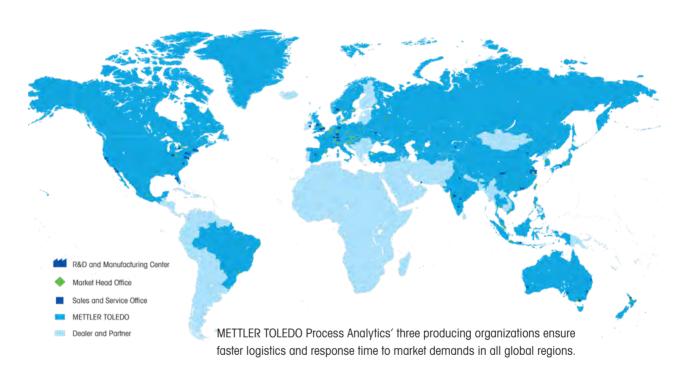


International 2024/25

pH/ORP
DO & Ozone
CO2
TOC/Microbial Detection
Conductivity/Resistivity
Turbidity
Housings & Cleaning Systems
Sodium/Silica Analyzers
Chloride/Sulfate Analyzer
Gas Analyzers
Single-Use Sensors

Process Analytics Measurement Solutions


for Industrial Applications

METTLER TOLEDO's Distribution Network

Worldwide

METTLER TOLEDO provides full sales and service coverage worldwide. Wherever our customers are, we are the competent partner. Many global manufacturers rely on our long-standing experience to ensure the highest levels of product and process quality control.

Distribution network

Based at several global production sites, with more than twenty market organizations, and numerous sales representatives, METTLER TOLEDO maintains a distribution network all around the world. Satisfaction of our customers is based on three pillars:

- Consulting
- Products
- After-sales service

With our customized, lifelong service management, we are able to assist in managing measurement loops throughout their entire life cycle.

INGOLD

eading Process Analytics

THORNTON

Leading Pure Water Analytics

PENDOTECH

Leading Process Analytics

Process Analytics Measurement Solutions

for Industrial Applications

Table of Contents

Process Analytics Catalog

Introduction	
About METTLER TOLEDO	4
Tools and Services	6
System Integration	8
Intelligent Sensor Management (ISM)	10
Ingold	
pH	
pH and ORP Systems	14
METTLER TOLEDO pH Electrodes	16
InPro X1 HLS	18
InPro 2000 (i)	20
InPro 3100 (i)	22
InPro 3250 (i)	24
InSUS 310i	26

pH and ORP Systems	14
METTLER TOLEDO pH Electrodes	16
InPro X1 HLS	18
InPro 2000 (i)	20
InPro 3100 (i)	22
InPro 3250 (i)	24
InSUS 310i	26
InPro 4010	28
InPro 4260 (i)/InPro 4281 i	30
InPro 4550/InPro 4501	32
InPro 4800 (i)/InPro 4881 i	34
InPro 4850 i	36
Puncture pH Electrodes	38
pH Buffers, Electrolytes, Cleaning	
and Storage Solutions	39
Pro2Go Portable pH/ORP Meter	40

Dissolved Oxygen	
Dissolved Oxygen Measurement Systems	42
InPro 6860 i Optical Oxygen Sensor	44
InSUS 607/InSUS H60i	46
Powering Accessories for InPro 6860 i	48
InPro 6960 i / InPro 6970 i	
Optical Oxygen Sensor	50
InPro 6800/InPro 6850 i (12 & 25 mm)	
111P10 00007111P10 00001 (12 & 2011111)	52
InPro 6900 (i)/InPro 6950 i	54
,	
InPro 6900 (i)/InPro 6950 i	54

Dissolved Carbon Dioxide	
In Situ Monitoring of Dissolved CO ₂	
in Bioreactors	60
In-line CO ₂ Measurement in Beverages	61
InPro 5000 i	62
InPro 5500 i	64

Turbidity/Optical Density	
Versatile Turbidity Measurement	66
InPro 8050/InPro 8100 (Single Fiber)	68
InPro 8200 (Dual Fiber)	70
InPro 8610ie/InPro 8630ie	72
InPro 8300 RAMS Series	74
Conductivity	

Conductivity	
Conductivity/Resistivity Systems	76
InPro 7000-VP	78
InPro 7100-VP	80
InPro 7100 (i)	82
InPro 7250	84

■ Transmitters	
Transmitters for All Parameters	86
M200	88
M300 Process	90
M400 4-wire	92
M400 Type 1 Cond Ind	96
M800	98
M100 DIN Rail	102
M100 Sensor Mount Transmitter	103
M80 Sensor Mount Transmitter	104
M400 2(X)H Type 2 and Type 3, 2-Wire	106
M400 2-Wire	
2XH Type 1, Cond Ind, PA and FF	110

ISM Productivity Tools	
ISM Core Introduction	112
ISM Core Software	114
Verification Kits	116
■ Housings	

nousings	
Process Connection Hardware	118
Sockets, Flanges, and Plugs	120
InFit 761 e	122
InFit 762 e / 763 e	124
InFit 764 e	125
InDip 550	126
InDip 508/510	127
InFlow Series	128
Product Configurators and Sensor Fit Guid	des
for InFit, InFlow and InDip Housings	129
InTrac 776e	132
InTrac 777 e/779 e	133
InTrac 797e/799e	134
InTrac 781/784	135
InTrac 785/787	136
Product Configurators and Sensor Fit Guid	des
for InTrac Housings	137

EasyClean	
EasyClean Configuration	
EasyClean 500	
EasyClean 200 e	
EasyClean 150/100	
EasyClean Ordering Information	

Cables	
Cables and Connections	146
Cable Terminations	147
Cable Availability Cross Reference Table	148

Gas Analytics Rethinking Gas Analytics Introduction 152 Gas Oxygen Sensors and Analyzers 154 Measurement Theory 156 GPro 500 Sensor 158 GPro 500 Sensor Variant Configurator 160 InPro 6000 G Sensor Series 162 **Thornton** Conductivity/Resistivity Conductivity/Resistivity Systems 166 UniCond Conductivity / Resistivity Sensors with ISM 168 **UPW UniCond Sensor** 170 **Analog Conductivity Sensors** 172 pH Electrodes pH and ORP Systems 176 pH/ORP Sensors with ISM 178 pHure Sensor with ISM 180 182 pHure Sensor LE with ISM pH/ORP Housings, Buffer Solutions 184 Dissolved Oxygen and Ozone Sensors Oxygen Measurement Systems 186

Flow Sensors	
Vortex Flowmeters	194
Sanitary Flow Sensors	196
Total Organic Carbon (TOC)	
Total Organic Carbon (TOC)	198
4000TOC e	200
6000TOCi	202
6000TOCi low ppb	206
450TOC	208
TOC Pump Module	210
Microbial Detection Analyzer	
7000RMS	212
Sodium Analyzer	
2300Na Sodium Analyzer	214
2301Na Sodium Analyzer	216
Silica Analyzer	
2850Si Silica Analyzer	218
lon Analyzer	
3000 CS Chloride & Sulfate Analyzer	220
_	
Transmitters	
Transmitters for All Parameters	222
M200	224
M300 Water	228
M800 Multi-Parameter, Multi-Channel	
Transmitter	232
Recommended Transmitter	
Service Agreements	234
21CFR RecordLOC	235

Pendotech	
Introduction Single-Use	
Pressure Sensor	238
Single-Use Pressure Sensor	240
PressureMAT Sensor Transmitter	242
Single-Use Conductivity Sensor	246
Single-Use-In-line pH Sensor	248
Single-Use UV Flow Cells & PM 2	
Photometer	250
Single-Use Temperature Sensors	254
Trademark Notice	256

Ozone Measurement Systems

Pure Water Optical DO Sensor

High Performance DO Sensors with ISM 190 pureO₃ Dissolved Ozone Sensor with ISM 192

187

188

Quick Tip
Useful tips and
tricks for the product

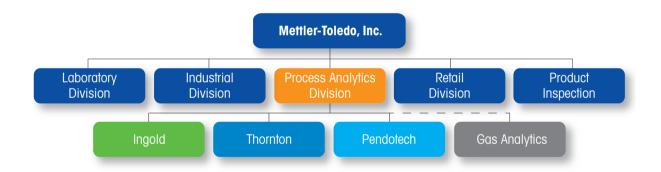
Did You Know Additional and helpful information

METTLER TOLEDO

The Leader in Process Analytical Measurement

METTLER TOLEDO Group

METTLER TOLEDO specializes in providing precision instruments with the most comprehensive range of services on a global level. With more than 18,000 employees, the company generates annual sales of over US\$ 3.9 billion. Mettler-Toledo International Inc. has been listed on the New York Stock Exchange since 1997 (MTD).


METTLER TOLEDO instruments are used for critical research and development applications and also for quality control purposes. The pharmaceutical, microelectronics, chemical, food & beverage, and cosmetic industries are among the principal users.

METTLER TOLEDO enjoys an excellent reputation as an innovator, and currently invests more than US\$ 170 million per

year in research and development, having increased overall R & D spending.

METTLER TOLEDO makes every effort to meet the highest quality standards, resolutely applying Total Quality

Management at both the product and process level, but specifically as part of our support for customers to comply with international quidelines.

METTLER TOLEDO Process Analytics

Within the METTLER TOLEDO Group, the Process Analytics division concentrates on analytical measurement solutions for industrial manufacturing processes. The division consists of three business units: Ingold, Thornton and Pendotech, each recognized as leaders in their respective markets and technologies.

Ingold is a worldwide leader in pH, dissolved oxygen, CO₂, conductivity and turbidity solutions for process

analytical measurement systems in chemical, food & beverage, biotechnology and pharmaceutical industries. Its core competence is high quality in-line measurement of these parameters in demanding chemical process and hygienic and sterile applications. They also provide an innovative series of TDL gas analyzers for in situ gas monitoring in industrial applications. Thornton is the leader in pure and ultrapure water monitoring instrumentation used in semiconductor,

microelectronics, power generation, pharmaceutical, and biotech applications. Its core competence is the in-line measurement of conductivity, resistivity, TOC, bioburden, dissolved oxygen and ozone in determining and controlling water purity.

Pendotech is a a leader in single-use technology for downstream bioprocessing, with a diverse offering of pressure sensors, control systems and software for measuring, monitoring and data collection in bioprocess applications.

Ingold

Dedicated to providing innovative, high-quality solutions for demanding process analytics applications

Ingold was founded in 1948 by Dr. Werner Ingold. Today, Ingold provides the broadest range of in-line analytical measurement solutions for industrial processes in the biotechnology, pharmaceutical, chemical, and beverage industries.

Latest developments include optical DO sensors and a management platform for simplifying sensor maintenance and handling.

Thornton

The market leader in critical ultrapure and pure water analytics

Thornton Inc., founded in 1963 by Dr. Richard Thornton, a Professor at Massachusetts Institute of Technology, has been part of the Process Analytics Division since 2001. Thornton instrumentation is trusted globally in the pharmaceutical, biotech, power generation, and microelectronics sectors.

With the introduction of its microbial contamination analyzer, Thornton is the world's only producer of conductivity, TOC, and bioburden measurement solutions for USP-regulated ultrapure waters.

Gas Analytics

Innovative, alignment-free, and easy-to-use in situ tunable diode laser solutions

In Gas Analytics we provide a broad range of in situ and at-line analytical measurement solutions for industrial processes in the chemical, petrochemical, refining, and pharmaceutical industries.

Our innovative sensors and analyzers cover oxygen, carbon monoxide, carbon dioxide, hydrogen sulfide, methane, and other gases.

The employed tunable diode laser and optical technology combine high measurement accuracy with ease of installation and use.

Pendotech

User-friendly, adaptive process equipment for biopharma downstream manufacturing and research

Founded in 2005, Pendotech focuses on sensors, monitors, and control systems for use in developing and optimizing production processes for biopharmaceuticals such as antibodies, recombinant proteins, vaccines, and cell therapy products.

Our solutions deliver the high-level, cost-effective monitoring and control that biopharmaceutical manufacturers depend on.

www.mt.com/pro

Fast and Competent On-line Support

Visit our website at any time for fast and competent information. The very latest, updated product and support documentation is available in many different languages.

Unlimited access

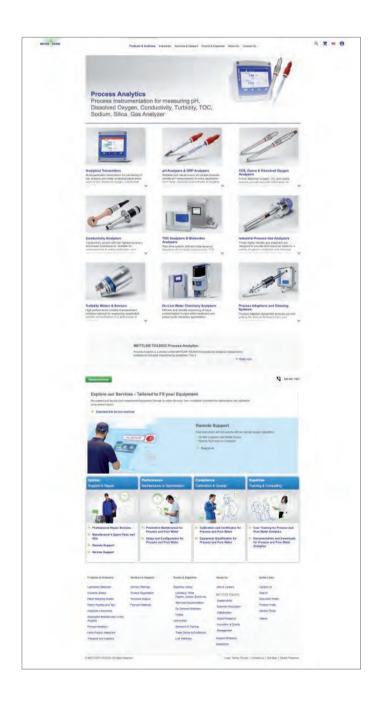
What you need:

- Fast access to product documentation
- Suitable process analytical solution
- Access to certificates

What we offer:

- Information on products and measurement solutions
- Success stories about our solutions in your industry
- Country specific information and service offerings
- Personalized access
- Multilingual information
- Extensive download offerings

Comprehensive Expertise


www.mt.com/library

When you need analytics expertise to help you with your analytical project, METTLER TOLEDO's Expertise Library provides the content you need. In the Expertise Library includes:

- Customer Case Studies
- Expert Webinars & Interviews
- Technical White Papers
- Practical Application Notes
- Competence Guides
- Product Brochures & Datasheets

Find information on:

- Pharmaceutical processes
- Biotech and hygienic processes
- Chemical and petrochemical processes
- Water purification processes
- Wastewater applications

Customer Service/Technical Service

Seven Reasons to Choose METTLER TOLEDO

Customer service at METTLER TOLEDO strives to provide you with added value including professional product services as well as leading edge technical support.

Our focus is customer success

The METTLER TOLEDO organization has the largest, best-trained global service network in the industry. Our worldwide presence and reputation for outstanding quality make us the logical choice not only to provide classical services but also for services that go far beyond those of other providers.

We understand that customers today are interested in value-added solutions that give them competitive advantages in the marketplace.

And that is what we endeavor to deliver. Providing the highest levels of service and customer satisfaction is very important to METTLER TOLEDO Process Analytics and we understand that you expect not only the highest quality products, but also superior customer and technical support when you need it.

Service from METTLER TOLEDO goes far beyond the initial purchase. We pride ourselves in being available for you, whether it is to answer a technical question, provide details on system operation or to manage requests for service.

When you purchase products from METTLER TOLEDO you have the satisfaction of relying on proven products in your process and having a world class service organization standing behind them.

METTLER TOLEDO offers comprehensive, tailored service plans to meet your needs. Please contact your local METTLER TOLEDO representative for your individual solution.

www.mt.com/contacts

Our customers benefit from

- Quicker repairs and calibration
- Reliable, professional, efficient service
- Fast response time
- Higher system uptime
- Innovative and leading edge support services that meet future needs
- Regulatory compliance
- Improved productivity and enhanced competitiveness

Asset Management and Plant Maintenance

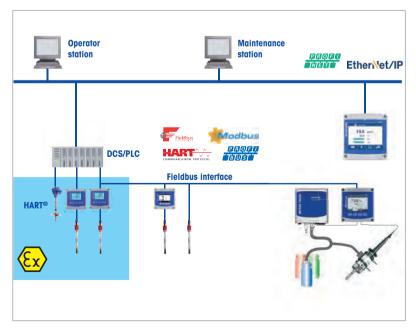
With Fieldbus and High Speed Industry Bus

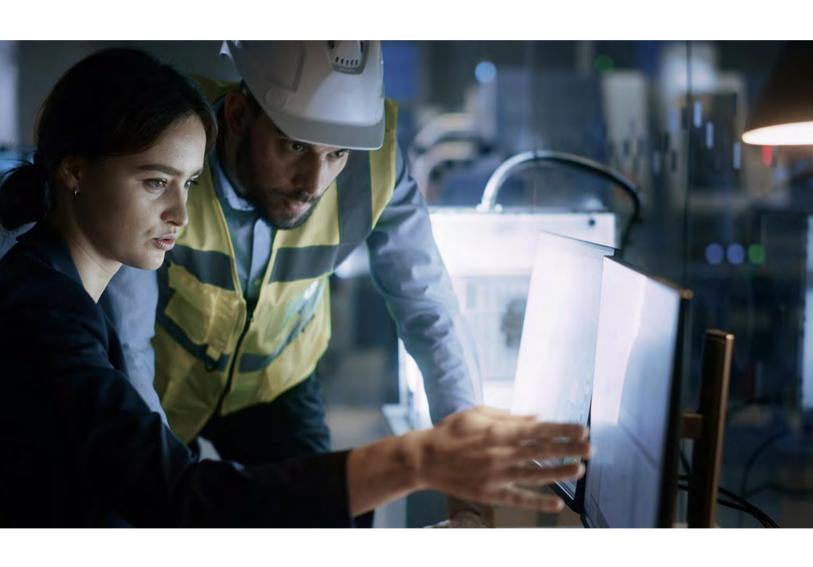
Open bus integration of your process analytical measurement technology into your control system via digital fieldbus and high speed industry bus technology.

Open fieldbus protocol and industry bus such as HART, Foundation Fieldbus, PROFIBUS, Profinet and Ethernet/IP are currently regarded as standard in the process industry. Only bus technology enables full use of the functional advantages of digital communication to be able to achieve improved resolution of measured values, intelligent instrument diagnostics and new control strategies.

METTLER TOLEDO integration with fieldbus and high speed industry

These standardized communication protocols allow a central overview of the whole plant network. In addition, they offer the opportunity of comfortable instrument configuration and a higher level of process information to improve plant performance. Field process instrumentation becomes an integral part of the control and operation level. This technology provides an optimized and continuously available interface for your plant management and maintenance planning.


Integrated device descriptions


Our intelligent analytical instruments include electronic device descriptions (DD) for various process instrument configuration software tools to support seamless integration into the control and engineering level.

Bus communication in connection with asset management and predictive maintenance and information

By applying Ethernet/IP, PROFINET, HART, Foundation Fieldbus or PROFIBUS, seamless integration of advanced Intelligent Sensor Management (ISM) diagnostics information into your process control system is guaranteed.

The use of asset management and predictive maintenance are an important element in improving plant management. The bus technology of Ethernet/IP, PROFINET, HART, Foundation Fieldbus and PROFIBUS supports the online status integration information requirements in an unprecedented way.

ISM – Intelligent Sensor Management

Beyond Process Confidence

ISMTM is a digital technology for process analytics. ISM sensors output highly reliable measurements, which help in maintaining process consistency. Advanced diagnostics data from the sensors can be transferred to wherever required and enable true predictive maintenance.

To ensure production consistency and maintain high product quality, you need accurate and reliable analytical sensors. However, analog sensors have several issues that can negatively impact your production efficiency, such as:

- Not knowing if a sensor is measuring accurately.
- Not knowing if a sensor is suddenly going to fail in the process.
- Sensor measurements that fluctuate due to electromagnetic interference

from surrounding equipment.

- Time-consuming calibration at hazardous measurement points.
- Planning and conducting maintenance with limited resources.
 ISM solves all these problems.

ISM sensors utilize METTLER TOLEDO's decades long expertise in process analytics sensor technology to ensure the highest measurement accuracy, regardless of how challenging the process conditions are. Once measured, the sensors' interference-prone analog signal is converted to a robust digital signal before being sent to the connected transmitter.

Built-in health monitoring in ISM sensors mean you always know if they are measuring reliably.

The combination of leading-edge sensor technology and health monitoring ensures you can always fully rely on the measurements from ISM sensors.

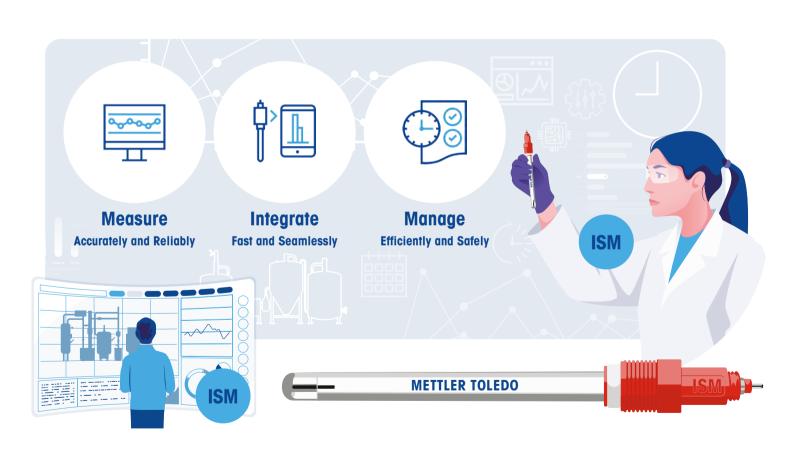
Integrate

ISM can be easily incorporated into your facility without major infrastructure investment, time-consuming configuration, or verification efforts. Once integrated, you can receive information from ISM sensors wherever required. Allowing you to...

Check the health of ISM sensors on a handheld device or remotely.

Automatically issue a maintenance order.

And more.


Manage

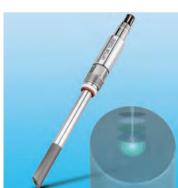
One of the main issues with analytical sensors has been keeping them properly maintained. And knowing when to conduct maintenance that has been more art than science.

With ISM, you can clearly see the health of your sensors all the time. Advanced predictive diagnostic tools show you how many days remain before calibration, part replacement, or sensor replacement will be needed.

And when maintenance is required, ISM Core PC software guides operators step-by-step through the process.

Biopharma
Chemical
Food & Bev.
Wastewater

Discover more reasons to switch to ISM at: www.mt.com/ism



Process Analytics Measurement Solutions

for Industrial Applications

pH and ORP Systems

For Harsh Industrial to Pure Water Applications

With many decades of experience in designing pH/ORP electrodes, METTLER TOLEDO offers a state-of the-art solution for practically any type of process analytical application.

Functional definition

pH can be described as a measurement of the relative acidity of a solution. Oxidation reduction potential (ORP) as measured with an ORP electrode, provides an indication of the oxidative state of the solution. It is important to measure, and often to control the pH and/or ORP of a solution for several reasons:

- To produce products with consistent well defined properties
- To efficiently produce products at optimal cost

- To avoid health risks
- To protect the environment
- To prevent physical/chemical damage to materials
- To meet regulatory requirements
- To expand scientific knowledge

The accurate measurement of pH/ORP is critical in most industries. Each application has unique physical requirements of chemical, temperature, and pressure resistance and possibly hygienic design. Another factor is what is to be done with the measurement:

monitoring only, data logging or process control.

pH electrode selection

It is important to understand the details of the application before selecting a pH electrode. The table on page 15 gives an initial glance at the various electrodes available and typical applications. Selection of a pH electrode requires a thorough knowledge of the process. Once the requirements are known, comparison of the electrode specifications detailed in this catalog will identify the appropriate sensor.

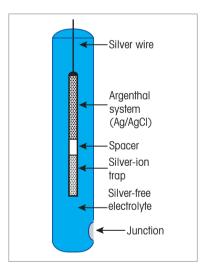
Table: Ingold pH sensor selection guide by industries and applications

by mademice and applicant		W	/	/	,	DOO INPO AS DO BUT PO 30		1.5			
	.cniip ph sensis	p. 20	aine OOO inuid e el or inuid e p. 22	alle	3250(1) (liqui	old polymere	8 nite	V580,		λ9	Single lise Single Sil
	اع.	id jeg	p. 22	echo	Clian	IInPro	lection IIIP	3		had reference	. /
	DH SERT	Hig elect	000 jiquid	3,000,	5000) 18	OO(1) Wheel	1360(1).	10 1 10 10 10 10 10 10 10 10 10 10 10 10	, obb	e ph serence	850 USE
4	Chip Inpro	Stillar, LDLO	eld! "Bu	, MP10	"blogs	olid Po	'NPro	NP10	ouncit!	Malendo	Single ISU
Refer to page:	p. 18	p. 20	p. 22	p. 24	p. 34	p. 30	p. 32	p. 32	p. 38	p. 36	p. 26
Industrial Processes	1			•							
Chemical production monitoring		•		•	•	•	•	•			
Chlorine production		•			•					•	
Dyestuff production					•	•	•	•			
Mining					•	•	•	•			
Petroleum & refining		•		•	•	•		•			
Pulp & paper		•			•	•	•	•			
Pharmaceutical Industry											
BioPharma											
Upstream		•	•	•							•
Downstream		•	•	•							
ChemPharma		•	•	•		•					
Food & Beverage Processes											
Brewery & beverage production	•										
Dairy	•										
Milk processing	•										
Yogurt production	•										
Cheese making	•								•		
Meat	•								•		
Wine	•										
Sugar & starch	•										
Yeast	•										
Cleaning solutions (CIP)	•										
Water Treatment											
Air scrubbers		•			•	•	•				
Cooling water		•		•		•	•				
Neutralization				•	•	•	•				
Potable water		•	•	•							
Wastewater Treatment											
Flue gas neutralization		•		•	•	•	•				
Galvanic wastewater				•	•	•	•				
Industrial wastewater					•	•	•				
Precipitation of heavy metals		•		•		•	•				
Sludge dewatering						•	•				

This table serves as an initial selection guide to suitable Ingold pH sensors for given applications. Since process con-

ditions vary considerably at different stages of production, it is necessary to refer to the detailed technical specifications of the electrode to ensure compatibility.

T


METTLER TOLEDO pH Electrodes

The Problem Solvers...Through 70 Years of Innovation!

The design of the pH electrode reflects the potential problems each application may present. On these two pages, application questions are raised, and the METTLER TOLEDO Ingold solutions are described.

Is frequent steam sterilization or autoclaving a requirement?

When frequent steam sterilization, autoclaving, or other dramatic process temperature cycling is encountered, the "Argenthal" reference system maintains a constant concentration of silver chloride at the reference electrode silver wire, providing stable and repeatable reference voltages.

Reference electrode Argenthal system/silver-ion trap

Does the sample contain components which could react with the reference electrolyte?

One source of problems is the reaction of silver-ions in the reference electrolyte with sulfide or other complexing compounds in the sample medium. The unique Ingold internal "silver-ion trap" prevents silver ions from entering the bulk electrolyte. Alternatively, use of "double junction" electrodes and selection of specialized electrolytes also serve to ensure chemical compatibility.

What are the temperature and pressure requirements of the installation?

Temperature and pressure requirements of a process must be met to ensure safe operation of the system as well as accurate performance of the electrode. Electrodes are available with specifications as high as 13 bar at 130 °C (188 psig at 266 °F) to handle aggressive process situations.

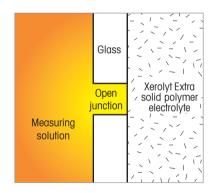
What glass formulation is appropriate?

Numerous formulations of pH-sensitive glass have been developed to overcome application problems. "High Alkali" glass greatly reduces "sodium ion

> error" expanding the usable pH range from pH 12 of general purpose

glass to pH 14.

"Low Temperature Glass" allows continuous use at low temperatures which present high impedance problems with standard glass. "HF-resistant glass" permits use of glass electrodes at HF levels which rapidly dissolve normal glass electrodes.


What are the physical requirements?

Among physical considerations are length, connector type, and installation. Electrodes are commonly available in lengths from 120 mm to 425 mm or longer to ensure sufficient immersion depth into the process. Improvements in electrode connector technology over

the years have resulted in numerous connector configurations. Polymer body "industrial pH sensors" serve as their own housing, fitting directly into threaded connections.

Which type of reference electrolyte should be used?

Liquid reference electrolytes provide high flow through the junction keeping it clean and providing the highest accuracy and precision, and are refillable for longer life. Use of pressurized gel electrodes prevents process solutions from entering the reference electrolyte, are more compact and reduce maintenance. Solid polymer electrolytes are in direct contact with the sample medium without requiring a ceramic junction, eliminating fouling problems.

HO

InPro X1 HLS

Unbreakable Sensors for Hygienic Applications

With its unbreakable* X-ChipTM technology, the InPro X1TM HLS offers extremely safe and highly reliable pH measurement for food or beverage production processes. The sensor's low drift and long lifetime reduce maintenance, calibration and replacements costs. Its rapid response to pH changes improves process control, leading to lower consumption of additives and shorter batch times.

Intelligent Sensor Management (ISM) digital technology provides predictive diagnostics, such as the Dynamic Lifetime Indicator (DLI), interference-free signal transmission, fast Plug and Measure installation and easy calibration with ISM Core software.

Specifications

ISM (Digital) or Analog	ISM (Digital)
pH Sensing Technology	Composite X-Chip
pH Range	0-14
Reference System	Pre-pressurized liquid electrolyte, ceramic dia-
	phragm, Argenthal cartridge with silver-ion trap
Operating Temperature	0-80°C (100°C)/32-176°F (212°F)
(for Cleaning)	
Operating Pressure	0-4 barg/0-58 psig
Process Connection	Pg 13.5 thread
Temperature Sensor	Digital
Shaft Material	Food-grade PEEK
Solution Ground	12 mm
Sensor Length	120 mm, 225 mm
Hazardous Area Approvals	Yes (see Certificates and Approvals below)
Hygienic/Biocompatibility Approvals	Yes (see Certificates and Approvals below)
Sterilizable/Autoclavable	No
Primary Media/Application	Food/Beverage Production
Certificates & Approvals	CE, EHEDG, 3A, EC1935/2004,
	ATEX/IECEx: Ex ia IIC T6/T5/T4/T3 Ga/Gb,
	FM: IS CI. I, II, III, Div 1, GR ABCDEFG/T6, PED,
	METTLER TOLEDO Quality Certificate

Intelligent Sensor Management (ISM)

pH electrodes with integrated ISM functionality allow Plug and Measure and advanced diagnostics. ISM simplifies the installation, handling and maintenance of measurement equipment. For more information see ISM introduction pages 10-11.

^{*} The InPro X1 has passed the US military's MIL-STD-810H drop test.

Ordering Information

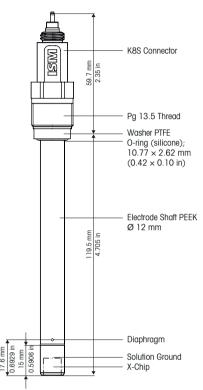
pH Sensor	Shaft Length	Order Number	
InPro X1 HLS-N200-K120	120 mm	30 389 700	
InPro X1 HLS-N200-K225	225 mm	30 389 701	

Resists Clean-in-Place Processes

The InPro X1 HLS is the first food-safe, in-line pH sensor that with-stands cleaning without sacrificing accuracy or sensor lifetime.

Eliminates Risk of Glass Contamination

The unbreakable X-Chip pH-sensing technology enables in-line pH measurement without the risk of contamination by glass fragments.


Improve Product Yield and Quality

Real process control through precise inline pH measurement leads to improved product quality, yield and shorter batch times.

Meets All Major Food Regulations

The InPro X1 HLS has a hygienic design, with all materials selected for food or beverage contact applications. Available certificates include 3A, EHEDG, EC1935/2004, ATEX and FM.

Dimensions of the InPro X1 HLS

Suitable Housings	p.
InFit 761e	122
InFit 762 e	124
InDip	126
InTrac 777 e	133
InTrac 797 e	134
InTrac 781	135
InTrac 785/787	136

HO

InPro 2000(i)

For the Most Extreme Requirements

The InPro 2000 (i) is a combination pH electrode with an integral temperature sensor designed for highly demanding applications. Three liquid electrolytes are available adding versatility; 3M KCl is a classic electrolyte offering high flow for improved junction cleaning, Viscolyt has limited flow for reduced maintenance needs, and Friscolyt is ideal for process media with high protein or organic solvent content, and in low temperatures. Applications range from biotechnical processes requiring in-situ sterilization to dirty industrial processing chemicals.

Specifications

opouliouliono	
pH range	0-14 pH
Temperature	0 to 140 °C (32 to 284 °F)
Operating pressure	0 to 6 barg, 0 to 87 psig (in pressurized housing)
Cable connection	ISM: K8S; Analog: VP
Process connection	METTLER TOLEDO Housing Adapter
Reference system	Argenthal with silver-ion trap
Type of junction	Ceramic junction
Reference electrolyte	Selectable; 3M KCI, Viscolyt, or Friscolyt
Lengths	120 mm, 150 mm, 250 mm, 450 mm
Lower shaft diameter	12 mm
Temperature sensor	ISM: Digital;
	Analog: Pt 100 or Pt 1000
Sterilizable	Yes
Autoclavable	Yes
pH membrane	High alkali glass (HA)
Certificates and Approvals	METTLER TOLEDO Quality Certificate,
	Pressure Equipment Directive guidelines (PED) 97/23/EC,
	ATEX: Ex ia IIC T6/T5/T4/T3 Ga/Gb,
	FM: IS CI. I, II, III, Div 1, GR ABCDEFG/T6

Intelligent Sensor Management (ISM)

pH electrodes with integrated ISM functionality allow Plug and Measure and advanced diagnostics. ISM simplifies the installation, handling and maintenance of measurement equipment. For more information see ISM introduction pages 10-11.

Features Overview

- User-selectable reference solution allows optimum compatibility with process media
- Flowing liquid electrolyte ensures fast response and accurate pH measurement
- Silver-ion trap prevents sulfide poisoning of junction
- Refillable electrolyte extends operational life
- Domed glass membrane impedes bubble formation for greater reliability
- Integral temperature sensor, more accurate temperature compensation
- ATEX and FM certification for hazardous areas

www.mt.com/InPro2000

Ordering Information

ISM Electrodes	Length	Electrolyte	Temp. Signal	Order Number
InPro 2000 i/SG	120mm	3M KCI	Digital	52 003 521
InPro 2000 i/SG	150mm	3M KCI	Digital	30 068 948
InPro 2000 i/SG	250 mm	3M KCI	Digital	30 068 949
InPro 2000 i/SG	450 mm	3M KCI	Digital	30 069 160
InPro 2000 i/SG	120mm	Viscolyt	Digital	52 003 522
InPro 2000 i/SG	150mm	Viscolyt	Digital	52 003 523
InPro 2000 i/SG	250 mm	Viscolyt	Digital	52 003 524
InPro 2000 i/SG	450 mm	Viscolyt	Digital	52 003 525
InPro 2000 i/SG	120mm	Friscolyt	Digital	52 003 526
InPro 2000 i/SG	150mm	Friscolyt	Digital	52 003 527
InPro 2000 i/SG	250 mm	Friscolyt	Digital	52 003 528
InPro 2000 i/SG	450 mm	Friscolyt	Digital	52 003 529
Analog Electrodes		,	<u> </u>	
InPro 2000	120mm	Viscolyt	Pt 100	52 001 426
InPro 2000	120mm	Viscolyt	Pt 1000	52 001 427
InPro 2000	250 mm	Viscolyt	Pt 100	52 001 428
InPro 2000	250 mm	Viscolyt	Pt 1000	52 001 429
InPro 2000	450 mm	Viscolyt	Pt 100	52 001 738
InPro 2000	450 mm	Viscolyt	Pt 1000	52 001 792
InPro 2000	120mm	3M KCI	Pt 100	52 001 430
InPro 2000	120 mm	3M KCI	Pt 1000	52 001 431
InPro 2000	250 mm	3M KCI	Pt 100	52 001 432
InPro 2000	250 mm	3M KCI	Pt 1000	52 001 433
InPro 2000	450 mm	3M KCI	Pt 100	52 001 794
InPro 2000	450 mm	3M KCI	Pt 1000	52 001 777
InPro 2000	120 mm	Friscolyt	Pt 100	52 001 434
InPro 2000	120 mm	Friscolyt	Pt 1000	52 001 435
InPro 2000	250 mm	Friscolyt	Pt 100	52 001 436
InPro 2000	250 mm	Friscolyt	Pt 1000	52 001 437
InPro 2000	450 mm	Friscolyt	Pt 100	52 001 655
InPro 2000	450 mm	Friscolyt	Pt 1000	52 001 666

InPro 2000 (i) Electrolytes
To cope optimally with the conditions prevailing in different types of chemical processes, a wide variety of electrolytes is available:

9816 Viscolyt

Mostly frequently used CP electrolyte with limited outflow and therefore long refill intervals.

9823 KCI

Classic electrolyte with high electrolyte outflow for improved diaphragm cleaning.

9848 Friscolyt

Used for media with proteins/organic solvent content.

2

Did You Know

The InPro 2000 (i) is the next generation of the 465 style

electrode featuring temperature compensation For further information please contact your local sales organization.

Suitable Housings	p.
InFit 763 e	124
InFit 764 e	125
InTrac 776 e	132
InTrac 784	135

HO

InPro 3100(i)

Versatile and Robust

InPro 3100

InPro 3100 i

Also available for upside-down installation as $InPro\ 3100\ (i)\ UD.$

The InPro 3100 (i) is a combined pH electrode with temperature sensor designed specially for in-line pH measurements in bio-processes where CIP and SIP are used. This rugged gel-filled electrode provides fast and precise measurements, even after repeated autoclaving or sterilization cycles at $140\,^{\circ}\text{C}$ (284 $^{\circ}\text{F}$). The electrode utilizes METTLER TOLEDO's silver-ion trap, keeping the reference junction clear even in the presence of sulfide-bearing solutions. With the InPro 3100 (i) UD, upside-down mounting is possible.

Specifications

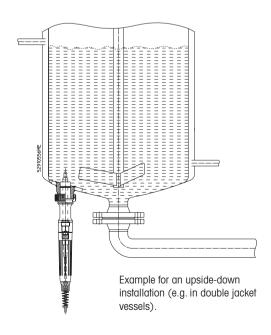
Specifications		
pH range	0-14 pH	
Temperature	InPro 3100 (i):	0 to 80 °C (32 to 176 °F) for operation
		0 to 140°C (32 to 284°F) for sterilization
	InPro 3100 (i) UD:	0 to 80 °C (32 to 176 °F) for operation
		0 to 130°C (32 to 266°F) for sterilization
Operating pressure	0 to 6 barg @ 140°	C (0 to 87 psig @ 284 °F)
Cable connection	ISM: K8S; Analog: VF	P
Process connection	Pg 13.5 thread	
Reference system	Argenthal with silver	-ion trap
Type of junction	Ceramic junction	
Reference electrolyte	Gel	
Lengths	120 mm, 150 mm, 2	225 mm, 325 mm, 425 mm
Shaft diameter	12 mm	
Temperature sensor	ISM: Digital;	
	Analog: Pt 100 or Pt	1000
Sterilizable	Yes	
Autoclavable	Yes	
pH membrane	High alkali glass (H	A)
Certificates and Approvals	METTLER TOLEDO Q	Quality Certificate,
	Pressure Equipment	Directive guidelines (PED) 97/23/EC,
	ATEX: Ex ia IIC T6/T	5/T4/T3 Ga/Gb,
	FM: IS CI. I, II, III, Div	1, GR ABCDEFG/T6

Intelligent Sensor Management (ISM)

pH electrodes with integrated ISM functionality allow Plug and Measure and advanced diagnostics. ISM simplifies the installation, handling and maintenance of measurement equipment. For more information see ISM introduction pages 10–11.

Features Overview

- Fully autoclavable or sterilizable in-situ
- Gel electrolyte reduces maintenance
- Resistant to poisoning substances
- EHEDG certified
- Pressure resistant up to 6 barg (87 psig)
- Integral temperature sensor permits automatic temperature compensation


www.mt.com/InPro3100

Ordering Information

ISM Electrodes	Length	Temp. Signal	Order Number
InPro 3100 i/SG	120 mm	Digital	52 003 515
InPro 3100 i/SG	150 mm	Digital	52 003 516
InPro 3100 i/SG	225 mm	Digital	52 003 517
InPro 3100 i/SG	325 mm	Digital	30 090 877
InPro 3100 i/SG	425 mm	Digital	30 091 063
InPro 3100 i/UD	120 mm	Digital	52 005 433
InPro 3100 i/UD	225 mm	Digital	52 003 583
InPro 3100 i/UD	425 mm	Digital	30 803 903
Analog Electrodes			
InPro 3100	120 mm	Pt 100	52 000 656
InPro 3100	120 mm	Pt 1000	52 000 658
InPro 3100 UD	120 mm	Pt 100	52 002 531
InPro 3100 UD	120 mm	Pt 1000	52 002 752
InPro 3100	150 mm	Pt 100	52 000 659
InPro 3100	150 mm	Pt 1000	52 000 660
InPro 3100	225 mm	Pt 100	52 000 661
InPro 3100	225 mm	Pt 1000	52 000 662
InPro 3100 UD	225 mm	Pt 100	52 005 354
InPro 3100	325 mm	Pt 100	52 000 663
InPro 3100	325 mm	Pt 1000	52 000 664
InPro 3100	425 mm	Pt 100	52 000 665
InPro 3100	425 mm	Pt 1000	52 000 666

All pH electrodes, even those with gel or solid polymer reference systems, contain a liquid electrolyte in the pH half cell which must be in contact with the internal silver wire in order for the sensor to measure accurately.

Sensors therefore must be installed at least 15° from horizontal to prevent air bubble interference. Exception: the InPro 3100 (i) UD "upside-down" electrode.

Suitable Housings	p.
InFit 761e	.122
InFit 762 e	.124
InDip	.126
InTrac 777 e	.133
InTrac 797 e	.134
InTrac 781	.135
InTrac 785/787	.136

InPro 3250(i)

Highest Performance, Highest Accuracy

conditions or to meet the stringent demands of sterile biotech applications where CIP and SIP are used. These rugged electrodes lead the industry for fast and precise measurements, even after repeated autoclaving or sterilization cycles at 140°C (284°F). The InPro 3250 (i) family is available with an expanded selection of different pH-sensitive glass membranes. This guarantees the best possible measurement performance under the most diverse operating conditions, both in chemical and biotech processes. The platinum-auxiliary electrode (solution ground) which functions to eliminate ground loop problems, allows for use of advanced sensor diagnostics, or can be used as an ORP (redox) sensor.

The InPro 3250 (i) family is a pre-pressurized, liquid-filled, low-maintenance pH sensor with temperature sensor for in-line measurements in demanding applications. Its durable design is well suited for harsh chemical process

Specifications

Specifications	
pH range	0-14 pH InPro 3250 (i); 0-12 pH InPro 3253 (i);
	1 – 11 pH InPro 3251 (i), InPro 3252
Temperature	0 to 100 °C (32 to 212 °F) InPro 3250 (i), InPro 3253 (i);
	−25 to 80 °C (−13 to 176 °F) InPro 3251 (i);
	0 to 80 °C (32 to 176 °F) InPro 3252(i)
Operating pressure	0 to 4 barg (0 to 58 psig)
Cable connection	ISM: K8S; Analog: VP
Process connection	Pg 13.5 thread
Reference system	Argenthal with silver-ion trap
Type of junction	Ceramic junction
Reference electrolyte	Pre-pressurized liquid
Lengths	120 mm, 225 mm, 325 mm, 425 mm
Shaft diameter	12 mm
Temperature sensor	ISM: digital
	Analog: Pt 100 or Pt 1000
Sterilizable	Yes, up to 140 °C (284 °F)
Autoclavable	Yes
pH membrane	Various by applications
Certificates and Approvals	METTLER TOLEDO Quality Certificate,
	Pressure Equipment Directive guidelines (PED) 97/23/EC,
	ATEX: Ex ia IIC T6/T5/T4/T3 Ga/Gb,
	FM: IS CI. I, II, III, Div 1, GR ABCDEFG/T6

Intelligent Sensor Management (ISM)

pH electrodes with integrated ISM functionality allow Plug and Measure and advanced diagnostics. ISM simplifies the installation, handling and maintenance of measurement equipment. For more information see ISM introduction pages 10-11.

Features Overview

- Fully autoclavable or sterilizable in-situ (InPro 3250 (i), InPro 3253 (i))
- Pressurized electrolyte reduces main-
- MaxCert, including biocompatibility according to USP 26, Chapter 87

www.mt.com/InPro3250

Ordering Information	Ord	ering	ı Info	rma	tion
----------------------	-----	-------	--------	-----	------

ISM Electrodes	Length	Temp. Signal			Order Number
– with alkali resistant glo	ISS				
InPro 3250 i/SG	120 mm	Digital			52 005 373
InPro 3250 i/SG	225 mm	Digital			52 005 374
InPro 3250 i/SG	325 mm	Digital			52 005 375
InPro 3250 i/SG	425 mm	Digital			52 005 376
– for applications at low	temperatures				
InPro 3251 i/SG	120 mm	Digital			52 003 693
InPro 3251 i/SG	225 mm	Digital			30 707 205
– for applications in hydr	ofluoric acid cont. media				
InPro 3252 i/SG	120 mm	Digital			30 633 896
InPro 3252 i/SG	225 mm	Digital			30 803 902
– with steam sterilizable	glass	-			
InPro 3253 i/SG	120 mm	Digital			52 005 377
InPro 3253 i/SG	225 mm	Digital			52 005 378
InPro 3253 i/SG	325 mm	Digital			52 005 379
InPro 3253 i/SG	425 mm	Digital			52 005 380
Analog Electrodes	Length	Temp. Signal	Order Number	Temp. Signal	Order Number
– with alkali resistant glo	ISS				
InPro 3250	120 mm	Pt 100	52 002 547	Pt1000	52 002 548
InPro 3250	225 mm	Pt 100	52 002 552	Pt1000	52 002 553
InPro 3250	325 mm	Pt 100	52 002 554	Pt1000	52 002 555
InPro 3250	425 mm	Pt 100	52 002 556	Pt1000	52 002 557
InPro 3250 SG	120 mm	Pt 100	52 002 558	Pt1000	52 002 559
InPro 3250 SG	225 mm	Pt 100	52 002 560	Pt 1000	52 002 561
InPro 3250 SG	325 mm	Pt 100	52 002 562	Pt1000	52 002 563
InPro 3250 SG	425 mm	Pt 100	52 002 564	Pt 1000	52 002 565
– for applications at low	temperatures				
InPro 3251	120 mm	Pt 100	52 002 585	_	_
InPro 3251	225 mm	Pt 100	52 002 586	_	_
– for applications in hydr					
InPro 3252	120 mm	Pt 100	52 002 587	_	_
InPro 3252	225 mm	Pt 100	52 002 588	_	_
InPro 3252	250 mm	Pt 100	52 002 589	_	_
 with steam sterilizable 	glass				
InPro 3253	120 mm	Pt 100	52 002 566	Pt1000	52 002 567
InPro 3253	225 mm	Pt 100	52 002 568	Pt 1000	52 002 569
InPro 3253	250 mm	Pt 100	52 002 570	-	-
InPro 3253	325 mm	Pt 100	52 002 571	Pt1000	52 002 572
InPro 3253	425 mm	Pt 100	52 002 573	Pt 1000	52 002 574
InPro 3253 SG	120 mm	Pt 100	52 002 576	Pt 1000	52 002 577
InPro 3253 SG	225 mm	Pt 100	52 002 578	Pt 1000	52 002 579
InPro 3253 SG	325 mm	Pt 100	52 002 580	Pt 1000	52 002 581
InPro 3253 SG	425 mm	Pt 100	52 002 582	Pt 1000	52 002 583

pH glass type:

00: High alkali glass (HA)

01: Low temperature glass (LoT)

02: Hydrofluoric acid resistant glass (HF)

03: Steam sterilizable glass (A41)

Suitable Housings	p.
InFit 761e	.122
InFit 762 e	.124
InFlow	.128
InDip	.126
InTrac 777 e	.133
InTrac 797 e	.134
InTrac 781	.135
InTrac 785/787	.136

TO

InSUS 310i - Single-use pH Sensor

Highest Integrity and Reliability

InSUS H30i mounted on sensor

Features Overview

- Installation in standard weld-in bag ports
- Gamma and X-ray irradiation sterilizable
- 30-month shelf life
- Wetted parts in accordance with USP Class VI standards
- Round-edged protective guards around glass elements
- Mixed-mode operation: analog/digital with InSUS H30i
- Plug and Measure
- Reliable measurements
- Long in-process lifetime

The measurement principle of the InSUS™ 310i single-use pH sensor is based on proven potentiometric pH glass technology and offers identical reliability and accuracy as reusable pH sensors. The sensors are gamma and X-ray sterilizable and factory calibrated for convenient installation and operation in single-use process devices such as bioreactors and mixing bags for biopharmaceutical manufacturing. Their robustness ensures sensor and bag security during bag storage, transport, and startup.

For efficient process integration, the InSUS 310i is operated together with the reusable sensor head, InSUS H30i. This pairing offers the same connectivity and signal integration options as our reusable InPro ISM pH sensors. The identical operational interface leads to convenient and flexible usage of InSUS and InPro sensors in single-use devices, without any modification of the installed process transmitter or controller environment.

Specifications

Specifications	
InSUS 310i	
Measurement principle	Potentiometric
Measurement range	pH 3-10
Response time	t90% < 20 s between pH 4-7
Design	
Body material	HDPE
Wetted O-ring	EPDM
Bag port (process connection)	Eldon James weld-in port with 1" barb
Cable connector	VP
Temperature probe	Pt1000
Signal interfaces	Analog, digital when paired with InSUS H30i sensor head
Operating Conditions	
Maximum shelf life	30 months (dry storage)
Sterilization method	Gamma and X-ray irradiation 2545 kGy
Temperature range during	5 to 60 °C (41 to 140 °F)
measurement	
Mechanical pressure resistance	Up to 2 barg/40 °C (29 psig/104 °F)
during measurement	
Material Compliances	USP 87, USP 88 Class VI (pre- and post-gamma),
	wetted polymers: absence of animal-derived materials,
	BPA, DEHP and Latex
Certificates and Approvals	METTLER TOLEDO Quality Certificate, CE, UKCA

www.mt.com/InSUS

Ordering Information

Sensors	Quantity	Order Number
InSUS 310i	1	30 915 418
InSUS 310i	10	30 915 419

Sensor Head	Order Number
InSUS H30i	30 900 549

Transmitter	Order Number
M400 Type 1	30 374 111
M400 Type 2	30 374 112
M400 Type 3	30 374 113
M400 FF 4-wire	30 374 121
M800 Process, 2-channel	52 121 813
M800 Process, 4-channel	52 121 853
M800 Process, Profinet 2-channel	30 530 022
M800 Process, Ethernet/IP 2-channel	30 530 024
M800 Process, Profinet 1-channel	30 530 021
M800 Process, Ethernet/IP 1-channel	30 530 023

InSUS 310i installed in Eldon James weld-in bag port

Did You Know

InSUS 310i sensors are also offered by leading

single-use process device manufacturers as fully integrated component in their irradiation sterilized bioreactors.

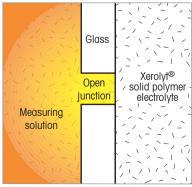
Did You Know

A special passivation treatment of the InSUS 310i reference electrode avoids

loss of electrolyte during dry storage. This leads to the highest bag integrity with regards to preventing traces of electrolyte in empty bags.

H

InPro 4010 With Solid Polymer Electrolyte

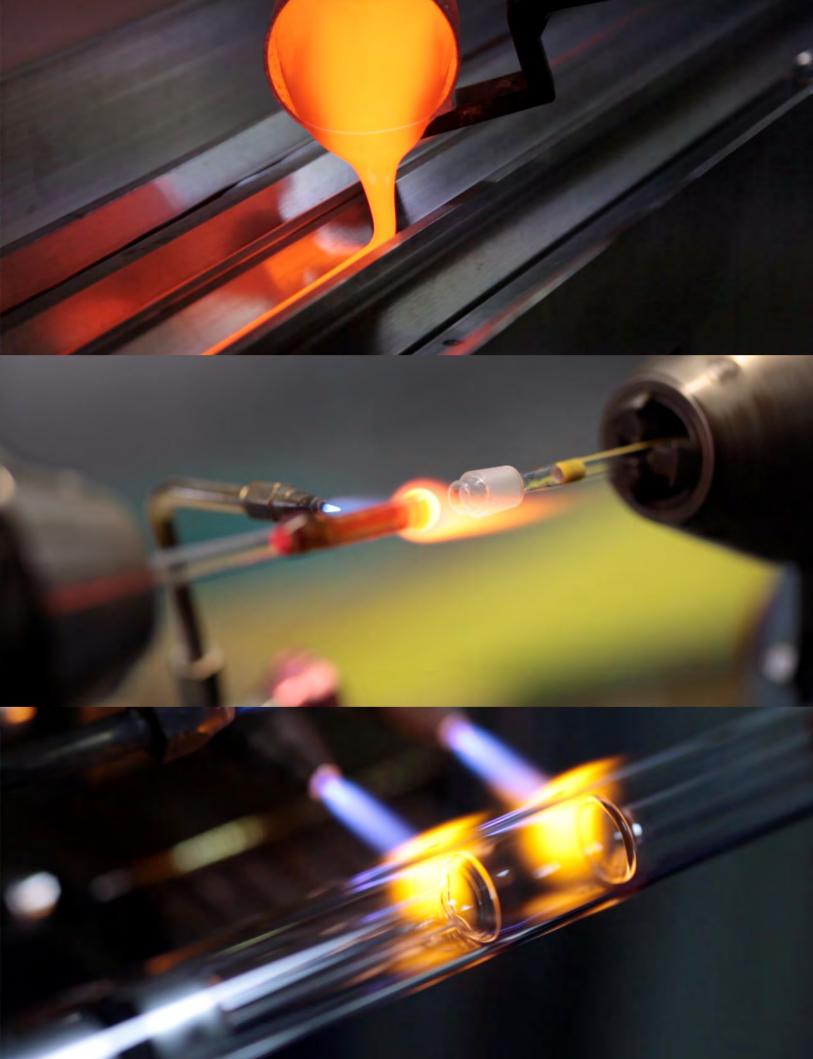

The InPro 4010 is a low maintenance, economical pH sensor targeted towards industrial wastewater processes. It is available with an internal temperature sensor for accurate temperature compensation in a single unit. The solid polymer electrolyte is in direct contact with the sample medium, eliminating potential for junction fouling. The plastic body makes this a rugged sensor with reliable performance in contaminated liquids.

Specifications

pH range	2-12pH
Temperature	0 to 60 °C (32 to 140 °F)
Operating pressure	1 barg at 60°C (15 psig @ 140°F)
Cable connection	VP
Process connection	Pg 13.5 thread
Reference system	Argenthal
Type of junction	Open aperture, double junction
Reference electrolyte	Solid polymer
Lengths	120 mm
Shaft diameter	12 mm
Temperature sensor	Pt 100, Pt 1000 or none
Sterilizable	No
Autoclavable	No
pH membrane	General purpose glass
Certificates and Approvals	METTLER TOLEDO Quality Certificate

Ordering Information

pH Electrodes	Length	Temperature Sensor	Order Number
InPro 4010	120 mm	Pt 100	52 000 511
InPro 4010	120 mm	Pt 1000	52 000 512
InPro 4010	120 mm	None	52 000 510


Open reference junction

www.mt.com/InPro4010

Features Overview

- Open aperture junction resists fouling
- Solid polymer electrolyte requires no refilling, reduces maintenance
- Double junction reference design resists poisoning
- Integral temperature sensor permits automatic temperature compensation
- Plastic body prevents breakage

Suitable Housings	p.
InFit 761e	122
InFit 762 e	124
InFlow	128
InDip	126
InTrac 777 e	133
InTrac 785/787	136

HO

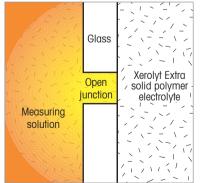
InPro 4260(i)/InPro 4281 i

Reliable, Long-lasting Electrodes

The InPro 4260 (i)/InPro 4281 i is a combined pH electrode and temperature sensor family designed for highly demanding chemical applications. InPro 4260 (i)/InPro 4281 i electrodes feature Xerolyt™ Extra polymer reference electrolyte for precise pH measurement and longer lifetime, even under the most difficult industrial environments. Also available with Intelligent Sensor Management (ISM) for Plug and Measure and advanced diagnostics.

Specifications

2(i), InPro 4281(i)
to 266 °F)
o 176°F)
ım
) 97/23/EC,

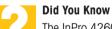

Intelligent Sensor Management (ISM)

pH electrodes with integrated ISM functionality allow Plug and Measure and advanced diagnostics. ISM simplifies the installation, handling and maintenance of measurement equipment. For more information see ISM introduction pages 10–11.

EN 10204-3.1 (InPro 4281 i)

Features Overview

- Xerolyt Extra polymer electrolyte
- Open junction eliminates clogging
- Resistant to poisoning substances
- Expanded pH range covers 0-14 pH
- Resistant to solvents, strong acids and alkali
- Domed glass membrane impedes bubble formation for greater reliability
- Integral temperature sensor
- ATEX and FM certified for hazardous areas
- InPro 4281i electrode is made with a rugged titanium shaft, providing exceptional chemical resistance and durability.
- InPro 4281i features a flat pH membrane suited for fibers and high solids samples



Open reference junction

www.mt.com/InPro4260

Ordering Information

ISM Electrodes	Length	Temp. Signal	Order Number
InPro 4260 i/SG	120 mm	Digital	52 005 381
InPro 4260 i/SG	225 mm	Digital	52 005 382
InPro 4260 i/SG	425 mm	Digital	52 005 407
InPro 4262 i/SG	120 mm	Digital	30 018 467
InPro 4262 i/SG	225 mm	Digital	30 018 468
InPro 4281 i/SG	120 mm	Digital	30 301 402
InPro 4281 i/SG	225 mm	Digital	30 301 403
InPro 4281 i/SG	425 mm	Digital	30 301 404
Analog Electrodes			
InPro 4260	120 mm	Pt 100	52 002 986
InPro 4260	120 mm	Pt 1000	52 002 987
InPro 4260	225 mm	Pt100	52 002 988
InPro 4260	225 mm	Pt 1000	52 002 989
InPro 4260	425 mm	Pt100	52 002 992
InPro 4260	425 mm	Pt 1000	52 002 993
InPro 4260SG	120 mm	Pt 100	52 003 545
InPro 4260SG	120 mm	Pt1000	52 003 546
InPro 4260 SG	225 mm	Pt100	52 003 547
InPro 4260 SG	225 mm	Pt1000	52 003 548
InPro 4262	120 mm	Pt100	52 003 549
InPro 4262	120 mm	Pt1000	52 003 550
InPro 4262	225 mm	Pt 100	52 003 551
InPro 4262	225 mm	Pt 1000	52 003 552
InPro 4262	425 mm	Pt 100	52 003 553
InPro 4262	425 mm	Pt1000	52 003 554

The InPro 4260 (i) family now also includes a

hydrofluoric acid resistant glass formulation. The solution ground stabilizes the high impedance pH signal and provides an additional reference point for sensor diagnostics which can detect changes in performance due to influence of the media.

InPro Sensor Designation

The last digit of the InPro designation indicates the

pH glass type:

00-High alkali glass (HA)

01 – Low temperature glass (LoT)

02-Hydrofluoric acid resistant glass (HF)

03-Steam sterilizable glass (A41)

p.
122
124
128
126
133
134
135
136

HO

InPro 4550/InPro 4501

The Rugged Solution

InPro 4550 InPro 4501 VP

The InPro 4550/4501 are rugged, low maintenance, combination pH/temperature sensors, designed to handle harsh chemical processes and industrial wastewater applications. The durable polymer body houses a solid polymer reference electrolyte, making the electrode robust from both physical and chemical attack. A solution ground prevents ground loop problems and allows advanced sensor diagnostics. The solid polymer electrolyte is in direct contact with the sample medium, eliminating potential for junction fouling. The InPro 4501's flat glass pH membrane is protected against breakage and is self-cleaning in flowing applications. The higher pressure/temperature specifications of the InPro 4550 target demanding applications with heavily contaminated media and aggressive industrial chemicals.

Specifications

	InPro 4550	InPro 4501	
pH range	0-14 pH	1 – 14 pH	
Temperature	0 to 130°C (32 to 266°F)	0 to 100 °C (32 to 212 °F)	
Operating pressure	0 to 7 barg @ 130°C	0 to 6 barg @ 65 °C	
	(0 to 101 psig @ 266 °F)	(0 to 87 psig @ 149°F)	
Cable connection	VP	VP or fixed cable	
Process connection	1" MNPT	1" MNPT	
Reference system	Argenthal	Argenthal	
Type of junction	Open aperture, double junction	Open aperture, double junction	
Reference electrolyte	Xerolyt Extra, solid polymer	Xerolyt Extra, solid polymer	
Solution ground	Titanium	Titanium	
Immersion length	72.5 mm (from front threads)	72.5 mm (from front threads)	
Process connection	1" MNPT, 2-places	1" MNPT, 2-places	
Temperature sensor	Pt 100, Pt 1000	Pt 100, Pt 1000	
Body material	PPS (polyphenylene sulfide)	PVDF	
Sterilizable	No	No	
Autoclavable	No	No	
pH membrane	High alkali glass (HA)	Flat membrane	
		with low temperature glass (LoT)	
Certificates and Approvals	METTLER TOLEDO Qual. Cert.,	METTLER TOLEDO Qual. Cert.	
	Pressure Equipment Directive		
	guidelines (PED) 97/23/EC,		
	ATEX: Ex ia IIC		
	T6/T5/T4/T3 Ga/Gb,		
	FM: IS CI. I, II, III, Div 1,		
	GR ABCDEFG/T6		

Features Overview

- Withstands high process temperature and pressure (InPro 4550)
- PPS body is highly resistant to chemical attack (InPro 4550)
- Open aperture junction resists fouling
- Solid polymer electrolyte requires no refilling, reduces maintenance
- Dual NPT threads allow direct mounting into process
- Solution ground allows sensor diagnostics and eliminates ground loop problems

Ordering Information

Electrode	Connection	Cable Length	Temperature Sensor	Order Number
InPro 4550				
InPro 4550	VarioPin	N/A	Pt 100	52 002 401
InPro 4550	VarioPin	N/A	Pt1000	52 002 402
InPro 4501				
InPro 4501	VarioPin	N/A	Pt100	59 909 570
InPro 4501	VarioPin	N/A	Pt1000	59 909 571
InPro 4501	Fixed cable	3m (9.8ft)	Pt100	59 909 542
InPro 4501	Fixed cable	3m (9.8ft)	Pt1000	59 909 545
InPro 4501	Fixed cable w/BNC	3m (9.8ft)	Pt100	59 909 543
InPro 4501	Fixed cable	10m (32.8ft)	Pt100	59 909 546
InPro 4501	Fixed cable	10m (32.8ft)	Pt1000	59 909 548
Accessory				
Protective sleeve			52 401 808	

For pH buffers, refer to "pH and Redox Accessories" section.

For cables, cable lengths and for terminating connectors, refer to "Cables" section on pages 146–149.

Did You Know

The protective sleeve for the InPro 4550 and InPro 4501

keeps the connection clean in dirty environments and protects the cable from stress.

Slotted tip protects the pH glass membrane

Flat glass pH membrane and solution ground

Suitable Housings	p.
InDip 550	126

H

InPro 4800(i)/InPro 4881 i

For Harsh Environments

The InPro 4800 (i)/InPro 4881 i is the top-of-the-line combined pH sensor family with integrated temperature sensor designed to handle dirty high-temperature and high-pressure chemical applications. The strong resistance to oxidizing media, solvents, acid and alkali solutions make it suitable for highly demanding industrial applications including chemical processing, chlor-alkali, pulp and paper, dyes and pigments, and sugar processing.

Specifications

<u>-p</u>	
pH range	0–14 pH InPro 4800 (i);
	1 – 14 pH InPro 4801(i), InPro4881i
	1 – 11 pH InPro 4802 (i)
Temperature	InPro 4800 (i), InPro 4801 (i), InPro 4881i:
	−5 to 130 °C (23 to 266 °F)
	InPro 4802 (i):
	0 to 80 °C (32 to 176 °F)
Operating pressure	12 barg @ 130°C (174 psig @ 266°F)
Cable connection	ISM: K8S; Analog: VP
Process connection	Pg 13.5 thread
Reference system	Ag/AgCl system, pressure-compensated double gel-electrolyte
	chambers
Type of junction	Exterior: PTFE annular diaphragm
	Interior: Non-flow ceramic diaphragm
Reference electrolyte	Gel
Lengths	120 mm, 225 mm, 425 mm
Shaft diameter	12 mm
Shaft materials	InPro 480x (i): Glass
	InPro 488xi: Titanium
Temperature sensor	ISM: Digital; Analog: Pt 100 or Pt 1000
pH membrane	Various by applications
Solution ground	InPro 480x (i): Platinum
	InPro 488x i: Titanium
Sterilizable	No
Autoclavable	No
Solution ground	Platinum
Glass membrane	InPro 4800(i): Cylindrical, high alkali quality glass
	InPro 4801(i) SG, InPro 4881i: Flat, low impedance quality
	glass
	InPro 4802(i): HF-resistant glass
Certificates and Approvals	METTLER TOLEDO Quality Certificate
	Pressure Equipment Directive guidelines (PED) 97/23/EC,
	ATEX: Ex ia IIC T6/T5/T4/T3 Ga/Gb,
	FM: IS CI. I, II, III, Div 1, GR ABCDEFG/T6
	EN 10204-3.1 (InPro 4281 i)

Intelligent Sensor Management (ISM)

pH electrodes with integrated ISM functionality allow Plug and Measure and advanced diagnostics. ISM simplifies the installation, handling and maintenance of measurement equipment. For more information see ISM introduction pages 10-11.

www.mt.com/InPro4800

SM Electrodes	Length	Temp. Signal	Order Number
nPro 4800 i/SG	120 mm	Digital	52 005 383
nPro 4800 i/SG	225 mm	Digital	52 005 384
nPro 4800 i/SG	425 mm	Digital	52 003 748
nPro 4801 i/SG	120 mm	Digital	52 003 581
nPro 4801 i/SG	225 mm	Digital	30 069 539
nPro 4801 i/SG	425 mm	Digital	52 003 857
nPro 4802 i/SG	120 mm	Digital	52 003 696
nPro 4802 i/SG	225 mm	Digital	52 003 697
nPro 4881 i/SG	120mm	Digital	30 301 405
nPro 4881 i/SG	225 mm	Digital	30 301 406
nPro 4881 i/SG	425 mm	Digital	30 301 407
Analog Electrodes			
nPro 4800	120 mm	Pt 100	52 002 124
nPro 4800	120 mm	Pt 1000	52 002 125
nPro 4800 SG	120 mm	Pt 100	52 003 541
nPro 4800 SG	120 mm	Pt 1000	52 003 542
nPro 4800	225 mm	Pt 100	52 002 126
nPro 4800	225 mm	Pt 1000	52 002 127
nPro 4800 SG	225 mm	Pt 100	52 003 543
nPro 4800 SG	225 mm	Pt 1000	52 003 544
nPro 4800	425 mm	Pt 100	52 002 129
nPro 4800	425 mm	Pt 1000	52 002 130
nPro 4801 SG	120 mm	Pt 100	52 002 131
nPro 4801 SG	120 mm	Pt 1000	52 002 132
nPro 4802	225 mm	Pt 100	52 002 718
nPro 4802 SG	225 mm	Pt 1000	52 003 398

Features Overview

- High pressure/high temperature rating 12 barg @ 130°C (174 psig @ 266°F)
- Very long diffusion path using two electrolyte chambers
- PTFE annular junction repels dirt
- Resistant to strong oxidizing agents, solvents, acids and alkali, and to poisoning substances
- Integral temperature sensor
- InPro 4801(i) and InPro 4881i feature a flat pH membrane suited for fibers and high solids samples
- ATEX and FM certified for hazardous areas
- InPro 4881 i electrode is made with a rugged titanium shaft, providing exceptional chemical resistance and durability.

00-High alkali glass HA)

01 – Low temperature glass (LoT)

02 – Hydrofluoric acid resistant glass (HF)

03-Steam sterilizable glass (A41)

A combination pH electrode should never be stored dry as this will dehydrate the electrode. Also, do not store an electrode in deionized water, rather, soak the electrode in the pH buffer or electrolyte recommended in the electrode manual.

Did You Know

The InPro 4801 (i) SG electrode features a

unique flat glass membrane ideal for applications with high fiber or solid concentrations.

Suitable Housings	p.
InFit 761e	122
InFit 762 e	124
InFlow	128
InDip	126
InTrac 777 e	133
InTrac 781	135
InTrac 785/787	136

HO

InPro 4850 i

For the Toughest Chlor-Alkali Processes

InPro 4850i is a combination pH electrode featuring a sodium membrane glass that uses the sodium concentration in the process (brine) as a reference. The difference in electrical potential between the pH-glass and the sodium reference glass is converted into the pH value. The sodium reference system is highly resistant to chlorine and other oxidizing agents. This makes the sensor very well suited for the demanding process conditions in chlor-alkali production. Solution ground and shielding eliminate interference, and enable redox measurement. Digital signal conversion ensures 100% signal integrity and stability. Intelligent Sensor Management (ISM) technology simplifies sensor handling and reduces sensor lifecycle costs.

Specifications

pH range	0-14 pH
Temperature	-10 to 120 °C (14 to 248 °F)
Operating pressure	0 to 12 barg @120°C (0 to 174 psig @ 248°F)
Cable connection	ISM: K8S
Process connection	Pg 13.5 thread
Reference system	Sodium sensitive glass membrane
Type of junction	None
Lengths	120 mm, 225 mm
Shaft diameter	12 mm
Temperature sensor	Digital
Sterilizable	No
Autoclavable	No
pH membrane	High alkali glass (HA)
Min. Na+ concentration	10 mg/L when pH > 7; $100 mg/L$ when $7 > pH > 2$;
	1 g/L when pH < 2
Storage solution	Storage solution buffer pH=4.01/Na 3.9 M (P/N 52004103)
Certificates and Approvals	METTLER TOLEDO Quality Certificate,
	Pressure Equipment Directive guidelines (PED) 97/23/EC
	ATEX: Ex ia IIC T6/T5/T4/T3 Ga/Gb,
	FM: IS CI. I, II, III, Div 1, GR ABCDEFG/T6

Intelligent Sensor Management (ISM)

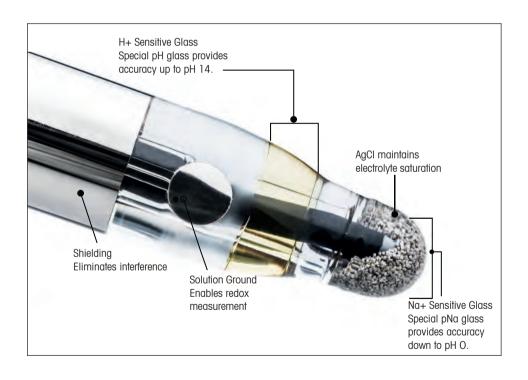
pH electrodes with integrated ISM functionality allow Plug and Measure and advanced diagnostics. ISM simplifies the installation, handling and maintenance of measurement equipment. For more information see ISM introduction pages 10-11.

InPro 4850 i requires a near stable sodium concentration for the best measurement results. A 10% difference in brine concentration leads to $0.05\,\mathrm{pH}$ error.

Features Overview

- Hermetically sealed reference system resistant to any effects from poisoning substances such as chlorine.
- Very high resistance to oxidizing media, solvents, and acid or alkali solutions.
- Reliable operation in processes with particularly high pressures and high temperatures.
- Platinum solution ground (SG) electrode enables redox (ORP) measurement and advanced sensor diagnostics, as well as preventing measurement errors due to ground potentials.

www.mt.com/InPro4850


pH Electrodes	Length	Order Number
InPro 4850 i/SG	120 mm	30 536 625
InPro 4850 i/SG	225 mm	30 536 627

pH Buffers	Order Number	Order Number
Designation	1 × 250 ml	6 × 250 ml
pH 2.00, 3.9M NaCl	52 004 100	52 004 101
pH 4.01, 3.9M NaCl	52 004 103	52 004 104
pH 7.00, 3.9M NaCl	52 004 106	52 004 107
pH 9.21, 3.9M NaCl	52 004 109	52 004 110
Redox Buffers	Order Number	Order Number
B. dan all and a second a second and a second a second and a second a second and a second and a second and a	10501	00501

Redox Buffers	Order Number	Order Number
Designation	1 × 250 ml	6×250 ml
Redox buffer 320 mV, 3.9 M NaCl	30 104 917	_

AK9 Coax Cables (-25 °C to 70 °C/-13 to 158 °F)

Designation	Connector	Cable Length	Order Number
AK9	open	1 m (3.3ff)	59 902 167
AK9	open	3 m (9.8ft)	59 902 193
AK9	open	5 m (16.4 ft)	59 902 213
AK9	open	10m (32.8ff)	59 902 230
AK9	open	20m (65.6ff)	52 300 204

Did You Know
InPro 4850 i is the unique
dual-membrane pH sensor
with ISM digital signal for resisting
chlorine and other oxidizing solutions.

Suitable Housings	p.
InFit 761 e	.122
InFit 762 e/763 e	.124
InFlow 751	.128
InTrac 787	.136

Puncture pH Electrodes

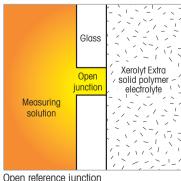
For Cheese and Meat Products

Features Overview

- Specially designed for direct pH measurement in cheese and meat
- Plastic shaft is FDA listed PBT
- Open aperture junction resists fouling
- Solid polymer electrolyte requires no refilling, reduces maintenance
- Optional puncture knife available for particularly hard cheeses and meats
- Use with 1120/1140 portable pH meter

Did You Know The pH measurement in cheese, meat, and fruit provides valuable information on product freshness and quality.

Puncture pH electrodes are specially designed for quick, accurate pH measurement in meat, sausage, cheese, and fruit. The rugged needle-shaped sensing membrane penetrates directly into the medium, without requiring time-consuming sample preparation. The solid polymer reference system eliminates clogging by fats and proteins using an open junction design. The non-refillable reference electrolyte reduces maintenance to a minimum.


