Controlling Residual Isocyanate - METTLER TOLEDO

Controlling Residual Isocyanate

Process Analytical Technology for Continuous Measurement of NCO

Control Residual Isocyanates in Polyurethane Polymerizations
Polymerization Publications

Aplikace

Applications Related to Controlling Residual Isocyanate

Control Residual Isocyanate
Process Analytical Technology for Continuous Measurement of NCO

Isocyanates are critical building blocks for high performance polyurethane-based polymers that make up coatings, foams, adhesives, elastomers, and insulation. Concerns over exposure to residual isocyanates led to new limits for residual isocyanates in new products. Traditional analytical methods for measuring the residual isocyanate (NCO) concentration using offline sampling and analysis raise concerns. In situ monitoring with process analytical technology addresses these challenges and enables manufacturers and formulators to ensure that product quality specifications, personnel safety, and environmental regulations are met.

Measuring Polymerization Reactions
Methods and Techniques to Develop Synthetic Polymer Chemistry

Polymerization reaction measurement is crucial to produce material that meets requirements, including Immediate understanding, accurate and reproducible, Improved safety.

Impurity Profiling of Chemical Reactions
Automated Process Development Strategies for Chemists

Impurity profiling aims at identification and subsequent quantification of specific components present at low levels, usually less than 1% and ideally lower than 0.1 %.

Chemical Reaction Kinetics Studies
Fundamental Understanding of Reactions Rates and Factors Affecting Them

Chemical reaction kinetics, also known as reaction kinetics, reflect rates of chemical reactions and provide a better understanding of their dependencies on reaction variables. Reaction kinetic studies provide enhanced insight into reaction mechanisms. Learn how to obtain data rich information for more complete reaction kinetic information.

Průtoková chemie
Zvýšení bezpečnosti, zkrácení trvání cyklu, zvýšení kvality a výnosu

Průtoková chemie (občas taky nazývaná chemie laminárního toku, mikrochemie nebo chemie kontinuálního toku) otevírá možnosti využití exotermických syntetizačních kroků, které nejsou u dávkových reaktorů možné, a nový rozvoj v oblasti konstrukce průtokových reaktorů umožňuje využití alternativních reakcí, které jsou u dávkových směsných reaktorů omezeny. Výsledkem tak může být vyšší kvalita produktů a vyšší výnos.  V kombinaci s procesní analytickou technologií (PAT) umožňuje průtoková chemie rychlé provedení analýzy, optimalizace a převedení chemické reakce do praxe.

Grignard Reaction Mechanisms
Understand and Control Exothermic Events

Grignard reactions are one of the most important reaction classes in organic chemistry. Grignard reactions are useful for forming carbon-carbon bonds. Grignard reactions form alcohols from ketones and aldehydes, as well as react with other chemicals to form a myriad of useful compounds. Grignard reactions are performed using a Grignard reagent, which is typically a alkyl-, aryl- or vinyl- organomagnesium halide compound. To ensure optimization and safety of Grignard reactions in research, development and production, in situ monitoring and understanding reaction heat flow is important.

Hydrogenation Reactions
Bezpečné monitorování reakcí při zvýšené teplotě a tlaku

Hydrogenační reakce se široce používají při výrobě velkoobjemových a jemných chemikálií pro redukci vícenásobných vazeb na jednoduché. Katalyzátory se obvykle používají na podporu těchto reakcí, přičemž reakční teplota, tlak, zatížení substrátu, zatížení katalyzátoru a intenzita míchání společně působí na absorpci plynného vodíku a celkový výkon reakce. Důkladné pochopení této intenzivní reakce je důležité a PAT technologie, jako je in situ FTIR, kalorimetrie a automatické in situ vzorkování na podporu analýzy HPLC zajišťují bezpečné, optimalizované a dobře charakterizované chemické procesy.

Highly Reactive Chemistries
Scale-Up and Optimize Highly Reactive Chemistries

Highly reactive chemistry is a terminology used to describe chemical reactions that are particularly challenging to handle and develop due to the potentially hazardous and/or energetic nature of the reactants, intermediates and products that are present during synthesis. These chemistries often involve highly exothermic reactions which require specialized equipment or extreme operating conditions (such as low temperature) to ensure adequate control. Ensuring safe operating conditions, minimizing human exposure, and gaining the maximum amount of information from each experiment are key factors in successfully designing and scaling-up highly reactive chemistries.

