds therefore to one mole of formi acid. Formic acid (M = 46.025, z = 1) was titrated with sodium hydroxide.
$CH_2OH-CHOH-CH_2OH+2IO_4=HCOOH+2HCHO+2IO_3+H_2O$ One mole of glycerin corresponds therefore to one mole of formit acid. Formic acid (M = 46.025, z = 1) was titrated with sodium


Results

Name: Tho	mas Hitz,	ID	Glyceri	n Content			
			Rx	Result	Unit	Name	
1/5		27.03.20	007 11:30:	27			
				0.98657 0.04933		Content Concentration	
2/5		27.03.20	007 11:34:	16			
			R1 =	0.98932	mmol	Content	
			R2 =	0.04947	mol/L	Concentration	
3/5		27.03.20	07 11:41:	09			
			R1 =	0.98976	mmol	Content	
			R2 =	0.04949	mol/L	Concentration	
4/5		27 03 20	007 11:47:	3.4			
1/3		27.03.20		0.98991	mmol	Content	
			R2 =	0.04950	mol/L	Concentration	
5/5 27.03.2007 11:53:14							
3,3		27.03.20		0.98406	mmol	Content	
			R2 =	0.04920	mol/L	Concentration	
Statistics							
Rx	Name	n	Mean	Unit	s	srel [%]	
R1	Cont.	5	0.98792	mmol	0.00255	0.258	
R2	Conc.	5	0.04940	mol/L	0.00013	0.264	

Table of measured values

Volume	Increment	Signal	Change	1st deriv.	Time	
mL.	mL	pH	pH	pH/mL	s	
0	NaN	2.544	NaN	NaN	0	
0.005	0.005	2.545	0.001	NaN	3	
0.01	0.005	2.545	0	NaN	6	
0.022	0.012	2.547	0.002	NaN	9	
0.054	0.032	2.552	0.005	NaN	12	
0.131	0.077	2.563	0.011	0.15	15	
0.325	0.194	2.593	0.03	0.16	18	
0.81	0.485	2.671	0.078	0.17	21	
1.31	0.5	2.762	0.091	0.17	24	
1.81	0.5	2.848	0.086	0.18	27	
2.31	0.5	2.939	0.091	0.18	30	
2.81	0.5	3.024	0.085	0.17	34	
3.31	0.5	3.109	0.085	0.17	36	
3.81	0.5	3,193	0.084	0.16	40	
4.31	0.5	3.274	0.081	0.16	43	
4.81	0.5	3.353	0.079	0.16	46	
5.31	0.5	3.431	0.078	0.16	49	
5.81	0.5	3.511	0.08	0.16	53	
6.31	0.5	3.591	0.08	0.16	56	
6.81	0.5	3.673	0.082	0.17	59	
7.31	0.5	3,756	0.083	0.17	62	
7.81	0.5	3.849	0.093	0.18	66	
8.31	0.5	3.946	0.097	0.2	70	
8.81	0.5	4.06	0.114	0.24	73	
9.31	0.5	4.193	0.133	0.31	77	
9.81	0.5	4.363	0.17	0.48	81	
10.31	0.5	4.605	0.242	0.86	112	
10.66	0.35	4.884	0.279	1.47	115	
10.815	0.155	5.093	0.209	2.08	119	
10.904	0.089	5.271	0.178	2.71	123	
10.972	0.068	5.462	0.191	3.22	127	
11.025	0.053	5.676	0.214	3.39	130	
11.059	0.034	5.839	0.163	3.99	134	
11.060119	NaN	5.844	NaN	3.99	NaN	
11.095	0.036	6.014	0.175	3.88	137	
11.136	0.041	6.19	0.176	3.37	140	
11.19	0.054	6.379	0.189	3.12	143	
11.26	0.07	6.57	0.191	2.61	147	
11.356	0.096	6.75	0.18	2	150	
11.514	0.158	6.955	0.205	1.43	153	
11.74	0.226	7.16	0.205	0.99	157	
12.058	0.318	7.372	0.212	0.66	161	
12.476	0.418	7.588	0.216	0.48	165	
12.976	0.5	7.826	0.238	0.43	169	
13.437	0.461	8.063	0.237	0.6	173	
13.804	0.367	8.301	0.238	NaN	178	
14.053	0.249	8.515	0.214	NaN	182	
14.229	0.176	8.73	0.215	NaN	186	

Titration curve

Method					
Method	M351 Glycerin		006 Calcu	lation R1	
Author	METTLER TOLEDO			Result	Content
				Result unit	mmol
001 Title	Type	General titration		Formula Constant	R1=Q-B[Glycerin]
	Compatible	with T50/T70/T90		M	
	Method ID	M351		z	
	Title	Glycerin content		Decimal places	5
	Author Date/Time	METTLER TOLEDO 26.03.2007/15:00:00		Result limits Record statistics	No Yes
	Modified			Extra statistical functions	No
	Modified by			Condition	No
	Protect SOP	No None	007 0010	lation R2	
	302	Notice	007 Cale	Result	Concentration
002 Sampl	e			Result unit	mol/L
	Number of IDs	1		Formula	R2=(Q-B[Glycerin])*C/m
	ID 1 Entry type	 Fixed Volume		Constant M	C= 1/z M[FormicAcid]
	Volume [mL]	20		Z	z[FormicAcid]
	Density [g/mL]	1.0		Decimal places	5
	Correction factor	1.0		Result limits	No
	Temperature[°C]	25.0		Record statistics Extra statistical functions	Yes No
003 Titra	tion stand			Condition	No
	Туре	Manual stand			
	Titration stand	Manual stand1	008 Recor		Der gerieg
004 Stir				Results Raw results	Per series Per series
	Speed [%]	35		Table of measured values	Last titration
	Duration [s]	60	function		
005 Titro	tion (EQP) [1]			Sample data Resource data	Per series No
Titrant	CION (EQP) [1]			E - V	Last titration
	Titrant	NaOH	function		
	Concentration[mol/L]	0.1		dE/dV - V	Last titration
Sensor	Туре	pН	function	log dE/dV - V	No
	Sensor	DG111-SC		d2E/dV2 - V	No
	Unit	Нд		E - t	No
Temperatu	re acquisition	W-		V - t	No No
Stir	Temperature acquisition	No		dV/dt - t T - t	No No
	Speed[%]	35		E - V & dE/dV - V	No
Predispen				V - t & dV/dt - t	No
	Mode Wait time[s]	None 0		Calibration curve Method	No No
Control	ware erme(b)	ů .		Series data	No
	Control	User			
	Titrant addition dE(set value)[mV]	Dynamic 12.0	009 End o	of sample	
	dV(min)[mL]	0.002			
	dV(max)[mL]	0.5			
	Meas. val. acquisition	Equilibrium controlled			
	dE[mV] dt[s]	1.0			
	t(min)[s]	3.0			
	t(max)[s]	30.0			
Evaluation	n and Recognition Procedure	Standard			
	Threshold[pH/mL]	3.0			
	Tendency	Positive			
	Ranges	0 No			
Terminati	Add. EQP criteria on	No			
	At Vmax [mL]	10.0			
	At potential	Yes			
	Potential Termination tendency	9 None			
	At slope	No			
	After number of				
	recognized EQPs Combined termination	No			
	criteria	No			
Accompany	ing stating				
a 2/1./	Accompanying stating	No			
Condition	Condition	No			
