

Mode d'emploi Multiparamètre Transmetteur M400 FF

Mode d'emploi Multiparamètre Transmetteur M400 FF

Sommaire

	innes de ségurité			
2 1	Définition des symboles et désignations présents sur l'équinement et dans la documentation			
2.1 つつ	Deminion des symboles et designations presents sur requipement et dans la documentation			
Z.Z つつ				
2.5				
Prése	entation de l'instrument			
3.1	Presentation du modele 1/2DIN			
3.2	louches de controle/navigation			
	3.2.1 Structure du menu			
	3.2.2 louches de navigation			
	3.2.2.1 Navigation dans l'arborescence du menu			
	3.2.2.2 Echap.			
	3.2.2.3 ENTER			
	3.2.2.4 Menu			
	3.2.2.5 Mode Calibrage			
	3.2.2.6 Mode Info			
	3.2.3 Navigation dans les champs de saisie de données			
	3.2.4 Saisie de valeurs, sélection d'options de saisie de données			
	3.2.5 Navigation sur l'écran avec T			
	3.2.6 Boîte de dialogue « Sauver Changem? »			
	3.2.7 Mots de passe			
	3.2.8 Affichage			
Instru	uctions d'installation			
4.1	Déballage et contrôle de l'équipement			
	4.1.1 Informations relatives aux dimensions de la découpe du panneau – Modèles 1/2 DIN			
	4.1.2 Procédure d'installation			
	4.1.3 Assemblage – Modèle 1/2DIN			
	4.1.4 Modèle 1/2DIN – Schémas des dimensions			
	4.1.5 Modèle 1/2DIN – Montage sur conduite			
4.2	Connexion de l'alimentation			
	4.2.1 Boîtier (montage au mur)			
4.3	Définition des broches de connecteur			
	4.3.1 Définition des borniers (TB)			
	4.3.2 TB2 – Sondes analogiques de conductivité 4-E/2-E			
	4.3.3 TB2 – Électrodes analogiques pour le pH/redox			
	4.3.4 TB2 – Sondes analogiques à oxygène			
	4.3.5 TB2 – Sondes (numériques) ISM pH, oxygène ampérométrique, conductivité 4-E et CO ₂ dissous (faible)) _		
	4.3.6 TB2 – Sondes (numériques) ISM à oxygène optique			
	4.3.6.1 Avec côble VP8			
	4.3.6.2 Avec d'autres câbles			
4.4	Connexion des sondes ISM (numériques)			
	4.4.1 Connexion des sondes ISM pour la mesure du			
	pH/redox, de la conductivité 4-e, de l'oxygène ampérométrique et du CO ₂ dissous (faible)			
	4.4.2 TB2 – Configuration du câble AK9			
	4.4.3 Connexion de sondes ISM pour la mesure de l'oxygène optique			
4.5	Connexion de sondes analogiques			
	4.5.1 Connexion de la sonde analogique pour pH/redox			
	4.5.2 TB2 – Câblage classique pour sonde analogique de pH/redox			
	4.5.2.1 Exemple 1			
	4.5.2.2 Exemple 2			
	4.5.2.3 Exemple 3			
	4.5.2.4 Exemple 4			
	4.5.2.4 Exemple 4 4.5.3 Connexion d'une sonde analogique pour la mesure de l'oxygène ampérométrique			
	 4.5.2.4 Exemple 4			
Mise	4.5.2.4 Exemple 4 4.5.3 Connexion d'une sonde analogique pour la mesure de l'oxygène ampérométrique 4.5.4 TB2 – Câblage classique pour sonde analogique pour la mesure d'oxygène ampérométrique en service ou hors service du transmetteur			
Mise (4.5.2.4 Exemple 4 4.5.3 Connexion d'une sonde analogique pour la mesure de l'oxygène ampérométrique 4.5.4 TB2 – Câblage classique pour sonde analogique pour la mesure d'oxygène ampérométrique en service ou hors service du transmetteur Mise en service du transmetteur			
Mise 5.1 5.2	4.5.2.4 Exemple 4 4.5.3 Connexion d'une sonde analogique pour la mesure de l'oxygène ampérométrique 4.5.4 TB2 – Câblage classique pour sonde analogique pour la mesure d'oxygène ampérométrique en service ou hors service du transmetteur Mise en service du transmetteur Mise hors service du transmetteur			

		u sulue	
7.1	ACCES U	u moue cluionnuye	
1.Z		de conductivite pour sondes componant de deux à quaite éléctrodes	
	7.2.1	Étalemente de la sonde en dans estats (Candas à sustra électrodes unisuement)	
	7.Z.Z	Eraionnage de la sonae en deux points (Sonaes à quatre electrodes uniquement)	
	1.2.3	Etalonnage de procede	
7.3	Etalonn	age de sondes à oxygène ampérométriques	
	7.3.1	Etalonnage en un point de sondes à oxygène ampérométriques	
		7.3.1.1 Mode auto	
		7.3.1.2 Mode manuel	
	7.3.2	Étalonnage de procédé de sondes à oxygène ampérométriques	
7.4	Étalonn	age des sondes optiques à oxygène (pour sondes ISM uniquement)	
	7 4 1	Étalonnage en un point pour les sondes optiques à axyrène	
	7.4.1		
	7 4 0		
	7.4.Z	Eldonnage de la sonde en deux points	
		7.4.2.1 Mode auto	
		7.4.2.2 Mode manuel	
	7.4.3	Étalonnage procédé	
7.5	Étalonn	age de l'électrode de pH	
	7.5.1	Étalonnage en un point	
		7.5.1.1 Mode auto	
	750		
	7.0.2		
		7.5.2.1 Mode dulo	
		7.5.2.2 Mode manuel	
	7.5.3	Etalonnage du procédé	
	7.5.4	Etalonnage de mV (uniquement pour les sondes analogiques)	
	7.5.5	Étalonnage redox (uniquement pour les sondes ISM)	
7.6	Étalonn	age du CO2 dissous	
	7.6.1	Étalonnage en un point	
		7.6.1.1 Mode guto	
	760		
	7.0.2		
		7.6.2.1 Mode dulo	
		7.6.2.2 Mode manuel	
	7.6.3	Etalonnage procédé	
7.7	Etalonn	age de la température de la sonde (uniquement pour les sondes analogiques)	
	7.7.1	Étalonnage de la température de la sonde en un point	
	7.7.2	Étalonnage de la température de la sonde en deux points	
7.8	Modific	ation des constantes d'étalonnage de la sonde (uniquement pour les sondes analogiques)	
79	Vérificat	ion de la sonde	
	vonnour		
Config	guration _		
8.1	Accès a	u mode Configuration	
8.2	Mesure		
	8.2.1	Configuration Canal	
		8 2 1 1 Sonde analogique	
		8.2.1.7 Sonde ISM	
		2.2.1.2 Outrus Iom	
	0.0.0		
	Ø.Z.Z	Source de remperature (uniquement pour les sondes analogiques)	
	8.2.3	Contiguration des parametres	
		8.2.3.1 Compensation de température de conductivité	
		8.2.3.2 Table de concentration	
		8.2.3.3 Paramètres de pH/redox	
		8.2.3.4 Paramètres de mesure de l'oxyaène basés sur des sondes ampérométriques	
		8 2 3 5 Paramètres de mesure de l'avagene avec des sondes ontiques	
		8.2.3.6 Dáglage du taux d'áchantillonnage pour les sondes optiques	
		8.2.3.8 Parametres de CU2 dissous	
	8.2.4	Paramétrage Filtrage	
0 0	Alarme/	nettoyage	
0.3			
8.3	8.3.1		

	8.4	Configuration ISM (pour sondes ISM, pH, oxygène et CO2 dissous)	72
		8.4.1 Contrôle de la sonde	72
		8.4.2 Nb Max. Cycles NEP	74
		8.4.3 Nb Max. Cycles SEP	74
		8.4.4 ND Max. Cycles Autoclav	/5
		8.4.5 Reinitialisation du compteur/minuterie ISM	/6
	0.5	8.4.6 Menu d'ajustement de tension DLI (uniquement pour electrodes de pH ISM)	/6
	8.5		//
		8.5.1 Mesure	//
		8.5.2 Resolution	//
		8.5.3 Keiroeciairage	/8
		8.5.4 INUITI	/8
	0.6	8.5.5 Controle de sonde ISM (disponible uniquement si une sonde ISM est connectee)	/8
	0.0	20116 HOID	79
9	Systè	me	80
	9.1	Choix Langue	80
	9.2	Mots de passe	80
		9.2.1 Modification des mots de passe	81
		9.2.2 Configuration de l'accès aux menus de l'opérateur	81
	9.3	Set/Effacer lockout	81
	9.4	Réinifialisation	82
		9.4.1 Reinitialisation du système	82
	0.5	9.4.2 Reinitialisation de l'étalonnage du transmetteur	82
	9.5	Reglage de la date et de l'heure	82
10	Servio	De	83
	10.1	Diagnostic	83
		10.1.1 Modèle/Version logicielle	83
		10.1.2 Affichage	83
		10.1.3 Clavier	83
		10.1.4 Mémoire	84
		10.1.5 Read Analog Inputs	84
		10.1.6 O ₂ optique	84
	10.2	Calibrer	84
		10.2.1 Étalonnage de l'instrument (uniquement pour le canal A)	85
		10.2.1.1 Résistance	85
		10.2.1.2 Température	86
		10.2.1.3 Courant	87
		10.2.1.4 Voltage	88
		10.2.1.5 Diagnostic Rg	88
		10.2.1.6 Diagnostic Rr	89
		10.2.1.7 Etaionnage au signal à entree analogique	89
	10.0	10.2.2 Calibrage Deverroullie	90
	10.3	Service lecturique	90
11	Info _		91
	11.1	Messages	91
	11.2	Données Calibrage	91
	11.3	Modèle/Version logicielle	92
	11.4	Info de la sonde ISM (disponible uniquement si une sonde ISM est connectée)	92
	11.5	Diagnostic de la sonde ISM (disponible uniquement si une sonde ISM est connectée)	92
12	Interfe	ace FOUNDATION Fieldbus	95
	12.1	Caractéristiques générales	95
		12.1.1 Architecture du système	95
	12.2	Modèle de bloc M400 FF	96
		12.2.1 Configuration de bloc	97
	12.3	Mise en service	98
		12.3.1 Configuration réseau	98
		12.3.2 Identification et adressage	98
		12.3.3 Mise en service via un programme de configuration FF	99
		12.3.4 Mise à l'échelle du paramètre OUT	101
13	Maint	enance	102
	13 1	Nettovaae du panneau avant	102
		, , , , , , , , , , , , , , , , , , , ,	

14	Dépar	1nage	103		
	14.1	Liste des messages d'erreur, avertissements et alarmes Cond (résistif) pour sondes analogiques	103		
	14.2	Liste des messages d'erreur, avertissements et alarmes Cond (résistif) pour sondes ISM	104		
	14.3	Liste des messages d'erreur/avertissements et alarmes pour le pH	104		
		14.3.1 Électrodes de pH sauf celles à double membrane	104		
		14.3.2 Électrodes de pH à double membrane (pH/pNa)	105		
		14.3.3 Messages redox	105		
	14.4	Liste des messages d'erreur, avertissements et alarmes pour sondes O2 ampérométriques	106		
		14.4.1 Sondes de mesure de l'oxygène en forte concentration	106		
		14.4.2 Sondes de mesure de l'oxygène en faible concentration	106		
		14.4.3 Sondes de mesure de l'oxygène à l'état de trace	107		
	14.5	Liste des messages d'erreur, des avertissements et des alarmes de la sonde optique O ₂	107		
	14.6	Liste des messages d'erreur, des avertissements et des alarmes pour sonde à CO2 dissous	108		
	14.7	Signalement des avertissements et des alarmes sur l'écran	109		
		14.7.1 Signalement des avertissements	109		
		14.7.2 Signalement des alarmes	109		
15	Acces	soires et pièces détachées	110		
16	Spécifications				
	16.1	16.1 Caractéristiques générales			
	16.2 Caractéristiques électriques				
	16.3	Caractéristiques de l'interface FOUDATION fieldbus	115		
	16.4	Caractéristiques mécaniques	115		
	16.5	Caractéristiques environnementales	115		
17	Tablea	au des valeurs par défaut	116		
18	Garan	tie	120		
19	Tablea	aux de tampons	121		
	19.1	Tampons pH standard	121		
		19.1.1 Mettler-9	121		
		19.1.2 Mettler-10	122		
		19.1.3 Tampons techniques NIST	122		
		19.1.4 Tampons standard NIST (DIN et JIS 19266: 2000–01)	123		
		19.1.5 Tampons Hach	123		
		19.1.6 Tampons Ciba (94)	124		
		19.1.7 Merck Titrisole, Riedel-de-Haën Fixanale	124		
		19.1.8 Tampons WTW	125		
		19.1.9 Tampons JIS Z 8802	125		
	19.2	Tampons pour électrode de pH à double membrane	126		
		19.2.1 Jampons pH/pNa Mettler (Na+ 3,9M)	126		

1 Introduction

Utilisation prévue : le transmetteur multiparamètre M400 à 2 fils est un instrument de procédé en ligne monovoie doté de fonctionnalités de communication FOUNDATION fieldbus[™] qui permet de mesurer différentes caractéristiques des fluides et des gaz, notamment la conductivité, l'oxygène, le CO₂ dissous et le pH/redox. Les paramètres sont indiqués sur une étiquette située à l'arrière du système.

Le M400 est un transmetteur unique en mode mixte capable de gérer des sondes classiques (analogiques) ou des sondes ISM (numériques).

Guide de sélection de paramètres M400 FF

Paramètre	M400 FF	
	Analogique	ISM
pH/redox	•	•
Conductivité 2-e	•	_
Conductivité 4-e	•	•**
OD amp.* ppm/ppb/traces	●/●/●	•/•/•
O2 gazeux amp.	•	•
Oxygène optique ppm/ppb	_	•/•
CO2 dissous (faible)	_	•
* Candoa TUODNITON at INOOLD		

* Sondes THORNTON et INGOLD

** Sondes INGOLD

Un large écran à cristaux liquides rétro-éclairé comportant quatre lignes transmet les données de mesure et les informations de configuration. La structure du menu permet à l'opérateur de modifier tous les paramètres de fonctionnement à l'aide de touches situées sur le panneau avant. Une fonction de verrouillage des menus (protection par mot de passe) est disponible et empêche l'utilisation non autorisée de l'instrument de mesure. L'interface FF permet de configurer le bloc de sortie analogique (Analog Output Block), le bloc d'entrée discrète (Discrete Input Block) et le bloc de sortie discrète (Discrete Output Block) pour les paramètres de statut d'alarme/nettoyage (Alarm/Clean), de maintien (Hold) et de compensation de pression.