Specifications

pH range	2-11 pH
Temperature	0 to 80 °C (32 to 176 °F)
Response time	<20s (98% between pH 4 to 7)
Materials of construction	Glass/PBT (shaft)
Membrane resistance	<250 MΩ (25 °C/77 °F)
Type of membrane glass	LoT
Temperature sensor	None
Diaphragm	One open aperture junction
Reference system	Argenthal system
Reference electrolyte	Xerolyt Extra solid polymer
Cable and connections	S7-type
Shaft dimensions	Length: 25 mm
	Diameter: 6 mm
Sterilizable	No
Autoclavable	No
Certificates and Approvals	METTLER TOLEDO Quality Certificate

Ordering Information

Product Description	Order Number
Puncture electrode, polymer electrolyte	59 903 311
Puncture knife	59 900 386
Puncture electrode with knife	59 900 388
Cable, 1 m (3.3 ft), DIN connector for 1120/1140 meter	59 902 243
Cable, 1 m (3.3 ft), BNC connector	59 902 246
Cable, 1 m (3.3 ft), stripped ends	59 902 245
Buffer pouch, pH 4.01, pkt. of 30	51 302 069
Buffer pouch, pH 7.00, pkt. of 30	51 302 047
Buffer pouch, pH 9.21, pkt. of 30	51 302 070

Open reference junction

pH Buffers, Electrolytes, Cleaning and Storage Solutions

Optimal Solutions for Your Process Analytics System

METTLER TOLEDO offers a wide selection of accessories to facilitate ease of use and maintenance of high accuracy pH measurement systems. These include buffers for pH calibration, electrolyte solutions for reference electrodes, and pH sensor simulators for evaluating measurement loops. Below is a partial listing of product accessories available for pH and redox systems.

pH and Redox Buffers	Volume	Order Number
pH buffers		
pH 4.01 buffer	250 ml	51 340 057
pH 7.00 buffer	250 ml	51 340 059
pH 9.21 buffer	250 ml	51 300 193
pH 10.00 buffer	250 ml	51 340 056
pH 2.00 buffer w/3.9 M NaCl	250 ml	52 004 100
pH 4.01 buffer w/3.9 M NaCl	250 ml	52 004 103
pH 7.00 buffer w/3.9 M NaCl	250 ml	52 004 106
pH 9.21 buffer w/3.9 M NaCl	250 ml	52 004 109
Redox buffers		
Redox buffer 220 mV	$6 \times 250 \text{ml}$	51 340 081
Redox buffer 468 mV	$6 \times 30 \text{ml}$	51 319 058
Redox buffer 320 mV, w/3.9 M NaCl	$1 \times 250\text{ml}$	30 104 917

Reference Electrolyte Solutions

for Liquid-filled Electrodes	Volume	Order Number
Friscolyt B	250 ml	51 340 053
Viscolyt	250 ml	51 340 235
3 M KCI	250 ml	51 340 049

Cleaning/Storage Solutions	Volume	Order Number
pH electrode cleaner/proteins	250 ml	51 340 068
Reactivating solution	6×30 ml	51 319 053
Storage solution, 3M KCI	250 ml	51 340 049
Ceramic diaphragm cleaner	250 ml	51 340 070

Did You Know

The primary cause of pH measurement problems is

a dirty ceramic diaphragm. Ingold has a complete line of pH cleaning solutions, as well as buffers and electrolyte to keep your electrode functioning properly.

H

Pro2Go Portable pH/ORP Meter

Simple, Robust and Mobile

Features Overview

- Supports analog, puncture and ISM sensors
- ISM diagnostics
- Calibration timer alerts when calibration is due
- Rugged housing for industrial use

Other Highlights

- Measures pH, ORP and temperature
- IP67 rated housing
- Weatherproof USB interface for data exchange

For periodic pH or redox measurements, a mobile meter is the ideal choice. Designed for laboratory and industrial applications. The intuitive menu on Pro2Go™ ensures out-of-the-box operation for anyone. The meter's ergonomic design allows one-handed operation for both big and small hands. Its light weight makes measurement easy and convenient, even over lengthy periods of repeated measurement.

Pro2Go is compatible with both analog and digital ISM sensors. Its ISM features include Plug and Measure for error-free setup, and display of sensor diagnostics including DLI, ACT and TTM, so operators know when sensor calibration or replacement will be required.

The Pro2Go includes a datalogger that stores up to 2000 measurement data sets and computer interface for easy collection of data from the field.

Specifications

Measurement parameters	pH, mV and temperature
Sensor type	Analog and ISM sensors
pH measuring range	-2.00 to +20.00 pH
mV range	-2000 to +2000 mV
Temperature input	NTC30K
Temperature measuring range	ATC: -5 to 130 °C (+23 to 266 °F)
	MTC: -30 to 130 °C (-22 to 266 °F)
Predefined buffer groups	9
Automatic buffer recognition	Yes
Calibration	1-point (offset), 2-point (slope and offset)
Supply voltage batteries	$4 \times$ LR6/AA 1.5 V Alkaline or
	$4 \times$ HR6/AA 1.2 V NiMH rechargeable
Battery life (standby)	200 to 250 hrs
Supply voltage (USB powered)	Connection: Micro-USB
	Rating: 5 V DC, 100 mA
User interface	Graphic LC Display
Languages	10 (English, German, French, Italian, Spanish,
	Portuguese, Russian, Chinese, Korean and Japa-
	nese)
PC connection	Micro-USB for Data transfer and power
Memory size	2000 datasets (GLP conform)
Dimensions	Height \times Width \times Depth: 222 \times 70 \times 35 mm
	$(8.74 \times 2.76 \times 1.38 \text{ inch})$
Weight	0.29 kg (0.64 lb)
Material	 Housing: ABS/PC reinforced
	 Window: Polymethylmethoacrylate (PMMA)
Enclosure rating	IP 67
Range of application	For indoor and outdoor use
Approvals	CAN/CSA-C22.2 No. 61010-1-12
	UL Std. No. 61010-1 (3rd Edition)

www.mt.com/Pro2Go

Ordorina	Information

Ordering Information	
Pro2Go portable pH Meter	Order Number
Pro2Go portable pH Meter including USB cable, sensor cable AK9-BNC/RCA for ISM sensors, rubber holster,	
wrist strap, CD with documentation and software, Declaration of conformity, Test certificate	30 386 271
Accessories	Order Number
Rubber holster	30 487 344
USB cable for PC connection	30 487 345
Power adapter for USB cable (to operate instrument without batteries)	30 487 346
Sensor cable AK9-BNC/RCA for ISM sensors	30 487 466
EasyDirect pH PC software	free download
pH Buffer Solutions	Order Number
Buffer pouch pH 4.01 (pkt. of 30)	51 302 069
Buffer pouch pH 7.00 (pkt. of 30)	51 302 047
Buffer pouch pH 9.21 (pkt. of 30)	51 302 070

Data transfer via USB interface.

Did You Know You can get fast and simple data transfer with EasyDirect pH software via USB interface

41

Dissolved Oxygen Measurement Systems

High Reliability and Wide Application Coverage

Real-time, continuous measurement of dissolved oxygen (DO) is central to the efficiency of many industrial processes. METTLER TOLEDO offers a range of robust DO sensors that utilize a well-established electrochemical measuring principle, plus sensors with the latest optical technology for applications where simplicity of operation is particularly important.

Measurement of dissolved oxygen

Proper oxygen levels are important in many processes in biotechnology, pharmaceutical development, food and beverage, chemical manufacturing, and in water and primary waste treatment. Control of dissolved oxygen helps ensure product quality, reduce costs, and provide maximum product yield.

Optical measurement solutions from METTLER TOLEDO

The heart of the optical sensor is an oxygen-sensitive layer containing immobilized marker molecules. They absorb light from a light emitting diode and are able to release this energy as light at a different wavelength (fluorescence).

The fluorescence depends on the amount of oxygen that is present in the environment of the marker molecules. This effect allows determination of the oxygen concentration in the sample media.

Advantages of optical oxygen technology

The optical oxygen sensors offer a highly accurate oxygen measurement with enhanced signal stability and fast response time. The sensors are fully steam sterilizable, autoclavable and fulfill all industrial requirements for hygienic design and traceability. Since no electrolyte exchange or sensor polarization is needed, sensor main-

tenance is easy and less error-prone. This sensor type takes advantage of ISM technology.

Electrochemical oxygen sensors

The large portfolio of Ingold amperometric sensors fulfill the highest industrial requirements in performance and design to accommodate virtually any application. They are equipped with the unique ISM technology.

ISM

InPro 6800 12 mm and 25 mm

InSUS 607

Application guide for dissolved oxygen sensors

		و	nsois			oin	and the state of t	BIE		
	rife ide il do	hyderic s	ggOi .	Mich Hale	OO BERENTS	960; "	on hideric	selfolfs	and oping	ns In Ido
	AMPE INPRO	1RP10	INPRO C	Joice In Pro	or lublog	in InPro	on his	ingle The P	ordine syste	, , ,
Industrial processes										
Pharmaceutical Industry										
Biotechnological applications	•	•		•				•		
Chemical Industry	•	•								
Beverage Industry	•	•	•		•	•			•	
Wastewater applications							•			

Transmitter selection

Several Ingold transmitters are available to work in conjunction with our amperometric and optical sensors including the multi-parameter transmitter lines M100, M200, M300, M400 and M800.

Housings and socket selection

The widest selection of stationary, retractable and submersion housings is provided to match virtually any process connection. Vessel ports or

sockets are used as entry points for the oxygen sensor. METTLER TOLEDO provides a host of ports including the original Ingold 25 mm port which is recognized as a standard in the biotech and pharmaceutical industries.

Professional service and validation

Sensor service includes rebuilding, cleaning, testing, and recertification of your Ingold sensor, done quickly and efficiently to minimize downtime.

Validation and testing of oxygen equipment is done with equipment traceable to NIST.

Integration flexibility

Optical sensors can be integrated directly using their analog (mA-HART) or digital (Modbus) interface.

InPro 6860 i Optical Oxygen Sensor

Easy Handling, Exceptional Performance

InPro 6860 i

InPro 6860 i HD

Features Overview

- Plug and Measure
- Outstandingly fast service
- Immediate availability without need of polarization
- No electrolyte handling
- Low detection limit
- Highest signal stability
- Fast response time
- All wetted parts in accordance to FDA and USP Class VI-standards
- Sterilizable and autoclavable
- Hygienically polished surface
- Digital ISM technology

Combining innovative ISM technology with high-end optical measurement, METTLER TOLEDO offers optical oxygen sensors fully suitable for biopharma applications. The InPro 6860 i offers highly accurate oxygen measurement with enhanced stability, and easy handling without electrolyte change or time-consuming polarization procedures. The sensor is equipped with a digital interface (digital ISM and Modbus RTU) plus analog output signal for direct integration into existing biocontrollers, analog transmitters and into process environments including HART communication protocol.

Integrates ISM technology

With ISM, the installation, maintenance, and safety of the system is drastically improved. All sensor relevant data are stored in the sensor. Pre-calibrated systems transfer the data automatically to the transmitter and are therefore ready for measuring within seconds. Changes in the measuring system are monitored via the Dynamic Lifetime Indicator. With these features, error-free and safe operation of the sensor and the transmitter is assured. For more information see ISM introduction pages 10-11.

Specifications

Performance	
Operating range	Oppb to saturation (3 bar)
Accuracy	≤±[1%+8ppb]
Response time at 25 °C (77 °F) (Air \rightarrow N ₂)	98% of final value in <90s
Construction	
Measuring principle	Fluorescence quenching
Cable connection	VP8
Connector design	Straight
Process connection	Pg 13.5
Sensor body	316L stainless steel
OptoCap membrane material	PTFE
Surface roughness of wetted parts	$N5/R_a 16 (R_a = 0.4 \mu m/16 \mu in)$
O-ring material	EPDM (FDA positive listed)
Sensor diameter	12 mm
Working Conditions	
Temperature compensation	Automatic
Measuring temperature range	5 to 60 °C (41 to 140 °F)
Environmental temperature range	InPro 6860 i: -20 to 140 °C (-4 to 284 °F)
	(sterilizable, autoclavable)
Operating pressure	0.2 to 6 bar (2.9 to 87 psi absolute)
Design pressure	Maximum 6 bar (87 psi absolute)
Certificates and Approvals	METTLER TOLEDO Quality Certificate
	FDA/USP Class VI, 3.1, N5/R _a 16
	ATEX

Sensor	Length	nA	mA; HART	Modbus	OptoCap	Order Number
					Version	
InPro 6860 i nA	120 mm	•		•	BT02T	30 014 100
InPro 6860 i nA	220 mm	•		•	BT02T	30 014 101
InPro 6860 i nA	320 mm	•		•	BT02T	30 014 102
InPro 6860 i nA	420 mm	•		•	BT02T	30 014 103
InPro 6860 i nA HD	120 mm	•		•	BT02THD	30 449 703
InPro 6860 i nA HD	220 mm	•		•	BT02THD	30 449 704
InPro 6860 i nA HD	320 mm	•		•	BT02THD	30 526 901
InPro 6860 i nA HD	420 mm	•		•	BT02THD	30 526 902
InPro 6860 i nA HD	590 mm	•		•	BT02THD	30 526 903
InPro 6860 i mA	120 mm		•	•	BT02T	30 129 734
InPro 6860 i mA	220 mm		•	•	BT02T	30 129 735
InPro 6860 i mA	320 mm		•	•	BT02T	30 129 736
InPro 6860 i mA	420 mm		•	•	BT02T	30 129 737
InPro 6860 i mA HD	120 mm		•	•	BT02THD	30 449 705
InPro 6860 i mA HD	220 mm		•	•	BT02THD	30 449 706
InPro 6860 i mA HD	320 mm		•	•	BT02THD	30 526 900
InPro 6860 i mA HD	420 mm		•	•	BT02THD	30 532 157
InPro6860i mA FHD	120 mm		•	•	BT02TFHD	30 847 367
InPro6860i nA FHD	120 mm	•		•	BT02TFHD	30 847 509
InPro6860i mA FHD	220 mm		•	•	BT02TFHD	30 848 618
InPro6860i nA FHD	220 mm	•		•	BT02TFHD	30 848 619
InPro6860i mA FHD	320 mm		•	•	BT02TFHD	30 848 620
InPro6860i nA FHD	320 mm	•		•	BT02TFHD	30 848 621
InPro6860i mA FHD	420 mm		•	•	BT02TFHD	30 848 622
InPro6860i nA FHD	420 mm	•		•	BT02TFHD	30 848 623
InPro6860i nA FHD	590 mm	•		•	BT02TFHD	30 848 624

Transmitter	Order Number
M400 Type 2	30 374 112
M400 Type 3	30 374 113
M400/2H	30 025 514
M400/2(X)H	30 025 515
M400 FF	30 026 616
M400 FF 4-wire	30 374 121
M400 PA	30 026 617
M800 Process, 1-channel	30 026 633
M800 Process, 2-channel	52 121 813
M800 Process, 4-channel	52 121 853
M800 Process, 1-channel SST	30 246 551
M800 Process, 2-channel SST	30 246 552
M800 Process, 4-channel SST	30 246 553

InPro 6860 i Consumables	Order Number
OptoCap BTO2T (Standard OptoCap)	30 018 857
OptoCap BTO2THD (Angled Anti Bubble OptoCap; for vertical Installations)	30 302 172
OptoCap BT02TFHD (Flat Anti-Bubble OptoCap; for Horizontal Installations)	30 819 545

Accessories	Order Number
iLink Multi (incl. automated humidity and pressure compensation)	30 130 631
iLink Multi Cable/Set oDO (Cable set for all oDO sensors)	30 355 582
Housing Retrofit kit	52 403 811
Power supply in case of need for analog installation of InPro 6860 i	30 014 119

Did You Know

The optical oxygen sensors can be used in conjunction with all M400 and M800 transmitters as well as with existing analog and digital Modbus installations.

OptoCap replacement

OptoCap —
BT02THD stabilizes
the measurement
signal by it's hydrophilic surface by
avoiding air bubble
interference. Angled
Version optimized for
Benchtop Fermenter
installation where
sensors are installed
vertically.

OptoCap – **BT02TFHD** stabilizes the measurement signal by its hydrophilic surface by avoiding air bubble interference. Flat Version for use with large bioreactors where sensors are installed horizontally.

?

Did You Know

Oxygen bubble interference can be a common issue

when optical oxygen sensors are installed vertically. The new OptoCap (BTO2THD) with its proprietary design has a surface treatment that efficiently reduces these interferences. This allows greater production control leading to consistent yield, batch to batch.

Suitable Housings	p.
InFit 761 e	.122
InTrac 777 e	.133
InTrac 797 e	.134
InTrac 781	.135
InTrac 785 e	.136

InSUS 607/InSUS H60i - Single-use Sensor

Flexible Integration and Operation

InSUS H60i sensor head

Features Overview

- Installation in standard weld-in bag ports
- Gamma and X-ray irradiation sterilizable
- Three-year shelf life
- Wetted parts in accordance with USP Class VI standards
- No need for autoclaving
- Plug and Measure
- Digital and analog signal interfaces
- Long term measurement stability

The measurement principle of the InSUS 607 single-use dissolved oxygen (DO) sensor is based on proven optical spot technology and offers identical reliability and accuracy as METTLER TOLEDO's reusable optical DO sensors. These single-use sensors are gamma and X-ray sterilizable for secure installation and operation in single-use process devices such as bioreactors, harvesting, and storage bags for biopharmaceutical manufacturing.

An InSUS 607 sensor is operated together with a reusable sensor head, InSUS H60i. This pairing offers the same connectivity and signal integration options as our reusable InPro 6860i optical DO sensor (see pages 44/45). The identical operational interface leads to convenient and flexible usage of InSUS and InPro sensors in single-use devices, without modifying the installed process transmitter or controller environment.

Specifications

Specifications		
InSUS 607		
Measurement principle	Optical (fluorescence quenching)	
Measurement range	0250% air	
Accuracy	< 2.5 % for the range 50 100 % air after 1-point calibra-	
	tion in 100% air, <1% after 2-point calibration in 100%	
	air and 0% oxygen	
Response time	25°C (77°F) air → nitrogen, †98% <30s	
Design		
Body material	HDPE	
Wetted O-ring	EPDM	
Wetted spot material	Silicone	
Bag port (process connection)	Eldon James weld-in port with 1" barb	
Operating Conditions		
Maximum shelf life	36 months (dry storage)	
Sterilization method	Gamma and X-ray irradiation 2545 kGy	
Temperature range during	560°C (41140°F)	
measurement		
Mechanical pressure resistance	Up to 2 barg/40 °C (29 psig/104 °F)	
during measurement		
Material compliances	USP 87, USP 88 Class VI (pre- and post-gamma), wetted	
	polymers: absence of animal-derived materials, BPA, DEHP	
	and Latex	
InSUS H60i		
Power Supply	24 VDC, 0.1 A	
Design		
Shaft and housing material	316L stainless steel	
Shaft diameter	12 mm	
Total length when mounted	235 mm (9.25")	
on InSUS 507		
Cable connection	VP8	
Integrated temperature probe	Pt 1000	
Signal Interfaces		
Digital	ISM and Modbus RTU	
Analog	4-20 mA/HART or nano Ampere (nA)	
Certificates and Approvals	METTLER TOLEDO Quality Certificate, CE, UKCA	

www.mt.com/InSUS_DO

Quantity	Order Number
1	30 778 198
10	30 778 199
Cinnal Cutanta	Order Number
	1

Sensor Head	Signal Outputs	Order Number
InSUS H60i nA	ISM/Modbus RTU, nA	30 788 856
InSUS H60i mA	ISM/Modbus RTU, 4-20 mA	30 788 857
Transmitter		Order Number
M100 SM RS485		30 365 367
M400 Type 2		30 374 112
M400 Type 3		30 374 113
M400/2H		30 025 514

M100 SM RS485	30 365 367
M400 Type 2	30 374 112
M400 Type 3	30 374 113
M400/2H	30 025 514
M400/2(X)H	30 025 515
M400 FF	30 026 616
M400 FF 4-wire	30 374 121
M400 PA	30 026 617
M800 Process, 1-channel	30 026 633
M800 Process, 2-channel	52 121 813
M800 Process, 4-channel	52 121 853
M800 Profinet, 1-channel Process	30 530 021
M800 Profinet, 2-channel Process	30 530 022
M800 Process, 1-channel Ethernet/IP	30 530 023
M800 Process, 2-channel Ethernet/IP	30 530 024

Accessories	Order Number
Power supply set 24 VDC	30 014 119

Did You Know

InSUS 607 sensors are also offered by leading sin-

gle-use process device manufacturers as a fully integrated component in their irradiation sterilized bioreactors.

Did You Know

METTLER TOLEDO Ingold offers, sensors in single-use format for monitoring and

control of processes for the production of monoclonal antibodies, mRNA vaccines, and viral vectors for cell therapies.

InSUS H60i mounted on InSUS 607, protective cap mounted on clip holder

Powering Accessories for InPro 6860 i

Digital Sensor Integration

Combined oDO & pH Junction Box with Bluetooth connectivity

Features Overview

- Uses existing cables to biocontrollers
- Simplified installation
- Flexible powering options

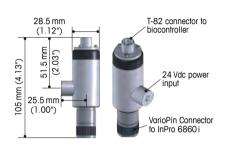
The J-Box BTLE simplifies biocontroller upgrades to advanced InPro 6860 i optical oxygen and digital ISM pH sensors without complicated wiring or grounding requirements. Using a shared power supply, the J-Box BTLE connects both oxygen and pH sensors to biocontrollers using existing and standard T-82 (for oxygen) and AK9 (for pH) cables. Measurement signals are sent from the J-Box as nA for oxygen and mV for pH providing universal connectivity to biocontrollers. Standard 1 or 3 meter cables are available for connection from the J-Box BTLE to the oxygen and pH sensors.

The J-Box BTLE is equipped with a Bluetooth interface. It connects to ISM Core and iSense Mobile for calibration, maintenance and diagnostic purposes.

The InPro 6860 i Adapter provides functionality with a direct connection to InPro 6860 i optical oxygen sensors. 24 V DC is provided through a standard 2.1 mm 5.5 mm female barrel connection with existing T-82 cables connected to the adapter's outlet.

Flexible installation choices

The J-Box BTLE is ideal for installing ISM optical oxygen and pH sensors onto the head plate of a reactor when space is limited.


The InPro 6860 i Powered Adapter is ideal for installations with sufficient space on the head plate of a reactor and where only optical oxygen is required.

Specifications

Performance	
Minimum input power requirement	24 V DC (min. 800 mW, 0.03 A)
Power connection	2.5 mm \times 5.5 mm male barrel mating to a
	2.1 mm×5.5 mm female barrel connection
Combined J-Box Sensor Connections	
To InPro 6860 i sensor	Male VarioPin
To ISM pH sensor	Male BNC
Simulated O ₂ (nA) to biocontroller	Male T-82 connector* wired for temperature
Simulated pH (mV) to biocontroller	Male K9/K8S
InPro 6860 i Adapter Connections	
To InPro 6860 i sensor	Female VarioPin
To biocontroller	Male T-82 connector wired for temperature

^{*} The T-82 Adapter is also available with a VP6 connector.

Product Description	Order Number
J-Box BTLE	30 365 368
InPro 6860 i T-82 Adapter for Biocontroller Retrofit	30 083 984
InPro 6860i VP6 Adapter for Biocontroller Retrofit	30 083 985
Power supply 24 V 0.75 A angled plug	30 323 961

O2 Accessory Cables (for J-Box BTLE to InPro 6860i sensor)

Product Description	Order Number
Cable, VP-8, 1m, Female VP	30 094 370
Cable, VP-8, 3m, Female VP	30 094 371

ISM pH Accessory Cables (for J-Box BTLE to ISM pH sensor)

Product Description	Order Number
Cable, AK9, 1m, Female BNC	59 902 168
Cable, AK9, 3m, Female BNC	59 902 194

Biocontroller Retrofit Cables for InPro 6860 i

VP6 (analog)	Order Number	VP8 (digital)	Order Number
All standard VP6 (analog)	see table, pp. 146/147	VP8-ST, 1 m (3.3ff)	52 300 353
VP6 Connector BNC, 3 m (9.9ft)	30 032 731	VP8-ST, 3 m (9.9ff)	52 300 354
VP6 Connector LEMO, 3 m (9.9 ft)	30 032 733	VP8-ST, 5 m (16.4 ft)	52 300 355
VP6 Connector Lumberg, 3 m (9.9 ft)	30 032 735	VP8-ST, 10m (32.8ff)	52 300 356
		VP8-ST, 15 m (49.2 ft)	52 300 357
		VP8-ST, 20 m (65.6 ft)	52 300 358
		VP8-ST, 35 m (114.8ff)	52 300 359

The J-Box BTLE is an ideal solution to retrofit biocontrollers with InPro 6860 i and ISM pH sensors. The integral 2.5 mm × 5.5 mm barrel connector enables simplified power connection.

METTLER TOLEDO recommends using a three-pronged grounded 24 V DC power supply for best performance.

Did You Know

Additional Cable Options
METTLER TOLEDO offers
a wide variety of oxygen
and pH cables for connecting the
J-Box BTLE or InPro 6860 i Adapter to
your biocontrollers. Please contact your
local representative to learn more about
our available options.

InPro 6960 i/InPro 6970 i Optical Oxygen Sensor

Reliable and Intelligent

Features Overview

- Plug and Measure
- Fast maintenance in less than1 minute
- Immediate availability, no need for polarization
- No electrolyte handling
- Low detection limit
- Highest signal stability
- Fast response time
- All wetted parts in accordance to FDA and USP Class VI-standards
- Fully CIP and SIP resistant
- Hygienically polished surface finish of N5/R $_{\alpha}$ 16 (R $_{\alpha}$ =0.4 μ m/16 μ in)
- Digital ISM technology

Optical technology in 12 mm design is available for challenging brewery applications such as filler line measurement. These optical sensors offer high performance together with reduced and easier maintenance. The outstanding measurement performance with low detection limit, minimum drift and short response time improves oxygen monitoring and helps to reduce out of spec production. The easy maintenance without liquid handling and polarization increases the availability of the measuring system.

ISM

ISM technology helps to make optical oxygen measurement simple and more reliable. Thanks to the Dynamic Lifetime Indicator (DLI) and Adaptive Calibration Timer (ACT), maintenance planning becomes easy and the risk of sensor failures during production time is significantly reduced. For more information see ISM introduction pages 10-11.

S	ne	cifi	cati	ions
•	nc	UIII	Cull	เบเเจ

opedifications	
Performance	
Operating range	InPro 6960 i: 0 ppb to 25 ppm
	InPro 6970 i: 0 ppb to 2000 ppb
Accuracy	InPro 6960 i: ≤ ± [1 % +8 ppb]
	InPro 6970 i: $\leq \pm [1 \% + 2 \text{ ppb}]$
Response time at 25 °C (77 °F) (Air \rightarrow N ₂)	98% of final value in < 20s
Residual signal in oxygen-free medium	<0.025% of the signal in ambient air
Construction	
Measuring principle	Fluorescence quenching
Cable connection	5-Pin
Connector design	Straight
Process connection	Pg 13.5
Sensor body	316L stainless steel
Membrane material	Silicone
Surface roughness of wetted parts	$N5/R_016$ ($R_0=0.4 \mu m/16 \mu in$)
O-ring material	EPDM (FDA positive listed)
Sensor diameter	12 mm
Working Conditions	
Temperature compensation	Automatic
Measuring temperature range	−5 to 40 °C (23 to 104 °F)
Environmental temperature range	0 to 121 °C (32 to 250 °F) (sterilizable)
Operating pressure	0.2 to 12 bar (2.9 to 174 psi absolute)
Design pressure	Maximum 12 bar (174 psi absolute)
Certificates and Approvals	METTLER TOLEDO Quality Certificate,
	FDA/USP Class VI, 3.1, N5/R _a 16

- www.mt.com/InPro6960i
- www.mt.com/InPro6970i

Ordering Information		
12 mm InPro 6960i/6970i		
Sensor	Length	Order Number
InPro 6960 i	120 mm	52 206 500
InPro 6960 i	220 mm	52 206 501
InPro 6960 i	320 mm	52 206 502
InPro 6970 i	120 mm	52 206 393
InPro 6970 i	220 mm	52 206 394
InPro 6970 i	320 mm	52 206 395
Transmitter		
M400 Type 3		30 374 113
M400/2H		30 025 514
M400/2(X)H		30 025 515
M400 FF		30 026 616
M400 PA		30 026 617
M800 SST, 1-channel		30 246 551
M800 SST, 2-channel		30 246 552
M800 Process, 1-channel		30 026 633
M800 Process, 2-channel		52 121 813
M800 Process, 4-channel		52 121 853
InPro 6960 i / 6970 i Consumables		
OptoCap BW01 for 6960i		52 206 509
OptoCap BR01 for 6970i		52 206 403
O-ring set		52 206 252
Sensor Cables		
2 m (6.6ft)		52 300 379
5m (16.4ff)		52 300 380
10m (32.8ft)		52 300 381
15m (49.2ff)		52 206 422
Accessories		
iLink-RS485 Sensor Cable for ISM Core		52 300 399
iLink Multi		30 130 631
iLink Multi cable set oDO		30 355 582
Housing retrofit kit		52 403 811
Maintenance cap		52 206 251
•		

OptoCap replacement

One piece O-ringfree OptoCap

?

Did You Know

In conjunction with the M400, the **InPro 6960 i**

offers an easy-to-use solution for high ppm measurements as found in wort aeration monitoring.

Other Highlights

- No electrolyte necessary
- No polarization required
- Easy maintenance

Did You Know

In conjunction with the M400, the **InPro 6970 i**

offers an easy-to-use solution for low ppb measurements throughout brewing and filler lines.

Suitable Housings	p.
InFit 761 e	122
InTrac 777 e	133
InTrac 797 e	134

InPro 6800/InPro 6850 i (12 & 25 mm)

For Accurate Oxygen Measurement

Features Overview

- Revolutionary "Quick Disconnect" system allows for service in seconds
- Detection limit down to 6 ppb
- Accurate measurement and quick response
- Long lasting and easy to maintain membranes
- FDA positive listed materials of construction
- Hygienically polished surface finish of N5/ R_a 16 (R_a =0.4 μ m/16 μ in)
- EHEDG certified for cleanability and 3 A compliant
- Wetted O-rings comply with FDA and USP Class VI standards
- Autoclavable and steam sterilizable

The InPro 6800 dissolved oxygen sensor with 12 or 25 mm diameter body provides maximum accuracy and ultimate cleanability for vessels with limited space or in containers with smaller volumes. The sensor is available with the state-of-the-art VP connector or T-82 connector in straight or angled versions. A durable 316 L stainless steel construction allows for CIP, steam sterilization or autoclaving in place, and the high sensor finish virtually eliminates contamination of the process. Ingold's PTFE/silicone membranes have been designed with an internal steel mesh that makes the membrane more rugged and dramatically increases membrane life.

S	p	е	C	ifi	ca	ti	0	n	S
---	---	---	---	-----	----	----	---	---	---

opeomeanons	
Performance	
Operating range	Oppb to saturation (5 bar)
Accuracy	≤±[1%+6ppb]
Response time at 25 °C (77 °F)	98% of final value in < 90 s
Polarization time	InPro 6800: 1 h; InPro 6850i: 6 h
Sensor signal in air at 25 °C (77 °F)	50 to 110 nA
Residual signal in oxygen-free medium	< 0.1 % of the signal in ambient air
Construction	
Measuring principle	Amperometric Clark electrode
Cable connection	Analog VarioPin (IP68), Digital K8S (IP68)
Connector design	Straight or angled
Process connection	Pg 13.5 (12 mm); Ingold (25 mm)
Sensor body	316L stainless steel
Membrane material	PTFE/Silicone/PTFE (reinforced with steel mesh)
Surface roughness of wetted parts	$N5/R_a 16 (R_a = 0.4 \mu m/16 \mu in)$
O-ring material	Silicone (FDA and USP Class VI positive listed)
Sensor diameter	12 mm/25 mm
Working Conditions	
Temperature compensation	Automatic
Measuring temperature range	0 to 80 °C (32 to 176 °F)
Environmental temperature range	-5 to 140°C (23 to 284°F) (steriliz., autocl.)
Operating pressure	0.2 to 6 bar (2.9 to 87 psi absolute)
Design pressure	Maximum 12 bar (174 psi absolute)
Certificates and Approvals	METTLER TOLEDO Quality Certificate, EHEDG,
	FDA/USP Class VI, 3.1, N5/R _a 16,
ATEX:	Ex ia IIC T6/T5/T4/T3 Ga/Gb,
	Ex ia IIIC T69°C/T81°C/T109°C/T161°C Da/Db
FM:	IS CI. I, II, III, Div 1, GR ABCDEFG/T6

Intelligent Sensor Management (ISM)

InPro 6850 i sensors with integrated ISM functionality allow Plug and Measure and advanced diagnostics. ISM simplifies the installation, handling and maintenance of measurement equipment. For more information see ISM introduction pages 10-11.

Other Highlights

- Small 12 or 25 mm diameter saves valuable space
- Pg 13.5 threads for interface into housings
- Comes with either watertight VP connector (IP 68) or T-82 connector
- Ingold 25 mm sensor design recognized as a standard in the industry
- Cap nut allows for easy interface to Ingold ports

www.mt.com/InPro68x0

12 mm InPro 6800/6	12 mm InPro 6800/6850 i DO Sensor Series							
Sensor	Length	Connector	VP Number	ISM Number				
InPro 6800/6850 i	70 mm	Straight	52 200 964	52 206 118				
InPro 6800/6850 i	120 mm	Straight	52 200 965	52 206 119				
InPro 6800/6850 i	220 mm	Straight	52 200 966	52 206 120				
InPro 6800/6850 i	320 mm	Straight	52 200 967	52 206 121				
InPro 6800/6850 i	420 mm	Straight	52 200 968	52 206 122				
InPro 6810	70 mm	Angled	52 200 969					
InPro 6810	120 mm	Angled	52 200 970					
InPro 6810	220 mm	Angled	52 200 971					
InPro 6810	420 mm	Angled	52 200 973					

12 mm InPro 6800 DO Sensor Series (T-82 Connector)

Sensor	Length	Connector	Order Number
InPro 6820	120 mm	Straight T-82	52 201 012
InPro 6820	220 mm	Straight T-82	52 201 013
InPro 6820	320 mm	Straight T-82	52 201 014
InPro 6820	420 mm	Straight T-82	52 201 015
InPro 6830	120 mm	Angled T-82	52 201 016
InPro 6830	220 mm	Angled T-82	52 201 017
InPro 6830	320 mm	Angled T-82	52 201 018
InPro 6830	420 mm	Angled T-82	52 201 019

25 mm InPro 6800/6850 i DO Sensor Series

Sensor	Length	Connector	VP Number	ISM Number
InPro 6800/6850 i	80 mm	Straight	52 200 974	52 206 123
InPro 6800/6850 i	160 mm	Straight	52 200 975	52 206 124
InPro 6800/6850 i	260 mm	Straight	52 200 976	52 206 125
InPro 6800/6850 i	360 mm	Straight	52 200 977	52 206 126
InPro 6810	80 mm	Angled	52 200 978	
InPro 6810	100 mm	Angled	52 200 982	
for B. Braun ports	EPDM O-rings			
InPro 6810	160 mm	Angled	52 200 979	
InPro 6810	260 mm	Angled	52 200 980	
InPro 6810	360 mm	Angled	52 200 981	

For available sensors for B. Braun ports please ask your local sales organization.

25 mm InPro 6800 DO Sensor Series (T-82 Connector)

20 111111 1111 10 00	to min in to occord oction oction (1-oz connector)						
Sensor	Length	Connector	Order Number				
InPro 6820	80 mm	Straight T-82	52 201 020				
InPro 6820	160 mm	Straight T-82	52 201 021				
InPro 6820	260 mm	Straight T-82	52 201 022				
InPro 6830	80 mm	Angled T-82	52 201 023				
InPro 6830	160 mm	Angled T-82	52 201 024				
InPro 6830	260 mm	Angled T-82	52 201 025				

InPro 6800/6850 i Consumables	Order Number
Membrane body, single T-96	52 200 071
Membrane kit T-96 (4 membranes, 1 O-ring set silicone,	52 200 024
25 ml of electrolyte, wetted parts SS 316L)	
Membrane bodies (16 pieces), T-96	52 206 114
O_2 electrolyte pack (3 \times 25 mL)	30 298 424
InPro 6800 replacement anode/cathode assembly	52 200 899
InPro 6850 i replacement anode/cathode assembly	52 206 347

For accessories refer to page 59, for cables and cable lengths refer to page 146–149.

Angled version of InPro 6800

Replaceable anode/cath-

Did You Know

The dissolved oxygen membrane used on these sensors

is more durable and less prone to fouling than competitive products due to its advanced membrane design. This makes these sensors an excellent choice for dirty DO applications.

Suitable Housings for 12 mm	p.
InFit 761 e	.122
InFit 762 e/763 e	.124
InFlow	.128
InDip	.126
InTrac 777 e	.133
InTrac 797 e	.134
InTrac 781	.135
InTrac 785/787	.136

InPro 6900 (i)/InPro 6950 i

Accurate Trace Oxygen Measurement

InPro 6950 i InPro 6900

Features Overview

- Revolutionary "Quick Disconnect" system allows for service in seconds
- Accurate measurement at very low levels of oxygen
- Long lasting and easy to maintain membranes
- FDA positive listed materials of construction
- Hygienically polished surface finish of N5/ R_a 16 (R_a =0.4 μ m/16 μ in)
- EHEDG certified for cleanability and 3-A compliant
- Wetted O-rings comply with FDA and USP Class VI standards
- Steam sterilizable

www.mt.com/InPro69x0

The InPro 6900 and the InPro 6950 dissolved oxygen sensors with 12 mm diameter body offer the same advanced features as the InPro 6800, with the additional benefit of being able to measure trace oxygen concentrations. In particular, the InPro 6950 i sensor offers excellent accuracy at the lowest oxygen levels due to the built-in 4-electrode measurement system. Ingold's unique cathode design, membrane and specially formulated electrolyte generate stable and accurate results at extremely low levels of oxygen.

S	p	е	C	İf	iC	a	ti	0	n	S

opcomounons			
Performance			
Operating range	InPro 6900 (i):	1 ppb to saturation in aqueous solutions	
		3 ppb to saturation in CO ₂ containing solutions	
	InPro 6950 i:	0.1 ppb to saturation in aqueous solutions	
		$0.25\mathrm{ppb}$ to saturation in CO_2 containing solutions	
couracy InPro 6900 (i): $\leq \pm [1\% + 1 \text{ ppb}]/\leq \pm [1\% + 3 \text{ ppb}]$		$\leq \pm [1\% + 1 ppb] / \leq \pm [1\% + 3 ppb]$	
	InPro 6950 i:	$\leq \pm [1\% +0.1 \text{ ppb}]/\leq \pm [1\% +0.25 \text{ ppb}]$	
Response time	InPro 6900 (i):	98% of final value in <90s	
at 25 °C (77 °F)	InPro 6950 i:	90% of final value in <90s	
Sensor signal in air	InPro 6900 (i):	250 to 500 nA	
at 25 °C (77 °F)	InPro 6950 i:	2500 to 6000 nA	
Residual signal in	InPro 6900 (i):	< 0.03 % of the signal in ambient air	
oxygen-free medium	InPro 6950 i:	< 0.025% of the signal in ambient air	
Construction			
Measuring principle	Amperometric C	lark electrode	
Sensor design	12 mm sensor v		
Connector design	Straight or angle	ed	
Process connection	Pg 13.5		
Sensor body	316L stainless	steel	
Membrane material	Membrane material PTFE/Silicone (reinforced)		
Surface roughness $N5/R_a 16 (R_a = 0.4 \mu m/16 \mu in)$		D.4 μm / 16 μin)	
of wetted parts	of wetted parts		
O-ring material	Silicone (FDA a	nd USP Class VI positive listed)	
Working Conditions			
Temperature compensation Automatic			
Measuring temperature range	0 to 80 °C (32 t		
Environmental		−5 to 140 °C (23 to 284 °F)	
temperature range	(sterilizable and autoclavable)		
	InPro 6950 i: −5 to 121 °C (23 to 250 °F) (sterilizable		
Operating InPro 6900 (i):	: 0.2 to 6 bar (2.9 to 87 psi absolute)		
pressure	0.2 to 9 bar (2.9 to 130 psi absolute) with T-6900 R		
InPro 6950 i:	: 0.2 to 9 bar (2.9 to 130 psi absolute)		
Design pressure	Maximum 12 bar (174 psi absolute)		
Certificates and Approvals	METTLER TOLEDO Quality Certificate, EHEDG,		
		DA/USP Class VI, 3.1, N5/Ra16,	
		TEX: Ex ia IIC T6/T5/T4/T3 Ga/Gb,	
	Ex ia IIIC T69°C/T81°C/T109°C/T161°C Da/Db		
	FM: IS CI. I. II	, III, Div 1, GR ABCDEFG/T6	

Intelligent Sensor Management (ISM)

Intelligent Sensor Management (ISM) InPro 6900 i and 6950 i sensors with integrated ISM functionality allow Plug and Measure and advanced diagnostics. ISM simplifies the installation, handling and maintenance of measurement equipment. For more information see ISM introduction pages 10–11.

12 mm InPro 6900	O(i) DO Sensor Series	S		
Sensor	Length	Connector Style	VP Order Number	ISM Order Number
InPro 6900 (i)	70 mm	Straight	52 200 944	52 206 316
InPro 6900 (i)	120 mm	Straight	52 200 945	52 206 317
InPro 6900 (i)	220 mm	Straight	52 200 946	52 206 318

12 mm InPro 6950 i DO Sensors

Sensor	Length	Connector Style	ISM Order Number
InPro 6950 i	70 mm	Straight	52 206 127
InPro 6950 i	120 mm	Straight	52 206 128
InPro 6950 i	220 mm	Straight	52 206 129
InPro 6950 i	320 mm	Straight	52 206 130

Membrane body, single InPro 6900 (i)	52 201 049
Membrane kit InPro 6900 (i)	52 201 003
(4 membranes, 1 O-ring set silicone, 10 ml of electrolyte, wetted parts SS 316L)	
Reinforced membrane body, single InPro 6900 (i) (T-6900 R)	52 201 108
Reinforced membrane kit InPro 6900 (i) (T-6900 R)	52 201 109
(4 membranes, 1 O-ring set silicone, 10 ml of electrolyte, wetted parts SS 316L)	
InPro 6900 electrolyte pack (3 × 5 mL)	30 298 425
InPro 6900 (i) replacement anode/cathode assembly	52 200 943

InPro 6950 (i) Consumables	Order Number
Membrane kit InPro 6950 i	52 206 106
(4 membranes, 1 O-ring set silicone, 10 ml of electrolyte, wetted parts SS 316 L)	
InPro 6950 electrolyte pack (3×5 mL)	30 298 426
InPro 6950 i replacement anode/cathode assembly	52 206 112

For accessories and spare parts refer to p. 59.

Reinforced membrane body InPro 6900

Other Highlights

- Small 12 mm diameter saves valuable space
- Watertight VP connector (IP68)
- Variety of sensor lengths available
- Withstands CIP

Suitable Housings	p.
InFit 761 e	.122
InFit 762 e / 763 e	.124
InFlow	.128
InDip	.126
InTrac 777 e	.133
InTrac 797 e	.134
InTrac 781	.135
InTrac 787	.136

InPro 6900 (i)/InPro 6950 i Transmitter Compatibility

Sensor	M400 Type 3	M800 2/4-ch	M800 1-ch
InPro 6900	•	-	•
InPro 6900 i	•	•	•
InPro 6950	_	-	•
InPro 6950 i	•	•	•

InTap: Portable Optical Dissolved Oxygen Analyzer

Maximum Control of Beverage Quality

Dissolved oxygen level is an important quality factor in the food and beverage industry. Maintaining low oxygen levels in food and beverage production ensures flavor stability as well as long shelf life. The InTap, with an internal optical DO sensor, allows users to measure dissolved oxygen values wherever and whenever required for optimum control of production processes and product quality. The InTap is used for the measurement of beverage DO, and at-line measurement of beer during or after filtration and prior to filling. Further, the InTap is the perfect reference measurement instrument for calibrating installed in-line oDO sensors that measure at the lowest oxygen ranges.

The InTap is equipped with a Bluetooth interface and can connect to sensors equipped with the T100 Bluetooth tool.

Reference calibration is done with a few clicks and can be transmitted wirelessly to the sensor. All data is stored in the InTap's USB-connected storage and a database of measurement points is easily built up.

Specifications

Measurement parameters	DO saturation e.g. concentration and temperature
Operating range*	0 ppb to 2000 ppb
Accuracy*	≤±[1%+2ppb]
Response time at 25°C (air to N_2); † 98%	<20s
Temperature measuring range	−5 to 60 °C (23 to 140 °F)
Operating pressure range	0 to 6 bar
Design pressure	10 bar
Protection rating	IP 67
Weight	3.5 kg
Battery	up to 24 h
Data storage	8 GB

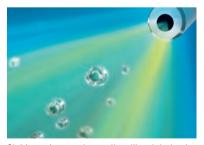
^{*}Sensor specifications

Features Overview

- 4.0" touchscreen
- Fast response time
- Lowest calibration requirement
- Highest accuracy down to 2 ppb
- IP 67 enclosure resists harsh environments

Other Highlights

- Full user management
- Wireless in-line sensor calibration
- Data logging up to 24 h
- Measurement point data management
- Calibration report management
- ISM predictive maintenance tools


Oracining information	
Analyzer	Order Number
InTap portable oDO analyzer	30 425 550
InTap portable oDO analyzer imp. inch/US	30 457 912
Accessories	Order Number
T100 M12 Bluetooth Interface for in-line sensor	30 432 819
Replacement Parts	Order Number
InTap 12 V Power Supply Set	30 383 009
OptoCap for InTap (OptoCap BR01)	52 206 403
O ₂ sensor InTap	30 422 571
Polyamide hose Ø 6×4 mm	30 422 575
Polyamide hose Ø ¼" (2 m)	30 461 774

T100: Bluetooth interface for oDO sensors.

Touchscreen interface with convenient data management

Stable and accurate results with minimized calibrator demands.

Beyond optical technology METTLER TOLEDO has implemented Automatic Stability Control (ASC) to ensure stable and reliable results, also minimizing calibration demands.

With the InTap you can store the calibration data of installed sensors and build up an electronic database for sensor management. Data is stored on a USB stick and can be transferred conveniently to a PC.

Did You Know
Installed oDO sensors can
be upgraded with the T100
Bluetooth tool, allowing calibration data
to be sent wirelessly to the InTap.

InPro 6050

Continuous Control of Your Wastewater Application

The InPro 6050 dissolved oxygen sensor provides reliable continuous measurement of dissolved oxygen in water applications including biological treatment in wastewater. The InPro 6050 offers proven Ingold sensor technology with an integrated thermistor in a rugged plastic sensor body providing optimum measurement accuracy at an affordable price. The PTFE/silicone membrane is reinforced by an integral stainless steel mesh, which provides durability and mechanical stability to ensure reliable, continuous on-line measurement.

Specifications

Specifications	
Performance	
Operating range	30 ppb to saturation
Accuracy	±[1%+30ppb]
Response time at 25 °C (77 °F)	98% of final value in < 90s
Sensor signal in air at 25 °C (77 °F)	40 to 110 nA
Residual signal in oxygen-free medium	< 0.3 % of the signal in ambient air
Construction	
Measuring principle	Amperometric Clark electrode
Cable connection	VP
Connector design	Straight
Process connection	Pg 13.5
Sensor body	PPS
Membrane material	PTFE/Silicone/PTFE (reinforced w/steel mesh)
O-ring material	Viton®, Silicone
Sensor diameter	12 mm
Shaft length	120 mm
Working Conditions	
Temperature compensation	Automatic
Measuring temperature range	0 to 60 °C (32 to 140 °F)
Design pressure	Maximum 2 bar (29 psi absolute)
Certificates and Approvals	METTLER TOLEDO Quality Certificate

Features Overview

- Rugged sensor designed for the wastewater industry
- Low maintenance
- Accurate measurement and quick response
- Long lasting and easy to maintain membranes
- Watertight VP connector (IP68)
- PTFE coated membrane protects the membrane against particle adhesion and chemical interference

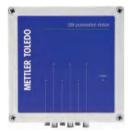
Ordering Information

Sensor	Length	Connector Style	Order Number
InPro 6050	120 mm	Straight VP	52 200 851

InPro 6050 Consumables

Oldel Mullipel	
Membrane body, single T-96	52 200 071
Membrane kit T-96 (4 membranes,	
1 O-ring set, 25 ml of electrolyte)	52 200 024
O_2 electrolyte pack (3 × 25 ml)	30 298 424

For accessories and spare parts refer to p. 59.


www.mt.com/InPro6050

Oxygen Accessories and Spare Parts

For Efficient Operation

Membrane kit with 4 membranes and electrolyte

6-port ISM polarization station for digital oxygen sensors

ISM O₂ Verification Kit. See page 116 for details.

ISM Optical O₂ Verification Kit. See page 117 for details.

An oxygen measuring system is made up of several important components and because the measurement is so critical to the process, all of them need to operate efficiently. This section outlines the accessories and maintenance items that can be used to optimize and maintain the quality of measurement.

Membrane maintenance

Perhaps the most common problem seen over time with electrochemical oxygen sensors is membrane integrity. During the course of a membrane's life it may encounter difficult situations such as harsh samples, multiple sterilization cycles, or impact, all of which cause normal wear and tear on the membrane. Ingold pioneered the design of the PTFE and silicone membrane with a built-in steel mesh that greatly increases membrane durability, extends membrane life and can be easily and quickly replaced as required. We offer multiple membrane styles according to your application including those that have FDA positive listed components for wetted parts.

Spare Parts – Ordering Information

oparo : and orangement		
InPro 6800 and InPro 6000 Series Sensor Membranes	Order Number	
Membrane kit, S-96 (silicone)	52 200 025	
Membrane kit, T-96 (PTFE)	52 200 024	
Membrane body, single, S-96	52 200 072	
Membrane body, single, T-96	52 200 071	
O_2 electrolyte pack (3 × 25 ml)	30 298 424	
Cap sleeve N (no protective cage)	52 200 037	
Cap sleeve P (protective cage)	52 200 038	
Cap sleeve N, HA-C22	52 200 642	

Accessories – Ordering Information

Product Description	Order Number
Digital ISM sensor master	52 206 329
Digital ISM sensor 6-port polarization station	52 206 480
ISM simulator O ₂ Kit for InPro 6850i/6850iG	52 300 416
ISM simulator O ₂ ppb Kit for InPro 6900 i / 6900 i G	52 300 422
ISM simulator O ₂ Trace Kit for InPro 6950i/6950iG	52 300 428
InPro 6800 sensor master polarization unit	52 200 892
InPro 6900 sensor master polarization unit	52 200 893
InPro 6950 sensor master polarization unit	52 206 113
DO sensor simulator for T-82 cabled transmitters	59 906 816
DO sensor simulator for VP cabled transmitters	52 200 891
Oxygen zeroing gel ($3 \times 25 \text{mL}$)	30 300 435
Adapter T-82 cable to VP electrode connector	52 200 939
Adapter VP cable to T-82 electrode connector	52 200 940
Cap sleeve without protective cage N-type (SS 316L)	52 200 037
Cap sleeve with protective cage P-type (SS 316L)	52 200 038
Cap sleeve without protective cage N-type (C22)	52 200 642
Cap sleeve without protective cage N-type (Ti)	52 200 268
Optical O ₂ Simulator	30 404 694

In Situ Monitoring of Dissolved CO₂ in Bioreactors

For Successful Fermentation

The importance of dissolved carbon dioxide in biotech or pharmaceutical processes

Besides pH and dissolved oxygen measurements, reliable monitoring and control of the CO₂ partial pressure is important for successful fermentation. METTLER TOLEDO Ingold's CO₂ system delivers precise, real-time data that increases understanding of critical fermentation and cell culture processes. This information will help you gain insight into cellular metabolism and other changes within the bioreactor.

A significant trend in biotechnology today is the increasing use of mammalian cell lines including human, monkey, mouse and bovine cells. Various types of bioreactors are now being used to cultivate these animal cells. One of the most important requirements for optimal cell growth in a bioreactor is continuous monitoring and control

of critical parameters, which include O₂, pH, CO₂ and temperature. Reliable measurement of CO2 is essential for successful large-scale operation as the accumulation of CO2 becomes more problematic at high viable cell concentrations. High CO₂ concentrations can inhibit cell growth and product formation in mammalian cells and alter the glycosylation pattern of recombinant proteins. By maintaining low and constant levels of CO₂, the production rate of pharmaceuticals, proteins and antibodies can be significantly increased.

Dissolved carbon dioxide sensors

The InPro 5000 i dissolved CO2 sensor utilizes the Severinghaus principle of CO₂ measurement which was developed in 1958 for use in blood-gas analysis. The sensing electrode in this principle is an enhanced pH electrode separated from the measurement media by an electrolyte-filled gas permeable

membrane. CO₂ diffuses through the membrane and into the inner electrolyte where it equilibrates with bicarbonate ions, altering the pH value. The relative change in pH value of the electrolyte is then measured by the enhanced pH electrode and correlated to CO₂.

The InPro 5000 i series sensor has been optimized for in situ analysis of dissolved CO2 in fermentation and cell culture processes. This sensor has a high surface finish for ultimate cleanability and can be steam sterilized or autoclaved. The modular membrane allows for maintenance in seconds and its unique construction stops interference of volatile acids which are often found in bioprocesses.

with InPro 5000 i CO2 sensor

In-line CO₂ Measurement in Beverages

Proven Technology, Simplified Operation

In-line CO₂ measurements in brewery and carbonated soft drinks processes are commonly used to ensure consistent beverage quality. However, initial investment, installation costs, and expenditure caused by unscheduled system downtime can amount to an unfavorable total lifetime cost of measurement equipment. A sensor that offers simplified handling and enhanced diagnostics leads to more reliable and cost effective operation.

Importance of CO₂ measurements

For consumers, the mouthfeel (and foam in the case of beer) is as important as a beverage's taste. Monitoring and controlling dissolved CO_2 concentrations helps ensure consumers' experience the sight and effervescence of your products the way you want them to. Consequently, typical applications for in-line CO_2 measurement systems in beverage producing processes are:

- Beverage carbonation control
- Measurements in filling lines
- Monitoring of possible CO₂ losses in critical process steps
- Deaerated water carbonation control

As much as reproducible CO_2 concentrations are responsible for consistent product quality, different packaging solutions also require different CO_2 levels for beverage dispensing and process safety reasons, e.g. to avoid mechanical damage to cans in tunnel pasteurizers due to high CO_2 levels. Table 1 shows typical concentration ranges for different beverages and packages.

Thermal conductivity plus Intelligent Sensor Management

The InPro 5500 i combines enhanced TC measurement with the proprietary Intelligent Sensor Management (ISM) concept. ISM simplifies sensor handling, enhances reliability and reduces sensor lifecycle costs. Plug and Measure installation and predictive maintenance tools, such as an indicator for falling membrane integrity, increases measurement point uptime and improve process safety.

Together with the M400 ISM transmitter operators can take full advantage of features that non-ISM systems cannot match.

Product	Typical CO ₂ Concentration
Deaerated water used in	2g/L (1 Vol) up to concentration of
blending processes	packaged beverage
Beers filled in cans/kegs	Up to 5.2 g/L (2.6 Vol)
Bottom fermented beers in bottles	5 to 6g/L (2.5 to 3.0 Vol)
Top fermented beers in bottles	6 to 9 g/L (3 to 4.5 Vol)
Carbonated soft drinks	5 to 10 g/L (2.5 to 5 Vol)

Table 1: Typical CO₂ ranges in carbonated beverages

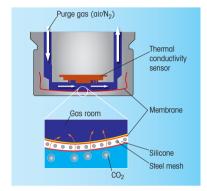


Fig 1: TC sensor design—complete avoidance of moving parts

Fig 2: METTLER TOLEDO's InPro 5500 i inline dissolved ${\rm CO_2}$ sensor employs thermal conductivity measurement

InPro 5000 i

For Accurate CO₂ Measurement

Other Highlights

- Small 12 mm diameter saves valuable space
- Pg 13.5 threads for interface into vessels or housing
- Variety of sensor lengths available

www.mt.com/InPro5000

The InPro 5000 i dissolved carbon dioxide sensor allows for the accurate measurement and control of dissolved CO_2 in biopharmaceutical applications. The measuring principle is based on the Severinghaus principle of potentiometric CO_2 measurement which has been widely accepted for over 55 years. The high surface finish of the stainless steel sensor prevents contamination and the sensor is fully sterilizable either in-situ or in an autoclave. The design of the membrane dramatically reduces full service time to just minutes. The interior body, a high performance pH electrode, can easily be replaced at your site. No need to send the sensor in for service. Also available with Intelligent Sensor Management (ISM) for Plug and Measure and advanced diagnostics (see pages 10-11).

Specifications

Performance	
Measuring range	10 to 1000 mbar pCO ₂
Accuracy	$\pm 10\% + 2 \text{mbar} (\text{pCO}_2 10 \text{to} 1000 \text{mbar})$
	$\pm 5\% (pCO_2 10 \text{ to } 300 \text{ mbar})^*$
Response time	90 % of final value < 120 s at 25 °C (77 °F)
Construction	
Measuring principle	Potentiometric Severinghaus
Cable connection	K8S
Process connection	Pg 13.5
Sensor body	316L stainless steel
Membrane material	Silicone (reinforced with steel mesh)
Surface roughness of wetted parts	N5 (R _a =0.4 µm/16 µin)
O-ring material	Viton®, Silicone (FDA compliant)
Sensor diameter	12 mm
Working Conditions	
Temperature compensation	Automatic
Temperature sensor	Digital
Measuring temperature range	0 to 60 °C (32 to 140 °F)
Sterilization temperature	135 °C/275 °F (sterilizable and autoclavable)
Operating pressure	0.2 to 2 bar (3 to 30 psi)
Design pressure	Maximum 3 bar (42 psi) at 25 °C (77 °F)
Certificates and Approvals	METTLER TOLEDO Quality Certificate, EHEDG,
	FDA, USP Class VI, 3.1, N5/ R_a 16

^{*} valid for measurement within ± 100 mbar of calibration point (pCO $_2$ cal point 10 to 300 mbar)

Features Overview

- Revolutionary design of the sensor allows for full service in seconds
- In situ measurement of CO₂
- Autoclavable and steam sterilizable
- Accurate measurement and quick response
- Long lasting and easy to maintain membranes
- FDA positive listed materials of construction
- High surface finish of N5 $(R_a = 0.4 \mu m/16 \mu in)$
- EHEDG certified for cleanability
- Wetted O-rings comply with FDA and USP VI standards

12 mm InPro 5000 i CO ₂ Sens	sors		
Sensor	Length	Connector Style	Order Number
InPro 5000 i	120 mm	K8S	30 013 606
InPro 5000 i	220 mm	K8S	30 019 005
InPro 5000 i	320 mm	K8S	30 019 006

Transmitter	Order Number
M100 SM 1-wire	30 365 366
M400 Type 2	30 374 112
M400 Type 3	30 374 113
M400 PA	30 026 617
M400 FF	30 026 616
M400 FF 4-wire	30 374 121
M800 Process, 1-channel	30 026 633
M800 Process, 2-channel	52 121 813
M800 Process, 4-channel	52 121 853
M800 Process 1-channel SST	30 246 551
M800 Process 2-channel SST	30 246 552
M800 Process 4-channel SST	30 246 553

InPro 5000 i Consumables	Order Number
InPro 5000 i membrane kit	52 206 055
(4 membranes, 1 O-ring set, 25 ml of electrolyte)	
Interior body InPro 5000 i, 120 mm	30 019 049
Interior body InPro 5000 i, 220 mm	30 019 170
Interior body InPro 5000 i, 320 mm	30 019 175

InPro 5000 i Accessories	Order Number
InPro 5000 i CO ₂ ISM Verification Kit	30 031 035
pH buffer 7.00	51 340 059
pH buffer 9.21	51 300 193
Cap sleeve without protective cage N-type	52 201 153
Cap sleeve with protective cage P-type	52 201 154

The InTrac 797 e can be used to calibrate the InPro 5000 i sensor in pilot and production fermentors, without interrupting the process.

Did You Know

The InPro 5000 i membrane inhibits the passage of volatile organic acids (a common by-product of biological processes), which would otherwise interfere with CO₂ measurement.

Suitable Housings	p.
InFit 761 e	122
InTrac 797 e	134
InTrac 781	135

InPro 5500 i

Less Maintenance, Greater Reliability

Features Overview

- Direct process connections
 with three choices
 (Varivent, Tri-Clamp, 28 mm/M42)
- Integrated temperature sensor
- Hygienic design, capable of withstanding CIP procedures
- O-rings with FDA approval
- Stainless steel surface with highly polished finish
- Steam sterilizable up to 120°C (248°F)
- Minimal and easiest membrane maintenance

www.mt.com/InPro5500i

The InPro 5500 i thermal conductivity CO_2 sensor provides reliable in-line measurement of dissolved carbon dioxide for a wide spectrum of food and beverage (brewery and carbonated soft drinks) processes. Intelligent Sensor Management (ISM) technology simplifies sensor handling and reduces sensor lifecycle cost. The InPro 5500 i thermal conductivity CO_2 sensor offers outstanding features, e.g., direct process connections, and integrated temperature sensor. Its hygienic design is capable of withstanding CIP procedures. Furthermore, the sensor is equipped with ISM technology which provides unique features such as Plug and Measure, automatic sensor protection, and predictive maintenance functions (see pages 10-11).

Specifications

opeomeanons	
Performance	
Measuring range	0 to 10 bar p (CO ₂)/0 to 145 psig p (CO ₂)
	0 to 15 g/L CO ₂ , 0 to 7 V/V CO ₂
Accuracy in fluids	±1% within ±5%°C of calibration temperature
	±2% over temperature range 0 to 50°C (32 to 122°F)
Cycle time	<20s
Flow requirements	min. 0.5 m/s
Construction	
Measuring principle	Thermal conductivity
Cable connection (digital)	5-pin, RS485 data cable
Process connections	Varivent Type N, Tri-Clamp 2",
	28 mm with cap nut M42
Sensor body (wetted parts)	316L stainless steel
CO ₂ selective membrane material	PTFE/Silicone (reinforced with steel mesh)
Surface roughness of wetted parts	N5 ($R_0 = 0.4 \mu \text{m} / 16 \mu \text{in}$)
O-ring material	EPDM (wetted parts), other material on request
Protection class	IP67
Working Conditions	
Operating pressure	0 to 20 bar absolute/0 to 290 psi
Design pressure	= permissible pressure range
Permissible temperature range *	0 to 50 °C (32 to 122 °F)
Operating temperature range	−5 to 121 °C (23 to 250 °F)
Sterilization temperature	up to 120°C (248°F)
Certificates and Approvals	MaxCert certification package (Material Certificate 3.1,
	Surface Finish Certificate 2.1, Final Inspection Certifi-
	cate)

Other Highlights

- Wide $\mathrm{CO_2}$ detection range 0 to 15 g/L $\mathrm{CO_2}$
- Improved thermal conductivity technique for greater accuracy and low drift
- Immunity to background gases results in high CO₂ selectivity
- Predictive maintenance tools such as
 Dynamic Lifetime Indicator (detects)
 when membrane replacement will be required) and Adaptive Calibration Timer (predicts when calibration should be performed)

Ordering Informat	tion
-------------------	------

Ordering Information	
InPro 5500 i Thermal Conductivity CO ₂ Sensors	
Sensor	Order Number
InPro 5500 i/Varivent Type N	30 034 265
InPro 5500 i/Tri-Clamp 2"	30 034 266
InPro 5500 i / 28 mm / M 42	30 034 264
Accessories	Order Number
CalBox	52 300 400
Purge gas conditioner	30 034 319
Cables	Order Number
– Data cable (5-pin) for InPro 5500 i temperature range –30 to 80 °C (–22 to 176 °F)	
RS 485/2 m (6.6ft)	52 300 379
RS 485/5 m (16.4ft)	52 300 380
RS 485/10 m (32.8 ft)	52 300 381
RS 485 / 15 m (49.2 ft)	52 206 422
RS 485/25 m (82.0 ft)	52 206 529
Spare Parts	Order Number
MembraCap	30 034 318
Transmitters	Order Number
M400 Type 3	30 374 113
M400/2H	30 025 514
M400/2(X)H	30 025 515
M400 FF	30 026 616
M400 PA	30 026 617
M800 SST, 1-channel	30 246 551
M800 SST, 2-channel	30 246 552
M800 Process, 1-channel	30 026 633
M800 Process, 2-channel	52 121 813
M800 Process, 4-channel	52 121 853

Process connection compatibility
Varivent, Tri-Clamp and
28 mm/M 42 process connections,
plus the integrated temperature sensor for more accurate CO₂ measurement, means commissioning is quick and straightforward. The hygienic membrane cap has been designed for ease of cleanability and simple, quick exchange.

The InPro 5500 i can be combined with an M400 for a single loop or with an O₂ sensor using the M800 multi-channel transmit-

ter for a complete dual O_2/CO_2 loop.

O₂ sensor InPro 6970 i

Versatile Turbidity Measurement

For Multiple Industries and Applications

Turbidity measurements are important indicators in many processes as they not only influence the yield of your process but also detect factors which are detrimental to a system.

Backscattered light technology

With a single optical fiber turbidity sensor, the emitted and backscattered light travels on the same fiber. Linear measurement for medium to high levels of turbidity is possible. With a system of two optical fibers the emitted and backscattered light travels on two fibers. Sensitivity to detect particles is consequently higher.

Forward scattered light technology

This technology provides an optimum measuring range for low to medium turbidity levels. They are ideal for detection of larger particles $> 0.3 \, \mu m$ and with the simultaneous measurement of forward and direct light allows for compensation of color.

Turbidity and color monitoring

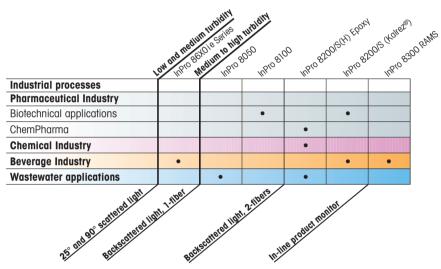
The sophisticated digital measuring technology in the InPro 86X0ie sensor is based on the photometric determination of blue and red light. Whereas the blue light is used to detect the color of the medium, in particular the color of beer, the scattering of red light is used to simultaneously detect the turbidity of the medium.

New optical product monitor

Precise monitoring of phase separation in food and beverage production is easily achieved by applying our InPro 8300 RAMS optical product monitor. Up to eight signals from long-life LEDs allow automated in-line product characterization by turbidity and color, as well as identifying products by their optical "fingerprint".

Turbidity sensor selection

METTLER TOLEDO Ingold offers several types of turbidity sensors that are optimized for specific measurement ranges and different applications. Depending on the applied technology and design they can be used in many industries such as:


- Biotechnology
- Pharmaceutical
- Chemical Processing
- Petrochemical
- Food and Beverage
- Breweries

Sensor versatility matches the requirements of diverse applications in which they can be implemented:

- Fermentation
- Biomass growth (cell density)
- Crystallization
- Phase separation
- Water in oil
- Filter breakthrough
- Activated sludge
- Post filtration of beer
- Wastewater

Our versatile turbidity measurement systems can be implemented in practically any process.

Application guide for turbidity systems

Transmitter selection

For use with the InPro 86X0ie series, the traffic light color-coded touchscreen on the M800 Process transmitter allows operators to evaluate the sensor and process condition at a glance. The M800 transmitter also provides excellent security (setting can be password protected) and convenient operation.

Color measurement

Two precision instruments for turbidity and color in-line measurement are combined into one unique sensor. Our food and beverage industry proven InPro 86X0ie incorporates a two-angle turbidity instrument with an EBC color

monitor. Providing two sensors in one maintenance-free instrument means cost of ownership is at a minimum while reliability and easy handling are maximized.

Turbidity housing selection

Housing options are available for simple interface into a process. These housings help maintain low maintenance and minimum downtime of your process by allowing easy removal of the turbidity sensor. The housings are designed for strict Clean in Place (CIP) applications and harsh environments.

InPro 8610ie / InPro 8630ie

Our range of turbidity sensors

InPro 8050/InPro 8100 (Single Fiber)

Wide Measurement Range

The InPro 8100 and 8050 single optical fiber turbidity sensors are designed for samples that have high particle concentrations and they offer a wide linear measuring range. The InPro 8100 is available in stainless steel and is intended for use in cell culture monitoring, pharmaceutical production, and industrial processes. The InPro 8050 utilizes a rugged polysulfone body and was developed specifically for accuracy and durability in the industrial wastewater environment.

Specifications

InPro 8050	
Technology	1 – fiber
Measuring range	10 to 4000 FTU
	0 to 250g/L
	(diatomaceous earth as reference)
Shaft material	PSU (Polysulfone)
Shaft lengths	120 mm
Sensor diameter	12 mm
Fiber optic cable	6m (19.7ff), fixed
Sterilizable	No
Autoclavable	No
Explosion protection	No
InPro 8100	

1111 10 0100	
Technology	1 – fiber
Measuring range	10 to 4000 FTU
	0 to 250g/L
	(diatomaceous earth as reference)
Shaft material	Stainless steel (316L)
Shaft lengths	120, 205, 297 or 407 mm
Sensor diameter	12 mm
Surface finish	N5 ($R_0 = 0.4 \mu \text{m} / 16 \mu \text{in}$)
Fiber optic cable	3 m (9.8 ft), fixed
Sterilizable	Yes, steam sterilizable at 130°C (266°F)
Autoclavable	Yes, for autoclavable version see ordering information next page
Certificates and Annroyals	ATEX CE and Material certificate according to 3.1

Certificates and Approvals ATEX, CE and Material certificate according to 3

Features Overview

- Backscattered light technology
- Uniform sensor structure reduces fouling and maintenance
- Wide measuring range
- Broad range of applications
- High accuracy

Other Highlights

- Small 12 mm diameter saves valuable space
- Pg 13.5 threads for interface into housings
- Integrated fiber optic cable
- Variety of sensor lengths available


www.mt.com/InPro8050

InPro 8050	Length	Shaft Material	Order Number
InPro 8050	120 mm	PSU	52 800 209
InPro 8100	Length	Shaft Material	Order Number
InPro 8100	120 mm	Stainless steel	52 800 205
InPro 8100	205 mm	Stainless steel	52 800 206
InPro 8100	297 mm	Stainless steel	52 800 207
InPro 8100	407 mm	Stainless steel	52 800 208
InPro 8100 autoclavable sensor	120 mm	Stainless steel	contact METTLER TOLEDO
InPro 8100 autoclavable sensor	205 mm	Stainless steel	contact METTLER TOLEDO
InPro 8100 autoclavable sensor	297 mm	Stainless steel	contact METTLER TOLEDO
InPro 8100 autoclavable sensor	407 mm	Stainless steel	contact METTLER TOLEDO
Accessories			Order Number

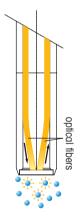
Accessories	Order Number
CaliCap calibration accessory	52 800 210
Fiber cable extension kit 3 m (9.8 ft)	52 800 228
Fiber cable extension kit 5 m (16.4 ft)	52 800 229
Fiber cable extension kit 6 m (19.7 ft)	52 800 230
Fiber cable extension kit 10 m (32.8ft)	52 800 231
Fiber cable extension kit 15 m (49.2ft)	52 800 232
Fiber cable extension kit 20m (65.6ft)	52 800 233
Fiber cable extension kit 25 m (82.0ft)	52 800 234
Fiber cable extension kit 30 m (98.4ft)	52 800 235
Couplings to link fiber cables (two included in every kit)	52 800 240
Coupling box IP 65 (NEMA 4X)	52 800 241
Swagelok™ adapter NPT ½"	52 800 242
Longer cable lengths are available. Please contact METTLER TOLEDO Ingold for details.	

 Transmitter
 Order Number

 M800 Process 1-channel
 30 026 633

Coupling box for fiber optic cable

M800 1-channel transmitter


Suitable Housings	p.
InFit 761 e	122
InFit 762 e / 763 e	124
InFlow	128
InDip	126
InTrac 779 e	133
InTrac 799 e	134
InTrac 785	136

InPro 8200 (Dual Fiber)

High Resolution at Medium Turbidity

Two optical fibers: for emitted and backscattered light protected by scratch resistant sapphire window.

The InPro 8200 dual optical fiber turbidity sensor is designed for samples with medium to high concentration and where high resolution is a requirement. The InPro 8200 is available in stainless steel or Hastelloy™ and is intended for use in cell culture monitoring, crystallization control, and industrial processes including liquid/solid separation.

Specifications

Technology	2-fiber
Measuring range	5 to 4000 FTU
	0 to 30 g/L
	(diatomaceous earth as reference)
Shaft material	Stainless steel (316L)
	Hastelloy
Shaft lengths	120, 205, 297 or 407 mm
Sensor diameter	12 mm
Surface finish	N5 ($R_0 = 0.4 \mu\text{m}/16 \mu\text{in}$)
Fiber optic cable	3 m (9.8 ff), fixed
Sterilizable	Yes, steam sterilizable at 130°C (266°F)
Autoclavable	No
Certificates and Approvals	ATEX, CE and Material certificate according to 3.1

Features Overview

- Backscattered light technology
- Uniform sensor structure reduces fouling and maintenance
- Wide measuring range
- Broad range of applications
- High accuracy
- Sapphire window

Other Highlights

- Small 12 mm diameter saves valuable space
- Pg 13.5 threads for interface into housings
- Integrated 3 m (9.8 ft) fiber optic cable
- Variety of sensor lengths available

Ordering Information

Length	Shaft Material, Window Seal	Order Number
120 mm	Stainless steel, Epoxy	52 800 216
205 mm	Stainless steel, Epoxy	52 800 217
297 mm	Stainless steel, Epoxy	52 800 218
407 mm	Stainless steel, Epoxy	52 800 219
120 mm	Hastelloy, Epoxy	52 800 220
205 mm	Hastelloy, Epoxy	52 800 221
297 mm	Hastelloy, Epoxy	52 800 222
407 mm	Hastelloy, Epoxy	52 800 223
120 mm	Stainless steel, Kalrez®-FDA	52 800 224
205 mm	Stainless steel, Kalrez®-FDA	52 800 225
297 mm	Stainless steel, Kalrez®-FDA	52 800 226
407 mm	Stainless steel, Kalrez®-FDA	52 800 227
120 mm	Hastelloy, Kalrez®-FDA	Contact METTLER TOLEDO
205 mm	Hastelloy, Kalrez®-FDA	52 800 264
297 mm	Hastelloy, Kalrez®-FDA	Contact METTLER TOLEDO
407 mm	Hastelloy, Kalrez®-FDA	52 800 215
	120 mm 205 mm 297 mm 407 mm 120 mm 205 mm 297 mm 407 mm 120 mm 297 mm 407 mm 120 mm 205 mm 297 mm 205 mm 297 mm 297 mm 407 mm 120 mm 297 mm	120 mm Stainless steel, Epoxy 205 mm Stainless steel, Epoxy 297 mm Stainless steel, Epoxy 407 mm Stainless steel, Epoxy 120 mm Hastelloy, Epoxy 205 mm Hastelloy, Epoxy 407 mm Hastelloy, Epoxy 407 mm Hastelloy, Epoxy 120 mm Stainless steel, Kalrez®-FDA 205 mm Stainless steel, Kalrez®-FDA 205 mm Stainless steel, Kalrez®-FDA 297 mm Stainless steel, Kalrez®-FDA 407 mm Stainless steel, Kalrez®-FDA 407 mm Hastelloy, Kalrez®-FDA 407 mm Hastelloy, Kalrez®-FDA 120 mm Hastelloy, Kalrez®-FDA

Accessories	Order Number
CaliCap calibration accessory	52 800 210
Fiber cable extension kit 3 m (9.8ft)	52 800 228
Fiber cable extension kit 5 m (16.4ft)	52 800 229
Fiber cable extension kit 6 m (19.7 ft)	52 800 230
Fiber cable extension kit 10 m (32.8ft)	52 800 231
Fiber cable extension kit 15 m (49.2 ft)	52 800 232
Fiber cable extension kit 20 m (65.6 ft)	52 800 233
Fiber cable extension kit 25 m (82.0ft)	52 800 234
Fiber cable extension kit 30 m (98.4ft)	52 800 235
Couplings to link fiber cables (two included in every kit)	52 800 240
Coupling box IP 65 (NEMA 4X)	52 800 241
Swagelok adapter NPT 1/2"	52 800 242

Longer cable lengths are available. Please contact METTLER TOLEDO Ingold for details.

