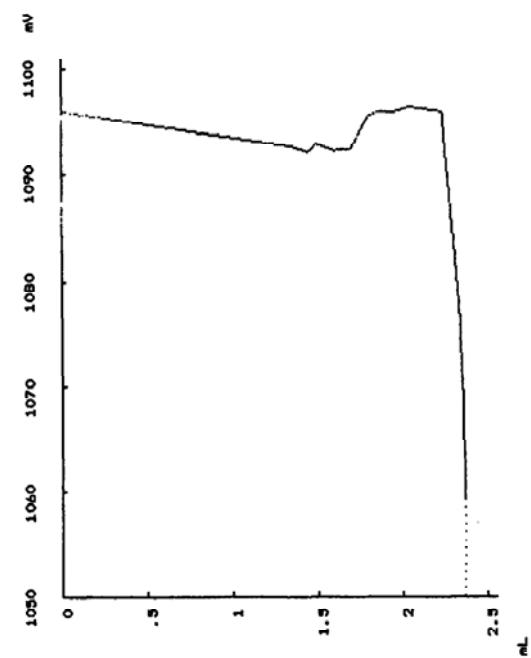


## Determination of Free Cyanide in a Copper Bath

Cyanide content determination in e.g. brass electroplating bath is very important to achieve optimum plating efficiency. Free cyanide is precipitated by silver nitrate, and the titration is monitored with a DP550 phototrode.


| Sample         | Copper bath,<br>aliquots of 1 mL from diluted solution of<br>10 mL in 100 mL.                                                                                                                                | Preparation and Procedures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Substance      | Free cyanide, $\text{CN}^-$ , M = 26.02,<br>$z = 1$                                                                                                                                                          | <p><b>Sample preparation</b></p> <ol style="list-style-type: none"> <li>10 mL bath are diluted to 100 mL with deion. water.</li> <li>1 mL aliquot is poured in the titration beaker.</li> <li>Add 5 mL 10% potassium iodide solution (KI).</li> <li>40 mL deionized water is added to the sample.</li> </ol> <p>A soluble complex <math>[\text{Ag}(\text{CN})_2]^-</math> is first formed:</p> $\text{Ag}^+ + 2 \text{CN}^- = [\text{Ag}(\text{CN})_2]^-$ <p>As long as free cyanide is still present, the solution remains clear, but the first excess of silver causes formation of a white solid that mark the endpoint:</p> $\text{Ag}^+ + \text{Ag}(\text{CN})_2^- = \text{Ag}[\text{Ag}(\text{CN})_2]$ <p>For an accurate end-point determination, KI is used as an indicator. During titration, any silver iodide which would tend to form will be kept in solution by the excess of cyanide ion until the equivalence point is reached:</p> $\text{AgI} + 2 \text{CN}^- = [\text{Ag}(\text{CN})_2]^- + \text{I}^-$ <p>After the EQP, the formation of yellow silver iodide will lead to a turbidity increase which indicates the endpoint.</p> |
| Chemicals      | 5 mL potassium iodide, KI, 10%<br>40 mL deion. water                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Titrant        | Silver nitrate, $\text{AgNO}_3$<br>$c(1/2 \text{AgNO}_3) = 0.2 \text{ mol/L}$                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Standard       | Sodium chloride (see appl. M525)                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Instruments    | DL50 Graphix, DL53/DL55/DL58,<br>DL70ES/DL77<br>AT261, Printer                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Accessories    | Titration beakers ME-101974                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Indication     | DP550 Phototrode with<br>DIN-Lemo Adapter ME-89600                                                                                                                                                           | <p><b>Remarks</b></p> <p>The method was developed on the DL25 titrator and has been adapted for the DL5x-/DL7x-titrators.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Chemistry      | $\text{Ag}^+ + 2 \text{CN}^- = \text{Ag}(\text{CN})_2^-$ $\text{Ag}^+ + \text{Ag}(\text{CN})_2^- = \text{Ag}[\text{Ag}(\text{CN})_2]$ $\text{AgI} + 2 \text{CN}^- = [\text{Ag}(\text{CN})_2]^- + \text{I}^-$ | <p><b>Chemicals</b></p> <p>10% Potassium iodide, KI:<br/>50 g KI and 50 g NaOH are dissolved in deionized water, and diluted to 500 mL in a volumetric flask.</p> <p><b>CAUTION:</b> Cyanide is toxic. Wear safety goggles and gloves, and work in a fume hood. NEVER add strong acid to the solution since cyanidic acid is formed and liberated as a gas from the solution.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Calculation    | $R = Q \cdot C/m$ $C = M/z$ $R2 = R1 \cdot 10$ $R3 = Q \cdot C3$ $C3 = M \cdot 1000/z$                                                                                                                       | <p><b>Literature</b></p> <ol style="list-style-type: none"> <li>1. Application note, DL25 Application Brochure "Petroleum and electroplating", ME-51724627.</li> <li>2. Vogel's textbook of quantitative inorganic analysis, 4th edition, Longman Group Limited, 1978.</li> <li>3. D.A. Skoog, D.M. West, "Fundamentals of Analytical Chemistry", Holt, Rinehart, and Winston, 1969.</li> <li>4. Application no. M525 in Application brochure 18, "Standardization of Titrants", 2000.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Waste disposal | Cyanide waste.<br>CAUTION: cyanide is toxic.                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Author         | R. Böhlen, MT-CH                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