Cette description correspond à la version 1.0 du progiciel installé pour le transmetteur M400 FF. Des modifications sont apportées régulièrement sans notification préalable.

2 Consignes de sécurité

Ce manuel présente des informations relatives à la sécurité sous les désignations et les formats suivants.

2.1 Définition des symboles et désignations présents sur l'équipement et dans la documentation

AVERTISSEMENT : RISQUE POTENTIEL DE LÉSIONS CORPORELLES.

ATTENTION : risque de dommages pour l'instrument ou de dysfonctionnement.

REMARQUE : Information importante sur le fonctionnement.

Sur le transmetteur ou dans ce manuel : Attention ou autre risque éventuel, y compris risque de choc électrique (voir les documents associés)

Vous trouverez ci-dessous la liste des consignes et avertissements de sécurité d'ordre général. Si vous ne respectez pas ces instructions, l'équipement peut être endommagé et/ou l'opérateur blessé.

- Le transmetteur M400 doit être installé et exploité uniquement par du personnel familiarisé avec ce type d'équipement et qualifié pour ce travail.
- Le transmetteur M400 doit être exploité uniquement dans les conditions de fonctionnement spécifiées (voir section 16, « Spécifications »).
- Le transmetteur M400 ne doit être réparé que par du personnel autorisé et formé à cet effet.
- À l'exception de l'entretien régulier, des procédures de nettoyage ou du remplacement des fusibles, conformément aux descriptions de ce manuel, il est strictement interdit d'intervenir sur le transmetteur M400 ou de le modifier.
- Mettler-Toledo décline toute responsabilité en cas de dommages occasionnés par des modifications non autorisées apportées au transmetteur.
- Suivez les avertissements, les mises en garde et les instructions signalés sur et accompagnant ce produit.
- Pour l'installation du matériel, conformez-vous à la procédure décrite dans ce manuel d'instruction. Respectez les réglementations locales et nationales.
- Les housses de protection doivent toujours être en place en cas de fonctionnement normal.
- Si cet équipement est utilisé d'une manière autre que celle spécifiée par le producteur, la protection que celui-ci procure contre les dangers peut être entravée.

AVERTISSEMENTS :

L'installation des raccordements de câbles et l'entretien de ce produit nécessitent l'accès à des niveaux de tension présentant un risque d'électrocution.

L'alimentation et les raccordés sur différentes sources électriques doivent être déconnectés avant l'entretien.

L'interrupteur ou le disjoncteur doit être situé à proximité de l'équipement et à portée de l'OPÉRATEUR ; il doit être marqué en tant que dispositif de déconnexion de l'équipement. L'alimentation principale doit employer un interrupteur ou un disjoncteur comme dispositif de débranchement de l'équipement.

L'installation électrique doit être conforme au Code électrique américain et/ou à toutes les réglementations applicables au niveau local ou national.

 \sqrt{r}

REMARQUE : PERTURBATIONS DU PROCÉDÉ

Comme les conditions de procédé et de sécurité peuvent dépendre du bon fonctionnement de ce transmetteur, prévoyez des moyens appropriés pour maintenir le fonctionnement pendant le nettoyage, le remplacement ou l'étalonnage de la sonde ou de l'instrument.

2.2 Mise au rebut adéquate de l'instrument

Lorsque le transmetteur n'est plus utilisé, respectez toutes les réglementations locales en matière d'environnement pour le jeter comme il convient.

2.3 Mode d'emploi des transmetteurs multiparamètres série M400 en atmosphère explosive

Les transmetteurs multiparamètres de la série M400 sont produits par Mettler-Toledo GmbH. Chaque produit a été soumis à l'inspection du système IECEx et respecte les normes suivantes :

- CEI 60079-0 : 2011
 Édition : 6.0 Atmosphères explosives –
 Partie 0 : Exigences générales
- CEI 60079-11 : 2011
 Édition : 6.0 Atmosphères explosives –
 Partie 11 : protection du matériel par sécurité intrinsèque « i »
- CEI 60079-26 : 2006
 Édition : 2 Atmosphères explosives –
 Partie 26 : matériel avec niveau de protection du matériel (EPL) Ga

Marquage Ex :

- Ex ib [ia Ga] IIC T4 Gb
- Ex ib [ia Da] IIIC T80°C Db IP66

Numéro de certificat

- IECEX CQM 12.0021X
- SEV 12 ATEX 0132 X

1. Conditions d'utilisation spéciales (marquage X dans le numéro de certificat de vérification) :

- 1. Éviter tout risque d'inflammation due à un choc ou à un frottement, prévenir les étincelles mécaniques.
- Éviter toute décharge électrostatique sur la surface du boîtier, utiliser un chiffon humide pour le nettoyage.
- 3. Dans une zone dangereuse, des presse-étoupes IP66 (fournis) doivent être installés.

2. Prudence lors de l'utilisation :

- 1. Plage de température ambiante nominale :
 - pour atmosphère gazeuse : -20 °C ~ + 60 °C
 - pour atmosphère poussiéreuse : -20 °C ~ + 57 °C
- 2. Ne pas utiliser sur l'interface de mise à niveau en zone dangereuse.
- 3. Les utilisateurs ne doivent pas remplacer arbitrairement les composants électriques internes.
- 4. Pendant l'installation, l'utilisation et la maintenance, respecter la norme CEI 60079-14.
- 5. Lors de l'installation en atmosphère poussiéreuse explosive
 - 5.1 Il convient d'adopter un presse-étoupes ou un bouchon d'obturation conformes aux normes 60079-0:2011 et CEI 60079-11 : 2011 avec marquage Ex ia IIIC IP66.
 - 5.2 La partie frontale (avec boutons-poussoirs) du transmetteur multi-paramètre doit être protégée de la lumière.
 - 5.3 Éviter tout risque élevé de danger mécanique sur la partie frontale.
- 6. Respecter l'avertissement : risque de charge électrostatique potentielle (voir instructions), éviter le risque d'inflammation par impact ou friction pour l'application Ga.
- Pour le raccordement aux circuits de sécurité intrinsèques, utiliser les valeurs maximales suivantes

Terminal	Fonction	Paramètres de sécurité				
10, 11	Puissance (FF) Dispositif sur le terrain FISCO	U _i = 17,5 V	I _i = 380 mA	P _i = 5,32 W	$L_i = 0$	C _i = 3 nF
	Puissance linéaire	$U_i = 24 V$	l _i = 200 mA	$P_{i} = 1,2 W$	$L_i = 0$	$C_i = 3 \text{ nF}$
P, Q	Entrée analogique	$U_i = 24 V$	I _i = 100 mA	$P_{i} = 0.8 W$	$L_i = 0$	$C_i = 15 \text{ nF}$
N, O	Sonde RS485	$U_{o} = 5,88 V$ $U_{i} = 24 V$	I _o = 54 mA I _i = 100 mA	$P_o = 79 \text{ mW}$ $P_i = 0.8 \text{ W}$	$L_o = 1 \text{ mH}$ $L_i = 0$	$C_{o} = 1,9 \ \mu F$ $C_{i} = 0,7 \ \mu F$
L, M	Sonde à câble unique	U _o = 5,88 V	$I_o = 22 \text{ mA}$	$P_{o} = 32 \text{ mW}$	$L_o = 1 \text{ mH}$	C _o = 2,8 μF
I, J, K	Sonde de température	U _o = 5,88 V	$I_0 = 5,4 \text{ mA}$	$P_o = 8 \text{ mW}$	$L_{o} = 5 \text{ mH}$	$C_o = 2 \ \mu F$
B, C, D, H	Sonde à oxygène dissous	U _o = 5,88 V	$I_o = 29 \text{ mA}$	$P_o = 43 \text{ mW}$	$L_o = 1 \text{ mH}$	$C_o = 2.5 \ \mu F$
A, B, E, G	Sonde de conductivité	U _o = 5,88 V	$I_o = 29 \text{ mA}$	$P_{o} = 43 \text{ mW}$	$L_o = 1 \text{ mH}$	$C_o = 2.5 \ \mu F$
A, E, G	Électrode de pH	U _o = 5,88 V	$I_0 = 1,3 \text{ mA}$	$P_o = 1.9 \text{ mW}$	$L_o = 5 \text{ mH}$	C _o = 2,1 μF

Modèle d'étiquettes M400 FF.

3 Présentation de l'instrument

Les modèles M400 sont disponibles en boîtiers 1/2DIN. Ils sont munis d'un boîtier IP66/NEMA4X intégral pour montage mural ou sur canalisation.

3.1 Présentation du modèle 1/2DIN

1 : Boîtier rigide en polycarbonate

2 : Cinq touches de navigation à retour tactile

3 : Écran LCD à quatre lignes

1 : TB1 – FF-H1

 $2: TB2-Signal \ de \ la \ sonde$

3.2 Touches de contrôle/navigation

3.2.1 Structure du menu

Ci-dessous, l'arborescence du menu du M400 :

3.2.2 Touches de navigation

3.2.2.1 Navigation dans l'arborescence du menu

Accédez à la branche souhaitée du menu principal à l'aide des touches $\blacktriangleleft \triangleright$ et \blacktriangle . Utilisez les touches \blacktriangle et \triangledown pour parcourir la branche sélectionnée.

REMARQUE : Pour reculer d'une page de menu sans revenir au mode de mesure, placez le curseur sous la flèche HAUT (1) située dans le coin inférieur droit de l'écran, puis appuyez sur [ENTER].

 $\overline{\Gamma}$

3.2.2.2 Echap.

Appuyez simultanément sur les touches ◀ et ► (Echap.) pour revenir au mode Mesure.

3.2.2.3 ENTER

Utilisez la touche ← pour confirmer une action ou des sélections.

3.2.2.4 Menu

Appuyez sur la touche ◀ pour accéder au menu principal.

3.2.2.5 Mode Calibrage

Appuyez sur la touche ► pour accéder au mode Calibrage.

3.2.2.6 Mode Info

Pour accéder au mode Info, appuyez sur la touche **V**.

3.2.3 Navigation dans les champs de saisie de données

Utilisez la touche ► pour avancer ou la touche ◄ pour revenir en arrière.

3.2.4 Saisie de valeurs, sélection d'options de saisie de données

Utilisez la touche \blacktriangle pour augmenter la valeur d'un chiffre ou la touche \triangledown pour la diminuer. Ces mêmes touches servent également à naviguer parmi une sélection de valeurs ou d'options d'un champ de saisie de données.

REMARQUE : Certains écrans requièrent des valeurs de configuration multiples via le même champ de données. Utilisez bien les touches ► ou ◄ pour retourner au champ principal, et les touches ▲ ou ▼ pour faire défiler toutes les options de configuration avant d'accéder à l'écran d'affichage suivant.

 $\overline{}$

3.2.5 Navigation sur l'écran avec 1

Si une ↑ s'affiche dans le coin inférieur droit de l'écran, vous pouvez utiliser la touche ► ou ◄ pour y accéder. Si vous cliquez sur [ENTER], vous reculerez dans le menu (vous reculerez d'un écran). Cette option peut se révéler très utile pour remonter l'arborescence du menu sans avoir à quitter et revenir au mode de mesure puis à accéder à nouveau au menu.

3.2.6 Boîte de dialogue « Sauver Changem? »

Trois options sont possibles pour la boîte de dialogue Sauver Changem? : « Oui & Exit » (Enregistrer les modifications et revenir en mode de mesure), « Oui & \uparrow » (Enregistrer les modifications et revenir à l'écran précédent) et « Non & Exit » (Ne pas enregistrer les modifications et revenir en mode de mesure). L'option « Oui & \uparrow » est très utile si vous souhaitez continuer à configurer sans avoir à accéder à nouveau au menu.

3.2.7 Mots de passe

Le transmetteur M400 permet un verrouillage de sécurité de différents menus. Si la fonction verrouillage de sécurité du transmetteur est activée, un mot de passe doit être encodé afin d'accéder au menu. Reportez-vous à la section 9.3 pour plus d'informations.

3.2.8 Affichage

REMARQUE : En cas d'alarme ou d'erreur quelconque, un symbole A clignotant s'affiche dans le coin supérieur droit de l'écran du transmetteur M400. Ce symbole subsiste jusqu'à ce que la raison de son apparition ait été résolue.

REMARQUE : Au cours des étalonnages (voie A), un « H » clignotant (« Hold ») apparaît dans le coin supérieur gauche de l'écran. Pendant un étalonnage sur le canal B, un « H » (Hold) clignotant s'affiche sur la deuxième ligne. Basculez sur B et faites-le clignoter. Ce symbole reste visible pendant 20 secondes après la fin de l'étalonnage. Ce symbole demeure visible pendant 20 secondes après la fin de l'étalonnage ou d'un nettoyage. Il disparaît lorsque l'option Entrée Numérique est désactivée.

REMARQUE : Le canal A (A s'affiche sur la gauche de l'écran) indique qu'une sonde classique est connectée au transmetteur.

Le canal B (B s'affiche sur la gauche de l'écran) indique qu'une sonde ISM est connectée au transmetteur.

Le M400 est un transmetteur à un seul canal d'entrée et il accepte donc une seule sonde à la fois.

4 Instructions d'installation

4.1 Déballage et contrôle de l'équipement

Examinez l'emballage d'expédition. S'il est endommagé, contactez immédiatement le transporteur pour connaître les instructions à suivre. Ne jetez pas l'emballage.

En l'absence de dommage apparent, ouvrez l'emballage. Vérifiez que tous les éléments apparaissant sur la liste de colisage sont présents.

Si des éléments manquent, avertissez-en immédiatement Mettler-Toledo.

4.1.1 Informations relatives aux dimensions de la découpe du panneau – Modèles 1/2 DIN

Les modèles 1/2DIN du transmetteur sont conçus avec un capot arrière intégré pour autoriser une installation autonome sur un mur.

L'appareil peut également être fixé au mur à l'aide du capot arrière intégré. Consultez les instructions d'installation à la section 4.1.2.