Transmitter	Order Number
M800 Process 1-channel	30 026 633

Did You Know
The CaliCap calibration
accessory can serve two
important functions. Firstly, it can be
used as a "dry check" to verify the
performance of the Transmitter/Sensor
combination. Secondly, it provides
stable measurement during off-line
calibration in small vessels where
reflection can disturb the measurement.

Suitable Housings	p.
InFit 761 e	122
InFit 762 e/763 e	124
InFlow	128
InDip	126
InTrac 779 e	133
InTrac 799 e	134
InTrac 785	136

InPro 8610ie/InPro 8630ie Turbidity Sensor

Reliable Measurement for Tight Process Control

Features Overview

- Real-time window fouling surveillance
- Plug and Measure startup
- ISM provides real-time information on sensor condition
- Automatic color or turbidity compensation

Other Highlights

- Compliance with international standards
- Hygienic design
- 12-point turbidity and 6-point color factory pre-calibration over the entire measuring range

The innovative InPro 8610ie and InPro 8630ie turbidity sensors combine precision technology with advanced measurement electronics in one compact sensor head, and provide highly reliable measurements at a reduced installation cost. The forward and 25° sideward scattered light measurement technology in the InPro 8610ie and InPro 8630ie are designed to provide dependable turbidity measurements in the low to medium particle concentration range. Additionally, the InPro 8630ie sensor includes 90° scattered light measurement and a blue LED light source. The 90° scattered light is very sensitive to measuring turbidity in liquids with small undissolved particles such as beer proteins and glucanes. While the blue LED enables color measurement, which is especially useful in beer and sugar processing applications.

A	1				
٧n		ITI	cat	חו	ne

Turbidity, Coattored light (25° /00°**)			
Turbidity: Scattered light (25°/90°**)			
Color**: Absorption measurement			
Turbidity: 650nm, LED			
Color: 430nm, LED			
0 to 1000 EBC			
0 to 4000 FTU			
0 to 50 EBC Color			
FTU, NTU, EBC, ASBC, mg/l, ppm, %T			
0.001 EBC			
Tuchenhagen-VARINLINE™ Type N50/40			
Hastelloy C22, sapphire windows			
N6/R _a 32 (R _a ≤0.8 µm/32 µin)			
-10°C to +120°C (14 to 248°F)			
(max. +150°C peak for 15 mins during SIP/CIP cleaning)			
up to 16 bar (232 psi)			
Digital (RS485)			
24 VDC (±15%), 1.5 W, supply by transmitter			
METTLER TOLEDO Quality Certificate, CE, PED,			
EHEDG, EC 1935/2004 compliant			

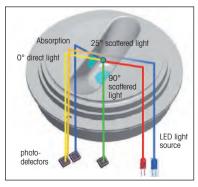
^{**} InPro 8630ie only

Order Number

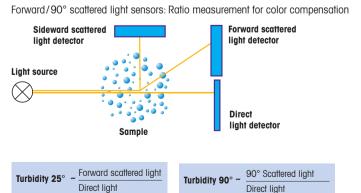
30 562 310

Ordering Information

Accessories


connections.

Verification Kit for InPro 86X0ie


Sensor	Order Number
InPro 8610ie	30 541 120
InPro 8630ie	30 541 121
Transmitter	Order Number
M800 Process 1-channel	30 026 633
M800 Process 1-channel EIP	30 530 023
M800 Process 2-channel EIP	30 530 024
M800 Process 1-channel Profinet	30 530 021
M800 Process 2-channel Profinet	30 530 022
Cables	Order Number
2 m (6.6ft)	52 300 379
5 m (16.4 ft)	52 300 380
10m (32.8ft)	52 300 381
15m (49.2ff)	52 206 422

Process Connection InPro 86X0 ie series sensors are hygienically designed to be installed with a Tuchenhagen-VARINLINE™ access unit type N. The VARINLINE access unit provides maximum cleanliness through zero deadleg design. Standard fittings are provided with butt weld pipe ends but may also be configured with sanitary, male or female NPT or ANSI flanged end

25°/90° scattered light from InPro 8630i e

73

InPro 8300 RAMS Series

Optical Product Monitoring and Identification Systems

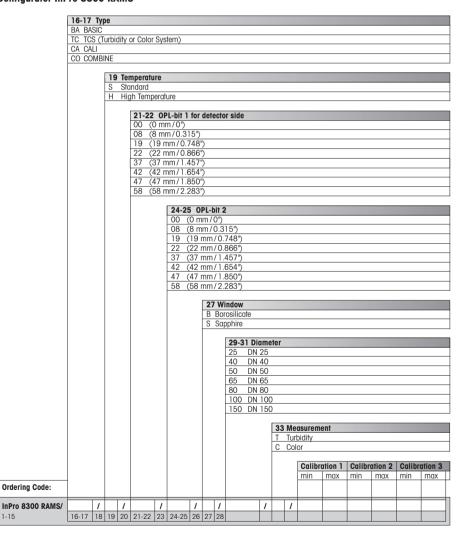
Features Overview

- Monitoring of turbidity and color using one single unit
- Use of durable and long-lasting LEDs
- Excellent zero stability
- Configuration using a PC or notebook
- Easy to retrofit to VARINLINE access units or VARINLINE sight glasses without the need of welding
- In parallel to processing the switching outputs and the analog output in the PLC, visualization via a separate PC is possible

The InPro 8300 RAMS is an optical multi-switch for monitoring product/water phase separation processes and for the identification of products in the process. In process automation applications, the unit supplies the switching signal for product/water or product/product phase separation. Where a range of products is manufactured, it allows unique identification of the different products. Using up to four different wavelengths, the transmitted light and the back-scattered light are measured. This method allows virtually all liquids to be monitored, independently of their color and turbidity.

Specifications

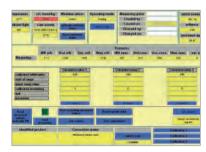
Main Module		
Measuring cycle (all 8	parameters)	approx. 5 measurements per second
Reaction time		≤ls
Measuring range	TCS	0100 % Absorption turbidity or color system
	BASIC	0100% Absorption and/or reflection
		at four wavelengths for product identification
	CAL/COMBINE	Turbidity 050/100/200/500/1000
		EBC (factory calibrated)
		Color 015/30/60/150 EBC (factory calibrated)
Repeatability		±1% of measuring range
Power supply		24 VDC ±5%
Power consumption		<50 mA plus total of output
		currents, polarity reversal
		protection up to 30 V
Output signal		420 mA Calibrated Range or
		0100 % Abs./refl.
Configuration interface)	RS 232
Operating conditions		
Ambient temperature		0 to 40 °C (32 to 104 °F)
Product temperature		0 to 105 °C (32 to 221 °F) (140 °C/284 °F
		optional)
Rel. humidity		0 to 100%
Protection class		IP67
Materials		
Housing		1.4404
Seals		EPDM/optional Viton®
Viewing window		PVC
Cable glands		brass/nickel plated
OPL-Bits		
Housing material		1.4404
Sealing material		EPDM, optional Viton®
Window material		Borosilicate, sapphire (optional)
Operating pressure		max. 10 bar
Mechanical temp. resi	stance	$-5 \text{ to} + 180 ^{\circ}\text{C}$ (23 to 356 $^{\circ}\text{F}$) (depending on the
		sealing material)
Housing material Sealing material Window material Operating pressure	stance	EPDM, optional Viton® Borosilicate, sapphire (optional) max. 10 bar – 5 to + 180 °C (23 to 356 °F) (depending on


www.mt.com/InPro8300

Ordering Information

Order Number
52 801 153
52 801 124
52 801 125
52 801 126
52 801 127
52 801 128
52 801 129
52 801 130
52 801 150
52 801 151
52 801 134

^{*} Optional available with sapphire window.


Configurator InPro 8300 RAMS

InPro 8300 RAMS

InPro 8300 RAMS software "CONFI"

Other Highlights

- A PC can be connected to record measured data (min. 3 s increments)
- Product identification can be displayed in table or chart form
- Easy copying of data into Excel™
- Automatic self-monitoring of condensation forming on the optical windows
- Sapphire windows available as an option
- High-temperature version available as an option

Conductivity/Resistivity Systems

When Optimal Performance Is Essential

Electrolytic conductivity is a widely used analytical parameter for water purity analysis, monitoring of reverse osmosis, cleaning procedures, control of chemical processes, and in industrial wastewater.

Three commonly used techniques

Electrolytic conductivity is a measure of the total ionic content of a solution. There are three main methodologies to measure conductivity:

- 2-electrode sensors are for measurements in high purity water and relatively low conductivity ranges
- 4-electrode sensors are for mid to high ranges. They are more resistant to fouling than 2-electrode designs
- Inductive sensors cover mid to very high conductivity ranges, and are particularly resistant to fouling.

METTLER TOLEDO offers all three methodologies.

2-electrode sensor design

An AC voltage is applied across the two electrodes, and the resistance between them is measured. The built-in temperature sensor provides fast accurate measurement. The cell geometry and the high solution resistance allow for very accurate and precise conductivity determination.

Sensors are used for: water conditioning and purification stages where they are capable of detecting minute levels of impurities in ultrapure water.

4-electrode sensor design

An AC voltage is applied across the two outside electrodes. The principle is to measure the voltage drop across the two inner electrodes. This eliminates polarization errors. Since this technique measures potential drop the measurement remains accurate. It permits easier in-line cleaning and it can be installed in smaller piping than inductive sensors.

Sensors are used for: concentration

measurement of acids, alkalis, and salt process streams.

Inductive sensor design

The inductive or "electrodeless" conductivity sensor consists of two toroidal coils encapsulated in an inert polymer body. When placed in a conductive solution, a current loop is generated proportional to the conductivity of the solution.

They are ideal for very high conductivity measurements as found in chemical processes, and aggressive applications where contacting electrodes may not be suitable.

Continuous conductivity monitoring according to USP <645>

USP guideline <645> sets a standard for the quality assessment of USP waters based on measurement of the electrolytic conductivity. There is a 3-stage test in which stage 1 allows on-line, non-temperature compensated conductivity measurement. There are specific requirements for the sensors and transmitters (see table).

Application guide for conductivity sensors

	Ingold sens	sors O	W W	? ? TC	, 205 V	3087	5. ¹⁸ 7.08.71	.708.W	SICEAC	PEEK	Pro Trac
	Ingold The	ONPR	JO INPRO	InPro	, Inbu	J. Merc	, Inbu	J. Mbr.	J. Marc	J. Inbro	J Inpro
Where to use											
Pure and ultrapure water	•	•									
Sanitary			•								
Water purification				•					•		
SIP					•	•					
Industrial wastewater							•			•	•
Medium/high conductivity								•	•	•	
Aggressive chemicals									•	•	
Chemical applications									•	•	•
Pharmaceutical water									•		
High conductivity										•	
Chemical concentration										•	

onductivity Guide	MITTER VALO. VALUE AND
ŏ	to On-line Conductivity Measurement
A Guide	Theory and Practice
	METILER TOLEDO

Find out more in our comprehensive conductivity theory guide at www.mt.com/conductivity-guide

Specification	USP <645>
Conductivity sensor	Verify cell constant within
and cell constant accuracy	±2 % using a reference solution
Conductivity meter calibration	NIST traceable 0.1 % precision resistors in place of sensor
Instrument resolution	0.1 µS/cm
Instrument accuracy at 1.3 µS/cm	0.1 µS/cm
Temperature compensation	Must be read uncompensated
Instrument dynamic range	102

METTLER TOLEDO instruments meet USP < 645 > water conductivity requirements.

InPro 7000-VP 2-Electrode Design

The InPro 7000-VP series are 2-electrode conductivity sensors designed for high accuracy measurements in very low to medium conductivity water. The sensors are available in a wide selection of process connections to meet every application need. Series includes hygienic and sterilizable designs.

Ordering Information

InPro 7000-VP Series 2-Electrode Sensors	Order Number
InPro 7000-VP	52 001 995
InPro 7005-VP	52 001 996
InPro 7001 / 120-VP 3.1	52 001 997
InPro 7001 / 225-VP 3.1	52 001 998
InPro 7002/1.5" TC-VP 3.1	52 001 999
InPro 7002/2" TC-VP 3.1	52 002 000
InPro 7002-VAR-VP 3.1	52 002 857

Cables	Order Number
1.5 m (4.9 ft)	58 080 201
3.0 m (9.8 ff)	58 080 202
4.5 m (14.8ff)	58 080 203
7.5 m (24.6ff)	58 080 204
15.0 m (49.2 ft)	58 080 205
25.0 m (82.0 ft)	58 080 206
30.0 m (98.4 ft)	58 080 207
Adapter (VP to old patch cord, 1 m/3.3 ft)	58 080 101

Features Overview

- Watertight VarioPin connector (IP 68) for easy connection and excellent signal transmission
- MaxCert certification package includes NIST/ASTM traceable cell constant, 3.1 materials certificate, and FDA compliant materials documentation

Typical Applications

 Water conditioning and preparation in the chemical, pharmaceutical and food and beverage industries

InPro 7002-VP

InPro 7001-VP

www.mt.com/InPro7000

Specifications

	InPro 7000-VP	InPro 7005-VP	InPro 7001-VP	InPro 7002-VP
Measurement principle	2-electrode sensor	2-electrode sensor	2-electrode sensor	2-electrode sensor
Electrode material	Titanium	Titanium	SS 316L	SS 316L
Body material	PVDF	PTFE-coated. SS 316/1.4401	SS 316L	SS 316L
RTD	Built-in Pt 1000	Built-in Pt 1000	Built-in Pt 1000	Built-in Pt 1000
Insertion length	29mm	34 mm	120/225 mm	85/104 mm
· ·	(1.15")	(1.35")	(4.71/8.86")	(3.35/4.09")
Max. sensor length	153.20 mm	75 mm	194/299mm	156/175 mm
•	(6.03")	(2.95")	(7.64/11.77")	(6.14/6.88")
Process connection	3/4" NPT	3/4" NPT	Pg 13.5	Tri-Clamp 1.5"
	1" NPT conduit			Tri-Clamp 2"
				Tuchenhagen-
				VARIVENT
				DN 40-DN125
Measuring range	See separate table below			
Cell constant nominal	0.1 cm ⁻¹	0.1 cm ⁻¹	0.1 cm ⁻¹	0.1 cm ⁻¹
Cell constant accuracy	±1.0%	±1.0%	±1.0%	±1.0%
Working Conditions				
Max. pressure at 25 °C (77 °F)	34 bar (493 psig)	17 bar (246 psig)	17 bar (246 psig)	31 bar (449.5 psig)
Max. pressure at 95 °C (203 °F)	7 bar (100 psig)	7 bar (100 psig)	7 bar (100 psig)	10 bar (145 psig)
Measuring	-10100°C	-10100°C	-10100°C	-10120°C
temperature range	(14212°F)	(14212°F)	(14212°F)	(14248°F)
			Sterilizable	Sterilizable
Temperature range	N/A	N/A	-10131 °C	−10155°C
(sterilization)			(14268°F)	(14311°F)
Temperature accuracy at 25 °C (77 °F)	± 0.25 °C (± 0.5 °F)	± 0.25 °C (± 0.5 °F)	± 0.25 °C (± 0.5 °F)	± 0.25 °C (± 0.5 °F)
Design				
Temperature compensation	Pt 1000	Pt 1000	Pt1000	Pt1000
	IEC class A	IEC class A	IEC class A	IEC class A
Cable connection	Vario Pin (IP68)	Vario Pin (IP68)ª	Vario Pin (IP68)	Vario Pin (IP68)
Wetted parts:				
- Metals	Titanium (Grade 2)	Titanium (Grade 2)	SS 316L	SS 316L
- Plastics	PVDF (FDA)	PTFE-coated. SS 316/1.4401		
- O-rings	Viton® (FDA)	Viton® (FDA)	Viton® (FDA)	Viton® (FDA)
Insulation	PEEK (FDA)	PEEK (FDA)	PEEK (FDA)	PEEK (FDA)
 Surface roughness of 			Polished	Electropolished
wetted metal parts ^b	N/A	N/A	N4 ($R_a < 0.2 \mu m$)	N4 ($R_a < 0.2 \mu m$)
			$(R_a < 8 \mu in)$	$(R_a < 8 \mu in)$
Certificates and Approvals				
Cell constant	•	•	•	•
CE certificate	•	•	•	•
Material certificate EN 10204 3.1	-	-	•	•
Material confirmation EN 10204 2.1	•	•	•	•
Surface roughness	-	_	•	•
ATEX (II 1/2G Ex ia)	•	•	•	•

a The VP is at the end of an approx. 0.5 m (1.64 ft) long fixed cable. b Except at active electrode areas.

Measuring Ranges 2-Electrode Design Sensors

Sensors	Transmitters					
	M300	M400	M400	M800	System	
		4 - W	2-W	1-channel	Accuracy (±)	
InPro 7000-VP/7005-VP	0.02-2000	0.02-2000	0.02-2000	0.02-2000	3%	
InPro 7001-VP	0.02-500	0.02-500	0.02-500	0.02-500	3%	
InPro 7002-VP	0.02-2000	0.02-2000	0.02-2000	0.02-2000	3%	

all values in µS/cm

Suitable Housings	p.
InTrac 781	135

InPro 7100-VP

4-Electrode Design

InPro 7108-25-VP

InPro 7108-VP/PEEK

InPro 7108-VAR

The InPro 7100-VP series conductivity sensors utilize 4-electrode technology to expand the range of contacting conductivity for the measurement of medium to high conductivity solutions. The rugged sensor design withstands the most rigorous CIP/SIP procedures in food and pharmaceutical industries. Series includes process connections for industrial processing as well as hygienic 25 mm port and Tri-Clamp fittings.

Ordering Information

InPro 7100 - VP Series 4 - Electrode Sensors	Order Number
InPro 7108-VP/CPVC	52 002 001
InPro 7108-VP/PEEK	52 002 002
InPro 7108-VP/PEEK/HA-C22	52 002 003
InPro 7108-VP-25/40-VP	52 002 004
InPro 7108-VP-25/40/HA-C22-VP	52 002 005
InPro 7108-VP-25/65-VP	52 002 006
InPro 7108-VP-25/65/HA-C22-VP	52 002 007
InPro 7108-VP/1.5" TC-VP	52 002 008
InPro 7108/2" TC-VP	52 002 009
InPro 7108-VAR-VP 3.1	52 002 790

Cables	Order Number
1.5 m (4.9 ft)	58 080 201
3.0 m (9.8 ff)	58 080 202
4.5 m (14.8 ft)	58 080 203
7.5 m (24.6ff)	58 080 204
15.0 m (49.2 ft)	58 080 205
25.0 m (82.0 ft)	58 080 206
30.0 m (98.4 ft)	58 080 207
Adapter (VP to old patch cord, 1 m/3.3ft)	58 080 101

Features Overview

- No polarization effects
- Withstands over 200 sterilization cycles (where applicable)
- Smooth flat surfaces resist fouling
- Watertight VarioPin connector (IP 68) for easy connection and excellent signal transmission
- MaxCert certification package includes NIST/ASTM traceable cell constant, 3.1 materials certificate, and FDA compliant materials documentation

 WideRange technology for wide measuring range and compact, cost-efficient installation

Typical Applications

- Chemical concentration measurement/control
- Detection of phase separation
- Control of CIP processes
- Wastewater monitoring

www.mt.com/InPro7100

Wastewater

Specifications	SI	oec	ific	ati	on	S
----------------	----	-----	------	-----	----	---

	InPro 7108-VP/CPVC	InPro 7108-VP/PEEK	InPro 7108-25-VP	InPro 7108-TC-VP InPro 7108-VAR-VP
Measuring principle	4-electrode sensor	4-electrode sensor	4-electrode sensor	4-electrode sensor
Electrode material		Sterilizable	Sterilizable	Sterilizable
	316L	316L or HA-C22	316L or HA-C22	316L
Body material	CPVC	PEEK	PEEK	PEEK
RTD	Built-in Pt 1000	Built-in Pt 1000	Built-in Pt 1000	Built-in Pt 1000
Insertion length	28 mm	28 mm	40/65 mm	25 mm
	(1.10")	(1.10")	(1.57/2.56")	(0.98")
Max. sensor length	151 mm	126.7 mm	123/148 mm	105 mm
	(5.96")	(4.99")	(4.86/5.84")	(4.14")
Process connection	1" NPT	1" NPT	DN25	Tri-Clamp 1.5"
	1" NPT conduit			Tri-Clamp 2"
				Tuchenhagen-
				Varivent
				DN 40-DN125
Measuring range	See separate table on pag	ge 85		
Cell constant nominal	$0.25\mathrm{cm}^{-1}$	0.25 cm ⁻¹	0.25 cm ⁻¹	0.25 cm ⁻¹
Working Conditions				
Max. pressure	7 bar	17 bar	17 bar	17 bar
at 25 °C (77 °F)	(100 psig)	(246 psig)	(246 psig)	(246 psig)
Max. pressure	_	7 bar	7 bar	7 bar
at 95 °C (203 °F)	_	(100 psig)	(100 psig)	(100 psig)
Measuring	-1080°C	-10140 °C a	−10140°C ^a	−10140°C a
temperature range	(14176°F)	(14284°F)	(14284°F)	(14284°F)
		Sterilizable	Sterilizable	Sterilizable
Temperature range	N/A	-10140°C ^a	-10140°C ^a	-10140°C a
(sterilization)		(14284°F)	(14284°F)	(14284°F)
Temperature accuracy	±0.25°C	±0.25°C	±0.25°C	±0.25°C
at 25 °C (77 °F)	±0.5°F	±0.5°F	±0.5°F	±0.5°F
Design				
Temperature	Pt 1000	Pt 1000	Pt1000	Pt 1000
compensation	IEC class A	IEC class A	IEC class A	IEC class A
Cable connection	Vario Pin (IP68)	Vario Pin (IP68)	Vario Pin (IP68)	Vario Pin (IP68)
Wetted parts:				
– Metals	316L	316L or HA-C22	316L or HA-C22	316L
– Plastics	CPVC	PEEK (FDA)	PEEK (FDA)	PEEK (FDA)
– O-rings	N/A	N/A	EPDM (FDA)	N/A
Certificates and Approvals			` ,	
Cell constant	•	•	•	•
CE certificate	•	•	•	•
Material certificates				
EN 10204 3.1	•	•	•	•
Material confirmation 2.1	•	•	•	•
ATEX (II 1/2G Ex ia)	•	•	•	•
a Short term 150 °C (302 °F)				

a Short term 150 °C (302 °F)

InPro 7100(i)

Convenient Sensors for All Your Processes

Features Overview

- Wide measurement range
 (0.02-500 mS/cm, depending on the transmitter)
- High resistance against aggressive chemicals
- Compatible with a variety of our static and retractable housing
- WideRange technology

The InPro 7100 is particularly suited for applications in the Chemical Industry, Pharmaceutical Industry, Food & Beverage and Pulp & Paper. The fast response time allows quick detection of process changes, leading to better process control. The PEEK shaft material offers high resistivity against aggressive solutions and is particularly suitable in process with frequent CIP/SIP cycles. The InPro 7100 is compatible with a variety of static (InDip™ or InFit™ series) and retractable (InTrac™ series) housings giving the user a wide choice of installation options.

Specifications

Specifications	
Performance	
Cell constant nominal	0.31 cm ⁻¹
System accuracy	±5% or better
Operation range	0 to 20 bar at 135 °C (0 to 290 psi at 275 °F)
	0 to 10 bar at 150 °C (0 to 145 psi at 302 °F)
Temperature range	Sterilizable
(sterilization)	-20 to 150 °C (-4 to 302 °F)
Temperature accuracy	±0.1°C (±0.1°F)
at 25 °C (77 °F)	
Construction	
Measuring principle	4-electrode sensor
Electrode material	SS 316L/1.4435
	Hastelloy C22
Body material	PEEK
RTD	Built-in Pt 1000
Sensor diameter	12 mm
Sensor length	120 mm (4.72"), 225 mm (8.85"), 425 mm (16.73")
Process connection	Pg 13.5, (with InFit series: Tri-Clamp 1.5",
	Tri-Clamp 2", Cap nut DN 25
Design	
Temperature compensation	Pt 1000 IEC class A
Cable connection	InPro 7100: Vario Pin (IP68); InPro 7100 i: AK9
Wetted parts:	-Metals: SS 316L/1.4435 or Hastelloy C22
	-Plastics: PEEK (FDA; USP Class VI)
Certificates and Approvals	Cell constant, ATEX, Material certificate 2.1 and 3.1, CE

ISM Features

- Digital connector
- Plug and Measure functionality

Typical Applications

- Chemical concentration control
- Control of CIP processes
- Control of digesting and bleaching (Pulp & Paper)
- Detection of phase separation (Food & Beverages)
- Buffer preparation (Pharma)

www.mt.com/InPro7100

Wastewater

Ordering Informati	ti	0	n
--------------------	----	---	---

Sensor Order Number InPro 7100/12/120/4435 52 003 571 InPro 7100/12/120/C22_ 52 003 792 InPro 7100/12/425/4435 52 003 793 InPro 7100i Sensor InPro 7100i/12/120/4435 52 003 791 InPro 7100i/12/120/4435 52 003 791 InPro 7100i/12/120/C22_ 52 003 792 InPro 7100i/12/125/4435 30 095 803 InPro 7100i/12/425/4435 52 003 880 InPro 7100i/12/425/C22_ 52 003 880 Patch Cables 1.5m (6ft) 58 080 201 3.0m (10ft) 58 080 202 4.6m (15ft) 58 080 203 7.6m (25ft) 58 080 204 15.2m (50ft) 58 080 206 22.9m (75ft) 58 080 206 30.5m (100ft) 58 080 206 30.5m (100ft) 58 080 206	InPro 7100	
InPro 7100/12/120/C22_ 52 003 572 InPro 7100/12/425/4435 52 003 793 InPro 7100/1 52 003 794 InPro 7100 i Sensor Order Number InPro 7100i/12/120/4435 52 003 791 InPro 7100i/12/120/C22_ 52 003 792 InPro 7100i/12/225/4435 30 095 803 InPro 7100i/12/425/4435 52 003 880 InPro 7100i/12/425/622_ 52 003 881 Patch Cables 1.5 m (5 ft) 58 080 201 3.0 m (10 ft) 58 080 202 4.6 m (15 ft) 58 080 203 7.6 m (25 ft) 58 080 204 15.2 m (50 ft) 58 080 205 22.9 m (75 ft) 58 080 205	Sensor	Order Number
InPro 7100/12/425/4435 52 003 793 InPro 7100 I Sensor Order Number InPro 7100 I/12/120/4435 52 003 791 InPro 7100 I/12/120/C22_ 52 003 792 InPro 7100 I/12/225/4435 30 095 803 InPro 7100 I/12/425/4435 52 003 880 InPro 7100 I/12/425/C22_ 52 003 881 Patch Cables 1.5m (5 ft) 3.0m (10 ft) 4.6m (15 ft) 7.6m (25 ft) 15.2m (50 ft) 2.9m (75 ft)	InPro 7100/12/120/4435	52 003 571
InPro 7100/12/425/C22_ 52 003 794 Sensor Order Number InPro 7100 i/12/120/4435 52 003 791 InPro 7100 i/12/120/C22_ 52 003 792 InPro 7100 i/12/225/4435 30 095 803 InPro 7100 i/12/425/425/C22_ 52 003 880 InPro 7100 i/12/425/C22_ 52 003 881 Patch Cables 1.5 m (5 ft) 3.0 m (10 ft) 4.6 m (15 ft) 7.6 m (25 ft) 15.2 m (50 ft) 2.9 m (75 ft)	InPro 7100/12/120/C22_	52 003 572
InPro 7100 i Sensor Order Number InPro 7100 i / 12 / 120 / 4435 52 003 791 InPro 7100 i / 12 / 120 / C22 52 003 792 InPro 7100 i / 12 / 225 / 4435 30 095 803 InPro 7100 i / 12 / 425 / 4435 52 003 880 InPro 7100 i / 12 / 425 / C22 52 003 881 Patch Cables 1.5 m (5 ff) 58 080 201 3.0 m (10 ff) 58 080 202 4.6 m (15 ff) 58 080 203 7.6 m (25 ff) 58 080 204 15.2 m (50 ff) 58 080 205 22.9 m (75 ff) 58 080 206	InPro 7100/12/425/4435	52 003 793
Sensor Order Number InPro 7100i/12/120/4435 52 003 791 InPro 7100i/12/120/C22_ 52 003 792 InPro 7100i/12/225/4435 30 095 803 InPro 7100i/12/425/4435 52 003 880 InPro 7100i/12/425/C22_ 52 003 881 Patch Cables 1.5 m (5 ft) 58 080 201 3.0 m (10 ft) 58 080 202 4.6 m (15 ft) 58 080 203 7.6 m (25 ft) 58 080 204 15.2 m (50 ft) 58 080 205 22.9 m (75 ft) 58 080 206	InPro 7100/12/425/C22_	52 003 794
InPro 7100i/12/120/4435 52 003 791 InPro 7100i/12/120/C22_ 52 003 792 InPro 7100i/12/225/4435 30 095 803 InPro 7100i/12/425/4435 52 003 880 InPro 7100i/12/425/C22_ 52 003 881 Patch Cables 1.5 m (5 ft) 58 080 201 3.0 m (10 ft) 58 080 202 4.6 m (15 ft) 58 080 203 7.6 m (25 ft) 58 080 204 15.2 m (50 ft) 58 080 205 22.9 m (75 ft) 58 080 206	InPro 7100 i	
InPro 7100i/12/120/C22_ 52 003 792 InPro 7100i/12/225/4435 30 095 803 InPro 7100i/12/425/4435 52 003 880 InPro 7100i/12/425/C22_ 52 003 881 Patch Cables 1.5m (5ft) 58 080 201 3.0m (10ft) 58 080 202 4.6m (15ft) 58 080 203 7.6m (25ft) 58 080 204 15.2m (50ft) 58 080 205 22.9m (75ft) 58 080 206	Sensor	Order Number
InPro 7100i/12/225/4435 30 095 803 InPro 7100i/12/425/4435 52 003 880 InPro 7100i/12/425/022_ 52 003 881 Patch Cables 1.5m (5ft) 58 080 201 3.0m (10ft) 58 080 202 4.6m (15ft) 58 080 203 7.6m (25ft) 58 080 204 15.2m (50ft) 58 080 205 22.9m (75ft) 58 080 206	InPro 7100i/12/120/4435	52 003 791
InPro 7100i/12/425/4435 52 003 880 InPro 7100i/12/425/C22_ 52 003 881 Patch Cables 1.5m (5ft) 58 080 201 3.0m (10ft) 58 080 202 4.6m (15ft) 58 080 203 7.6m (25ft) 58 080 204 15.2m (50ft) 58 080 205 22.9m (75ft) 58 080 206	InPro 7100i/12/120/C22_	52 003 792
InPro 7100i/12/425/C22_ 52 003 881 Patch Cables 1.5m (5ft) 58 080 201 3.0m (10ft) 58 080 202 4.6m (15ft) 58 080 203 7.6m (25ft) 58 080 204 15.2m (50ft) 58 080 205 22.9m (75ft) 58 080 206	InPro 7100i/12/225/4435	30 095 803
Patch Cables 1.5m (5ft) 58 080 201 3.0m (10ft) 58 080 202 4.6m (15ft) 58 080 203 7.6m (25ft) 58 080 204 15.2m (50ft) 58 080 205 22.9m (75ft) 58 080 206	InPro 7100i/12/425/4435	52 003 880
1.5 m (5ff) 3.0 m (10ff) 4.6 m (15ff) 7.6 m (25ff) 15.2 m (50ff) 22.9 m (75ff) 58 080 205 58 080 206	InPro 7100i/12/425/C22_	52 003 881
3.0 m (10 ff) 4.6 m (15 ff) 7.6 m (25 ff) 15.2 m (50 ff) 22.9 m (75 ff) 58 080 205 22.9 m (75 ff)	Patch Cables	
4.6 m (15 ff) 7.6 m (25 ff) 15.2 m (50 ff) 22.9 m (75 ff) 58 080 203 58 080 204 58 080 205 22.9 m (75 ff)	1.5m (5ft)	58 080 201
7.6 m (25 ft) 15.2 m (50 ft) 22.9 m (75 ft) 58 080 205 58 080 206	3.0m (10ff)	58 080 202
15.2 m (50 ff) 22.9 m (75 ff) 58 080 205 58 080 206	4.6m (15ff)	58 080 203
22.9m (75ff) 58 080 206	7.6m (25ff)	58 080 204
	15.2 m (50 ft)	58 080 205
30.5 m (100 ft) 58 080 207	22.9m (75ft)	58 080 206
	30.5 m (100 ft)	58 080 207

AK9 Coax Cables with K8S Connector for ISM sensors

Cable Socket	Termination	Cable Length	Order Number
AK9	Tinned ends	1 m (3.3 ft)	59 902 167
AK9	Tinned ends	3 m (9.8 ft)	59 902 193
AK9	Tinned ends	5 m (16.4ff)	59 902 213
AK9	Tinned ends	10 m (32.8 ft)	59 902 230
AK9	Tinned ends	20 m (65.6 ft)	52 300 204

For accessories, cables and cable lengths refer to page 146.

Measuring Ranges 4-Electrode Design Sensors

Sensors	Transmitters						
4-electrode sensors	M100	M200	M300	M400 4-W	M400 2-W	M800	System
							Accuracy (±)
InPro 7108	_	_	0.02 - 650	0.02 - 650	0.02 - 650	0.02 - 650*	5 %
InPro 7100	_	-	0.02 - 400	0.02 - 400	0.02 - 400	0.02 - 400*	5 %
InPro 7100 i	0.02-500	0.02-500	0.02 - 500	0.02 - 500	0.02 - 500	0.02 - 500	5 %

All values in mS/cm

Suitable Housings	p.
InTrac 781	135

^{*} M800 1-channel only

InPro 7250

Inductive Conductivity Sensors

Features Overview

- Inductive design ideal for dirty applications or process chemical concentration measurement
- No polarization effects
- High temperature model suitable for boiler blowdown applications
- Chemically resistant PEEK body for very aggressive chemicals
- PFA version available for harsh environments
- Robust design for maintenance-free operation
- Available bushings and flanges simplify installation

www.mt.com/InPro7250

The InPro 7250 Series conductivity sensors are inductive sensors designed to handle aggressive chemical solutions or dirty water applications. These "electrodeless" sensors have no electrodes in contact with the sample and are not affected by coatings that foul traditional contacting conductivity sensors. Able to measure medium to very high conductivity levels, applications range from measurement of industrial wastewater to acid, caustic, and salt stream concentration in industrial processing.

S	n	e	ci	Ħ	ic	at	i	n	ns	
J	μ	v	V.	ш	v	u	ш	v	112	,

High Temperature (H	łT)	PEEK	PFA
Measurement range		0-2,000 mS/cm	0-2,000 mS/cm
Temperature range		−20 to 180°C (−4 to 356°F)	-20°C to 125°C (-4 to 257°F)
Pressure range		0-20 bar (0-290 psi)	0-16 bar (0-232 psi)
at 25 °C (77 °F)			
Sensor material		PEEK, glass filled	PFA, not glass filled
Seal material		Viton®	PTFE
Temperature sensor		Pt 1000	Pt 1000
Cell factor		2.175	2.30
Process connection		G ¾"	G ¾"
Cable length		3m, 5m, 10m	3m, 5m, 10m
		(9.8ff, 16.4ff, 32.8ff)	(9.8ft, 16.4ft, 32.8ft)
Certificates	ATEX:	•	•
and Approvals	FM:	•	•
	CE:	•	•

Standard

Temperature (ST)	PEEK
Measurement range	0-2,000 mS/cm
Temperature range	-20 to 100 °C (-4 to 212 °F)
Pressure range	0-8bar (0-116psi)
at 25 °C (77 °F)	
Sensor material	PEEK, glass filled
Seal material	Viton®
Temperature sensor	Pt 1000
Cell factor	2.175
Process connection	G ¾"
Cable length	3m, 5m, 10m (9.8ft, 16.4ft, 32.8ft)
Certificates	
and Approvals	CE: •

Ordering Informa

Transmitter M400 (2-Wire Transmitter)

M400 2XH Cond Ind

Ordering Information	
Sensors	Order Number
InPro 7250 ST/Pt1000/3 m (9.8 ft)	52 002 736
InPro 7250 ST/Pt1000/5 m (16.4 ft)	52 002 737
InPro 7250 ST/Pt1000/10 m (32.8 ft)	52 002 738
InPro 7250 HT/Pt1000/3 m (9.8ft)	52 002 739
InPro 7250 HT/Pt1000/5 m (16.4ft)	52 002 740
InPro 7250 HT/Pt1000/10 m (32.8 ft)	52 002 741
InPro 7250 PFA/Pt1000/3 m (9.8ft)	52 005 423
InPro 7250 PFA/Pt 1000/5 m (16.4 ft)	52 005 424
InPro 7250 PFA/Pt1000/10 m (32.8 ft)	52 005 425
Other sensor cable lengths are available. Please contact METTLER TOLEDO for details.	
Process Connections and Accessories	Order Number
– Flanges	
Flange DN 50/PN16	52 403 565
Flange ANSI 2"	52 403 567
Flange ANSI 3"	52 403 569
Flange DN50/PN16, PVDF, only for PFA version	52 403 946
Flange ANSI 2", incl. Sealing Plate PTFE	52 403 947
- Bushings	
Bushing R 1½"	52 403 446
Bushing R 1½", PVDF	52 403 447
Bushing R 2"	52 403 448
Bushing R 2", PVDF	52 403 449
Bushing 1½" NPT	52 403 450
Bushing 11/2" NPT, PVDF	52 403 451
Bushing 2" NPT	52 403 452
Bushing 2" NPT, PVDF	52 403 453
– Sanitary Adapters	
Dairy adapter DN50	52 403 583
Aseptic adapter DN50	52 403 584
InDip 550 Ind – Sensor holder spare part set	
InDip 550 ind PVC	52 403 579
InDip 550 ind PVDF	52 403 580
- Accessories	
Flat gasket (Viton®)	52 403 432
O-ring (Viton®)	52 750 171
Locknut (stainless steel)	52 403 433
Transmitter M400 (4-Wire Transmitter) Designation	Order Number
M400, Type 1 Cond Ind –	52 121 495

Designation

Order Number

30 256 307

Transmitters for All Parameters

Your Access to the Process

Constant information

Transmitters are the components that communicate to the user and translate sensor readings into displayed measurements. METTLER TOLEDO provides tailorable transmitter solutions to meet the needs of a wide range of applications and functional requirements. Intelligent diagnostics keep users informed of sensor "health".

Single- or multi-channel?

For simpler processes where only a single parameter requires measurement, a single-channel transmitter is the obvious choice, but for processes where more than one parameter must be monitored, multi-channel, multi-parameter transmitters offer sig-

nificant advantages. METTLER TOLEDO multi-channel transmitters combine operating flexibility with ease of use.

Transmitters for hazardous areas

Many of our transmitters have been designed specifically for hazardous area use where there is a risk of explo-

	80088				
	M200 (p. 88-89)	M300 (p. 90-91)	M400 (p. 92–95)	M800 (p. 98-101)	
				4-Wire	
Channels	1/2	1/2	1	1/2/4*	
Plug and Measure	•	•	•	•	
Dynamic Lifetime Indicator (DLI)	-	•	•	•	
Adaptive Calibration Timer (ACT)	-	•	•	•	
Time To Maintenance (TTM)	-	•	•	•	
Calibration history	-	•	•	•	
CIP/SIP autoclaving counter	-	•	•	•	
iMonitor	-	•	•	•	
Communication	-	-	HART® Foundation Fieldbus*	Profinet* Ethernet/IP*	
Panel Cutout	½ DIN, ¼ DIN	½ DIN, ¼ DIN	½ DIN	½ DIN	
Mixed-mode input	-	•	•*	•*	
PID controller	-	•	•	•	
Hold input	•	•	•	•	
Analog input	-	-	1*	1	
Digital input	1/2	1/2	2	4/5/6	
Relays/open collectors (OC)	2	4*	4	8/2/0*	
Outputs	2/4	2/4	4	8/1/0*	
Approvals	UL	UL	ATEX IECEX Zone 2 FM CI 1 Div 2 CSA CI 1 Div 2* NEPSI	FM CI 1 Div 2*	
Parameter compatibility (Ingold)					
pH/ORP/pNa	•	•	•	•	
Dissolved oxygen					
Amperometric sensors					
High (InPro 68xxi)	•	•	•	•	
Low (InPro 69xxi)	_	_	•*	•	
Optical sensors					
High (InPro 68xx)	-	-	•	•	
Low (InPro 69xx)	-	-	•*	•	
Gaseous oxygen					
High (InPro 68xx)	_	-	•*	•	
Low (InPro 69xx)	-	-	•*	•	
GPro 500	-	-	•*	-	
CO ₂					
InPro 5000i	_	-	•*	•	
InPro 5500 i	_	-	•*	•	
			1		
Conductivity 2-e/4-e	•	•	•	•	
Conductivity 2-e/4-e Inductive conductivity	-	-	•*	_	
Inductive conductivity	-	-	•*	-	

sive or toxic environments. Low-power, 2-wire units with ATEX/FM approvals ensure operating safety.

Digital communication

We offer transmitters for all common digital communication protocols for easy interface with your DCS or PLC. Intelligent Sensor Management (ISM) diagnostics data can also be accessed on control systems to provide an over-

view of the performance of all measurement systems from one point.

The way forward

Use of digital sensors is becoming increasingly common in the process industries. Many of our transmitters accept traditional analog as well as ISM digital sensors, providing a future oriented investment in your plant. Our latest transmitter developments

include the M400 and M300 Process multi-parameter units. Their touchscreen display and intuitive menus save operating time, while predictive maintenance ensures reliability and reduced maintenance. The M100 series has been designed to provide the ultimate solution for measurement point simplicity. This displayless transmitter sets a new standard in measuring system simplicity and efficiency.

		Editor Control of the			
M80 SM (p. 104)	M100 SM (p. 103)	M100 DR (p. 102)	M400 2(X)H (p. 106–109)	M400 FF (p. 110–111)	M400 PA (p. 110–111)
(β. 10 1)	(β. 100)	(p. 102)		Vire	(β. 110 111)
1	1	1	1	1	1
1	•	•	I •	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
_	_	_	_	_	_
Modbus RTU	BT 4.0 Modbus RTU	HART®	HART®	Foundation Fieldbus*	Profibus PA
_	_	_	½ DIN	½ DIN	½ DIN
_	_	_	•	•	•
_	_	_	•	•	•
	_	•	•	_	_
		1	1	1	1
-	_	1	2	2	2
-	_				
-	-	-	2	-	_
_	2	1	2	-	_
-	-	-	ATEX IECEX Zone 1* FM CI 1 Div 1/2* NEPSI*	ATEX IECEX Zone 1 FM CI 1 Div 1 NEPSI	ATEX IECEX Zone 1 FM CI 1 Div 1 NEPSI
•	•	•	•	•	•
•	•	•	•	•	•
_	_	•	•	•	•
_	•	_	_	•	•
_	_	_	_	•	•
	_				
			•*	•	•
-	_	_	*	•	
-	_	_			•
-	-	-	-	-	-
•	•	-	-	•	•
-	-	-	-	-	•
•	_	•	•	•	•
-	-	-	•*	-	-
_	_	-	-	_	_
_	-	_	_	_	_

* Model dependent

M200: Convenient and Reliable

For Basic Process Applications

The M200 multi-parameter transmitter line covers pH, ORP, dissolved oxygen, ozone and conductivity measurements. Plug and Measure provides compatibility and reliable operation for ISM sensors as well as the complete digital easySense line. Convenient operation thanks to the large display, plain text interface, quick access menu and easily accessible wiring terminals. With the Transmitter Configuration Tool (TCT) provided for the M200 commissioning as well as maintenance becomes substantially easier.

Specifications

Specifications	
Measurement parameters	pH, ORP, dissolved oxygen, conductivity and ozone
ISM	Plug and Measure
Power supply	100 V to 240 VAC or 20 to 30 VDC, 10 VA
AC Frequency	50 to 60 Hz
Current (analog) outputs	2 imes or $4 imes$ 0/4 $-$ 20 mA, 22 mA alarm,
	galvanically isolated from input and from earth/ground
User interface	Backlit LCD, 4 lines
Languages	8 (English, German, French, Italian, Spanish,
	Portuguese, Russian and Japanese)
Ambient temperature	–10 to 50°C (14 to 122°F)
Relative humidity	0 to 95 % non-condensing
Rating	IP65
Hold input	yes
Control input	2 (1 for single channel)
Relays	2-SPDT (alarm delay 0 to 999 s)

Features Overview

- Plug and Measure for easy operation and maintenance
- Input for digital ISM sensor signals and easySense sensors
- Multi-parameter unit
- 1 or 2-channel version
- 2 configurable relays
- IP65 rated
- 8 languages: English, German, French, Italian, Spanish, Portuguese, Russian and Japanese

Other Highlights

- 4-wire installation
- Quick setup mode for fast commissioning
- Free Transmitter Configuration Tool (TCT) software

Wastewater

OH/ORP		
Measurement parameters	pH, mV and temperature	
oH range	-2.00 to 16.00 pH	
DRP input range	-1500 to 1500 mV	
oH resolution	Auto/0.01/0.1/1 (can be selected)	
oH accuracy	±1 digit	
emperature measuring range	-30 to 130 °C (-22 to 266 °F)	
emperature resolution	Auto/0.001/0.01/0.1/1°C/°F (can be selected)	
emperature accuracy	±1 digit	
Calibration	1-point (offset), 2-point, process	
Sensor maximum distance	80 m (260 ff)	
Dissolved oxygen		
Measurement parameters	Dissolved oxygen (DO) saturation or concentration and temperature	
OO concentration range	0.00 to 50.00 ppm (mg/L)	
OO saturation range	0 to 500 %, air, 0 to 0 to 200 % $\mathrm{O_2}$	
00 resolution	Auto/0.001/0.01/0.1/1 (can be selected)	
OO accuracy	±1 digit	
Temperature measuring range	-10 to +80°C (14 to 176°F)	
Temperature resolution	Auto/0.001/0.01/0.1/1 °C/°F (can be selected)	
Temperature accuracy	±1 digit	
Calibration	1-point (slope or offset), process (slope or offset)	
Sensor maximum distance	80 m (260 ft)	
Conductivity		
Measurement parameters	Conductivity and temperature	
Cond range 2-electrode sensor	0.1 to 40000 mS/cm (25 Ω $ imes$ cm to 100 M Ω $ imes$ cm)	
Cond range 4-electrode sensor	0.01 to 650 mS/cm (1.54 Ω $ imes$ cm to 0.1 M Ω $ imes$ cm)	
Cond / Res resolution	Auto/0.001/0.01/0.1/1 (can be selected)	
Cond / Res accuracy	± 1 digit	
Temperature measuring range	-40 to 200 °C (-40 to 392 °F)	
Temperature resolution	Auto/0.001/0.01/0.1/1 °C/°F (can be selected)	
Temperature accuracy	±1 digit	
Chemical concentration curves	NaCl 0-26 % @ 0 °C to 0-28 % @ $+100$ °C	
	NaOH 0-12 % @ 0 °C to 0-16 % @ $+40$ °C to 0-6 % @ $+100$ °C	
	HCl $0-18\%$ @ -20 °C to $0-18\%$ @ 0 °C to $0-5\%$ @ $+50$ °C	
	$HNO_3~0-30~\%~@-20~^{\circ}C$ to $0-30~\%~@~0~^{\circ}C$ to $0-8~\%~@~+50~^{\circ}C$	
	$H_2SO_4 O-26\% @-12 °C to O-26\% @+5 °C to O-9\% @+100 °C$	
	$H_3PO_4 O-35\% @ +5 °C to 80 °C$	
	TDS ranges NaCl, CaCO ₃	
Calibration	1-point (slope), 2-point, process	
Sensor maximum distance, DS 4-e	80 m (260 ft)	
Sensor maximum distance ISM 2-e	90 m (300 ft)	
Ordering Information		
		Order Numb

M200, ½ DIN, single-channel	52 121 555
M200, ¼ DIN, dual-channel	52 121 556
M200, ½ DIN, dual-channel	52 121 557
Accessories	Order Number
Pipe mounting kit for ½DIN	30 300 480
Danel mounting kit for 14 DIN	E0 E00 010

 Pipe mounting kit for ½DIN
 30 300 480

 Panel mounting kit for ½DIN
 52 500 213

 Protective hood
 52 500 214

 Terminal blocks for M200, M300, M400
 52 121 504

Detailed description and order information for easySense sensors and fittings see page 225–226.

M200, ¼ DIN, single-channel

52 121 554

M300 Process: Versatile and User-Friendly

For a Wide Range of Applications and Industries

Features Overview

- 4.0" touchscreen
- Multi-parameter transmitter for pH/ORP, DO, ozone and cond
- Available as single-channel or dualchannel version
- PID controller with pulse length, pulse frequency or analog control
- User management available

Other Highlights

- Mixed-mode functionality allows the connection of analog or digital ISM sensors
- Full ISM diagnostics available
- 4-wire installation
- Also communicates with EasyClean systems for automatic sensor cleaning

www.mt.com/M300

The multi-parameter M300 Process transmitter line for pH/ORP, dissolved oxygen, dissolved ozone and conductivity measurements offers exceptional measurement performance as well as excellent user ergonomics.

The high contrast black and white touchscreen together with the harmonized menu structure for all parameters, facilitates navigation and ensures easy and user friendly operation.

On-line diagnostics information allows you to schedule sensor maintenance or replacement. The clearly visible diagnostic information lets you know when it's time to do maintenance or calibration of sensors equipped with Intelligent Sensor Management (ISM) technology.

The integrated USB interface allows you to use it for data logging or to store the configuration on a USB stick.

Specifications

Power supply	100 to 240 VAC, or 20 to 30 VDC, 10 VA	
Frequency for AC	50 to 60 Hz	
Current output	$2 \times 0/4$ to 20 mA (4× for dual channel),	
	22 mA alarm (according to Namur NE43)	
Display	4.0" b/w touchscreen, 320×240 pixel	
Languages	10 (English, German, French, Italian, Spanish,	
	Portuguese, Russian, Japanese, Korean and Chinese)	
Ambient temperature	–10 to 50°C (14 to 122°F)	
Relative humidity	0 to 95% non-condensing	
Rating	1/4 DIN: IP65 (front)	
	½ DIN: IP65	
PID controller	Yes	
Control input (Hold)	1 or 2 (dual channel version)	
Relays	$2 \times$ SPST, $2 \times$ reed	
Approvals and certificates	cULus	
USB interface	1× USB Host:	
	Data logging and configuration storage on USB stick	
	$1 \times$ USB Device: Software update interface	

Parameter Specifications

pH Performance	
•	
Measurement parameters	pH, mV, and temperature
pH, ORP input range*	-1500 to 1500 mV
pH display range	-2 to 16 pH
pH resolution	Auto/0.01/0.1/1 (can be selected)
Relative accuracy **	±0.02 pH; ±1 mV
Temperature input*	Pt1000 (Pt100 with adapter)
Temperature measuring range	−30 to 130 °C (−22 to 266 °F)
Temperature accuracy **	±0.25 °C (±0.45 °F)
Sensor maximum distance	Analog: 10 to 20 m (33 to 65 ft)
	ISM: 80 m (260 ft)
Calibration	1- or 2-point, process

^{*} not required for ISM sensors

^{**} for analog input signal (ISM signal causes no additional error)

Parameter	Specifications	(cont.)
-----------	----------------	---------

DO saturation or concentration and temperature	
0 to 900 nA	
0.00 to 50.00 ppm (mg/L)	
±0.5% of full scale reading	
Auto/0.001/0.01/0.1/1 (can be selected)	
NTC 22	
–10 to 80 °C (14 to 176 °F)	
±0.25 °C (±0.45 °F)	
Analog: 20 m (65 ft). ISM: 80 m (260 ft)	
1-point (slope or offset), process (slope or offset)	
	0 to 900 nA 0.00 to 50.00 ppm (mg/L) ±0.5% of full scale reading Auto/0.001/0.01/0.1/1 (can be selected) NTC 22 -10 to 80 °C (14 to 176 °F) ±0.25 °C (±0.45 °F) Analog: 20 m (65 ff). ISM: 80 m (260 ff)

Conductivity Performance

Conductivity 1 of of manoo		
Measurement parameters	Conductivity, and temperature	
Conductivity/resistivity ranges	2-electrode sensor display range: 0 to 40,000 mS/cm ($25\Omega \times$ cm to $100\text{M}\Omega \times$ cm)	
	4-electrode sensor display range: 0.01 to 650 mS/cm (1.54 Ω × cm to 0.1 M Ω × cm)	
Temperature input*	Pt1000	
Temperature measuring range	-40 to 200 °C (-40 to 392 °F)	
Sensor maximum distance	Analog 2-e: 61 m (200 ft); analog 4-e: 15 m (50 ft)	
	ISM 2-e: 90 m (300 ft); ISM 4-e: 80 m (260 ft)	
Cond/Res accuracy**	$\pm 0.5\%$ of reading or 0.25Ω , whichever is greater	
Cond/Res repeatability	$\pm 0.25\%$ of reading or 0.25Ω , whichever is greater	
Cond/Res resolution	Auto/0.001/0.01/0.1/1 (can be selected)	
Temperature resolution	Auto/0.001/0.01/0.1/1 °C (°F) (can be selected)	
Temperature accuracy **	±0.25°C (±0.45°F)	
Temperature repeatability **	±0.13°C (±0.23°F)	

Dissolved Ozone Performance

Measurement parameters	Concentration and temperature	
Display range for current	Analog: 0 to -7000 nA	
Ozone measuring range	Short term: 0 to 5.00 ppm (mg/L) 0 ₃	
	Continuous: 0 to 500 ppb (μ g/L) O_3	
Ozone accuracy*	Analog: ±0.5% of reading or ±5 ppb	
Resolution	± 1 digit	
Temperature compensation	Automatic	
Temperature measuring range	0 to 50°C (32 to 122°F)	
Temperature resolution	Auto/0.001/0.01/0.1/1 (can be selected)	
Temperature accuracy *	Analog: ±0.25°C (±0.45°F)	
Sensor maximum distance	80 m (260ft)	
Calibration	1-point (offset) or process (slope and offset)	

^{*} for analog input signal (ISM input signal causes no additional error)

Ordering Information

For Analog Sensors	Order Number
M300 Process, ¼ DIN, single-channel, multi-parameter	30 280 770
M300 Process, ½ DIN, single-channel, multi-parameter	30 280 771
M300 Process, ¼ DIN, dual-channel, multi-parameter	30 280 772
M300 Process, ½ DIN, dual-channel, multi-parameter	30 280 773

Installation Accessories for ½ DIN Version	Order Number
Pipe mount kit for ½ DIN	30 300 480
Panel mount kit for ½ DIN	30 300 481
Wall mounting kit for ½DIN	30 300 482
Protective hood	30 073 328

M400: Reliable and Intelligent

Advanced Process Control

The multi-parameter M400 transmitter series features Intelligent Sensor Management (ISM) technology and covers pH/ORP, oxygen (for measurement of dissolved oxygen or in gas), dissolved carbon dioxide, dissolved ozone, conductivity or GPro[™] 500 TDL, depending on the type you choose.

The high-contrast black and white touchscreen together with four soft keys, allows you to operate the transmitter even in the harshest applications without compromising user ergonomics. The online diagnostic information with harmonized menu display lets you know when it is time to do maintenance or calibration of sensors equipped with ISM technology. The HART or Foundation Fieldbus communication protocol provides easy integration of sensor diagnostics into process control systems.

Specifications

-poomounomo		
General		
Power supply	100 to 240 VAC, or 20 to 30 VDC, 10 VA	
Frequency for AC	50 to 60 Hz	
Current output	$4 \times 0/4$ to 2 mA,	
	22 mA alarm (ad	ccording to Namur NE43)
	(except M400 FF	4-wire)
Display	4.0" TFT b/w tou	uchscreen, 320 × 240 pixels
Languages	10 (English, Ger	man, French, Italian, Spanish,
	Portuguese, Russ	sian, Japanese, Korean and Chinese)
Ambient temperature	-20 to +50°C (–4 to 122 °F)
Relative humidity	0 to 95 % non-c	ondensing
Rating	IP66 NEMA 4X	
Approvals	Type 1, 2, 3:	cCSAus Class I Division 2.
		ATEX IECEx Zone 2,
		FM cFMus Class I Division 2,
		cULus
		NEPSI Zone 2
	Foundation Field	bus: cULus
PID process controller	Yes	
Control input (Hold)	2	
USB interface	1× USB Host:	
	Data logging and	d configuration storage on USB stick
	1× USB Device:	Software update interface

Features Overview

- 4" touchscreen plus soft-key operation
- Advanced ISM diagnostics, incl. iMonitor
- Communication protocol: 4 to 20 mA (with HART)
- Multi-parameter measurement
- Aluminum die cast enclosure (coated)
- 4-wire installation

Other Highlights

- Plug and Measure functionality
- IP66 rated
- Graphic trending
- Transmitter configuration tool

Did You Know

With tools such as the Dynamic Lifetime Indicator,

Time To Maintenance and Adaptive Calibration Timer, ISM technology on the M400 offers true predictive maintenance, resulting in fewer unscheduled shutdowns.

www.mt.com/M400

Parameter Specifications

pH/ORP (incl. pH/pNa)	
Measurement parameters	pH, mV and temperature
pH display range	-2.00 to +16.00 pH
pH resolution	Auto/0.001/0.01/0.1/1 (can be selected)
pH accuracy ¹⁾	Analog: ±0.02 pH
mV range	-1500 to +1500 mV
mV resolution	Auto/0.001/0.01/0.1/1 mV (can be selected)
mV accuracy ¹⁾	Analog: ±1 mV
Temperature input ²⁾	Pt1000/Pt100/NTC22k
Temperature measuring range	$-30 \text{ to} + 140 ^{\circ}\text{C} (-22 \text{ to} + 284 ^{\circ}\text{F})$
Temperature resolution	Auto/0.001/0.01/0.1/1 (can be selected)
Temperature accuracy ¹⁾	Analog: ±0.25 °C (±0.45 °F)
Temperature compensation	Automatic/Manual
Max. sensor cable length	Analog: 10 to 20 m (33 to 65 ft) depending on sensor
	ISM: 80 m (260 ff)
Calibration	1-point, 2-point or process

 ¹⁾ ISM input signal causes no additional error.
 2) Not required on ISM sensors

Amperometric oxygen

Amperomento oxygen		
Measurement parameters	Dissolved oxygen (DO): Saturation or concentration and temperature	
	Oxygen in gas: Concentration and temperature	
Measuring current range	Analog: 0 to -7000 nA	
Oxygen display ranges	Dissolved oxygen Saturation: 0 to 500 % air, 0 to 200 % 02-sat	
	Concentration: 0 ppb (µg/L) to 50.00 ppm (mg/L)	
	In gas Saturation: 0 to 100 vol-% 0,	
	Concentration: 0 to 9999 ppb O_2 gas	
Oxygen accuracy ¹⁾	Dissolved oxygen: Saturation $\pm 0.5\%$ of the measured value or $\pm 0.5\%$, depending on which is larger.	
	Concentration at high values: $\pm 0.5\%$ of the measured value or ± 0.050 ppm/ ± 0.050 mg/L,	
	depending on which is larger.	
	Concentration at low values: $\pm 0.5\%$ of the measured value or ± 0.001 ppm/ ± 0.001 mg/L,	
	depending on which is larger	
	In gas: $\pm 0.5\%$ of the measured value or ± 5 ppb, depending on which is larger for ppm O_2 gas.	
	± 0.5 % of the measured value or ± 0.01 %, depending on which is larger for vol-% O_2 .	
DO resolution	Auto/0.001/0.01/0.1/1 (can be selected)	
Polarization voltage	O ₂ High: Cal/Meas: -675 mV (configurable)	
	O ₂ Low: Cal: -675 mV, Meas: -500 mV (configurable)	
Temperature input	Pt1000/Pt100/NTC22k	
Temperature compensation	Automatic	
Temperature measuring range	-10 to +80°C (+14 to +176°F)	
Temperature resolution	Auto/0.001/0.01/0.1/1°C (°F) (can be selected)	
Temperature accuracy ¹⁾	±0.25°C (±0.45°F)	
Max. sensor cable length	Analog: 20 m (65 ft)	
	ISM: 80 m (260 ft)	
Calibration	1-point (slope and offset) or process (slope and offset)	
1) 1014: 1 : 1		

¹⁾ ISM input signal causes no additional error.

Optical oxygen

Dissolved oxygen (D0): Saturation or concentration and temperature
Oxygen in gas: Concentration and temperature
Dissolved oxygen Saturation: 0 to 500% air, 0 to 200% O ₂ -sat
Concentration: 0 ppb (ug/L) to 50.00 ppm (mg/L)
In gas Saturation: 0 to 100 vol-% O ₂
Concentration: 0 to 9999 ppb O_2 gas
± 1 digit
Auto/0.001/0.01/1 (can be selected)
Automatic
-30 to +150°C (-22 to +302°F)
Auto/0.001/0.01/0.1/1°C (°F) (can be selected)
± 1 digit
80 m (260 ft)
1-point (depending on sensor model) 2-point or process, process scaling

Dissolved carbon dioxide

Measurement parameters	Dissolved carbon dioxide and temperature	Dissolved carbon dioxide and temperature	
CO ₂ display range	0 to 5000 mg/L		
	0 to 200 % sat		
	0 to 1500 mm Hg		
	0 to 2000 mbar		
	0 to 2000 hPa		
CO ₂ accuracy	± 1 digit		
CO ₂ resolution	Auto/0.001/0.01/0.1/1 (can be selected)		
mV range	–1500 to +1500 mV		
mV resolution	Auto/0.01/0.1/1 mV (can be selected)	Auto/0.01/0.1/1 mV (can be selected)	
mV accuracy	± 1 digit	± 1 digit	
Total pressure range	0 to 4000 mbar		
Temperature measuring range	−30 to +150 °C (−22 to +302 °F)		
Temperature resolution	Auto/0.001/0.01/0.1/1 °C (°F) (can be selected)		
Temperature accuracy	± 1 digit		
Max. sensor cable length	80 m (260 ft)		
Calibration	1-point (offset), 2-point (slope and offset) or process (offset)		

CO, hi (thermal conductivity)

Measurement parameters	Dissolved carbon dioxide and temperature
Medsurernerii parameters	Dissolved Carbon dioxide and lemperature
CO ₂ display ranges	0 to 10 bar p (CO ₂)/0 to 145 psi p (CO ₂)
	0 to 15 g/L
	0 to 7 V/V CO ₂
Accuracy in fluids ¹⁾	± 1 % of reading (within ±5 % of calibration temperature)
	\pm 2% of reading over temperature range 0 to 50 °C (32 to 122 °F)
Calibration	1-point or process

¹⁾ Complete loop of sensor and transmitter

GPro 500 TDL

0 000		
Measurement parameters	O_2 , O_2 and temperature, CO (ppm), CO (%), H_2O , CO_2 (%), H_2S , HCI	
Gas display ranges	0 to 100%	
Gas accuracy, resolution,		
repeatability and low detection limit	Depending on sensor model	
Linearity	Better than 1 %	
Drift	Negligible (<2% of measurement range between maintenance intervals)	
Sampling rate	1 second	
Response time (t ₉₀)	Depending on sensor model	
Process pressure ranges	Depending on sensor model	
Process temperature ranges	0 to 250 °C (32 to 482 °F) optional (for probe installation)	
	0 to 600 °C (32 to 1112 °F) with additional thermal barrier	
	0 to 150 °C (32 to 302 °F) (white cell)	
Max. sensor cable length	40 m (130 ft) (FM version)	
Calibration	1-point (offset) or process (slope or offset)	

Dissolved ozone

DISSUIVEU UZUIIE	
Measurement parameters	Concentration and temperature
Display range for current	Analog: 0 to -7000 nA
Ozone measuring range	0 to 5000 ppb (μg/L) 03
Ozone accuracy	±1% (or 0.4 ppb) up to 2000 ppb
	$\pm 2.5\%$ (or 50–125 ppb) from 2000 to 5000 ppb
Resolution	±1 digit
Temperature compensation	Automatic
Temperature measuring range	5 to +50 °C (+41 to +122 °F)
Temperature resolution	Auto/0.001/0.01/0.1/1 (can be selected)
Temperature accuracy 1)	Analog: ±0.25 °C (±0.45 °F)
Max. sensor cable length	80 m
Calibration	1-point (offset) or process (slope and offset)

Conductivity 2-e/4-e

Colladdivily 2-6/4-6	
Measurement parameters	Conductivity/resistivity and temperature
Conductivity ranges	See sensor specification
Chemical concentration curves	NaCl:0-26%@0°C to 0 - 28%@+100°C
(used with 4-e sensors)	NaOH:0-12%@0°C to 0-16%@+40°C to 0-6%@+100°C
	HCI:0-18%@-20°C to 0-18%@0°C to 0-5%@+50°C
	$HNO_3:0-30\%@-20°C$ to $0-30\%@0°C$ to $0-8\%@+50°C$
	$H_2SO_4:0-26\%@-12$ °C to $0-26\%@+5$ °C to $0-9\%@+100$ °C
	H_3PO_4 : 0-35%@+5°C to +80°C
TDS ranges	NaCl, CaCO ₃
Cond/Res accuracy ¹⁾	Analog: $\pm 0.5\%$ of reading or 0.25Ω , whichever is greater
Cond/Res repeatability ¹⁾	Analog: $\pm 0.25\%$ of reading or 0.25Ω , whichever is greater
Cond/Res resolution	Auto/0.001/0.01/0.1/1 (can be selected)
Temperature input	Pt1000
Temperature measuring range	-40 to +200 °C (-40 to +392 °F)
Temperature resolution	Auto/0.001/0.01/0.1/1 (can be selected)
Temperature accuracy	Analog: $\pm 0.25 ^{\circ}\text{C} (\pm 0.45 ^{\circ}\text{F})$ within $-30 \text{ to} + 150 ^{\circ}\text{C} (-22 \text{ to} + 302 ^{\circ}\text{F}); \pm 0.50 ^{\circ}\text{C}$
(±0.90°F) outside	
Max. sensor cable length	Analog: 2-e sensors: 61 m (200 ft); 4-e sensors:15 m (50 ft)
	ISM: 2-e sensors: 90 m (300 fl); 4-e sensors: 80 m (260 ft)
Calibration	1-point, 2-point or process

¹⁾ISM input signal causes no additional error.

Ordering information

Ordering information	
Transmitter	Order Number
M400 Type 1 ISM	30 490 171
M400 Type 2 ISM	30 490 172
M400 Type 1 Cond Ind	52 121 495
M400 Type 1	30 374 111
M400 Type 2	30 374 112
M400 Type 3	30 374 113
M400 FF 4-wire	30 374 121

Installation Accessories	Order Number
Pipe mounting kit for ½ DIN	30 300 480
Panel mount kit for ½DIN	30 300 481
Wall mounting kit for ½DIN	30 300 482
Protective hood	30 073 328

M400 Parameter Fit Guide

	M400 T Analog		M400 T Analog		M400 T Analog		M400 I Analog	F 4-Wire ISM	M400 Analog	Type 1 Cond Ind ISM
pH/ORP	•	•	•	•	•	•	•	•	_	•
pH/pNa	_	•	_	•	_	•	-	•	_	•
UniCond 2-e/4-e	_	•	_	•	_	•	-	•	_	_
Conductivity 2-e	•	-	•	_	•	_	•	-	_	_
Conductivity 4-e	•	•	•	•	•	•	•	•	_	•
Amp. DO ppm/ppb/trace	_	-	•/•1)/ <u></u>	•/•¹)/ <u>_</u>	●/●/●	•/•/•	●/●/●	•/•/•	_	_
Opt. DO ppm/ppb	_	_	-/-	●/● 2)	_	•/•	_	●/● 2)	_	_
Amp. O ₂ gas ppm/ppb/trace	_	_	-/-/-	-/-/-	●/●/●	•/•/•	•/•/•	•/•/•	_	_
Opt. O ₂ gas ppm	_	-	_	-	_	•	-	•	_	_
Dissolved ozone	_	-	•	•	•	•	-	•	_	_
Dissolved carbon dioxide	_	_	•	•	•	•	•	•	_	-
CO ₂ hi	_	-	_	-	_	•	-	-	_	_
GPro 500 TDL	_	-	_	_	_	•	-	-	_	_
Inductive conductivity	_	-	_	_	-	-	-	-	•	_

^{*} M400 Type 1 ISM and Type 2 ISM models support ISM parameters only.

1) Thornton high performance DO sensor only.

2) Pure water optical DO sensor only.

M400 Type 1 Cond Ind: Reliable Transmitter

For Inductive Conductivity Sensors

The M400 Type 1 Cond Ind is a 4-wire, single-channel process transmitter designed specifically for use with analog inductive conductivity sensors. A large four line backlit Liquid Crystal Display conveys measuring data and setup information. The menu structure allows the operator to modify all operational parameters by using keys on the front panel. A menu-lockout feature, with password protection, is available to prevent the unauthorized use of the meter. The transmitter M400 Type1 Cond Ind can be configured to use its four analog and / or six relay outputs for process control.

Specifications

- p	
General	
Power supply	100 to 240 VAC, or 20 to 30 VDC, 10 VA
Frequency for AC	50 to 60 Hz
Current output	$4 \times 0/4$ to 20mA
Display	4 line backlit LCD with 5 tactile keys
Enclosure	Polycarbonate
Languages	8 (English, German, French, Italian, Spanish,
	Portuguese, Russian and Japanese)
Ambient temperature	−20 to 50 °C (−4 to 122 °F)
Relative humidity	0 to 95 % non-condensing
Rating	IP65
Approvals	cFMus Class I Division 2
PID process controller	Yes
Control input (Hold)	2
USB interface	1 imes USB Device: Provide real-time data output, instru-
	ment configuration capabilities and software update inter-
	face via PC

Other Highlights

Versatile Mixed-Mode Input

Multi-parameter transmitter for advanced process control, with analog input for inductive conductivity and digital input for pH/ORP.

Intelligent Measuring Solutions

Keep your process under control with ISM for low cost of ownership and real-time status information from the sensor for true predictive maintenance

Minimized Maintenance Costs

The ISM Plug and Measure feature allows measurement readiness within seconds. Simplified commissioning minimizes risk of installation troubles

Wastewater

Inductive Conductivity Specifications

Measurement ranges	See sensor specification		
Chemical concentration curves	NaCl: 0-26% @ 0°C to 0-28% @ +100°C		
	NaOH-1: 0−13% @ 0°C to 0−24% @ +100°C		
	NaOH-2: 15-50% @ 0°C to 35-50% @ +100°C		
	HCl-1: 0−18% @ −20°C to +50°C		
	HCI-2: 22-39 % @ -20 °C to +50 °C		
	HNO₃-1: 0−30 % @ −20 °C to +50 °C		
	HNO ₃ -1: 35-96% @ -20°C to +50°C		
	$H_{y}SO_{a}^{-}1$: $0-26\%$ @ -12 °C to $0-37\%$ @ $+100$ °C		
	H _z SO ₄ -2: 28-88 % @ 0 °C to 39-88 % @ +95 °C		
	H _y SO ₄ -3: 94−99 % @ −12 °C to 89−99 % @ +95 °C		
	$H_{3}PO_{4}$: 0-35% @ +5°C to +80°C		
	User-defined concentration table (5×5 matrix)		
TDS ranges	NaCl, CaCO ₃		
Sensor maximum distance	10 m		
Cond/Ind accuracy	±1% of reading ±0.005 mS/cm		
Cond/Ind repeatability	±1% of reading ±0.005 mS/cm		
Cond/Ind resolution	Auto/0.01/0.01/0.1 (can be selected)		
Temperature input	Pt1000/Pt100/NTC22K		
Temperature measuring range	-40 to +200.0 °C (-40 to 392 °F)		
Temperature resolution	Auto/0.001/0.01/0.1/1 K (°F) (can be selected)		
Temperature accuracy	±0.25 K (±0.45°F) within –30 to 150°C		
	±0.50 K (±0.90°F) outside		
Temperature repeatability	±0.13 K (±0.23°F)		
Max. sensor cable length	Analog: 10 to 20 m (33 to 65 ff) depending on sensor		
	ISM: 80 m (260 ft)		
Calibration	1-point, zero or process		

Ordering information

Transmitter	Order Number
M400 Type 1 Cond Ind	52 121 495
Installation Accessories	Order Number
Pipe mounting kit for ½ DIN	30 300 480
Panel mount kit for ½DIN	30 300 481
Wall mounting kit for ½ DIN	30 300 482
Protective hood	30 073 328

Parameter Fit Guide

For the Parameter Fit Guide for the M400 transmitters (all versions) please refer to page 95. The information for the M400 Type 1 Cond Ind is in the last column.

M800: Multi-Parameter, Multi-Channel Transmitter

Touch the Future

Features Overview

- Color touchscreen
- Intuitive operation
- Premium ISM functionality
- Multi-parameter measurement
- 1-/2-/4-channel versions
- iMonitor
- User management and logbook

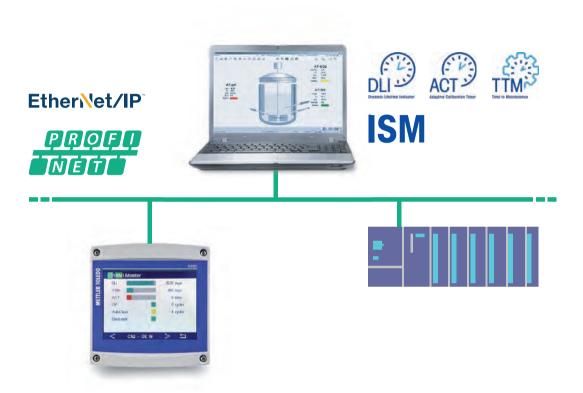
Other Highlights

- 8 current outputs
- 8 output relays
- Traffic light coded sensor information
- IP66 rated
- 2 PID process controllers

www.mt.com/M800

The M800 transmitter series features premium Intelligent Sensor Management (ISM) technology measuring pH/ORP, optical DO, amperometric oxygen (DO as well as $\rm O_2$ gas), dissolved carbon dioxide, turbidity and conductivity. The multiparameter transmitter accepts any compatible combination of ISM sensors. Up to four channels of process measurement provides immediate Plug and Measure installation and operation, predictive sensor maintenance and dynamic lifetime status. The color touchscreen ensures intuitive operation, with user selectable control and alarm management.

Specifications


General Specification	
Measurement parameters	pH/ORP, amperometric and optical oxygen, conductivity,
	dissolved carbon dioxide, turbidity and temperature
ISM	Plug and Measure, advanced diagnostics (Dynamic Lifetime
	Indicator, Adaptive Calibration Timer, CIP/SIP counter etc.),
	iMonitor
Power supply	100 to 240 VAC, or 20 to 30 VDC, 10 VA
AC frequency	50 to 60 Hz
Current (analog) outputs ¹⁾	$8 \times$ 0/4 to 20 mA, 22 mA alarm
User interface	Color touchscreen 5.7", resolution 320 × 240 px,
	256 colors
Languages	10 (English, German, French, Italian, Spanish, Portuguese,
	Russian, Japanese, Korean and Chinese)
Ambient temperature	-20 to 50 °C (-4 to 122 °F)
Relative humidity	0 to 95%, non-condensing
Rating	IP66
PID process controller	2
Control input (Hold)	Yes
Analog input	Yes
Alarm contact	Yes (alarm delay 0 to 999s)
Measuring range	Parameter and sensor depending
Measuring accuracy	± 1 digit (sensor depending)
Measuring repeatability	± 1 digit (sensor depending)
Measuring resolution	Auto/0.001/0.01/0.1/1 (can be selected)

¹⁾ Not supported on Profinet model; 1 current output on Ethernet/IP model.