High Pressure Reactions
Understand and Characterize High Pressure Reactions Under Challenging Sampling Conditions

Many processes require reactions to be run under high pressure. Working under pressure is challenging and collecting samples for offline analysis is difficult and time consuming. A change in pressure could affect reaction rate, conversion and mechanism as well as other process parameters plus sensitivity to oxygen, water, and associated safety issues are common problems.

Hydroformylation or Oxo Synthesis/Process
Understanding Key Mechanisms and Improve Catalytic Processes

Hydroformylation, or oxo synthesis, catalytic processes that synthesize aldehydes from alkenes. The resultant aldehydes form the feedstock for many other useful organic compounds.

Halogenation Reactions
Key Syntheses in Pharmaceutical and Polymer Chemistry

Halogenation occurs when one of more fluorine, chlorine, bromine, or iodine atoms replace one or more hydrogen atoms in an organic compound. Depending on the specific halogen, the nature of the substrate molecule and overall reaction conditions, halogenation reactions can be very energetic and follow different pathways. For this reason, understanding these reactions from a kinetics and thermodynamic perspective is critical to ensuring yield, quality and safety of the process.

Catalytic Reactions
Accelerate Chemical Reactions With a Catalyst

Catalysts create an alternative path to increase the speed and outcome of a reaction, so a thorough understanding of the reaction kinetics is important. Not only does that provide information about the rate of the reaction, but also provides insight into the mechanism of the reaction. There are two types of catalytic reactions: heterogeneous and homogeneous. Heterogeneous is when the catalyst and reactant exist in two different phases. Homogeneous is when the catalyst and the reactant are in the same phase..

synthesis reactions
Providing Automated Tools to Deliver Life Changing Products

One of the four major classes of chemical reactions, synthesis reactions are represented by important examples in organic synthesis, catalyzed chemistry, polymerizations and inorganic/organometallic chemistry. In the simplest case, a synthesis reaction occurs when two molecules combine to form a third, more complex product molecule. Often, synthesis reactions are more complex and require a thorough understanding of the kinetics and mechanisms of the underlying chemistry, as well as carefully controlled reaction conditions.

Návrh experimentů (DoE)
Statistický přístup k optimalizaci reakcí

Návrh experimentů (DoE) vyžaduje provedení experimentů za kontrolovaných a reprodukovatelných podmínek v optimalizaci chemické reakce. Reaktory pro chemickou syntézu jsou navrženy tak, aby pomáhaly s návrhem experimentů a poskytovaly vysoce kvalitní data.

Understand the structure of individual molecules and composition of molecular mixtures

Fourier Transform Infrared (FTIR) Spectroscopy For Real-Time Monitoring Of Chemical Reactions

Reaction Mechanism Pathway
Fundamental Understanding of Chemical Reactions and Factors Affecting Them

Reaction mechanisms describe the successive steps at the molecular level that take place in a chemical reaction. Reaction mechanisms cannot be proven, but rather postulated based on empirical experimentation and deduction. In situ FTIR spectroscopy provides information to support reaction mechanisms hypotheses.

Organometallic Synthesis
Understanding and Control of Organometallic Compounds

Organometallic Synthesis, or Organometallic Chemistry, refers to the process of creating organometallic compounds, and is among the most researched areas in chemistry. Organometallic compounds are frequently used in fine chemical syntheses and to catalyze reactions. In situ Infrared and Raman spectroscopy are among the most powerful analytical methods for the study of organometallic compounds and syntheses.

Oligonucleotide Synthesis
Ensure Yield, Purity, and Cost Objectives

Oligonucleotide synthesis is the chemical process by which nucleotides are specifically linked to form a product of desired sequenced.

What is Alkylation?
For Key Reactions in Organic Chemistry

Alkylation is the process by when an alkyl group is added to a substrate molecule. Alkylation is a widely used technique in organic chemistry.

Epoxides
Key Functional Groups for Synthesis of Polymers and Pharmaceuticals

This page outlines what epoxides are, how they are synthesized and technology to track reaction progression, including kinetics and key mechanisms.

Key C-C Bond-Forming Reactions in Molecular Synthesis

The Suzuki and related cross-coupling reactions use transition metal catalysts, such as palladium complexes, to form C-C bonds between alkyl and aryl halides with various organic compounds. These catalyzed reactions are widely used methods to efficiently increase molecular complexity in pharmaceutical, polymer, and natural product syntheses. PAT technology is used to investigate cross-coupled reactions with regard to kinetics, mechanisms, thermodynamics, and the effect of reaction variables on performance and safety.

Lithiation Organolithium Reactions
Key Reagents for Synthesizing Complex Molecules

Lithiation and organolithium reactions are key in the development of complex pharmaceutical compounds; organolithium compounds also act as initiators in certain polymerization reactions.