Ci-dessous sont indiquées les cotes de découpe requises pour les modèles 1/2 DIN lorsqu'ils sont installés sur un panneau plat ou une porte de boîtier plane. Cette surface doit être plane et lisse. Les surfaces texturées ou rugueuses ne sont pas recommandées et risquent de limiter l'efficacité du joint fourni.

Le matériel de fixation pour un montage sur un panneau ou une canalisation est disponible Reportez-vous à la section 15 pour prendre connaissance des informations nécessaires à la commande.

4.1.2 Procédure d'installation

Instructions générales :

- Orientez le transmetteur de façon à ce que les serre-câbles soient positionnés vers le bas.
- L'acheminement du câblage dans les serre-câbles doit convenir à une utilisation dans des emplacements humides.
- Pour obtenir un boîtier de classification IP66, tous les presse-étoupes doivent être en place. Chaque presse-étoupe doit être muni d'un câble ou d'un joint adapté à l'orifice du presse-étoupe.

Pour le montage mural :

- Retirez le capot arrière du boîtier avant.
- Commencez par dévisser les quatre vis situées sur l'avant du transmetteur, une dans chaque coin. Le capot avant peut alors basculer du boîtier arrière.
- Retirez la broche de charnière en la serrant à chaque extrémité. Le boîtier avant peut ainsi être déposé du boîtier arrière.
- Posez le boîtier arrière au mur. Reliez le kit de montage au transmetteur M400 conformément aux instructions données. Fixez l'ensemble au mur à l'aide du matériel de fixation approprié à la surface. Vérifiez le niveau et la fixation. Assurez-vous également que l'installation est conforme à toutes les dimensions d'écart requises pour l'entretien et la maintenance du transmetteur. Orientez le transmetteur de façon à ce que les serre-câbles soient positionnés vers le bas.
- Replacez le boîtier avant sur le boîtier arrière. Serrez fermement les vis du capot arrière pour garantir le maintien du boîtier dans la classification environnementale IP66/NEMA4X. L'ensemble est prêt à être câblé.

Pour le montage sur canalisation :

Utilisez uniquement les composants fournis par le fabricant en vue du montage sur canalisation du transmetteur M400 et installez-les selon les instructions fournies. Reportezvous à la section 15 pour plus d'informations concernant la commande.

4.1.3 Assemblage – Modèle 1/2DIN

- 1. 3 presse-étoupes M20X1,5
- 2. Chevilles en plastique
- 3.4 vis

Imprimé en Suisse

4.2 Connexion de l'alimentation

Sur l'ensemble des modèles, toutes les connexions du transmetteur s'effectuent sur le panneau arrière.

Vérifiez que l'alimentation est coupée au niveau de tous les fils avant de procéder à l'installation.

Un connecteur à deux bornes situé sur le panneau arrière de tous les modèles M400 est prévu pour brancher l'alimentation. Tous les modèles M400 FF sont conçus pour fonctionner en zone non-dangereuse à partir d'une source d'alimentation de 9 à 32 V c.c. (barrière linéaire : 9 à 24 V c.c). Reportez-vous aux caractéristiques techniques et aux valeurs nominales électriques, puis dimensionnez le câblage en conséquence (AWG 16 – 24, section de fil 0,2 mm² à 1,5 mm²).

Le bornier des connexions d'alimentation porte la mention « FF-H1 » sur le panneau arrière du transmetteur. Connectez le transmetteur aux bornes d'alimentation **-FF-H1 et + FF-H1**.

Les bornes d'alimentation sont conçus pour recevoir des conducteurs simples et des fils souples de 0,2 mm² à 2,5 mm² (AWG 16 – 24). Les bornes d'alimentation –FF-H1 et +FF-H1 sont disponibles en double. Le transmetteur n'est pas équipé d'une borne de mise à la terre. Pour cette raison, le câblage d'alimentation interne du transmetteur est à double isolation et l'étiquette du produit le mentionne avec le symbole \square .

Pour plus d'informations, notamment sur les caractéristiques techniques du câble, reportez-vous à la directive FOUNDATION fieldbus et à la norme CEI 61158-2 (MBP).

4.2.1 Boîtier (montage au mur)

1 : TB1 – FF-H1

2 : TB2 – Signal de la sonde

4.3 Définition des broches de connecteur

4.3.1 Définition des borniers (TB)

Les connexions d'alimentation sont étiquetées +FF-H1 et – FF-H1 pour zone non dangereuse : 9 à 32 V c.c.

TB1

1	Non disponible.
2	Non disponible.
3	Non disponible.
4	Non disponible.
5	Non disponible.
6	Non disponible.
7	Non disponible.
8	Non disponible.
9	Non disponible.
10	+FF-H1
11	_FF-H1
12	+FF-H1
13	_FF-H1
14	Non utilisée
15	Ļ

4.3.2 TB2 – Sondes analogiques de conductivité 4-E/2-E

TB2 – Sondes analogiques

	Cond 4-e ou 2-e	
Terminal	Fonction	Couleur
A	Cnd intérieur1*	Blanc
В	Cnd extérieur1*	Blanc/bleu
С	Cnd extérieur1	-
D	Non utilisée	-
E	Cnd extérieur2	-
F	Cnd intérieur2**	Bleu
G	Cnd extérieur2 (terre)**	Noir
Н	Non utilisée	-
1	Ret. capteur de température à résistance/terre	Blindage nu
J	Détection capteur de température à résistance	Rouge
К	Capteur de température à résistance	Vert
L	Non utilisée	-
М	Non utilisée	-
N	Non utilisée	-
0	Non utilisée	_
Р	Non utilisée	-
Q	Non utilisée	-

 Pour les sondes de conductivité à 2 électrodes de fabricants tiers, un cavalier devra peut-être être installé entre les bornes A et B.

** Pour les sondes de conductivité à 2 électrodes de fabricants tiers, un cavalier devra peut-être être installé entre les bornes F et G.

4.3.3 TB2 – Électrodes analogiques pour le pH/redox

	рН		Redox	
Terminal	Fonction	Couleur*	Fonction	Couleur
А	Verre	Transparent	Platine	Transparent
В	Non utilisée	-	-	-
С	Non utilisée	-	-	-
D	Non utilisée	-	-	-
E	Référence	Rouge	Référence	Rouge
F	Référence**	-	Référence**	-
G	Masse liquide**	Bleu***	Masse liquide**	-
Н	Non utilisée	-	-	-
I	Ret. capteur de température à résistance/terre	Blanc	_	_
J	Détection capteur de température à résistance	-	_	_
К	Capteur de température à résistance	Vert	-	-
L	Non utilisée	-	_	_
М	Blindage (terre)	Vert/jaune	Blindage (terre)	Vert/jaune
Ν	Non utilisée	-	_	_
0	Non utilisée	-	-	-
Р	Non utilisée	-	_	-
Q	Non utilisée	-	-	-

TB2 – Sondes analogiques

Fil gris non utilisé.

** Installez un cavalier entre les bornes F et G pour les sondes redox et électrodes de pH sans masse liquide.

*** Fil bleu pour l'électrode avec masse liquide .

		InPro6800(G)	InPro6900	InPro6950
Terminal	Fonction	Couleur	Couleur	Couleur
А	Non utilisée	-	-	-
В	Anode	Rouge	Rouge	Rouge
С	Anode	_*	_*	-
D	Référence	_*	-*	Bleu
E	Non utilisée	-	-	-
F	Non utilisée	-	-	-
G	Guard	-	Gris	Gris
Н	Cathode	Transparent	Transparent	Transparent
	Ret. NTC (terre)	Blanc	Blanc	Blanc
J	Non utilisée	-	-	-
К	NTC	Vert	Vert	Vert
L	Non utilisée	-	-	-
М	Blindage (terre)	Vert/Jaune	Vert/Jaune	Vert/Jaune
Ν	Non utilisée	-	-	-
0	Non utilisée	-	-	-
Р	+ signal de 4/20 mA en entrée	-	-	-
Q	– signal de 4/20 mA en entrée	-	-	-

4.3.4 TB2 – Sondes analogiques à oxygène

* Installez le cavalier entre C et D pour les sondes InPro6800(G) et InPro6900.

4.3.5 TB2 – Sondes (numériques) ISM pH, oxygène ampérométrique, conductivité 4-E et CO₂ dissous (faible)

	pH, oxygène amp., Cond 4-e, CO $_2$ dissous		
Terminal	Fonction	Couleur	
А	Non utilisée	_	
В	Non utilisée	_	
С	Non utilisée	_	
D	Non utilisée	_	
E	Non utilisée	_	
F	Non utilisée	_	
G	Non utilisée	_	
Н	Non utilisée	_	
1	Non utilisée	_	
J	Non utilisée	_	
K	Non utilisée	_	
L	1 fil	Transparent (noyau du câble)	
М	GND	Rouge (blindage)	
N	Non utilisée	_	
0	Non utilisée	_	
Р	Non utilisée	-	
Q	Non utilisée	-	

4.3.6 TB2 – Sondes (numériques) ISM à oxygène optique

4.3.6.1 Avec câble VP8

	Oxygène optique avec câble VP8		
Terminal	Fonction	Couleur	
А	Non utilisée	-	
В	Non utilisée	-	
С	Non utilisée	-	
D	Non utilisée	-	
E	Non utilisée	-	
F	Non utilisée	-	
G	Non utilisée	-	
Н	Non utilisée	-	
1	Non utilisée	-	
J	Non utilisée	-	
K	Non utilisée	-	
L	Non utilisée	-	
М	D_GND (blindage)	vert/jaune	
N	RS485-B	marron	
0	RS485-A	rose	
Р	Non utilisée	-	
Q	Non utilisée	-	

Connectez le fil gris +24 DC et le fil bleu D_GND 24 V de la sonde séparément.

4.3.6.2 Avec d'autres câbles

	Oxygène optique avec d'autres câbles	
Terminal	Fonction	Couleur
А	Non utilisée	-
В	Non utilisée	_
С	Non utilisée	-
D	Non utilisée	-
E	Non utilisée	-
F	Non utilisée	-
G	Non utilisée	-
Н	Non utilisée	-
Ι	Non utilisée	jaune
J	Non utilisée	-
K	Non utilisée	_
L	Non utilisée	-
М	D_GND (blindage)	gris
Ν	RS485-B	bleu
0	RS485-A	blanc
Р	Non utilisée	-
Q	Non utilisée	_

Connectez le fil marron +24 DC et le fil noir D_GND 24 V de la sonde séparément.

- 4.4 Connexion des sondes ISM (numériques)
- 4.4.1 Connexion des sondes ISM pour la mesure du pH/redox, de la conductivité 4-e, de l'oxygène ampérométrique et du CO₂ dissous (faible)

REMARQUE : Connectez la sonde et vissez la tête d'entraînement dans le sens des aiguilles d'une montre (serrage manuel).

4.4.2 TB2 – Configuration du câble AK9

- * fil de données monobrin (transparent)
- ** Terre/blindage

REMARQUE : Connectez la sonde et vissez la tête d'entraînement dans le sens des aiguilles d'une montre (serrage manuel).

REMARQUE : L'illustration ne s'applique aux sondes ISM optiques à oxygène dotées d'un câble VP8.

27

 $\overline{\Gamma}$

4.5 Connexion de sondes analogiques

4.5.1 Connexion de la sonde analogique pour pH/redox

REMARQUE : Les câbles d'une longueur supérieure à 20 m peuvent détériorer la réponse au cours de la mesure du pH. Veillez à respecter les instructions du manuel de la sonde.

4.5.2 TB2 – Câblage classique pour sonde analogique de pH/redox

4.5.2.1 Exemple 1

Mesure du pH sans masse liquide

REMARQUE : Installez le cavalier entre les bornes G et F.

Les couleurs de fils sont valables uniquement pour la connexion avec le câble VP ; les fils bleu et gris ne sont pas reliés.

- A : Verre
- E : Référence
- I: Ret. capteur de température à résistance/terre
- K : Capteur de température à résistance
- M :Blindage/terre

4.5.2.2 Exemple 2

Mesure du pH avec masse liquide

REMARQUE : Les couleurs de fils sont valables uniquement pour la connexion avec le câble VP, le fil gris n'est pas branché.

- A : Verre
- E : Référence
- G : blindage/masse liquide
- I : Terre/ret. capteur de température à résistance
- K : Capteur de température à résistance
- M :Blindage (terre)

4.5.2.3 Exemple 3

Mesure redox (température en option)

REMARQUE : Installez le cavalier entre les bornes G et F.

A : Platine

くア

- E : Référence
- I : Ret. capteur de température à résistance/terre
- K : Capteur de température à résistance
- M :Blindage (terre)

4.5.2.4 Exemple 4

Mesure redox avec électrode de pH à masse liquide (par ex. InPro 3250 ou InPro 4800 SG)

REMARQUE : Installez le cavalier entre les bornes G et F.

- A : Platine
- E : Référence
- I: Ret. capteur de température à résistance/terre
- K : Capteur de température à résistance
- M :Blindage (terre)

 \sqrt{r}

REMARQUE : Veillez à respecter le manuel d'instruction de la sonde.

 $\overline{7}$

4.5.4 TB2 – Câblage classique pour sonde analogique pour la mesure d'oxygène ampérométrique

REMARQUE : Les couleurs de fils sont valables uniquement pour la connexion avec le câble VP ; le fil bleu n'est pas branché.

Connecteur M400 :

- B : Anode
- G : Référence
- H : Cathode
- I: Ret. NTC/Garde
- K : NTC
- M :Blindage (terre)

5 Mise en service ou hors service du transmetteur

5.1 Mise en service du transmetteur

AVERTISSEMENT : Une fois le transmetteur branché au circuit d'alimentation, il est activé dès la mise sous tension du circuit.

5.2 Mise hors service du transmetteur

Allumez l'appareil. Débranchez l'appareil de la source d'alimentation principale. Débranchez toutes les connexions électriques restantes. Retirez l'appareil du mur/panneau. Utilisez les instructions d'installation de ce manuel comme référence pour démonter le matériel de fixation.

Tous les paramètres du transmetteur stockés en mémoire sont conservés après mise hors tension.

Ċ

Ċ C

6 Configuration Rapide

(CHEMIN D'ACCÈS : Menu/Quick Setup)

Sélectionnez Config. Rapide et appuyez sur la touche [ENTER]. Saisissez le code de sécurité si nécessaire (reportez-vous à la section 9.2, « Mots de passe »).