Did You Know

The M800 1-channel transmitter with mixed mode func-

tionality supports analog and digital ISM sensors.

Other Highlights of Profinet and Ethernet/IP multi-parameter transmitters

- Pure digital communication within loop and real-time sensor aging monitoring provides greater process reliability
- Easy integration of measurement and diagnostics data from the sensor up to the process control level
- Advanced diagnostic settings for efficient and reliable plant management

The M800 Profinet and Ethernet/IP multi-parameter transmitters bring the value of Intelligent Senor Management technology to industrial Ethernet. They cover ISM sensors for pH/ORP, conductivity, optical DO, amperometric oxygen (DO as well as $\rm O_2$ gas), dissolved carbon dioxide, and turbidity, and provide all ISM measurements and diagnostics information to a centralized control system for data management including predictive diagnostics. Both M800 Profinet and Ethernet/IP series provide 1-channel and 2-channel models.

Besides the intuitive operation and alarm management that provided by exist M800, the Profinet and Ethernet/IP communication protocols provide easy integration of sensor diagnostics tools into process control systems, minimum commissioning time and engineering support, saves the integration efforts and costs. Pure digital communication within loop and real-time measurements, sensor diagnostics and monitoring provides greater process reliability, lower maintenance costs.

Profinet and Ethernet/IP Specifications

Data transmission rate	10-100 MBd
Connector	RJ45, M12 optional
IP address	DHCP(default) or configuration via menu

M800 Parameter Fit Guide for 2-/4-channel, 1-/2-channel Profinet, 1-/2-channel Ethernet/IP versions

These versions are compatible with the following (digital) ISM sensors.

	Process					
	2-channel 1)	4-channel 1)	1-channel Profinet	2-channel Profinet	1-channel Ethernet/IP	2-channel Ethernet/IP
pH/ORP	•	•	•	•	•	•
pH/pNa	•	•	•	•	•	•
UniCond 2-e/4-e	•	•	•	•	•	•
Conductivity 4-e	•	•	•	•	•	•
Amp. DO ppm/ppb/trace	•/•/• ²⁾	•/•/• ²⁾	•/•/• ²⁾	•/•/• ²⁾	•/•/• ²⁾	•/•/•2)
Amp. O ₂ gas ppm/ppb/trace	● / ● / ● 2)	● / ● / ● 2)	•/•/• ²⁾	● / ● / ● 2)	• / • / • 2)	• / • / • 2)
Opt. dissolved oxygen	● 2), 3)	• 2), 3)	• 2), 3)	• 2), 3)	• 2), 3)	• 2), 3)
Dissolved carbon dioxide (InPro 5000i)	•	•	•	•	•	•
CO ₂ hi (InPro 5500i)	• 3)	• 3)	• 3)	• 3)	• 3)	• 3)
TOC/Dissolved ozone/Flow	-/-/-	-/-/-	-/-/-	-/-/-	-/-/-	-/-/-
Turbidity	-	-	•	• 4)	•	• 4)

¹⁾ Process 2-channel and 4-channel models are provided in polycarbonate or stainless steel housing.

M800 Parameter Fit Guide for 1-channel

This version is compatible with the following (digital) ISM and analog sensors.

	Process ¹⁾		
	Analog	ISM	
pH/ORP	•	•	
pH/pNa	-	•	
UniCond 2-e/UniCond 4-e	-/-	•/•	
Conductivity 2-e/Conductivity 4-e	•/•	-/•	
Amp. dissolved oxygen ppm/ppb/trace	•/•/• ²)	•/•/• ²	
Amp. oxygen gas ppm/ppb/trace	•/•/• ²)	•/•/• ²	
Optical dissolved oxygen	-	• 2)	
Dissolved carbon dioxide (InPro 5000i)	-	•	
CO ₂ hi (InPro 5500i)	-	•	
Turbidity	• (backscatter)	•	

¹⁾ Process models are provided in polycarbonate or stainless steel housing or stainless steel housing. 2) Ingold sensors.

²⁾ Ingold sensors.

^{3) 2-}channel: An opt. DO sensor or a CO₂ hi sensor has to be connected to channel 2.4-channel: opt. DO sensors and CO₂ hi sensors have to be connected to channel 2 and/or to channel 4.

⁴⁾ Turbidity sensor has to be connected to channel 2 for 2-channel Profinet and 2-channel Ethernet/IP models.

Ordering Information

Transmitters	Order Number
M800 Process 1-channel	30 026 633
M800 Process 2-channel	52 121 813
M800 Process 4-channel	52 121 853
M800 1-channel, stainless steel enclosure	30 246 551
M800 2-channel, stainless steel enclosure	30 246 552
M800 4-channel, stainless steel enclosure	30 246 553
M800 Profinet 1-channel Process	30 530 021
M800 Profinet 2-channel Process	30 530 022
M800 Process 1-channel Ethernet/IP	30 530 023
M800 Process 2-channel Ethernet/IP	30 530 024
Installation Accessories	Order Number
Pipe mounting kit for ½ DIN	30 300 480
Panel mounting kit	52 500 213
Protective hood	30 073 328

M800 parameter fit guide for 1-channel

This version is compatible with the	e following (digital)) ISM and analog sensors.
-------------------------------------	-----------------------	---------------------------

	Process ¹⁾			
Parameter	Analog	ISM		
pH/ORP	•	•		
pH/pNa	_	•		
UniCond 2-e/UniCond 4-e	-/-	•/•		
Conductivity 2-e/Conductivity 4-e	•/•	-/•		
Amp. dissolved oxygen ppm/ppb/trace	•/•/• ²⁾	•/•/• ²⁾		
Amp. oxygen gas ppm/ppb/trace	•/•/• 2)	• / • / • 2)		
Optical dissolved oxygen	_	• 2)		
Dissolved carbon dioxide (InPro 5000 i)	_	•		
CO ₂ hi (InPro 5500i)	_	•		
Turbidity	• (backscatter)	•		

¹⁾ Process models are provided in polycarbonate or stainless steel housing or stainless steel housing. 2) Ingold sensors.

Other Highlights

- Pure digital communication within loop and real-time sensor aging monitoring provides greater process reliability
- Easy integration of measurement and diagnostics data from the sensor up to the process control level
- Advanced diagnostic settings for efficient and reliable plant management

101

M100 DIN Rail: High Performance and Minimal Space Requirement Compact Design for Simplified Installation

The M100 DIN Rail (DR) is a single-channel, 2-wire multi-parameter transmitter with HART communication capability for analytical measurements. It is compatible with ISM sensors for measuring pH/ORP, pH/pNa, oxygen and conductivity. The ISM's Plug and Measure feature minimizes the risk of installation troubles and simplifies sensor handling and LEDs clearly indicate transmitter and sensor status, alarms, and warnings.

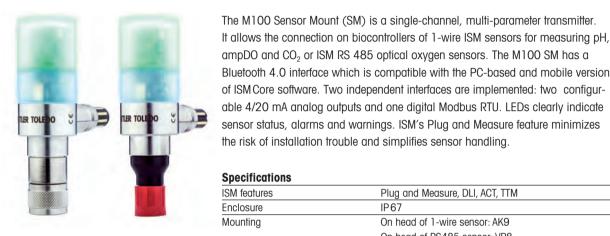
Thanks to its compact design the M100 DR requires only a small installation space in the plant.

The transmitter configuration and integration of sensor diagnostics into asset management tools is possible thanks to the integrated HART protocol. The support of all major asset management tools ensures maximum compatibility and easy integration of sensor diagnostics.

Specifications

General	
Supply voltage	14 to 30 VDC
Number of outputs	1×4 to 20 mA (loop powered)
Ambient temperature	-10 to 60°C (14 to 140°F)
Relative humidity	0 to 95 % non-condensing
Enclosure rating	IP 20
Housing material	PA-FR
Hold input	Yes
Analog input	1×4 to 20 mA (for pressure compensation)
Communication	HART
Asset management tool compatibility	AMS versions 10, 11, 12, Simatic 6,8x,
	FDT frame applications

Features Overview


- DIN rail mounting, suitable for 35 mm wide DIN rail systems
- Compact housing, 22.5 mm width
- Displayless
- Multi-parameter transmitter
- 1 analog output(4 to 20 mA with HART)
- HART communication as standard
- Configuration via HART handheld or other HART asset management tools

ISM Highlights

- Plug and Measure functionality
- Dynamic Lifetime Indicator
- Adaptive Calibration Timer
- Time To Maintenance
- CIP/SIP/Autoclaving counter
- Easy installation and fast commissioning

www.mt.com/M100

M100 Sensor Mount Transmitter: **Digital Sensor Integration for Analog and Digital Biocontrollers** Smallest Footprint for Simplified Installation

Specifications

ISM features	Plug and Measure, DLI, ACT, TTM
Enclosure	IP67
Mounting	On head of 1-wire sensor: AK9
	On head of RS485 sensor: VP8
Supply voltage	24 VDC
Analog output	Active 2×4 to 20mA ,
	galvanically isolated to passive DCS card
Communication	Wireless: BT 4.0 ISM Core PC-based and iSense
	Mobile (Android, iOS)
	Wired: Digital interface RS485 Modbus RTU
Sensor compatibility	ISM 1-wire pH, amperometric DO and carbon dioxide
	sensors. ISM RS485 optical DO sensors

Bluetooth 4.0 interface which is compatible with the PC-based and mobile versions

able 4/20 mA analog outputs and one digital Modbus RTU. LEDs clearly indicate sensor status, alarms and warnings. ISM's Plug and Measure feature minimizes

the risk of installation trouble and simplifies sensor handling.

Features Overview

- Configurable alarms
- Device naming
- Modbus communication
- ISM functionality
- Multi-parameter unit
- Configuration via ISM Core/iSense Mobile
- Process calibration with ISM Core/ iSense Mobile or Modbus
- Color LED indication of sensor status
- Intuitive operation with ISM Core
- iMonitor

Other Highlights

- CIP/SIP counter
- Dynamic Lifetime Indicator
- Adaptive Calibration Timer
- Easy installation
- Error-free operation: configuration stored in transmitter
- Electronic Data Management with ISM Core

M80 Sensor Mount Transmitter

ISM Solution for Benchtop Controllers

The M80 Sensor Mount (SM) Transmitter is a compact single-channel, multiparameter transmitter designed especially for biocontroller manufacturers. Its small footprint allows mounting on ISM sensors used in benchtop bioreactors with a typical volume of 1-20 liters. A Modbus RTU interface enables straightforward and digital integration of sensor measurement data, ISM diagnostic information, and calibration routines into the biocontroller firmware. In addition, visualization of ISM features on the controller's graphical user interface becomes possible. The M80 SM is compatible with METTLER TOLEDO pH/ORP, amperometric dissolved oxygen, dissolved ${\rm CO}_2$, and conductivity sensors.

Specifications

ISM	Plug and Measure, DLI, ACT, TTM
Power supply	24 VDC (min. 100 mA), 8-30 VDC (min. 2 W)
Operating temperature	-15 to +60 °C (5 to 140 °F)
Relative humidity	595% rH (non-condensing)
Mounting	AK9 connector on head of 1-wire sensor
Cable connection	M12/5-pin for RS485 interface and power supply
Communication	Modbus RTU protocol
Dimensions	Height: 94 mm (3.7"), Maximum diameter: 22 mm (0.87")
Protection class	IP65

Features Overview

- Small footprint on bioreactor head plate
- Enables ISM functionality in biocontroller software
- Access to sensor calibration routines via the biocontroller
- No sensor configuration necessary due to internal storage of installation point specific data (Modbus parameters)
- Trouble-free sensor integration thanks to Plug and Measure
- Configurable with M80 SM Transmitter Configuration Tool PC software and Transmitter Configuration Box

Other Highlights

- Robust digital sensor integration
- Ideal for ISM solutions in R&D environment and down-scaling applications
- Pre-batch sensor diagnostics for more robust processes
- Enables electronic traceability of sensors used in different batches
- Less electronic waste compared to pH sensors with permanently integrated transmitter electronics

Parameter Fit Guide

M100 DR	M100 SM 1-wire		
	WITOU SWI I-WITE	M100 SM RS 485	M80 SM
•	•	-	•
•	•	-	-
•	-	-	•
•/•/•	●/●/●	-	•/-/-
-	-	•	-
-	-	-	-
-	•	-	•
	• • • • •/•/• -	• • • • • • • • • • • • • • • • • • •	• • •

Ordering Information

Ordering information	
Transmitter	Order Number
M100 DR/2H, 1-channel multi-parameter	30 127 720
M100 SM, 1-wire	30 365 366
M100 SM, RS485	30 365 367
M80 SM Transmitter	30 530 566
Accessories	Order Number
License ISM Core Essential	30 846 306
License ISM Core Advanced	30 846 307
License ISM Core CFR	30 846 348
iSense BT Dongle	30 371 387
iLink Multi	30 130 631
iLink Multi cable/set oDO (RS 485)	30 355 582
M100SM adapter and power supply	30 404 002
CalBox (upgraded with temperature sensor)	52 300 400
Transmitter Configuration Box (cable set included) (M80)	30 530 567
5-pin data cable 2 m (6.6 ft)	52 300 379
5-pin data cable 5 m (16.4 ft)	52 300 380
5-pin data cable 10 m (32.8 ft)	52 300 381

M400 2(X)H Type 2 and Type 3: Easy to Use and Robust For Harsh and Hazardous Areas

The M400 2(X)H Type 2 and Type 3 is a 2-wire, single-channel, multi-parameter process transmitter designed specifically for applications in hazardous or safe areas.

M400 2(X)H Type 2 and Type 3 has an advanced interface that is simple to operate. The large, dot matrix display ensures readability under all light conditions. Local or remote access via HARTTM technology provides easy access to ISM sensor and diagnostic tools data. With its durable aluminum die-cast housing, anticorrosive coating, stainless steel nuts and extensive certificates and approvals, it is suitable for implementation in the chemical, petrochemical, and pharmaceutical industries.

Other Highlights

• Easy Operation – Less Training Needed

It provides with intuitive multi-language (10 languages) interface with readable display under all light conditions. The ISM Plug and Measure feature allows measurement readiness within seconds and enables error-free sensor installation.

• Robust Design for Tough **Environments**

The aluminum housing, anti-corrosive coating and stainless steel nuts are designed for harsh environments and hazardous area use. Extensive global approvals (CE, ATEX, IECEx, UKCA, FM, CSA, NEPSI, JPEx, KCs) ensure suitability for harsh and hazardous areas.

Specifications

General	
Display	4.4-inch TFT LCD Backlight
Languages	10 (English, German, French, Italian, Spanish, Por-
	tuguese, Russian, Japanese, Korean, and Chinese)
Ambient temperature	-20 to 60°C (-4 to 140°F)
Relative humidity	0 to 95 % non-condensing
Enclosure rating	IP66/NEMA 4X
Housing material	Aluminum die cast housing with anticorrosive
	coating
Certificates	CE, ATEX, IECEX, UKCA, FM, CSA, NEPSI, JPEX, KCs
and Approvals	

- M400 2H (ISM) Type 2: cCSAus/FM Class I, Division 2, Groups A, B, C, D T4A
 - cCSAus/FM Class I, Zone 2, Groups IIC T4

- M4002XH (ISM) Type 2 and Type 3: ATEX/IECEx Zone 1 Ex ib [ia Ga] IIC T4 Gb
 - ATEX / IECEx Zone 21 Ex ib [ia Da] IIIC T80°C Db IP 66
 - · cCSAus/FM Class I, Division 1, Groups A, B, C, D T4A

or higher versions compatibility

- cCSAus/FM Class II, Division 1, Groups E, F, G
- cCSAue /FM Clase III

	• CUSAUS/FIVI CIQSS III
	• cCSAus/FM Class I, Zone O, AEx ia IIC T4 Ga
PID process controller	Yes
Analog input	4 to 20 mA (for pressure compensation)
4 to 20 mA with HART	
Power voltage	14 to 30 VDC
Number of outputs	2×4 to 20mA (loop powered)
Hold input	Yes
Alarm contact	Yes (alarm delay 0 to 999 s)
Asset management tool compatibility	AMS versions 10 and 11, Simatic PDM version 6,

www.mt.com/M400-2wire

Parameter Specifications	
pH, pH/pNa and ISFET Performance	
Measurement parameters	pH, mV, and temperature
pH, ORP input range*	-1500 to 1500 mV
pH display range	-2 to 16pH
Resolution	0.001/0.01/0.1/1 (can be selected)
Relative accuracy	±0.02 pH; ±1 mV
Temperature input	Pt1000, Pt100, NTC 22 kΩ
Temperature compensation	Automatic/manual
Temperature measuring range	-30 to 130 °C (-22 to 266 °F)
Temperature resolution	0.001/0.01/0.1/1 °C/°F (can be selected)
Temperature measurement error*	±0.25°C (±0.45°F)
Max. length sensor cable	analog: 20 m (65 ft), depending on sensor; ISM 80 m (260 ft)
Calibration	1 or 2 point calibration, process calibration
* For analog input signal (ISM input signal causes no additional error)	1 of 2 point controller, process controller
Oxygen Performance Measurement parameters	Dissolved oxygen: Saturation or concentration and temperature
พิเฮนอนเฮเทฮเท	Dissolved oxygen: Salaration of concentration and temperature Oxygen in gas: Concentration and temperature
Current range	Oxygen in gas: Concentration and temperature to 7000 nA
Oxygen measuring ranges	- Dissolved oxygen: Saturation 0 to 500% air, 0 to 200% 0 ₂
Oxygen medsunig runges	Concentration 0.1 ppb (μg/L) to 50.00 ppm (mg/L)
	- In gas: 0 to 9999 ppm 0 ₂ gas, 0 to 100 Vol-% 0 ₂
Oxygen accuracy*	- III gus: 0 10 9999 ppi 11 0 ₂ gus, 0 10 100 voi- 76 0 ₂
	. 0.50/ of the magaured value or . 0.50/ air whichever is greater
-Dissolved oxygen saturation	$\pm 0.5\%$ of the measured value or $\pm 0.5\%$ air, whichever is greater.
	Concentration at high values: ±0.5% of the measured value or
	±0.050 ppm/±0.050 mg/L, whichever is greater.
	Concentration at low values: $\pm 0.5\%$ of the measured value or
	± 0.001 ppm/ ± 0.001 mg/L, whichever is greater.
-In gas:	$\pm 0.5\%$ of the measured value or $\pm 5\text{ppb}$, whichever is greater for ppm O_2 gas.
	$\pm 0.5\%$ of the measured value or $\pm 0.01\%$, whichever is greater for Vol-% $O_2.$
Resolution current	6 pA
Polarization voltage	- 1000 to 0 mV for analog sensors
	-550 mV or -674 for ISM sensors (configurable)
Temperature input	Pt 1000
Temperature compensation	Automatic
Temperature measuring range	−30 to 150 °C (−22 to 302 °F)
Temperature accuracy*	$\pm 0.25 \text{K}$ in the range of $-10 \text{to} + 80 ^{\circ}\text{C}$ (14 to $+176 ^{\circ}\text{F}$)
Max. length sensor cable	analog: 20 m (65 ft); ISM 80 m(260 ft)
Calibration	1-point (slope or offset) calibration, process calibration (slope or offset) calibration
* For analog input signal (ISM input signal causes no additional error)	Les Arthur and Arthur
Conductivity Performance	
Measurement parameters	Conductivity, and temperature
Conductivity ranges (2-e/4-e)	2-electrode sensor: 0.02 to 2000 μ S/cm (500 Ω × cm to 50 M Ω × cm)
	4-electrode sensor: 0.01 to 650 mS/cm (1.54 $\Omega \times$ cm to 0.1 M $\Omega \times$ cm)
Temperature input	Pt 1000
Temperature measuring range	-40 to 200 °C (-40 to 392 °F)
Max. length sensor cable	60 m (196.9 ft) with 2-electrode sensor, 15 m (50 ft) with 4-electrode sensor
Max. longin sonson subject	80 m (260 ff) with ISM sensor
Cond/Res accuracy*	$\pm 0.5\%$ of reading or 0.25Ω , whichever is greater, up to $18\mathrm{M}\Omega\times\mathrm{cm}$
Cond/Res repeatability*	$\pm 0.25\%$ of reading or 0.25Ω , whichever is greater $\pm 0.25\%$ of reading or 0.25Ω , whichever is greater
Cond/Res resolution	0.001/0.01/0.1/1 (can be selected)
Temperature resolution	0.001/0.01/0.1/1 (can be selected) 0.001/0.01/0.1/1 °C/°F (can be selected)
Temperature accuracy*	±0.25 °C (±0.45 °F)
Temperature repeatability*	±0.13 °C (±0.23 °F)
Chemical concentration curves	NaCl, NaOH, HCl, HNO ₃ H ₂ SO ₄ , H ₃ PO ₄
	User-defined concentration table (5×5 matrix)
	TDS ranges NaCL CaCO.

TDS ranges NaCl, CaCO₃
1 or 2 point calibration, process calibration

Calibration

^{*} For analog input signal (ISM input signal causes no additional error)

Optical Oxygen Performance				
Measurement parameters	DO saturation or concentration and temperature			
DO saturation range	0 to 500 %, 0 to 100 % O ₂			
DO resolution	Auto/0.001/0.01/0.1/1 (can be selected)			
DO accuracy	± 1 digit			
Temperature resolution	Auto/0.001/0.01/0.1/1 °C (°F) (can be selected)			
Temperature accuracy	± 1 digit			
Temperature compensation	Automatic			
Max. length sensor cable	15 m (50 ff)			
Calibration	1 point (depending on sensor model), 2 point, process calibration			
Dissolved Carbon Dioxide Performance				
Measurement parameters	Dissolved carbon dioxide and temperature			
Dissolved carbon dioxide range	0 to 5000 mg/L, 0 to 200% sat, 0 to 1500 mmHg, 0 to 2000 mbar, 0 to 2000 hPa			
mV range	-1500 to 1500 mV			
Total pressure range	0 to 4000 mbar			
Dissolved carbon dioxide accuracy	± 1 digit			
Resolution	Auto/0.001/0.01/0.1/1 (can be selected)			
Temperature range	-30 to 150 °C (-22 to 302 °F)			
Temperature resolution	Auto/0.001/0.01/0.1/1 °C/°F (can be selected)			
Temperature accuracy	± 1 digit			
Temperature repeatability	± 1 digit			
Max. length sensor cable	80 m (260 ft)			
Calibration	1 or 2 point calibration, process calibration			
Calibration	1 or 2 point calibration, process calibration			
	I or 2 point calibration, process calibration			
Inductive Conductivity (M400 Cond Ind transmitter only)				
Inductive Conductivity (M400 Cond Ind transmitter only) Measurement parameters	Conductivity and temperature			
Inductive Conductivity (M400 Cond Ind transmitter only) Measurement parameters Display range	Conductivity and temperature 0 to 2,000 mS/cm			
Inductive Conductivity (M400 Cond Ind transmitter only) Measurement parameters	Conductivity and temperature 0 to 2,000 mS/cm NaCl: 0-26%@0°C to 0 - 28%@+100°C			
Inductive Conductivity (M400 Cond Ind transmitter only) Measurement parameters Display range	Conductivity and temperature 0 to 2,000 mS/cm NaCl: 0-26 % @ 0 °C to 0 - 28 % @ +100 °C NaOH-1: 0-13 % @ 0 °C to 0 - 24 % @ +100 °C			
Inductive Conductivity (M400 Cond Ind transmitter only) Measurement parameters Display range	Conductivity and temperature 0 to 2,000 mS/cm NaCl: 0-26 % @ 0 °C to 0 - 28 % @ +100 °C NaOH-1: 0-13 % @ 0 °C to 0 - 24 % @ +100 °C NaOH-3: 15-50 % @ 0 °C to 35 - 50 % @ +100 °C			
Inductive Conductivity (M400 Cond Ind transmitter only) Measurement parameters Display range	Conductivity and temperature 0 to 2,000 mS/cm NaCl: 0-26 % @ 0 °C to 0 - 28 % @ +100 °C NaOH-1: 0-13 % @ 0 °C to 0 - 24 % @ +100 °C NaOH-3: 15-50 % @ 0 °C to 35 - 50 % @ +100 °C HCl-1: 0-18 % @ -20 °C to +50 °C			
Inductive Conductivity (M400 Cond Ind transmitter only) Measurement parameters Display range	Conductivity and temperature 0 to 2,000 mS/cm NaCl: 0-26 % @ 0 °C to 0 - 28 % @ +100 °C NaOH-1: 0-13 % @ 0 °C to 0 - 24 % @ +100 °C NaOH-3: 15-50 % @ 0 °C to 35 - 50 % @ +100 °C HCl-1: 0-18 % @ -20 °C to +50 °C HCl-2: 22-39 % @ -20 °C to +50 °C			
Inductive Conductivity (M400 Cond Ind transmitter only) Measurement parameters Display range	Conductivity and temperature 0 to 2,000 mS/cm NaCl: 0-26 % @ 0 °C to 0 - 28 % @ +100 °C NaOH-1: 0-13 % @ 0 °C to 0 - 24 % @ +100 °C NaOH-3: 15-50 % @ 0 °C to 35 - 50 % @ +100 °C HCl-1: 0-18 % @ -20 °C to +50 °C HCl-2: 22-39 % @ -20 °C to +50 °C HNO ₃ -1: 0-30 % @ -20 °C to +50 °C			
Inductive Conductivity (M400 Cond Ind transmitter only) Measurement parameters Display range	Conductivity and temperature 0 to 2,000 mS/cm NaCl: 0-26 % @ 0 °C to 0 - 28 % @ +100 °C NaOH-1: 0-13 % @ 0 °C to 0 - 24 % @ +100 °C NaOH-3: 15-50 % @ 0 °C to 35 - 50 % @ +100 °C HCl-1: 0-18 % @ -20 °C to +50 °C HCl-2: 22-39 % @ -20 °C to +50 °C HNO ₃ -1: 0-30 % @ -20 °C to +50 °C HNO ₃ -2: 35-96 % @ -20 °C to +50 °C			
Inductive Conductivity (M400 Cond Ind transmitter only) Measurement parameters Display range	Conductivity and temperature 0 to 2,000 mS/cm NaCl: 0-26 % @ 0 °C to 0 - 28 % @ +100 °C NaOH-1: 0-13 % @ 0 °C to 0 - 24 % @ +100 °C NaOH-3: 15-50 % @ 0 °C to 35 - 50 % @ +100 °C HCl-1: 0-18 % @ -20 °C to +50 °C HCl-2: 22-39 % @ -20 °C to +50 °C HNO ₃ -1: 0-30 % @ -20 °C to +50 °C HNO ₃ -2: 35-96 % @ -20 °C to +50 °C H ₂ SO ₄ -1: 0-26 % @ -12 °C to 0-37 % @ +100 °C			
Inductive Conductivity (M400 Cond Ind transmitter only) Measurement parameters Display range	Conductivity and temperature 0 to 2,000 mS/cm NaCl: 0-26 % @ 0 °C to 0 - 28 % @ +100 °C NaOH-1: 0-13 % @ 0 °C to 0 - 24 % @ +100 °C NaOH-3: 15-50 % @ 0 °C to 35 - 50 % @ +100 °C HCl-1: 0-18 % @ -20 °C to +50 °C HCl-2: 22-39 % @ -20 °C to +50 °C HNO ₃ -1: 0-30 % @ -20 °C to +50 °C HNO ₃ -2: 35-96 % @ -20 °C to +50 °C H ₂ SO ₄ -1: 0-26 % @ -12 °C to 0-37 % @ +100 °C H ₂ SO ₄ -2: 28-88 % @ 0 °C to 39-88 % @ +95 °C			
Inductive Conductivity (M400 Cond Ind transmitter only) Measurement parameters Display range	Conductivity and temperature 0 to 2,000 mS/cm NaCl: 0-26 % @ 0 °C to 0 - 28 % @ +100 °C NaOH-1: 0-13 % @ 0 °C to 0 - 24 % @ +100 °C NaOH-3: 15-50 % @ 0 °C to 35 - 50 % @ +100 °C HCl-1: 0-18 % @ -20 °C to +50 °C HCl-2: 22-39 % @ -20 °C to +50 °C HNO ₃ -1: 0-30 % @ -20 °C to +50 °C HNO ₃ -2: 35-96 % @ -20 °C to +50 °C HNO ₃ -2: 35-96 % @ -20 °C to +50 °C H ₂ SO ₄ -1: 0-26 % @ -12 °C to 0-37 % @ +100 °C H ₂ SO ₄ -2: 28-88 % @ 0 °C to 39-88 % @ +95 °C H ₂ SO ₄ -3: 94-99 % @ -12 °C to 89-99 % @ +95 °C			
Inductive Conductivity (M400 Cond Ind transmitter only) Measurement parameters Display range	Conductivity and temperature 0 to 2,000 mS/cm NaCl: 0-26 % @ 0 °C to 0 - 28 % @ +100 °C NaOH-1: 0-13 % @ 0 °C to 0 - 24 % @ +100 °C NaOH-3: 15-50 % @ 0 °C to 35 - 50 % @ +100 °C HCl-1: 0-18 % @ -20 °C to +50 °C HCl-2: 22-39 % @ -20 °C to +50 °C HNO ₃ -1: 0-30 % @ -20 °C to +50 °C HNO ₃ -2: 35-96 % @ -20 °C to +50 °C HNO ₃ -2: 35-96 % @ -20 °C to 0-37 % @ +100 °C H ₂ SO ₄ -1: 0-26 % @ -12 °C to 0-37 % @ +100 °C H ₂ SO ₄ -2: 28-88 % @ 0 °C to 39-88 % @ +95 °C H ₂ SO ₄ -3: 94-99 % @ -12 °C to 89-99 % @ +95 °C H ₃ PO ₄ : 0-35 % @ + 5 °C to +80 °C			
Inductive Conductivity (M400 Cond Ind transmitter only) Measurement parameters Display range Chemical concentration curves	Conductivity and temperature 0 to 2,000 mS/cm NaCl: 0-26 % @ 0 °C to 0 - 28 % @ +100 °C NaOH-1: 0-13 % @ 0 °C to 0 - 24 % @ +100 °C NaOH-3: 15-50 % @ 0 °C to 35 - 50 % @ +100 °C HCl-1: 0-18 % @ -20 °C to +50 °C HCl-2: 22-39 % @ -20 °C to +50 °C HNO ₃ -1: 0-30 % @ -20 °C to +50 °C HNO ₃ -2: 35-96 % @ -20 °C to +50 °C H ₂ SO ₄ -1: 0-26 % @ -12 °C to 0-37 % @ +100 °C H ₂ SO ₄ -2: 28-88 % @ 0 °C to 39-88 % @ +95 °C H ₂ SO ₄ -3: 94-99 % @ -12 °C to 89-99 % @ +95 °C H ₃ PO ₄ : 0-35 % @ + 5 °C to +80 °C User-defined concentration table (5 × 5 matrix)			
Inductive Conductivity (M400 Cond Ind transmitter only) Measurement parameters Display range Chemical concentration curves TDS ranges	Conductivity and temperature 0 to 2,000 mS/cm NaCl: 0-26 % @ 0 °C to 0 - 28 % @ +100 °C NaOH-1: 0-13 % @ 0 °C to 0 - 24 % @ +100 °C NaOH-3: 15-50 % @ 0 °C to 35 - 50 % @ +100 °C HCl-1: 0-18 % @ -20 °C to +50 °C HCl-2: 22-39 % @ -20 °C to +50 °C HNO ₃ -1: 0-30 % @ -20 °C to +50 °C HNO ₃ -2: 35-96 % @ -20 °C to +50 °C HNO ₃ -2: 35-96 % @ -20 °C to +50 °C H ₂ SO ₄ -1: 0-26 % @ -12 °C to 0-37 % @ +100 °C H ₂ SO ₄ -2: 28-88 % @ 0 °C to 39-88 % @ +95 °C H ₂ SO ₄ -3: 94-99 % @ -12 °C to 89-99 % @ +95 °C H ₃ PO ₄ : 0-35 % @ + 5 °C to +80 °C User-defined concentration table (5 × 5 matrix) NaCl, CaCO ₃			
Inductive Conductivity (M400 Cond Ind transmitter only) Measurement parameters Display range Chemical concentration curves TDS ranges Conductivity accuracy	Conductivity and temperature 0 to 2,000 mS/cm NaCl: 0-26 % @ 0 °C to 0 - 28 % @ +100 °C NaOH-1: 0-13 % @ 0 °C to 0 - 24 % @ +100 °C NaOH-3: 15-50 % @ 0 °C to 35 - 50 % @ +100 °C HCl-1: 0-18 % @ -20 °C to +50 °C HCl-2: 22-39 % @ -20 °C to +50 °C HNO ₃ -1: 0-30 % @ -20 °C to +50 °C HNO ₃ -2: 35-96 % @ -20 °C to +50 °C HNO ₃ -2: 35-96 % @ -20 °C to +50 °C H ₂ SO ₄ -1: 0-26 % @ -12 °C to 0-37 % @ +100 °C H ₂ SO ₄ -2: 28-88 % @ 0 °C to 39-88 % @ +95 °C H ₂ SO ₄ -3: 94-99 % @ -12 °C to 89-99 % @ +95 °C H ₃ PO ₄ : 0-35 % @ +5 °C to +80 °C User-defined concentration table (5 × 5 matrix) NaCl, CaCO ₃ ±1.0 % of reading or ±0.005 mS/cm			
Inductive Conductivity (M400 Cond Ind transmitter only) Measurement parameters Display range Chemical concentration curves TDS ranges Conductivity accuracy Conductivity repeatability	Conductivity and temperature 0 to 2,000 mS/cm NaCl: 0-26 % @ 0 °C to 0 - 28 % @ +100 °C NaOH-1: 0-13 % @ 0 °C to 0 - 24 % @ +100 °C NaOH-3: 15-50 % @ 0 °C to 35 - 50 % @ +100 °C HCl-1: 0-18 % @ -20 °C to +50 °C HCl-2: 22-39 % @ -20 °C to +50 °C HNO ₃ -1: 0-30 % @ -20 °C to +50 °C HNO ₃ -2: 35-96 % @ -20 °C to +50 °C HNO ₃ -2: 35-96 % @ -20 °C to +50 °C H ₂ SO ₄ -1: 0-26 % @ -12 °C to 0-37 % @ +100 °C H ₂ SO ₄ -2: 28-88 % @ 0 °C to 39-88 % @ +95 °C H ₂ SO ₄ -3: 94-99 % @ -12 °C to 89-99 % @ +95 °C H ₃ PO ₄ : 0-35 % @ +5 °C to +80 °C User-defined concentration table (5 × 5 matrix) NaCl, CaCO ₃ ±1.0 % of reading or ±0.005 mS/cm			
Inductive Conductivity (M400 Cond Ind transmitter only) Measurement parameters Display range Chemical concentration curves TDS ranges	Conductivity and temperature 0 to 2,000 mS/cm NaCl: 0-26 % @ 0 °C to 0 - 28 % @ +100 °C NaOH-1: 0-13 % @ 0 °C to 0 - 24 % @ +100 °C NaOH-3: 15-50 % @ 0 °C to 35 - 50 % @ +100 °C HCl-1: 0-18 % @ -20 °C to +50 °C HCl-2: 22-39 % @ -20 °C to +50 °C HNO ₃ -1: 0-30 % @ -20 °C to +50 °C HNO ₃ -2: 35-96 % @ -20 °C to +50 °C HNO ₃ -2: 35-96 % @ -20 °C to +50 °C H ₂ SO ₄ -1: 0-26 % @ -12 °C to 0-37 % @ +100 °C H ₂ SO ₄ -2: 28-88 % @ 0 °C to 39-88 % @ +95 °C H ₂ SO ₄ -3: 94-99 % @ -12 °C to 89-99 % @ +95 °C H ₃ PO ₄ : 0-35 % @ +5 °C to +80 °C User-defined concentration table (5 × 5 matrix) NaCl, CaCO ₃ ±1.0 % of reading or ±0.005 mS/cm			
Inductive Conductivity (M400 Cond Ind transmitter only) Measurement parameters Display range Chemical concentration curves TDS ranges Conductivity accuracy Conductivity repeatability Conductivity resolution	Conductivity and temperature 0 to 2,000 mS/cm NaCl: 0-26 % @ 0 °C to 0 - 28 % @ +100 °C NaOH-1: 0-13 % @ 0 °C to 0 - 24 % @ +100 °C NaOH-3: 15-50 % @ 0 °C to 35 - 50 % @ +100 °C HCl-1: 0-18 % @ -20 °C to +50 °C HCl-2: 22-39 % @ -20 °C to +50 °C HNO ₃ -1: 0-30 % @ -20 °C to +50 °C HNO ₃ -2: 35-96 % @ -20 °C to +50 °C HNO ₃ -2: 35-96 % @ -20 °C to +50 °C H ₂ SO ₄ -1: 0-26 % @ -12 °C to 0-37 % @ +100 °C H ₂ SO ₄ -2: 28-88 % @ 0 °C to 39-88 % @ +95 °C H ₃ PO ₄ : 0-35 % @ + 5 °C to +80 °C User-defined concentration table (5 × 5 matrix) NaCl, CaCO ₃ ± 1.0 % of reading or ± 0.005 mS/cm ±1.0 % of reading or ± 0.005 mS/cm Auto/0.001/0.01/0.1/1 (can be selected) Pt1000/Pt100/NTC22K			
Inductive Conductivity (M400 Cond Ind transmitter only) Measurement parameters Display range Chemical concentration curves TDS ranges Conductivity accuracy Conductivity repeatability	Conductivity and temperature 0 to 2,000 mS/cm NaCl: 0-26 % @ 0 °C to 0 - 28 % @ +100 °C NaOH-1: 0-13 % @ 0 °C to 0 - 24 % @ +100 °C NaOH-3: 15-50 % @ 0 °C to 35 - 50 % @ +100 °C HCl-1: 0-18 % @ -20 °C to +50 °C HCl-2: 22-39 % @ -20 °C to +50 °C HNO ₃ -1: 0-30 % @ -20 °C to +50 °C HNO ₃ -2: 35-96 % @ -20 °C to +50 °C H ₂ SO ₄ -1: 0-26 % @ -12 °C to 0-37 % @ +100 °C H ₂ SO ₄ -2: 28-88 % @ 0 °C to 39-88 % @ +95 °C H ₃ PO ₄ : 0-35 % @ + 5 °C to +80 °C User-defined concentration table (5 × 5 matrix) NaCl, CaCO ₃ ± 1.0 % of reading or ± 0.005 mS/cm ± 1.0 % of reading or ± 0.005 mS/cm Auto/0.001/0.01/0.1/1 (can be selected)			
Inductive Conductivity (M400 Cond Ind transmitter only) Measurement parameters Display range Chemical concentration curves TDS ranges Conductivity accuracy Conductivity repeatability Conductivity resolution Temperature input	Conductivity and temperature 0 to 2,000 mS/cm NaCl: 0-26 %@0 °C to 0 - 28 %@+100 °C NaOH-1: 0-13 %@0 °C to 0 - 24 %@+100 °C NaOH-3: 15-50 %@0 °C to 35 - 50 %@+100 °C HCl-1: 0-18 %@-20 °C to +50 °C HCl-2: 22-39 %@-20 °C to +50 °C HNO ₃ -1: 0-30 %@-20 °C to +50 °C HNO ₃ -2: 35-96 %@-20 °C to +50 °C H ₂ SO ₄ -1: 0-26 %@-12 °C to 0-37 %@+100 °C H ₂ SO ₄ -2: 28-88 %@0 °C to 39-88 %@+95 °C H ₂ SO ₄ -3: 94-99 %@-12 °C to 89-99 %@+95 °C H ₃ PO ₄ : 0-35 %@+5 °C to +80 °C User-defined concentration table (5 × 5 matrix) NaCl, CaCO ₃ ±1.0 % of reading or ±0.005 mS/cm ±1.0 % of reading or ±0.005 mS/cm Auto/0.001/0.01/0.1/1 (can be selected) Pt1000/Pt100/NTC22K -40 to +200 °C (-40 to +392 °F) Auto/0.001/0.01/0.1/1 (can be selected)			
Inductive Conductivity (M400 Cond Ind transmitter only) Measurement parameters Display range Chemical concentration curves TDS ranges Conductivity accuracy Conductivity repeatability Conductivity resolution Temperature input Temperature measuring range	Conductivity and temperature 0 to 2,000 mS/cm NaCl: 0-26 %@0 °C to 0 - 28 %@+100 °C NaOH-1: 0-13 %@0 °C to 0 - 24 %@+100 °C NaOH-3: 15-50 %@0 °C to 35 - 50 %@+100 °C HCl-1: 0-18 %@-20 °C to +50 °C HCl-2: 22-39 %@-20 °C to +50 °C HNO ₃ -1: 0-30 %@-20 °C to +50 °C HNO ₃ -2: 35-96 %@-20 °C to +50 °C H ₂ SO ₄ -1: 0-26 %@-12 °C to 0-37 %@+100 °C H ₂ SO ₄ -2: 28-88 %@0 °C to 39-88 %@+95 °C H ₂ SO ₄ -3: 94-99 %@-12 °C to 89-99 %@+95 °C H ₃ PO ₄ : 0-35 %@+5 °C to +80 °C User-defined concentration table (5 × 5 matrix) NaCl, CaCO ₃ ±1.0 % of reading or ±0.005 mS/cm Auto/0.001/0.01/0.1/1 (can be selected) Pf1000/Pf100/NTC22K -40 to +200 °C (-40 to +392 °F) Auto/0.001/0.01/0.1/1 (can be selected) ±0.25 K (±0.45 °F) within -30 to +150 °C (-22 to +302 °F);			
Inductive Conductivity (M400 Cond Ind transmitter only) Measurement parameters Display range Chemical concentration curves TDS ranges Conductivity accuracy Conductivity repeatability Conductivity resolution Temperature input Temperature resolution Temperature accuracy	Conductivity and temperature 0 to 2,000 mS/cm NaCl: 0-26 %@0 °C to 0 - 28 %@+100 °C NaOH-1: 0-13 %@0 °C to 0 - 24 %@+100 °C NaOH-3: 15-50 %@0 °C to 35 - 50 %@+100 °C HCl-1: 0-18 %@-20 °C to +50 °C HCl-2: 22-39 %@-20 °C to +50 °C HNO ₃ -1: 0-30 %@-20 °C to +50 °C HNO ₃ -2: 35-96 %@-20 °C to +50 °C H ₂ SO ₄ -1: 0-26 %@-12 °C to 0-37 %@+100 °C H ₂ SO ₄ -2: 28-88 %@0 °C to 39-88 %@+95 °C H ₃ PO ₄ : 0-35 %@+5 °C to +80 °C User-defined concentration table (5 × 5 matrix) NaCl, CaCO ₃ ±1.0 % of reading or ±0.005 mS/cm ±1.0 % of reading or ±0.005 mS/cm Auto/0.001/0.01/0.1/1 (can be selected) Pt1000/Pt100/NTC22K -40 to +200 °C (-40 to +392 °F) Auto/0.001/0.01/0.1/1 (can be selected) ±0.25 K (±0.45 °F) within -30 to +150 °C (-22 to +302 °F); ±0.50 K (±0.90 °F) outside			
Inductive Conductivity (M400 Cond Ind transmitter only) Measurement parameters Display range Chemical concentration curves TDS ranges Conductivity accuracy Conductivity repeatability Conductivity resolution Temperature input Temperature resolution	Conductivity and temperature 0 to 2,000 mS/cm NaCl: 0-26 %@0 °C to 0 - 28 %@+100 °C NaOH-1: 0-13 %@0 °C to 0 - 24 %@+100 °C NaOH-3: 15-50 %@0 °C to 35 - 50 %@+100 °C HCl-1: 0-18 %@-20 °C to +50 °C HCl-2: 22-39 %@-20 °C to +50 °C HNO ₃ -1: 0-30 %@-20 °C to +50 °C HNO ₃ -2: 35-96 %@-20 °C to +50 °C H ₂ SO ₄ -1: 0-26 %@-12 °C to 0-37 %@+100 °C H ₂ SO ₄ -2: 28-88 %@0 °C to 39-88 %@+95 °C H ₂ SO ₄ -3: 94-99 %@-12 °C to 89-99 %@+95 °C H ₃ PO ₄ : 0-35 %@+5 °C to +80 °C User-defined concentration table (5 × 5 matrix) NaCl, CaCO ₃ ±1.0 % of reading or ±0.005 mS/cm Auto/0.001/0.01/0.1/1 (can be selected) Pf1000/Pf100/NTC22K -40 to +200 °C (-40 to +392 °F) Auto/0.001/0.01/0.1/1 (can be selected) ±0.25 K (±0.45 °F) within -30 to +150 °C (-22 to +302 °F);			

1-point, zero point or process

Calibration

Transmitter Fit Guide

Parameter	M400 2(X)H Type 2		M400 2XH Type 3		
	Analog	ISM	Analog	ISM	
pH/ORP	•	•	•	•	
pH/pNa (InPro 4850i)	_	•	_	•	
Conductivity 2-e	•	_	•	-	
Conductivity 4-e	•	•*	•	•*	
Amp. DO ppm/ppb/trace*	•/•/•	•/•/•	•/•/•	•/•/•	
High Performance DO ppb	•	•	•	•	
Amp. DO Gas ppm/ppb/trace*	-	_	●/●/●	●/●/●	
Optical oxygen ppm/ppb	_	•/•	_	•/•	
Pure Water ODO ppb	_	•	_	•	
Dissolved CO ₂ (pharma InPro 5000i)*	_	•	_	•	

^{*} Ingold sensors only

Ordering Information

Order Number
30 655 901
30 655 902
30 655 903
30 655 904
30 655 905
30 655 908

Accessories	Order Number
Pipe mounting kit for ½ DIN	30 300 480
Panel mounting kit for ½ DIN	30 300 481
Wall mounting kit for ½ DIN	30 300 482
Protective hood	30 073 328

Other Highlights (cont. from p. 106)

• Flexible for Multiple Applications

With its multi-parameter capability (pH, ORP, conductivity, dissolved oxygen, dissolved CO_2 , and gas-phase oxygen) and compatibility with both digital and analog sensors, it is suitable for a wide range of applications.

• Universal Connectivity

HART technology gives access to device information, measured values, ISM sensor diagnostics data, and allows use of remote calibration tools, DTM, and handheld field communicators.

M400 2-Wire: 2XH Type 1, Cond Ind, PA and FF

For Hazardous and Non-Hazardous Area Applications

The M400 2-wire, single-channel, multi-parameter transmitter for pH/ORP, dissolved oxygen, gas phase oxygen, conductivity and dissolved carbon dioxide provides highest reliability and process safety in hazardous and non-hazardous area environments. Advanced ISM functionality enables predictive maintenance resulting in reduced operating costs and helps to improve productivity. The HART, Foundation Fieldbus (FF) or PROFIBUS PA interface provides easy integration of sensor diagnostics tools into process control systems.

Features Overview

- NEPSI Ex/ATEX/FM approved
- Mixed-mode input (analog or ISM sensors accepted)
- Multi-parameter unit
- 4 to 20 mA (with HART) or Foundation Fieldbus version or PROFIBUS PA
- Compatible with ODO sensors
- IP 66/NEMA 4X rated

Other Highlights

- Plug and Measure functionality
- CIP/SIP/Autoclaving counter
- Dynamic Lifetime Indicator
- Adaptive Calibration Timer
- Quick set up mode for fast installation

Specifications

opcomounons	
General	
Display	Backlit LCD, 4 lines
Languages	8 (English, German, French, Italian, Spanish,
	Portuguese, Russian and Japanese)
Ambient temperature	-20 to 60 °C (-4 to 140 °F)
Relative humidity	0 to 95 % non-condensing
Enclosure rating	IP 66/NEMA 4X
Housing material	Aluminum die cast
Certificates M400/2XH:	ATEX/IECEx Zone 1, FM cFMus CI.I Div.1
and Approvals	NEPSI Ex Zone 1, TIIS, KCS
M400 FF:	ATEX/IECEx Zone 1, FM cFMus Cl.I Div.1
	NEPSI Ex Zone 1
M400 PA:	ATEX/IECEx Zone 1, FM cFMus CI.I Div.1
	NEPSI Ex Zone 1
PID process controller	Yes (except M400 PA/FF/2XH Type 1)
Analog input	Yes (except M400 2XH Cond Ind/2XH Type 1)
4 to 20 mA with HART	
Power voltage	14 to 30 VDC
Number of outputs	2×4 to 20 mA (loop powered)
Hold input	Yes
Alarm contact	Yes (alarm delay 0 to 999 s)
Asset management tool compatibility	AMS versions 10 and 11, Simatic PDM version 6/8,
	FDT frame applications
Fieldbus Interface	
Current	22 mA
Max. current in case of fault (FDE)	<28 mA
Number of current inputs	1 for pressure compensation
Supply voltage	Non-hazardous area (Non-IS): 9 to 32 VDC
	Linear Barrier: 9 to 24 VDC
	FISCO: 9 to 17.5 VDC
PROFIBUS PA	
Physical interface	According to ICE 61158-2
Profile	PROFIBUS PA 3.02
ITK version	6.0.1
Foundation Fieldbus	
Profile	FF_H1

www.mt.com/M400-2XH

Parameter Specifications

For parameter specifications of M400 Type 1, Cond Ind, FF and PA on pH, ORP, Conductivity, Dissolved Oxygen, Dissolved CO₂, and Gas-Phase Oxygen please refer to page 107-108.

Ordering Information

Transmitter	Order Number
M400/2XH 1-channel Cond Ind	30 256 307
M400 FF, 1-channel multi-parameter	30 026 616
M400 PA, 1-channel multi-parameter	30 026 617
M400/2XH Type 1, 1-channel multi-parameter	30 256 317

Accessories	Order Number
Pipe mounting kit for ½DIN	30 300 480
Panel mounting kit for ½ DIN	52 500 213
Protective hood	52 500 214

Transmitter Fit Guide

Parameter	M400/2XH	M400/2XH		M400 FF		M400 PA	
	Cond Ind	Type 1					
	Analog	Analog	ISM	Analog	ISM	Analog	ISM
pH/ORP	-	•	•	•	•	•	•
Conductivity 2-e	-	•	_	•	_	•	_
Conductivity 4-e	-	•	_	•	•**	•	•**
Amp. DO* ppm/ppb/trace	-	-	_	•/•/•	•/•/•	•/•/•	•/•/•
Amp. O ₂ gas	-	-	_	•	•	•	•
Optical oxygen ppm/ppb	-	-	_	_	•/•	_	•/•
Dissolved carbon dioxide (low)	-	-	_	-	•	_	•
Inductive conductivity	•	_	_	_	_	_	_

^{*} Ingold and Thornton sensors ** Ingold sensors

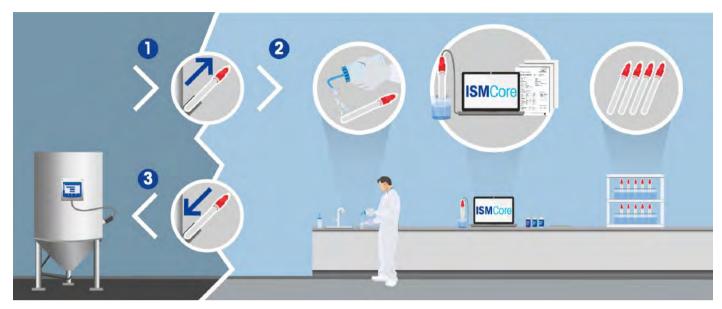
ISM Core

Efficient and Safe Sensor Management

ISM Core is METTLER TOLEDO's software for its Intelligent Sensor Management (ISM) technology. With ISM Core you can calibrate sensors in any convenient location, follow step-by-step animations that guide you through sensor calibration and maintenance, and easily generate electronic sensor documentation for regulatory purposes.

ISM Core Software Allows Quick, Safe and Easy Sensor Calibration Away From the Process

ISM Core software makes calibration significantly quicker and easier. The step-by-step user guidance reduces training efforts to a minimum. ISM Core enables calibration in a laboratory or workshop - away from any challenging environments. Calibrated sensors can then be stored and quickly swapped back into the process whenever needed.


ISM Sensors and Software Both Hold Full Sensor Maintenance History and Audit Trails

Ensuring compliance with industry requirements is vital. ISM simplifies compliance because ISM sensors and ISM Core software hold a sensor's maintenance history. Calibration reports and audit trails can be generated to Excel or as PDFs. ISM ensures gapless and tamper-proof traceability of all calibrations, no matter whether the sensor was calibrated at the process or away from the process.

Calibration with ISM Core

The ISM Core software enables convenient sensor calibration away from the process. The calibration concept is illustrated above.

- 1. Remove the sensor from the process and take it to your lab.
- 2. Clean the sensor. Connect the sensor to the ISM Core software and follow the calibration instructions. Calibration reports are generated automatically. Your sensor is now calibrated.
- 3. Insert your calibrated sensor to the process and reconnect it to the transmitter. ISM's Plug and Measure feature enables automatic transmitter configuration, allowing instant sensor use.

ISM for Efficient Sensor Management

With ISM, maintenance and management of your sensors is quick, convenient, and easy.

ISM Core Software

Your Digital Sensor Expert

ISMCore

ISM Core CFR is technically compliant with 21 CFR Part 11 and EudraLex Volume 4 Annex 11.

Features Overview

- Automatic PDF protocols with sensor registration/calibration/adjustments/deactivation
- Protocols of field calibration
- Full sensor history
- Database export for further analysis

Other Highlights

- Intuitive Windows™ interface
- Early detection of worn-out sensors
- Comprehensive, at a glance sensor status analysis

ISM Core offers a unique means to optimize the performance of pH electrodes, oxygen and carbon dioxide sensors for enhanced reliability and process safety. Simply connect your ISM sensor via USB or Bluetooth to your PC and get access to various intuitive analysis, calibration and documentation applications. Precalibrate your ISM sensor with the accuracy of lab conditions and assess the sensor state with real-time diagnostic information. This allows you to decide instantly whether to re-use or discard a sensor. Calibration information is collected, managed and analyzed efficiently and documented consistently to satisfy regulatory requirements.

Specifications			
Performance			
Measurement parameters pl	H/ORP	all digital ISM sensors	
C)xygen	all digital ISM sensors	
	CO ₂	InPro 5000 i	
Calibration		Supported by all ISM Core versions	
Temperature calibration of pH sen	isors	1-point	
ORP calibration		1-point, process	
DO calibration for amp. sensors		slope, offset, process slope, process offset	
DO calibration for optical sensors		1-point, 2-point, process, scaling	
CO ₂ (InPro 5000 i) calibration		1-point, 2-point, process, scaling	
Performance		Supported by	
M100 SM settings		All ISM Core versions	
Measurements		All ISM Core versions	
Automated electronic documentat	ion	ISM Core Advanced and CFR	
Sensor field calibration dataset		ISM Core Advanced and CFR	
Sensor database		ISM Core Advanced and CFR	
Database backup		ISM Core Advanced and CFR	
Sensor diagnostics dashboard		ISM Core Advanced and CFR	
CFR Compliance support		ISM Core CFR	
Recommended PC requirements	3		
Processor		Intel Core/AMD Ryzen or similar	
RAM		4 GB	
Screen resolution		1280×1024 or higher	
Hard disk		500 MB available hard disk space	
Operating system		Microsoft Windows 10 or later	
Graphics Card		Microsoft DirectX compatible graphics board with	
		3D acceleration	
Interface		USB and/or Bluetooth™ (depending on the	
		accessory)	

www.mt.com/ISM-Core

Ordering Information

Description	Order Number
License ISM Core Essential	30 846 306
License ISM Core Advanced	30 846 307
License ISM Core CFR	30 846 348

Accessories	Order Number
iLink Multi (with integrated barometer and hygrometer)	30 130 631
iLink Multi Cable/Set oDO (RS 485) (required cable set for optical oxygen sensors connecting with iLink Multi)	30 355 582
AK9/1m/BNC-50 (required cable set for pH, CO ₂ and amperometric oxygen sensors connecting with iLink Multi)	59 902 168
CalBox with temperature sensor for iLink Multi	52 300 400
iSense BT Dongle (wireless connection to M100 SM and J-Box BT)	30 371 387
Cable DS AK9-RJ12 (connects 1-wire sensors to ISM Core)	52 300 383
iLink RS485 VP	30 014 134
iLink RS485	52 300 399

iLink Multi is a universal device for connecting digital ISM sensors (1-wire; RS 485) to a PC/laptop running ISM Core software. When calibrating an optical DO sensor with the iLink Multi, calibration parameters are captured automatically using the built-in, physical parameter sensors.

Did You Know iSense Mobile allows you to check sensor status or conduct calibrations from the convenience of your phone. Download is free at Google Play or iTunes.

www.mt.com/ism-accessories

Learn more about ISM Core, iSense Mobile and its accessories.

Verification Kits

Simulating Sensors and Validating Transmitters

The pH, O_2 and the CO_2 Verification Kits are sets of five different service tools that allow the simulation of reading values of pH, O_2 and the CO_2 ISM sensors with predefined measuring values and errors (not changeable by the user). Each tool corresponds to a METTLER TOLEDO ISM sensor and delivers a complete set of data information. They can also be used for control of loop and transmitter settings, as control of the transmitter's temperature compensation and general troubleshooting. Each verification kit is provided with a certificate.

Sı	Dе	Cİ	fi	ca	ti	0	ns
~	~~	•	••	vu		v	

ISM Verification Kits	
ISM Simulator pH Kit	pH 4, pH 7, toggle, ERR1, ERR2
ISM Simulator O ₂	
(InPro 6850i) Kit	Zero, Air, toggle, ERR1, ERR2
ISM Simulator O ₂ ppb	
(InPro 6900 i / InPro 6950 i) Kit	Zero, Air, toggle, ERR1, ERR2
ISM Simulator CO ₂ (InPro 5000i) Kit	15 mbar, 950mbar, toggle, ERR1, ERR2
Optical O ₂ (InPro 6860 i, InPro 6870 i,	
InPro 6960 i, InPro 6970 i, THO ODO)	
Simulator	Zero, Air 1, Air 2, toggle, ERR1, ERR2

pH Analog Verification Kits

pH Simulator 112	pH 4, pH 7, pH 9
VP Simulator	20°C (Pt100 or Pt1000), 50°C (Pt100 or Pt1000)

Certificates and Approvals

ooiiiiioaioo aiia Appiotaio	
ISM pH	IECEx/ATEX Ex ia IIC T6/T5/T4/T3 Ga/Gb
	FM: IS/I,II,III/1/ABCDEFG/T6
Amperometric O ₂	IECEX/ATEX Ex ia IIC T6/T5/T4/T3 Ga/Gb
	IECEx/ATEX Ex ia IIIC T69°C/T81°C/T109°C/
	T161°C Da/Db
	FM: IS/LILIII/1/ABCDFFG/T6

Features Overview

- Tool for verification of a measuring system
- Service tool for quick checks
- Control of transmitter settings
- Troubleshooting

Ordorina	Information	-
Oraeriiia	Information	п

oracing morning	
ISM Verification Kits	Order Number
ISM Simulator pH Kit	52 300 410
ISM Simulator O ₂ (InPro 6850 i) Kit	52 300 416
ISM Simulator O ₂ ppb (InPro 6900 i) Kit	52 300 422
ISM Simulator O ₂ Trace (InPro 6950 i) Kit	52 300 428
ISM Simulator CO ₂ (InPro 5000 i) Kit	30 031 035
Optical O ₂ (InPro 6860 i, InPro 6870 i, InPro 6960 i, InPro 6970 i, THO ODO) Simulator	30 404 694

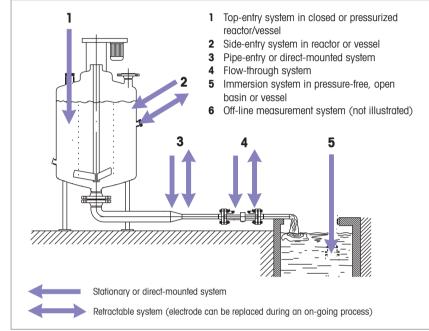
pH Analog Verification Kits	Order Number
pH Simulator 112	59 906 431
VP Simulator	52 120 939

Did You Know The ISM pH, oxygen and CO₂ service tools are unique products that can control and verify loop and transmitter settings. The simulators generate a comprehensive dataset of non-modifiable ISM parameters.

Optical O₂ Simulator

pH Analog Verification Kits: Combining the pH simulator 112 1 with the VP simulator 2 both pH and Temperature signals can be simulated to check the automatic temperature compensation capability of the transmitter.

Process Connection Hardware


Solutions for Every Challenge

METTLER TOLEDO Ingold offers a comprehensive line of products to connect to all common process environments - open basins, pipes, closed tanks, chemical reactors, bioreactors, and fermentation vessels. Depending upon the application, each connection type can have specific requirements for strength, safety, cleanliness, optimized performance, corrosion resistance, insertion depth, or physical space. Process connection hardware ranges from simple drop-in immersion fittings to complex automated systems capable of cleaning and calibrating your measuring equipment. The choice is yours! METTLER TOLEDO Ingold and your local representatives have worked extensively with a wide variety of process environments and can assist you in selecting the best hardware for your application.

The primary considerations when selecting a housing are:

- 1. Stationary or retractable housing
- 2. Connection entry: top-entry, side-entry, etc. (see illustration)
- 3. Connection style: cap nut, threaded NPT, etc.
- 4. Diameter of connection hole (bore size)
- 5. Insertion length
- 6. Wetted part materials: stainless steel, PVC, etc.
- 7. Process seal material (O-rings/gaskets)

This section has been organized according to the seven requirements listed above. To simplify selection, first decide if you prefer stationary,

Common Entry/Style	Threaded Cap Nut	Threaded NPT	ANSI/DIN Flange	Ladish (Tri-Clamp)	Tuchenhagen/ Varivent
1 Top-Entry	•	•	•	•	_
2 Side-Entry	•	•	•	•	•
3 Pipe-Entry	•	•	•	_	_
4 Flow-Through	•	•	•	_	_
5 Immersion	_	_	_	_	_

Common Wetted Parts	Key
Stainless Steel 316L	SS 316L
Stainless Steel 316L	
with Electropolish	SS E-P
Stainless Steel 316L	
with Machined Surface	$R_{\alpha} XX$
Hastelloy	HA-C22
Titanium	Ti
PVC	PVC
PVDF	PVDF
PTFE	PTFE

retractable, or flow through design and turn to the corresponding section that follows. A variety of different housings are available in each section

Common O-rings	Key
EPDM FDA Listed	EP
EPDM Peroxide Cured	EP-pc
Kalrez® FDA Listed USP Class VI	Ka-FDA-USP VI
Silicone FDA Listed USP Class VI	Si-FDA-USP VI
Silicone Peroxide Cured	Si-pc
PTFE/PTFE Coated*	N/A
Viton® FDA Listed	Vi

 As tested PTFE materials failed to provide acceptable elastomeric sealing and are not recommended.

to meet your specific entry-type, connection style, and other requirements.

The Ingold Socket and Safety Socket

Recognizing the need for a strong, sanitary, and safe process connection, Ingold engineered a socket to exceed the requirements found in the most demanding process environments.

When used with an appropriate housing, the Ingold Safety Socket allows the housing O-ring to break its seal while the cap nut retains a safe thread engagement. (See diagram below).

Retractable housings:

- Secure
- Self-cleaning
- Process-independent
- Manual or automated
- Insertion lock without sensor
- For use in hazardous areas (ATEX, FM certificates)

Ingold housings

The hardware used to connect your analytical system to your process is now more important than ever and can actually improve your overall operating efficiency.

Retractable housings, first pioneered by METTLER TOLEDO Ingold, have now evolved into highly-sophisticated components which are processindependent, making sensor maintenance possible at any time without interrupting your process. Pneumatically operated housings insert and retract sensors automatically and form the cornerstone of a fully autonomous analytical system, capable of unattended cleaning and calibration. With an automated system your highlyskilled maintenance staff is able to focus on critical maintenance and repair projects rather than cleaning and calibrating sensors, raising the efficiency and productivity of your operation. For more information on automated maintenance systems, see page 140.

Stationary housings are widely used in all industries, providing a secure, durable, and safe way to position sensing devices in a process. Once connected, however, the stationary housing and sensor must be left in place until the process stops or flow is interrupted and the tank/pipe is drained.

Wide range of process connections

Only a representative sample of Ingold's extensive process connection products are included in this catalog. Please refer to the METTLER TOLEDO product literature for more information.

Don't see exactly what you need?

METTLER TOLEDO Ingold has more than 50 years of experience engineering specialized components or altering existing products to meet specific project requirements. Whether your need is for process resistant metals, special finishes, or modified dimensions, challenge us — chances are we have already designed what you need.

Looking for a non-standard connection?

A growing number of projects co-locate redundant production facilities around the globe, occasionally standardizing process connections.

METTLER TOLEDO Ingold is an international company, working with clients world-wide to equip state-of-the-art processing facilities with liquid analytical systems.

If your project requires special process connections, we can help.

Sockets, Flanges, and Plugs

Reliable Adaption to the Process

Weld-in Sockets and Flanges

Ingold Socket and Safety Socket (DN25 and DN25/S)

The new safety weld-in sockets provide increased protection in the event of any premature attempt to remove the housing when the reactor or pipe is still under pressure or filled with medium. The socket is designed to prevent possible injury, damage or loss of medium. The Ingold Safety Socket is EHEDG approved.

Safety Feature:

- InFit 761-NC
- InFit 764-50-NC
- InPro 68xx

No Safety Feature:

 All previous types of housings or 25 mm DO sensors can be used, but without the benefit of the safety feature.

Wetted Parts	Finish	Pressure Rating
Stainless 316L	$N6/R_a$ 32 ($R_a = 0.8 \mu m/32 \mu in$)	16 bar (232 psi)

Screw-in Sockets

Primarily used for 19 mm vessel and pipe mounting applications.

Specifications

Wetted Parts	Finish
Stainless 316L	$N6/R_{o}32 (R_{o}=0.8 \mu m/32 \mu in)$

Blind Plugs

Manufactured to exacting standards to seal unused weld-in sockets and ports during cleaning and general operation.

Specifications

Wetted Parts	Finish
Stainless 316L	$N6/R_a$ 32 (R_a =0.8 μ m/32 μ in)

Wastewater

Ingold Sockets		Bore Size	Insertion Length	Angle	Order Number
Ingold socket, weld-in		25 mm	40 mm	15°	59 901 124
Ingold socket, weld-in		25 mm	40 mm	0°	59 901 127
Ingold socket, weld-in		25 mm	48 mm	15°	59 901 125
Ingold socket, weld-in		25 mm	50 mm	0°	59 901 128
Ingold socket, weld-in		25 mm	55 mm	15°	59 901 126
Ingold socket, weld-in		25 mm	60 mm	0°	59 901 129
$\underline{\text{OPTIONS: } R_{\alpha} \text{ finish, electro-polish, non-reaction}}$	ve materials, other				Contact METTLER TOLEDO
Ingold Safety Sockets		Bore Size	Insertion Length	Angle	Order Number
Ingold safety socket, DN25/S weld-in		25 mm	40 mm	15°	52 400 462
Ingold safety socket, DN25/S weld-in		25 mm	47 mm	0°	52 400 518
OPTIONS: R _a finish, electro-polish, non-reaction	rive materials, other				Contact METTLER TOLEDO
Screw-in Sockets		Bore Size	Insertion Length	Angle	Order Number
Screw-in socket		19 mm	40 mm	0°	59 901 290
Blind Plugs	Connect	Bore Size	Insertion Length	Wetted Parts	Order Number
BSP socket plug, straight	2¾" BSP	25 mm	50 mm	Stainless 316L	59 900 903
Ingold socket plug, straight DN25	Ingold	19 mm	42 mm	Stainless 316L	59 901 294
Ingold socket plug, straight DN25	Ingold	25 mm	40 mm	Stainless 316L	59 901 287
Ingold socket plug, 15° DN25	Ingold	25 mm	40 mm	Stainless 316L	59 901 283
Ingold socket plug, 15° DN25	Ingold	25 mm	48 mm	Stainless 316L	59 901 284
Ingold socket plug, straight DN25	Ingold	25 mm	50 mm	Stainless 316L	59 901 288
Ingold socket plug, 15° DN25	Ingold	25 mm	55 mm	Stainless 316L	59 901 285
	la a a lal	25 mm	60 mm	Stainless 316L	59 901 289
Ingold socket plug, straight DN25 OPTIONS: R _a finish, electro-polish, non-react	Ingold	==::::::	бОППП	Sidiffiess 310L	39 901 209

InFit 761 e

High Versatility with a Wide Selection of Process Connections

Other Highlights

- Simple, yet highly durable
- Easy-to-use and low maintenance

Features Overview

- Models with sensor holder type "C" integrate with the Ingold safety socket to prevent injury or damage
- Many options for corrosion-resistant materials, O-rings, and process connections
- Surface finish N5/R $_{a}$ 16 (excluding version with protective cage)

The InFit 761 e series housings are stationary housings for 12 mm sensors with a Pg 13.5 threaded collar. This is one of the most versatile housings in the Ingold product line due to the wide availability of materials, O-rings, process connections, and insertion lengths. Rugged plastic (PVDF, PP), stainless steel, and Hastelloy (optional) versions stand up to harsh and demanding environments encountered in industrial processing and industrial wastewater applications. For extreme hygienic requirements, the InFit 761 e is available in 316L stainless steel configurations (EHEDG and 3A compliant), and also with N5/ R_{α} 16 surface finishes to meet the most stringent regulatory guidelines.

Specifications

	InFit 761 e, Steel Version	InFit 761 e, Plastic Version
Wetted parts	Stainless 316L	PVDF, PP
Surface finish	Hygienic: $($	R_a 0.8 μ m/ R_a 32 μ in
(O-ring groove/Other)	R_a 15 μ in)* + electropolished	
	Others: R_a 0.4 $\mu m/R_a$ 16 μin	
O-ring ***	Silicone-FDA-USP VI	Viton®-FDA
Sensor fitting	Pg 13.5	Pg 13.5
Temperature range	0-140°C/32-284°F	0-100°C/32-212°F
Pressure rating	Max. 16bar/232psig	Max. 6bar/87psig**
(Sensor dependent)		
Certificates	EHEDG and 3A compliant (CIP s	shaft only)
and Approvals	ATEX/FM certificates (metallic version only):	
	Pressure Equipment Directive gui	idelines (PED) and CE

- Not with protective cage
- ** Temperature dependent

Many housing options are available. Please use the product configurator and sensor fit guide found on p. 129.

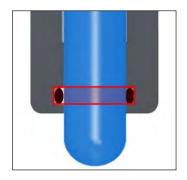
Suggested Sensors

pH	DO	CO ₂	Conductivity	Turbidity
InPro 3030	InPro 6050	InPro 5000 (i)	InPro 7001	InPro 8050
InPro 3100 (i)	InPro 6800 (G)		InPro 7100 (i)	InPro 8100
InPro 3250 (i)	InPro 6850 i (G)			InPro 8200
InPro 4010	InPro 6900 (i) (G)			
InPro 4260 (i)/4281 i	InPro 6950 (i) (G)			
InPro 4800 (i)/4881 i	InPro 6860 i * / 6970 i	*		
DPAS, DPA				
DXK				

^{*} special Retrofit Kit required

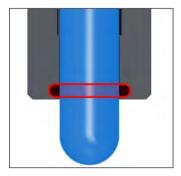
www.mt.com/InFit761

^{***} Other O-ring material see technical document


InFit 761 eO-Ring Groove

The InFit 761 e housings are available in mainly three different O-ring groove type configurations, consisting of the selected protective cage and sensor fitting:

• NS / WS Standard squared O-ring groove with or without cage


• NC CIP round O-ring groove without cage

• WK Standard squared O-ring groove with NPT shaft and cage

Standard O-ring groove

- Standard square style O-ring groove
- Non-hygienic design
- Available with or without protective cage
- Machined surface finish Ra > 0.4 μm/15 μin

CIP O-ring groove

- CIP round style O-ring groove
- Hygienic design for better sanitization control
- Available without protective cage only
- Electropolished surface when in 1.4435/316L
- Surface roughness Ra $< 0.4 \,\mu\text{m}/15 \,\mu\text{in}$

Process Adaptions for Food & Beverage

With DIN 11851 DN40 and SMS 1147 DN38 and DN51 are new Process Adaptions available for InFit761. Together with InPro X1 EHEDG and 3A certifications are valid for InFit 761 with DIN11851 process adapters (use of Siersema special process sealing required).

InFit 762 e / 763 e

The Solution for Top-Entry into Large Vessels

InFit 762 e

InFit 763 e

Other Highlight

- Certificates of compliance are available upon request, including certificate of inspection 3.1
- www.mt.com/InFit762
- www.mt.com/InFit763

The InFit 762 e and InFit 763 e stationary housings are designed for top mount applications in larger vessels and reactors. An optional protective cage may be ordered separately. The static insertion housing InFit 762 e allows quick and easy installation of electrodes and sensors with Pg 13.5 thread. This allows the use of a large range of pH/redox electrodes with solid or gel-type reference electrolyte as well as sensors for measuring conductivity, turbidity, dissolved oxygen and $\rm CO_2$. The static insertion housing InFit 763 e provides quick and easy integration of pressurized pH/redox electrodes with liquid and refillable reference electrolyte. The InFit 763 e (PVDF version) housing is specifically designed for applications where tank damage is of concern—especially glass-lined reactors. The InFit 763 e (PVDF version) housing connects to the process using a variety of available flanges; however, a PN16 (AISI 150) flange is specified most often. A protective cage protects the electrode against abrasive solids in the process medium. The InFit 763 e (PVDF version) is designed for use where stainless steel is unsuitable and/or if the reactor is lined with rubber or glass.

Specifications

	InFit 762 e/763 e, Steel Version	InFit 763 e, Plastic Version	
Wetted parts	Stainless 316L/C22/Ti	PVDF	
Surface finish	N6/N8 (R _a 32/R _a 125)	N6/N8 (R _a 32/R _a 125)	
(O-ring groove/Other)			
O-ring **	Viton®-FDA	Viton®-FDA	
Sensor fitting	762 e: Pg 13.5	InPro 2000/Pg 13.5 (opt.)	
	763 e: InPro 2000		
Temperature range	0-130°C/32-266°F	0-130°C/32-266°F	
Pressure rating	0-6bar/0-87 psig	0-10 bar/0-145 psig*	
(Sensor dependent)			
Certificates	ATEX/FM certificates (metallic version only):		
and Approvals	Pressure Equipment Directive guidelines (PED) and CE		
* Temperature dependent	** Other O-ring material see technical documentation		

Suggested Sensors

	рH	DO	CO ₂	Conductivity	Turbidity
InFit 762 e	InPro 3030	InPro 6050	N/A	InPro 7001	InPro 8050
	InPro 3100 (i)	InPro 6800 (G)		InPro 7100 (i)	InPro 8100
	InPro 3250 (i)	InPro 6850(i)(G)			InPro 8200
	InPro 4260 (i)	InPro 6900 (i) (G)			
	InPro 4800 (i)	InPro 6950 (i) (G)			
	DPAS, DPA				
	DXK				
InFit 763 e	InPro 2000 (i)	N/A	N/A	N/A	N/A

Many housing options are available. Please use the product configurator and sensor fit guide found on p. 130.