Control Residual Isocyanate

Isocyanates are critical building blocks for high performance polyurethane-based polymers that make up coatings, foams, adhesives, elastomers, and insulation. Concerns over exposure to residual isocyanates led to new limits for residual isocyanates in new products. Traditional analytical methods for measuring the residual isocyanate (NCO) concentration using offline sampling and analysis raise concerns. In situ monitoring with process analytical technology addresses these challenges and enables manufacturers and formulators to ensure that product quality specifications, personnel safety, and environmental regulations are met.

Measuring Polymerization Reactions

Polymerization reaction measurement is crucial to produce material that meets requirements, including Immediate understanding, accurate and reproducible, Improved safety.

Impurity Profiling of Chemical Reactions

Impurity profiling aims at identification and subsequent quantification of specific components present at low levels, usually less than 1% and ideally lower than 0.1 %.

Chemical Reaction Kinetics Studies

Chemical reaction kinetics, also known as reaction kinetics, reflect rates of chemical reactions and provide a better understanding of their dependencies on reaction variables. Reaction kinetic studies provide enhanced insight into reaction mechanisms. Learn how to obtain data rich information for more complete reaction kinetic information.

Průtoková chemie

Průtoková chemie (občas taky nazývaná chemie laminárního toku, mikrochemie nebo chemie kontinuálního toku) otevírá možnosti využití exotermických syntetizačních kroků, které nejsou u dávkových reaktorů možné, a nový rozvoj v oblasti konstrukce průtokových reaktorů umožňuje využití alternativních reakcí, které jsou u dávkových směsných reaktorů omezeny. Výsledkem tak může být vyšší kvalita produktů a vyšší výnos.  V kombinaci s procesní analytickou technologií (PAT) umožňuje průtoková chemie rychlé provedení analýzy, optimalizace a převedení chemické reakce do praxe.

Grignard Reaction Mechanisms

Grignard reactions are one of the most important reaction classes in organic chemistry. Grignard reactions are useful for forming carbon-carbon bonds. Grignard reactions form alcohols from ketones and aldehydes, as well as react with other chemicals to form a myriad of useful compounds. Grignard reactions are performed using a Grignard reagent, which is typically a alkyl-, aryl- or vinyl- organomagnesium halide compound. To ensure optimization and safety of Grignard reactions in research, development and production, in situ monitoring and understanding reaction heat flow is important.

Hydrogenation Reactions

Hydrogenační reakce se široce používají při výrobě velkoobjemových a jemných chemikálií pro redukci vícenásobných vazeb na jednoduché. Katalyzátory se obvykle používají na podporu těchto reakcí, přičemž reakční teplota, tlak, zatížení substrátu, zatížení katalyzátoru a intenzita míchání společně působí na absorpci plynného vodíku a celkový výkon reakce. Důkladné pochopení této intenzivní reakce je důležité a PAT technologie, jako je in situ FTIR, kalorimetrie a automatické in situ vzorkování na podporu analýzy HPLC zajišťují bezpečné, optimalizované a dobře charakterizované chemické procesy.

Highly Reactive Chemistries

Highly reactive chemistry is a terminology used to describe chemical reactions that are particularly challenging to handle and develop due to the potentially hazardous and/or energetic nature of the reactants, intermediates and products that are present during synthesis. These chemistries often involve highly exothermic reactions which require specialized equipment or extreme operating conditions (such as low temperature) to ensure adequate control. Ensuring safe operating conditions, minimizing human exposure, and gaining the maximum amount of information from each experiment are key factors in successfully designing and scaling-up highly reactive chemistries.

High Pressure Reactions

Many processes require reactions to be run under high pressure. Working under pressure is challenging and collecting samples for offline analysis is difficult and time consuming. A change in pressure could affect reaction rate, conversion and mechanism as well as other process parameters plus sensitivity to oxygen, water, and associated safety issues are common problems.

Hydroformylation or Oxo Synthesis/Process

Hydroformylation, or oxo synthesis, catalytic processes that synthesize aldehydes from alkenes. The resultant aldehydes form the feedstock for many other useful organic compounds.

Halogenation Reactions

Halogenation occurs when one of more fluorine, chlorine, bromine, or iodine atoms replace one or more hydrogen atoms in an organic compound. Depending on the specific halogen, the nature of the substrate molecule and overall reaction conditions, halogenation reactions can be very energetic and follow different pathways. For this reason, understanding these reactions from a kinetics and thermodynamic perspective is critical to ensuring yield, quality and safety of the process.