REMARQUE : Vous trouverez la description complète de la procédure de configuration rapide dans le livret « Guide de paramétrage rapide du transmetteur M400 » fourni avec le produit.

REMARQUE : N'utilisez pas le menu de configuration rapide après avoir configuré le transmetteur, car certains paramètres risqueraient d'être réinitialisés.

REMARQUE : Reportez-vous à la section 3.2, « Touches de contrôle/navigation », pour les informations sur la navigation dans le menu.
7 Étalonnage de la sonde

(CHEMIN D'ACCÈS : Cal)

La touche d'étalonnage
permet à l'utilisateur d'accéder aux caractéristiques d'étalonnage et de vérification de la sonde en une pression sur une touche.

REMARQUE : Pendant l'étalonnage sur la voie A ou B, un « H » (pour Hold) clignote sur le côté gauche de l'écran pour indiquer qu'un étalonnage est en cours avec une condition Hold active (la fonction de maintien des sorties doit être activée). Reportez-vous également à la section 3.2.8 consacrée à l'affichage.

7.1 Accès au mode Étalonnage

En mode Mesure, appuyez sur la touche ►. Si vous êtes invité à saisir le code de sécurité de l'étalonnage, appuyez sur la touche ▲ ou ▼ pour régler le mode de sécurité de l'étalonnage, puis sur [ENTER] pour confirmer le code de sécurité.

Appuyez sur la touche ▲ ou ▼ pour sélectionner le type d'étalonnage souhaité.

Sélectionnez la tâche d'étalonnage de la sonde voulue. Pour chaque type de sonde, les choix sont les suivants :

```
      Conductivité
      = Conductivité, Résistivité, Température**, Edit**, Vérifier

      Oxygène amp.
      = Oxygène, Température**, Edit**, Vérifier

      Oxygène opt.
      = Oxygen**, Verify**

      pH
      = pH, mV**, Temperature**, Edit pH**, Edit mV**, Verify, ORP***

      CO2
      = CO2***

      Appuyez sur [ENTER].

      **
      uniquement sur le canal « A »
```

*** uniquement sur le canal « B »

Après chaque étalonnage, trois options sont disponibles :

Ajustage : Les valeurs d'étalonnage sont prises en compte et utilisées pour la mesure. Les données sont en outre enregistrées dans l'historique de l'étalonnage*.

Calibrer : Les valeurs d'étalonnage sont enregistrées dans l'historique d'étalonnage* à titre de référence, mais elles ne sont pas utilisées pour la mesure. Les valeurs d'étalonnage du dernier ajustement valable seront utilisées par la suite pour la mesure.

Annuler : Les valeurs d'étalonnage sont ignorées.

* uniquement disponible pour les sondes ISM

7.2 Étalonnage de conductivité pour sondes comportant de deux à quatre électrodes

Cette fonction permet de réaliser un étalonnage de la sonde de conductivité ou de résistivité en un ou deux points ou procédés pour les sondes à deux ou quatre électrodes. La procédure décrite ci-dessous convient aux deux types d'étalonnage. Il n'y a aucune raison de réaliser un étalonnage en deux points sur une sonde de conductivité à deux électrodes.

REMARQUE : Les résultats varient en fonction des méthodes, des instruments de calibrage et/ou de la qualité des normes de référence utilisés lorsque l'on procède à un calibrage sur une sonde de conductivité.

REMARQUE : Pour les tâches de mesure, il convient de prendre en compte la compensation de température pour l'application telle qu'elle est définie dans le menu Résistivité et non la compensation de température sélectionnée via la procédure d'étalonnage (reportez-vous également à la section 8.2.3.1, « Compensation de température de conductivité » ; CHEMIN D'ACCÈS : Menu/Configure/Measurement/Resistivity).

Accédez au mode Calibrage de la sonde comme indiqué à la section 7.1, « Accès au mode Étalonnage ».

L'écran suivant propose de choisir le type de mode de compensation de température désiré lors du procédé d'étalonnage.

Les options disponibles sont : « None », « Standard », « Light 84 », « Std 75 °C », « Lin 25°C », « Lin 20°C », « Glycol.5 », « Glycol1 », « Cation », « Alcohol » et « Ammonia ».

Avec **None**, la valeur de conductivité mesurée n'est pas compensée. La valeur non compensée sera affichée et traitée.

La **compensation standard** comprend une compensation des effets de la pureté élevée non linéaire ainsi que des impuretés des sels neutres traditionnels. Elle est conforme aux normes ASTM D1125 et D5391.

La **compensation Light 84** correspond aux résultats des recherches sur l'eau pure du Dr T.S. Light publiées en 1984. À n'employer que si votre établissement a établi des normes sur la base de ce travail.

L'option de **compensation Std 75** °**C** est l'algorithme de compensation standard avec la référence de 75 °C. Cette compensation peut être privilégiée pour la mesure de l'eau ultrapure à une température élevée (la résistivité de l'eau ultrapure compensée à 75 °C est 2,4818 Mohm-cm).

La **compensation linéaire 25** °C ajuste la lecture au moyen d'un coefficient ou facteur exprimé en « % par °C » (écart par rapport à 25 °C). À n'utiliser que si la solution a un coefficient de température linéaire bien défini. La valeur usine par défaut est 2,0 %/°C.

La **compensation linéaire 20** °C ajuste la lecture au moyen d'un coefficient ou facteur exprimé en « % par °C » (écart par rapport à 20 °C). À n'utiliser que si la solution a un coefficient de température linéaire bien défini. La valeur usine par défaut est 2,0 %/°C.

La **compensation Glycol.5** correspond aux caractéristiques thermiques de 50 % d'éthylène glycol dans de l'eau. Les mesures compensées basées sur cette solution peuvent dépasser 18 Mohm-cm.

La **compensation Glycol1** correspond aux caractéristiques thermiques de l'éthylène glycol 100 %. Les mesures compensées peuvent largement dépasser 18 Mohm-cm.

La **compensation cationique** est utilisée dans des applications de l'industrie de l'énergie afin de mesurer l'échantillon après un échangeur cationique. Elle tient compte des effets de la température sur la dissociation de l'eau pure en présence d'acides.

La **compensation de l'alcool** correspond aux caractéristiques thermiques d'une solution contenant 75 % d'alcool isopropylique dans l'eau pure. Les mesures compensées basées sur cette solution peuvent dépasser 18 Mohm-cm.

La **compensation de l'ammoniaque** est utilisée pour les applications de l'industrie de l'énergie pour la conductivité spécifique mesurée sur des échantillons grâce à un traitement avec de l'eau contenant de l'ammoniaque et/ou de l'ETA (éthanolamine). Elle tient compte des effets de la température sur la dissociation de l'eau pure en présence de ces bases.

Sélectionnez le mode de compensation, modifiez le facteur si nécessaire et appuyez sur la touche [ENTER].

7.2.1 Étalonnage de la sonde en un point

(L'écran représente un étalonnage de sonde de conductivité typique)

Accédez au mode Calibrage de la sonde de conductivité comme indiqué à la section 7.1, « Accès au mode Étalonnage » et sélectionnez l'un des modes de compensation (reportez-vous à la section 7.2, « Étalonnage de conductivité pour sondes comportant de deux à quatre électrodes »).

Sélectionnez Calibrage 1 point et appuyez sur [ENTER]. Avec les sondes de conductivité, un étalonnage en un point est toujours réalisé comme un étalonnage de la pente.

Placez l'électrode dans la solution de référence.

Saisissez la valeur pour le point 1 avec un point et les unités décimales. La valeur de la deuxième ligne est celle mesurée par le transmetteur et la sonde dans les unités sélectionnées par l'utilisateur. Quand cette valeur est stable, appuyez sur [ENTER] pour effectuer l'étalonnage.

Une fois que l'étalonnage de cellule a été effectué, le multiplicateur ou facteur « M » d'étalonnage de la pente, c'est-à-dire la constante de cellule, et l'additionneur ou facteur « A » d'étalonnage du décalage sont affichés.

Si l'étalonnage est réussi, les valeurs correspondantes sont enregistrées dans l'historique d'étalonnage* et reprises (Ajustage), ou bien enregistrées dans l'historique d'étalonnage* mais pas reprises (Calibrer), ou encore rejetées (Annuler).

* uniquement disponible avec la sonde ISM. Les valeurs sont enregistrées dans la sonde.

Si vous sélectionnez « Ajustage » ou « Calibrer », le message « Calibrage Réussier » s'affiche. Dans tous les cas, les messages « Reinstalation electrode » et « ENTER » s'affichent. Lorsque vous avez appuyé sur « ENTER », le M400 revient au mode de mesure.

25.00

uS/cm

°C

A

A

7.2.2 Étalonnage de la sonde en deux points (Sondes à quatre électrodes uniquement)

(L'écran représente un étalonnage typique d'une sonde de conductivité.)

Accédez au mode Calibrage de la sonde de conductivité comme indiqué à la section 7.1, « Accès au mode Étalonnage » et sélectionnez l'un des modes de compensation (reportez-vous à la section 7.2, « Étalonnage de conductivité pour sondes comportant de deux à quatre électrodes »).

Sélectionnez Calibrage 2 points et appuyez sur [ENTER].

Placez l'électrode dans la première solution de référence.

ATTENTION : Rincez les sondes avec une solution aqueuse de pureté élevée entre les points d'étalonnage afin d'éviter toute contamination des solutions de référence.

Saisissez la valeur pour le point 1 avec un point et les unités décimales. La valeur de la deuxième ligne est celle mesurée par le transmetteur et la sonde dans les unités sélectionnées par l'utilisateur. Appuyez sur [ENTER] quand cette valeur est stable, puis placez l'électrode dans la deuxième solution de référence.

Saisissez la valeur pour le point 2 avec un point décimal et l'unité. La valeur de la deuxième ligne est celle mesurée par le transmetteur et la sonde dans les unités sélectionnées par l'utilisateur. Quand cette valeur est stable, appuyez sur [ENTER] pour effectuer l'étalonnage.

Une fois que l'étalonnage de la cellule a été effectué, le multiplicateur ou facteur « M » d'étalonnage de la pente, c'est-à-dire la constante de cellule, et l'additionneur ou facteur « A » d'étalonnage du décalage sont affichés.

Si l'étalonnage est réussi, les valeurs correspondantes sont enregistrées dans l'historique d'étalonnage* et reprises (Ajustage), ou bien enregistrées dans l'historique d'étalonnage* mais pas reprises (Calibrer), ou encore rejetées (Annuler).

* uniquement disponible avec la sonde ISM. Les valeurs sont enregistrées dans la sonde.

Si vous sélectionnez « Ajustage » ou « Calibrer », le message « Calibrage Réussier » s'affiche. Dans tous les cas, les messages « Reinstalation electrode » et « ENTER » s'affichent. Lorsque vous avez appuyé sur « ENTER », le M400 revient au mode de mesure.

7.2.3 Étalonnage de procédé

(L'écran représente un étalonnage typique d'une sonde de conductivité.)

Accédez au mode Calibrage de la sonde de conductivité comme indiqué à la section 7.1, « Accès au mode Étalonnage » et sélectionnez l'un des modes de compensation (reportez-vous à la section 7.2, « Étalonnage de conductivité pour sondes comportant de deux à quatre électrodes »).

Sélectionnez Étalonnage de procédé et appuyez sur la touche [ENTER]. Avec les sondes de conductivité, un étalonnage de procédé est toujours réalisé comme un étalonnage de la pente.

. 00

A Point

0.055 us/cm

c = 0.057 µs/cm A

°C

10.00 mS/cm 25.0 °c Conductivity Calibration Type = Process

^в 10.00 м≤/см ^в 25.0 ∘с	Prélevez un échantillon et appuyez de nouveau sur la touche [ENTER] pour enregistrer la valeur de mesure actuelle.
Press ENTER to Capture B C = 10.00 m5/cm ↑	Pendant le déroulement de l'étalonnage, la lettre correspondant au canal concerné par l'étalonnage (« A » ou « B ») clignote à l'écran.
	Après avoir déterminé la valeur de conductivité de l'échantillon, appuyez de nouveau sur la touche [CAL] pour poursuivre l'étalonnage.
^в 10.00 мз/см 25.0 °с	Saisissez la valeur de conductivité de l'échantillon et appuyez sur la touche [ENTER] pour démarrer le calcul des résultats de l'étalonnage.
Point1 = 10_13 mS/cm C = 10.00 mS/cm ↑	
⁺ 10.00 _{№5/00}	Une fois que l'étalonnage a été effectué, le multiplicateur ou facteur « M » d'étalonnage de la pente et l'additionneur ou facteur « A » d'étalonnage du décalage sont affichés.
C M=0.10128 A=0.00000 A	Si l'étalonnage est réussi, les valeurs correspondantes sont enregistrées dans l'historique d'étalonnage* et reprises (Ajustage), ou bien enregistrées dans l'historique d'étalonnage* mais pas reprises (Calibrer), ou encore rejetées (Annuler).
	* uniquement disponible avec la sonde ISM. Les valeurs sont enregistrées dans la sonde.

Si vous sélectionnez « Ajustage » ou « Calibrer », l'écran affiche le message « Calibrage Réussier ». Le transmetteur M400 revient au mode de mesure.

7.3 Étalonnage de sondes à oxygène ampérométriques

L'étalonnage de l'oxygène des sondes ampérométriques est un étalonnage en un point ou un étalonnage de procédé.

REMARQUE : Avant l'étalonnage à l'air, pour une précision maximale, vous devez saisir la pression barométrique et l'humidité relative, comme le décrit la section 8.2.3.4, « Paramètres de mesure de l'oxygène avec des sondes ampérométriques ».

7.3.1 Étalonnage en un point de sondes à oxygène ampérométriques

Accédez au mode d'étalonnage de l'oxygène comme indiqué dans la section 7.1, « Accès au mode Étalonnage ».

Un étalonnage en un point de sondes à oxygène est toujours un étalonnage de la pente en un point (autrement dit à l'air) ou un étalonnage zéro (décalage). Un étalonnage de la pente en un point est effectué dans l'air et un étalonnage du décalage en un point est réalisé à 0 ppb d'oxygène. L'étalonnage zéro pour l'oxygène dissous est possible mais normalement il n'est pas recommandé car il est extrêmement difficile d'atteindre un étal à oxygène zéro. Il n'est conseillé de procéder à un étalonnage au point zéro que si un haut degré de précision est exigé à des concentrations d'oxygène faibles (inférieures à 5 % de l'air).