Features Overview

- Up to 4 m (13.1 ft) insertion length
- Rugged stainless steel or PVDF construction
- Extra long insertion lengths
- Uses cost-effective 120 mm/150 mm sensors

InFit 764 e

Problem Solver in Combination with Liquid-filled pH Electrodes

The InFit 764 e housings are specifically designed to maximize the performance and longevity of liquid-filled pH and redox sensors. The body of the housing can be pressurized to maintain a positive pressure differential between the sensor fill solution and the process. The positive differential eliminates sensor contamination by preventing process media from crossing the diaphragm into the sensor. A large inspection window makes it easy to monitor electrolyte level.

Specifications

·	InFit 764 e, Steel Version	InFit 764 e, Plastic Version	
Wetted parts	Stainless 316L	PVDF	
Surface finish	N5/N5 (R _a 16/R _a 16)*	N6/N6 (R _a 32/R _a 32)	
(O-ring groove/Other)			
O-ring ***	Silicone-FDA-USP VI	Silicone-FDA-USP VI	
Sensor fitting	Liquid-filled electrodes	Liquid-filled electrodes	
Temperature range	0-130°C/32-266°F	0-110°C/32-230°F	
Pressure rating	0-6bar/0-87 psig	0-6bar/0-87 psig **	
(Sensor dependent)			
Certificates	ATEX/FM certificates (metallic v	version only):	
and Approvals	Pressure Equipment Directive guidelines (PED) and CE		
* N-1!!!!			

- * Not with protective cage
- ** Temperature dependent

Many housing options are available. Please use the product configurator found on p. 129.

Suggested Sensors

Juggeorea Jeneere				
рН	DO	CO ₂	Conductivity	Turbidity
InPro 2000 (i)	N/A	N/A	N/A	N/A

Sensor Fit Guide (for Liquid-Filled Electrodes)

Sensor Length	Insertion	Length		
	70 mm	100 mm	150 mm	200 mm
120 mm	•	-	-	_
150 mm	_	•	-	_
200 mm	_	-	•	_
250 mm	_	-	-	•

The InFit 764e housing is specifically designed for use with liquid-filled pH sensors. This sensor fit guide is designed to assist you with selecting the proper pH sensor. Other insertion lengths are available on request.

Other Highlights

- 3 A compliant (CIP shaft only)

Features Overview

- Positive overpressure
- Large inspection window
- Sterilizable in situ
- Surface finish N5/ R_a 16 (excluding version with protective cage)

^{***} For other O-ring material see technical documentation

InDip 550

Immersion Housing for Open Basin Installations

 Specifications

 InDip 550

 Wetted parts
 PVC, PVDF

 Surface finish
 N/A

 (O-ring groove/Other)
 Viton®-FDA

Pg 13.5, 1" NPT, 34" NPT, IND

The InDipTM immersion housings are designed to provide a cost-effective, yet rugged process connection with the flexibility to meet the wide variety of installation requirements found in open tanks, reactors, aeration basins and open vessels.

Temperature range 0-60 °C/32-140 °F (PVC) 0-100 °C/32-212 °F (PVDF)

Pressure rating N/A

(Sensor dependent)

Suggested Sensors

Sensor fitting

pH	DO DO	CO ₂	Conductivity	Turbidity
InPro 3030	InPro 6050	N/A	InPro 7001	InPro 8050
InPro 3100 (i)	InPro 6800 (G)		InPro 7108	InPro 8100
InPro 3250 (i)	InPro 6850 (i) (G)		InPro 7250	
InPro 4010	InPro 6900 (i) (G)		InPro 7100 (i)	
InPro 4260 (i)	InPro 6950 (i) (G)			
InPro 4501				
InPro 4800 (i)				
DPA				
DPAS				
DXK				

Other Highlight

 Certificates of compliance are available upon request, including certificate of inspection 3.1

Sensor Fit Guide

Sensor Length	Insertion Length
120 mm	User-defined (max. 3 m)

The InDip 550 is designed to accept all 120 mm sensors.

Many housing options are available. Please use the product configurator found on p. 131.

InDip 508/510

Versatile Immersion Housing for Wastewater Installations

Features Overview

- Watertight
- Wide range of installation options
- Optional floating adapter

The InDip™ 508/510 immersion housing is designed to withstand abrasive chemical applications. It is a cost-effective yet rugged process connection that is suitable for use in open tanks and vessels, reactors, and aeration basins.

Specifications	
Operation	Immersion
Sensors Accepted	pH & ORP, Dissolved oxygen, CO ₂ , Conductivity, Turbidity
Accepted Sensor Length	120 mm
Insertion Length	User-defined (max. 3 m)
Wetted Parts	PVC/PVDF
O-Ring	FKM FDA
Sensor Fitting	Pg13.5
Temperature Range	0-130°C/32-266°F
Pressure Range	0 barg/0 psig

Suggested Sensors

pH	DO	CO ₂	Conductivity	Turbidity
InPro 3030	InPro 6050	N/A	InPro 7001	InPro 8050
InPro 3100 (i)	InPro 6800 (G)		InPro 7108	InPro 8100
InPro 3250 (i)	InPro 6850 (i) (G)		InPro 7250	
InPro 4010	InPro 6900 (i) (G)		InPro 7100(i)	
InPro 4260 (i)	InPro 6950 (i) (G)			
InPro 4501				
InPro 4800 (i)				
DPA				
DPAS				
DXK				

Ordering Information

	Connection	Wetted Material	Order Number
	Tube Thread		
InDip 508 PVC	1" NPT	PVC	52 403 525
InDip 508 PVDF	1" NPT	PVDF	52 403 526
InDip 510 PVC	M32×1.5	PVC	30 899 171
InDip 510 PVDF	M32×1.5	PVDF	On request
Floating Adapter PVC InDip 508	1" NPT	PVC	30 881 028
Floating Adapter PVC InDip 510	M32×1.5	PVC	30 881 027

Optional Floating Adapter

The optional floating adapter correctly levels out the sensor in pools and basins, always ensuring proper measurement. The floating adapter includes a connection tube that ensures an insertion length of 236 mm. For extended insertion length the connection tube must be sourced locally in the required length.

www.mt.com/InDip

InFlow Series

Modular, Highly Adaptable Flow-Through Housings

InFlow 761

 $C \in$

InFlow 762

InFlow 751

Features Overview

- Correctly positions sensors in tight confines of narrow pipes and slip streams
- Wide variety of materials and process connections to accommodate common process environments
- Optimally designed for use with METTLER TOLEDO housings and sensors

www.mt.com/InFlow

InFlow 76X flow-through housings from METTLER TOLEDO are designed to enable safe and reliable mounting of the InTrac and InFit series sensor housings directly into the process or in a bypass (pipe). These rugged flow-through housings are specially suited to the requirements of the process industry and can be easily and safely installed, allowing reliable measurement procedures.

InFlow 751 flow-through housings serve for the direct fitting of METTLER TOLEDO electrodes and sensors for the measurement of pH, ORP, dissolved oxygen, conductivity and turbidity, particularly in the field of industrial wastewater treatment. The housings protect electrodes/sensors against mechanical damage.

Specifications

	InFlow 751, PVC Version	InFlow 751, PVDF Version
Wetted parts	PVC	PVDF
Surface finish	N/A	N/A
(O-ring groove/Other)		
O-ring	Viton®-FDA	Viton®-FDA
Sensor/housing fitting	Pg 13.5, 1" NPT, ¾" NPT	Pg 13.5, 1" NPT, ¾" NPT
Temperature range	0-60°C/32-140°F	0-100°C/32-212°F
Pressure rating	1 bar/60 °C (14.5 psi/140 °F)	1 bar/100°C (14.5 psi/212°F)
(Sensor dependent)	4bar/45°C (58psi/113°F)	4 bar/75 °C (58 psi/167 °F)

	InFlow 761	InFlow 762			
Wetted parts	Stainless 316L	PVDF			
Surface finish	N/A	N/A			
(O-ring groove/Other)					
O-ring	N/A	Viton®-FDA*			
Sensor/housing fitting	InTrac 7XX, InFit 76X	InTrac 7XX, InFit76X			
Temperature range	0-140°C/32-284°F	0-140°C/32-284°F			
Pressure rating	16bar/140°C (232psi/284°F)	1 bar/140°C (14.5 psi/284°F)			
(Sensor dependent)		6bar/80°C (87psi/176°F)			
Certificates	CE,				
and Approvals	Pressure Equipment Directive guidelines (PED)				

^{*} Version with Ingold DN25 socket

Suggested Sensors

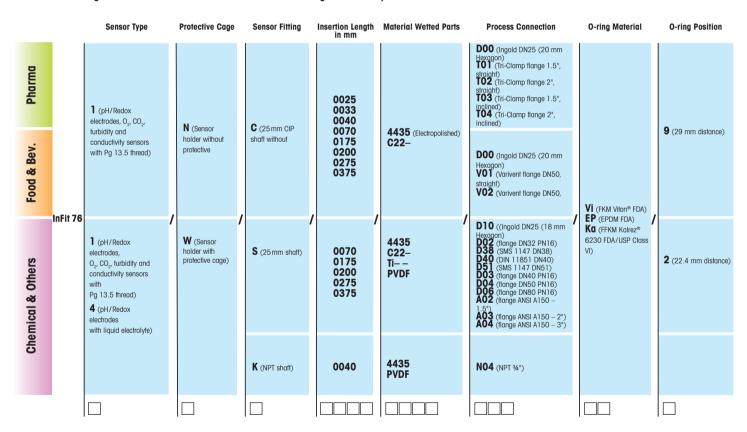
DO	CO.	Conductivity	Turbidity
InPro 6050	InPro 5000 (i)	InPro 7001	InPro 8050
InPro 6800 (G)		InPro 7100 (i)	InPro 8100
InPro 6850(i)(G)			
InPro 6900 (i) (G)			
InPro 6950 (i) (G)			
	InPro 6800 (G) InPro 6850 (i) (G) InPro 6900 (i) (G)	InPro 6050 InPro 5000 (i) InPro 6800 (G) InPro 6850 (i) (G) InPro 6900 (i) (G)	InPro 6050 InPro 5000 (i) InPro 7001 InPro 6800 (G) InPro 7100 (i) InPro 6850 (i) (G) InPro 6900 (i) (G)

Sensor Fit Guide

Sensor Length	InFlow 751	InFlow 76X			
120 mm	•	•1			

¹ See appropriate housing section

Many housing options are available. Please use the product configurator found on p. 131.


Product Configurators

InFit 761 e housing: Sensor Fit Guide (for glass pH electrodes)

Sensor Length	Insertion	Length							
	25 mm	33 mm	40 mm	70mm	100 mm	150 mm	175 mm	275 mm	375 mm
120 mm	•	•	•	•	_	_	_	_	_
150 mm	-	_	-	-	•	-	_	_	_
200 mm	_	_	_	_	_	•	_	_	_
225 mm	_	_	_	_	_	_	•	_	_
325 mm	-	_	_	_	_	_	_	•	
425 mm	_	_	_	_	_	_	_	_	•

The InFit 761e housing is a universal housing for use with pH, DO, CO₂, conductivity and turbidity sensors. When using glass electrodes, it is important not to expose too much glass beyond the end of the housing. This sensor fit guide is designed to assist you with selecting the proper glass pH sensor. Stainless steel sensors (DO, CO₂, cond, turb) are more rigid and may extend farther beyond the end of the housing, but it is not recommended. Other insertion lengths are available on request.

Product configurator for InFit 761e and InFit 764e - not all configurations are possible

InFit 762 e/763 e housing: Sensor Fit Guide

Description	Sensor Leng	th	Insertion Length		
	120 mm	150 mm	400 mm	up to 4000 mm	
InFit 762 e (for sensors with Pg 13.5)	•	_	•	•	
InFit 763 e (for liquid-filled pH only)	•	•	•	•	
InFit 763 e (PVDF version)	•1	•	•	•	

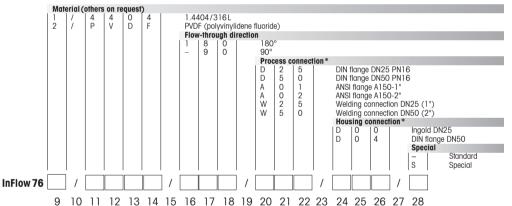
¹ with Pg 13.5 adapter

The InFit 762e housing is a universal housing for use with pH, DO, CO₂, Conductivity and Turbidity Pg 13.5 sensors (InFit 763e for liquid-filled pH sensors). When using glass electrodes, it is important not to expose too much glass beyond the end of the housing. This sensor fit guide is designed to assist you with selecting the proper glass pH sensor.

Product configurator for InFit 762e and InFit 763e – not all configurations are possible

		Sensor Type	Protective Cage	Sensor Holder	Insertion Length available in steps of 100 mm	Material Wetted Parts	Process Connection	O-ring Material
Pharma		2 (pH/Redox electrodes, O ₂ , CO ₂ ,	N (Sensor holder without	F (Turbidity Sensor) G (12 mm electrodes with Pg 13.5)			B02 (DN50 G2" for ss	
Food & Bev.		turbidity and conductivity sensors with Pg 13.5 thread)	protective cage)	G (12 mm electrodes with Pg 13.5)		4435 C22-	version) T05 (Tri-Clamp 3* flange straight)	EP (EPDM FDA)
Chemical & Others	InFit 76	2 (pH/Redox electrodes, O ₂ , CO ₂ , turbidity and conductivity sensors with Pg 13.5 thread) 3 (pH/Redox electrodes with liquid electrolyte)	W (Sensor holder with protective cage)	F (Turbidity Sensor) G (12 mm electrodes with Pg 13.5) H (Electrodes with liquid electrolyte; σ = 120 mm)	/ 0400 4000 /	/ 4404 C22– Ti– –	T03 ((ANSI 2*/150 lbs) A04 (ANSI 3*/150 lbs) A05 (ANSI 4*/150 lbs) D04 (Flange DN50 – PN16) D05 (Flange DN65 – PN16) D07 (Flange DN100 – PN16)	Ka (FFKM Kalrez® 6230 FDA/USP Class VI) Vi (FKM Viton® FDA)

Ordering Information for InDip 508/510

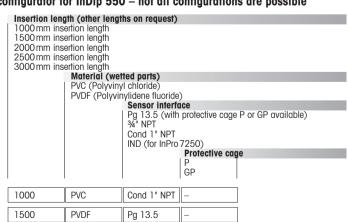

InFlow 751						
	Connection	Wetted Material	Order Number			
	Tube Thread					
InDip 508 PVC	1" NPT	PVC	52 403 525			
InDip 508 PVDF	1" NPT	PVDF	52 403 526			
InDip 510 PVC	M32×1.5	PVC	30 899 171			
InDip 510 PVDF	M32×1.5	PVDF	On request			
Floating Adapter PVC InDip 508	1" NPT	PVC	30 881 028			
Floating Adapter PVC InDip 510	M32×1.5	PVC	30 881 027			

Ordering Information for InFlow 751

InFlow 751					
– PVC Version	Process Connect	Bore Size	Insert Length	Wetted Parts	Order Number
InFlow 751 d32DN25	Pg 13.5	32 mm	N/A	PVC	52 400 250
InFlow 751 d32DN25	NPT ¾"	32 mm	N/A	PVC	52 400 256
InFlow 751 d50DN40	Pg 13.5	50 mm	N/A	PVC	52 400 251
InFlow 751 d50DN40	NPT ¾"	50 mm	N/A	PVC	52 400 257
InFlow 751 d50DN40	NPT 1"	50 mm	N/A	PVC	52 400 644
InFlow 751 d63DN50	Pg 13.5	63 mm	N/A	PVC	52 400 252
InFlow 751 d63DN50	NPT ¾"	63 mm	N/A	PVC	52 400 258
InFlow 751 d63DN50	NPT 1"	63 mm	N/A	PVC	52 400 645
– PVDF Version					
InFlow 751 d32DN25	Pg 13.5	32 mm	N/A	PVDF	52 400 253
InFlow 751 d32DN25	NPT ¾"	32 mm	N/A	PVDF	52 400 259
InFlow 751 d50DN40	Pg 13.5	50 mm	N/A	PVDF	52 400 254
InFlow 751 d50DN40	NPT ¾"	50 mm	N/A	PVDF	52 400 260
InFlow 751 d50DN40	NPT 1"	50 mm	N/A	PVDF	52 400 646
InFlow 751 d63DN50	Pg 13.5	63 mm	N/A	PVDF	52 400 255
InFlow 751 d63DN50	NPT 3/4"	63 mm	N/A	PVDF	52 400 261
InFlow 751 d63DN50	NPT 1"	63 mm	N/A	PVDF	52 400 647

For the housing configuration of the InFlow 76X, please use the product configurator below.

Product configurator for InFlow 76X - not all configurations are possible


The InFlow 76X PVDF version with Ingold DN25 socket is fitted with a medium-wetted 0-ring made of Viton®. O-ring sets made of EPDM and Kalrez® are available as accessories.

Product configurator for InDip 550 - not all configurations are possible

InDip 550

2000

PVC

GP

Pg 13.5

Important addition to the order information for InDip 550 housings

Flanges for the InDip 550 have to be ordered separately. They cannot be included to the part number of the housing. Local assembly of InDip housings is also possible. Ask your local METTLER TOLEDO representative.

Did You Know

Measurement loops from

METTLER TOLEDO can be
automated with the EasyClean systems

for rinsing, cleaning and calibrating.

See pages 140–145 for more information.

InTrac 776 e For Liquid-Filled pH Electrodes

Did You Know
Measurement loops from
METTLER TOLEDO can be
automated with the EasyClean systems
for rinsing, cleaning and calibrating.
See pages 140–145 for more
information.

www.mt.com/InTrac776

The retractable InTrac 776e housings are designed for applications in processes which utilize pH/ORP sensors that have a liquid electrolyte reference system such as the InPro 2000 and Ingold 465 series electrodes. The housing has a built-in flushing chamber in which the electrode can be cleaned and calibrated if necessary, both accomplished without interruption of the process. This enhanced housing incorporates the Tri-Lock safety system which increases process safety and reliability even in harsh applications.

_	_		_
Cn	221	liaat	iona
3U	eca	110:01	ions

Specifications				
Operation	Manual or pneumo	Manual or pneumatic		
Ambient temperature	Polypropylene:	0 to 70°C (32 to 158°F)		
	Stainless steel:	-10 to 70 °C (14 to 158 °F)		
Functional pressure range	Manual:	0 to 5 bar (0 to 73 psig)		
	Pneumatic:	0 to 6 bar (0 to 87 psig)		
Max. permissible pressure	Polypropylene (PP): 6 bar at 20 °C (87 psig at 68 °F)		
	PVDF, PEEK:	6 bar at 20 °C (87 psig at 68 °F)		
	316L stainless ste	el: 6 bar at 140 °C (87 psig at 276 °F)		
	Hastelloy/Ti:	6 bar at 140 °C (87 psig at 276 °F)		
Insertion lengths	70 mm, 100 mm, 2	200 mm (2.76", 3.94", 7.87")		
Wetted parts	316L stainless ste	el, Hastelloy–C22, titanium,		
	PP, PVDF, PEEK			
Wetted O-rings	Viton®-FDA, EPDM	-FDA, Kalrez®-FDA-USP Class VI		
Housing length	70/100 mm:	545 mm (21.8") in process		
		710 mm (28") retracted from		
		process		
	200 mm:	645 mm (25.4") in process		
		1110 mm (43.7") retracted from		
		process		
Pneumatic conditions	4 to 8 bar (58 to 1	16psig)		
Flushing connections	2 to 6 bar (29 to 8	37 psig)		
(water, steam)				
Position monitoring (options)	Pneumatic check (Pneumatic check (3/2 way valve), G1/8"		
	Inductive check, no	Inductive check, non-Ex, M12 $ imes$ 1		
	Inductive check, Ex	Inductive check, Ex, M12 \times 1		
Certificates and Approvals	CE;			
	Pressure Equipmer	Pressure Equipment Directive guidelines (PED);		
	Certificate of confo	rmity according to EN10204-2.1;		
	Material certificate	Material certificate according to 3.1;		
	ATEX, FM and MaxCert			

Sensor Fit Guide (for Liquid-Filled Glass pH Electrodes)

Sensor Length	Insertion Length				
	70 mm	100 mm	200 mm		
250 mm	•	•	_		
450 mm	-	-	•		

Many housing options are available. Please use the product configurator found on p. 137.

InTrac 777e/779e

The Reliable All-Rounder

Features Overview

- Advanced Tri-Lock safety system
- Remove sensor without interrupting of the process
- Automation with EasyClean

Other Highlights

- Multiple process connections available
- For use with 12 mm Ingold sensors
- MaxCert covers necessary certifications
- Increased operational safety and reliability
- Several materials of construction available

www.mt.com/InTrac777www.mt.com/InTrac779

The retractable InTrac 777 e/779 e housings are specifically designed for applications in processes which utilize 12 mm pH, ORP, dissolved oxygen, ${\rm CO_2}$, conductivity, and turbidity (InTrac 779 e) sensors. The housing has a flushing chamber in which the electrode can be cleaned and calibrated if necessary, both accomplished without interruption of the process. This enhanced housing incorporates the Tri-Lock safety system which increases process safety and reliability even in harsh applications. Multiple process connections and materials of construction make the InTrac 777 e/779 e an excellent choice for use in either the chemical, biopharmaceutical or food and beverage industries.

Specifications

Specifications				
Operation	Manual or pneumation	c (295 mm version pneumatic only)		
Ambient temperature	Polypropylene:	0 to 70°C (32 to 158°F)		
	Stainless steel:	-10 to 70 °C (14 to 158 °F)		
Functional pressure range	Manual:	0 to 5 bar (0 to 73 psig)		
	Pneumatic:	0 to 16 bar (0 to 232 psig)		
Max. permissible pressure	Polypropylene (PP):	6 bar/20°C (87 psig/68°F)		
	PVDF, PEEK:	6bar/20°C (87psig/68°F)		
	316L stainless steel	: 16bar/140°C (232psig/276°F)		
	Hastelloy/Ti:	16bar/140°C (232psig/276°F)		
Insertion lengths	70 mm, 100 mm, 20	00 mm, 295 mm		
	(2.76", 3.94", 7.87"	, 11.61")		
Wetted parts	316L stainless steel	, Hastelloy-C22 *, titanium, PP *,		
	PVDF*, PEEK*, * no	t available for 295 mm version		
Wetted O-rings	Viton®-FDA, EPDM-F	DA, Kalrez®-FDA and USP Class VI		
Housing length	70/100 mm:	360 mm (14.2") in process		
		515 mm (20.3") retracted from		
		process		
	200 mm:	460 mm (18.1") in process		
		915 mm (36") retracted from		
		process		
Pneumatic conditions	4 to 8 bar (58 to 11	6 psig)		
Flushing connections	2 to 6 bar (29 to 87	psig)		
(water, steam)				
Position monitoring (options)	Pneumatic check (3/2	$_{2}$ way valve), G $\frac{1}{8}$ "		
	Inductive check, non-	-Ex, M12×1		
	Inductive check, Ex, I	M12×1		
Certificates and Approvals	CE;			
	Pressure Equipment Directive guidelines (PED);			
	Certificate of conformity according to EN10204-2.1,			
	Material certificate ad	ccording to 3.1;		
	ATEX, FM and MaxCert			

Many housing options are available. Please use the product configurator and sensor fit guide found on p. 137.

Did You Know

Measurement loops from METTLER TOLEDO can be automated with the EasyClean systems for rinsing, cleaning and calibrating. See pages $\frac{1}{2} \frac{1}{2} \frac$

140-145 for more information.

InTrac 797 e / 799 e

When Sterile Conditions Are Required

Features Overview

- Twin-chamber lock effectively prevents any external contamination
- Advanced Tri-Lock safety system
- Remove sensor without interrupting of the process

Other Highlights

- Multiple process connections available
- For use with 12 mm Ingold sensors
- Double flushing chamber
- Increased operational safety and reliability
- www.mt.com/InTrac797
- www.mt.com/InTrac799

The retractable InTrac 797 e/799 e housings are specifically designed for applications in processes which utilize 12 mm pH, ORP, dissolved oxygen, ${\rm CO_2}$, conductivity, and turbidity (InTrac 799 e) sensors. This sterilizable housing has a double flushing chamber which was designed to meet the highest demands of the pharmaceutical and food and beverage industries where sterile conditions are required. The double flushing chamber allows complete sterilization of the upper and lower sections of a sensor and insertion shaft allowing the electrode/sensor to be removed and replaced under a completely sterile environment.

Specifications

Operation	Manual or pneumati	С
Ambient temperature	Stainless steel:	-10 to 70°C (14 to 158°F)
Functional pressure range	Manual:	0 to 5 bar (0 to 73 psig)
	Pneumatic:	0 to 16 bar (0 to 232 psig)
Max. permissible pressure	316L stainless steel:	: 16bar/130°C (232 psig at 266°F)
Insertion lengths	100 mm (3.94")	
Wetted parts	316L stainless steel	
Wetted O-rings	Viton®-FDA, EPDM-F	DA, Kalrez®-FDA-USP Class VI
Housing length	100 mm:	460 mm (18.1") in process
		715 mm (28.2") retracted from
		process
Pneumatic conditions	4 to 8 bar (58 to 11)	6 psig)
Flushing connections	2 to 6 bar (29 to 87	psig)
(water, steam)		
Position monitoring (options)	Pneumatic check (3/	′₂ way valve), G¼,"
	Inductive check, non	-Ex, M12 × 1
	Inductive check, Ex,	M12×1
Certificates and Approvals	CE;	
	Pressure Equipment	Directive guidelines (PED);
	Certificate of conforn	nity according to EN10204-2.1;
	Material certificate a	ccording to 3.1;
	ATEX, FM and MaxCe	ert

InTrac 797 e/InTrac 799 e Sensor Fit Guide

Sensor Length	Insertion Length		
	100 mm	Ø 12 mm Sensor / electrode	
297 mm	•1	Turbidity	
320 mm	•2	O ₂ , CO ₂	
325 mm	•2	pH/ORP	

1 InTrac 799e only

2 InTrac 797 e only

Many housing options are available. Please use the product configurator found on p. 138.

InTrac 781/784

Designed for the Toughest Process Conditions

Other Highlights

- Multiple process connections available
- Large choice of materials for wetted
- Variable insertion length
- Compliance with international standards
- Long life and easily exchangeable seals

The InTrac 781/784 retractable housings combine rugged design with great versatility to meet the demands of the harshest process conditions in chemical, petrochemical, pulp and paper, or utilities applications.

The InTrac 781 operates mainly with the 12 mm diameter (Pg 13.5) sensors, while the InTrac 784 operates with the InPro 2000 (i) /465 pH/ORP sensor. The retractable housing material is specially designed for a range of harsh applications. Wetted parts are available in different materials (1.4404/SS 316L; Alloy C-22, PP; PVDF or PEEK), offering installation flexibility in many applications. The intelligent sensor locking system in the housing enhances operational safety. Without the presence of a sensor, the housing cannot be inserted into the process. Also, it makes it possible to remove the sensor from the housing when in the service position.

Specifications

Operation Manual or pneumatic or pneumatic with inductive	
	back
Ambient temperature	SS 316L, Alloy C-22: -10 to 70 °C (14 158 °F)
	PP, PVDF, PEEK: 0 to 70 °C (32 158 °F)
Max. permissible pressure	SS 316L, Alloy C-22: 16 bar/120 °C or 10 bar/140 °C
and temperature	(232 psi/248°F or 145 psi/284°F
	PP: 4 bar/60 °C or 2 bar/70 °C
	(58 psi/140°F or 29 psi/158°F)
	PVDF: 6 bar/90 °C or 4 bar/100 °C
	(87 psi/194°F or 58 psi/212°F)
	PEEK: 10 bar/100 °C or 6 bar/120 °C
	(145 psi/212°F or 87 psi/248°F)
Insertion length	80 mm (3.15") or 280 mm (11.02")
Wetted parts	SS 316L, Alloy C-22, PP, PVDF, PEEK or PVDF
Wetted O-rings	Viton®, Kalrez® or EPDM
Process connections	Flanges: DIN or AISI, or NPT 11/4"
Pneumatic condition	4 to 6 bar
Flushing condition (water)	1 to 6 bar
Certificates and Approvals	CE;
	Pressure Equipment Directive guideline (PED);
	ATEX and FM

Many housing options are available. Please use the product configurator found on p. 139.

Features Overview

- Highly efficient cleaning chamber
- Intelligent sensor locking system to prevent unintentional removal of the sensor
- Integrated sensor protective cage to protect the sensor in cases of fast process flow
- Specially designed drive train allows sensor retraction from high process pressures and temperatures
- Automated sensor cleaning with EasyClean

www.mt.com/InTrac781

www.mt.com/InTrac784

InTrac 785/787

For Harsh Applications

InTrac 785 InTrac 787

Features Overview

- Anti-blowout tip prevents accidental blowout
- Variable insertion length
- Flushing chamber available
- Wide range of installation options
- Flexibility in maintenance intervals due to sensor access during running process
- Smooth and reliable operation even in applications with high fiber concentration

InTrac 785/787 is a rugged, retractable housing for the most demanding industrial applications. Sensor maintenance and replacement becomes a fast and easy task using the InTrac 785/787, and can be done without any interruption to your process. Once retracted, the integral ball valve completely seals off your process, preventing loss of medium or contamination. The design allows for direct mounting to process lines, tanks and reactor vessels.

The InTrac 785 allows a wide range of installation possibilities, thanks to the wide variety of process connections and materials for wetted parts. If the ball valve is already present or a factory standard needs to be used, this housing is also available without ball valve and process connection.

Specifications	InTrac 785	InTrac 787
Wetted parts	316L, C22, titanium	
	Ball valve always made of 1.4408	Stainless 316L
Surface finish	N6 (R _a 32)	N6/N5 (R _a 32/R _a 16)
O-ring	Viton®, Kalrez®	Viton®-FDA
Sensor fitting	Pg 13.5	Pg 13.5
Temperature range	Up to 140°C/276°F	Up to 140 °C/276 °F
Pressure rating	16 bar (232 psi)	9 bar (130 psi)
(Sensor dependent)		

Certificates and Approvals CE, Pressure Equipment Directive guidelines (PED)

Suggested Sensors InTrac 785

pH	DO	CO ₂	Conductivity	Turbidity
All 425 mm	All 420 mm	N/A	InPro 7100/425*	All 409 mm

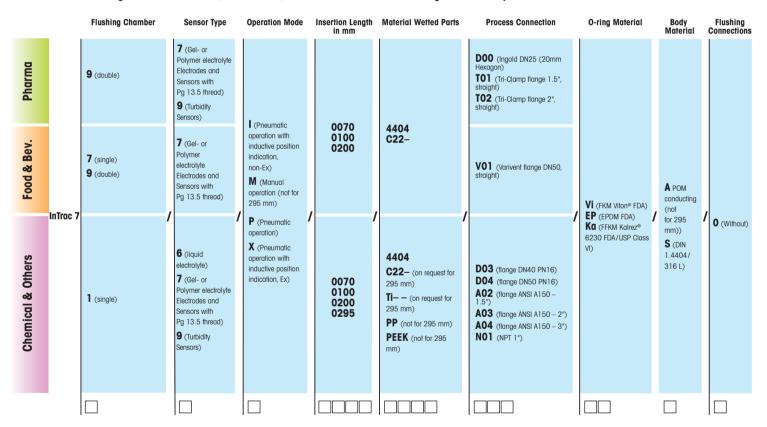
^{*} with InTrac 785 without protective cage

Suggested Sensors InTrac 787 (all 120 mm length)

		-	9 /	
pH	DO	CO ₂	Conductivity	Turbidity
InPro 3030	InPro 6050	N/A	InPro 7001	InPro 8050
InPro 3100 (i)	InPro 6800 (G)		InPro 7108	InPro 8100
InPro 3250 (i)	InPro 6850 (i) (G)		InPro 7100 (i)	InPro 8200
InPro 4010	InPro 6900 (i) (G)			
InPro 4260 (i)	InPro 6950 (i) (G)			
InPro 4281 i				
InPro 4800 (i)				
InPro 4881 (i)				
DPA				
DPAS				
DXK				

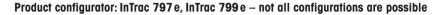
Many housing options are available. Please use the product configurator for InTrac 785 found on p. 138 or ordering information for InTrac 787 found on p. 139.

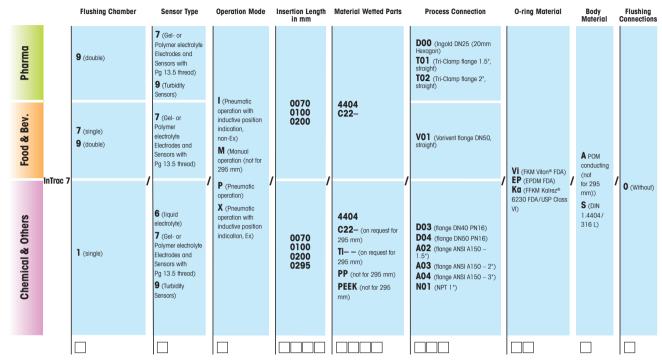
- www.mt.com/InTrac785
- www.mt.com/InTrac787

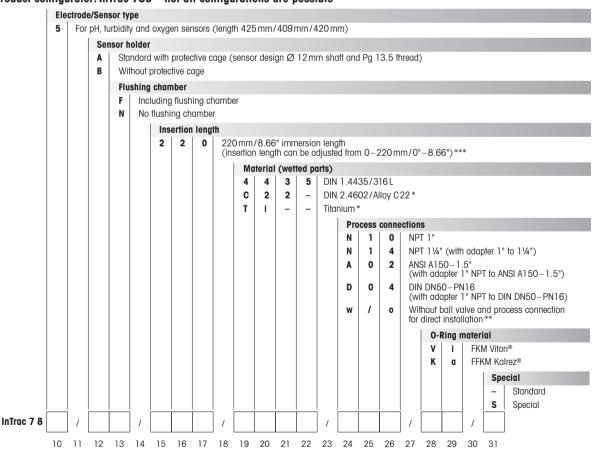

Product Configurators

InTrac 777 e/InTrac 779 e Sensor Fit Guide

Sensor Length	Insertion Lengt	h			
	70 mm	100 mm	200 mm	295 mm	
205 mm (Turbidity)	•1	•1	-	-	
220 mm (O ₂ /CO ₂)	•	•	-	-	
225 mm (pH/ORP)	•	•	-	_	
407 mm (Turbidity)	_	_	● 1	_	
420 mm (O ₂ /CO ₂)	_	_	•	•	
425 mm (pH/ORP/Conductivity)	_	_	•	•	

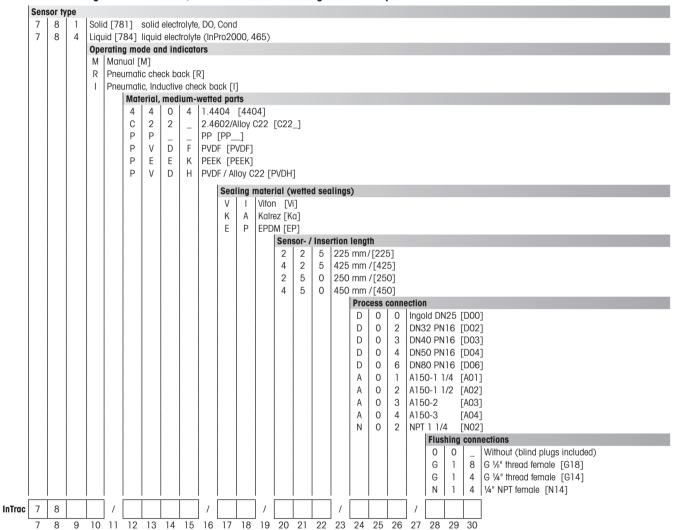

¹ InTrac 779e only


Product configurator: InTrac 776 e, InTrac 777 e, and InTrac 779 e - not all configurations are possible


InTrac 77Xe

Hastelloy and titanium housings
have cap nuts made of stainless
steel. Varivent and Tri-Clamp flanges are available in stainless steel only.

Product configurator: InTrac 785 - not all configurations are possible


^{*} Ball valve made of SS 1.4408, ** For exact ball valve requirements please refer to the instruction manual,

^{***} Insertion length will be reduced by 40 mm/1.56" by using a flushing chamber.

Ordering Information for InTrac 787

	Process Connect	Bore Size	Insertion Length	Wetted Parts	Order Number
InTrac 787/100 mm (4")	NPT/1.5"	1.5"	0-100 mm/0"-4"	SS	52 402 401
InTrac 787/300 mm (12")	NPT/1.5"	1.5"	0-300 mm/0"-12"	SS	52 402 402
O-ring kit	N/A	N/A	N/A	Viton®-FDA	52 402 403
Adapter set 787/4801 SG 3.1 B	N/A	N/A	N/A	SS	52 402 701

Product configurator: InTrac 781, InTrac 784 - not all configurations are possible

EasyClean

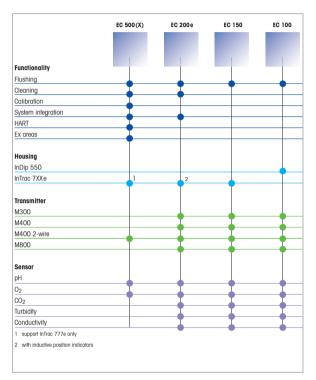
Process Reliability Through Targeted Automation

EasyClean systems are feature-rich and compact. Chemical processing, food processing, bio-pharmaceutical processes, and other industrial applications all benefit from EasyClean's ability to automate routine maintenance. Just choose the most appropriate Ingold sensor, housing, and transmitter for your process, then add an EasyClean system to give you the exact amount of automation you need.

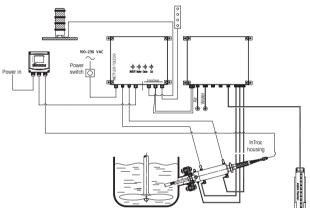

Flexibility of sensor maintenance

In conjunction with the METTLER TOLEDO Ingold transmitter line, sensor maintenance is fully automated. However, manual operation is also possible whenever required. An integrated controller identifies each ongoing working step, as well as any functional problems within the system.

Safety


EasyClean carries out continuous system diagnostics. In the event of any system anomaly the electrode remains inserted in the sample medium in order to ensure continued parameter measurement and prevent process interruption.

System overview EasyClean 500 (X)



EasyClean Configuration

Custom

This section will assist you with configuration based upon your specific requirements. The following example creates a fully automated EasyClean system for a "typical" industrial processing application. For harsh chemical environments, choose a compatible industrial sensor housing combination and an EasyClean system to give you the level of automation desired. The ordering information provided on p. 145 will help you choose the appropriate system components. Please make sure you choose one item from each of the sections marked with a ...

Schematic of a typical EasyClean custom installation

Configuring your EasyClean system (example)

	Product Description	Order Number	P.
* EasyClean system	EasyClean 200 e	52 403 776	143
Option:	Empty canister (5000 ml)	52 118 063	-
Option:	Connection cable: control unit > transmitter (5 m/16.4 ft)	52 300 265	145
Option:	Wall mounting kit, complete	52 402 306	145
* Transmitter	M400 Type 1	30 374 111	97
* Sensor cable	VP cable 3 m (9.8 ft)	52 300 108	148
* Sensor	InPro 3250 SG/225 mm	52 002 560	25
* Housing	InTrac 777 e-I	52 403 216	133

^{*} Required system component for operation

Note: For full functionality, housings must have position sensors when used with an EasyClean 200 e or 500 system.

EasyClean 500

Flexible, for the Highest Demands

EasyClean 500 is used for fully automatic cleaning and calibration of pH, ORP, and oxygen measuring points. In combination with the transmitter M400 2-wire and the InTrac 777 e retractable housing it provides a flexible system solution which can be implemented into either continuous or batch measurements.

EasyClean 500 is versatile in its application. It offers multiple control possibilities and can be programmed extensively. Furthermore, a version for applications in explosion hazardous areas is available. The connection to a supervisory process control system can easily be realized in a conventional way, via point-to-point or via HART.

Specifications

Protection	IP 65
Power	EasyClean 500: 15 V ~ 30 V/100 mA
	EasyClean 500 X: 15 ~ 30 V (Safety bar-
	rier required,
	[Ex ib Gb]), U_i =30V,
	$li_{max}=100 mA$,
	$Pi_{max}=800\text{mW}$
Compressed air supply	4-10 bar (58-145 psi)
Flushing supply	2-6 bar (29-87 psi)
Ambient conditions	+5°C55°C (+5131°F)
Communication protocol	HART (via transmitter)

- Completely unattended maintenance operation
- Allows maintenance teams to focus on more important and skill-intensive tasks
- Expanded operations without adding staff
- Ensured system performance and process control

Features Overview

- Minimizes maintenance costs by fully automatic cleaning and calibration of the sensor
- Optimal adaptation to the process conditions thanks to diverse program runs with freely programmable sequences
- High flexibility thanks to free choice of individually programmable intervals or weekly programs
- EasyClean 500 ensures a safe application in explosion hazardous areas

www.mt.com/EC500

EasyClean 200 e

Fully Automated Rinsing and Cleaning

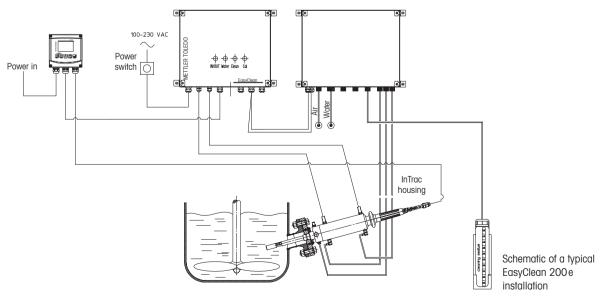
performance.

Specifications

opecinications	
Protection	IP 65
Power	100-230 VAC
	50/60 Hz
	0.18-0.3A
Compressed air supply	4-8 bar (58-116 psi)
Flushing supply	2-8 bar (29-116 psi)
Pump	Delivery distance: 10 m (32.8 ft)
	Suction height: 3 m (9.8ft)

The EasyClean 200 e systems fully automate rinsing and cleaning procedures for the parameters pH, ORP, dissolved

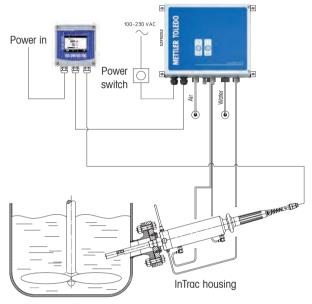
EasyClean 200e does not feature a calibration option, but it greatly reduces maintenance requirements and improves

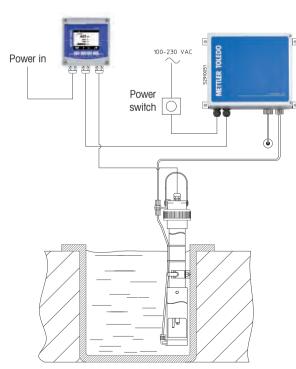

oxygen, CO₂, conductivity, and turbidity.

Features Overview

- Modular configuration provides many installation options
- Many accessories available for customized installation and operational requirements

Other Highlights


- Configured for immediate operation
- Easily customized for special requirements
- Manual operation override if desired
- Fully automated operation for pH, ORP, dissolved oxygen, CO_2 , conductivity, and turbidity
- Optimal cleaning effect due to the adjustable residence time


www.mt.com/EC200

EasyClean 150/100

Automated Rinsing

Schematic of a typical EasyClean 150 installation

Schematic of a typical EasyClean 100 installation

The EasyClean 100 and 150 series are designed to provide completely automatic sensor rinsing. The EasyClean 100 system is designed to be used with a stationary InDip housing with a spray-head for open tank and basin applications. The EasyClean 100 can use either water rinsing or compressed air to create turbulence to prevent stubborn build-up. The EasyClean 150 works in conjunction with a retractable housing to withdraw the electrode from the process prior to automatic water rinsing.

Specifications

-	
Protection	IP 65
Power	100-230 VAC
	50/60 Hz
	0.18-0.3A
Compressed air supply	4-8bar (58-116psig) (EasyClean 150)
Flushing supply	2-6 bar (29-87 psig)

Features Overview

- Modular design allows complete flexibility
- Universal components for easy serviceability
- Entry-level moderate fouling environments

Other Highlights

- Simple design and fast setup
- Standard program for immediate operation
- Manual operation override if desired

EasyClean 100 cleaning action. The bubble formation centered beneath the sensor guarantees gentle cleaning.

- www.mt.com/EC150
- www.mt.com/EC100

Wastewater

Product	100	150	200 e	500(X)	Order Number
EasyClean 100	•	_	_	_	52 402 304
EasyClean 150	_	•	_	_	52 402 319
EasyClean 200 e	_	_	•	_	52 403 776
EasyClean 500	_	_	_	•	30 900 558
EasyClean 500 X	_	-	_	•	30 900 560
▲ Transmitters					
M300 Process transmitter	•	•	•	_	See transmitter section
M400 transmitter	•	•	•		See transmitter section
M400 2-wire transmitter	•	•	•	•	See transmitter section
M800 transmitter	•	•	•	-	See transmitter section
▲ Sensor					
рН	•	•	•	•	See all sensors
Dissolved oxygen, turbidity, conductivity, CO ₂	•	•	•	•0	See all sensors
▲ Sensor Cables					
Cable AK9/3 m (9.8ff) (digital pH, DO, CO ₂ and Conductivity)	•	•	•	•	59 902 193
VP cable—ST/1.5 m (4.9ft) (conductivity)	•	•	•	_	58 080 201
Other length cables	•	•	•	•	See cable section
▲ Sensor Housings					
InTrac 7XXe	_	•	•0	• 6	See housings section
InDip 550	•	_	_	_	See housings section
Spray head for InDip 550 (PVC)	•	_	_	_	52 402 291
Spray head for InDip 550 (PVDF)	•	-	-	-	52 402 290
Calibration Supplies					
Buffer pH 4.01, 5000 ml	_	_	_	•	51 319 012
Buffer pH 7.00, 5000 ml	_	_	_	•	51 319 016
Buffer pH 9.21, 5000 ml		-		•	51 319 017
Options					
Transmitter cable 5 m (16.4ff)	•	•	•	_	52 300 265
Transmitter cable 10 m (32.8 ft)	•	•	•	_	52 300 266
Compressed air hose LDPE 20 m (65.6 ft)	•	•	•	_	52 402 314
Pneumatic hose PU 6/4 mm	-	•	•	_	52 401 322
Fittings pneumatic/hydraulic	-	•	•	_	52 402 337
Wall-mount kit	•	•	•	_	52 402 306
Post-mount kit	•	•	•	_	52 402 308
\\\\tag{\tag{\tag{\tag{\tag{\tag{\tag{					FO 400 010

- ▲ One item required for system operationOnly support oxygen sensors

Weatherproof hood

- Inductive position indicators required
- **❸** Support InTrac 777 e only

52 402 316

Cables and Connections

Sensor Heads/Cable Sockets

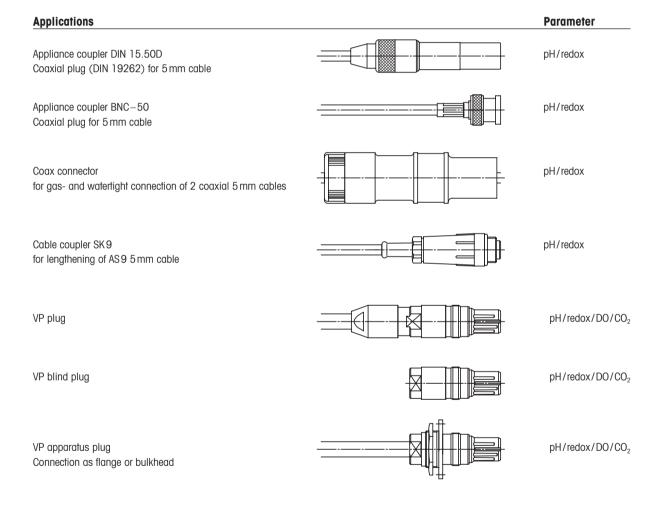
Interconnection cables from the sensor to the transmitter play an important role in providing reliable process measurements. In addition to carrying the particular parameter signal, in some cases temperature, solution ground and supply voltages are also required. Internal cable shielding and appropriate cable connectors assure noise-free, reliable signal transfer. A wide variety of cables is available to meet

the specific installation requirement. Below is a listing of common cables. The sensor head connection is shown below in the left column with the corresponding cable connection shown directly to the right.

Available sensor / cable adapters are listed on p. 147. Contact METTLER TOLEDO for additional configurations and custom application requirements.

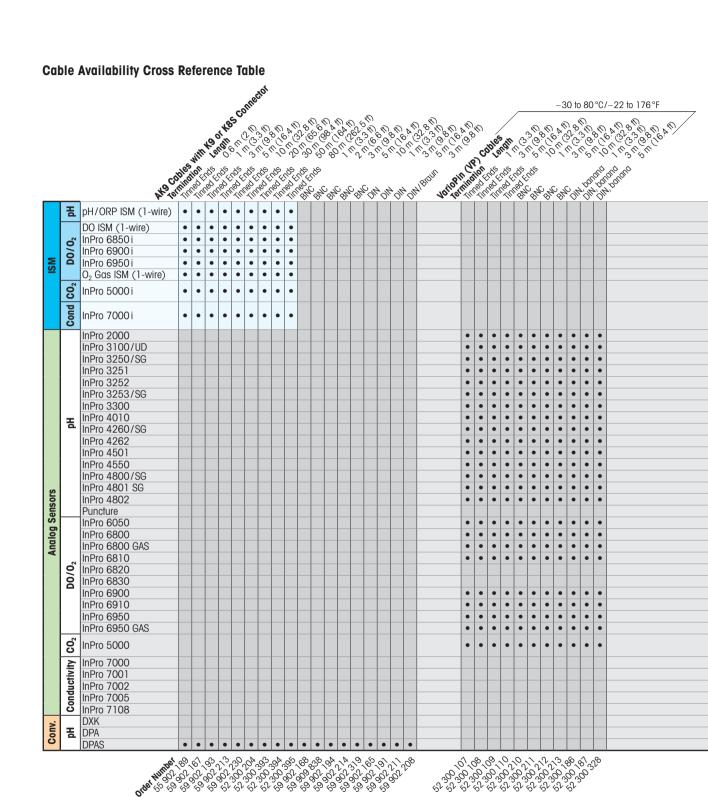
Sensor Heads	Adapters (see next page)	Cable Sockets	Parameter
S7		AS9	pH/redox
S8 (with Pg 13.5)		AS9	pH/redox
K8S (with Pg 13.5 autoclavable)		AK9	pH/redox
ISM: K8S		AK9	pH/redox/DO
K9 (autoclavable)		AK9	pH/redox
VP6/VP8 sensor head		VP6/VP8 cable socket	pH/redox/DO/
			CO ₂ /Cond
O ₂ flange plug type T-82		O ₂ cable socket T-82	DO
•			

Did You Know

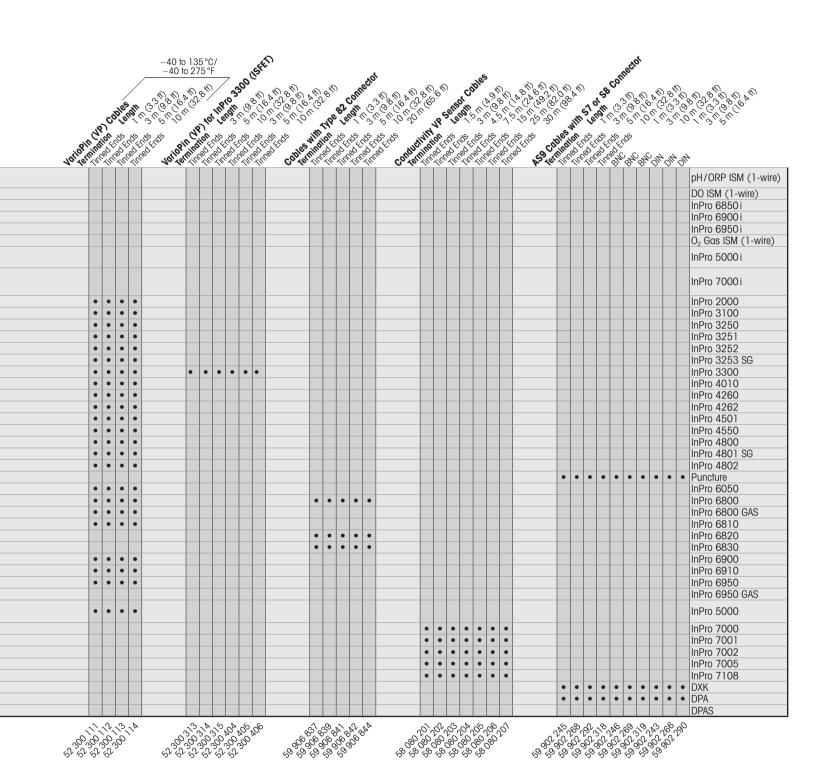

The VP cable blind plug keeps the cable socket dry when the sensor is removed for service.

Cable Terminations

Custom Cable Plugs to Transmitter or Appliances


Note: Standard cables are delivered with one end open for transmitter connection. On request, cable plugs can be ordered for different appliances.

The most commonly used plugs are shown below. Ask for other types from your METTLER TOLEDO representative.



Cable/Sensor Adapters and Cable Plugs

Description	Order Number
Adapter, to connect from K8S or K9 sensor head to AS9 cable	59 900 227
Adapter, to connect from S7 or S8 sensor head to AK9 cable	59 900 195
Adapter, to connect from T-82 sensor head to VP cable	52 200 940
Adapter, to connect from VP sensor head to T-82 cable	52 200 939
VP cable blind plug	52 300 252

For other available cables, please check with your METTLER TOLEDO representative.

Gas Analytics

Gas Analytics Measurement Solutions

for Industrial Applications

Gas Analyzers

Measure Where It Really Matters

Monitoring and controlling the level of harmful or explosive gases in your process is key to ensuring the safety of the environment, people, assets and increasing process efficiency.

METTLER TOLEDO's unique range of gas analysis solutions gives you the power to decide where to measure, everywhere it matters.

Based on long-standing field experience in analytical solutions for liquid measurement, METTLER TOLEDO has developed systems for gas analysis that offer:

- In situ and in-line capability: our systems are built to measure, right there where you need to measure
- Low cost of ownership: outstanding measurement performance without the drawback of heavy maintenance
- Ruggedness and long-term stability for continuous use in the harshest environments.

The best technology for the job

METTLER TOLEDO's choice of technologies for gas measurement all feature the ability to measure in situ, without the need for gas sampling or conditioning.

- GPro 500 Tunable Diode Laser
 (TDL) analyzers provide the highest level of reliability and fastest response time in process control and safety applications.
- Membrane covered InPro amperometric oxygen sensors are largely

insensitive to moisture and dust: they are ideally suited for inerting and blanketing applications.

TDL: Laser-sharp view into your process

With TDL absorption spectroscopy, a diode laser with a highly specific and extremely narrow emission wavelength is used to resolve single absorption lines of the gas species to be measured. The absorption lines are carefully selected to avoid cross-interference from other background gases. Using direct absorption spectroscopy, a spectrum is taken and compared with spectral reference data stored in the onboard database for any given temperature and pressure. The concentration of the gas is then calculated, and any inconsistency between reference data and measurement will trigger an alarm.

Process adaptions that fit anywhere

Many users want to reap the benefits of interference-free, drift-free TDL tech-

nology for better process control and lower maintenance costs. However, for reliable measurement with a TDL, necessary framework conditions such as minimum optical path length, availability of purge gas supply, or high dust load in a process can sometimes get in the way. Acknowledging these constraints, METTLER TOLEDO has developed specific adaption solutions to substantially increase the coverage of possible TDL applications.

The new wafer-type adaption allows cross-section installation down to DN50 (2") pipes with no flow restriction and minimum pipe work required. Further, static process gas conditions are not an obstacle to the GPro 500 with the availability of the new process purge-free probe for inertization and blanketing applications. Finally, the filter probe is ideal for measurement in high-dust applications where cross-stack-type TDLs typically fail due to the loss of signal intensity.

New gases, new opportunities for process and combustion applications:

Oxygen:	CO:	– Syngas	CO/CH ₄ :
 Blanketing and inertization 	Combustion	— Ammonia	Combustion
 Combustion control 	ESP filter	Fired heaters	
Reformers	CO boiler	Process heaters	H ₂ O:
Chlorination	FCC units	Carbon black	– Chlorine gas
Flare stacks		Ethylene	 H₂ reformer gas
 Thermal oxidizer 	CO ₂ :	Hydrogen	 Tower dryer exhaust
Vapor recovery	FCC units	production	

FormaldehydeEthylene oxide (EO)

EthylenePTA plantSyn gas

H₂S:

- Sulfur recovery

NH₃:

- Ammonia slip

HCI:

- Stack monitoring

www.mt.com/GPro500

	InPro 6800G/ InPro 6850iG	InPro 6900iG	InPro 6950iG	GPro 500
Industrial Processes				
Chemical Industry				
Inerting	•	•	•	•
Blanketing	•	•	•	•
Process/safety				•
Vapor recovery	•	•		•
Thermal oxidizer/process heaters				•
Flare				•
Food and Beverage Industry				
CO ₂ recovery			•	
Petrochemical				
Flue gas				•
Flares				•
Process/safety				•
ESP filters				•
Combustion				•

Comparison of Oxygen Measurement Technologies

Selection Criteria to Help You Choose the Right Tool

There is no single measurement technology that will work for every application. METTLER TOLEDO is dedicated to identifying and offering the best technologies for robust in process gas measurements. For making oxygen measurements, we have two technologies. The following is a general guideline for selecting the best technology. To make the final determination, please contact your local METTLER TOLEDO representative.

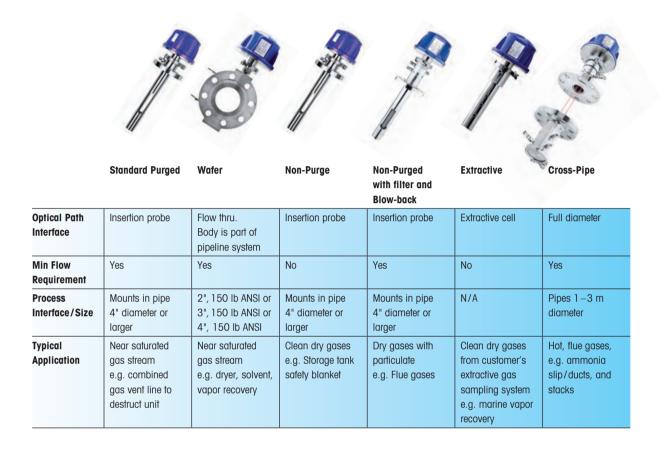
Oxygen measurement across the process industries

From preventing the build-up of explosive gas mixtures in chemical processes, to nitrogen blanketing for inhibiting product oxidation, to ensuring carbon dioxide purity in the Food and Beverage industry, measurement of oxygen is a vital element of many industrial processes.

Amperometric

This is an electro-chemical measurement technology housed in a compact package. It is a depleting technology, some maintenance and consumables is required. Chemical interferences are possible; knowledge of the gas composition is required for evaluation. For more information on this technique, refer to the Measurement Theory section of this catalog.

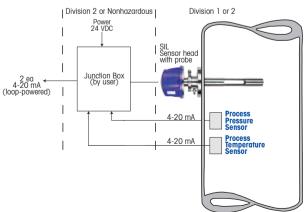
Tunable Diode Laser (TDL)


METTLER TOLEDO's TDL technology is immune to most interferences and the sensor's materials of construction are quite robust. There is no regular maintenance and the sensor is designed for long term continuous operation while

being virtually drift free. TDL is suited for the most challenging and critical applications. The physical package is a bit larger than the amperometric and optical sensors. For more information on this technique, refer to the Measurement Theory section of this catalog.

	Amperometric	TDL Oxygen
Applications	Inerting & Blanketing	Process Control, Safety & Combustion
Flow required	No, great for tank inerting	Certain applications require flow
Range	5-50,000 ppm or 50 ppm to 60%	0.01-100%
Max temperature	70°C (158°F)	600°C (1112°F)
Low pressure	-0.81 bar (-11.8 psig)	-0.9 bar (-13.05 psig)
High pressure	+7.95 bar (115.3 psig)	+9 bar (130.53 psig)
N ₂ purging required	No	Sometimes
Maintenance, consumables	Required	No
Capital	\$	\$\$\$
Probe size	Very small, for confined spaces	Larger, for pipes 2" dia. or larger
Hazardous area technique	Intrinsic safety	Explosion proof
Background gas interference	Susceptible to some	None
SIL	No	SIL2 compatible version available
ATEX/FM Approved	Yes	Yes

TDL Gas Analyzers


For Every Installation Location in Your Plant

Transmitter version

Division 2 or Nonhazardous Division 2 or Nonhazardous Division 1 or 2 Power 24 VDC Non-SIL Sensor head with probe Indicate the sensor head with probe Indicate the sensor head with probe Indicate the sensor head with probe Indicate the sensor head with probe Indicate the sensor Indic

Direct analog out version

GPro 500 TDL

Building Your Measurement System

Selection of Components

For proper operation and optimal performance in your process, each element of your measurement system must be carefully chosen. A complete measurement system requires components including a sensor, junction box, cable and transmitter.

Sensor Selection

METTLER TOLEDO sensors are high performance and long lasting. However, proper selection must be made according to the application and process environment to which it will be exposed.

Basic selection considerations are:

- Gas to be measured
- Measurement range
- Operating temperature/pressure range
- Alarm level
- Accuracy required
- Background gases & concentrations
- Ambient temperature

- Contaminants (particulates, oils, condensate, aerosols)

The sensor is made up of two significant pieces, as discussed below:

1a. Sensor-Spectrometer Portion (head)

Once it has been determined that we can successfully make the desired measurement, selection of correct head is relatively simple

Choices include:

- Gas to be measured (presently O₂, CO, CO2, HCI, H2S, CH4 CO/CH4, CH₄, NH₃ and H₂O vapor)
- Safety approval type (FM or ATEX)
- Requirement for SIL2

1b. Sensor -

Process Adaption Portion

Upon detailed review of the process conditions and using our many years of experience, we select the best style adaption for the application and the appropriate size.

This is a brief summary of the process adaption styles (each available in various sizes):

- Purged probe
- Non-purged probe
- Non-purged probe with filter and optional blowback
- Wafer
- Extractive
- White cell

In addition to the sensor style and size, other decisions include:

- Seal material (Kalrez® types or graphite)
- Optic material (borosilicate glass, quartz or sapphire)
- Wall thickness (to accommodate wall insulation)
- Process connection size
- Material of construction: 316L stainless steel and C22 Hastelloy are standard; others are available on request.

2. Transmitter Selection

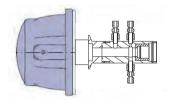
Transmitters are the component that communicates a sensor's readings into displayed measurements. The transmitter also transfers the data to the process control system.

Most users want the convenience of having a local display, multiple analog inputs/outputs and alarms. For these users we select the model M400, Type 3 transmitter. This 4 wire transmitter is ATEX/FM approved for Zone/Division 2 areas, is suitable for indoor or outdoor use and can be powered from AC or DC.

If your site requires a SIL version of the GPro 500, that version does not utilize the separate (M400) transmitter. The SIL version of the GPro 500 has a simple transmitter built into the sensor's head. It does not have the functionality of the M400, it simply has 2 analog (4-20mA) signal outputs (loop powered).

3. Junction Box

The multi-core cable that connects on one end to the GPro 500 head terminates the other end at a junction box that houses a 16 position terminal strip.


METTLER TOLEDO offers a junction box or users can provide their own junction box. The junction box needs to be rated for the great where it will be installed.

4. Cable

A multi-core cable is used to connect the GPro 500 head to the junction box. Note: on the FM unit, the cable is shipped loose, the ATEX unit has the cable pre-terminated in the sensor's head.

5. Verification Cell

Although not part of the GPro 500, a verification cell is a useful tool to verify calibration and for troubleshooting.

To use the cell, remove the sensor head from the probe and connect the cell to the head using the Tri-Clamp and special gasket. One verification cell can be used for multiple units on the same site. Ambient air can be used as a check gas for the oxygen sensor. To introduce other gases, the cell has inlet and outlet fittings.

6. Diagnostic Software

The MT TDL Suite is PC software with a variety of functions to see into and capture information about the operation of your GPro 500. It is not mandatory to ever use this software but most users find it a powerful tool. The software suite will automatically detect the gas that your unit is designed to measure and will display it appropriately.

7. Thermal Barrier

If the process gas is expected to be at a temperature between 250 °C to 600 °C, a thermal barrier can be used to protect the sensor's electronics. The thermal barrier is effectively a spool piece mounted between the sensor and the sensor head.

GPro 500 Sensor

In Situ Sensor Convenience, with the Power of an Analyzer

Tunable Diode Laser (TDL) measurement technology is recognized for speed and accuracy of measurement, and immunity to background gases. To this, METTLER TOLEDO has added the simplicity of use and low maintenance of in-line sensor design, plus advanced predictive diagnostics. The result is the GPro 500 series, a highly durable line of oxygen sensors for process and safety applications in chemical plant and petrochemical operations.

Specifications

opecinications	
Measurement O ₂	
Effective path length	Probes: 200, 400, 800 mm (7.87", 15.75", 31.49")
	Wafer:50,80,100 mm (1.96", 3.15", 3.94")
	Extractive cells: 200, 400, 800 mm, 1 m,
	(7.87", 15.75", 31.49", 39.37")
Lower detection limit	
(in 1 meter path length at ambient	
standard conditions, dry gas,	
no dust load, in N ₂ background)	100 ppm-v
Measurement range	0-100%
Accuracy	2% of reading or 100 ppm O ₂ , whichever is greater
Linearity	Better than 1 %
Resolution	<00.01 % vol O ₂ (100 ppm-v)
Sampling rate	1 second
Response time (T ₉₀)	$O_2 \text{ in } N_2 21 \% > 0 \% \text{ in } < 2 \text{ sec}$
Warm up time	Typically < 1 minute
Repeatability	$\pm 0.25\%$ of reading or 0.05% O ₂ (whichever is greater)
Process pressure range	0.1 bar-10 bar (abs)*/1.45 psi-145.03 psi (abs)
Process temperature range	0-250°C (32-482°F)
	Optional (for probe installation) 0-600 °C (0-1112 °F)
	with additional thermal barrier
* 6 000 111	

^{*} firmware 6.23 or higher

Features Overview

- One-flange installation without alignment
- In situ measurement without sampling system
- Low cost-of-ownership with virtually no maintenance
- Low purge gas consumption for minimum operating costs
- Large choice of process interface options

Did You Know
Tunable Diode Laser
spectrometers are insensitive
to background interference from the
process gas and moisture, and are
largely resistant to heavy dust loads.

www.mt.com/GPro500

Measurement (All measurement specifications with reference to standard conditions T & P with no dust or particulates) and 1 m optical path

	02	CO (ppm)	CO (%)	H ₂ O	H ₂ O ppm	CO ₂ (%)
Effective path length	Probes: Wafer Cell: Extractive cel	200, 400, 800 mm (7.87) 104 mm, 110 mm, 154 n Is: 200 mm, 400 mm, 800	nm, 164 mm, 214 mm	(4.09", 4.33", 6.06", 6.46		
Measurement range and standard conditions ¹⁾	0-100%	0-2%	0-100%	0-20%	0-1%	0-100%
Lower Detection Limit ²⁾	100 ppm-v	1 ppm-v	1500 ppm-v	5 ppm-v	1 ppm-v	1000 ppm-v
Accuracy	1% of reading or 100 ppm O ₂ , whichever is greater	2% of reading or 1 ppm, whichever is greater	2% of reading or 1500 ppm, whichever is greater	2 % of reading or 10 ppm, whichever is greater	2% of reading or 1 ppm, whichever is greater	2% of reading or 1000 ppm, whichever is greater
Linearity	Better than 1%	Better than 1%	Better than 1%	Better than 1%	Better than 1%	Better than 1%
Sampling rate	1 second	1 second	1 second	1 second	1 second	1 second
Response time (T90)	O ₂ in N ₂ 21% > 0% in < 2 sec	CO in N ₂ 300 ppm-v to 0% in <4 sec	CO in N ₂ 1% to 0% in < 4 sec	H ₂ O in N ₂ 1% to 0% in < 4 sec	H_2O in N_2 1% to 0% in <4 sec	CO ₂ in N ₂ 1% to 0% in <4 sec
Warm-up time	Typically <1 hour	Typically <1 hour	Typically <1 hour	Typically <1 hour	Typically <1 hour	Typically <1 hour
Repeatability	$\pm 0.25\%$ of reading or 0.05% O_2 , whichever is greater	±0.25% of reading or 5 ppm-v CO, whichever is greater	±0.25% of reading or 0.75%-v CO, whichever is greater	±0.25% of reading or 50 ppm-v H ₂ O, whichever is greater	±0.25% of reading or 10 ppm-v H ₂ O, whichever is greater	±0.25% of reading or 5000 ppm-v CO ₂ , whichever is greater
Process pressure range	0.1 bar to 10 bar (abs)*/ 1.45 psi to 145.03 psi (abs)*	0.8 bar to 2 bar (abs)/ 11.6 psi to 29.psi (abs)	0.8 bar to 1.5 bar (abs)/ 11.6 psi to 21.7.psi (abs)	0.8 bar to 2 bar (abs)/ 11.6 psi to 29.psi (abs)	0.8 bar to 5 bar (abs)/ 11.6 psi to 72.5 psi (abs)	0.8 bar to 2 bar (abs)/ 11.6 psi to 29 psi (abs)
Process tempe- rature range	0 to +250 °C (+32 to +482 °F) Standard. 0 to +600 °C (0 to +1112 °F) with built in thermal barrier. 0 to +150 °C (+32 to +302 °F) (PFA, PTFE filter)					
	* firmware 6.23 or higher					

	CO ppm/CH ₄ %	CO ₂ %/CO %	HCI (ppm)	H ₂ S (%)	CH₄ ppm	NH ₃ ppm	
Effective path length	fective Probes: 200, 400, 800 mm (7.87", 15.75", 15.75", 31.50").						
Measurement range and standard conditions ¹⁾	0-2% (CO) 0-10% (CH ₄)	0-100% (CO ₂ and CO)	0-3%	0-50%	0-1%	0-1%	
Lower Detection Limit ²⁾	0-200°C: 1 ppm-v (CO), 5 ppm-v (CH ₄) 200-600°C: 5 ppm-v (CO), 25 ppm-v (CH ₄)	1000 ppm-v (CO ₂) 1500 ppm-v (CO)	0.6 ppm-v	20 ppm-v	1 ppm-v	1 ppm-v	
Accuracy	2% of reading or 1 ppm (CO)/25 ppm-v (CH ₄), whichever is greater	2% of reading or 1000 ppm, whichever is greater	2% of reading or 0.6 ppm, whichever is greater	2% of reading or 20 ppm, whichever is greater	2 % or 1 ppm	2 % or 1 ppm	
Linearity	Better than 1%	Better than 1%	Better than 1%	Better than 1%	Better than 1%	Better than 1%	
Sampling rate	1 second	1 second	1 second	1 second	1 second	1 second	
Response time (T90)	CO/CH ₄ in N ₂ 2% to 0% in <4 sec	CO ₂ in N ₂ 1% to 0% in <4 sec	HCI in N ₂ 1% to 0% in <4 sec	H ₂ S in N ₂ 1% to 0% in <4 sec	CH ₄ in N ₂ 1% to 0% in <4 sec	NH ₃ in N ₂ 1% to 0% in <4 sec	
Warm-up time	Typically <1 hour	Typically <1 hour	Typically <1 hour	Typically <1 hour	Typically <1 hour	Typically <1 hour	
Repeatability	±0.25% of reading or 5 ppm-v CO/500 ppm-v CH ₄ , whichever is greater	±0.25% of reading or 5000 ppm-v CO ₂ or CO, whichever is greater	±0.25% of reading or 3 ppm-v HCl, whichever is greater	±0.25% of reading or 100 ppm-v H ₂ S, whichever is greater	±0.25% of reading or 5 ppm-v CH ₄ , whichever is greater	±0.25% of reading or 5 ppm-v NH ₃ , whichever is greater	
Process pressure range	0.8 bar to 2 bar (abs)/ 11.6 psi to 29 psi (abs)	0.8 bar to 2 bar (abs)/ 11.6 psi to 29 psi (abs)	0.8 bar to 3 bar (abs)/ 11.6 psi to 43.5 psi (abs)	0.8 bar to 2 bar (abs)/ 11.6 psi to 29 psi (abs)	0.8 bar to 3 bar (abs)/ 11.6 psi to 43.5 psi (abs)	0.8 bar to 3 bar (abs)/ 11.6 psi to 43.5 psi (abs)	
Process tempe- rature range	0 to +250 °C (+32 to +482 °F) Standard. 0 to +600 °C (0 to +1112 °F) with built in thermal barrier. 0 to +150 °C (+32 to +302 °F) (PFA, PTFE filter)						

 $^{^{1)}}$ Measurement range and standard conditions (ambient temperature and pressure, 1 m path length). $^{2)}$ Lower Detection Limit (in 1 meter path length at ambient standard conditions, dry gas, no dust load, in N_2 background).