## Results

|                              | CN-       | n | Comments                                                                              |
|------------------------------|-----------|---|---------------------------------------------------------------------------------------|
| Mean value                   | 26.84 g/L | 6 | DL25 application note<br>in                                                           |
| Standard deviation s         | 0.346 g/L |   | DL25 Application brochure<br>"Petroleum products and electroplating"<br>ME-51 724 627 |
| Rel. standard deviation srel | 1.29 %    |   |                                                                                       |

Table of measured values

Titration curve



## Method

|                               |            |                        |
|-------------------------------|------------|------------------------|
| Method                        | 25002      | Free CN- in Cu bath    |
| Version                       | 17-01-2001 | 10:50                  |
| <b>Title</b>                  |            |                        |
| Method ID                     | 25002      |                        |
| Title                         |            | Free CN- in Cu bath    |
| Date/time                     |            | 17-01-2001 10:50       |
| <b>Sample</b>                 |            |                        |
| Sample ID                     |            | Cu bath                |
| Entry type                    |            | Fixed volume           |
| Volume [mL]                   |            | 1.0                    |
| Molar mass M                  |            | 26.01                  |
| Equivalent number z           |            | 1                      |
| Titration stand               |            | Stand 1                |
| Temperature sensor            |            | Manual                 |
| <b>Stir</b>                   |            |                        |
| Speed [%]                     |            | 50                     |
| Time [s]                      |            | 10                     |
| <b>EQP titration</b>          |            |                        |
| <b>Titrant/Sensor</b>         |            |                        |
| Titrant                       |            | 1/2AgNO <sub>3</sub>   |
| Concentration [mol/L]         |            | 0.2                    |
| Sensor                        |            | DP550                  |
| Unit of meas.                 |            | mV                     |
| Predispensing                 |            | to volume              |
| Volume [mL]                   |            | 1.5                    |
| Wait time [s]                 |            | 20                     |
| Titrant addition              |            | Dynamic                |
| dE(set) [mV]                  |            | 4.0                    |
| dV(min) [mL]                  |            | 0.02                   |
| dV(max) [mL]                  |            | 0.2                    |
| Measure mode                  |            | Equilibrium controlled |
| dE [mV]                       |            | 0.5                    |
| dt [s]                        |            | 1.0                    |
| t(min) [s]                    |            | 5.0                    |
| t(max) [s]                    |            | 30.0                   |
| <b>Recognition</b>            |            |                        |
| Threshold                     |            | 200                    |
| Steepest jump only            |            | No                     |
| Range                         |            | No                     |
| Tendency                      |            | Negative               |
| <b>Termination</b>            |            |                        |
| at maximum volume [mL]        |            | 20.0                   |
| at potential                  |            | No                     |
| at slope                      |            | No                     |
| after number EQPs             |            | Yes                    |
| n =                           |            | 1                      |
| comb. termination criteria    |            | No                     |
| <b>Evaluation</b>             |            |                        |
| Procedure                     |            | Standard               |
| Potential 1                   |            | No                     |
| Potential 2                   |            | No                     |
| Stop for reevaluation         |            | Yes                    |
| Condition                     |            | neq=0                  |
| <b>Calculation</b>            |            |                        |
| Formula                       |            | R=Q*C/m                |
| Constant                      |            | C=M/z                  |
| Decimal places                |            | 2                      |
| Result unit                   |            | g/L                    |
| Result name                   |            | Sample content         |
| Statistics                    |            | Yes                    |
| <b>Calculation</b>            |            |                        |
| Formula                       |            | R2=R1*10               |
| Constant                      |            |                        |
| Decimal places                |            | 2                      |
| Result unit                   |            | g/L                    |
| Result name                   |            | Bath content           |
| Statistics                    |            | Yes                    |
| <b>Calculation</b>            |            |                        |
| Formula                       |            | R3=Q*C3                |
| Constant                      |            | C3=M*1000/z            |
| Decimal places                |            | 2                      |
| Result unit                   |            | mg                     |
| Result name                   |            | CN in sample           |
| Statistics                    |            | No                     |
| <b>Report</b>                 |            |                        |
| Output                        |            | Printer                |
| Results                       |            | No                     |
| All results                   |            | Yes                    |
| Raw results                   |            | No                     |
| Table of measured values      |            | Yes                    |
| Sample data                   |            | No                     |
| E - V curve                   |            | Yes                    |
| dE/dV - V curve               |            | Yes                    |
| d2E/dV <sup>2</sup> - V curve |            | No                     |
| log dE/dV - V curve           |            | No                     |
| E - t curve                   |            | No                     |
| V - t curve                   |            | No                     |
| dV/dt - t curve               |            | No                     |