B 98.6 %air B 25.0 °C

Zair

٩C

в

в

Calibrate Sensor Channel B Oxygen

> Sélectionnez 1 point, puis soit Pente soit Zéro comme type d'étalonnage. Appuyez sur [ENTER].

42

 B
 98.6
 %air

 B
 25.0
 ∞

 CalPres = 759.8 mmH3
 ↑

 RelativeHumid = 100 % ↑
 ↑

 Placez la sonde dans [ENTER].

 Press ENTER when Sensor is in Gas 1
 ↑

 Selon le paramétrage d mesure de l'oxyaène aver de logical

Réglez la pression d'étalonnage (CalPres) et l'humidité relative (HumidRelative) appliquées lors de l'étalonnage. Appuyez sur [ENTER].

Placez la sonde dans la solution ou le gaz d'étalonnage (par exemple de l'air). Appuyez sur [ENTER].

Selon le paramétrage du contrôle de la dérive (reportez-vous à la section 8.2.3.4, « Paramètres de mesure de l'oxygène avec des sondes ampérométriques »), l'un des deux modes suivants est actif.

7.3.1.1 Mode auto

REMARQUE : Ce mode n'est pas disponible pour un étalonnage du point zéro. S'il a été configuré (reportez-vous à la section 8.2.3.4, « Paramètres de mesure de l'oxygène avec des sondes ampérométriques ») et que vous procédiez à un étalonnage du décalage, le transmetteur réalise cet étalonnage en mode manuel.

Saisissez la valeur pour le point 1 avec un point et les unités décimales. La valeur de la deuxième ligne est celle mesurée par le transmetteur et la sonde dans les unités sélectionnées par l'utilisateur.

Dès que les critères de stabilisation sont remplis, l'affichage change. L'écran indique le résultat de l'étalonnage pour la pente « S » et la valeur de décalage « Z ».

Si l'étalonnage est réussi, les valeurs correspondantes sont enregistrées dans l'historique d'étalonnage* et reprises (Ajustage), ou bien enregistrées dans l'historique d'étalonnage* mais pas reprises (Calibrer), ou encore rejetées (Annuler).

* uniquement disponible avec la sonde ISM. Les valeurs sont enregistrées dans la sonde.

7.3.1.2 Mode manuel

Saisissez la valeur pour le point 1 avec un point et les unités décimales. La valeur de la deuxième ligne est celle mesurée par le transmetteur et la sonde dans les unités sélectionnées par l'utilisateur. Quand cette valeur est stable, appuyez sur [ENTER] pour effectuer l'étalonnage.

Une fois que l'étalonnage a été effectué, le facteur « S » d'étalonnage de la pente et le facteur « Z » d'étalonnage du décalage sont affichés.

Si l'étalonnage est réussi, les valeurs correspondantes sont enregistrées dans l'historique d'étalonnage* et reprises (Ajustage), ou bien enregistrées dans l'historique d'étalonnage* mais pas reprises (Calibrer), ou encore rejetées (Annuler).

* uniquement disponible avec la sonde ISM. Les valeurs sont enregistrées dans la sonde.

%air

в

Si vous sélectionnez « Ajustage » ou « Calibrer », l'écran affiche le message « Calibrage Réussier ». Dans tous les cas, les messages « Réinstallation électrode » et « Enter » apparaissent également. Lorsque vous avez appuyé sur « ENTER », le M400 revient en mode de mesure.

REMARQUE: Avec les sondes ISM : Si l'on exécute un étalonnage en un point, le transmetteur envoie à la sonde la tension de polarisation valable pour l'étalonnage. Si les tensions de polarisation pour le mode Mesure et le mode Calibrage sont différentes, le transmetteur attend 120 secondes avant de commencer l'étalonnage. Dans ce cas, il continuera aussi à fonctionner pendant 120 secondes après l'étalonnage, jusqu'au mode HOLD, avant de revenir en mode de mesure (reportez-vous également à la section 8.2.3.4, « Paramètres de mesure de l'oxygène avec des sondes ampérométriques »).

7.3.2 Étalonnage de procédé de sondes à oxygène ampérométriques

Accédez au mode d'étalonnage de l'oxygène comme indiqué dans la section 7.1, « Accès au mode Étalonnage ».

Un étalonnage de procédé de sondes à oxygène est toujours un étalonnage de la pente ou un étalonnage du décalage.

Sélectionnez Procédé, puis soit Pente soit Zéro pour le type d'étalonnage. Appuyez sur [ENTER].

Prélevez un échantillon et appuyez de nouveau sur la touche [ENTER] pour enregistrer la valeur de mesure actuelle. Pour indiquer le procédé d'étalonnage en cours, la lettre « A » ou « B » (en fonction de la voie concernée) clignote sur l'écran.

Après avoir déterminé la valeur O_2 de l'échantillon, appuyez de nouveau sur la touche \blacktriangleright pour poursuivre l'étalonnage.

Saisissez la valeur O₂ de l'échantillon et appuyez sur la touche [ENTER] pour démarrer le calcul des résultats d'étalonnage.

Une fois l'étalonnage effectué, le facteur « S » d'étalonnage de la pente et le facteur « Z » d'étalonnage du décalage sont affichés.

Si l'étalonnage est réussi, les valeurs correspondantes sont enregistrées dans l'historique d'étalonnage* et reprises (Ajustage), ou bien enregistrées dans l'historique d'étalonnage* mais pas reprises (Calibrer), ou encore rejetées (Annuler).

* uniquement disponible avec la sonde ISM. Les valeurs sont enregistrées dans la sonde.

Si vous sélectionnez « Ajustage » ou « Calibrer », le message « Calibrage Réussier » s'affiche. Le transmetteur M400 revient au mode de mesure.

в	25.	0	°C	
Calib Chann	rate Se el B O>	ensor (99en		*
в	57.	1	%air	
в	25.	0	°C	
02 Са Туре	librati = Proce	ion Iss Slo	pe	Ŧ
в	57.	1	%air	
в	25.	0	۰C	
Press A	ENTER 02=62	to Car 2 Xai	∍ture ir	ŧ
	57.	1	%air	
	25.	0	°C	
A Poi	nt1=100 02=62.).5 %ai 2 %ai	ir ir	ŧ
		-		
В	57.	1	%air	
в	25	Ω		

02 S=-44.63nA Z=0.0000nA Save Adjust

в

57.1

Xair

в

в

в

н

в

в

99.3

25.0

99.3

25.0

99.3

25.0

99.3

25.0

Press ENTER when Sensor is in Gas 1(Air)↑

CalPres = 759.8 mmH9 RelativeHumid = 100 % ↑

02 Optical Calibration

Calibrate Sensor Channel B 02 Opt %AIR

°C

%AIR

<u>ە</u>د

%air

٩C

Zain

<u>ە</u>ر

7.4 Étalonnage des sondes optiques à oxygène (pour sondes ISM uniquement)

L'étalonnage de l'oxygène de sondes optiques est un étalonnage en deux points, un étalonnage de procédé ou un étalonnage en un point, en fonction du modèle de sonde connecté au transmetteur.

7.4.1 Étalonnage en un point pour les sondes optiques à oxygène

Habituellement, un étalonnage en un point est effectué dans l'air. Il est néanmoins possible d'utiliser d'autres gaz ou solutions d'étalonnage.

L'étalonnage d'une sonde optique est toujours un étalonnage de la phase du signal de fluorescence en direction de la référence interne. Pendant un étalonnage en un point, la phase à ce point est mesurée puis extrapolée sur la plage de mesure.

Accédez au mode d'étalonnage O_2 opt, comme indiqué dans la section 7.1 sur l'accès au mode d'étalonnage.

Sélectionnez le type d'étalonnage en un point. Appuyez sur [ENTER].

Placez la sonde dans la solution ou le gaz d'étalonnage (par exemple de l'air).

Réglez la pression d'étalonnage (CalPres) et l'humidité relative (RelativeHumid) appliquées lors de l'étalonnage. Appuyez sur [ENTER].

Placez la sonde dans la solution ou le gaz d'étalonnage (par exemple de l'air). Appuyez sur [ENTER].

Selon le paramétrage du contrôle de la dérive (reportez-vous à la section 8.2.3.5, « Paramètres de mesure de l'oxygène avec des sondes optiques »), l'un des deux modes suivants est actif.

7.4.1.1 Mode auto

Saisissez la valeur pour le point 1 avec un point et les unités décimales. La valeur de la deuxième ligne est la valeur mesurée par le transmetteur ou la sonde dans les unités sélectionnées par l'utilisateur.

Dès que les critères de stabilisation sont remplis, l'affichage change. Il présente désormais les valeurs pour la phase de la sonde à 100 % d'air (P100) et à 0 % d'air (P0).

Si l'étalonnage est réussi, les valeurs correspondantes sont enregistrées dans l'historique d'étalonnage* et reprises (Ajustage), ou bien enregistrées dans l'historique d'étalonnage* mais pas reprises (Calibrer), ou encore rejetées (Annuler).

Si vous sélectionnez « Ajustage » ou « Calibrer », l'écran affiche le message « Calibrage Réussier ». Dans tous les cas, les messages « Réinstallation électrode » et « Enter » apparaissent également. Lorsque vous avez appuyé sur « ENTER », le M400 revient en mode de mesure.

7.4.1.2 Mode manuel

Saisissez la valeur pour le point 1 avec un point et les unités décimales. La valeur de la deuxième ligne est la valeur mesurée par le transmetteur ou la sonde dans les unités sélectionnées par l'utilisateur.

Appuyez sur la touche [ENTER] pour continuer.

Il présente désormais les valeurs pour la phase de la sonde à 100 % d'air (P100) et à 0 % d'air (P0).

Si l'étalonnage est réussi, les valeurs correspondantes sont enregistrées dans l'historique d'étalonnage* et reprises (Ajustage), ou bien enregistrées dans l'historique d'étalonnage* mais pas reprises (Calibrer), ou encore rejetées (Annuler).

Si vous sélectionnez « Ajustage » ou « Calibrer », l'écran affiche le message « Calibrage Réussier ». Dans tous les cas, les messages « Réinstallation électrode » et « Enter » apparaissent également. Lorsque vous avez appuyé sur « ENTER », le M400 revient en mode de mesure.

7.4.2 Étalonnage de la sonde en deux points

L'étalonnage d'une sonde optique est toujours un étalonnage de la phase du signal de fluorescence en direction de la référence interne. Un étalonnage en deux points est une combinaison d'un premier étalonnage à l'air (100%), au cours duquel une nouvelle phase P100 est mesurée, et d'un étalonnage à l'azote (0 %) au cours duquel une nouvelle phase P0 est mesurée. Cette routine d'étalonnage donne la courbe d'étalonnage la plus précise sur toute la plage de mesure.

Accédez au mode d'étalonnage O_2 opt, comme indiqué dans la section 7.1 sur l'accès au mode d'étalonnage.

Sélectionnez le type d'étalonnage en deux points. Appuyez sur [ENTER].

в

в

99.3

25.0

99.3

25.0

Calibrate Sensor Channel B 02 Opt 201R

°C

ppb02

°C

в	99.3	PPb02
в	25.0	°C

Réglez la pression d'étalonnage (CalPres) et l'humidité relative (RelativeHumid) appliquées lors de l'étalonnage. Appuyez sur [ENTER].

CalPres = 759.8 mmH9 RelativeHumid = 100 % ↑

в	99.3	ррb02
в	25.0	°C

Press ENTER when Sensor is in Gas 1(Air)↑ Selon le paramétrage du contrôle de la dérive (reportez-vous à la section 8.2.3.5, « Paramètres de mesure de l'oxygène avec des sondes optiques »), l'un des deux modes suivants est actif.

Placez la sonde dans la première solution ou le premier gaz d'étalonnage (par exemple de

l'air). Appuyez sur [ENTER].

 B 99.3 %AIR 25.0 °C
 B Point1=100.0 %AIR ···
 B 99.3 %AIR
 B 99.3 %AIR
 B 25.0 °C
 O2 P100=0.00 P0=99.00 € 99.3

B Point1=100.0 %AIR ...

ppb02

°C.

в

7421 Mode auto

Saisissez la valeur pour le point 1 avec un point et les unités décimales. La valeur de la deuxième ligne est la valeur mesurée par le transmetteur ou la sonde dans les unités sélectionnées par l'utilisateur.

Dès que les critères de stabilisation sont remplis, un message vous invite à changer de gaz.

Placez la sonde dans le deuxième gaz d'étalonnage, puis appuyez sur la touche [ENTER] pour démarrer l'étalonnage.

Saisissez la valeur pour le point 2 avec un point décimal et l'unité. La valeur affichée sur la seconde ligne est la valeur mesurée par le transmetteur ou la sonde.

Dès que les critères de stabilisation sont remplis, l'affichage change. Il présente désormais les valeurs pour la phase de la sonde à 100 % d'air (P100) et à 0 % d'air (P0).

Si l'étalonnage est réussi, les valeurs correspondantes sont enregistrées dans l'historique d'étalonnage* et reprises (Ajustage), ou bien enregistrées dans l'historique d'étalonnage* mais pas reprises (Calibrer), ou encore rejetées (Annuler).

Si vous sélectionnez « Ajustage » ou « Calibrer », l'écran affiche le message « Calibrage Réussier ». Dans tous les cas, les messages « Réinstallation électrode » et « Enter » apparaissent également. Lorsque vous avez appuyé sur « ENTER », le M400 revient en mode de mesure.

7.4.2.2 Mode manuel

Saisissez la valeur pour le point 1 avec un point et les unités décimales. La valeur de la deuxième ligne est la valeur mesurée par le transmetteur ou la sonde dans les unités sélectionnées par l'utilisateur.

Appuyez sur la touche [ENTER] pour continuer.

Un message vous invite à changer de gaz.

Placez la sonde dans le deuxième aaz d'étalonnage, puis appuvez sur la touche [ENTER] pour démarrer l'étalonnage.

Saisissez la valeur pour le point 2 avec un point décimal et l'unité. La valeur affichée sur la seconde ligne est la valeur mesurée par le transmetteur ou la sonde.