Gas Analyzers

Measure Everywhere It Matters

Variant Configurator

GP10 500 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	Gas Analyzer	GPro 500 A	Т	Α	0	Р	В	K	S	0	2	C) F) [D	1	Χ	S			/	Α	Χ
MCARCHECK EX	,						_									_	_		Y	Y	/		
ATEXPRECEX EX d M A T D M Closs 1 Div 1	- Lander - L		Ť	Ť	Ť	T	T	T	T	Ť	T	j			Г	П	T	Ť	İ	İ		Í	Ť
M Class 1 Div 1		A	Ť	Т	т	Т	Т	T	Ť	Т	П	П		Т		П	Т	T	П	П	_	\top	т
						†		H	1	Ħ	Ħ	H				Ħ	\dagger	T	H	H	+	+	
Display	Gases		_			ı	i	i	i	i							i	İ	i				
C C C C C C C C C C				A	0	T	Т	t	Ť	т	П	П		Т	П	П	Т	Ť	П	П	_	\top	т
H,O H,O PM H,O P	CO					†		H		Н	H	H				Ħ		Ħ	Ħ	Ħ	+	+	
H.O ppm CO. % CO. % CO. % CO. % CO. 1 CO. % CO. 1 CO. Physical Co. Section (Co. Sec						††		i		Н	Ħ	H				Ħ		t	H	Ħ	+	+	т
C0 % C 2						†		i	İ	H	Ħ	H				Ħ		t	H	Ħ	+	\pm	
C0 %						†		H		Н	H	H				Ħ		Ħ	Ħ	Ħ	+	+	
C						††		i		Н	Ħ	H				Ħ		t	H	Ħ	+	\pm	т
CO ppm + CH4, %					C			i	İ	H	Ħ	T				Ħ		t	H	Ħ	+	\pm	
H,S HCI ppm HC						†		H		Н	Ħ	H				Ħ		t	Ħ	Ħ	+	+	\top
HCI ppm						†		H		Н	Ħ	H				Ħ		Ħ	Ħ	Ħ	+	+	
CH4, ppm						†		i	t	Н	H	H				Ħ		Ħ	H	H	+	+	
N 0								H	+	Н	H	H				H		t	H	H	+	+	
Process interfaces									1	\parallel	+	+				H		+	+	+	+	+	+
Standard Probe purged (SP) P T T T T T T T T T				14	U		i	l	ı	H								i					
Standard Probe purged twin (SP)						P	T	t	Ť	T	П	П		Т		П	t	Ť	Н	П		\top	т
Non-purged Filter Probe (NP) Non-purged Filter Probe twin (NP) Non-purged Filter Probe with (NP) Non-purged Filter Probe with Blow-back (BP) Non-purged Filter Probe with Blow (Bold) Non-purged Filter Probe with All Probe with All Probe with All Probe with All Probe with All Probe with	. •							H		Н	H	H				Ħ		Ħ	Ħ	Ħ	+	+	
Non-purged Filter Probe with Blow-back (BP) Non-purged Filter Probe with Blow (BP) Non-purged Filter Probe with Blow (BP) Non-purged Filter Probe with Blow (BP) Non-purged Filter Probe with Blow (BP) Non-purged Filter Probe with Blow (BP) Non-purged Filter Probe with Blow (BP) Non-purged Filter Probe with Blow (BP) Non-purged Filter Probe with Blow (BP) Non-purged Filter Probe with Blow (BP) Non-purged Filter Probe with Blow (BP) Non-purged Filter Probe with Blow (BP) Non-purged Filter Probe with Blow (BP) Non-purged Filter Probe with Blow (Brow (Brow (Brow (Brow (Brow (Brow (Brow (Brow (Brow (Brow (Brow (Brow (Brow (Brow (Brow (B							H	i	t	H	H	H				H		Ħ	H	H	+	+	
Non-purged Filter Probe with Blow-back (BP) Non-purged Filter Probe with Blow-back twin Wafer (W) Extractive Cell (E) Cross-pipe Folded Path (C) Process optics*** Brorosilicate Quartz Sapphire Quartz Sapphire Quartz Sapphire Qual Window Borosilicate Qual Window Quartz Qual Window Quartz Qual Window Sapphire T T Process sealings*** Kalrez® 6375 Grape (6375 Grape (6375 Grape (6306) Kalrez® (6300 Kalrez® (6300 Kalrez® (6300 Kalrez® (6300 Kalrez® (6300 Kalrez® (6300 Kalrez® (6300) Rale Ball (1) Rale							H	H	t	H	H	H				H	Ħ	Ħ	H	H	+	+	
Non-purged Filter Probe with Blow-back twin Wafer (W) Wafer (W) Wafer (W) Be tartactive Cell (E) Cross-pipe Folded Path (C) Process optics*** Borosilicate Quartz Quartz Quarts Sapphire Dual Window Borosilicate C C C C C C C C C C C C C C C C C C C								H	t	Н	H	H				Ħ		Ħ	Ħ	Ħ	+	+	
Wafer (W)							H	i	t	H	H	H				H	t	Ħ	H	H	+	+	
Extractive Cell (E)							H	H	t	H	H	H				H	Ħ	Ħ	H	H	+	+	
Cross-pipe Folded Path (C) Process optics*** Borosilicate Quartz Quartz Quivindow Borosilicate Dual Window Borosilicate Dual Window Sapphire To process sealings*** Kalrez® 6375 Kalrez® 6375 Kalrez® 6375 Kalrez® 6380 Kalrez® 638								H	t	Н	H	H				H		Ħ	Ħ	Ħ	+	+	
Process optics*** B I								i	İ	H	Ħ	H				Ħ		T	H	Ħ	+	\pm	
Borosilicate Quartz Sapphire S							i	i	İ	ı						i	İ	İ	i				
Quartz Q	Borosilicate						В	T	Ť	Т	П	П		Т	П	П	Т	Т	П	П	_	т	т
Sapphire S Image: Control of the co	Quartz							İ	İ	Ħ	Ħ	T		Т		Ħ	Ħ	T	Ħ	Ħ	+	\top	T
Dual Window Borosilicate C	Sapphire							İ	İ	Π	T	T				Ħ	Ħ	T	T	T	\top	\top	
Dual Window Quartz R I	Dual Window Borosilicate							İ	İ	Ħ	Τİ	Τİ		Т	İ	Ħ	İ	T	Tİ	T	+	T	T
Dual Window Sapphire T I	Dual Window Quartz						_	İ	İ	Ħ	Ħ	T		Т		Ħ	Ħ	T	Ħ	Ħ	\top	T	Т
Process sealings*** Kalrez® 6375 Kalrez® 6375 Kallez® 6375 Graphite Galler 1 Kalrez® (FDA grade) 6230 F Kalrez® 6380 Saller 1 Kalrez® 0090 R EPDM FDA Qaller 1 Wetted materials*** 1 1.4404 (equivalent to 316L) Saller 2 Hastelloy C22 Caller 3 Optical path probes and extractive cell*** 2 200 mm (7.9") 4 aller 3 400 mm (15.7") 8 aller 3 800 mm (31.5") 8 aller 3 1 m (3.3 ff) 0 aller 3 2 m (6.6 ff) 0 aller 3 3 m (9.8 ff) 0 aller 3	Dual Window Sapphire						Τ	İ	İ	Ħ	Ħ	T				Ħ	Ħ	T	T	Ħ	Т	T	ı
Kalrez® 6375 Graphite Gall IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII								İ	İ	İ	l	l			İ	İ	İ	İ	ı	l		İ	İ
Kalrez® (FDA grade) 6230 Kalrez® 6380 Kalrez® 0090 EPDM FDA Wetted materials*** 1.4404 (equivalent to 316L) Hastelloy C22 Optical path probes and extractive cell*** 200 mm (7.9") 400 mm (15.7") 800 mm (31.5") 1 m (3.3 ft) 2 m (6.6 ft) 3 m (9.8 ft)	Kalrez® 6375							K	Ť	Т	П	П		Т	П	П	T	T	П	П	Т	П	Ť
Kalrez® 6380 Kalrez® 0090 EPDM FDA Wetted materials*** 1.4404 (equivalent to 316L) Hastelloy C22 Optical path probes and extractive cell*** 200 mm (7.9") 400 mm (15.7") 800 mm (31.5") 1 m (3.3 ft) 2 m (6.6 ft) 3 m (9.8 ft)	Graphite							G	İ		T	I				Ħ		T	T	T			
Kalrez® 0090 R I <t< td=""><td>Kalrez® (FDA grade) 6230</td><td></td><td></td><td></td><td></td><td></td><td></td><td>F</td><td>ĺ</td><td>Ì</td><td>Ì</td><td>Ì</td><td></td><td></td><td>ĺ</td><td>ĺ</td><td>Ì</td><td></td><td>Ì</td><td>Ì</td><td></td><td></td><td></td></t<>	Kalrez® (FDA grade) 6230							F	ĺ	Ì	Ì	Ì			ĺ	ĺ	Ì		Ì	Ì			
### Repulse	Kalrez® 6380							S			I	l				Ħ			I	Ì			
Wetted materials*** 1.4404 (equivalent to 316L) Hastelloy C22 C 0 Optical path probes and extractive cell*** 2 0 200 mm (7.9") 2 0 400 mm (15.7") 4 0 800 mm (31.5") 8 0 1 m (3.3 ff) 0 1 2 m (6.6 ft) 0 2 3 m (9.8 ff) 0 3	Kalrez® 0090							R	İ		T	I				Ħ		T	T	T			
1.4404 (equivalent to 316L) Hastelloy C22 Optical path probes and extractive cell*** 200 mm (7.9") 400 mm (15.7") 800 mm (31.5") 1 m (3.3 ff) 2 m (6.6 ft) 3 m (9.8 ft)	EPDM FDA							Q	İ	Ì	Πİ	Πİ				Ħ	İ	Ť	TÌ	Ì		T	Ì
Hastelloy C22 Optical path probes and extractive cell*** 200 mm (7.9") 400 mm (15.7") 800 mm (31.5") 1 m (3.3 ft) 2 m (6.6 ft) 3 m (9.8 ft)	Wetted materials***								İ	ı		l											
Optical path probes and extractive cell*** 200 mm (7.9") 2 0 400 mm (15.7") 4 0 800 mm (31.5") 8 0 1 m (3.3 ft) 0 1 2 m (6.6 ft) 0 2 3 m (9.8 ft) 0 3	1.4404 (equivalent to 316L)								S	0	П	П			П	П	Τ	Τ	П	П			Т
200 mm (7.9") 400 mm (15.7") 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Hastelloy C22								С	0													
400 mm (15.7") 800 mm (31.5") 1 m (3.3 ft) 2 m (6.6 ft) 3 m (9.8 ft)	Optical path probes and extractive cell***																L						
800 mm (31.5") 1 m (3.3 ft) 2 m (6.6 ft) 3 m (9.8 ft)	200 mm (7.9")										2	. C)			П	П	T					
1 m (3.3 ff) 2 m (6.6 ft) 3 m (9.8 ft) 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	400 mm (15.7")																						
2 m (6.6 ft) 0 2 1 1 1 1 1 1 3 3 m (9.8 ft)	800 mm (31.5")										8												
3 m (9.8 ft)	1 m (3.3 ft)										C					\prod							
	2 m (6.6 ft)										C) 2	2										
4 m (13.1 ft)	3 m (9.8 ft)																		I				
	4 m (13.1 ft)										C) 4											

Variant Configurator (continued)

Gas Analyzer	GPro 500	Α	Τ	Α	0	Р	В	K	S	0	2	0	Р	D	1	>	(S			/	Α	Х
30 027 126*, 30 538 717**	GPro 500																		<u> </u>	Y			Υ
5 m (16.4 ft)	0.70				•			-	-	-	0	5	Ť	Ť	Ť	Ť		T	Ť	Ť		Ť	Ť
6 m (19.7 ft)											0	6	Ť	\dagger	Ħ	\forall	т	Ħ	T	Ť		\top	Ħ
None											Χ		t	İ	Ħ	Ħ		Ħ		Ť		Ħ	Π
Process connections***													i	İ	i	i		i	İ	İ		i	i
DN 50/PN 25													P	D	Ť	╗		T	T	Ť		т	T
ANSI 2"/300 lbs													Р	Α	Ħ	\forall		Ħ	T	Ť		Ħ	Ħ
DN 50/PN 16													L	D	Ħ	Ħ		Ħ	T	t		Ħ	Ħ
ANSI 2"/150 lbs													L	Α	Ħ	T		Ħ	T	İ		Ħ	T
DN 80/PN 16													G	D	Ħ	П		Ħ	T	Ť		П	T
ANSI 3"/150 lbs													G	Α	Ħ	T		Ħ	T	Ť		Ħ	T
DN100/PN25													Ν	D	Ħ	T	Т	Ħ	Ť	İ		Ħ	Tİ
ANSI 4"/300 lbs													N	Α	Ħ	T	П	Ħ	T	İ		Ħ	Π
ANSI 4"/150 lbs													М	Α	İ	T		Ħ	İ	İ		Π	Π
DN 50/PN 16 and 40													W	1	İ	T		Ħ	İ	İ		Ħ	T
DN 80/PN 16 and 40													W	2	Ħ	\parallel		Ħ	T	1		T	Π
DN 100/PN 16													W	3	İ	T	П	Ħ	İ	İ		İ	T
ANSI 2"/150 lbs													W	4	İ	П		Ħ	T	İ		П	Π
ANSI 3"/150 lbs													W	5	T	П				Ī		П	П
ANSI 4"/150 lbs													W	6	İ	T	П	İ		İ		Ħ	Ì
Swagelok 6 mm													Ε	М	İ		П						Ì
Swagelok ¼"													Ε	Ι	П	П	П					П	
Wall thickness***																Ì		İ					Ì
100 mm															1	П	П	П	П	Τ		Т	П
200 mm															2								
300 mm															3								
None															Χ								
Filters***																		L		\perp			
Filter A – 40 μm																Α	4						Ц
Filter B – 100 μm																Е	3					Ш	Ш
Filter C – 200 μm																C)						Ц
Filter D – 3 µm															L			Ц				Ш	Ц
Filter PTFE Membrane															L	E	_	Ц		╧		Щ	Ц
No Filter																Х	(Ц		Ţ		Ц	Ц
Add-on modules***																		L		\perp		Щ	
None															L			Χ	_	_	/	Ш	Ц
With Thermal Barrier (up to 600 °C)															L	Ļ		Н	_	_	/	Ц	Ц
2-fold Multireflection Cell															L	L		2	_	_	/	Ш	Ц
3-fold Multireflection Cell																	_	3	_	_	/	Ц	Ц
Cable																						\perp	4
5 m (16.4 ft)															L	1	4				<u> </u>	Α	Ц
15 m (49.2 ft)															_	_	4	_			<u> </u>	В	Ц
25 m (82.0 ft)															L	4	4	_			<u> </u>	С	Ц
40 m (131.2 ft)															L	1	4				$oxed{oxed}$	D	Ц
None																						Χ	Ц
Communication interfaces																							
RS 485 (for M400)															L	\perp	1				_	L	Х
RS 485 and Direct Analog (SIL)	,																						Α

InPro 6000 G Sensor Series

Oxygen Control for Your Gas Applications

Features Overview

- True in-line measurement without gas sampling system
- Long lasting and easy to maintain membranes
- Certified for hazardous gaseous and dust areas
- Oxygen measurement is not affected by water, water vapors or most organic solvents

Other Highlights

- Membrane covered amperometric measurement technology allows direct in-line installations
- Sensor can easily be calibrated in air.
 Costly calibration gases are eliminated

The InPro 6000 G $\rm O_2$ sensor series for gas measurement provides high operational availability together with excellent measurement performance. Without the need for expensive gas sample conditioning, the sensor can be installed directly in the process, and sensor maintenance or replacement can be performed without process interruption. METTLER TOLEDO offers a unique easy-to-use and reliable solution for challenging applications like $\rm N_2$ blanketing, inertization and off-gas monitoring in Ex or non-Ex applications.

Specif	icat	ions
--------	------	------

opcomounono							
Performance							
Operating range		InPro 6800 G/6850 i G:	0.1 Vol-% O ₂ to				
			100 Vol-% O ₂				
		InPro 6900 i G:	50 ppm to 60 Vol- $\%$ O_2				
		InPro 6950 i G:	5 ppm to 50,000 ppm				
Accuracy		InPro 6800G/6850iG:	$\leq \pm [1\% + 0.1 \text{ Vol-}\%]$				
		InPro 6900 i G:	$\leq \pm [1\% + 50 \text{ppm}]$				
		InPro 6950 i G:	≤±[1%+5ppm]				
Response time at 25 °C (77 °F)							
$(N_2 \rightarrow 15 \text{ Vol-}\% \text{ O}_2)$		90% of the signal in <2	20				
Sensor signal in air at 25 °C (77 °F)		InPro 6800 G/6850 i G:	50 to 110 nA				
		InPro 6900 i G:	250 to 500 nA				
		InPro 6950 i G:	2500 to 6000 nA				
Construction							
Measuring principle		Amperometric Clark elect	rode				
Cable connection		Analog VarioPin (IP68),	Digital K8S (IP68)				
Connector design		Straight					
Process connection		Pg 13.5					
Sensor diameter		12 mm					
Sensor body		316L stainless steel C22	(titanium on request)				
Membrane material		PTFE/Silicone (reinforced with steel mesh)					
Surface roughness of wetted parts		$N5/R_016$ ($R_0=0.4 \mu m/16 \mu in$)					
O-ring material		Silicone or Kalrez®					
Working Conditions							
Temperature compensation		Automatic					
Measuring temperature range		0 to 70 °C (32 to 158 °F					
Environmental temperature range		-5 to 121 °C (23 to 249	9.8°F)				
Operating pressure		0.2 to 9 bar (2.9 to 130	psi absolute)				
Design pressure		Maximum 12 bar (174 psi absolute)					
Certificates and Approvals		METTLER TOLEDO Quality Certificate, EHEDG,					
		FDA/USP Class VI, 3.1,	N5/R _□ 16,				
A	ATEX:	Ex ia IIC T6/T5/T4/T3 Ga/Gb,					
		Ex ia IIIC T69°C/T81°C/	T109°C/T161°C Da/Db				
	FM:	IS CI. I, II, III, Div 1, GR	ABCDEFG/T6*				

Intelligent Sensor Management (ISM)

InPro 6000 i G sensors with integrated ISM functionality allow Plug and Measure and advanced diagnostics. ISM simplifies the installation, handling and maintenance of measurement equipment. For more information see ISM introduction pages 10-11.

www.mt.com/02-gas

Ordering Information

Oracing information			
12 mm InPro 6800 G Oxygen Sensors	Length	Connector Style	Order Number
InPro 6800 G/12/120	120 mm	Straight VP	52 206 425
InPro 6800 G/12/220	220 mm	Straight VP	52 206 426
InPro 6800 G/12/120/Ka	120 mm	Straight VP	52 206 427
InPro 6800 G/12/220/Ka	220 mm	Straight VP	52 206 428
InPro 6800 G/12/120/C22	120mm	Straight VP	52 206 429
InPro 6800G/12/220/C22	220 mm	Straight VP	52 206 430
12 mm InPro 6850 i G Oxygen Sensors			
InPro 6850iG/12/120	120 mm	Straight K8S	52 206 431
InPro 6850iG/12/220	220 mm	Straight K8S	52 206 432
InPro 6850iG/12/120/Ka	120 mm	Straight K8S	52 206 433
InPro 6850 i G/12/220/Ka	220 mm	Straight K8S	52 206 434
InPro 6850iG/12/120/C22	120 mm	Straight K8S	52 206 435
InPro 6850 i G/12/220/C22	220 mm	Straight K8S	52 206 436
12 mm InPro 6900 i G Oxygen Sensors			
InPro 6900 i G/12/120	120 mm	Straight K8S	52 206 437
InPro 6900 i G/12/220	220 mm	Straight K8S	52 206 438
InPro 6900 i G/12/120/Ka	120 mm	Straight K8S	52 206 439
InPro 6900 i G/12/220/Ka	220 mm	Straight K8S	52 206 440
12 mm InPro 6950 i G Oxygen Sensors			
InPro 6950 i G/12/120	120 mm	Straight K8S	52 206 443
InPro 6950 i G/12/220	220 mm	Straight K8S	52 206 444
12 mm InPro 6950 i G Oxygen Sensors InPro 6950 i G/12/120	120 mm	Straight K8S	52 20

Consumables

Order Numbers			
InPro 6800 G	InPro 6850 i G	InPro 6900 i G	InPro 6950 i G
52 201 151	52 206 453	52 206 459	52 206 465
52 201 158	52 206 455	52 206 461	_
52 201 163	52 206 457	_	_
52 201 149	52 206 454	52 206 460	52 206 466
52 201 159	52 206 456	52 206 462	_
52 201 164	52 206 458	-	-
52 206 449	52 206 450	52 206 451	52 206 452
30 298 424	30 298 424	_	_
_	_	30 298 425	_
_	_	_	30 298 426
	1nPro 6800 G 52 201 151 52 201 158 52 201 163 52 201 149 52 201 159 52 201 164 52 206 449	InPro 6800 G InPro 6850 i G 52 201 151 52 206 453 52 201 158 52 206 455 52 201 163 52 206 457 52 201 149 52 206 454 52 201 159 52 206 456 52 201 164 52 206 458 52 206 449 52 206 450	InPro 6800 G InPro 6850 i G InPro 6900 i G 52 201 151 52 206 453 52 206 459 52 201 158 52 206 455 52 206 461 52 201 163 52 206 457 - 52 201 149 52 206 454 52 206 460 52 201 159 52 206 456 52 206 462 52 201 164 52 206 458 - 52 206 449 52 206 450 52 206 451 30 298 424 30 298 424 -

- * 4 membranes, 1 O-ring set silicone, 25 ml electrolyte (InPro 69XX i G models: 2 × 5 ml electrolyte), wetted parts SS 316 L

 ** 4 membrane, 1 O-ring set Kalrez®, 25 ml electrolyte (InPro 69XX i G models; 2 × 5 ml electrolyte), wetted parts SS 316 L

 *** 4 membranes, 1 O-ring set Kalrez®, 25 ml electrolyte, wetted parts C22 (Hastelloy)

Accessories

Designation	Order Number
O ₂ Sensor Master digital ISM	52 206 329
InPro 6800 Sensor Master	52 200 892

Did You Know The InPro 6000 G with ISM series feature a built-in electrolyte level monitor that signals the user when refilling is required.

Replacement anode/ cathode assembly of InPro 6950 i G

Membrane Body InPro 6800 G

Membrane Body InPro 6850iG

Suitable Housings	p.
InFit 761 e	-
InFlow	128
InTrac 777 e	133
InTrac 797 e	134
InTrac 781	135

Process Analytics Measurement Solutions

for Industrial and Pure Water Applications

Conductivity/Resistivity Systems

When Optimal Performance Is Essential

Electrolytic conductivity is a widely used analytical parameter for water purity analysis, monitoring of reverse osmosis, cleaning procedures, control of chemical processes, and in industrial wastewater.

Three commonly used techniques

Electrolytic conductivity is a measure of the total ionic content of a solution. There are three main methodologies to measure conductivity:

- 2-electrode sensors are for measurements in high purity water and relatively low conductivity ranges
- 4-electrode sensors are for mid to high ranges. They are more resistant to fouling than 2-electrode designs
- Inductive sensors cover mid to very high conductivity ranges, and are particularly resistant to fouling.

METTLER TOLEDO offers all three methodologies.

2-electrode sensor design

An AC voltage is applied across the two electrodes, and the resistance between them is measured. The built-in temperature sensor provides fast accurate measurement. The cell geometry and the high solution resistance allow for very accurate and precise conductivity determination.

Sensors are used for water conditioning and purification stages where they are capable of detecting minute levels of impurities in ultrapure water.

4-electrode sensor design

An AC voltage is applied across the two outside electrodes. The principle is to measure the voltage drop across the two inner electrodes. Therefore, polarization errors are eliminated. Since this technique measures potential drop, the measurement remains accurate. It permits easier in-line cleaning and it can be installed in smaller piping than inductive sensors.

These sensors are used for concentration measurement of acids, alkalis, and salt process streams.

Application guide for conduc	•	senso	ensors Filanium Sanif	0.1 cm 6	sersors SO. Torri SORITO SORITO	sensors EKAL sensors IN PEKKAL sensors
Where to use						
Pure and ultrapure water		•	•			
Sanitary			•		•	
Water purification		•				
SIP			•		•	
Industrial wastewater				•		
Medium/high conductivity				•	•	
Aggressive chemicals				•		
Chemical applications				•		
Pharmaceutical water			•			
High conductivity				•	•	
Chemical concentration				•	•	

UniCond™ Conductivity / Resistivity Sensors with ISM

The UniCond conductivity/resistivity sensor advancement integrates the measuring circuit and the physical sensor into a single unit. UniCond conductivity/resistivity sensors provide exceptionally wide measurement ranges due to their advanced built-in measuring circuit. The on-board measuring circuit eliminates interference from lead wire resistance and capacitance. Only digital signals go back to the transmitter. The UniCond design mitigates the effects of polarization, enabling the upper range of the conductivity sensor to be greatly expanded. UniCond 2-electrode sensors provide the ability to accurately measure from ultrapure water to brackish water (up to 50,000 µS/cm) with a single integrated sensor, greatly simplifying water treatment instrumentation. UniCond 4-electrode sensors measure up to 1 S/cm.

Inductive Sensors (see page 84–85)

Continuous conductivity monitoring of pharmaceutical waters

USP guideline < 645 > sets a standard for the quality assessment of USP waters based on measurement of the electrolytic conductivity. There is a 3-stage test in which stage 1 allows on-line, non-temperature compensated conductivity measurement. There are specific requirements for the sensors and transmitters (see table below). Thornton instruments fulfill all these and other pharmacopeia requirements. In addition, Thornton instruments provide USP and EP setpoints for convenience.

Find out more in our comprehensive conductivity theory guide at **www.mt.com/conductivity-guide**

Specification USP < 645 >
Conductivity sensor Verify cell constant within
and cell constant accuracy ±2% using a reference solution
Resistance measurement NIST traceable 0.1 % precision
circuit resistors in place of sensor
Instrument resolution 0.1 µS/cm
Instrument accuracy 0.1 µS/cm
at 1.3 µS/cm
Temperature compensation Must be read uncompensated
Instrument dynamic range 10 ²

METTLER TOLEDO instruments meet USP < 645> and other pharmacopeia water conductivity requirements

UniCond Conductivity/Resistivity Sensors with ISM

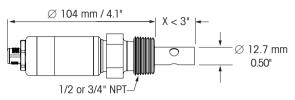
Certified Calibration for Compliance

UniCond conductivity/resistivity sensors provide exceptionally wide measurement ranges due to their advanced built-in measuring circuit. The on-board measuring circuit eliminates interference from leadwire resistance and capacitance. Only digital signals go back to the transmitter. Advanced measuring techniques further contribute to superior accuracy over the expanded range. ISM technology features pre-calibration Plug and Measure capabilities for fast, compliant start-up.

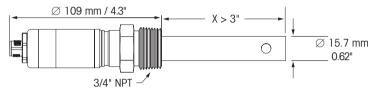
Specifications

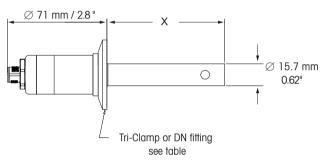
$\begin{array}{c} 0.1\text{cm}^{-1}\text{sensors:} \ \pm 1\%\text{ for } 0.02-5,000\mu\text{S/cm}; \\ \pm 3\% > 5,000\mu\text{S/cm} \\ 4-\text{E}\text{sensors:} \ \pm 4\% \\ \hline \text{Repeatability} \ \ \pm 0.25\%; \pm 2\%\text{ for } 4-\text{E}\text{sensors} \\ \hline \text{Temperature sensor} \ \ \begin{array}{c} \text{Pt } 1000\text{RTD},\text{IEC}60751,\text{Class}\text{A},\text{with NIST-traceable} \\ \text{calibration} \\ \hline \text{Temperature accuracy} \ \ \pm 0.1^{\circ}\text{C}\text{ at } 25^{\circ}\text{C}; \pm 0.5^{\circ}\text{C}\text{ for } 4-\text{E}\text{sensors} \\ \hline \text{Maximum cable length} \ \ \ 91\text{m}(300\text{ft}) \\ \hline \text{Finish}(\text{Sanitary}0.1\text{cm}^{-1}\text{Ra}0.2\text{micrometers}(8\text{microinches}), \\ \text{sensors)} \ \ \ \ 316\text{L}\text{SS}\text{is electropolished} \\ \hline \text{Insulator material} \ \ \ \ \text{PEEK}\text{except for the CPVC sensors} \\ \hline \text{Response time} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Accuracy	$0.01\mathrm{cm^{-1}}$ sensor: $\pm1\%$						
A-E sensors: ±4% Repeatability ±0.25%; ±2% for 4-E sensors Temperature sensor Pt 1000 RTD, IEC 60751, Class A, with NIST-traceable calibration Temperature accuracy ±0.1°C at 25°C; ±0.5°C for 4-E sensors Maximum cable length 91 m (300ft) Finish (Sanitary 0.1 cm-1 Ra 0.2 micrometers (8 microinches), sensors) 316 L SS is electropolished Insulator material PEEK except for the CPVC sensors		0.1 cm ⁻¹ sensors:	$\pm 1\%$ for 0.02-5,000 μ S/cm;					
Repeatability ±0.25%; ±2% for 4-E sensors Temperature sensor Pt 1000 RTD, IEC 60751, Class A, with NIST-traceable calibration Temperature accuracy ±0.1°C at 25°C; ±0.5°C for 4-E sensors Maximum cable length 91 m (300ft) Finish (Sanitary 0.1 cm-1 Ra 0.2 micrometers (8 microinches), sensors) 316 L SS is electropolished Insulator material PEEK except for the CPVC sensors			$\pm 3\% > 5,000 \mu S/cm$					
Temperature sensor Pt 1000 RTD, IEC 60751, Class A, with NIST-traceable calibration Temperature accuracy ± 0.1 °C at 25 °C; ± 0.5 °C for 4-E sensors Maximum cable length 91 m (300ft) Finish (Sanitary 0.1 cm ⁻¹ Ra 0.2 micrometers (8 microinches), sensors) 316 L SS is electropolished Insulator material PEEK except for the CPVC sensors		4-E sensors:	±4%					
calibration Temperature accuracy ±0.1 °C at 25 °C; ±0.5 °C for 4-E sensors Maximum cable length 91 m (300ft) Finish (Sanitary 0.1 cm ⁻¹ Ra 0.2 micrometers (8 microinches), sensors) 316 L SS is electropolished Insulator material PEEK except for the CPVC sensors	Repeatability	±0.25%; ±2% for 4-E sensors						
Temperature accuracy ± 0.1 °C at 25 °C; ± 0.5 °C for 4-E sensors Maximum cable length 91 m (300ft) Finish (Sanitary 0.1 cm ⁻¹ Ra 0.2 micrometers (8 microinches), sensors) 316 L SS is electropolished Insulator material PEEK except for the CPVC sensors	Temperature sensor	Pt 1000 RTD, IEC 60751, Class A, with NIST-trace						
Maximum cable length 91 m (300ft) Finish (Sanitary 0.1 cm ⁻¹ Ra 0.2 micrometers (8 microinches), sensors) 316 L SS is electropolished Insulator material PEEK except for the CPVC sensors		calibration						
Finish (Sanitary 0.1 cm ⁻¹ Ra 0.2 micrometers (8 microinches), sensors) 316 L SS is electropolished Insulator material PEEK except for the CPVC sensors	Temperature accuracy	±0.1 °C at 25 °C;	±0.5 °C for 4-E sensors					
sensors) 316 L SS is electropolished Insulator material PEEK except for the CPVC sensors	Maximum cable length	91 m (300ff)						
Insulator material PEEK except for the CPVC sensors	Finish (Sanitary 0.1 cm ⁻¹ Ra 0.2	2 micrometers (8 mi	croinches),					
-	sensors)	316 L SS is electro	ppolished					
Response time 90 % of value in < 5 s	Insulator material	PEEK except for the CPVC sensors						
	Response time	90% of value in «	< 5s					
Connector IP 65, mates with 58 080 27X series cable	Connector	IP65, mates with	58 080 27X series cable					

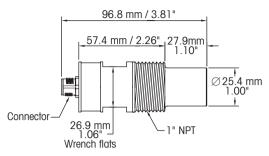
Features Overview

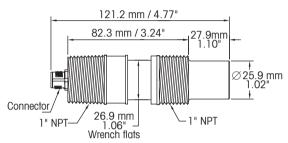

- Plug and Measure functionality
- Integral high-performance measuring circuit
- Robust digital output signal
- Calibration data stored internally
- Measuring circuit and system calibration can be performed in-line
- Simple compliance

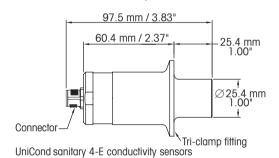
Other Highlights


- Extremely wide rangeability:
 ultrapure to sea water
- Highest accuracy
- NPT and Tri-Clamp connections


www.mt.com/UniCond


UniCond NPT 0.01 and 0.1 constant conductivity sensors


UniCond NPT 0.1 constant conductivity sensors


UniCond sanitary 0.1 constant conductivity sensor

UniCond NPT PEEK conductivity sensors

UniCond NPT CPVC conductivity sensors

Ordering Information

Description							Order Number
Fitting	Insertion Length	Fitting/Body	Range	Cell Const.	Electrode	Max Pressure at Temp	
	"X" mm (inch)	material	(µS/cm)*	(cm ⁻¹)	Material	bar (psig) at °C (°F)	
34" NPTM	34 (1.35)	PTFE/SS	0.01-50,000	0.1	Titanium	17 (250) at 93 (200)	58 031 404
34" NPTM	132 (5.19)	PTFE/SS	0.01-50,000	0.1	Titanium	17 (250) at 93 (200)	58 031 409
34" NPTM	34 (1.35)	PTFE/SS	0.01-50,000	0.1	Monel	17 (250) at 93 (200)	58 031 407
34" NPTM	132 (5.19)	PTFE/SS	0.01 - 50,000	0.1	Monel	17 (250) at 93 (200)	58 031 408
½" NPTM	29 (1.14)	PTFE/SS	0.01-50,000	0.1	Titanium	17 (250) at 93 (200)	58 031 406
34" NPT	60 (2.38)	PTFE/SS	0.001-500	0.01	Titanium	17 (250) at 93 (200)	58 031 410
11/2" Tri-Clamp	86 (3.38)	Titanium	0.01-50,000	0.1	Titanium		58 031 413 [†]
1½" Tri-Clamp	55 (2.17)	316L SS	0.01-3,000	0.1	316L SS	14 (203) at 130 (266)	58 031 412 †
11/2" Tri-Clamp	86 (3.38)	316L SS	0.01-3,000	0.1	316L SS	& 31 (450) at 25 (77)	58 031 414†
2" Tri-Clamp	105 (4.13)	316L SS	0.01-3,000	0.1	316L SS		58 031 415†
1" NPTM	28 (1.1)	PEEK	10-1,000,000	4-E	Hastelloy	7 (100) at 93 (200)	58 031 421
						14 (200) at 25 (77)	
1" NPTM	28 (1.1)	CPVC	10-1,000,000	4-E	316L SS	3.5 (50) at 80 (176)	58 031 422
1" NPTM	28 (1.1)	CPVC	10-1,000,000	4-E	Hastelloy	7 (100) at 25 (77)	58 031 423
1½" Tri-Clamp	25 (1.0)	PEEK	10-1,000,000	4-E	316L SS	— 4.8 (70) at 140 (284) —	58 031 424†
2" Tri-Clamp	25 (1.0)	PEEK	10-1,000,000	4-E	316L SS	, , , , ,	58 031 425†
1½" Tri-Clamp	25 (1.0)	PEEK	10-1,000,000	4-E	Hastelloy	— 14 (200) at 50 (122) —	58 031 426†

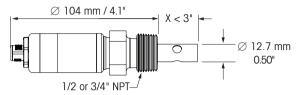
^{*} Megohm-cm = 1/µS/cm

For conductivity sensors recommended services, see page 175.

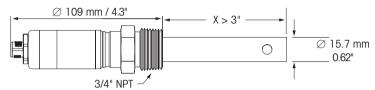
[†] FDA compliant materials with certification to meet EN10204 3.1 & USP < 88 > Class VI

UPW UniCond Sensor

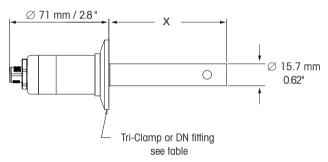
Precise UPW Resistivity Measurement


The UPW UniCondTM sensor provides industry leading accuracy and an order of magnitude improvement in measurement stability, surpassing the standard currently set by other resistivity sensors in the SEMI industry. With the sensitivity to truly separate contamination from noise, the UPW UniCond sensor ensures measurement accuracy in even the most challenging semiconductor UPW applications with extremely high resistivity.

Specifications


Accuracy	$0.1~\text{cm}^{-1}$ sensors: $\pm~0.5\%$ for $10\text{-}20~\text{M}\Omega$ -cm
Stability	0.003 MΩ-cm standard variation typical after rinse-up
Temperature sensor	Pt 1000 RTD, IEC 60751, Class A, with NIST-traceable
	calibration
Temperature accuracy	± 0.05 °C at 25 °C
Maximum cable length	91 m (300 ft)
Finish (Sanitary 0.1 cm ⁻¹	Ra 0.38 micrometers (8 microinches)
sensors)	
Response time	90% of value in <5s
Insulator material	PEEK
Connector	IP65, mates with 58 080 27X series cable

Features Overview


- The UPW UniCond sensor offers unequalled temperature compensated resistivity accuracy to provide the clearest possible picture of your water quality.
- Enhanced METTLER TOLEDO Thornton resistivity measurement technology reduces signal noise from the UPW UniCond by 10× over other sensors in UPW.
- Robust construction and temperature compensation ensures that observed changes in resistivity are due to water quality and not environmental factors.
- Identification, calibration and maintenance data is stored in the UPW Uni-Cond sensor, which allows for easy traceability. The sensor meets strict NIST-traceable calibration requirements.

UniCond NPT 0.01 and 0.1 constant conductivity sensors

UniCond NPT 0.1 constant conductivity sensors

UniCond sanitary 0.1 constant conductivity sensor

Ordering Information

Description							Order Number
Fitting	Insertion Length	Fitting/Body	Range	Cell Const.	Electrode	Max Pressure at Temp	
	"X" mm (inch)	material	$(M\Omega\text{-cm})^{1}$	(cm ⁻¹)	Material	bar(g) (psig) at $^{\circ}$ C ($^{\circ}$ F)	
34" NPTM	34 (1.35)	PTFE/SS	10-20	0.1	Titanium	17 (250) at 93 (200)	30 819 342
3/4" NPTM	132 (5.19)	PTFE/SS	10-20	0.1	Titanium	17 (250) at 93 (200)	30 823 885
11/2" Tri-Clamp®	86 (3.38)	Titanium	10-20	0.1	Titanium	14 (203) at 130 (266)	30 823 886
						& 31 (450) at 25 (77)	

^{*} $M\Omega$ -cm = $1/\mu$ S/cm

For resistivity sensors recommended services, see page 175.

[®] Tri-Clamp is a registered trademark of Alfa Laval

Analog Conductivity Sensors

A Comprehensive Series to Meet Industry Requirements

METTLER TOLEDO Thornton provides a full complement of analog conductivity/ resistivity sensors with NPT or sanitary fittings. They include various lengths, cell constants and materials to match the application: titanium concentric electrodes for high purity water; monel electrodes for rinse waters containing HF; highly polished 316L stainless steel (SS) electrodes for pharmaceutical waters; CPVC and PEEK sensors with four flush electrodes for solutions with higher conductivity and/or suspended material.

Specifications

Cell constant accuracy	±1%, except ±5% system accuracy for 4-electrode
	& 10 constant
Cell constant repeatability	±0.25%, except ±2% for 4-electrode & 10 constant
Temperature sensor	Pt 1000 RTD, IEC 60751, Class A
Temperature accuracy	±0.1 °C (±0.2 °F) at 25 °C (77 °F),
	except ±0.5 °C (±0.9 °F) for 4-electrode sensors
Cable jacket material	NPT: PVC, 80 °C (176 °F) rating
	Sanitary: PTFE, 200°C (392°F) rating
Max. sensor distance	60 m (200 ft), except 15 m (50 ft) for 244-Series
Finish, sanitary 0.1 cm ⁻¹	$R_a < 0.2 \mu\text{m/R}_a < 8 \mu\text{in}$, 316 L SS is electropolished
sensors	
Insulator material	PEEK (0.01 & 0.1 constant); Noryl (10 constant)

Features Overview

- Precise factory calibration and certification of each cell constant and RTD
- Optimized 4-wire measuring circuitry provides exceptional rangeability and accuracy, eliminating cable effects
- Quick and easy installation

Typical Applications

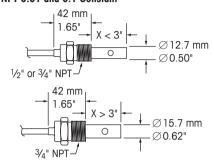
- Pharmaceutical water
- Power and steam generation
- Semiconductor water treatment
- Recycle and reclaim water
- Wastewater treatment

For detailed information about conductivity sensors for M300:

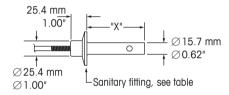
Please refer to pages 173–174 for ordering information and drawings

Sensor Selection Criteria
Thornton offers a wide variety
of conductivity/resistivity
sensors to accommodate most applications. Use the following criteria to select
the appropriate sensor for your installation:

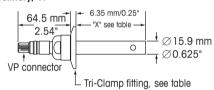
- Conductivity or resistivity range
- Transmitter
- Mounting type: insertion, retractable or submersion
- Pipe connection and size
- Chemical compatibility, including cleaning and disinfection processes
- Temperature requirements, including steam and/or hot chemical cleaning

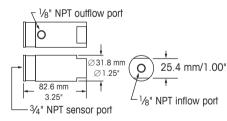

www.mt.com/Thornton-Cond

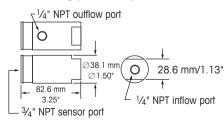
Wastewater

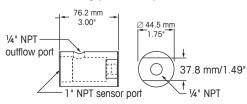

Analog Conductivity Sensors

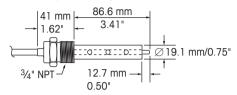
Drawings


NPT 0.01 and 0.1 Constant

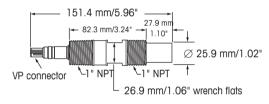

Sanitary, Standard

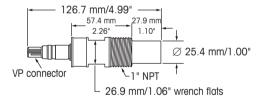

Sanitary, VP

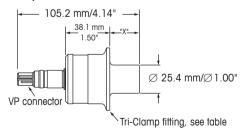

316SS Flow Housing (58 084 000)


PVDF Flow Housing (58 084 001)

316SS Flow Housing (58 084 016)


10 Constant (58 031 241)


Submersion 0.1 Constant (58 031 207)


NPT 4-Electrode, CVPC


NPT 4-Electrode, PEEK

Sanitary 4-Electrode

Boiler Water Conductivity Sensor

Electrode	Maximum Pressure	Process Conne		InsertionCable			
Material		– Fitting	– Material	Length "x"	Length	Connector	Order Number
2-Electrode S	ensors						
 Measuring 	range 0.02–2,000 µS/cm (cell constant 0	.1 cm-1) ^a					
Titanium	17 bar(g) at 93 °C (250 psig at 200 °F)	¾" NPTM	PTFE/SS	34mm (1.35")	0.5 m (1.5 ft)	S	58 031 201
Titanium	17 bar(g) at 93 °C (250 psig at 200 °F)	34" NPTM	PTFE/SS	132 mm (5.19")	0.5 m (1.5 ft)	S	58 031 202
Monel	17 bar(g) at 93 °C (250 psig at 200 °F)	34" NPTM	PTFE/SS	34 mm (1.35")	0.5 m (1.5 ft)	S	58 031 203
Monel	17 bar(g) at 93 °C (250 psig at 200 °F)	34" NPTM	PTFE/SS	132 mm (5.19")	0.5 m (1.5 ft)		58 031 204
316L SS	4 bar(g) at 131 °C (58 psig at 268 °F)	For	SS	70 mm (2.75")	_	VP	52 001 998
	7 bar(g) at 95 °C (100 psig at 203 °F)	Retractable					
	17 bar(g) at 25 °C (250 psig at 77 °F)	housing b					
<u>Titanium</u>	17 bar(g) at 93 °C (250 psig at 200 °F)	½" NPTM	Noryl	29mm (1.14")	0.5 m (1.5 ft)	S	58 031 213
Titanium	17 bar(g) at 93 °C (250 psig at 200 °F)	3/4" NPTM	Noryl	29mm (1.14")	0.5 m (1.5 ft)	S	58 031 214
Titanium	17 bar(g) at 93 °C (250 psig at 200 °F)	3/4" NPTM	PTFE/SS	34 mm (1.35")	3m (10ff)	S	58 031 215
Titanium	17 bar(g) at 93 °C (250 psig at 200 °F)	½" NPTM	PTFE/SS	29mm (1.14")	0.5 m (1.5ft)	S	58 031 216
Titanium	17 bar(g) at 93 °C (250 psig at 200 °F)	3⁄4" NPTM	PTFE/SS	34 mm (1.35")	6.1 m (20ff) c	;	58 031 217
Titanium	17 bar(g) at 93 °C (250 psig at 200 °F)	½" NPTM	PTFE/SS	29mm (1.14")	3m (10ff) ¢		58 031 218
Titanium	17 bar(g) at 93 °C (250 psig at 200 °F)	3⁄4" NPTM	PTFE/SS	34 mm (1.35")	9m (30ff) ¢		58 031 220
Titanium	10bar(g) at 155 °C (150psig at 311 °F)	1.5" Tri-Clamp		86mm (3.38")	0.5 m (1.5 ft)	S	58 031 221
	31 bar(g) at 25 °C (450 psig at 77 °F)			(0.00)			
316L SS	10bar(g) at 155 °C (150psig at 311 °F)	1.5" Tri-Clamp	316L SS	86 mm (3.38")	0.5 m (1.5ft)	S	58 031 223°
31 bar(g) at 2		·		` ,	` ,		
316L SS	10bar(g) at 155 °C (150psig at 311 °F)	2" Tri-Clamp	316L SS	105 mm (4.13")	0.5 m (1.5ft)	S	58 031 227
31 bar(g) at 2	25°C (450 psig at 77°F)						
Titanium	17 bar(g) at 93 °C (250 psig at 200 °F)	3⁄4" NPTM	PTFE/SS	34 mm (1.35")	0.5 m (1.5ft)	VP	58 031 232
Titanium	17 bar(g) at 93 °C (250 psig at 200 °F)	3⁄4" NPTM	PTFE/SS	132 mm (5.19")	0.5 m (1.5ft)	VP	58 031 233
316L SS	10bar(g) at 155 °C (150psig at 311 °F)	1.5" Tri-Clamp		55 mm (2.17")	– VP		58 031 226
	31 bar(g) at 25 °C (450 psig at 77 °F)	·		, ,			
316L SS	10bar(g) at 155 °C (150psig at 311 °F)	1.5" Tri-Clamp	316L SS	85 mm (3.35")	- VP		58 031 234
	31 bar(g) at 25 °C (450 psig at 77 °F)						
316L SS	10bar(g) at 155 °C (150psig at 311 °F)	2" Tri-Clamp	316L SS	104 mm (4.10")	– VP		58 031 235
	31 bar(g) at 25 °C (450 psig at 77 °F)						
 Measuring 	range 0.002–200 µS/cm (cell constant 0.	01 cm-1) a					
Titanium	17 bar(g) at 93 °C (250 psig at 200 °F)	34" NPTM	PTFE/SS	60 mm (2.38")	0.5 m (1.5 ft)	S	58 031 230
	range 10-20,000 µS/cm (cell constant 0.	4 cm-1) a					
316L SS	35 bar(g) at 25 °C (500 psig at 77 °F)	1" NPTM	316L SS	28mm (1.10")	3m (10ff)	VP	58 031 264
	17 bar(g) at 200 °C (250 psig at 392 °F)						
- Measuring	range 50–40,000 µS/cm (cell constant 10	cm-1) a					
Graphite	17 bar(g) at 93 °C (250 psig at 200 °F)	3/4" NPTM	PTFE/SS	86mm (3.38")	0.5 m (1.5ft)	S	58 031 241
4-Electrode S	ensors ^e						
	range 10–650,000 μS/cm						
316L SS d	5 bar(g) at 150 °C (70 psig at 302 °F)	1.5" Tri-Clamp	PEEK	25 mm (1.00")	_	VP	58 031 242
	14 bar(g) at 50 °C (200 psig at 122 °F)	·					
316L SS ^d	5 bar(g) at 150 °C (70 psig at 302 °F)	2" Tri-Clamp	PEEK	25 mm (1.00")	_	VP	58 031 243
	14 bar(g) at 50 °C (200 psig at 122 °F)						
Hastelloy Cd	5 bar(g) at 150 °C (70 psig at 302 °F)	1.5" Tri-Clamp	PEEK	25 mm (1.00")	_	VP	58 031 245
	14 bar(g) at 50 °C (200 psig at 122 °F)						
316L SS ^d	5 bar(g) at 150 °C (70 psig at 302 °F)	1.5" Tri-Clamp	PEEK	12 mm (0.50")	_	VP	58 031 248
	14 bar(g) at 50 °C (200 psig at 122 °F)						
Hastelloy C	7 bar(g) at 93 °C (100 psig at 200 °F)	1" NPTM	PEEK	28mm (1.10")	_	VP	58 031 239
	14 bar(g) at 25 °C (200 psig at 77 °F)						
316L SS	3.5 bar(g) at 80 °C (50 psig at 176 °F)	1" NPTM	CPVC	28mm (1.10")	_	VP	58 031 240
	7 bar(g) at 25 °C (100 psig at 77 °F)	1 NIDT* *	00110	00 (7.70%)		\ /P	50.001.01
Hastelloy C	3.5 bar(g) at 80 °C (50 psig at 176 °F)	1" NPTM	CPVC	28mm (1.10")	_	VP	58 031 244
,	7 bar(g) at 25 °C (100 psig at 77 °F)						

 $a M\Omega \times cm = 1/(\mu S/cm)$

b See pages 184–185 for retractable housing (also used for pH and ORP)

c Tinned leads - no patch cord required

d Includes material certification to meet EN 10204 3.1 & USP<88> ClassVI

e 4-electrode sensor, maximum patch cord length 15 m (50ff)

S = Standard connector used with 58 080 25X patch cords only. See page 231.

VP = VarioPin sealed connector used with 58 080 20X patch cords only (58 080 101 3-ft adapter cable can connect an existing 58 080 25X patch cord to a VP sensor). See page 231.

Calibration of Conductivity Sensors

sensor specifications.

Thornton Auto-loop Factory Calibration System

Did You Know Thornton conductivity systems are routinely used by other instrument suppliers as the reference to provide traceability when

USP pharmaceutical water monitoring requirements are met with sanitary sensors which provide accurate conductivity and temperature measurement. 316L stainless steel Tri-Clamp mounting sensors have an electropolished finish with roughness average (R_a) < 0.2 μ m, < 8 μ in.

Thornton conductivity sensors are industry standards for determining water purity and solution concentration. Thornton ISO 9001 factory calibration and certification are NIST and ASTM traceable using Thornton's unique ultrapure auto-loop calibration system. Certification includes test and accuracy, plus materials as noted in

4-electrode sensors are ideal for monitoring high conductivity applications, clean-in-place (CIP) solutions and deionizer regenerant concentrations.

calibrating their instrumentation.

Conductivity Standard Solutions

Provided for sensor verification and recalibration, conductivity standards are produced, analyzed and documented in the METTLER TOLEDO Thornton ISO 9001 certified facility with processes similar to those used to calibrate high accuracy Thornton conductivity sensors. They are provided with label and certificate with lot number, certified value, expiration date, plus ASTM and NIST traceability data. These standards are analyzed and used at equilibrium with the atmosphere.

Specification	
	è
	٠

opcomounons			
Standard	Accuracy	Shelf Life	Order Number
25 µS/cm, 500 ml, HCl	±3%	6 months	58 078 001
100 µS/cm, 500 ml, KCl	±1%	12 months	58 078 002
1,000 µS/cm, 500 ml, KCl	±1%	12 months	58 078 003
10,000 µS/cm, 500 ml, KCl	±1%	12 months	58 078 004
100,000 µS/cm, 500 ml, KCl	±1%	12 months	58 078 005

Pacammandad Conductivity/Pacietivity Concor Carvica Agraements

Recommended Conductivity/Resistivity Sensor Service Agreements	Only North
Description	Order Number
Calibrate Sensor On-Site	\$39905073
Calibrate Custom Certificate	\$39905083
Sensor calibrated according to customer tolerances.	
Calibrate Conductivity System	\$39905072
Sensor calibrated on customer cable and transmitter.	
Full Preventive Maintenance On-Site	S39905133
Sensor examined, cleaned, and calibrated.	
Setup Standard Configuration	S39905182
Transmitter Configured and function test.	
Calibrate Sensor On-Site	\$39905004
Train Initial	S39905211

pH and ORP Systems

Reliable in Pure Water Treatment Applications

With many decades of experience in designing pH/ORP electrodes METTLER TOLEDO offers a state-of-the-art solution for practically any type of process analytical application.

Functional definition

pH can be described as a measurement of the relative acidity of a solution. Oxidation reduction potential (ORP) as measured with an ORP electrode, provides an indication of the oxidative state of the solution. It is important to measure, and often to control the pH and/or ORP of a solution for several reasons:

- To produce products with consistent well defined properties
- To efficiently produce products at optimal cost
- To avoid health risks

- To protect the environment
- To prevent physical/chemical damage to materials
- To meet regulatory requirements
- To expand scientific knowledge

The accurate measurement of pH/ORP is critical in most industries. Each application has unique physical requirements of chemical, temperature, and pressure resistance and possibly hygienic design. Another factor is what is to be done with the measurement: monitoring only, data logging or process control.

pH electrode selection

It is important to understand the details of the application before selecting a pH electrode. The table on the next page gives an initial glance at the various electrodes available and typical applications. Selection of a pH electrode requires a thorough knowledge of the process. Once the requirements are known, comparison of the electrode specifications detailed in this catalog will identify the appropriate sensor.

Thornton pH electrode selection guide by industry and application

	ORP	*/	high plessure) Div	h.				
	Pr 1800	Dh, 64 4802 (MOTO MOTO	3250(1)	4760(J)	1001	phure Sene	phile Seld
Industrial processes								
Pharmaceutical Industry								
Makeup water	•	•		•				
Wastewater				•	•	•		
Power Industry								
Makeup water	•	•		•			•	
Cycle chemistry	•			•			•	•
Stator cooling				•			•	•
Scrubber					•	•		
Wastewater				•	•	•		
Semiconductor Industry								
Makeup water	•	•		•			•	
Recycle, reclaim, waste			•	•	•	•		
Water Treatment								
Air scrubbers		•			•	•		
Cooling water		•	•	•	•	•		
Neutralization	•	•	•	•	•	•		
Potable water			•	•				
Wastewater Treatment								
Flue gas neutralization		•		•	•	•		
Galvanic wastewater	•	•		•	•	•		
Industrial wastewater		•			•	•		
Precipitation of heavy metals		•		•	•	•		
Sludge dewatering		•			•	•		

 $^{^{\}ast}$ New pH/ORP sensors with ISM allow measurement of pH and ORP with the same sensor!

pH/ORP Sensors with ISM

Convenient Maintenance and Calibration

METTLER TOLEDO Thornton offers pH and ORP sensors designed specifically for water treatment. The inclusion of ISM technology allows Plug and Measure capabilities, easier maintenance and convenient calibration. A variety of housings ensure a wide range of installation requirements can be met. The solution ground feature enables ORP measurement and ISM sensor diagnostics, and prevents measurement errors due to ground potentials.

Specifications

General	
Measuring electrode	Glass pH, platinum ORP/solution ground
Reference electrode	Silver-silver chloride with double junction or equivalent
Temperature compensator	NTC included in all sensors
pH range	0-14 pH, except InPro 4010 which is 2-12 pH
Maximum flow	3m/s (10ff/s)
Max. cable lengths	80 m (262.4 ft)

For electrode ratings see table "Ordering Information" on the next page. For housings see pages 184–185.

Features Overview

- Convenient electrical and process connections for easy maintenance and calibration
- Advanced METTLER TOLEDO sensor technology for high performance and long life
- Integral temperature sensing for accurate measurement and compensation
- On-line pH sensor diagnostics for assurance of process surveillance

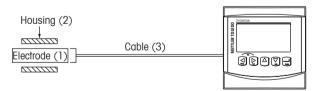
Typical Applications

- Wastewater neutralization
- Pharmaceutical water treatment
- Power and steam generation cycle chemistry and scrubbers
- Semiconductor ultrapure water treatment

www.mt.com/Thornton-pH

4260 i/SG-225 For Retractable Housing

Ordering Information


Rating	Sensor Type	Electrode Conn.	Housing Conn.	Length	Order Number
– For pH & ORP, General Purpose, High Pressure Applications ISM					
See housing limits	Glass and Pt	K8S	Pg 13.5	120 mm	52 005 381
table ISM					
See housing limits	Glass and Pt	K8S	Pg 13.5	225 mm	52 005 382
ıl Purpose & Moderately Pure Wate	r ISM				
0 to 100°C (32to 212°F)	Glass and Pt	K8S	Pg 13.5	120 mm	52 005 373
Applications					
See housing limits	Glass	K8S	Pg 13.5	120 mm	30 018 467
	al Purpose, High Pressure Application See housing limits stable ISM See housing limits al Purpose & Moderately Pure Wate O to 100 °C (32 to 212 °F) Applications	See housing limits Glass and Pt Glass and Pt Glass and Pt Glass and Pt Glass and Pt Glass and Pt Glass and Pt Glass and Pt Glass and Pt Glass and Pt Glass and Pt Glass and Pt Glass and Pt Glass and Pt Glass and Pt Glass and Pt Applications	See housing limits Glass and Pt K8S See housing limits Glass and Pt K8S sable ISM See housing limits Glass and Pt K8S Il Purpose & Moderately Pure Water ISM O to 100 °C (32 to 212 °F) Glass and Pt K8S Applications	See housing limits Glass and Pt K8S Pg 13.5 Itable ISM See housing limits Glass and Pt K8S Pg 13.5 Itable ISM See housing limits Glass and Pt K8S Pg 13.5 Il Purpose & Moderately Pure Water ISM O to 100°C (32to 212°F) Glass and Pt K8S Pg 13.5 Applications	Il Purpose, High Pressure Applications ISM See housing limits Glass and Pt K8S Pg 13.5 120 mm Itable ISM See housing limits Glass and Pt K8S Pg 13.5 225 mm Il Purpose & Moderately Pure Water ISM O to 100 °C (32 to 212 °F) Glass and Pt K8S Pg 13.5 120 mm Applications

Analog Electrodes	Rating	Sensor Type	Electrode Conn.	Housing Conn.	Length	Order Number
– For pH, General Purpose,	Applications					
4010-120-Pt1000	0 to 60°C (32 to 140°F)	Polysulfone	VP	Pg 13.5	120 mm	52 000 512
	2 bar(g)/60°C (30 psig/140°F)	and glass				
	5 bar(g)/45 °C (75 psig/113 °F)					
– For pH, General Purpose,	High Pressure Applications					
4260-120-Pt1000	See housing limits	Glass	VP	Pg 13.5	120mm	52 002 987
– For pH & ORP, General Pi	urpose & Moderately Pure Water A	pplications*				
3250 SG - 120 - Pt 1000	0 to 100 °C (32 to 212 °F)	Glass	VP	Pg 13.5	120 mm	52 002 559
	4 bar(g) (60 psig)					
– For pH, HF–Resistant App	lications					
4262-120-Pt1000-VP	See housing limits	Glass	VP	Pg 13.5	120mm	52 003 550
– For pH, Retractable Applic	cations					
4260-225-Pt1000	See housing limits	Glass	VP	Pg 13.5 retractable	225 mm	52 002 989

Accessories	Order Number
License ISM Core Essential	30 846 306
License ISM Core Advanced	30 846 307
License ISM Core CFR	30 846 348
iLink cable for ISM Core	52 300 383

^{*} For use with moderately pure waters (conductivity 5 to 50 µS/cm) use 53 300 021 housing in 34" NPT(M) earth-grounded metal pipe tee with flow < 100 ml/min and discharge to open drain. For higher purity and/or higher accuracy in pure water see pHure Sensor, page 180–183.

^{*} All new installations require an electrode, housing and cable.

A complete pH or ORP installation requires an electrode (1), a housing (2) and a VP or AS9 cable (3). For suitable housings consult the table on page 184. For suitable cables see table pages 148–149 for analog or page 233 for ISM installations. Each installation requires a transmitter.

For pH/ORP sensors recommended services, see page 183.

pHure Sensor with ISM

Reliable pH Measurement in Pure Waters

The METTLER TOLEDO Thornton pHure Sensor™ uses a special internally-pressurized gel electrolyte reference electrode to produce results similar to a flowing junction but with much more convenient installation and maintenance. The electrode also includes a low resistance pH glass membrane, an integral, fast-responding RTD, and AK9 connection. All components of the pHure Sensor have been optimized for performance and value and conform to ASTM Standard D5128. The inclusion of ISM technology allows Plug and Measure capabilities, easier maintenance and convenient calibration. Various lengths of cable can be selected to provide flexibility in locating the sensor.

Specifications

Wetted materials	pH Glass
Process connections	¼" NPT(F) in/out
Flow housing volume	5 ml with electrode in place
Maximum pressure	Atmospheric pressure for optimum stability;
	operational 0 to 2.5 bar(g) (0 to 35 psig);
	can safely withstand 7 bar(g) (100 psig)
Sample temperature	0 to 80 °C (32 to 176 °F); short term to 100 °C (212 °F)
Sample pH	1-11 pH
Sample flowrate	50 to 150 ml/min
Sample conductivity	> 1.5 µS/cm for highest accuracy
Connection	AK9 or VP cable from sensor to instrument

Features Overview

- Pressurized gel electrolyte
- Accurate, fast responding temperature compensator
- Low resistance glass membrane
- Low volume 316 stainless steel flow housing

Typical Applications

- Reverse osmosis pH adjustment of clean recycle water or between membranes in two pass systems to optimize rejection rates
- Power plant cycle chemistry
- Monitoring and controlling pH levels to comply with guidelines and minimize corrosion and scaling

ISM

Ordering Information

pHure Sensor	Order Number
pHure Sensor ISM combination electrode with temperature compensator	52 003 821
pHure Sensor combination electrode with RTD	52 002 447
* All now installations require a copper bousing and eable	

All new installations require a sensor, housing and cable.

Housing	Order Number
Flow housing	58 084 010

Cables (pHure Sensor ISM combination electrode with temperature compensator)		
Cable length	AK9	
1m (3.3 ff)	59 902 167	
3m (9.8 ft)	59 902 193	
5m (16.4 ft)	59 902 213	
10m (32.8 ft)	59 902 230	
20m (65.6 ff)	52 300 204	
30m (98.4 ft)	52 300 393	
50m (164.0 ft)	52 300 394	
80m (262.4 ft)	52 300 395	

Cables (pHure Sensor combinat	rion electrode with RTD)
Cable length	VP
1m (3.3 ft)	52 300 107
3m (9.8ft)	52 300 108
5m (16.4 ft)	52 300 109
10m (32.8 ft)	52 300 110

Accessories	Order Number
License ISM Core Essential	30 846 306
License ISM Core Advanced	30 846 307
License ISM Core CFR	30 846 348
iLink cable for ISM Core	52 300 383

^{*} For pH and ORP buffers, refer to page 185.

pHure Sensor dimensions

AK9 or VP Cable - Variable Length (depends on model number) pH Electrode Minimum Flow Housing -250 mm (10") 22.1 mm (0.87")34.8 mm \oplus (1.37")150.6 mm Ø 4.83 mm (Ø 0.19") (5.93") 6.3 mm Solution 4 Places (0.25") Ground for _ Calibration 124.7 mm 1/4" NPT(F) (4.91")Outlet 25 mm (1.0") Bare Wire 62.5 mm 6.3 mm (2.46") (0.25")1/4" NPT(F) Inlet-Ø 36.6 mm (Ø 1.44") 74.9 mm (2.95")

Did You Know

The small volume and high sample velocity of the pHure Sensor ensures fast response by preventing power plant corrosion products from accumulating around the electrode membrane.

pHure Sensor LE with ISM

Reliable pH Measurement in Pure Waters

The METTLER TOLEDO Thornton pHure Sensor LE uses a free-flowing junction to provide the most accurate pH measurement available in low conductivity water. The electrode includes a special pH glass membrane, an integral, fast-responding temperature sensor, and VP or AK9 connection. All components of the pHure Sensor LE have been optimized for performance and value and conform to ASTM Standard D5128. The inclusion of ISM technology allows Plug and Measure capabilities, easier maintenance and convenient calibration. Various lengths of cable can be selected to provide flexibility in locating the sensor.

Specifications

Wetted materials	pH Glass, platinum solution ground/ORP
Process connections	1/4" NPT(F) in/out
Flow housing volume	5 ml with electrode in place
Maximum pressure	Atmospheric pressure for measurement;
	can safely withstand 7 bar(g) (100 psig)
Sample temperature	0 to 100°C (32 to 212°F)
Sample pH	1 – 12 pH
Sample flowrate	50 to 150 ml/min
Sample conductivity	> 0.3 µS/cm for highest accuracy
Connection	AK9 or VP cable from sensor to instrument
Reference electrode	3M KCI

Features Overview

- Free-flowing junction/diaphragm
- Simultaneous pH & ORP measurements
- Accurate, fast responding temperature compensator
- Low resistance glass membrane
- Low volume 316 stainless steel flow housing
- Easily refillable electrolyte chamber

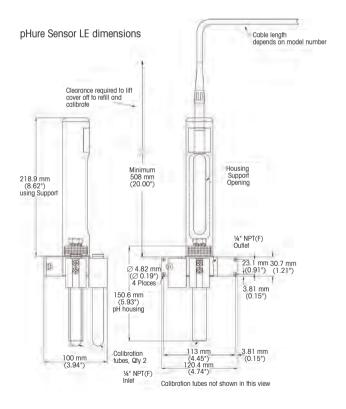
Typical Applications

- Power plant cycle chemistry where pH measurement in low conductivity water is critical
- Reverse osmosis pH adjustment of clean recycle water or between membranes in two pass systems to optimize rejection rates
- Monitoring and controlling pH levels to comply with guidelines and minimize corrosion and scaling

www.mt.com/Thornton-pH

Ordering Information

pHure Sensor LE	Order Number
pHure Sensor LE ISM electrode	30 039 086
pHure Sensor LE analog electrode	30 039 085


* All new installations require a sensor, housings and cable.

* For pH and ORP buffers, refer to page 185.

Consumables	Order Number
Replacement electrolyte 3M KCl 250 ml	51 340 049
Replacement syringe for electrolyte refill	58 079 520
Housing	Order Number
SS flow housing	58 084 017

Cables (pHure Sensor LE ISM combination electrode with temperature compensator)		
Cable length	AK9	
1m (3.3 ft)	59 902 167	
3m (9.8 ft)	59 902 193	
5m (16.4 ft)	59 902 213	
10m (32.8 ft)	59 902 230	
20m (65.6 ft)	52 300 204	
30m (98.4 ft)	52 300 393	
50m (164.0 ft)	52 300 394	
80m (262.4 ft)	52 300 395	

Cables (pHure Sensor LE combination electrode with RTD)		
Cable length	VP	
1m (3.3 ft)	52 300 107	
3m (9.8 ft)	52 300 108	
5m (16.4 ft)	52 300 109	
10m (32.8 ft)	52 300 110	

Recommended pH Sensor Service Agreements

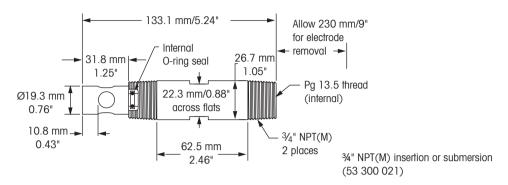
Description	Order Number
Setup Standard Configuration	S39905182
Provides fast and reliable setup and standard configuration to ensure the sensor is ready for use in customer's application.	
Standard Care	B39910002
Maximize uptime with this full coverage over the first 12 months of your equipment's life. Preventive maintenance services include:	
visual inspection, sensor cleaning, preventive maintenance (consumables replacement and calibration).	

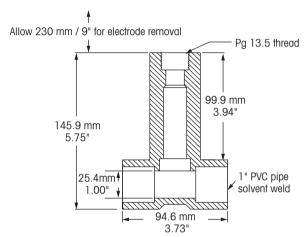
pH/ORP Housings

Flexibility in Meeting Process Requirements

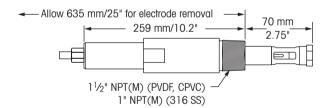
58 084 014

METTLER TOLEDO Thornton housings provide a fixed NPT or solvent weld process connection. For easy access to the electrode for cleaning, calibration or replacement, they have internal O-ring seals with hand-tightened mounting nut. The compact METTLER TOLEDO electrode design includes measuring, reference and fast-responding temperature compensator functions so only a single process connection is ever needed.


Housings should be mounted to orient the tip of the electrode at least 15° below horizontal to ensure reliable contact of internal electrolyte with the measuring membrane. They should not be mounted horizontally or upside-down.


Specifications

Specifications			
pH Housings	Order Number		
	53 300 021	52 401 520	58 084 014
Wetted parts	CPVC	PVDF	PVC
Sensor fitting	34" NPT(M) insertion	34" NPT(M) insertion	1" weld tee
	or submersion ^a	or submersion ${}^{\alpha}$	
Pressure rating	7 bar(g) at 20 °C	6 bar(g) at 20 °C	3.5 bar(g) at 60 °C
	(100 psig at 68 °F)	(87 psig at 68 °F)	(50 psig at 140 °F)
	2 bar(g) at 80 °C	1 bar(g) at 100 °C	
	(30 psig at 176 °F)	(15 psig at 212 °F)	
Suitable pH sensors			
(by Order Number) b:			
- 52 005 381	•	•	•
- 52 005 373	•	•	•
- 52 000 512	•	•	•
- 52 002 987	•	•	•
- 52 002 559	•	•	•
- 30 018 467	•	•	•
- 52 003 550	•	•	•
pH Housings	Order Number		
	58 084 002		
Wetted parts	CPVC		
Sensor fitting	Retractable 11/2" NPT(M)		
Pressure rating	5 bar(g) at 80 °C		
	(75 psig at 176 °F)		
Suitable pH sensors		-	
(by Order Number) b:			
- 52 005 382	•		


- **a** For insertion in plastic pipe, use 34×1" reducing bushing and 1" pipe tee. For submersion with plastic pipe, use $3\!\!/4 \times 1\!\!/$ reducing coupling and 1" pipe.
- **b** For information about the corresponding pH sensors consult page 179.

Drawings of pH housings

1" weld tee (58 084 014)

Retractable 11/2" NPT(M) (58 084 00X)

pH and ORP (Redox) Standard Buffer Solutions

Ordering Information

pH and Redox Buffers	Volume	Order Number
pH Buffers		
pH 4.01 buffer	250 ml	51 340 057
pH 7.00 buffer	250 ml	51 340 059
pH 9.21 buffer	250 ml	51 300 193
pH 10.00 buffer	250 ml	51 340 056
Redox Buffers		
Redox buffer 220 mV	6×250 ml	51 340 081

Oxygen Measurement Systems

High Reliability and Wide Application Coverage

METTLER TOLEDO provides sensors to measure dissolved oxygen (DO) in demanding low ppb-level applications.

Measurement of dissolved oxygen

Proper oxygen levels are important in many processes involving the use of pure and ultrapure water. Control of dissolved oxygen will minimize corrosion, reduce costs or provide maximum semiconductor product yield.

The optical dissolved oxygen sensor

with its durable OptoCap sensing element ensures fast response time, highly accurate measurement, very low maintenance, and no dissolved hydrogen interference.

Electrochemical oxygen sensors

The Thornton high-performance sensors have been designed for in-line measurements of dissolved oxygen in the low ppb-range in power plant cycle chemistry and in ultrapure water applications of the semiconductor industry.

Professional service and validation

Sensor service includes rebuilding, cleaning, testing, and recertification of your Thornton sensor, done quickly and efficiently to minimize downtime.

Ozone Measurement Systems

Provide Accurate Response and Excellent Sensitivity

METTLER TOLEDO Thornton's dissolved ozone measurement systems show rapid and accurate response to ozone concentrations. The excellent sensitivity gives positive detection of zero ozone after destruction by UV light.

Measuring principles

Ozone passes through a gas-permeable reinforced membrane of exceptional durability producing an electrochemical reaction and current flow in direct proportion. Behind the membrane is the platinum cathode where ozone reacts to produce the measurement signal. The electrochemical reaction is completed at the silver anode. Full temperature compensation accounts for effects of both membrane permeability and solubility of ozone in water.

Important features

- Rapid, accurate response
- Positive zero detection
- Low maintenance with drop-in modular membrane

Ozone sanitization of pharmaceutical water systems

Complete sanitization is achieved by controlling ozonation downstream of the storage tank. A second ozone measurement guarantees the removal of all ozone downstream of UV destruction.

Ozone sanitization of semiconductor ultrapure water

Ozone sanitization can be controlled by monitoring the ozone concentration downstream of the ozonator and UPW storage tank. To be sure all ozone has been decomposed after UV lights, a second ozone measurement can confirm a zero level.

Ozone sanitization of bottled water

Continuous measurement and control to proper ozone levels of bottled water is a required quality practice that promotes consistent good taste and long shelf life.

Ozone sanitization of beverage systems

Ozonated water is used in place of chemicals for CIP operations when changing between flavors. Ozone provides cleaning and disinfection without risk of objectionable residuals or byproducts.

Pure Water Optical DO Sensor

Fast Response, Reduced Maintenance

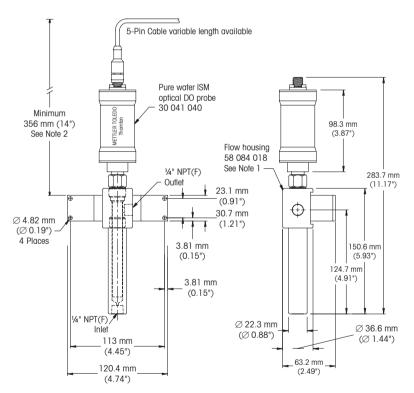
METTLER TOLEDO Thornton's Optical DO Sensor provides high accuracy, fast response and increased stability in demanding low ppb-level applications. The outstanding measurement performance with low detection limit, minimum drift and shorter response time improves oxygen monitoring. The proprietary OptoCap design allows highly accurate measurement of dissolved oxygen without susceptibility to hydrogen interference in power generation. The easy maintenance without liquid handling and polarization increases the availability of the measuring system. Easy maintenance, without liquid handling and sensor polarization increases the convenience of the measuring system. Predictive maintenance with ISM permits easy maintenance planning, reducing downtime.

Specifications

Operating range	0-5000 ppb
System accuracy	±2% of reading or 2 ppb, whichever is greater
Response time at 25 °C (77°F) (Air_N ₂)	98% of final value in < 20s
Sampling rate	Adjustable between 1 and 60 seconds
Sample flow rate	50-800 ml/min
Temperature compensation	Automatic
Measuring temperature range	$0-50^{\circ}\text{C}$ (50–122 °F) for DO measure
Environmental temperature range	0 to 121 °C (32 to 250 °F)
Operating pressure	0.2 to 12 bar (2.9 to 174 psi absolute)
Design pressure	Maximum 12 bar (174 psi absolute)
Sample connections	1/4" NPT(F)
Wetted materials	Stainless steel, silicone, EPDM O-ring
Cable length	2-50m (6.6-164.0ff)
Components needed	Optical DO probe, housing and cable
Construction	
Measuring principle	Fluorescence quenching
Cable connection	5-pin
Connector design	Straight
Sensor body	316L stainless steel
Membrane material	Silicone
O-ring material	EPDM (FDA-positive listed)
Sensor diameter	12 mm

Features Overview

- High accuracy
- Fast response
- Enhanced stability and reliability
- Reduced maintenance and downtime
- No dissolved hydrogen interference
- No flow sensitivity


Typical Applications

- Power plant cycle chemistry monitoring
- Generator stator cooling
- Semiconductor ultrapure water
- Pure water treatment systems

www.mt.com/Thornton-DO

Ordering Information

oracing mornanci	
Optical DO Sensor	Order Number
Pure Water ISM Optical DO Probe	30 041 040
* All new installations require a sensor, housing and cable.	
Required Accessories	
Pure Water 316 Stainless Steel Housing	58 084 018
Sensor Cables	
2m (6.6ft)	52 300 379
5m (16.4ft)	52 300 380
10 m (32.8 ft)	52 300 381
15 m (49.2 ft)	52 206 422
25m (82.0 ft)	52 206 529
50m (164.0 ft)	52 206 530
Spare Parts	
OptoCap Replacement Kit	52 206 403
Accessories	Order Number
License ISM Core Essential	30 846 306
License ISM Core Advanced	30 846 307
License ISM Core CFR	30 846 348
iLink cable for ISM Core	52 300 399

Notes:

- 1. Electrode/Flow housing assembly must be in upright position as shown.
- 2. Allow at least 356 mm (14") clearance to remove sensor.