Catalytic Reactions

Catalysts create an alternative path to increase the speed and outcome of a reaction, so a thorough understanding of the reaction kinetics is important. Not only does that provide information about the rate of the reaction, but also provides insight into the mechanism of the reaction. There are two types of catalytic reactions: heterogeneous and homogeneous. Heterogeneous is when the catalyst and reactant exist in two different phases. Homogeneous is when the catalyst and the reactant are in the same phase..

synthesis reactions

One of the four major classes of chemical reactions, synthesis reactions are represented by important examples in organic synthesis, catalyzed chemistry, polymerizations and inorganic/organometallic chemistry. In the simplest case, a synthesis reaction occurs when two molecules combine to form a third, more complex product molecule. Often, synthesis reactions are more complex and require a thorough understanding of the kinetics and mechanisms of the underlying chemistry, as well as carefully controlled reaction conditions.

Návrh experimentů (DoE)

Návrh experimentů (DoE) vyžaduje provedení experimentů za kontrolovaných a reprodukovatelných podmínek v optimalizaci chemické reakce. Reaktory pro chemickou syntézu jsou navrženy tak, aby pomáhaly s návrhem experimentů a poskytovaly vysoce kvalitní data.

Fourier Transform Infrared (FTIR) Spectroscopy For Real-Time Monitoring Of Chemical Reactions

Reaction Mechanism Pathway

Reaction mechanisms describe the successive steps at the molecular level that take place in a chemical reaction. Reaction mechanisms cannot be proven, but rather postulated based on empirical experimentation and deduction. In situ FTIR spectroscopy provides information to support reaction mechanisms hypotheses.

Organometallic Synthesis

Organometallic Synthesis, or Organometallic Chemistry, refers to the process of creating organometallic compounds, and is among the most researched areas in chemistry. Organometallic compounds are frequently used in fine chemical syntheses and to catalyze reactions. In situ Infrared and Raman spectroscopy are among the most powerful analytical methods for the study of organometallic compounds and syntheses.

Oligonucleotide Synthesis

Oligonucleotide synthesis is the chemical process by which nucleotides are specifically linked to form a product of desired sequenced.

What is Alkylation?

Alkylation is the process by when an alkyl group is added to a substrate molecule. Alkylation is a widely used technique in organic chemistry.

Epoxides

This page outlines what epoxides are, how they are synthesized and technology to track reaction progression, including kinetics and key mechanisms.

The Suzuki and related cross-coupling reactions use transition metal catalysts, such as palladium complexes, to form C-C bonds between alkyl and aryl halides with various organic compounds. These catalyzed reactions are widely used methods to efficiently increase molecular complexity in pharmaceutical, polymer, and natural product syntheses. PAT technology is used to investigate cross-coupled reactions with regard to kinetics, mechanisms, thermodynamics, and the effect of reaction variables on performance and safety.

Lithiation Organolithium Reactions

Lithiation and organolithium reactions are key in the development of complex pharmaceutical compounds; organolithium compounds also act as initiators in certain polymerization reactions.

Publikace ke stažení

Publications and Webinars Related to Controlling Residual Isocyanates

White Papers

Control Residual Isocyanate
Isocyanate are the most critical building blocks for the performance polyurethane-based polymers that make up coatings, foams, adhesives, elastomers,...

On-Demand Webinars

Professor Robson Storey - University of Southern Mississippi
Real-time in situ mid-infrared monitoring of polymerization reactions involving isobutylene and styrene is the focus of this presentation. Professor R...
Improve Emulsion Stability
Particle or droplet size is critical to improve the stability of emulsions and liquid formulations. Ideally, scientists and engineers accelerate their...
Polymerization Process Monitoring
This presentation discusses polymerization process monitoring and how the value of real-time in situ Fourier Transform Infrared (FTIR) spectroscopy co...
Measuring Polymerization Reactions
Polymerization reaction measurement is crucial to produce material that meets requirements, including Immediate understanding, accurate and reproducib...

Citations

ReactIR Citation List
Continuous measurements from infrared spectroscopy are widely used for obtaining reaction profiles, which are used to calculate reaction rates. This...

Podobné produkty

Technology to Control Residual Isocyanates

Thank you for visiting www.mt.com. We have tried to optimize your experience while on the site, but we noticed that you are using an older version of a web browser. We would like to let you know that some features on the site may not be available or may not work as nicely as they would on a newer browser version. If you would like to take full advantage of the site, please update your web browser to help improve your experience while browsing www.mt.com.