Appuyez sur la touche [ENTER] pour continuer.

Il présente désormais les valeurs pour la phase de la sonde à 100 % d'air (P100) et à 0 % d'air (PO).

Si l'étalonnage est réussi, les valeurs correspondantes sont enregistrées dans l'historique d'étalonnage* et reprises (Ajustage), ou bien enregistrées dans l'historique d'étalonnage* mais pas reprises (Calibrer), ou encore rejetées (Annuler).

° 99.	3 ppb02
° 25.	0 ∘∘
Press ENTER Gas is chan9	when led †
° 0.3	PPb02
25.	0 ∘∘
B Point2=0.0 B 02=0.3	100 %AIR 10 %AIR↑
· 0.3	РРЮ2
° 25.	0 ∘c

02 P100=0.00 P0=99.00

25.0 °C B Point1=100.0 %AIR ... B 02=99.30 %AIR 1

PPb02

в	99.3	PPb02
в	25.0	°C

99.3

Press ENTER when Gas is chan9ed

в

в 0.3ppb02 25.0 °C

B Point2=0.000 %AIR ...

Si vous sélectionnez « Ajustage » ou « Calibrer », l'écran affiche le message « Calibrage Réussier ». Dans tous les cas, les messages « Réinstallation électrode » et « Enter » apparaissent également. Lorsque vous avez appuyé sur « ENTER », le M400 revient en mode de mesure.

7.4.3 Étalonnage procédé

L'étalonnage d'une sonde optique est toujours un étalonnage de la phase du signal de fluorescence en direction de la référence interne. Pendant un étalonnage procédé, la phase à ce point est mesurée puis extrapolée sur la plage de mesure.

Accédez au mode d'étalonnage O_2 opt, comme indiqué dans la section 7.1 sur l'accès au mode d'étalonnage.

B Point1=100.0 B 02=99.30	AIR AIR	··;
------------------------------	------------	-----

99.3

25.0

в

в

в

в	99.3	%AIR
в	25.0	°C

%air

°C

%AIR

°C

PPb02

٩C

%AIR

°C

02 Optical Calibration Type = Process

99.3

25.0

97.5

24.7

B Point1=100.0 %AIR B 02=99.30 %AIR

97.5

24.7

02 P100=0.00 P0=99.00 Save Adjust 4

Press ENTER to Capture B 02=99.30 %air ↑

Prélevez un échantillon et appuyez de nouveau sur [ENTER] pour enregistrer la valeur de mesure actuelle. Pour indiquer le procédé d'étalonnage en cours, la lettre A ou B (en fonction de la voie concernée) clignote sur l'écran.

Sélectionnez le type d'étalonnage en un point. Appuyez sur [ENTER].

Après avoir déterminé la valeur O₂ de l'échantillon, appuyez de nouveau sur la touche [CAL] pour poursuivre l'étalonnage.

Saisissez la valeur O₂ de l'échantillon et appuyez sur la touche [ENTER] pour démarrer l'étalonnage.

Il présente désormais les valeurs pour la phase de la sonde à 100 % d'air (P100) et à 0 % d'air (P0).

Après l'étalonnage, les valeurs d'étalonnage sont soit prises en compte et enregistrées dans l'historique d'étalonnage (Ajustement), soit uniquement enregistrées dans l'historique d'étalonnage (Calibrer), soit ignorées (Annuler).

Si vous sélectionnez « Ajustage » ou « Calibrer », l'écran affiche le message « Calibrage Réussier ». Le transmetteur M400 revient au mode de mesure.

A

A

A

7.26

Calibrate Sensor Channel A PH

PH Calibration

8.29

7.26

ΡН

7.5 Étalonnage de l'électrode de pH

Pour les électrodes de pH, le transmetteur M400 autorise des étalonnages en un point, en deux points (mode auto ou manuel) ou de procédé avec 9 jeux de tampons prédéfinis ou une saisie manuelle. Les valeurs de tampons font référence à une température de 25 °C. Pour étalonner l'instrument avec reconnaissance automatique du tampon, vous avez besoin d'une solution tampon pH standard correspondant à l'une de ces valeurs (pour connaître les modes de configuration et savoir comment sélectionner les jeux de tampons, reportez-vous à la section 8.2.3.3, « Paramètres de pH/redox »). Sélectionnez le tableau de tampons adéquat avant de recourir à l'étalonnage automatique (reportez-vous au chapitre 19, « Tableaux de tampons »).

REMARQUE : Pour les électrodes de pH à double membrane (pH/pNa), seul le tampon Na+ 19,2M (voir la section 19.2.1, « Tampons pH/pNa Mettler ») est disponible.

7.5.1 Étalonnage en un point

Accédez au mode Calibrage de pH comme indiqué dans la section 7.1, « Accès au mode ьH Étalonnage ». °C.

> Sélectionnez Calibrage 1 point. Avec les électrodes de pH, un étalonnage en un point est toujours réalisé comme un étalonnage du décalage.

Selon le paramètre Contrôle Dérive (voir la section 8.2.3.3, « Paramètres de pH/redox »), l'un des deux modes suivants est actif.

7.5.1.1 Mode auto

Placez l'électrode dans la solution tampon et appuyez sur la touche [ENTER] pour démarrer l'étalonnage.

L'écran indique le tampon reconnu par le transmetteur (Point 1), ainsi que la valeur mesurée.

Dès que les critères de stabilisation sont remplis, l'affichage change. L'écran indique à présent le facteur « S » d'étalonnage de la pente et le facteur « Z » d'étalonnage du décalage.

Si l'étalonnage est réussi, les valeurs correspondantes sont enregistrées dans l'historique d'étalonnage* et reprises (Ajustage), ou bien enregistrées dans l'historique d'étalonnage* mais pas reprises (Calibrer), ou encore rejetées (Annuler).

* uniquement disponible avec la sonde ISM. Les valeurs sont enregistrées dans la sonde.

Si vous sélectionnez « Ajustage » ou « Calibrer », l'écran affiche le message « Calibrage Réussier ». Dans tous les cas, les messages « Réinstallation électrode » et « Enter » apparaissent également. Lorsque vous avez appuyé sur « ENTER », le M400 revient en mode de mesure.

A 20.1 °C. Press ENTER when Sensor is in Buffer 1 ↑ A 8.29 PH A 20.1 20 A Point1 = 9.21 pH ... A pH = 8.29 pH ... 8.29 ъH °C PH S=100.0 % Z=7.954PH Save Adjust

A

A

A

A

7.26

Calibrate Sensor Channel A PH

7.26

20.1

PH Calibration

РH

°C

PН

°C

°C

٠

7.5.1.2 Mode manuel

Placez l'électrode dans la solution tampon. L'écran indique le tampon reconnu par le transmetteur (Point 1), ainsi que la valeur mesurée. Appuyez sur la touche [ENTER] pour continuer.

L'écran indique à présent le facteur « S » d'étalonnage de la pente et le facteur « Z » d'étalonnage du décalage.

Si l'étalonnage est réussi, les valeurs correspondantes sont enregistrées dans l'historique d'étalonnage* et reprises (Ajustage), ou bien enregistrées dans l'historique d'étalonnage* mais pas reprises (Calibrer), ou encore rejetées (Annuler).

* uniquement disponible avec la sonde ISM. Les valeurs sont enregistrées dans la sonde.

Si vous sélectionnez « Ajustage » ou « Calibrer », l'écran affiche le message « Calibrage Réussier ». Dans tous les cas, les messages « Réinstallation électrode » et « Enter » apparaissent également. Lorsque vous avez appuyé sur « ENTER », le M400 revient en mode de mesure.

7.5.2 Étalonnage en deux points

Accédez au mode Calibrage de pH comme indiqué dans la section 7.1, « Accès au mode Étalonnage ».

Sélectionnez Calibrage 2 points.

Selon le paramètre Contrôle Dérive (voir la section 8.2.3.3, « Paramètres de pH/redox »), l'un des deux modes suivants est actif.

7.5.2.1 Mode auto

Placez l'électrode dans la première solution tampon et appuyez sur la touche [ENTER].

Press ENTER when Sensor is in Buffer 1 ↑

Press ENTER when Sensor is in Buffer 2 L'écran indique le tampon reconnu par le transmetteur (Point 1), ainsi que la valeur mesurée.

Dès que les critères de stabilisation sont remplis, un message vous invite à placer l'électrode dans la deuxième solution tampon.

Placez l'électrode dans la deuxième solution tampon et appuyez sur la touche [ENTER] pour démarrer l'étalonnage.

49

L'écran indique le deuxième tampon reconnu par le transmetteur (Point 2), ainsi que la valeur mesurée.

PH S=49.88 % Z=6.841PH Save Adjust ↑ Si l'étalonnage est réussi, les valeurs correspondantes sont enregistrées dans l'historique d'étalonnage* et reprises (Ajustage), ou bien enregistrées dans l'historique d'étalonnage* mais

Dès que les critères de stabilisation sont remplis, l'écran indique le facteur « S » d'étalonnage de

pas reprises (Calibrer), ou encore rejetées (Annuler). * uniquement disponible avec la sonde ISM. Les valeurs sont enregistrées dans la sonde.

la pente ainsi que le facteur « Z » d'étalonnage du décalage.

Si vous sélectionnez « Ajustage » ou « Calibrer », l'écran affiche le message « Calibrage Réussier ». Dans tous les cas, les messages « Réinstallation électrode » et « Enter » apparaissent également. Lorsque vous avez appuyé sur « ENTER », le M400 revient en mode de mesure.

7.5.2.2 Mode manuel

Placez l'électrode dans la première solution tampon. L'écran indique le tampon reconnu par le transmetteur (Point 1), ainsi que la valeur mesurée. Appuyez sur la touche [ENTER] pour continuer.

Placez l'électrode dans la deuxième solution tampon. L'écran indique le tampon reconnu par le transmetteur (Point 2), ainsi que la valeur mesurée. Appuyez sur la touche [ENTER] pour continuer.

L'écran indique le facteur « S » d'étalonnage de la pente et le facteur « Z » d'étalonnage du décalage.

Si l'étalonnage est réussi, les valeurs correspondantes sont enregistrées dans l'historique d'étalonnage* et reprises (Ajustage), ou bien enregistrées dans l'historique d'étalonnage* mais pas reprises (Calibrer), ou encore rejetées (Annuler).

Si vous sélectionnez « Ajustage » ou « Calibrer », l'écran affiche le message « Calibrage Réussier ». Dans tous les cas, les messages « Réinstallation électrode » et « Enter » apparaissent également. Lorsque vous avez appuyé sur « ENTER », le M400 revient en mode de mesure.

7.5.3 Étalonnage du procédé

Sélectionnez Calibrage procédé. Avec les électrodes de pH, un étalonnage de procédé est toujours réalisé comme un étalonnage du décalage.

 7.17
 РН

 Розлида = 7:09
 РН

 Розлида = 7:19
 РН

 Розлида = 7:19
 РН

 Раслида = 7:19
 РН</

8.29

20.1

A Point1 = 9.21A PH = 8.29

A

PН

۰c

맯

^в 9.68 мн в 20.1 «с	Prélevez un échantillon et appuyez de nouveau sur la touche [ENTER] pour mémoriser la valeur de mesure actuelle. Pour indiquer le procédé d'étalonnage en cours, la lettre A ou B (en fonction de la voie concernée) clignote sur l'écran.
Press ENTER to Capture B pH = 9.68 pH ↑	
^в 9.68 _₽ н ^в 20.1 ∝	Après avoir déterminé la valeur de pH de l'échantillon, appuyez de nouveau sur la touche [CAL] pour poursuivre l'étalonnage.
[₽] 9.68 ₽	Saisissez le pH de l'échantillon et appuyez sur la touche [ENTER] pour démarrer le calcul des résultats d'étalonnage
° 20.1 ∘⊂	
A Point1 = 9.220 PH A PH = 9.68 PH ↑	
9.68 ⊪ 20.1 ∞	Une fois l'étalonnage effectué, le facteur « S » d'étalonnage de la pente et le facteur « Z » d'étalonnage du décalage sont affichés.
PH S=100.0 % Z=6.334PH Save Adjust A	Si l'étalonnage est réussi, les valeurs correspondantes sont enregistrées dans l'historique d'étalonnage* et reprises (Ajustage), ou bien enregistrées dans l'historique d'étalonnage* mais pas reprises (Calibrer), ou encore rejetées (Annuler).
	* uniquement disponible avec la sonde ISM. Les valeurs sont enregistrées dans la sonde.

Si vous sélectionnez « Ajustage » ou « Calibrer », le message « Calibrage Réussier » s'affiche. Le transmetteur M400 revient au mode de mesure.

7.5.4 Étalonnage de mV (uniquement pour les sondes analogiques)

Accédez au mode Calibrage de mV comme indiqué à la section 7.1, « Accès au mode Étalonnage ».

L'utilisateur peut à présent saisir le Point 1. Le facteur d'étalonnage du décalage est calculé en utilisant la valeur du point 1 à la place de la valeur mesurée (ligne 4, mV =), puis est affiché dans l'écran suivant.

« Z » correspond au dernier calcul du facteur d'étalonnage du décalage. Le facteur « S » d'étalonnage de la pente est toujours égal à 1 et n'intervient pas dans le calcul.

Après l'étalonnage, les valeurs d'étalonnage peuvent être prises en compte (Ajustage) ou non (Calibrer) ou l'opération peut être annulée (Annuler).

Si vous sélectionnez « Ajustage », l'écran affiche le message « Calibrage Réussier ». Dans tous les cas, les messages « Reinstalation electrode » et « ENTER » s'affichent. Lorsque vous avez appuyé sur « ENTER », le M400 revient au mode de mesure.

н	20.5 ∘∘	
Ca Ch	librate Sensor annel A mV	t
н	6.49	
A	20.5	
Â	Point1 = 25.00 mU mV = 30.00 mV	t
	6.49	
A	20.5 ∞	
mV Sa	S=1.00000 Z=-5.0000 ve Adjust	t

A

7.00

Calibrate Sensor Channel B ORP

7.00

25.0

РH

°C

PН

20

 $\zeta \overline{f}$

7.5.5 Étalonnage redox (uniquement pour les sondes ISM)

Si vous avez connecté au transmetteur M400 une électrode de pH avec masse liquide basée sur la technologie ISM, celui-ci vous permet d'effectuer un étalonnage redox en plus de l'étalonnage de pH.