Recommended Optical DO Sensor Service Agreements

visual inspection, preventive maintenance (OptoCap replacement and calibration).

Recommended Optical DO Sensor Service Agreements		
Description	Order Number	
Setup Standard Configuration	S39905182	
Provides fast and reliable setup and standard configuration to ensure the sensor is ready for use in customer's application.		
Extended Care	B39950001	
Maximize uptime with this full coverage over the first 24 months of your equipment's life. Preventive maintenance services include:		
visual inspection, preventive maintenance (OptoCap replacement and calibration).		
Standard Care	B39910002	
Maximize untime with this full coverage over the first 12 months of your equipment's life. Preventive maintenance services include:		

High Performance Dissolved Oxygen Sensors with ISM

Fast, Accurate Response

ISM

METTLER TOLEDO Thornton's high performance ppb-level dissolved oxygen measurement capability excels in demanding low ppb-level applications. It provides a precise zero and a highly accurate response over the entire range of measurement. This allows it to perform well at any level as well as providing very fast response to changes from one level to another. The inclusion of ISM technology allows Plug and Measure capabilities, easier maintenance and convenient calibration.

Specifications

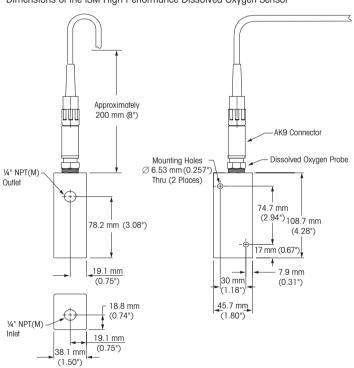
Sample flow rate	50 to 1,000 ml/min	
Sample temperature	0 to 60 °C (32 to 140 °F) for temperature compensation;	
	can tolerate 100 °C (212 °F)	
Sample pressure	0 to 5 bar(g) (0 to 72 psig)	
Sample connections	V₄" NPT(M)	
Wetted materials	Polyacetal flow housing, polyphenylene sulfide probe body,	
	PTFE membrane reinforced with stainless steel and silicone	
	rubber, Viton® and silicone rubber O-rings	
Cable length	Probe to instrument: 1 to 80 m (3.3 to 262.4 ft)	
Weight	1 kg (2 lb) with flow housing	
Response time	98% of final value in 90s	
Operating range	0-10,000 ppb (μg/L)	
System accuracy	\pm 1 % of reading or 1 ppb, whichever is greater; \pm 0.5 °C	

Features Overview

- High accuracy
- Simple maintenance with drop-in modular membrane
- Excellent long-term stability
- Temperature compensation for membrane permeability and oxygen solubility effects

Typical Applications

- Power plant cycle chemistry monitoring
- Semiconductor ultrapure water
- Pure water treatment systems


Ordering Information

Oracing information	
High Performance Dissolved Oxygen Sensor	Order Number
ISM High Performance DO probe	52 201 209
Analog High Performance DO probe	52 201 067
Spare parts and Accessories for All High Performance Sensors	
Maintenance kit (electrolyte and 4 membranes)	52 200 024
Analog Polarization module (for portable use with VP cable)	52 200 893
DO electrolyte pack (3×25 ml)	30 298 424
Single membrane body	52 200 071
Flow housing	58 084 009

^{*} All new installations require a sensor, housing, cable and electrolyte.

Cables (High Performance Dissolved Oxygen probe ISM)		
Cable length	AK9	
1m (3.3 ft)	59 902 167	
3m (9.8 ft)	59 902 193	
5m (16.4 ft)	59 902 213	
10m (32.8 ft)	59 902 230	
20m (65.6 ft)	52 300 204	
30m (98.4 ft)	52 300 393	
50m (164.0 ft)	52 300 394	
80m (262.4 ft)	52 300 395	

Dimensions of the ISM High Performance Dissolved Oxygen Sensor

Cables (High Performance Dissolved Oxygen probe analog)	
Cable length	VP
1m (3.3 ft)	52 300 107
3m (9.8 ft)	52 300 108
5m (16.4 ft)	52 300 109
10m (32.8 ft)	52 300 110

Accessories	
License ISM Core Essential	30 846 306
License ISM Core Advanced	30 846 307
License ISM Core CFR	30 846 348
iLink cable for ISM Core	52 300 383

Did You Know The fast response of high performance DO sensors allows

real-time tracking of start-up deaeration.

Recommended Dissolved Oxygen Sensor Service Agreements	
Description	Order Number
Setup Standard Configuration	S39905182
Provides fast and reliable setup and standard configuration to ensure the sensor is ready for use in customer's application.	
Extended Care	B39950001
Maximize uptime with this full coverage over the first 24 months of your equipment's life. Preventive maintenance services include:	
visual inspection, preventive maintenance (electrolyte replacement, membrane body replacement, inner body replacement, and calibration).	
Standard Care	B39910002
Maximize uptime with this full coverage over the first 12 months of your equipment's life. Preventive maintenance services include:	

visual inspection, preventive maintenance (electrolyte replacement, membrane body replacement, inner body replacement, and calibration)

pureO₃ Dissolved Ozone Sensor with ISM

For Reliable Process Control

The pureO₃™ dissolved ozone sensor uses proven technology along with ISM for rapid and accurate response to a wide range of ozone concentrations. pureO₃ provides reliable ozone measurement in conjunction with many transmitters including various M800, M400, M300 and M200 ISM models. Intelligent sensor data is stored in memory, providing Plug and Measure simplicity with enhanced diagnostics capabilities. Robust sensor construction is coupled with a membrane cartridge which allows exceptionally fast and easy replacement of electrolyte and membrane when necessary.

Specifications

200 to 500 ml/min with housing;
0.15 to 1 m/s (0.5 to 3 ft/s) without housing
5 to 50 °C (41 to 122 °F) for compensation;
probe can withstand 100 °C (212 °F)
Normal operation, atmospheric;
can withstand 0.8 to 3 bar absolute (0 to 45 psig)
V ₄ " NPT(F)
Polycarbonate or 316 stainless steel flow housing,
316L/1.4404 stainless steel probe, silicone rubber membrane,
FKM O-rings
1 to 80 m (3.3 to 262.4 ft)
0.5 lb (227 g)
90% response in 30s
0-5,000 ppb (mg/L); 0-5.0 ppm (mg/L) short term;
0-500 ppb (mg/L); 0-0.5 ppm (mg/L) continuous
± 1 % of reading or 0.4 ppb, whichever is greater

Features Overview

 Reinforced silicone membrane for exceptional durability

ISM

- Full temperature compensation accounts for effects of both membrane permeability and solubility of ozone in water
- Membrane cartridge provides easy replacement of electrolyte and membrane
- 21CFR Part 11 Data Integrity option when paired with an M800 Transmitter and RecordLOC software (see page 235)

Applications

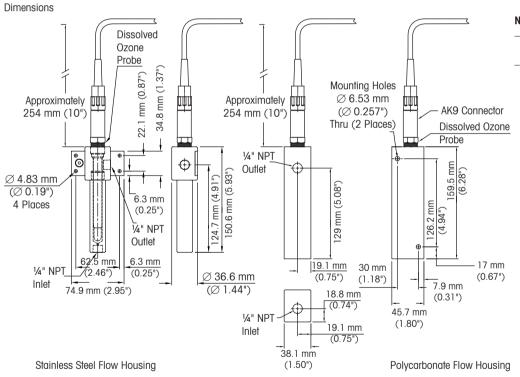
- Pharmaceutical water systems
 Monitors sanitization levels and
 ensures removal of all ozone to
 satisfy the "no added substance"
 requirement, plus data integrity.
- Semiconductor ultrapure water systems

Monitors ozone concentration downstream of the ozonator and UPW storage tank

- Bottled water systems

Continuous ozone measurement is a key quality practice to provide good, consistent taste and long product shelf life

Beverage systems


Ozone replaces caustic chemicals for clean-in-place operations, providing disinfection without objectionable byproducts

www.mt.com/Thornton-Ozone

Ordering Information

ordering information	
Ozone Sensor	Order Number
pureO ₃ Dissolved Ozone sensor	30 139 305
Required Accessories	
Polycarbonate Housing	58 084 012
Stainless Steel Housing	58 084 020
Spare Parts	
pureO ₃ membrane kit including electrolyte, 4 membranes and O-rings	30 235 170
Interior sensor body for pureO ₃	30 236 790
pureO₃ electrolyte, 25 ml	30 135 837
ISM Sensor Cables	
1.0m (3.3 ft)	59 902 167
3.0 m (9.8 ft)	59 902 193
5.0 m (16.4 ft)	59 902 213
10.0 m (32.8 ft)	59 902 230
20 m (65.6 ft)	52 300 204
30 m (98.4 ft)	52 300 393
50 m (164.0 ft)	52 300 394
80 m (262.4 ft)	52 300 395
Oom (202.4 ii)	32 000 000

^{*} All new installations require a sensor, housing and cable.

Notes:

- Sensor/flow housing assembly must be in upright position as shown.
- Allow approximately 254 mm (10") clearance to remove sensor.

Recommended Dissolved Ozone Sensor Service Agreements

Description	Order Number
Setup Standard Configuration	S39905182
Provides fast and reliable setup and standard configuration to ensure the sensor is ready for use in customer's application.	
Extended Care	B39950001
Maximize uptime with this full coverage over the first 24 months of your equipment's life. Preventive maintenance services include:	
visual inspection, preventive maintenance (electrolyte replacement, membrane body replacement, inner body replacement, and calibration).	
Standard Care	B39910002
Maximize uptime with this full coverage over the first 12 months of your equipment's life. Preventive maintenance services include:	
visual inspection, preventive maintenance (electrolyte replacement, membrane body replacement, inner body replacement, and calibration).	

Vortex Flowmeters

Maintenance Free, All-Plastic Construction

The ultimate solution for measuring the flow rates of ultrapure water and chemicals. The vortex flow sensors consist of a molded unibody and are available in PFA, PVC or PVDF. With no moving parts, any potential for fluid contamination is eliminated by the corrosive-resistant, all-plastic construction.

4-digit LED plus high & low alarm indicators
Straight tube ends or Flaretek
10 x diameter upstream and 2 x diameter downstream
PFA Perfluoroalkoxy
0 – 100°C (32 – 212°F)
For liquids more viscous than water, consult Thornton
2 m (6.5 ft) cable may be extended with 22 gauge
6-conductor shielded cable up to 100 m (325 ft) for
pulse input only
NEMA 4X, IP65
One external 12 - 24 VDC isolated power supply
is required for one or two pulse input sensor
CE rated, certificate of accuracy included

Ordering Information Flow Vortex

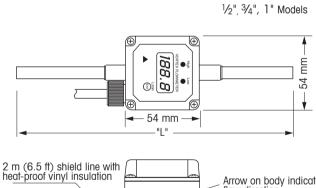
PFA Version	ons			
		Maximum Pressure		
Size	Flow Rate I/min (g/m)	at 20 °C (68°F)	at 100 °C (212°F)	Order Number
Straight Tu	ibe-end – Connections			
1/2"	2 – 20 (0.5 – 5)	10 bar(g) (145 psig)	7 bar(g) (100 psig)	58 034 401
3/4"	10 – 70 (2.7 – 19)	7 bar(g) (100 psig)	4 bar(g) (58 psig)	58 034 402
1"	15 – 150 (4 – 40)	5 bar(g) (70 psig)	3 bar(g) (43 psig)	58 034 403

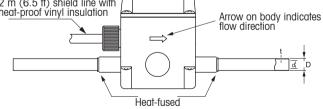
Flow Transmitter Options*

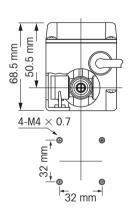
Tion transminor opiiono			
Model	Mounting	Flow Channels	Order Number
M200, Flow 1-channel	1/4-DIN Panel	1	30 280 748
M200, Flow 4-channel	1/4-DIN Panel	4	30 280 749
M800, Waer 2-channel	1/2-DIN	2	58 000 802
M800, DP Water 2-channel	⅓-DIN	2	58 000 806
M800, Water 4-channel	1/2-DIN	4	58 000 804

^{*}One external 12VDC isolated power supply is required for one or two PFA Vortex pulse input sensor(s)

Technical Data Vortex Sensors PFA Versions


Flowrate Range for PFA Vortex Flowmeters


Size	Minimu	m Flowrate								Max Flowrate
	(I/min)									(I/min)
cp*	0.3	0.5	0.7]**	2	3	4	5	7	_
1/2"	0.6	1	1.4	2	4	6	8	10	14	20
3/4"	3	5	8	10	20	30	40	50	70	70
1"	4.5	7.5	10.5	15	30	45	60	75	105	150


^{*} cp = Viscosity of measurement fluid (in centipoises)

Straight Tube-End Dimensions (mm)

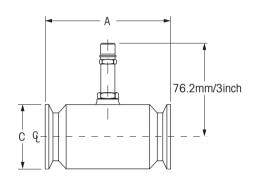
	+0.30	+0.30		
Size	D -0.10	d -0.10	t ± 0.5	L
1/2"	Ø 12.7	Ø 9.52	1.59	190
3/4"	Ø 19.05	Ø 15.88	1.59	190
1"	Ø 25.4	Ø 22.22	1.59	190

Mounting Dimensions (for all models)

^{**} Viscosity of water at 20 °C

Sanitary Flow Sensors

High Quality, Precision


The sanitary turbine flow sensors are designed and manufactured to be compliant with the ASME Bioprocessing Equipment Standard BPE-2014 for measurement of process liquids where high sanitary standards are required. ASME-BPE-2014 is the leading standard on how to design and build equipment used in the production of biopharmaceuticals. This series includes 11 sizes, 1/4" to 3" with standard Tri-ClampTM fittings, covering flow rates of 0.75 to 400 GPM.

Specifications

Wetted Parts	Body 316 SS, Ra 32 microinch (0.8 micrometer) finish;
	17–4PH SS rotor; PH 15 – 7 Mo SS retaining rings; hard carbon
	composite bearings.
Certification	3A Rated, manufacturers calibration and materials certificates
	included.
Electrical connections	Wiring may be run up to 610 m (2,000 ft) with 3
	conductor, 20 gauge, shielded cable, such as Belden 9364.
Process connections	To achieve optimum performance, maintain 3A certification
	and to protect the bearings from excess turbulence and
	damage, a minimum of 10 pipe diameters upstream and 5
	pipe diameters downstream of turbine size pipe must be used.
Linearity	± 0.5% of reading*
Repeatability	± 0.1 % of reading*
Temperature Range	-40 °F to +325 °F, process fluid with std. magnetic pickup coil

^{*} Based on manufacturer's calibration in water at 70 °C

Flow Range	Tri– Clamp Fitting (C)	Turbine Size	Length (A)	Pulse Input
LPM (GPM)			mm/inch	Order Number
2.8 – 28 (0.75 – 7.5)	3/4"	3/8"	90.4/3.56	58 034 655
6.6 – 60 (1.75 – 16)	1 – 1/2"	5/8"	90.4/3.56	58 034 656
9.5 – 110 (2.5 – 29)	1 – 1/2"	3/4"	82.6/3.25	58 034 657
15 – 227 (4 – 60)	1 – 1/2"	1"	90.4/3.56	58 034 658
30 – 492 (8 – 130)	1 – 1/2"	1 – 1/2"	116.6/4.59	58 034 659
57 – 852 (15 – 225)	2"	2"	153.9/6.06	58 034 660
95 – 1,514 (25 – 400)	3"	2 – 1/2"	254/10.00	58 034 661

Flow Transmitter Options

The state of the s				
Model	Mounting	Flow Channels	Order Number	
M200, Flow 1-channel	1/4-DIN Panel	1	30 280 748	
M200, Flow 4-channel	1/4-DIN Panel	4	30 280 749	
M800*, Water 2-channel	½-DIN	2	58 000 802	
M800*, DP Water 2-channel	½-DIN	2	58 000 806	
M800*, Water 4-channel	1/2-DIN	2	58 000 804	

^{*}The M800 Pulse Flow Adapter (part number 58 080 116) allows an M800 ISM channel to be used with a pulse flow sensor to expand the number of flow sensors per M800 transmitter. The pulse output of the flow sensor is converted to a digital signal at the adapter and transmitted to the M800's ISM channel. By using the adapters, you can now connect up to four pulse flow sensors to a 2-channel M800 (2 ISM channels + 2 pulse channels) or six flow sensors to a 4-channel M800 (4 ISM channels + 2 pulse channels).

See p. 225 for full flow capabilities.

Total Organic Carbon (TOC)

ISM Technology

Introduction to ISM Technology

The 6000TOCi Sensor uses Intelligent Sensor Management technology interfacing with the M800 Multi-parameter Transmitter. This technology allows the M800 to recognize the configuration and sensor parameters when connected. The M800 transmitter will allow up to two or four 6000TOCi Sensors to be connected to any of the four input channels. Any remaining channels are available for use with any other ISM Sensors. The M800 also provides two pulse input channels for additional flow measurements.

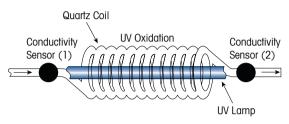
The sensor connects directly to the M800 transmitter using standard patch cables. The 6000TOC i Sensor is designed to meet the requirements of today's industrial facilities with its CE and UL ratings. Combined with the M800 transmitter it provides the most versatile and flexible TOC measurement platform available.

Measurement Technology UV Oxidation/Differential Conductivity

Thornton 6000TOC i, 4000TOCe and 450TOC products use proven ultraviolet oxidation with differential conductivity (see Figure 1) as the method to effectively determine TOC concentrations.

High performance digital conductivity sensors provide continuous conductivity measurement before and after sample oxidation. This is accomplished using a continuous flow-through spiral quartz tube design that allows the sample to flow continuously through the sensor. This design maximizes exposure to the 185 nanometer UV light, while minimizing measurement response time and providing complete oxidation. This simple and effective design requires no reagents or chemicals and has no moving mechanical components.

The formation of hydroxyl radicals in the water during UV exposure produces a mechanism through which bonds in non-ionic organic compounds are broken and oxidization occurs to form products such as carbon dioxide and water. The carbon dioxide dissolves


in the water and forms carbonic acid, which dissociates into ionic-conductive species. This change in conductivity is associated with TOC (see Figure 2).

USP/EP and SST

In the Pharmaceutical Water production process, System Suitability Testing (SST) is an essential activity to verify the performance of a Total Organic Carbon monitoring system and to ensure its adequacy for TOC analysis.

USP and EP Requirements

In the requirements for TOC measurement, the United States Pharmacopoeia and European Pharmacopoeia have established specific Total Organic Carbon (TOC) tests as described in USP General Chapter <643 > and EP Chapter 2.2.44, respectively.

$$C_xH_yO_z \longrightarrow CO_2 + H_2O \longrightarrow H_2CO_3 \longrightarrow H^+ + HCO_3^-$$
 non-ionic ionic-conductive (carbonated water)

Figure 1 Figure 2

A TOC sensor model to meet your exact needs

6000TOCi

The 6000TOCi on-line sensor delivers true continuous measurement for the detection of organic contamination. With an extremely rapid response to TOC changes, the 6000TOCi is ideal for all pure water applications where real-time monitoring is critical.

6000TOCi Low PPB

The 6000TOCi low ppb on-line sensor delivers rapid response and trace sensitivity to organics at sub-ppb concentrations to meet the semiconductor application demand of achieving ever-narrowing line widths. The sensor's real-time response reveals swift changes in TOC levels, ensuring greater process control over UPW purification.

4000TOCe

The on-line 4000TOCe total organic carbon sensor provides real-time monitoring of TOC levels for pure and ultrapure water applications, from reverse osmosis post-treatment to point-of-use. The 4000TOCe sensor, combined with the menu-driven M300 transmitter, provides an easy-to-use analytical package that enhances operational performance and offers extensive system diagnostics.

450TOC Portable

The 450TOC total organic carbon analyzer offers the fastest response available in an easily transportable TOC system. Its robust, portable design and convenient multi-point sampling ability make the 450TOC a valuable tool for periodic sampling and water system diagnostics.

4000TOCe

Easy to Use On-line Measurement

Applications

- Pure and Ultrapure water
- Pharmaceutical-grade water
- Recycle and reclaim
- Power generation

The enhanced 4000TOCe Sensor provides continuous on-line measurement of Total Organic Carbon in a low maintenance industrial package. In addition to using proven UV oxidation with differential conductivity to determine TOC concentration, the 4000TOCe model also features automatic flow control to ensure consistent water flow through the system.

Features/Benefits

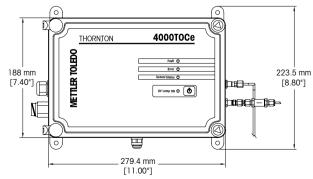
- On-line continuous measurement for fastest response
- Advanced UV lamp design extends stability and wavelength emission over lamp life
- Sample Conditioning Coil (included) can prevent CO₂ permeation into the water sample and will stabilize inlet flow, pressure and temperature irregularities
- Local LED Sensor status indication
- Continuous flow design provides rapid detection of system changes
- No gases or reagents to handle, store or replace and no moving parts minimize routine maintenance and service intervals
- Plug and measure sensor design reduces installation and setup time
- Real-time continuous monitoring for precise data trending and better process control
- Wide dynamic operating range meets the needs of pure and ultrapure water applications
- Meets USP <643>, <645>, EP 2.2.44, Ch.P and JP requirements for the Pharmaceutical Industry

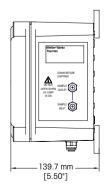
4000TOCe Sensor Ordering Information

Description	Order Number
4000TOCe Sensor, 110 VAC, 50/60 Hz	30 415 866
4000TOCe Sensor, 220 VAC, 50/60 Hz	30 415 867
Accessories	
Kit, Tool, TOC Sensor	58 091 520
Kit, Pipe mounting, for 1-1/2" nominal pipe size	58 091 521
High Pressure Inlet Regulator, 1/4" NPT-female	58 091 552
Outlet Drain Tube	58 091 553
Consumables and Spare Parts	
Replacement Inlet Filter Element, 60 micron (Pkg.2) (Recommended with lamp change)	58 091 551
Replacement UV Lamp (recommended every 4,500 hours of operation)	58 079 513
Kit, Fuse, Sensor PCB (for use on both 110 and 220 VAC models)	58 091 519
System Suitability Standards (For use with Cal/SST KIT 58 091 566)	58 091 526
Calibration Standards (For use with Cal/SST KIT 58 091 566)	58 091 529
Combined Calibration and SST Standards (For use with Cal/SST KIT 58 091 566;	58 091 537
contains 58 091 526 and 58 091 529)	

For use with M300TOC Transmitters

Description	Order Number
M300TOC ¼ DIN Enclosure (Panel mounting kit included)	30 414 214
M300TOC ½ DIN Enclosure	30 414 212


www.mt.com/4000TOCe


Specifications

1000TOO: O	
4000TOCe Sensor	0.05 1000 10 (0.0)
Measurement range	0.05-1000 ppbC (μgC/L)
Accuracy	± 0.1 ppb C for TOC < 2.0 ppb (for water quality > 15 M Ω -cm [0.067 μ S/cm])
	$\pm0.2\text{ppb}$ C for TOC > 2.0 ppb and <10.0 ppb (for water quality >15 M Ω -cm [0.067 $\mu\text{S/cm}$])
	$\pm 5\%$ of measurement for TOC >10.0ppb (for water quality 0.5 to 18.2 M Ω -cm [2.0 to 0.055 μ S/cm]
Repeatability	$\pm 0.05 \text{ ppb C} < 5 \text{ ppb, } \pm 1.0 \% > 5 \text{ ppb}$
Resolution	0.001 ppbC (μgC/L)
Analysis time	Continuous
Initial response time	< 60s
Limit of detection	0.025 ppbC
Conductivity Sensor	
Conductivity accuracy	± 2%,0.02-20 μS/cm; Constant Sensor ^a
Cell constant accuracy	±2%
Temperature sensor	Pt 1000 RTD, Class A
Temperature accuracy	±0.25°C
Sample Water Requirements	
Temperature	0 to 100 °C b
Particle size	<100 micron
Minimum water quality	\geq 0.5 M Ω -cm (\leq 2 μ S/cm), pH $<$ 7.5 $^{\circ}$
Flow rate	≥20mL/min
Pressure	0.3 bar(g) to 6.9 bar(g) (4 to 100 psig) at sample inlet connection d
General Specifications	
Case dimensions	280 mm (11") W×188 mm (7.4") H×133 mm (5.25") D
Weight	2.3 kg (5.0 lb)
Enclosure material	Polycarbonate plastic, flame retardant, UV and chemical resistant
Ambient temperature / Humidity rating	5 to 50 °C (41 to 122 °F)/5 to 80 % Humidity, non-condensing
Power requirements	100-130 VAC or 200-240 VAC, 50/60 Hz, 25 W Maximum
Local indicators	Four LED lights for Fault, Error, Sensor Status and UV Lamp ON
Ratings/approvals	CE Compliant, UL and cUL (CSA Standards) listed, Conductivity and temperature sensors
	traceable to NIST, ASTM D1125 and D5391. Meets ASTM D5173 Standard Test Method for
	On-line Monitoring of Carbon Compounds in Water by UV Light Oxidation
Sample Connections	
Inlet connection	3 mm (0.125") O.D. (2 m (6") FDA compliant PTFE tubing supplied)
Outlet connection	6 mm (0.25") O.D. Barb connection (1.5 m (5") flexible tubing provided)
Inlet filter	316 SS, in-line 60 micron
Wetted parts	316 SS/Quartz/PEEK/Titanium/PTFE/EPDM/FFKM
Wall mount	Standard, mounting tabs provided
Pipe mount	Optional, with pipe-mount bracket accessory for nominal pipe sizes 2.5 cm (1")
Maximum sensor distance	91 m (300')
a Readout in equivalent S/m ranges selectable at M300TOC.	c For power plant cycle chemistry samples, pH may be adjusted by measurement after cation exchange.
b Temperature above 70°C requires Sample Conditioning Coil (included).	d Process pressure above 5.9 bar(g) (85 psig) requires optional High Pressure Regulator p/n 58 091 552.

For TOC sensors recommended services, see page 209.

6000TOC i

On-line, Fast and Continuous

The 6000TOC i total organic carbon sensor provides true continuous measurement, refreshing every second, for immediate detection of organic contamination. Its dependable and reliable design uses proven UV oxidation technology for real-time TOC monitoring of your critical water systems. Easily and efficiently monitor TOC levels from post RO waters to point-of-use so you will never miss an excursion. Constructed with the user in mind, its intuitive interface and flexible Plug and Measure design requires no reagents or chemicals for operation.

ISM CR

Features/Benefits

- On-line continuous measurement
- Meets USP <643>, <645>, EP 2.2.44, Ch.P and JP requirements for the Pharmaceutical Industry
- Semi-automated Calibration and System Suitability Test
- Intelligent Sensor Management (ISM) Interface
- Intelligent diagnostics with iMonitor
- Peak, Average and Rate-of-Change TOC measurement for compliance monitoring
- Compatible with M800 multi-parameter transmitter
- Install up to four TOC sensors to one M800 transmitter
- USB printer capable
- USB for data logging
- Automated flow control
- At-a-glance LED status
- Universal Power Ballast
- 21CFR Part 11 Data Integrity option when paired with an M800 Transmitter and RecordLOC software (see page 235)

True continuous measurement

With an initial response rate of less than a minute and measurement updates every second, the 6000TOCi is ideal in all pure water applications where rapid detection of TOC changes is critical.

Stable and reliable analysis

With highly stable and reproducible TOC measurements, you can be confident that you have the control over your water system that is required to meet regulatory and internal water quality specifications.

Verifiable system performance Intelligent Sensor Management (ISM) advanced diagnostics help ensure your sensor performs optimally at all times.

Supports regulatory compliance

For regulated industries, the 6000TOCi Sensor and M800 Transmitter provide the tools necessary to be compliant. They satisfy the requirements of all major global pharmacopeias for TOC instrumentation, including USP, EP, JP, ChP and IP. ALCOA-compliant audit trail for data integrity when paired with an M800 Water 2-channel RecordLOC transmitter and RecordLOC software (see page 235).

www.mt.com/6000TOCi

Specifications

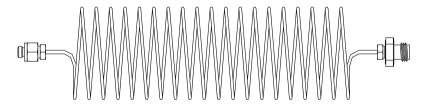
Specifications	
6000TOC i Sensor	
Measurement range	0.05-2000 ppbC (μgC/L)
Accuracy	± 0.1 ppbC for TOC < 2.0 ppbC (for water quality >15 M Ω -cm [0.067 μ S/cm])
	± 0.2 ppbC for TOC > 2.0 ppbC and <10.0 ppbC (for water quality >15 M Ω -cm [0.067 μ S/cm])
	$\pm 5\%$ of measurement for TOC >10.0 ppbC (for water quality 0.5 to 18.2 M Ω -cm [2.0 to 0.055 μ S/cm])
Repeatability	± 0.05 ppbC <5 ppbC, $\pm 1.0\%$ >5 ppbC
Resolution	0.001 ppbC (µgC/L)
Analysis Time	Continuous
Initial Response Time	<60 seconds
Update Rate	1 second
Limit of Detection	0.025 ppbC

Specifications

Specifications	
Conductivity Sensor	
Conductivity Accuracy	±2%, 0.02-20 μS/cm ±3%, 20-100 μS/cm*
Cell Constant Accuracy	±2%
Temperature Sensor	Pt1000 RTD, Class A
Temperature Accuracy	±0.25°C
Sample Water Requirements	
Temperature	0 to 100°C (32 to 212°F)**
Particle Size	<100 micron
Minimum Water Quality	≥0.5 M Ω -cm (≤ 2 μ S/cm), pH <7.5***
Flow Rate	>8.5 mL/min
Pressure	0.3 bar(g) to 13.6 bar(g)/4 to 200 psig at sample inlet connection****
General Specifications	
Case Dimensions	302.75 mm (11.9") W $ imes$ 229.8 mm (9") H $ imes$ 144.7 mm (5.7") D
Weight	5 kg (11.0 lb)
Enclosure Rating	IP55
Enclosure Material	Ignition Resistant Polystyrene Resin meeting UL 94V-0, Painted Aluminum
Ambient Temperature/Humidity Rating	5 to 50°C (41 to 122°F)/5 to 80% Humidity, non-condensing
Power Requirements	100–240 VAC, 50–60 Hz, 25W
Local Indicators	Four LED lights for Fault, Error, Sensor Status and UV Lamp ON
Ratings/Approvals	CE Compliant, UL and cUL (CSA Standards) listed. Conductivity and temperature sensors traceable to NIST,
	ASTM D1125 and D5391. Meets ASTM D5173 Standard Test Method for On-Line Monitoring of Carbon Compounds in
	Water by UV Light Oxidation
Installation/Power/Enclosure	
Inlet Connection	3 mm (0.125") O.D. (1.83 m [6 ft] FDA compliant PTFE tubing supplied)
Outlet Connection	3 mm (0.125") O.D. (165 mm [6.5"] fixed 316 SS tube provided)
Inlet Filter	316 SS, inline 60 micron
Wetted Parts	316 SS/Quartz/PEEK/Titanium/PTFE/EPDM
Wall Mount	Standard, mounting bracket provided

- * Readout in equivalent S/m ranges selectable at M800
- ** Temperature above 70 °C requires Sample Conditioning Coil (included)
- *** For power plant cycle chemistry samples, pH may be adjusted by measurement after cation exchange.
- **** Process pressure above 5.9 bar(g)/85 psig requires optional High Pressure Regulator p/n 58 091 552.

91 m (300 ft)


Specifications subject to change without notice.

Maximum Sensor Distance

Ordering information

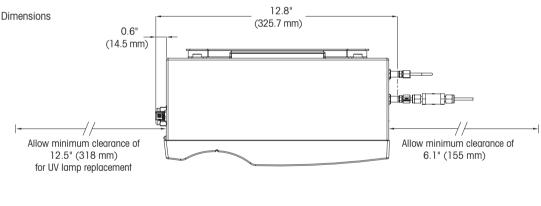
Sensor	Order no.
6000TOC i Sensor, 100-240 VAC 50-60 Hz	30 472 150
Transmitter	
M800 Water 2-channel	58 000 802
M800 Water 2-channel RecordLOC	30 656 182
M800 Water 4-channel	58 000 804
M800 DP 2-channel	58 000 806
Accessories	
Pump Module, 6000TOCi	30 472 152
Inlet Filter Assembly, High Capacity	58 091 550
High Pressure Regulator	58 091 552
Accessories - Cords	
Patch Cord, 0.3 m (1 ft)	58 080 270
Patch Cord, 1.5 m (5 ft)	58 080 271
Patch Cord, 3.0 m (10 ft)	58 080 272
Patch Cord, 4.5 m (15 ft)	58 080 273
Patch Cord, 7.6 m (25 ft)	58 080 274
Patch Cord, 15.2 m (50 ft)	58 080 275
Patch Cord, 30.5 m (100 ft)	58 080 276
Patch Cord, 45.7 m (150 ft)	58 080 277
Patch Cord, 61.0 m (200 ft)	58 080 278
Patch Cord, 91.4 m (300 ft)	58 080 279
Consumables & Spare Parts	
Replacement UV Lamp	58 079 513
Calibration Standards	30 472 083
System Suitability Test Standards	30 472 084
Combined Calibration and System Suitability Test Standards	30 472 085
Calibration Standards for Extended Range Calibration	30 472 086
Combined Calibration and System Suitability Test Standards for Extended Range Calibration	30 472 087
Fuse, 1.25A, Sensor PCB	58 091 583
Inlet Filter Replacement	58 091 551

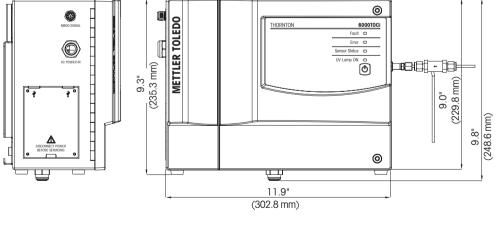
For TOC sensors recommended services, see page 209.

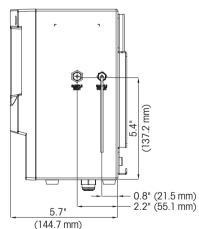
Did You Know The sample co

The sample conditioning coil optimizes the 6000TOCi

sensor performance under adverse conditions such as:


- High sample temperature
- A highly humid environment
- Varying inlet pressure


It also prevents ${\rm CO_2}$ ingress into the sample.


System Suitability Testing

Since the 6000TOC i sensor provides continuous monitoring, the system suitability test can be performed far faster than other TOC measurement technologies which rely on lengthy batch measurement or laboratory analysis. During the system suitability test, the operation of the instrument is identical to normal operating conditions with no extra oxidation cycle times. The solutions are easily introduced into the system, and results are available in minutes.

The system suitability test kit from Thornton provides the equipment needed to perform a system suitability test on the 6000TOC i Sensor. The system suitability test kit is designed for use with the system suitability standards solutions kit available from Thornton. The Solutions Kit includes one bottle of 500 ppb sucrose, one bottle of 500 ppb1,4-benzoquinone and two bottles of reagent TOC water. The solutions are produced from USP Reference Standards for assured consistency, quality and compliance.

6000TOC i Low ppb

Rapid Detection of TOC Changes

Features Overview

- On-line continuous measurement
- Semi-automated Calibration
- Intelligent Sensor Management (ISM)
 Interface
- Intelligent diagnostics with iMonitor
- Peak, Average and Rate-of-Change TOC measurement for compliance monitoring
- Compatible with M800 multi-parameter transmitter
- Install up to four TOC sensors to one M800 transmitter
- USB printer capable
- USB for data logging
- Automated flow control
- At-a-glance LED status
- Universal Power Ballast
- On-site, high precision calibration at low ppb concentrations with certificate of compliance provided

Real-time Total Organic Carbon Control

The 6000TOCi online sensor delivers true continuous measurement for the detection of organic contamination. With an extremely rapid response to TOC changes, the 6000TOCi is ideal for all pure water applications where rapid detection of TOC changes is critical.

Real-Time Transparency of TOC Levels

Achieve clear control of your water system with the fastest response time available and measurement updates every second for continuous TOC analysis.

Conclusive Data to Support Compliance

The 6000TOCi uses proven UV oxidation technology and highly accurate conductivity sensors to deliver consistent and accurate determination of organic material.

Verifiable System Performance

Using advanced sensor diagnostics, the 6000TOCi gives you the insight needed to ensure your TOC system is always measuring effectively.

Features/Benefits

Measuring range	0.05-2000 ppbC (µgC/L)
Measurement Range	0.05 ppb-2,000 ppb
Response Time	60 s
Detection limit	0.025 ppb
Pressure Range	0.3 bar-13.6 bar (4 psi-200 psi)
Temperature accuracy (±)	± 0.25 °C
Analysis Time	Continuous
Limit of Detection	0.025 ppbC
Flow rate	> 8.5 mL/min
Maintenance	6 mo UV replacement
Weight	6 kg (11.0 lb)
Repeatability	± 0.05 ppbC < 5 ppbC, ±1.0 % > 5 ppbC
Temperature Sensor	Pt1000 RTD, Class A
Dimensions W \times H \times D	$302.75 \text{ mm} \times 229.8 \text{ mm} \times 144.7 \text{ mm}$
	11.9"×9"×5.7"
Online or Portable	Online
Enclosure Material	Powder-coated aluminum back enclosure and poly-
	styrene resin front enclosure.
Initial Response Time	< 60 seconds
Resolution	0.001 ppbC (µgC/L)
Operating Range (Temp.)	0 °C-100 °C
Conductivity Accuracy	\pm 2 %, 0.02–20 μ S/cm \pm 3 %, 20–100 μ S/cm
Cell Constant (accuracy)	± 2 %
Intelligent Sensor Management (ISM™)	Yes

www.mt.com/6000TOCi-low-ppb

Ordering information

Sensor	Order no.
6000TOC i Sensor, Low ppb calibration, 100 – 240 V AC 50 – 60 Hz	30 472 151
Transmitter	Order no.
M800 Water 2-channel	58 000 802
M800 Water 2-channel RecordLOC	30 656 182
M800 Water 4-channel	58 000 804
M800 DP 2-channel	58 000 806
Accessories	Order no.
Pump Module, 6000T0Ci	30 472 152
Inlet Filter Assembly, High Capacity	58 091 550
High Pressure Regulator	58 091 552
Accessories – Cords	Order no.
Patch Cord, 0.3 m (1 ft)	58 080 270
Patch Cord, 1.5 m (5 ft)	58 080 271
Patch Cord, 3.0 m (10 ft)	58 080 272
Patch Cord, 4.5 m (15 ft)	58 080 273
Patch Cord, 7.6 m (25 ft)	58 080 274
Patch Cord, 15.2 m (50 ft)	58 080 275
Patch Cord, 30.5 m (100 ft)	58 080 276
Patch Cord, 45.7 m (150 ft)	58 080 277
Patch Cord, 61.0 m (200 ft)	58 080 278
Patch Cord, 91.4 m (300 ft)	58 080 279
Consumables & Spare Parts	
Replacement UV Lamp	58 079 513
Calibration Standards	30 472 083
System Suitability Test Standards	30 472 084
Fuse, 1.25A, Sensor PCB	58 091 583
Inlet Filter Replacement	58 091 551

For TOC sensors recommended services, see page 209.

450TOC

Portable TOC Measurement

CE CUL US LISTED

The 450TOC Total Organic Carbon analyzer from METTLER TOLEDO Thornton offers the fastest response to TOC changes available in a portable TOC system. With its robust, portable design the 450TOC is an ideal tool for multi-point TOC measurement for point-of-use monitoring, water system diagnostics, and maintenance verification.

Portable, Real-time TOC Measurement

- Reduce system and component verification time by 80 % with portable, real-time total organic carbon analysis
- Ensure 100% system compliance with fast, simple and easy point-of- use monitoring
- Reduce system diagnostics time by 80% with fast, on-the-spot test results for TOC and conductivity
- Quickly capture and analyze results with on-board USB stick data collection and simple export to spreadsheet programs
- Eliminate costly sampling errors by bringing the measurement directly to the sampling point

Other Highlights - Continuous med

- Continuous measurement technology for superior system profiling and performance trending
- USB printer support for hard-copy record keeping
- Compliant with USP, EP, Ch P and JP

Dimensions	With Base	Without Base
A	349 mm (13.75")	324 mm (12.75")
В	358 mm (14.1")	334 mm (13.15")
С	192 mm (7.56")	185 mm (7.30")

Specifications

450TOC Sensor	
Measurement range	0.05-1000 µgC/L (ppbC)
Accuracy	± 0.1 ppbC for TOC < 2.0 ppb (for water quality > 15 M Ω -cm)
	± 0.2 ppbC for TOC > 2.0 ppb and < 10.0 ppb (for water quality > 15 M Ω -cm)
	$\pm 5\%$ of measurement for TOC > 10.0 ppb (for water quality 0.5 to 18.2 M Ω -cm)
Repeatability	±0.05 ppbC <5 ppb, ±1.0% >5 ppb
Resolution	0.001 ppbC (µgC/L)
Analysis time	Continuous
Initial response time	<60s
Limit of detection	0.025 ppbC
Conductivity Sensor	
Conductivity accuracy	±2%, 0.02 to 20μS/cm; ±3%, 20-100μS/cm
Cell constant accuracy	±2%
Temperature sensor	Pt 1000 RTD, Class A
Temperature accuracy	±0.25°C
Sample Water Requirements	
Temperature	0 to 70 °C
Particle size	<100 micron
Minimum water quality	$\geq 0.5 \mathrm{M}\Omega$ -cm ($\leq 2 \mu\mathrm{S/cm}$), pH < 7.5 *
Flow rate	20 mL/min
Pressure	0.3 to 5.8 bar (4 to 85 psig) at sample inlet connection
General Specifications	
Overall dimensions	$334 \times 185 \times 324 \text{mm}$ (13.15" L \times 7.3" W \times 12.75" H)
Sample connections	3 mm (0.125") O.D. (2 m [6'] FDA compliant PTFE tubing supplied)
Weight	With base: 7.0 kg (15.4 lb); without base: 6.1 kg (13.6 lb)
Wetted parts	316 SS/quartz/PEEK/titanium/PTFE/silicone/FFKM/EPDM
Power requirements	100–240 VAC, 50/60 Hz, 40 W maximum
Ratings/approvals	CE Compliant, cULus Listed.
	Conductivity and temperature sensors traceable to NIST and ASTM D1125 and D5391
	Meets ASTM D5173 Standard Test Method for On-Line Monitoring of Carbon
	Compounds in Water by UV Light Oxidation

^{*} For power plant cycle chemistry samples, pH may be adjusted by measurement after cation exchange. Specifications subject to change without notice.

450TOC Portable Analyzer Ordering Information

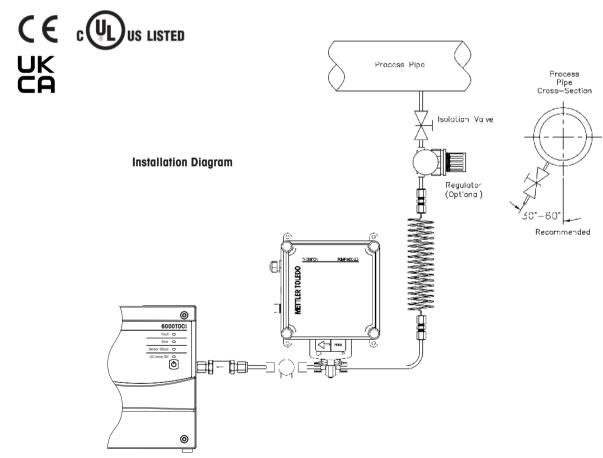
Description	Order Number
450TOC Portable Analyzer	58 036 041
Accessories	Order Number
450TOC protective base	58 091 585
Kit, ISM calibration and System Suitability Test	58 091 566
(SST and calibration standards sold separately)	
Stand, calibration and System Suitability Test kit	58 091 586
Case, 450TOC storage and transport, hard walled	58 091 587
High pressure regulator	58 091 552

Recommended TOC Sensors Service Agreements

pharmaceutical customers.

Description	Order Number
Comprehensive Qualification (EQPac)	S39905162
Installation qualification (IQ) and operational qualification (OQ) using factory calibration data combined with a system suitability test (SST).	
Includes SST reference solutions.	
Extended Care	B39950001
Maximize uptime with this full coverage over the first 24 months of your equipment's life. Preventive maintenance services include:	
visual inspection, full calibration (TOC, conductivity, flow rate, temperature) and replacement UV lamp and filter.	
Comprehensive Care	B39910001
Continue maximized uptime beyond your system's first 24 months. Preventive maintenance services include: visual inspection, full calibration	
(TOC, conductivity, flow rate, temperature) and replacement UV lamp and filter.	
System Suitability Test (for compendial water systems)	S39905157
Ensures that the TOC system meets regulations and provides evidence that the system performance meets compliance requirements for	

TOC Pump Module


Valveless Design, Drift-Free Performance

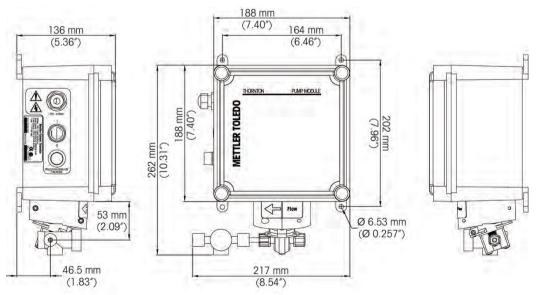
The Pump Module uses a precision, positive displacement pump to provide a highly stable, metered flow of process water to the TOC sensor to ensure reliable and consistent TOC measurement performance. This accessory is recommended for applications where system pressure is either too low to provide adequate flow through the TOC sensor, or for low pressure applications where system pressure may vary routinely during operation. The Pump Module is ideally suited for applications such as distillation, RO permeate, CIP and pharmaceutical washing.

Features Overview

- Positive displacement pumping mechanism
- Flow rate independent of supply pressure
- Requires only a wetted-suction for operation
- Flow pre-set for 20 ml/min or 8.5 ml/min
- Universal AC supply

www.mt.com/Thornton-TOC

Ordering Information


Description	Order Number
Pump Module 20 ml/min (for use with the 4000TOCe sensor)	58 091 565
Pump Module 8.5 ml/min (for use with the 6000TOCi sensor)	30 472 152
Pump Module Spare Parts	
Pump Seal Replacement Kit	58 091 020
Replacement Fitting Kit	58 091 021
Replacement Fuse (Fuse rating 250 V 0.375A 5 × 20 mm Type 'T' [Time Log])	58 091 024
Pulsation Dampener with Interconnect	58 091 025
Pulsation Dampener Bellows Replacement Kit with Seal	58 091 026

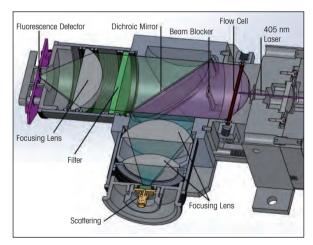
Specifications

Sample Water Requirements			
Temperature		0 to 100 °C*	
Particle size		< 100 micron	
Flow rate		20 ±0.5 ml/min; 8.5 ±0.25 ml/min	
Pressure		Flooded suction to 0.69 bar(g) (10 psig) at sample inlet connection	
General Specifications			
Overall dimensions		188 mm (7.4") W × 188 mm (7.4") H × 133 mm (5.25") D	
Sample connections	Inlet	3 mm (0.125") O.D. (2 m (6') FDA compliant PTFE tubing supplied)	
	Outlet	3 mm (0.125") O.D.	
Weight		2.3 kg (5.0 lb.)	
Ambient temperature/Humidity rating		5 to 50 °C/5 to 80 % humidity, non-condensing	
Enclosure material		Polycarbonate plastic, flame retardant, UV and chemical resistant	
		UL #E75645, Vol.1, Set 2, CSA #LR 49336	
Power requirements		100-240 VAC, 50/60 Hz, 0.2A	
Wall mount		Standard, mounting tabs provided	
Ratings/Approvals		CE Compliant, UL and cUL (CSA Standards) listed.	
		Not NEMA or IP rated	

^{*} Temperature above 70 °C requires Sample Conditioning Coil p/n 58 079 518

Dimensions

7000RMS Microbial Detection Analyzer


Continuous, At-line and Dependable

Cross-section drawing of the optical detection system

METTLER TOLEDO Thornton's 7000RMS™ (Real-time Microbial System) is an at-line analyzer for real-time measurement of microbial contamination (bioburden) in Pharmaceutical Waters. Advanced, laser-induced fluorescence and Mie scattering measurement technology provides immediate detection and quantification of microorganisms. The compact analyzer overcomes limitations of growth-based technologies that are dependent on incubation conditions, growth media, reagents and time.

The 7000RMS enables risk reduction and greater process control, and offers significant costs savings from the combined decrease in laboratory testing and false-positive results.

Features/Benefits

- Continuous results every 2 seconds, no incubation or preparation needed
- Laser-induced fluorescence allows for the measurement of AFU
- Detection is not based on organisms forming a colony
- Increase process control by monitoring/reacting to water system trends prior to an out-of-specification event
- Reduce risk of releasing contaminated water
- Convenient touchscreen display with intuitive user interface
- Monitor at-line
- Alarms for alert, action and breach limits
- SCADA connectivity, analog output, Ethernet and Modbus compatible

Typical Applications

Continuous monitoring of PW, WFI and UPW

- Distribution loops
- Sub loops
- Return loops
- Recirculating storage tanks
- Post purification before storage
- Sampling points

Laser Certifications

- The 7000RMS analyzer is certified as a Class 1 laser product.
- The 7000RMS unit contains a Class 3B Laser System, as specified by IEC 60825-1 Ed.3 (2014).

www.mt.com/7000RMS

Specifications

Specifications	
General Specifications	
Flow rate	30 mL/min
Detection limit	1 AFU (Auto Fluorescent Units)
Minimum detection size	≥0.3 µm
Response time	2 seconds (1 mL)
Data communication	– Ethernet - standard RJ 45/Wi-Fi capable
	- SCADA connectivity via Modbus TCP
	- Analog output channels; 4 $-$ 20 mA standard, with configurable output ranges
	– USB
Water Requirements	
Temperature (non-condensing)	5-90 °C (41-194 °F)*
Inlet pressure	2-5.5 bar(g) (20-80 psig)**1
Type/Quality	Purified Water (PW), Ultrapure Water (UPW), Water for Injection (WFI)
Power/Installation/Enclosure	
Power requirements	100-240 VAC, 50-60 Hz, 5A
	Use the power cord included with the instrument
	2.5 m (8.2 ft) cord length provided standard
Ambient temperature (non-condensing)	0-37 °C (32-98.6 °F)*
Inlet connection; Outlet connection	3 mm (0.125") 0.D.; 3 mm (0.125") 0.D.
Wall mount	Anti-vibration shelf required (P/N 58 079 700)
Enclosure material	Stainless steel
Physical dimensions (W \times H \times D)	56.4 cm × 61.6 cm × 30.5 cm (22.2" × 24.25" × 12")
Weight	33.3 kg (73.4 lbs)
Environmental Conditions	
Altitude	Up to 2000 m (6562 ft)
Environmental Temperature	5–35°C (41–95°F)
Environment	Pollution degree 2
Humidity (non-condensing)	80% maximum relative humidity up to 31 °C (87.8 °F)
	decreasing linearly to 50% relative humidity at 40 °C (104 °F)
Voltage	MAINS supply voltage fluctuations up to $\pm 10\%$ of the nominal voltage of $100-240$ VAC $50-60$ Hz
	TRANSIENT OVERVOLTAGES: up to levels of OVERVOLTAGE CATEGORY II
	TEMPORARY OVERVOLTAGES occurring on the MAINS SUPPLY

^{*} Temperature below 15 °C or above 45 °C requires Sample Conditioning Coil (included)

Ordering Information

Description	Order Number	
7000RMS Microbial Detection Analyzer	58 045 001	
7000RMS Pump Module Accessory	30 616 889	

Recommended Microbial Analyzer Service Agreements

Description	Order Number
Comprehensive Qualification	S39905162
Expert installation ensures that the highest level of quality assurance and documentation is achieved for strictly regulated industries.	
In-depth user familiarization provides confidence in use and maintenance of the analyzer.	
Extended Care	B39950001
Ensure peace of mind and maximize uptime with this full service contract over the first 24 months of your analyzer's life. With preventive	
maintenance right from the start, you minimize possible long term impacts on your analyzer too.	
Comprehensive Care	B39910001
Continue maximized uptime beyond your systems first 24 months with this comprehensive service offering. Avoid risk and protect your	
equipment against downtime, performance issues and unexpected repair labor and material costs.	
Basic Care	B39910003

Service contract provides a faster response time with priority scheduling. It includes full preventive maintenance which covers calibration, inspection, cleaning and operational testing to catch any out-of-specification performance issues.

^{**} Process pressure above 80 psig (5.5 bar(g)) requires optional High Pressure Regulator (P/N 58 091 552). For Process inlet pressure below 2 bar (20 psig use the 7000RMS Pump Module Accessory (P/N 30 616 889) [Min pressure ≥5psig (0.34 bar(g)); Max pressure ≤50psig (3.44 bar(g))]

Calibration, cleaning and grab sample requires sample pressure of 0 psig (0 bar(g))

2300Na Sodium Analyzer

High Sensitivity, Low Maintenance

The METTLER TOLEDO Thornton 2300Na Sodium Analyzer offers a new approach for a traditional measurement in pure/ultrapure water treatment and power cycle chemistry monitoring. This analyzer provides assurance of water purity to minimize corrosion and maximize water production during power generation. It also ensures water purity in microelectronics production through early detection of breakthrough in cation resin during ultrapure water treatment. Early detection of trace contamination is enabled with minimal operator supervision.

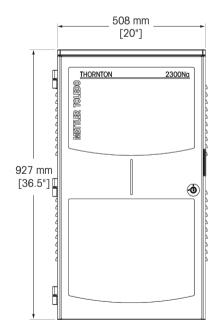
Features/Benefits

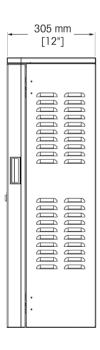
- Fully automatic, unattended calibration: ensures reliable operation while saving technician time
- Reagent addition confirmation by pH: ensures reliable measurement results
- Convenient grab sample measurement: for additional samples and QC checks for other areas of the plant
- Slow and complete reagent consumption: saves reagent costs and eliminates waste disposal issues
- Simultaneous display of sodium, adjusted pH, temperature and calibration progress: provides convenient analyzer and sample status at a glance, saving operator time
- Automated electrode conditioning with each calibration: minimizes the need for electrode etching
- Choice of two enclosures: full locking door for dirty plant environments or with controls conveniently accessible for clean sample rooms
- Four analog outputs for sodium, pH and temperature with choice of scaling: enables full integration into data acquisition or control systems

Typical Applications

- Ultrapure water monitoring at sub-ppb sodium levels
- Cation exchange monitoring in pure water treatment detects the first breakthrough of sodium
- Power steam quality monitoring protects turbines from sodium attack
- Power condensate monitoring detects small leaks early to allow time to plan corrective action

Specifications


Specifications	
Measurements	
Response time (90%)	5 min
Update rate	Once per second
Reagent consumption	Diisopropylamine, DIPA, or Ammonium Hydroxide, approximately 0.7 L filling per 2 months, more at higher temperatures and for cation exchange samples
Sample pH	2.5–12
Sample flow rate	> 40 mL/min (> 20 mL/min for cation exchange samples), excess to drain
Sample temperature	5-50°C (41-122°F)
Sample pressure	0.3-7 bar(g) (5-100 psig)
Calibration	Automatic, unattended 3-point known addition; manual 1- or 2-point
Electrode conditioning	Part of auto-cal sequence
Grab sample measurement	Included
Range, temperature	0-100°C (32-212°F)
Outputs	
Analog outputs	For sodium, conditioned pH, temperature; four powered $0/4-20\text{mA}$, 22 mA alarm,
	500 ohm max load, not for use with externally powered circuits
Analog output scaling	Linear, bi-linear, logarithmic (1,2,3 or 4 decades) or auto ranging
Analog output accuracy	±0.05mA
Relay contacts	Two unpowered, SPDT, 250 VAC/30 VDC, 3 A resistive freely assignable to
	setpoints for sodium, pH, temperature; other relays used for auto-cal
Installation/Power/Enclosure	
Operator interface	4-line backlit LCD, 5 tactile keys; simultaneous display of sodium, conditioned pH, auto-cal status (temperature optional)
Connections	Sample inlet: 1/4" or 6 mm OD tube SS compression fitting
	Drain hose: 19×25.4 mm (34×1 "), 2 m (6ft) length included
Power	100-240 VAC, 50-60 Hz, 25 W; on power loss all settings are retained without batteries
Dimensions HWD	Enclosures: 900 × 450 × 190 mm (35.4 × 17.7 × 7.5")
Weight	27 kg (60 lbs)
Ambient operating temperature	10-45°C (50-113°F)
Humidity	10-90% non-condensing
Ratings/approvals	CE, cULus


Ordering Information

Description	Order No.	
2300Na Sodium Analyzer,	58 042 002	
with full dust & water resistant enclosure		
2300Na Sodium Analyzer Panel (clean locations)		
100-240 VAC	30 768 009	
Required Startup Kit	58 091 233*	
1 L of 100 ppm calibration standard		
solution, 250 mL of 7 and 10 pH buffer		
solutions and etch solutions		
* Dijaanranylamina (DIDA) raggant to be sourced legally		

 $[\]ensuremath{^{*}}$ Diisopropylamine (DIPA) reagent to be sourced locally.

For Analyzers recommended services, see page 221.

2301Na Sodium Analyzer

Accurate and Reliable Measurement, Solid Value

The METTLER TOLEDO 2301Na Sodium Analyzer offers an open panel-mounted design for pure water treatment projects. This analyzer features a measurement range starting at 0.01 ppb for trace measurement applications. This low-main-tenance analyzer has a manual calibration process to ensure accurate measurements and to help you identify cation resin breakthrough during pure water treatment. This analyzer offers add-on features to enhance capabilities according to your project's needs.

Features/Benefits

- Wide measurement range: 0.01ppb-100,000ppb assures early detection of trace contamination
- Choice of reagent, DIPA or Ammonium Hydroxide to better comply with plant safety requirements
- pH check verifies reagent delivery assuring reliability of measurement
- Two models available, a panel-mounted assembly or lockable full-door enclosure
- Controlled, efficient reagent consumption eliminates waste disposal issues
- Low maintenance ensures low cost of ownership
- Grab sample capability is available as an add-on option for testing samples in multiple areas of the plant

Specifications

opositioations	
Measurements	
Range, sodium	0.01 – 100,000 ppb or equivalent ppm, auto ranging
Resolution, sodium	4 digits with decimal, auto ranging; 0.001 ppb in lowest range
Accuracy, sodium	\pm 10% of reading \pm 0.1 ppb, typical; using DIPA as reagent
	\pm 10% of reading \pm 1 ppb, typical; using ammonium hydroxide
	as reagent
Response time (90 %)	5 min
Update rate	Once per second
Reagent consumption	Diisopropylamine (DIPA), or ammonium hydroxide, approxi-
	mately 0.7 L fillings per 2 months; more at higher temperatures
	and for cation exchange samples
Sample pH	2.5-12
Sample flow rate	>40 mL/min (>20 mL/min for cation exchange samples
	excess to drain
Sample temperature	5-50°C (41-122°F)
Sample pressure	0.3-7 bar(g) [5-100 psi(g)]
Calibration	Manual 3-point known addition; manual 1- or 2-point
Grab sample measurement	Available option
Range, pH	0-14 pH, reagent conditioned sample
Range, temperature	0-100°C (32-212°F)

Specifications

Outputs		
Analog outputs	For sodium, conditioned pH, temperature; four powered 0/4-20 mA, 22 mA alarm,	
	500 ohm max load, not for use with externally powered circuits	
Analog output scaling	Linear, bi-linear, logarithmic (1,2,3 or 4 decades) or auto ranging	
Analog output accuracy	±0.05 mA	
Relay contacts	Two unpowered, SPDT, 250 VAC/30 VDC, 3 A resistive freely assignable to	
	setpoints for sodium, pH, temperature	
Installation/Power/Enclosure		
Operator interface	4-line backlit LCD, 5 tactile keys; simultaneous display of sodium, conditioned pH,	
	cal status (temperature optional)	
Connections	Sample inlet: 1/4" or 6 mm OD tube SS compression fitting	
	Drain hose: 19×25.4 mm (34×1 "), 2 m (6ff) length included	
Power	100-240 VAC, 50-60 Hz, 25 W; on power loss all settings are retained without batteries	
Dimensions HWD	$851 \times 450 \times 165 \mathrm{mm} (33.5 \times 15.75 \times 6.5)''$	
Weight	4.5 kg (10 lbs)	
Ambient operating temperature	5-50°C (41-122°F)	
Humidity	10-90 % non-condensing	
Ratings/approvals	CE, cULus, IP65, UKCA	

Ordering Information

Description	Order No.
2301Na Sodium Analyzer panel assembly	58 042 003
2301Na Sodium Analyzer with full door enclosure	58 042 004
Accessories and Consumables	
Consumables kit 1 year – Includes sodium and pH electrodes, air filters, sample filter,	58 091 111
diffusion tubing, calibration kit, 7 and 10 pH buffer solutions	
Calibration kit 1 year – Includes 120 mL of 100 ppm calibration standard, 60 mL of conditioning solution, etch kit	58 091 108
Diisopropylamine (DIPA)	
Ammonium Hydroxide 30 %	

Key Power Applications

- Make Up Water: Detects cation breakthroughs of sodium ions signaling exhaustion of cation resin.
- Condenser and Polisher: Warns of cation breakthrough and condenser leakage.
- **Economizer:** Detects sodium carryover into inlet water before it enters the boiler.
- Superheater: Detects sodium carryover into steam to protect turbines.

For Analyzers recommended services, see page 221.

Did You Know

SQ144 and SQ148 Sequencers offer the capability to

measure up to 8 sample streams with a single sodium, silica, chloride/sulfate analyzer. Please speak with your METTLER TOLEDO representative to learn more.

2850Si Silica Analyzer

Intelligent, Flexible, Compact

The METTLER TOLEDO Thornton 2850Si Silica Analyzer is a compact and reliable on-line analyzer designed for measuring silica in pure/ultrapure water treatment and power cycle chemistry monitoring. It supports early detection of trace contamination with minimal operator supervision, proactively monitors reagent usage and reports time to maintenance. This analyzer offers optional built-in sequencing to support multiple sample streams and phosphate monitoring to ensure sufficient levels are maintained for optimal boiler water treatment.

Features/Benefits

- Automatic, unattended calibration provides excellent repeatability and saves operator time
- Automatic zeroing with every measurement ensures measurement stability
- Convenient grab sampling allows quality testing of remote samples
- Intelligent internal analytics ensure peak performance and minimal downtime
- Configurable simultaneous display of parameters including silica/phosphate levels and measurement timing
- Analog output with choice of scaling for integration into data acquisition system
- Available as panel assembly or with full enclosure that protects reagent containers and components from plant environment
- Small footprint simplifies upgrades and saves valuable panel space
- Lightweight, compact, simple-to-maintain design supports up to four sample streams

Typical Applications

- Anion exchange monitoring in pure water treatment detects the first breakthrough at very low ppb levels of silica to trigger regeneration and ensure contaminated water can be diverted before it reaches critical areas.
- Power steam quality monitoring protects turbines from silica deposition and resulting imbalance, loss of capacity and reduced efficiency. Silica measurement and control may also be needed to meet turbine manufacturer warranty requirements.
- At larger plants, monitoring silica levels at the economizer provides a final feedwater quality check before the pre-heated water enters the stream drum.
- When treating boiler water with phosphate, monitoring ppm levels is important for maintaining appropriate concentrations to control scale and protect against caustic corrosion.

Specifications

Specifications			
Measurements			
Silica measurement range	0-5,000 ppb		
Phosphate measurement range	0.3-10 ppm		
Silica measurement accuracy	$\pm 5\%$ of reading or ± 1 ppb, whichever is greater		
Phosphate measurement accuracy	±10% of reading or ±0.3 ppb, whichever is greater		
Resolution	4 digits with decimal, auto ranging; 0.001 ppb in lowest range		
Measurement cycle time	Adjustable ≥ 10 min; 20 min typical		
Reagent consumption	Approx. 500 mL each per 3 months with 20 min measurement cycle time		
Sample flow rate	50-250 mL/min		
Sample temperature	5-60°C (41-140°F)		
Sample pressure	0.3-7 bar (5-100 psig)		
Zero calibration	Automatic, every measurement cycle		
Span calibration	Automatic per schedule; once per month, typical		
Grab sample measurement	500 mL capacity		
Outputs			
Analog output	8 powered 0/4-20 mA, 22 mA alarm, 500 ohm max load, not for use with externally		
	powered circuit		
Analog output accuracy	±0.05 mA		
Analog output scaling	Linear, bi-linear, logarithmic (1,2,3,4 decades), auto ranging		
Relay contacts	4-SPST mechanical rated at 250 VAC, 3 A;		
	4-SPST Type Reed 250 VAC or DC, 0.5 A		
Digital input	Remote start/stop of measurement cycle		
Communication	PROFIBUS DP		
Installation/Power/Enclosure			
Operator interface	TFT color touchscreen; simultaneous display of silica/phosphate concentration and		
	measurement or auto-cal status		
Process connections	Sample inlet: 6 mm or 1/4" OD tube SS compression fitting		
	Drain hose: $19 \times 25.4 \text{mm}$ (34×1 "), 2m (6ft) length included		
Power supply	100–240 VAC, 50–60 Hz, 65 W; all settings retained on power loss		
Dimensions HWD	Enclosure: 543 × 396 × 300 mm (21.4" × 15.6" × 11.8")		
Weight	18 kg (40 lbs)		
Ambient operating temperature	10-50°C (50-122°F)		
Humidity	10-90% non-condensing		
Ingress protection	IP66/NEMA 4X (Electronics); IP55 (Enclosure)		
Ratings/approvals	CE, cULus, UKCA		
Chaoifigations subject to change			

Specifications subject to change.

Ordering Information

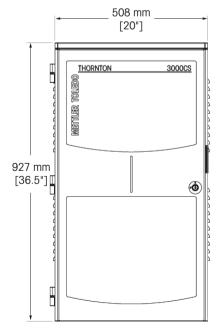
Description	Order No.
Analyzer 2850Si Silica, 1-stream	30 571 931
Analyzer 2850Si Silica, 2-stream	30 571 932
Analyzer 2850Si Silica, 4-stream	30 571 933
Analyzer 2850Si Silica, 1-stream with Phosphate	30 571 934
Analyzer 2850Si Silica, 2-stream with Phosphate	30 571 935
Analyzer 2850Si Silica, 4-stream with Phosphate	30 571 936
Analyzer 2850Si Silica, 1-stream Panel	30 571 937
Analyzer 2850Si Silica, 2-stream Panel	30 571 938
Analyzer 2850Si Silica, 4-stream Panel	30 571 939
Analyzer 2850Si Silica, 1-stream Panel with Phosphate	30 571 940
Analyzer 2850Si Silica, 2-stream Panel with Phosphate	30 571 941
Analyzer 2850Si Silica, 4-stream Panel with Phosphate	30 571 942
Silica Reagent Kit* (3 month supply of reagents	30 571 930
and 500 mL of 250 ppb silica calibration standard.)	
Silica/Phosphate Reagent Kit* (3 month supply of reagents	30 571 929
and 500 mL of 250 ppb silica/1 ppm PO ₄ calibration standard.)	

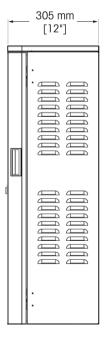
^{*} Reagent Kit determined based on Silica only or Silica/Phosphate measurement models.

3000CS Chloride & Sulfate Analyzer

High Sensitivity, On-line Measurement

CE CUL US LISTED


The METTLER TOLEDO Thornton 3000CS Analyzer is a reliable on-line instrument designed to directly measure chlorides and sulfates in pure water and power cycle chemistry. This analyzer enables monitoring of these highly corrosive contaminants to assist in corrosion control and minimizing damage to critical plant equipment. Early, unambiguous detection of trace levels of these contaminants is enabled with minimal operator supervision.


Features/Benefits

- Intuitive touchscreen interface: allows display of trendlines for each measurement
- Simultaneous display of ion concentrations and measurement timing: provides convenient analyzer status at a glance, saving operator time
- Convenient grab sample capability: allows measurement of additional samples or for QC checks
- Full enclosure: protects internal reagent containers and components from plant environment

Typical Applications

- Steam quality monitoring at turbine inlet to ensure chloride and sulfate levels are under acceptable limits.
- Condensate monitoring at condensate polisher, to detect breakthrough or deterioration of sulfonated cation resin.
- Boiler feedwater monitoring, to activate boiler blowdown if needed to control contaminant levels.
- Makeup water quality.

www.mt.com/Thornton-ion

Specifications

Measurements				
Range	0-300 ppb			
Limit of detection	Chloride: 0.5 ppb; Sulfate: 1 ppb			
Accuracy	Chloride: $\pm 5\%$ of reading ± 0.5 ppb, typical; Sulfate: $\pm 10\%$ of reading ± 1 ppb			
Measurement cycle time	45 min typical, programmable between 15 minutes and 1 hour			
Sample flow rate	25-50 mL/min			
Sample temperature	10-45°C (50-113°F)			
Sample pressure	0.3-7 bar (5-100 psig)			
Grab sample measurement	100 mL capacity			
Outputs				
Analog outputs	8 powered 0/4–20 mA, 22 mA alarm, 500 ohm max load,			
	not for use with externally powered circuit			
Analog output accuracy	±0.05 mA			
Analog output scaling	Linear, bi-linear, logarithmic (1,2,3,4 decades), auto ranging			
Relay contacts	Mechanical rated at 250 VAC, 3 Amps (Relay 1 NC, Relay 2 to 4 NO),			
	4-SPDT Type Reed 250 VAC or DC, 0.5 Amps (Relay 5 to 8)			
Installation/Power/Enclosure				
Operator interface	Color touchscreen; simultaneous display of ion concentrations and analyzer status			
Process connections	Sample inlet: 1/4" or 6 mm OD tube SS compression fitting			
	Drain hose: 19×25.4 mm (34×1 "), 2 m (6 ft) length included			
Power	100-240 VAC, 50-60 Hz, 100 W typical			
Dimensions HWD	927 × 508 × 305 mm (36.5" × 20.9" × 12")			
Weight	44 kg (97 lbs)			
Ambient operating temperature	10-35 °C (50-95 °F)			
Humidity	10-70 % non-condensing			
Ratings/approvals	CE, cULus, UKCA			

^{*} Specifications subject to change.

Ordering Information

Description	Order No.	
3000CS Analyzer	58 044 001	
Required Consumable Kit	58 091 401	
Includes 2-month supply of reagents, cartridge, and calibration standard solution.		
Conditioning Resin Kit	30 416 018	

Recommended Analyzer Service Agreements

Service Description	Order Number
Setup and Configuration	S39905182
Provides fast and reliable setup and standard configuration to ensure the analyzer is ready for use in your application.	
ExtendedCare	B39950001
Ensure peace of mind and maximize uptime with this full coverage service contract over the first 24 months of your equipment's life.	
With preventive maintenance right from the start, you minimize possible long term impacts on your equipment too.	
ComprehensiveCare	B39910001
Continue maximized uptime beyond your analyzer's first 24 months with this comprehensive service offering. Avoid risk and protect	
your equipment against downtime, performance issues and unexpected repair labor and material cost.	
BasicCare	B39910003
Service contract provides a faster response time with priority scheduling. It includes full preventive maintenance which covers calibration,	
inspection, cleaning and operational testing to catch any out-of-specification performance issues.	

Transmitters for All Parameters

Your Access to Water Analytics

Whether you require a multi-parameter, multi-channel, parameter specific or portable unit, METTLER TOLEDO's wide portfolio of globally-approved transmitters includes the right solution for you.

Constant information

Transmitters are the components that communicate to the user and translate sensor readings into displayed measurements for indication and control.

METTLER TOLEDO provides tailorable transmitter solutions to meet the needs of a wide range of applications and functional requirements. Intelligent diagnostics keep users informed of sensor "health".

Single- or multi-channel?

For simpler processes where only a single parameter requires measurement, a single-channel transmitter is the obvious choice, but for processes where more than one parameter must be monitored, multi-channel, multi-parameter transmitters offer significant advantages and value. METTLER TOLEDO multi-channel transmitters combine operating flexibility with ease of use.

Communication

We offer transmitters for most common communication protocols for easy interface with your DCS or PLC. Intelligent Sensor Management (ISM) diagnostics data can also be accessed on control systems to provide an overview of the performance of all measurement systems from one point.

The way forward

Use of digital sensors is becoming increasingly common in the process industries. Many of our transmitters accept traditional analog as well as ISM digital sensors, providing a future oriented investment in your plant.

Our latest transmitter developments include the M800 multi-parameter, multi-channel unit. Its large touchscreen

display and intuitive menus save operating time, while predictive maintenance ensures reliability and reduced maintenance. The M300 is flexible, price competitive and offers single and dual channel measurements with ISM or analog sensors. The M200 has been designed around one central requirement: ease-of-use. From system selection to commissioning, operation and mainte-

nance, all M200 system components are narrowly tailored to include only necessary functions. METTLER TOLEDO Thornton transmitters provide reliable performance for measuring conductivity, total organic carbon (TOC), pH, ORP, dissolved oxygen, dissolved ozone and flow.

	400 H H	235.4 mm 2 235.4 mm 2 305.4 m 4. 305.4 m 4.	Action 1 to 1 to 1 to 1 to 1 to 1 to 1 to 1	33 / 2 33 / 2 34 / 3 3 /
	M200 (p. 224–227)	M300 Water (p. 228–231)	M400 (p. 92–95)	M800 Water (p. 232–234)
	(μ. 224–221)	(p. 220–231)	(p. 92-95)	(μ. 202–204)
Channels	1/2	1/2	1	2/4
Plug and Measure	•	•	•	•
Dynamic Lifetime Indicator (DLI)	-	•	•	•
Adaptive Calibration Timer (ACT)	-	•	•	•
Time To Maintenance (TTM)	-	•	•	•
Calibration history	-	•	•	•
iMonitor	-	•	•	•
CIP/SIP/autoclaving counter	-	•	•	•
Power plant calc parameters	•	•	_	•
USP/EP conductivity setpoints	•	•	•	•
Di-Cap™	-	-	-	•
Communication	-	-	HART	Profibus DP, Profinet*, Ethernet/IP*
Panel cutout	½DIN, ¼DIN	½ DIN, ¼ DIN	½ DIN	½ DIN
Mixed-mode input	_	•	•	_
PID controller	_	•	•	•
Hold input	•	•	•	•
Analog input	_	_	**	•
Relays	2	4	4	4/8
Analog outputs	2/4	2/4	4	4/8
USB data logging	-	•	•	_
Transmitter Configuration Tool (TCT)	•	•	•	•
Approvals	cULus, CE	cULus, CE	cCSAus CI 1 Div 2, ATEX Zone 2, CE, NEPSI	cULus, CE
Parameter compatibility (water)				
pH/ORP/pNa	•	•	•	•
Dissolved oxygen				
Amperometric sensors				
Low (High Performance)	•	•	**	•
Optical sensors				
Low (pure ODO)	-	-	**	•
TOC	-	-	_	•
Conductivity 2-e/4-e (analog)	_	•	•	_
UniCond 2-e/4-e	•	•	•	•
Dissolved ozone	•	•	**	•
Flow**	•	-	-	•
21CFR Part 11 RecordLOC	-	-	-	•

^{*} Model dependent

^{**} Each M800 has two pulse flow input channels. Additional flow sensors can be connected using optional pulse flow adapter. Flow is available on selective M200 models.