REMARQUE : Si vous choisissez l'étalonnage redox, les paramètres définis pour le pH (reportez-vous à la section 8.2.3.3, « Paramètres de pH/redox », CHEMIN D'ACCÈS : Menu/Configure/Measurement/pH) ne seront pas pris en compte.

Accédez au mode Calibrage de redox comme indiqué dans la section 7.1, « Accès au mode Étalonnage ».

L'utilisateur peut à présent saisir le Point 1. La valeur actuelle du redox est également affichée.

Appuyez sur la touche [ENTER] pour continuer.

L'écran indique le facteur « S » d'étalonnage de la pente et le facteur « Z » d'étalonnage du décalage.

Après l'étalonnage, les valeurs d'étalonnage sont soit prises en compte et enregistrées dans l'historique d'étalonnage (Ajustage), soit uniquement enregistrées dans l'historique d'étalonnage (Calibrer), soit ignorées (Annuler).

Si vous sélectionnez « Ajustage » ou « Calibrer », le message « Calibrage Réussier » s'affiche. Dans tous les cas, les messages « Reinstalation electrode » et « ENTER » s'affichent. Lorsque vous avez appuyé sur « ENTER », le M400 revient au mode de mesure.

7.6 Étalonnage du CO2 dissous

Pour les sondes CO₂ dissous, le transmetteur M400 propose l'étalonnage en un point, en deux points (mode automatique ou manuel) ou l'étalonnage procédé. Pour l'étalonnage en un point ou en deux points, il est possible d'utiliser la solution avec pH = 7,00 et/ou pH = 9,21du tampon standard Mettler – 9 (reportez-vous également à la section 8.2.3.8 « Paramètres de CO₂ dissous ») ou de saisir une valeur de tampon manuellement.

Pour l'étalonnage de la conductivité thermique du dioxyde de carbone dissous (CO₂ Hi), veuillez consulter le manuel de la sonde (InPro 5500i).

7.6.1 Étalonnage en un point

Accédez au mode d'étalonnage CO₂ comme indiqué à la section 7.1 « Accès au mode Étalonnage ».

Selon le paramétrage du contrôle de la dérive (reportez-vous à la section 8.2.3.8 « Paramètres de CO2 dissous »), l'un des deux modes suivants est actif.

A

A

н

A

Calibrate Sensor Channel A CO2

CO2 Calibration

hP-

°C

7.6.1.1 Mode auto

 ^H 137.5 hPa
 ^A 26.1 °C
 Press ENTER when Sensor 1s in Buffer 1 *
 154.5 hPa
 ^A 26.1 °C
 ^B Point1 = 7.89 FH *
 ^H 154.5 hPa
 ^A 26.1 °C
 ^B 26.1 °C

A

A

A

A

A.

A

122.4 hPa

122.4 hPa

PH S=100.0 % Z=6.947PH Save Adjust

180.4 bPa

26.1

Imprimé en Suisse

20

A Point1 = 7.00 PH A CO2 = 7.17 PH l'étalonnage.

Placez l'électrode dans la solution tampon et appuyez sur la touche [ENTER] pour démarrer

L'écran indique le tampon reconnu par le transmetteur (Point 1), ainsi que la valeur mesurée.

Dès que les critères de stabilisation sont remplis, l'écran indique le facteur « S » d'étalonnage de la pente ainsi que le facteur « Z » d'étalonnage du décalage.

Après l'étalonnage, les valeurs d'étalonnage peuvent être prises en compte (Ajustage) soit ignorées (Calibrer ou Annuler).

SSi vous sélectionnez « Ajustage » ou « Calibrer », l'écran affiche le message « Calibrage Réussier ». Dans tous les cas, les messages « Réinstallation électrode » et « Enter » apparaissent également. Lorsque vous avez appuyé sur « ENTER », le M400 revient en mode de mesure.

7.6.1.2 Mode manuel

Placez l'électrode dans la solution tampon. L'écran indique le tampon reconnu par le transmetteur (Point 1), ainsi que la valeur mesurée. Appuyez sur la touche [ENTER] pour continuer.

L'écran indique à présent le facteur « S » d'étalonnage de la pente et le facteur « Z » d'étalonnage du décalage.

Après l'étalonnage, les valeurs obtenues sont soit prises en compte (Ajustage), soit ignorées (Calibrer ou Annuler)

Si vous sélectionnez « Ajustage » ou « Calibrer », l'écran affiche le message « Calibrage Réussier ». Dans tous les cas, les messages « Réinstallation électrode » et « Enter » apparaissent également. Lorsque vous avez appuyé sur « ENTER », le M400 revient en mode de mesure.

7.6.2 Étalonnage en deux points

Accédez au mode d'étalonnage $\rm CO_2$ comme indiqué à la section 7.1 « Accès au mode Étalonnage ».

 ⁺ 137.5 № ⁺ 26.1 ∞ 	Placez l'électrode dans la première solution tampon et appuyez sur la touch démarrer l'étalonnage.
Press ENTER when Sensor is in Buffer 1 ↑	
154.5 № * 26.1 «	L'ècran indique le fampon reconnu par le fransmetteur (Point T), ainsi que la
A Point1 = 7.00 PH A CO2 = 7.07 PH ↑	
122.4 ⊮₃ ₽ 26.1 ∞	Dès que les critères de stabilisation sont remplis, un message vous invite à dans la deuxième solution tampon.
Press ENTER when Sensor is in Buffer 2 ↑	Placez l'électrode dans la deuxième solution tampon et appuyez sur la touch démarrer l'étalonnage.
2.8 нра Р 26.1 ос	L'écran indique le deuxième tampon reconnu par le transmetteur (Point 2), c mesurée.
A Point2 = 9.21 PH A CO2 = 8.80 PH ↑	
2.8 hPa P 26.1 oc	Dès que les critères de stabilisation sont remplis, l'écran indique le facteur « la pente ainsi que le facteur « Z » d'étalonnage du décalage.
pH S=74.21 % Z=6.948pH Save Adjust ↑	Après l'étalonnage, les valeurs obtenues sont soit prises en compte (Ajustag (Calibrer ou Annuler).
	Si vous sélectionnez « Ajustage » ou « Calibrer », l'écran affiche le message sier ». Dans tous les cas, les messages « Réinstallation électrode » et « Ente également. Lorsque vous avez appuyé sur « ENTER », le M400 revient en m
	7.6.2.2 Mode manuel
^в 122.4 № ^в 26.1 «	Placez l'électrode dans la première solution tampon. L'écran indique le tamp transmetteur (Point 1), ainsi que la valeur mesurée. Appuyez sur la touche [continuer.
A Point1 = 7.00 pH A CO2 = 7.17 pH ↑	

7.6.2.1 Mode auto

e [ENTER] pour

a valeur mesurée.

placer l'électrode

he [ENTER] pour

ainsi que la valeur

S » d'étalonnage de

je), soit ignorées

« Calibrage Réuser » apparaissent node de mesure.

oon reconnu par le [ENTER] pour

Placez l'électrode dans la deuxième solution tampon. L'écran indique le tampon reconnu par le transmetteur (Point 2), ainsi que la valeur mesurée. Appuyez sur la touche [ENTER] pour continuer.

L'écran indique le facteur « S » d'étalonnage de la pente et le facteur « Z » d'étalonnage du décalage.

Après l'étalonnage, les valeurs obtenues sont soit prises en compte (Ajustage), soit ignorées (Calibrer ou Annuler).

PH S=74.21 % Z=6.948PH Save Adjust

Si vous sélectionnez « Ajustage » ou « Calibrer », l'écran affiche le message « Calibrage Réussier ». Dans tous les cas, les messages « Réinstallation électrode » et « Enter » apparaissent également. Lorsque vous avez appuyé sur « ENTER », le M400 revient en mode de mesure.

7.6.3 Étalonnage procédé

17.3 №a ^R 27.3 °c	Accédez au mode d'étalonnage CO_2 comme indiqué à la section 7.1 « Accès au mode Étalonnage ».
Calibrate Sensor Channel A CO2 🛛 🛧	
^в 17.3 ыра в 27.3 ос	Sélectionnez l'étalonnage procédé. Avec les sondes de CO ₂ , un étalonnage procédé est toujours réalisé comme un étalonnage du décalage.
CO2 Calibration Type = Process	
^в 17.3 мРа ^в 27.3 ∘с	Prélevez un échantillon et appuyez de nouveau sur [ENTER] pour enregistrer la valeur de me- sure actuelle. Pour indiquer le procédé d'étalonnage en cours, la lettre A ou B (en fonction de la voie concernée) clignote sur l'écran. Après avoir déterminé la valeur CO ₂ de l'échantillon, ap- puyez à nouveau sur la touche ► pour poursuivre l'étalonnage.
Press ENTER to Capture A CO2 = 17.3 hPa ↑	
 п 17.3 нра п 27.3 ос 	Saisissez la valeur $\rm CO_2$ de l'échantillon et appuyez sur la touche [ENTER] pour démarrer l'étalonnage.
A Point1 = 16.90 hPa A CO2 = 17.3 hPa ↑	
^A 17.3 №	L'écran indique le facteur « S » d'étalonnage de la pente et le facteur « Z » d'étalonnage du décalage.
PH S=100.0 % Z=7.009pH Save Adjust ↑	Après l'étalonnage, les valeurs obtenues sont soit prises en compte (Ajustage), soit ignorées (Calibrer ou Annuler)

Si vous sélectionnez « Ajustage » ou « Calibrer », l'écran affiche le message « Calibrage Réussier ». Le transmetteur M400 revient au mode de mesure.

7.7 Étalonnage de la température de la sonde (uniquement pour les sondes analogiques)

A us/a °c Calibrate Sensor Channel & Temperature

Accédez au mode Calibrage de la sonde comme indiqué à la section 7.1, « Accès au mode Étalonnage » et sélectionnez Température.

7.7.1 Étalonnage de la température de la sonde en un point

Sélectionnez Calibrage 1 point. Il est possible de sélectionner un étalonnage de la pente ou du décalage avec l'étalonnage en un point. Sélectionnez Pente pour recalculer le facteur M (Multiplicateur) de pente ou Offset pour recalculer le facteur A (Additionneur) d'étalonnage du décalage.

Remarque : Pour des questions de non-linéarité, l'étalonnage de la température de la pente en 1 point n'est pas appliqué pour le NTC22K comme source de température.

Saisissez la valeur du Point 1 et appuyez sur [ENTER].

Après l'étalonnage, les valeurs d'étalonnage peuvent être prises en compte (Ajustage) ou non (Calibrer) ou l'opération peut être annulée (Annuler).

Si vous avez sélectionné « Ajustage », le message « Calibrage Réussier » s'affiche. Dans tous les cas, les messages « Réinstallation électrode » et « Enter » s'affichent à l'écran. Lorsque vous avez appuyé sur « ENTER », le M400 revient en mode de mesure.

7.7.2 Étalonnage de la température de la sonde en deux points

Remarque : Pour des questions de non-linéarité, l'étalonnage de la température en 2 points n'est pas appliqué pour le NTC22K comme source de température.

Sélectionnez le type d'étalonnage en deux points.

25.00

Type = 2 point

erature Calibration

Saisissez la valeur du Point 1 et appuyez sur [ENTER].

us/a

us/en

°C

0 "C 25.02 °C A Point1 A T = 25.00 °C . A

Temp M=0.99994 A=0.00000 Save Adjust

A

Te

C ∕ ¬

A

Saisissez la valeur du Point 2 et appuyez sur [ENTER].

Temp M=0.99994 A=0.00000 Save Adjust Après l'étalonnage, les valeurs d'étalonnage peuvent être prises en compte (Ajustage) ou non (Calibrer) ou l'opération peut être annulée (Annuler).

Si vous avez sélectionné « Ajustage », le message « Calibrage Réussier » s'affiche. Dans tous les cas, les messages « Réinstallation électrode » et « Enter » apparaissent également. Lorsque vous avez appuyé sur ENTER, le M400 revient en mode de mesure.

7.8 Modification des constantes d'étalonnage de la sonde (uniquement pour les sondes analogiques)

Accédez au mode Calibrage comme indiqué à la section 7.1, « Accès au mode Étalonnage », puis sélectionnez Edit, Edit pH ou Edit mV.

Toutes les constantes d'étalonnage pour le canal de sonde sélectionné s'affichent. Les constantes de mesure principales (p) sont affichées sur la ligne 3. Les constantes de la mesure (température) secondaire(s) de la sonde sont affichées sur la ligne 4.

Vous pouvez modifier les constantes d'étalonnage dans ce menu.

Choisissez Oui pour enregistrer les nouvelles valeurs d'étalonnage, le message d'étalonnage réussi s'affiche.

REMARQUE : Chaque fois qu'une nouvelle sonde de conductivité analogique est connectée au transmetteur M400, il convient de saisir les données d'étalonnage unique (constante de cellule et décalage) qui se trouvent sur l'étiquette de la sonde.

7.9 Vérification de la sonde

Accédez au mode Calibrage comme indiqué à la section 7.1, « Accès au mode Étalonnage », puis sélectionnez Vérifier.

Le signal mesuré pour la mesure principale et secondaire s'affiche dans l'unité électrique. Les facteurs d'étalonnage de l'appareil de mesure sont utilisés lors du calcul de ces valeurs.

Appuyez sur [ENTER] pour quitter cet écran.

Ch A 1.820 MQ 1.097 KQ

.

As M=0.1000 A=0.0000

8 Configuration

(CHEMIN D'ACCÈS : Menu/Configure)

* Disponible uniquement en combinaison avec les sondes ISM

8.1 Accès au mode Configuration

А 7.00 рн А 25.00 сс Menu Configure А En mode de mesure, appuyez sur la touche \blacktriangleleft . Pour accéder au menu Configurer, appuyez sur la touche \blacktriangle ou ∇ , puis appuyez sur [ENTER].

8.2 Mesure

(CHEMIN D'ACCÈS : Menu/Configure/Measurement)

Accédez au mode Configuration comme indiqué à la section 8.1, « Accès au mode Configuration ».

Appuyez sur la touche [ENTER] pour sélectionner ce menu. Les sous-menus suivants peuvent alors être sélectionnés : Configuration Canal, Source de température, Resistivity/Comp/pH/02/CO2, Table de concentration et Paramétrage Filtrage.