M200: Convenient and Reliable

For Basic Water Applications

ISM

UK CA The METTLER TOLEDO M200 transmitter line provides an exceptional ease-of-use interface for digital conductivity, pH, ORP, dissolved oxygen and ozone measurement. From system selection to commissioning, operation and maintenance, all system components are designed to eliminate any unnecessary functions. Plug and Measure provides maximum compatibility and easy operation for digital sensor operation. Simply connect selected digital ISM or unique to M200 digital easySense sensors and the transmitter does the rest.

Specifications

4 line backlit LCD; 5 tactile keys		
Polycarbonate		
0.7 kg (1.5 lb)		
1 kg (2.2 lb)		
Installation (overvoltage) Category II		
UL (US & Canada), CE compliant;		
1/4 DIN: IP65 (front); 1/2 DIN: IP65/UL 4X		
EN61226-1:2013 Class A		
Universal 100-240 VAC, 50-60 Hz or 20-30 VDC; 5 W		
Powered 0/4-20 mA, 22 mA alarm, 500 Ω maximum load;		
not for use with externally powered circuits		
±0.05 mA		
Linear, bi-linear, logarithmic (1,2,3 or 4 decades),		
auto ranging		
All contacts are potential free, with adjustable hysteresis and		
time delay		
SPDT, SPST NO, SPST NC: 250 VAC/30 VDC, 3 A, resistive		
SPST reed: 300 VDC, 0.5 A, 10 W		
USB, type B connector, for remote configuration and		
commissioning		
Accepts dry contact closure for remote flow totalizer reset or for		
remote PID control auto/manual selection		

Other Highlights

- Digital easySense and ISM sensor compatibility
- Quick setup mode for fast installation
- Digital, backlit, high contrast display

Features Overview

- Multi-parameter allows up to two user-configurable channels with precalibrated sensors
- Selectable conductivity temperature compensation on/off and USP alarm capabilities
- Multi-level password protection against accident accidental changes
- Transmitter Configuration Tool (TCT) software included, for fast, simple and consistent transmitter programming via USB port

www.mt.com/M200

Transmitter Specifications

Outputs		
pH/ORP/Cond/DO/Ozone/Temperature	Single-channel	Two-channel
Setpoints/alarms	4-high, low, outside, between, USP, EP	6-high, low, outside, between, USP or EP
Relays	2 SPDT	2 SPDT
Analog output signals	2	4
Discrete inputs	1	2
Flow	Single-channel	Four-channel
Setpoints/alarms	4-high, low, outside, or between	8-high, low, outside, or between
Relays	2 SPDT, 1 SPST NO,1 SPST NC	2 SPDT, 1 SPST NO, 1 SPST NC
Analog output signals	2	4
Discrete inputs, for external totalizer reset	1	2

Flow Transmitter Specifications

Flow rate range	0 to 9999 GPM, L/min, m³/hr	
Total flow range	0 to 9,999,999 Gallons, 37,850,000 Liters, 37,850 m³	
RO % recovery range	0 to 100 %	
Flow velocity range	Equivalent ff/s, m/s	
Frequency range	1 to 4000 Hz	
Calculated parameters	Ratio, sum and difference of two flowrates (4-channel)	
Resolution	4 significant digits, auto-ranged; up to 8 digits for total flow	
Update rate	Display and outputs, once per 2s	
Input pulses	Low < 1.0 volt; high > 1.4 volts (36 volts max.)	
Accuracy	±0.5Hz	
Repeatability	±0.2Hz	

Measurement Specifications

See ISM sensor pages for specifications: conductivity pages 166–175, pH/ORP pages 176–185, dissolved oxygen pages 186–191 (note optical dissolved oxygen is not compatible with M200), and dissolved ozone page 192–193.

M200 Digital easySense Measurement Specifications (only compatible with M200 transmitter models)

Selected specifications of easySense conductivity sensors					
	71	72	73	77	
Туре	2-electrode	2-electrode	2-electrode	4-electrode	
Cell constant	0,1 cm ⁻¹	0,1 cm ⁻¹	0,1 cm ⁻¹	0.3 cm ⁻¹	
Measuring range	0.01-2000 µS/cm	0.01-2000 µS/cm	0.01-2000 µS/cm	0.02-400 mS/cm	
System accuracy	±3.0% or better	±3.0% or better	±3.0% or better	±5.0% or better	
Temperature compensation	standard high purity, cation	, ammonia, Light 84, isopropanol, ç	glycol		
Temperature sensor	30 kOhm NTC	30 kOhm NTC	30 kOhm NTC	30 kOhm NTC	
Electrode material	Titanium	Titanium	Titanium	1.4404 SS (316L)	
Insertion fitting	3/4" NPT	⅓" NPT	34" NPT & subm.	3/4" NPT	
Cable length/Order number					
- 7.6m (25ff)	58 031 300	58 031 302	58 031 304	_	
- 30.5 m (100ft)	58 031 301	58 031 303	58 031 305	_	
 K8S connector 	_	_	_	52 003 810	

For transmitter recommended services, see page 234.

M200 Digital easySense Measurement Specifications (only compatible with M200 transmitter models) continued

Selecieu Specificulions		RP, and oxygen sensor				
	31	32	33	34	41	21
Parameter	pH	pН	рH	рН	ORP	Oxygen
Measurement range	0 - 14	0 - 14	0-14	0 - 14	$\pm 1500\text{mV}$	0.03 ppm –
						100% saturation
Temperature	-5-80°C	-5-80°C	-5-80°C	-5-80°C	-5-80°C	0-60°C
	(23-176°F)	(23-176°F)	(23-176°F)	(23-176°F)	(23-176°F)	(32-140°F)
Pressure resistance	0-2 barg	0-2 barg	0-2 barg	0-2 barg	0-2 barg	0.5-2 barg
	(0-29 psig)	(0-29 psig)	(0-29 psig)	(0-29 psig)	(0-29 psig)	(7-29 psig)
Pressure resistance	0-6barg	_	_	_	0-6 barg	_
0-40°C (32-104°F)	(0-87 psig)				(0-87 psig)	
Reference system	Argenthal	Argenthal	Argenthal	Argenthal	Argenthal	_
	(Ag/AgCI)	(Ag/AgCI)	(Ag/AgCI)	(Ag/AgCI)	(Ag/AgCI)	
Reference electrolyte	Gel	Pressurized gel	Pressurized gel	Pressurized gel	Polymer	_
Diaphragm	1 ceramic	1 ceramic	1 ceramic	1 ceramic	Open junction	_
Membrane glass	НА	HA	HF	LoT	– (Platinum ring)	_
Application	General purpose	Harsh processes	HF resistant	Low temperature	General purpose	General purpose
Plug head	K8S, Pg 13.5	K8S, Pg 13.5	K8S, Pg 13.5	K8S, Pg 13.5	K8S, Pg 13.5	K8S, Pg 13.5
Order number	52 003 771	52 003 768	52 003 770	52 003 769	52 003 772	52 206 406
Selected specifications	s of easy housings					
	easyFit 21	easyFit 22	easyFlow 21, 22	easyFlow 23	easyDip 21, 22	
Material	CPVC	Stainless Steel	CPVC	Polysulfone	PVC	
Temperature	-5-80°C	-5-100°C	-5-80°C	-5-130°C	0-60°C	
	(23-176°F)	(23-212°F)	(23-176°F)	(23-266°F)	(32-140°F)	
Max pressure at	7.0 barg / 65 °C	10 barg / 100 °C	3.5 barg/80 °C	7.0 barg / 130 °C	ambient	
	3.5 barg/80 °C	(145 psig/212 °F)	(50 psig / 176 °F)	(100 psig/266 °F)		
	(100 psig / 149 °F)	, , ,		, , ,		
	(50psig/176°F)					
Order Number	52 403 951	52 403 952	easyFlow 21:	52 403 955	easyDip 21:	
– US size			52 403 953		52 403 956	
			easyFlow 22:		easyDip 22:	
– Metric size			52 403 954		52 403 957	

Power

Pharma Water

Wastewater

Ordering Information

Description		Order Number	Order Number
M200 Digital Transmitter	Outputs	¼ DIN	½ DIN
M200 1-channel Multi-parameter	2 Analog; 2 Relays	52 121 554	52 121 555
M200 2-channel Multi-parameter	4 Analog; 2 Relays	52 121 556	52 121 557
M200 Flow 1-channel	2 Analog; 4 Relays	30 280 748	_
M200 Flow 4-channel	4 Analog; 4 Relays	30 280 749	-

Sensor Cables for ISM

CONCOT CUDICO TO TOM	
Conductivity	Order Number
0.3 m (1 ff)	58 080 270
1.5 m (5 ff)	58 080 271
3.0m (10ff)	58 080 272
4.5 m (15 ff)	58 080 273
7.6m (25ff)	58 080 274
15.2m (50ff)	58 080 275
30.5m (100ff)	58 080 276
45.7 m (150 ft)	58 080 277
61.0m (200ff)	58 080 278
91.4m (300ff)	58 080 279
pH/DO/Ozone	Order Number
1.0m (3ff)	59 902 167
3.0m (10ff)	59 902 193
5.0m (16ff)	59 902 213
10.0m (33ff)	59 902 230
Accessories	Order Number
Panel mount kit for ½ DIN models	52 500 213
Pipe mount kit for ½ DIN models	52 500 212
Adapter, VP to standard, for calibrating conductivity with VP patch cord (analog)	58 080 102
Adapter panel – M200 1/4 DIN to 200 CR/2000 cutout	58 083 305

For transmitter recommended services, see page 234.

M300 Water: Versatile and User-Friendly

For a Wide Range of Applications and Industries

The multi-parameter M300 Water transmitter line for digital or analog conductivity/ resistivity, pH/ORP, dissolved oxygen and ozone measurements offers exceptional measurement performance with excellent user ergonomics.

The high contrast black and white touchscreen display together with the harmonized menu structure for all parameters provides clear indication, with trending capabilities, facilitates navigation while ensuring easy, user-friendly operation. On-line diagnostics information, such as the Dynamic Lifetime Indicator, allows operators to schedule sensor maintenance or replacement. The clearly visible diagnostic information tells you when it's time to do maintenance or calibration of sensors with Intelligent Sensor Management (ISM) technology.

The integrated USB interface allows for data logging or storage of the configuration on a USB flash drive.

Specifications

Specifications	
Power supply	80 to 255 VAC, or 20 to 30 VDC, 10 VA
Frequency for AC	50 to 60 Hz
Current output	$2\times0/4$ to 20 mA (4× for dual channel),
	22 mA alarm (according to Namur NE43)
Display	4.0" b/w touchscreen, 320 × 240 pixel
Languages	9 (English, German, French, Italian, Spanish,
	Portuguese, Russian, Japanese and Chinese)
Ambient temperature	−10 to 50°C (14 to 122°F)
Relative humidity	0 to 95% non-condensing
Rating	1/4 DIN: IP65 (front)
	½ DIN: IP65
PID controller	Yes
Control input (Hold)	1 or 2 (dual channel version)
Relays	$2 \times$ SPST, $2 \times$ reed
Approvals and certificates	cULus, CE
USB interface	1 imes USB Host: Data logging and configuration storage
	on USB flash drive
	$1 \times$ USB Device: Software update interface

Other Highlights

- Mixed-mode functionality allows the connection of analog or digital ISM sensors
- Full ISM diagnostics available (for ISM sensors)

Features Overview

- 4.0" touchscreen interface/display
- Multi-parameter transmitter for conductivity/resistivity, pH/ORP, dissolved oxygen, and ozone
- Available as single-channel or dualchannel transmitters
- PID controller with pulse length, pulse frequency or analog control
- User management available

www.mt.com/M300

Measurement Specifications

Conductivity/Resistivity		Analog	ISM
Ranges	0.01 constant sensor:	0.002 to 200 µS/cm	0.002 to 500 µS/cm
	0.1 constant sensor:	0.02 to 2,000 µS/cm	0.02 to 50,000 µS/cm*
	10 constant sensor:	50 to 40,000 µS/cm	
	4-electrode sensor:	0.01 to 650 mS/cm	0.01 to 1,000 mS/cm
Accuracy	± 0.5 % of reading or 0	0.5Ω , whichever is greater (and	ilog only)
Concentration ranges of HCI, NaOH, H ₂ SO ₄	0-20 %, 0-15 %, 0-	20 %	
TDS ranges (CaCO ₃ and NaCl)	Cover equivalent conduc	ctivity ranges	
Calculated parameters (2-channel)	% Rejection, power plan	nt calculations of pH based on	specific and cation conductivity, and CO ₂ based on
	cation and degassed co		
Temperature compensation	Selectable as: Std (stand	dard high purity Thornton/Ligh	t), Light 84, Std referenced to 75°C, linear %/°C,
	50 % glycol, 100 % gly	col, cation, ammonia, isoprop	yl alcohol, none
pH			
pH, ORP ranges	−1.00 to 15.00 pH, −1	500 to 1500 mV	
Temperature range	-30 to 100°C (-22 to	212 °F)	
Accuracy	$\pm 0.03 pH, \pm 2 mV$		
Temperature compensation	Automatic/manual for e	lectrode output, plus adjustable	e solution
	temperature coefficient fo	or solution ionization effects	
Calibration	1- or 2-point, with auto		
Diagnostics	Selectable continuous ct	necking of membrane resistanc	e and reference
	diaphragm/junction resistance (with solution ground sensors)		
Dissolved Oxygen			
Ranges	0-20,000 ppb; 0-20 ppm, 0-200 % saturation; resolution 0.1 ppb		
Temperature compensation		e permeability and oxygen sol	ubility
Accuracy	\pm 1 % of reading or \pm 1 ppb, system accuracy		
Dissolved Ozone			
Ranges	0-5,000 ppb, 0-5 ppn		
Temperature compensation		e permeability and ozone solu	bility
Accuracy	±2% of reading or ±3;	opb, system accuracy	
Temperature			
Range	−40 to 200 °C (−40 to	392 °F); resolution 0.1°	
Accuracy	± 0.25 °C (± 0.45 °F)		
Resolution	0.01 °C for conductivity; 0.1 °C for all other parameters		
PID Control			
Display		d %-output on bottom line of a	• •
Settings			oints, control limits, proportional gain, integral reset time
	(min), derivative rate tin	• •	
Manual station	Controlled by up/down arrow keys in manual mode; remote auto/manual selection by discrete input		
Control output types	One or two analog signals, relays-pulse frequency, or relays-pulse length		

^{*} stainless steel sensors 0.02 to 3,000 µS/cm

For transmitter recommended services, see page 234.

Measurement Specifications (cont.)

Outputs		
pH/ORP/Cond/DO/Ozone/Temperature	Single-channel	Two-channel
Setpoints/alarms	4-high, low, outside, between, USP, EP	6-high, low, outside, between, USP or EP
Relays	1 SPST NO, 1 SPST NC, 2 SPST reed	1 SPST NO, 1 SPST NC, 2 SPST reed
Analog output signals	2	4
Discrete inputs	1	2

Ordering Information	
Description	Order Number
M300Water 1-channel, Multi-parameter, 1/4DIN	30 280 776
M300 Water 1-channel, Multi-parameter, ½DIN	30 280 777
M300 Water 2-channel, Multi-parameter, ¼DIN	30 280 778
M300 Water 2-channel, Multi-parameter, ½ DIN	30 280 779
M300 Water 2-channel, Cond/Res Analog, 1/4 DIN	30 280 774
M300 Water 2-channel, Cond/Res Analog, 1/2 DIN	30 280 775

Accessories

Installation accessories for ½ DIN version	Order Number
Pipe mount kit for ½ DIN	30 300 480
Panel mount kit for ½ DIN	30 300 481
Wall mounting kit for ½ DIN	30 300 482
Protective hood	30 073 328

Ordering Information

Sensor Cables for M300 (analog)			
Conductivity a Order Number			
Connect	or	Standard	VarioPin (VP) b
0.3 m	(1 ff)	58 080 250	_
1.5 m	(5ff)	58 080 251	58 080 201
3.0 m	(10ff)	58 080 252	58 080 202
4.5 m	(15ff)	58 080 253	58 080 203
7.6 m	(25ft)	58 080 254	58 080 204
15.2 m	(50ff)	58 080 255	58 080 205
23.0 m	(75ft)	_	58 080 206
30.5 m	(100ff)	58 080 256	58 080 207
46.0 m	(150ff)	58 080 257	58 080 208
61.0 m	(200ff)	58 080 258	_
ORP			
1.0 m	(3ff)	59 902 245	
3.0 m	(10ff)	59 902 268	
5.0 m	(16ff)	59 902 292	
10.0 m	(33ft)	59 902 318	

pH/DO/0)zone	Order Number
VarioPin	(VP) Cables	
– for Use	At Standard Temperatu	res -30 to 80 °C/-22 to 176 °F
1.0 m	(3ff)	52 300 107
3.0 m	(10ff)	52 300 108
5.0 m	(16ff)	52 300 109
10.0 m	(33ff)	52 300 110
15.0m	(49ff)	52 300 144
20.0 m	(65ff)	52 300 141

a 4-E sensors limited to 15.2 m (50 ft), b For VP Conductivity sensors only

Sensor Cables for M300 ISM

Conductivity	Order Number
0.3 m (1 ff)	58 080 270
1.5 m (5ff)	58 080 271
3.0m (10ff)	58 080 272
4.5 m (15 ft)	58 080 273
7.6m (25ff)	58 080 274
15.2m (50ff)	58 080 275
30.5 m (100 ft)	58 080 276
45.7 m (150ff)	58 080 277
61.0 m (200 ft)	58 080 278
91.4m (300ff)	58 080 279

pH/DO/0	Ozone	Order Number
1.0 m	(3ft)	59 902 167
3.0 m	(10ff)	59 902 193
5.0 m	(16ff)	59 902 213
10.0 m	(33ft)	59 902 230

For transmitter recommended services, see page 234.

M800 Multi-Parameter, Multi-Channel Transmitter

Touch the Future

EtherNet/IP

Features Overview

- Color touchscreen
- Intuitive operation
- Premium ISM functionality
- Multi-parameter measurement
- 2-channel/4-channel versions
- iMonitor predictive diagnostics
- User management and logbook
- Trend display
- Data Integrity option

Other Highlights

- 8 current outputs, 8 output relays
- Traffic light coded sensor status
- 2 PID process controller
- Ethernet/IP model
- PROFINET model
- PROFIBUS-DP model
- IP 66 rated, cULus Type 4X

The M800 transmitter series features premium Intelligent Sensor Management (ISM) technology measuring conductivity/resistivity, TOC, pH/ORP, optical and amperometric, dissolved oxygen, dissolved ozone. The multi-parameter transmitter accepts any compatible combination of ISM sensors. Up to four channels of process measurement plus two pulse flow measurements provides immediate Plug and Measure installation and operation, predictive sensor maintenance and dynamic lifetime status. The color touchscreen ensures intuitive operation, with user selectable control and alarm management. One model available with PROFI-BUS-DP digital communications. ALCOA-compliant data integrity option available (M800 Water 2-channel RecordLOC).

Specifications	
Performance	
Measurement parameters ozone, temperature and flow	Conductivity/resistivity, TOC, pH/ORP, dissolved oxygen,
ISM	Advanced diagnostics (Dynamic Lifetime Indicator, Adap-
	tive Calibration Timer, CIP/SIP counter etc.) iMonitor
Conductivity/Resistivity	IIVIOIIIIOI
Conductivity ranges	2-electrode sensor:
	0.01 to 50,000 μ S/cm (20 Ω ×cm to 50 M Ω ×cm)
	0.01 to 3,000 μ S/cm (333 Ω ×cm to 50 M Ω ×cm)
,	0.001 to 500 μ S/cm (2.000 Ω × cm to 500 $M\Omega$ × cm)
	4-electrode sensor:
	0.01 to 1,000 mS/cm (1.0 $\Omega \times$ cm to 0.1 M $\Omega \times$ cm)
Temperature measuring range	-40 to 200 °C (-40 to 392 °F)
Temperature compensation	Auto/selectable as: Std. (standard high purity water
	Thornton/Light), Light 84, Std. pure water referenced to
	75°C, linear %/°C (adjustable), 50 % glycol, 100 %
	glycol, cation, ammonia, isopropyl alcohol, none
TOC	
Measurement range	0.05-2000 ppbC (μgC/L)
рН	
pH range	-1 to 15
ORP input range	-1500 to 1500 mV
pH resolution	Auto/0.001/0.01/0.1/1 (can be selected)
Temperature measuring range	−30 to 150 °C (−22 to 302 °F)
Temperature compensation	Auto/manual/STC
Oxygen	
Range (amperometric)	0 to 10,000 ppb (µg/L)
Range (optical)	0 to 5,000 ppb (μg/L)
Oxygen resolution	Auto/0.001/0.01/0.1/1 (can be selected)
Temperature compensation	Auto
Ozone	
Operating range	0-5,000ppb (µg/L); $0-5.0ppm$ (mg/L) short term;
	0-500ppb (µg/L); $0-0.5ppm$ (mg/L) continuous

www.mt.com/M800

Wastewater

General Specifications

Power supply	100 to 240 VAC, or 20 to 30 VDC, 12 VA	
AC frequency	50 to 60 Hz	
Current (analog) outputs	$8 \times$ 0/4 to 20 mA, 22 mA alarm	
Bus communications	Ethernet/IP, PROFINET, PROFIBUS-DP	
User interface	Color touchscreen 5.7", Resolution 320 × 240 px, 256 colors	
Languages	10 (English, German, French, Italian, Spanish,	
	Portuguese, Russian, Japanese, Korean and Chinese)	
Ambient temperature	−20 to 50 °C (−4 to 122 °F)	
Relative humidity	0 to 95%, non-condensing	
Rating	IP 66 (when back cover is attached), cULus Type 4X	
PID process controller	2	
Hold input	Yes	
Control input	Yes	
Alarm contact	Yes (alarm delay 0 to 999s)	
Relays	Mechanical rated at 250 VAC, 3 Amps (Relay 1 NC,	
	Relay 2 to 4 NO); 4-SPDT Type Reed 250 VAC or DC,	
	0.5 Amps (Relay 5 to 8)	
Setpoints	High, low, between, outside, USP, EP	

Ordering Information

ordoring information	
Transmitters	Order Number
M800 Water 2-channel +2 flow	58 000 802
M800 PROFIBUS-DP Water 2-channel +2 flow	58 000 806
M800 Water 4-channel +2 flow	58 000 804
M800 Water 2-channel PROFINET + 2 flow	30 530 026
M800 Water 2-channel Ethernet/IP +2 flow	30 530 028
M800 Water 4-channel Ethernet/IP +2 flow	30 530 029
M800 Water 2-channel RecordLOC	30 656 182
Pump Modules	
Pump Module TOC 20 ml/min	58 091 565
Pump Module TOC 8.5 ml/min	30 472 152
Installation Accessories	
Pipe mount kit	52 500 212
Panel mount kit	52 500 213
Protective hood	30 073 328

ISM Sensor Cables

Conduct	ivity/TOC	Order Number
0.3 m	(1 ff)	58 080 270
1.5 m	(5ff)	58 080 271
3.0 m	(10ff)	58 080 272
4.5 m	(15ff)	58 080 273
7.6 m	(25ff)	58 080 274
15.2 m	(50ff)	58 080 275
30.5 m	(100ff)	58 080 276
45.7 m	(150ff)	58 080 277
61.0m	(200ff)	58 080 278
91.4 m	(300ff)	58 080 279

pH/DO*/0)3	Order Number
1.0 m	(3ff)	59 902 167
3.0 m	(10ff)	59 902 193
5.0 m	(16ff)	59 902 213
10.0 m	(33ff)	59 902 230
20.0 m	(66ff)	52 300 204
30.0 m	(98ff)	52 300 393
50.0 m	(164ff)	52 300 394
80.0 m	(264ff)	52 300 395
* Except optice	al DO	

Optical DO	
Sensor Cables	Order Number
2m (6.6ft)	52 300 379
5m (16.4ff)	52 300 380
10m (32.8ft)	52 300 381
15 m (49.2 ft)	52 206 422

For transmitter recommended services, see page 234.

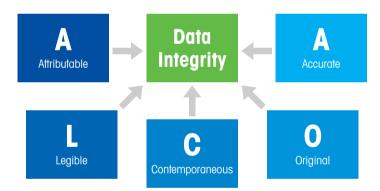
Service Description	Order Number
Calibrate Transmitter On-Site	\$39905073
Calibrate Custom Certificate	\$39905083
Transmitter calibrated according to customer tolerances.	
Full Preventive Maintenance On-Site	S39905133
Measurement signal verified. Electronics calibrated. Relays and analog outputs calibrated. Display cleaned.	
Setup Standard Configuration	S39905182
Transmitter display and outputs programmed.	
Repair On-Site	S39905004
Train Initial	S39905211

21CFR RecordLOC

Multi-parameter Data Integrity for Electronic Records

21CFR | RecordLOC™

Requires M800 Water 2-channel RecordLOC transmitter (30 656 182) and any of the supported sensors including 6000TOCi, PureO₃ and UniCond.


To download RecordLOC for free, visit:

www.mt.com/RecordLOC

RecordLOC™ is the METTLER TOLEDO solution for ALCOA-compliant electronic records with data integrity for TOC, conductivity and ozone. Paired with an M800 Water 2-channel RecordLOC transmitter and any of the above mentioned sensors, RecordLOC provides audit trail controlled data integrity to your water system.

Features/Benefits

- Easy to install and maintain on a PC
- Provides ALCOA-compliant data integrity
- Three-level user accounts including Super User, Admin and User
- Encrypted and password protected audit trail
- Data is stored on a local PC, not on the transmitter for ease of access
- Multi-language support for your global organization

ALCOA is used in regulated industries as a framework to ensure that data is reliable and accurate.

235

Downstream Process Analytics

for Biopharmaceutical Applications

Single-Use Pressure Sensor

Simplify Your Pressure Measurements

Pendotech has developed a line of Single-Use Pressure Sensors that offer an accurate and cost-effective solution for measuring pressure in biopharmaceutical processes.

Reliable Cost-effective Pressure Measurement

Single-Use Pressure Sensors measure static and dynamic pressure of gases and liquids in your biopharmaceutical processes — accurately and cost effectively.

Simplified Maintenance

Robust enough to be repeatedly cleaned and inexpensive enough to be utilized in single-use applications, our Single-Use Pressure Sensors deliver a dependable alternative to stainless steel pressure transducers.

High Measurement Stability

The sensors feature Pendotech High Accuracy Pressure (MEMS-HAP) Chips and are perfect for filtration and chromatography processes as well as monitoring of single-use bioreactors, filling operations and more. They are available in caustic-resistant polysulfone to withstand sanitization processes.

Versatile

Single-Use pressure sensors, which are qualified for use up to 5.17 bar (75 psi), are compatible with PressureMATTM monitor/transmitter, Process Control Systems or other prequalified third-party monitors.

PREPS-N-1-1

PressureMAT Monitor

Application	Description
Filtration system pressure monitoring	Single-Use Pressure Sensors can be used to monitor the TMP pressure in filtration systems to detect filter plugging and automatically adjust flow rates.
Chromatography system pressure monitoring	Single-Use Pressure Sensors can be used to monitor the pressure in chromatography systems, which is important to detect over pressurization and ensure optimal performance of the column.
Filling operations pressure monitoring	Single-Use Pressure Sensors can be used to monitor the pressure in filling operations, which is important for ensuring that the filling process is operating effectively.
Bioreactor pressure monitoring	Single-Use Pressure Sensors are crucial for monitoring pressure in bioreactors. They help detect over-pressurization due to plugged vent filters which can lead to hazardous situations and loss of product.
Other bioprocess applications	Single-Use Pressure Sensors can also be used in other bioprocess applications, such as centrifugation, virus inactivation and diafiltration.

Transmitter selection

Pendotech PressureMAT transmitters are available to work with our Single-Use Pressure Sensors including the Pressure Sensor Transmitter (known as the PT card).

Sensor selection:

Hose barb connections

These connections are quick and easy to make, making them a good choice for applications where frequent connections and disconnections are required. They are also recommended for pre-assembled, pre-sterilized, single-use tubing and bag assemblies.

Sanitary flange connections

These connections are more secure than hose-barb connections, and they are less likely to leak. They are also easier to clean and sterilize, which is important in the biopharmaceutical industry. However, they are more expensive and time-consuming to install.

Luer connections

These connections are the smallest and most compact of the three types. They are often used in applications where space is limited. However, they are not as secure as other types of connection.

Validation

100% tested for accuracy and leaks during manufacturing. Available in polycarbonate or caustic resistant polysulfone materials. Certificate of Quality included with lot certification; individual NIST Certificates are optional.

Integration flexibility

The Single-Use Pressure Sensors can be integrated with a variety of systems, including: The PressureMAT monitor/ transmitter Process Control Systems and third-party monitors.

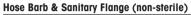
Single-Use Pressure Sensors come in a variety of sizes starting at 1/8 inch hose barb to 1 ½ inch sanitary flange

Single-Use Pressure Sensor

Simplify Your Pressure Measurements

Features Overview

- Available in hose-barb connections, sanitary flange & luer connections
- Can be cleaned and re-used
- Unobstructed flow path provide reduced hold-up volume
- Available in polycarbonate or caustic resistant polysulfone materials
- Certificate of Quality included with lot certification; individual NIST Certificates are optional
- Can be non-invasively tested in-place via test port


The Single-Use pressure sensors measure static and dynamic pressure of gases and liquids in your processes accurately and cost effectively. They are perfect for filtration and chromatography processes, monitoring of gases and single-use bioreactors, filling operations and more. They feature the High Accuracy Pressure (MEMS-HAP) chips inside. The sensors connect to monitors via an integral connector. Suitable transmitters include PressureMAT monitor/transmitter, a Process Control System, or other pre-qualified third-party monitors. They can be non-invasively tested in-place with the Pendotech PressureChecker. They are the alternative cost effective solution for use with tubing to the existing stainless steel pressure transducers on the market.

Specifications

Accuracy	Positive Range	Specification	
	0 to 0.41 bar (0 to 6 psi)	±2% of reading	
	0.41 to 2.07 bar (6 to 30 psi)	±3% of reading	
	2.07 to 4.14 bar (30 to 60 psi)	±5% of reading	
	Vacuum Danas	Cassification	
	Vacuum Range	Specification	
	0 to - 0.48 bar (0 to -7 psi)	±3% of reading	
D	-0.48 to -69 bar (-7 to -10 psi)	±5% of reading	
Pressure Range	0.79 to 5.2 bar (-11.5 to 75 psi)		
Biocompatibility	All materials in contact with product	•	
	Class VI requirements, both pre and	•	
Regulatory and	• USP Class VI	• USP 661	
Compliance Testing	• ISO 10993-5	 Bioburden 	
	• ADCF	 REACH Compliant 	
	 Particulates 	 Endotoxin 	
	 Bacteriostatis and Fungistatis (B&F 	RoHs Compliant	
Manufacturing	ISO 9001 certified facility, Class 7 cl	ean room	
Environment			
Gamma Irradiation	Up to 50 kiloGrays		
X-ray Irradiation	Up to 50 kiloGrays		
Operating Temperature	2°C to 40°C (5.6 $^{\circ}\text{F}$ to 104°F) other ranges with process		
	qualification		
Storage Temperature	-25°C to 65°C (-13°F to 149°F)		
Input/Output Impedance	270 Ohms to 400 Ohms		
Excitation Voltage	2.5 to 10 volts DC (for best long tern	n stability, use a lower	
	excitation voltage)		
Sensor Output	0.2584 mV/Volt/psi		
Connector	Rating: IP67 when connected to reus	sable cable	
Shelf Life	5 years		
Packaging	White Tyvek and clear pouch with easy-open chevron seal;		
	box of 25 sensors in polyethylene ba	gs (except sterile	
	sensors are not in polybags)		

Ordering	Information

Luer Sensors	Order Number
Single-Use Pressure Sensor, polycarbonate, with luer – Sterile	PRESS-S-000
Single-Use Pressure Sensor, polysulfone, with luer – Non-sterile	PREPS-N-000
0.64×0.64 cm (¼ in \times ¼ in) polycarbonate adapter tee with luer port	PDKT-103-03
0.95 imes 0.95 cm (3/8 in $ imes$ 3/8 in) polycarbonate adapter tee with luer port	PDKT-104-03
1.28 imes 1.28 cm (½ in $ imes$ ½ in) polycarbonate adapter tee with luer port	PDKT-105-03
Polysulfone 3-way stopcock with M/F luer inlet / outlet F branch	PDKT-V3PS-000

Polysulfone	
0.318 cm (1/8 in) hose barb	PREPS-N-012
0.64 cm (¼ in) hose barb	PREPS-N-025
0.95 cm (3/8 in) hose barb	PREPS-N-038
1.28 cm (½ in) hose barb	PREPS-N-075
2.54 cm (1 in) hose barb	PREPS-N-100
1.28 cm (½ in) sanitary flange	PREPS-N-5-5
2.54 cm (1 in) sanitary flange	PREPS-N-1-1
3.81 cm (1 ½ in) sanitary flange	PREPS-N-15-15
2.54 cm (1 in) sanitary flange to 2.54 cm (1 in) hose barb	PREPS-N-1-100
1.28 cm (1/2 in) sanitary flange to 0.95 cm (3/8 in) hose barb	PREPS-N-5-038
1.28 cm (½ in) sanitary flange to 1.28 cm (½ in) hose barb	PREPS-N-5-050

Polycarbonate

0.64 cm (¼ in) hose barb	PRESS-N-025
0.95 cm (3/8 in) hose barb	PRESS-N-038
1.28 cm (½ in) hose barb	PRESS-N-050
1.91 cm (¾ in) hose barb	PRESS-N-075
2.54 cm (1 in) hose barb	PRESS-N-100

Reusable Cable

Cable Adapter for Single-Use Pressure Sensor – 3.657 m (12 ft)	PDKT-650-298
Cable Adapter for Single-Use Pressure Sensor – 7.31 m (24 ft)	PDKT-650-298-24
Cable Adapter to Minim 2 for Single-Use Pressure Sensor – 0.3 m (1 ft)	PDKT-650-298M2
Cable Adapter with RJ12 phone connector to Midgee Monitor for	PDKT-650-298MG
Single-Use Pressure Sensor – 2 m (6 ft)	
Cable Adapter with RJ12 phone connector to Pall Minim for Single-Use	PDKT-650-298MN
Pressure Sensor – 2 m (6 ft)	

Test Cable

Single-Use Pressure Sensor with 0 to 0.41 bar (0 – 6 psi) NIST certificate PMAT-TCA

Did You Know

The Pressure Sensors are $100\,\%$ tested for critical quality attributes.

- Each sensor is leak tested on the liquid side at 60 psi to confirm integral assembly
- Sensors with a test port are leak tested on the test port side to confirm proper atmospheric reference
- Each sensor is tested electrically to confirm proper electrical performance
- Each sensor is tested to be accurate at 4.14 bar (60 psi) within $\pm 5\,\%$ of reading (± 0.21 bar/-3.0 psi)

Flange to Hose Barb Sensor

Luer Sensor

PressureMAT Sensor Transmitter

Designed for Single-Use Pressure Sensors

Features Overview

- Portable and lightweight
- Interfaces with pumps, valves, and PCs
- Displays Delta-Pressure or TMP (PMAT3 and PMAT4)
- Measures total flow volume (PressureMAT PLUS)
- Interfaces with other sensors with a 4-20 mA output (PressureMAT PLUS)
- Transmitter function delivers a 4-20 mA output signal
- RS-232 data output for data collection

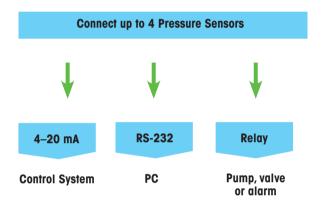
Other Highlights

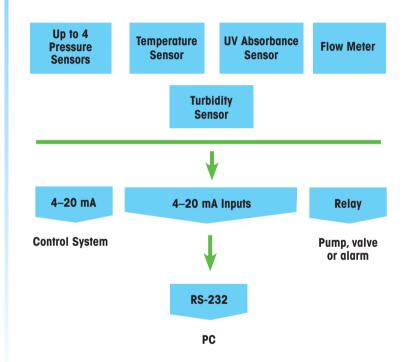
- Perfect for use with filtration and chromatography processes, as well as bioreactor pressure monitorina
- Data output capability to a PC or control system
- User configurable min/max set-points with alarm output signal Panel mount option with IP66 NEMA4X Front Panel
- High Resolution (HR) model available for low pressure applications that achieves $10 \times$ the accuracy of the standard unit
- IQ/OQ Protocol available

The PressureMAT (PMAT) and the PressureMAT PLUS are both monitor, alarm, and transmitter units designed for use with the Single-Use Pressure Sensors. These lightweight, portable units can easily be moved ground a lab or pilot plant to the location where pressure measurement is required. The transmitters use state of the art, solid state electronics, which require no calibration or maintenance. The output options simplify integration to PCs or higher level control systems, and a relay switch enables interfacing with pumps and valves. Options include models with up to four pressure sensor inputs. The PMAT3 and PMAT4 models can optionally display Delta-Pressure of P1-P2 or trans-membrane pressure (TMP) for filtration processes. These calculated values can also have alarm set-points and the values can be transmitted.

The PressureMAT PLUS system is comprised of the monitor with user interface, and connectors on the back panel where input and output components can be interfaced. It has the ability to measure total flow volume in addition to flow rate. The models with an analog input can be used to interface other sensors with a 4-20 mA output, such as temperature, UV, conductivity, pH and turbidity.

Both systems have an alarm function where minimum and maximum values are entered on the key pad and if the process value goes below the minimum setting or above the maximum setting, the system will go into an alarm state. The alarm state may be tied to the relay output to help safeguard the integrity of a process. The transmitter function delivers a 4-20 milliamp output signal corresponding to the process values on the display. The RS-232 data output to a PC is available for data collection to the PMAT Data Acquisition Software.


There are numerous applications in biopharmaceutical production processes where these units can be used to monitor pressure, including filtration, chromatography, bioreactor monitoring, perfusion, and fill finish operations.


www.pendotech.com/pressuremat

PressureMAT

PressureMAT PLUS

Did You Know
The PressureMAT-S
is a portable monitor,
alarm, and transmitter ideal for
applications which are space
limited and require for only
1 sensor. The PressureMAT-S
also provides the option for
remote tare.

PressureMAT Sensor Transmitter, with a DIN rail mounting design, connects to the Single-Use Pressure sensor and produces a 4–20mA signal linear with pressure, offering five options for optimal performance based on pressure range.

S	n	e	ci	fi	ca	ti	n	ns

Specifications		
Enclosure (PMAT)	WXDXH 19.96 \times 11.35 \times 5.72 cm (7.86 \times	4.47×2.25 in)
	Approx Weight: 0.65 kg (1.3 lbs)	
	Material: ABS Plastic	
	IP66/NEMA 4X front panel; panel and wall mou	ınt optional
Enclosure (PMAT-S)	11.94 $ imes$ 11.94 $ imes$ 5.72 cm (4.70 $ imes$ 4.70 $ imes$	2.25 in)
	Approx Weight: 0.39 kg (0.86 lbs)	
Keypad	8 button keypad with LEXAN® overlay	
Display	8 line LCD backlit blue, pressure displayed as X	K.XX bar/X.X psi;
	PMAT2HR & PMAT-SHR X.XXX bar/X.XXX psi	
Power Inlet	2.5 mm (0.04 in) Circular Power Jack (center	post positive) or D9 12-24 VDC, 4 watts
	(powered by wall supply)	
Pressure Sensors Input (s)	Range of -0.793 bar to 5.171 bar (-11.5 to	75.0 psi)
Models offered with 1-4 inputs	PMAT2HR & PMAT-SHR -0.0483 bar to 0.510	bar (-0.7 to 7.5 psi)
	Configured for Single-Use Pressure Sensors, Co	nnector: DA15
	(includes 3.657 m (12 ft) reusable cables)	
Relay Outputs(s)	Specifications for relay used for the alarm output	ıt:
[Up to 4 outputs available as a	 Normally CLOSED or OPEN via wiring 	 28 Volt AC/DC Maximum
combination of Relay and Analog outputs]	• 1 amp closure, 2 amps maximum current	 20 millisec max turn on/off time
	Configured for Single-Use Pressure Sensors,	
	Connector: DA15 (includes 3.657 m (12 ff) real	usable cables)
Analog Output(s) [4-20 mA]	Screw terminal connector	
[Up to 4 outputs available as a	4–20 mA Range: –0.689 bar to 5.171 bar (–1	10 to 75 psi)
combination of Relay and Analog outputs]	PMAT2HR & PMAT-SHR -0.069 bar to 0.207 b	oar (-1 to 3 psi)
	Accuracy: 0.1 % of full scale	
	Sourcing with Maximum Load: 400 ohms	
	Load Impedance: Zero Ohm minimum resistance	ce, 22 mA maximum output
RS232 Output	Data output to a PC at frequency up to approx e	every 2 seconds
	Optional Internal Data Logger: Part# PDKTP-DL	OG (logger not available with PMAT-S)
Regulatory Compliances	CE Mark EN61326-1:2013; EN61010-1:2010	·
	FCC Part 15 Class B verified	FCC Part 68 5TUUSA-23969-DT-E
	RoHS and REACH Compliant	UL Listed

Ordering Information

PressureMAT		
Number of Inputs	Number of Outputs	Order Number
1	2 (1 Relay/1 Analog)	PMAT-S
1	2 (1 Relay/1 Analog)	PMAT-SHR
2	4 (2 Relays / 2 Analogs or 4 Relays)	PMAT2
2	4 (2 Relays / 2 Analogs or 4 Relays)	PMAT2HR
2 Pressure Sensor/1 Flow Meter/1 4–20 mA	4 (4 Analogs)	PMAT2P
2 Pressure Sensor / 2 4–20 mA	4 (4 Analogs)	PMAT2A
2 Pressure Sensor / 2 Flow Meters	4 (4 Analogs)	PMAT2F
3	4 (3 Analogs / 1 Relay — for all sensors)	PMAT3
3 Pressure Sensor / 1 Flow Meter	4 (4 Analogs)	PMAT3P
3 Pressure Sensor/1 4–20 mA4	(4 Analogs)	PMAT3A
4	4 (4 Analogs)	PMAT4A
4	4 (4 Relays)	PMAT4R

Ordering Information

Software	Order Number
Data Acquisition and Trending Software for PressureMAT and CMONT with 2 USB/serial cables to connect to a PC	PMATP-GUI
PressureMAT Internal Data Logger (not available with PMAT-S)	PDKTP-DLOG
Stands/Cart	DIAM OTHE
PressureMAT Benchtop Stand for all models	PMAT-STND
PressureMAT water-tight box (PMAT NOT included) with water-tight cable connections and cart with power strip & filter holder with optional touch-screen PC with Data Acq Software	PMAT-CART4
a mornidadi wiiir opiidhar idddir saradir i o wiiir Bala yiqq ddilward	
Water Tight Enclosures	DMAT MALL
PressureMAT water-tight wall mount box with water-tight cable connections	PMAT-WALL
PressureMAT water-tight bench top stainless steel box with water-tight cable connections for PMAT on left side	PMAT-BNCH-IP-L
PressureMAT water-tight wall mount box with water-tight cable connections – holds 2 PressureMATs	PMAT-WALL2
PressureMAT-S single channel water-tight wall mount box with water-tight cable connections for PMAT	PMAT-WALL-S
PressureMAT, CMONT with UV Optional water-tight bench top stainless steel box with water-tight cable connections on left side	PMAT-BNCH-COMBO
PressureMAT UL Type 4X Deep-Hinged window kit with a viewing area of 20.32 cm $ imes$ 22.86 cm (8 in $ imes$ 9 in) (UL)	PMAT-ULT4X-W1
PressureMAT Silicone Sealant cartridge, clear, 10.1 oz for panel mount installation	PDKT-SIL-SEAL1
Cables	
RS232 Cable for PressureMAT data output (2 m/6 ft) for USB input to PC	PDKTP-RS232U
Cable adapter with D15 for Single-Use Pressure Sensor for PMAT (4 m/12 ft)	PMAT-650-298
Cable adapter with D15 for Single-Use Pressure Sensor for PressureMAT (7 m/24 ft)	PMAT-650-298-24F
Pressure Sensor Extension Cable (4 m/12 ft)	PMAT-EXT-12F
RS232 Serial to USB adapter, for PMAT Wall/ Benchtop box (2.13 m/7 ff)	PMAT-WALL-RS232USB
PMAT Enclosure Box replacement power supply, 12VDC w/ global plug blades	PMAT-PWR-WALL-24VD
Accessories	
Pressure Checker pressure sensor and monitor verification tool, psi	PDKT-650-950
Pressure Checker pressure sensor and monitor verification tool, millibar	PDKT-650-950B
Test cable assembly for PressureMAT accuracy check	PMAT-TCA
Pressure sensor cable dust cover/zero simulator for PressureMAT	PDKT-650-298CVR
DIN rail mounting kit for PMAT-S	PMAT-S-DIN
Installation qualification/operation qualification protocol documentation	PMAT-IQ/OQ
PMAT Panel mount kit – 2 gaskets, 4 mounting brackets, 2 sensor cables, and input connectors for sensors and power	PMAT-PANEL-2-C
PMAT Panel mount kit – 2 gaskets, 4 mounting brackets, 3 sensor cables, and input connectors for sensors and power	PMAT-PANEL-3-C
PMAT Panel mount kit – 2 gaskets, 4 mounting brackets, 4 sensor cables, and input connectors for sensors and power	PMAT-PANEL-4-C
PMAT Panel mount kit – 2 gaskets, 4 mounting brackets, 1 sensor cable, and input connectors for sensor and power	PMAT-PANEL-S-C
PMAT2 Panel mount kit UPGRADE – 2 gaskets, 4 mounting brackets, 2 sensor cables (in replacement of standard cable),	PMAT-PANEL-2-U
and input connectors for sensors and power	I WAI-I ANLL-2-0
PMAT3 Panel mount kit UPGRADE – 2 gaskets, 4 mounting brackets, 3 sensor cables (in replacement of standard cable),	PMAT-PANEL-3-U
and input connectors for sensors and power	
PMAT4 Panel mount kit UPGRADE – 2 gaskets, 4 mounting brackets, 4 sensor cables (in replacement of standard cable),	PMAT-PANEL-4-U
and input connectors for sensors and power PMAT-S Panel mount kit UPGRADE – 2 gaskets, 4 mounting brackets, sensor cable (in replacement of standard cable),	PMAT-PANEL-S-U
input connectors for sensor and power	FIVIAT-FAINEL-3-0
PressureMAT Power supply with circular barrel connector, 12VDC, 1amp with plugs blades for destination	PMAT-PWR
Pinch Valve Pair – 24VDC supply & relay input for each normally closed valve – Small for 0.318 cm (1/8 in) ID	PDKT-PVE2-PMAT-S
Pinch Valve Pair – 24VDC supply & relay input for each normally closed valve – Medium for 0.64 cm (1/4 in) ID	PDKT-PVE2-PMAT-M
Pinch Valve- 24VDC supply & relay input for normally closed valve- Small for 0.318 cm (1/8 in) ID	PDKT-PVE-PMAT-S
Pinch Valve- 24VDC supply & relay input for normally closed valve- Medium for 0.64 cm (1/4 in) ID	PDKT-PVE-PMAT-M
Pressure Sensor Transmitters 4-20 mA output 0.139 box (0.2 poi) DIN Pail mount, 2/I/DC, with repeable concernable installed.	PT-2
0.138 bar (0-2 psi) DIN Rail mount, 24VDC, with reusable sensor cable installed	
0.69 bar (10 psi) DIN Rail mount, 24VDC, with reusable sensor cable installed	PT-10
2.07 bar (30 psi) DIN Rail mount, 24VDC, with reusable sensor cable installed	PT-30
4.14 bar (60 psi) DIN Rail mount, 24VDC, with reusable sensor cable installed	PT-60
Cable Adapter for Single-Use Pressure Sensor 7 m (24 ft)	PDKT-650-298-24

Single-Use Conductivity Sensor

Simple, Accurate, Reliable

Features Overview

- Pre-determined cell constant
- Optional one-point calibration
- Range: 0.1 to 100 mS/cm
- Accuracy: ±0.1 mS/cm from 0.1 to 2 mS/cm
- Built-in temperature compensation
- Easy to use and maintain
- Affordable and cost-effective

Efficient and Affordable Conductivity Measurement

Single-Use Conductivity Sensors provide precise and cost effective measurement of the conductivity of liquids in your biopharmaceutical processes.

Ease of Maintenance

Our Single-Use Conductivity Sensors are sturdy enough to withstand repeated cleaning, yet affordable enough to be used in single-use applications. They offer a reliable alternative to stainless steel conductivity sensors, simplifying maintenance and reducing costs.

Calibration-Free Conductivity

Measurement

No calibration required because of predetermined cell constant and also optional one-point calibration by user

Compatibility and Resistance

Measure conductivity and temperature. Fluid path materials

- Gamma & X-ray irradiation compatible
- NaOH resistant
- USP Class VI

The Single-Use Conductivity Sensor is a reliable and accurate tool for measuring conductivity in a variety of applications. It is designed for single-use, which eliminates the need for calibration and maintenance. This makes it a cost-effective and convenient solution for biopharmaceutical manufacturing and chemical processing.

The sensor has a pre-determined cell constant, which means that it is ready to use immediately. It also has an optional one-point calibration feature, which allows users to calibrate the sensor for specific applications. The sensor has a range of 0.1 to 100 mS/cm and an accuracy of ± 0.1 mS/cm from 0.1 to 2 mS/cm. It also has built-in temperature compensation to ensure accurate readings over a wide range of temperatures.

The sensor is easy to install and use, even in harsh or corrosive environments. It is also durable and sterile, making it ideal for use in biopharmaceutical and other sterile applications. The sensor is also affordable, making it a cost-effective solution for a variety of applications.

Application	Description
Buffer Preparation	Monitor the conductivity to ensure that the final buffer solution meets specification.
Chromatography	Monitoring buffer conductivity prior to the chromatography column to protect the product by diverting out of specification product.
UF/DF	Monitor the diafiltration process to ensure buffer exchange endpoints are met.

Did You Know The CT-2 Conductivity Sensor Transmitter is a DIN rail mounted device that connects to a Single-Use Conductivity Sensor and produces a 4–20 milliamp signal that is linear with conductivity. It calculates the normalized value at 25 °C (77°F) and transmits it via the 4–20 mA signal in the range of 0–150 mS.

Sensor Specifications

Accuracy	From 0.1 to 2mS/cm ±0.1mS/cm; 2 to 50mS/cm
	$\pm 5\%$ of reading; 50 to 100mS/cm typically $\pm 5\%$ of reading
Pressure Range	75 psi max
Biocompatibility	All materials in contact with product fluid path meet USP Class VI requirements,
	both pre and post gamma exposure
Manufacturing Environment	ISO 9001 certified facility; Class 5
Operating Temperature	2 °C to 50 °C (35.6 °F to 122 °F) - other ranges with process qualification because
	thermistor reads to 70 °C (158°F)
Temperature Accuracy	Better than 0.2 °C (0.36 °F) - typical better than 0.1 °C (0.18 °F)
Temperature Element	Thermistor with resistance @ 25 °C (77 °F) of 2252 ohm
Gamma Irradiation	Up to 50 kiloGrays
X-ray Irradiation	Up to 50 kiloGrays
ADCF Status	All fluid path materials are animal derived component free
Connector	Custom molded water-tight 4 pin connector Rating: IP67 when
	connected to reusable cable and dust cover
Shelf life	3 years
Packaging	Sealed in vapor barrier bag inside polybag

Ordering Information	Order Number
Single-Use Conductivity Sensor, non-sterile, polysulfone 0.318 cm (1/8 in) hose barb	CONDS-N-012
Single-Use Conductivity Sensor, non-sterile, polysulfone 0.64 cm (¼ in) hose barb	CONDS-N-025
Single-Use Conductivity Sensor, non-sterile, polysulfone 1.28 cm (½ in) hose barb	CONDS-N-050
Conductivity Monitor test kit for conductance and temperature verification	CMONT-TKS
Individual Certificate of Analysis for Single-Use conductivity sensor (ea.)	CONDS2-COA
Conductivity Sensor Transmitter with 4–20mA output, 0–100mS operating range,	CT-2
24 VDC, with quality certificate and 3.05 m (10 ft) sensor cable	

Single-Use In-line pH Sensor

Hassle-free pH measurement

1/4 inch Hose Barb

34 inch Sanitary Flange

Features Overview

Single-use pH sensor combining METTLER TOLEDO InSUS 307 pH probe technology with single-use flow cell designed by Pendotech

- Designed for applications where in-line sensing is necessary
- Compatible with gamma irradiation
- No process calibration required
- Designed for use with existing METTLER TOLEDO transmitters

In downstream bioprocessing operations, monitoring and controlling the pH of a solution is critical to maintaining the stability and efficacy of large biomolecules. A pH sensor is a valuable tool used to determine the acidity or alkalinity of a solution. The electrochemical pH probe is a widely used method for measuring pH in these types of operations.

The Pendotech Single-Use In-line pH Sensor is a cutting-edge device that is designed for both Good Manufacturing Practice (GMP) operations and process development applications. This sensor comes pre-calibrated with values for slope offset and zero point constant, eliminating the need for process calibration. It is designed for applications where in-line sensing is necessary and is compatible with gamma irradiation. The sensor also has full traceability on materials and qualification of biocompatibility. It combines METTLER TOLEDO InSUS 307 pH probe technology with a single-use flow cell designed by Pendotech.

Available in two sizes as a pre-assembled product, it is an ideal choice for downstream processing applications where real-time, in-line measurements are necessary.

Sensor Performance Specifications

ochool i chominance opecinications		
pH Range	pH 3 to pH 10	
Slope (pH 7 to pH 4 buffer)	Min -57.8 mV/pH (98%)	
Zero-point (In pH 7 buffer)	7.20 ± 0.25 pH	
Accuracy under defined	\pm 0.10 pH for \pm 1.50 pH units around the calibration	
laboratory conditions	point after 1-point process calibration (adjustment of inli	
	reading to an offline pH measurement of a grab sample)	
Response Time	t90 % < 20s between pH 4 to 7	
Operating Temperature Range	5 to 60 °C (41 to 140°F)	
Operating Pressure Range	4 Barg at 25 °C (77 °F)* 2 Barg at 40 °C (104 °F)**	
	1 Barg at 60 °C (140 °F)**	
Membrane Glass Resistance	300900 MOhm	
Glass Type	pH-Sensitive glass membrane	
Temperature Compensation (T.C.)	Via built-in Pt 1000	
Shelf life	12 months	
	PT-PH-S-5-5, PT-PH-S-025	
	24 months with available coating on the reference system	
	PT-PH-L-5-5, PT-PH-L-025	

^{*} This specification was determined and validated by Pendotech. Testing and validation data regarding this claim are on file.

^{**}This specification is provided by the original manufacturer (PT-PH1 pH Sensor).

Benefits

- Provides accurate and reliable pH measurement in downstream bioprocessing operations
- Real-time measurement of pH helps to maintain stability of large biomolecules in a specific pH range
- Rapid response time helps to capture rapid shifts in pH due to process changes
- Calibration values printed on probe for easy entry into pH monitor, eliminating need for calibration with buffers
- · Closed system operation is not impacted, as there is no need to expose pH sensor to buffer standards
- It may be re-used, however, in applications where cross contamination is to be avoided.

- It is ideal for processes where cleaning the probe is not practical post use
- Has a rapid response to change in pH conditions

Application	Description
Upstream processing	Monitoring and control of pH in fermentation and cell culture processes, viral inactivation, and media/buffer preparation.
Downstream processing	Monitoring and control of pH in purification and product recovery processes, viral inactivation, buffer preparation, and protein refolding.
Quality control	Testing of the final product to ensure that it meets pH specifications.
Research and development	Development of new biopharmaceutical products and processes.

Ordering Information

ordering information	
Monitors	Order Number
Dual pH Bench-Top monitor/transmitter for the interface of 2 Single-Use pH sensors.	MT-30280773
Cable from single wavelength photometer to TFF/DAQ, 2 m (6 ft)	PDKT-UV-PCS
Cable from single wavelength photometer to PMAT analog input, 2 m (6 ft)	PDKT-UV-PMAT
M8 3 pin male cordset, 2 m (6 ft), flying leads	1406281
M300 Transmitter Stand Kit 1/2 DIN	MT-58083319
Probes/Flow Cells	
Single-Use pH In-Line pH Sensor - 1.91 cm (¾ in) sanitary flange, polysulfone. 1-year Shelf-Life	PT-PH-S-5-5
Single-Use In-Line pH Sensor - 0.64 cm (¼ in) hose barb, polysulfone, 1-year Shelf-Life	PT-PH-S-025
Single-Use pH In-Line pH Sensor - 1.91 cm (¾ in) sanitary flange, polysulfone, 2-years Shelf-Life	PT-PH-L-5-5
Single-Use In-Line pH Sensor - 0.64 cm (1/4 in) hose barb, polysulfone, 2-years Shelf-Life	PT-PH-L-025
Cables	
Cable VP6 ST/1m, for METTLER TOLEDO InSUS 307 Probe	MT-52300107
Cable VP6 ST/3m, for METTLER TOLEDO InSUS 307 Probe	MT-52300108
Cable VP6 ST/1m/BNC	MT-52300210
Cable VP6 ST/3m/BNC	MT-52300211

PM2 Photometer and Single-Use UV/Turbidity

UV Absorbance Measurements, Simply and Quickly

Single-Use UV Flow Cells & PM2 Photometer

Ensuring Accuracy, One Measurement at a Time

The PM2 Photometer is a versatile tool for both lab and process applications, available in benchtop and panel mount versions for easy integration into various systems. It comes with seven factory-configurable wavelength combinations, including 260nm, 280nm, 300nm, 880nm, 260–280nm, 280–300nm, and 280–880nm.

Designed to work with a monitor possessing data acquisition capabilities, the PM2 Photometer can be used with Pendotech solutions like PressureMAT PLUS models for data logging via a PC, or Process Control Systems.

The photometer provides two 4–20mA signals spanning 0 to 3AUs as output, allowing for continuous monitoring. It also features a local display for direct reading. The output signals can be connected to other data acquisition devices or higher-level control systems like PLCs and HMIs for data collection and integration into larger control systems.

The PM2 Photometer supports digital communication protocols such as Modbus over RS485 and Modbus-TCP over Ethernet for device monitoring, control, and network communication. This makes the PM2 Photometer a flexible solution for bioprocess monitoring due to its adaptability and compatibility with various systems.

Features Overview

- Dual functionality for lab and panel mount
- Versatile instrument for lab and process applications
- Factory configured with seven different wavelength combinations
- Designed to be integrated into a monitor with data acquisition capability
- Two 4–20mA output signals spanning 0 to 3AUs
- Local display for viewing readings directly from the instrument
- Compatible with a variety of data acquisition devices and control systems
- Supports digital communication protocols

Photometer Specifications

i notomotor opcomoditono	
Optical Configuration	LED light source
Optical Connectivity	SMA-905
Mechanical	10.2 cm (4 in) W $ imes$ 10.2 cm (4 in) L $ imes$ 6.4cm
	(2.5 in) H
	Weight: ~0.68kg (~1.5 lbs)
Max. supply voltage fluctuations	±10% of DC supply voltage
Overvoltage Category	Category I
Power Requirement	24VDC nominal, 2.7W max power
Output	4-20mA (Active/sourcing) spanned 0-3AU
Analog Loop Resistance	500ohms at 24VDC
Alarm Relay	Max. 48VDC, Max. 1A
Operating Temperature	5 to 50 °C (41 to 122 °F)
Storage Temperature	−20 to 50°C (−4 to 122°F)
Operating Altitude	Max. 5000m above sea level
Humidity	20-80 % relative humidity, non-condensing
Measurement Range	0.000-3.00AU
Response Time	1 second
Maximum Zero Shift	±0.1 % full scale (±0.002AU)
Accuracy*	$0-2AU \pm 1 \%FS (\pm 0.03AU)$; $2-3AU \pm 2 \%FS (\pm 0.06AU)$
Long Term Output Drift	±0.1 % full scale (±0.002AU)
Precision/Repeatability	±0.5 % full scale (±0.015AU)
LED Lifetime	> 5 years
Emission Range	240-1000 nm
Regulatory	RoHS3, REACH, CE, UKCA

^{*} Accuracy is dependent on system arrangement and proper tare

Flow Cell Shown ½ inch hosebarb with 1 cm path length

Flow Cell Installed with Tubing

Optical Couplers Installed to Flow Cell

6.5 cm Single-Use Turbidity Flow Cell

Other Highlights

- Non-invasive measurement
- Real-time monitoring
- Cost-effective
- Durable
- Versatile
- Easy to use

Pendotech's Single-Use Flow Cells allow non-invasive measurements using a unique silica glass lens. The fluid to be measured flows between the lenses via tubing attached to the flow cell ports. They come in various sizes and path lengths, with the largest recommended for turbidity applications. The 6.5 cm flow cell is ideal for turbidity measurements below 400 NTU, while the 1cm flow cell is suitable for applications above 400 NTU. These low-cost flow cells are perfect for single-use applications but can be cleaned and reused. They meet USP Class VI standards and can be gamma and x-ray irradiated up to 50KGy and autoclaved up to 121°C (249°F).

UV Absorbance

In bioprocess operations, UV absorbance is used to detect specific molecules, typically at 280 nm, using a spectrophotometer or photometer. The Single-Use UV Flow Cell and UV PM2 Photometer offer a non-invasive method for this. The flow cell, connected to the PM2 system with fiber optic cables, uses special silica glass lenses to pass light through the sample. The sample flows between the lenses via tubing attached to the flow cell. This low-cost flow cell is ideal for single-use applications but can also be cleaned and reused.

Turbidity

Turbidity, the relative clarity of a liquid, is caused by suspended solids scattering light. It is measured by the difference in light emitted from a source and received by a detector, typically using near-infrared light at 880 nm. The standard unit is the Nephelometric Turbidity Unit (NTU). In bioprocess operations, turbidity post-filtration indicates filter performance on unclarified material from a bioreactor. The Turbidity System, which includes a photometer, flow cells, and cables, can measure turbidity online. The Single-Use Flow Cell eliminates the need for cleaning.

Single-Use Flow Cell Specifications

Material	Polysulfone and fused silica with silicone O-ring
Pressure range	Rated for pressure up to 5 bar (75 psi)
Biocompatibility	All materials in contact with product fluid path
	meet USP Class VI requirements
Manufacturing Environment	ISO 7 clean room
Gamma Irradiation	Up to 50 kiloGrays
X-ray Irradiation	Up to 50 kiloGrays
Operating temperature	2°C to 50°C (35.6°F to 122°F)
	(other ranges with process qualification)
Storage temperature	-25 °C to 65 °C (–13 °F to 149 °F)
Shelf Life	>5 years

PM2 Photometer and Single-Use UV/Turbidity

UV Absorbance Measurements, Simply and Quickly

Photometer / Transmitter Details

Flow Cell Stands

Flow cell stand for 6.5 cm turbidity flow cell

Flow cell stand for single-use UV flow cell

Did You Know

PM2 Test Rig Photometer Test Rig and Standards is designed for quick and easy accuracy

verification of PM2 Photometers. The test kit includes one blank and 5 NIST-traceable filters, a test rig for holding the filters and for connecting the photometer, and a convenient holder.

Ordering Information

Photometers	Order Number
Photometer PM2 260 nm	30 849 447
Photometer PM2 280 nm	30 849 498
Photometer PM2 300 nm	30 849 499
Photometer PM2 880 nm	30 849 500
Photometer PM2 260 – 280 nm	30 849 501
Photometer PM2 280-300 nm	30 849 502
Photometer PM2 280-880 nm	30 849 503
Single-Use Flow Cells	
Single-use UV flow cell, 2 mm (0.08 in) path length, non-sterile, polysulfone, 0.318 cm (1/8 in) hose barb	SPECPS-N-012
Single-Use UV Flow Cell, 0.5 cm (0.2 in) path length, non-sterile, polysulfone, 0.64 cm (1/4 in) hose barb	SPECPS-N-025
Single-Use UV Flow Cell, 1 cm (0.4 in) path length, non-sterile, polysulfone, 1.28 cm (½ in) hose barb	SPECPS-N-050
Single-Use Flow Cell, 6.5 cm (2.5 in) path length, non-sterile, polysulfone, 1.90 cm (¾ in) Sanitary Flange Inlet/Outlet	SPECPS-880-6CM
Couplers, Cables & Power Cords	
Optical Coupler Single-Use Flow Cell	30 849 506
Optical Fiber Photometer 0.5 m (1.64 ft)	30 830 317
Optical Fiber Photometer 0.7 m (2.30 ft)	30 919 657
Optical Fiber Photometer 1 m (3.28 ft)	30 830 318
Optical Fiber Photometer 2 m (6.56 ft)	30 830 319
Optical Fiber Photometer 3 m (9.84 ft)	30 830 320
Panel mount SMA-905 connector (for pass through)	SPEC-OC-PANEL
Power Cord CN 3 Prong	30 305 179
Power Cord EU 3 Prong	30 305 178
Power Cord UK 3 Prong	30 305 174
Power Cord US 3 Prong	30 305 173
Mains Cable CH, 3P – For PM2 Photometer (Swiss Power Cord)	87920
Accessories	00.040.507
Calibration Kit with Standards 3AU	30 849 507
Replacement Standards for Calibration Kit	30 849 508
SU Flow Cell Stand 6.5 cm (2.5 in) path length	30 849 504
SU Flow Cells Stand 1 cm (0.4 in) path length	30 849 505
Analog display with 4 inputs with alarm inputs and serial port for data collection	PMAT-DAQ
Analog display with 4 inputs, 4 analog outputs, alarms, and serial port for data collection	PMAT-DAQ-A
PM2 Photometer DIN Rail mounting kit, includes mounting plate and mounting hardware	PHOTO-DR
PM2 Photometer Panel Mount Support Bracket, with 2 × 1.28 cm (¼ in) - 20 × 1.28 cm (½ in) bolts	PHOTO-PNL
Interface Cables	
Cable from single channel PM2 photometer to PressureMAT analog input, 2 m (6 ft)	PDKT-PM2-1-PMAT
Cable from dual channel PM2 photometer to PressureMAT analog input, 2 m (6 ft)	PDKT-PM2-2-PMAT
Cable from single channel PM2 photometer to PCS Control System (DAQ/TFF), mA, 2 m (6 ft)	PDKT-PM2-1-PCS
Cable from dual channel PM2 photometer to Gen 2 TFF Control System, mA, 2 m (6 ft)	PDKT-PM2-2-PCS
Cable from single channel PM2 photometer to PDKT-BOX-NFFSS breakout box, M8 male, mA signal, 2 m (6 ft)	PDKT-PM2-1-NFFSSB
Cable from dual channel PM2 photometer to PDKT-BOX-NFFSS breakout box, 2 m (6 ft)	PDKT-PM2-2-NFFSSB
Cable from dual channel/turbidity photometer to flying leads, 2 m (6 ft)	PDKT-PM2-FL

Single-Use Temperature Sensors

Accurate Temperature Measurement

Pendotech Single-Use Temperature Sensors measure temperature in your processes accurately and cost effectively. They are low cost for single-use applications where elimination of cross-contamination is required yet robust enough to be repeatedly cleaned and re-used. They are designed for in-line use and perfect for filtration and chromatography processes, filling operations, and general process monitoring. These sensors connect to monitors via a re-usable cable. Suitable monitors include the handheld unit TEMP-340, a Process Control System, or other pre-qualified third-party monitors. Also, a stand-alone transmitter is available with a 4 to 20mA analog output. They are the alternative solution for use with tubing to the existing temperature measurements devices on the market.

Specifications

-pooriioaiioiio	
Accuracy	Hose-barb and flange sensors:
	Better than ±0.2 °C (0.36 °F)
	(typical better than 0.1 °C (0.18 °F)
	Luer: Better than ±0.4 °C (0.72 °F)
	(typical better than 0.2 °C (0.36 °F)
Temperature range	0 to 70°C (0 to 158°F)
Biocompatibility	Hose-barb and flange sensors: all polymeric
	materials in contact with product fluid path meet
	USP Class VI requirements
Manufacturing environment	ISO 9001 certified facility; Class 5
Gamma irradiation	Up to 50 kiloGrays^
X-ray irradiation	Up to 50 kiloGrays^
Resistance @ 25 °C	2252ohm
Connector	Custom molded 2 contact connector (different
	versions for luer and hose-barb versions)
Pressure range	Up to 5.2 bar (75 psi)
Shelf life	5 years
Monitor Cable	Hose-barb: 3 m (10 ft) with 0.64 cm (1/4 in)
	headphone plug to connect to monitor
	receptacle

^ At this gamma dose there is a shift in the accuracy in the range of 0 to 2 °C to ± 0.5 °C and in the range of 50 to 70 °C to ± 0.5 °C.

Features Overview

- Adaptable fittings
- No obstruction
- Luer fitting
- Temperature sensing element
- No calibration required

Sensor Features

To optimally adapt to tubing, the sensors are available with either a hose-barb fitting, a 1 inch sanitary flange, or a luer fitting. The hose-barb and flange sensor designs imparts no obstruction on the fluid path that can cause a pressure drop. There is no dead-leg at the point where the temperature is measured. The luer fitting can be connected to a variety of fittings that can securely adapt to tubing or other devices. The temperature sensing element is a thermistor. No calibration is required because the temperature versus resistance for the thermistor element is well-defined within the specified accuracy range. Within the electrical instrument, the measured resistance is converted to the temperature. A disposable dip probe is also available to measure temperature within a vessel.

Connection to Monitors

The hose-barb and flange sensors and dip probe connect to the monitor via a 3 m (10 ff) long re-usable cable. One end has a molded connector to connect to the sensor connector and the other end has a ¼ inch headphone plug commonly used by many commercially available monitors. The luer sensor has a custom molded connector on the 2.1 m (7 ff) long re-usable monitor cable that is quickly secured to the temperature sensor. There is an alignment guide on the sensor that prevents it from being connected improperly. Disconnection of the cable connector from the sensors is quick and easy and the monitor indicates the sensor has been disconnected.

TEMP-340 Handheld Monitor

Ordering Information

Sensor	Order Number
Single-use temperature sensor, non-sterile, polysulfone, stainless steel sensor, 0.318 cm (1/8 in) hose barb	TEMPS-N-012
Single-use temperature sensor, non-sterile, polysulfone, stainless steel sensor, 0.64 cm (1/4 in) hose barb	TEMPS-N-025
Single-use temperature sensor, non-sterile, polysulfone, stainless steel sensor, 0.95 cm (3/8 in) hose barb	TEMPS-N-038
Single-use temperature sensor, non-sterile, polysulfone, stainless steel sensor,	1.28 cm (½ in)
hose barb	TEMPS-N-050
Single-use temperature sensor, non-sterile, polysulfone, stainless steel sensor, 1.90 cm (¾ in) hose barb	TEMPS-N-075
Single-use temperature sensor, non-sterile, polysulfone, 2.54 cm (1 in) sanitary flange	TEMPS-N-1-1
Single-use temperature sensor with luer fitting	TEMPC-N-999
Accessories for Sensors	
3 m (10 ft) re-usable temperature sensor cable with ¼ phone jack term. for hose barb sensors	PDKT-650-TEMPB
2.1 m (7 ft) re-usable temperature sensor cable with ¼ phone jack term. for luer sensors	PDKT-650-TEMPL
30.48 cm (12 in) re-usable temperature sensor cable with M8 termination for hose barb sensors	PDKT-TEMPB-PNL
Temperature sensor monitor for 1 sensor with built-in data logger and RS-232 data output	TM-TEMP-340
Temperature Sensor Transmitter	TT1
Temperature Sensor Transmitter DIN Rail Mounting Kit	TT1-DR
Temperature Sensor Benchtop Transmitter with 4–20mA output in ABS plastic box with 24 VDC wall supply (for 1 sensor)	PDKT-TT1
Temperature Sensor Benchtop Transmitter with 4–20mA output in ABS plastic box with 24 VDC wall supply (for 2 sensors)	PDKT-TT2
Temperature Sensor Benchtop Transmitter with 4–20mA output in ABS plastic box with 24 VDC wall supply (for 4 sensors)	PDKT-TT4
Cable from PDKT-TT1 temperature transmitter to PressureMAT analog input, 2 m (6 ft)	PDKT-TT1-PMAT
Cable from PDKT-TT2 temperature transmitter to PressureMAT analog input (2 \times), 2 m (6 ft)	PDKT-TT2-PMAT
Analog display with 4 inputs with alarm inputs and serial port for data collection	PMAT-DAQ
Analog display with 4 inputs, 4 analog outputs, alarms, and serial port for data collection	PMAT-DAQ-A
Cable from PDKT-TT4 to PMAT-DAQ, 4 analog signals, 1.2 m (4 ft)	PDKT-TT4-PDAQ
$0.64~{ m x}~0.64~{ m cm}$ (${ m 14}$ in) polycarbonate straight connector with luer port	PDKT-103-03
0.95~x~0.95~cm (3/8 in $ imes$ 3/8 in) polycarbonate straight connector with luer port	PDKT-104-03
1.27 x 1.27 cm ($\frac{1}{2}$ in) polycarbonate straight connector with luer port	PDKT-105-03
Male x female x female luer tee, polycarbonate	PDKT-000-03
Male x female x female luer tee, polypropylene	PDKT-000-04

Trademark Information

METTLER TOLEDO, the MT logo, Ingold, Thornton, Pendotech, ISM, ISM Core, InPro, InPro X1, InSUS, InDip, InTrac, InFlow, InFit, GPro, Pro2Go, UniCond, 7000RMS, pHure, pHure Sensor, PureO $_3$, RecordLOC, Xerolyt, and PressureMAT are trademarks of the METTLER TOLEDO Group.

Viton and Kalrez are registered trademarks of DuPont Performance Elastomers LLC.

All other trademarks are the property of their respective holders.

For the most up-to-date addresses of METTLER TOLEDO globally, visit: www.mt.com/contacts

The Information You Want

is at www.mt.com/pro

The METTLER TOLEDO Process Analytics website contains a vast amount of up-to-date information on all our products and services. Content is localized for your country and tailored to suit your selections. Simple layout allows you to quickly find the information and features you are looking for.

Visit our website for fast and competent information.

- Learn about our most recent product developments
- Register for free webinars
- Request further information on products and services
- Obtain a quote quickly and easily
- Download our latest white papers
- Read case studies relevant to your industry
- Access buffer and electrolyte solution certificates

www.mt.com/pro

Visit for more information

METTLER TOLEDO Group

Process Analytics

Local contact: www.mt.com/contacts

Subject to technical changes.

© 02/2024 METTLER TOLEDO. All rights reserved.

PA1000en - 52 900 315

Printed in Switzerland.