8.2.1 Configuration Canal

(CHEMIN D'ACCÈS : Menu/Configure/Measurement/Channel Setup)

Appuyez sur la touche [ENTER] pour sélectionner le menu « Configuration Canal ».

Selon la sonde connectée (analogique ou ISM), vous pouvez sélectionner le canal.

Imprimé en Suisse

© 08/2016 Mettler-Toledo GmbH, CH-8606 Greifensee, Suisse

8.2.1.1 Sonde analogique

Sélectionnez le type de sonde Analog. et appuyez sur la touche [ENTER].

^в 7.00 нн в 25.0 ∞

Channel Select=Analog Parameter = pH/ORP

в

7 በበ

Channel Select=ISM Parameter = Auto

ΡН

Les types de mesure disponibles sont les suivants (en fonction du type de transmetteur) :

Paramètre de mesures	Transmetteur
pH/ORP = pH ou redox	M400 FF
Cond (2) = conductivité 2 électrodes	M400 FF
Cond (4) = conductivité 4 électrodes	M400 FF
O_2 hi = Oxygène dissous (ppm) ou oxygène gazeux	M400 FF
O_2 lo = Oxygène dissous (ppb) ou oxygène gazeux	M400 FF
O_2 Trace = oxygène dissous (à l'état de traces) ou oxygène gazeux	M400 FF

Les 4 lignes de l'écran peuvent ensuite être configurées pour le canal de sonde « A » pour chaque ligne ainsi que pour les mesures et les multiplicateurs d'unités. Appuyez sur la touche [ENTER] pour afficher la sélection des lignes a, b, c et d.

8.2.1.2 Sonde ISM

Sélectionnez le type de sonde ISM et appuyez sur la touche [ENTER].

Lors du branchement d'une sonde ISM, le transmetteur (Paramètre = Auto) reconnaît automatiquement le type de sonde. Vous pouvez aussi choisir un paramètre de mesure spécifique (-paramètre = pH/redox, pH/pNa, Cond(4), O2 hi, O2 lo, O2 trace, ppm O2G, O2 Opt, CO2 (low)), en fonction de votre type de transmetteur.

Paramètre de mesures	Transmetteur
pH/ORP = pH et redox	M400 FF
pH/pNa = pH et redox (avec électrode de pH/pNa)	M400 FF
Cond (4) = conductivité 4 électrodes	M400 FF
O_2 hi = Oxygène dissous (ppm) ou oxygène gazeux	M400 FF
O_2 lo = Oxygène dissous (ppb) ou oxygène gazeux	M400 FF
O_2 Trace = oxygène dissous (à l'état de traces) ou oxygène gazeux	M400 FF
O ₂ Opt = Oxygène dissous optique	M400 FF

Les 4 lignes de l'écran peuvent ensuite être configurées pour la voie de sonde « B » pour chaque ligne ainsi que pour les mesures et les multiplicateurs d'unités. Appuyez sur la touche [ENTER] pour afficher la sélection des lignes a, b, c et d.

REMARQUE : En dehors des grandeurs de mesure pH, O2, T, etc., les valeurs ISM DLI, TTM et ACT peuvent également être affectées aux différentes lignes et associées au bloc d'entrée analogique de l'interface FF. Pour plus d'informations, consultez la documentation « FOUNDATION fieldbus parameter Multi-parameter Transmitter M400 FF » sur CD-ROM.

8.2.1.3 Enregistrer les modifications de la configuration du canal

A 7.00 pH A 25.00 °C Save Changes Yes & Exit Press ENTER to Exit A Après la procédure de la configuration du canal décrite à la section précédente, appuyez une nouvelle fois sur la touche [ENTER] pour afficher la boîte de dialogue Sauver changements. Sélectionnez Non pour effacer les valeurs saisies et revenir à l'écran d'affichage des mesures, sélectionnez Oui pour enregistrer les modifications.

7.00

Measurement Setup Temperature Source

7.00

25.00 ∝

DH

°C

РH

A

Α

A

A

A

A: Auto

8.2.2 Source de température (uniquement pour les sondes analogiques)

(CHEMIN D'ACCÈS : Menu/Configure/Measurement/Temperature Source)

Accédez au mode Mesure comme indiqué à la section 8.2, « Mesure ». Sélectionnez Source Température en appuyant sur la touche \blacktriangle ou ∇ , puis appuyez sur [ENTER].

Les options suivantes sont disponibles :

Auto:	Le transmetteur reconnait automatiquement la source de temperature.
Utiliser NTC22K :	La température provient de la sonde connectée.
Utiliser Pt1000 :	L'entrée de température provient de la sonde connectée.
Utiliser Pt100 :	La température provient de la sonde connectée.
Fixe = 25 °C :	Permet de saisir une valeur de température spécifique. Ce mode de régulation
	doit être employé lorsqu'un client utilise une électrode de pH sans source de
	température.

REMARQUE : Si la source de température choisie est Fixe, la température appliquée pendant des étalonnages en un point et/ou en deux points d'électrodes de pH peut être ajustée au cours de la procédure d'étalonnage correspondante. Après l'étalonnage, la température fixe définie via ce menu de configuration redevient valide.

Appuyez sur [ENTER] pour afficher la boîte de dialogue Sauver changements.

Sélectionnez Non pour effacer les valeurs saisies et revenir à l'écran d'affichage des mesures, sélectionnez Oui pour enregistrer les modifications.

8.2.3 Configuration des paramètres

(CHEMIN D'ACCÈS : Menu/Configure/Measurement/pH, O_2 , O_2 optical, O_2 opt sampling rate, LED Mode ou Resistivity, Concentration Table ou CO_2)

Des paramètres supplémentaires de mesure et d'étalonnage peuvent être définis pour chaque paramètre : conductivité, pH, O₂ et CO₂.

REMARQUE : Utilisez le menu du pH pour définir les paramètres des électrodes de pH/pNa.

Accédez au mode Configuration comme indiqué à la section 8.1, « Accès au mode Configuration », et sélectionnez le menu Mesure (reportez-vous à la section 8.2, « Mesure »).

En fonction de la sonde branchée, vous pouvez sélectionner le menu pH, O_2 , CO_2 à l'aide des touches \blacktriangle ou \blacktriangledown . Appuyez sur [ENTER].

Pour plus de détails, reportez-vous aux explications correspondant au paramètre sélectionné.

7.00

00

Save Changes Yes & Exit Press ENTER to Exit

DB

°C

8.2.3.1 Compensation de température de conductivité

Si, au cours de la configuration du canal (reportez-vous à la section 8.2.1, « Configuration Canal »), vous avez choisi le paramètre de conductivité ou si une sonde de conductivité ISM à quatre électrodes est raccordée au transmetteur, vous pouvez sélectionner le mode de compensation de la température. La compensation de température doit être adaptée aux caractéristiques de l'application. Le transmetteur prend cette valeur en compte pour la compensation de température en calculant et en affichant le résultat pour la conductivité mesurée.

REMARQUE : Pour les besoins de l'étalonnage, la compensation de température définie dans le menu « Compensation Cal » doit être prise en compte pour les tampons ou les échantillons (reportez-vous également à la section 7.2, « Étalonnage de conductivité pour sondes comportant de deux à guatre électrodes »).

Pour procéder à cet ajustement, choisissez le menu « Résistivité » qui s'affiche (voir la section 8.2.3, « Configuration des paramètres »).

Les deux premières lignes de mesure sont affichées à l'écran. Cette section présente la procédure à suivre pour la première ligne de mesure. Vous pouvez sélectionner la deuxième ligne à l'aide de la touche ►. Pour sélectionner les 3ème et 4ème lignes, appuyez sur la touche [ENTER]. La procédure proprement dite est identique pour chaque ligne de mesure.

Les options disponibles sont : « None », « Standard », « Light 84 », « Std 75 °C », « Lin 25°C », « Lin 20°C », « Glycol.5 », « Glycol.1 », « Cation », « Alcohol » et « Ammonia ».

R 2.50 MS/CM R 18.4 °C La **compensation standard** comprend une compensation des effets de la pureté élevée non linéaire ainsi que des impuretés des sels neutres traditionnels. Elle est conforme aux normes ASTM D1125 et D5391.

Avec **None**, la valeur de conductivité mesurée n'est pas compensée. La valeur non compensée sera affichée et traitée.

La **compensation Light 84** correspond aux résultats des recherches sur l'eau pure du Dr T.S. Light publiées en 1984. À n'employer que si votre établissement a établi des normes sur la base de ce travail.

L'option de **compensation Std 75** °**C** est l'algorithme de compensation standard avec la référence de 75 °C. Cette compensation peut être privilégiée pour la mesure de l'eau ultrapure à une température élevée (la résistivité de l'eau ultrapure compensée à 75 °C est 2,4818 Mohm-cm).

La **compensation Glycol.5** correspond aux caractéristiques thermiques de 50 % d'éthylène glycol dans de l'eau. Les mesures compensées basées sur cette solution peuvent dépasser 18 Mohm-cm.

La **compensation Glycol1** correspond aux caractéristiques thermiques de l'éthylène glycol 100 %. Les mesures compensées peuvent largement dépasser 18 Mohm-cm.

La **compensation cationique** est utilisée dans des applications de l'industrie de l'énergie afin de mesurer l'échantillon après un échangeur cationique. Elle tient compte des effets de la température sur la dissociation de l'eau pure en présence d'acides.

La **compensation de l'alcool** correspond aux caractéristiques thermiques d'une solution contenant 75 % d'alcool isopropylique dans l'eau pure. Les mesures compensées basées sur cette solution peuvent dépasser 18 Mohm-cm.

La **compensation de l'ammoniaque** est utilisée pour les applications de l'industrie de l'énergie pour la conductivité spécifique mesurée sur des échantillons grâce à un traitement avec de l'eau contenant de l'ammoniaque et/ou de l'ETA (éthanolamine). Elle tient compte des effets de la température sur la dissociation de l'eau pure en présence de ces bases. А

A

å

А

A

å

A

A

2.5 ⊮≲∕ 18.4 ∘c	CM	La compensation linéaire 25 °C ajuste la lecture au moyen d'un coefficient ou facteur exprimé en « % par °C » (écart par rapport à 25 °C). À n'utiliser que si la solution a un coefficient de température linéaire bien défini.
Compensation=Lin 25 Compensation=Standa	°C rd†	La valeur usine par défaut est 2,0 %/°C.
2.5 ⊮≲∕ 18.4 ∝	cm	La compensation linéaire 20 °C ajuste la lecture au moyen d'un coefficient ou facteur exprimé en « % par °C » (écart par rapport à 20 °C). À n'utiliser que si la solution a un coefficient de température linéaire bien défini.
Compensation=Lin 20 Compensation=Standa	l°C rd†	La valeur usine par défaut est 2,0 %/°C.
2.50 ⊮≤∕ 18.4 ∞	cm	Si vous avez sélectionné le mode de compensation « Lin 25 °C » ou « Lin 20 °C », vous pou- vez modifier le facteur d'ajustement de la valeur en appuyant sur la touche [ENTER] (si vous in- tervenez sur la ligne de mesure 1 ou 2, appuyez deux fois sur la touche [ENTER]).
Comp= 02.0 %∕°C	+	Ajustez le facteur de la compensation de température.
		Appuyez sur la touche [ENTER] pour afficher la boîte de dialogue Sauver changements. Sélectionnez Non pour effacer les valeurs saisies et revenir à l'écran d'affichage des mesures,

8.2.3.2 Table de concentration

sélectionnez Oui pour enregistrer les modifications.

Si, au cours de la configuration du canal (reportez-vous à la section 8.2.1, « Configuration Canal »), vous avez choisi le paramètre de conductivité ou si une sonde de conductivité à quatre électrodes basée sur la technologie ISM est raccordée au transmetteur, vous pouvez définir une table de concentration.

Pour spécifier des solutions spécifiques aux clients, il est possible de modifier jusqu'à 5 valeurs de concentration dans une matrice, et jusqu'à 5 températures. Pour ce faire, les valeurs souhaitées sont modifiées sous le menu de la table de concentration. De plus, les valeurs de la conductivité pour les valeurs correspondantes de température et de concentration sont modifiées.

Pour régler les paramètres, vous devez choisir le menu « Table de concentration » qui s'affichera (voir la section 8.2.3, « Configuration des paramètres »).

B B	2.50 18.4	mS∕cm °C	Définissez l' unité souhaitée.
Uni	t = %Conc.	٠	Appuyez sur [ENTER].
Ô	5		REMARQUE : Consultez la section 8.2.1, « Configuration Canal », pour choisir l'unité d'affichage.
в	2.50	m5/cm	Saisissez la quantité des points de température voulus (Point de temp.) et les points de concentration
в	18.4	°C	Appuyez sur [ENTER].
Tem Con	P Point = 2 centration Po	oint=2 ↑	
в	2.50	m5/cm	Saisissez les valeurs pour les différentes concentrations (ConcentrationX).
в	18.4	°C	Appuyez sur [ENTER].
Con Con	centration1 = centration2 =	1.250 7.500 ↑	

Saisissez la valeur de la 1 ère température (**Temp1**) et la valeur pour la conductivité qui appartient à la première concentration à cette température.

Appuyez sur [ENTER].

Saisissez la valeur pour la conductivité qui appartient à la seconde concentration à la première température et appuyez sur la touche [ENTER], puis continuez avec les autres valeurs.

Après avoir saisi toutes les valeurs de conductivité, qui appartiennent aux différentes concentrations au premier point de température, saisissez de la même manière la valeur du 2e point de température (**Temp2**) et la valeur de la conductivité qui appartient à la seconde température pour la première concentration. Appuyez sur la touche [ENTER] et poursuivez de la même façon pour les points de concentration suivants, tel qu'indiqué pour le premier point de température.

Saisissez de cette manière les valeurs à chaque point de température. Après avoir saisi la dernière valeur, appuyez de nouveau sur la touche [ENTER] pour afficher la boîte de dialogue sauver changements. Sélectionnez Non pour effacer les valeurs saisies et revenir à l'écran d'affichage des mesures, sélectionnez Oui pour enregistrer les modifications.

REMARQUE : Les valeurs pour la température doivent augmenter comme suit : Temp1, Temp2, Temp3, etc. De même, les valeurs pour la concentration doivent augmenter ainsi : Concentration1, Concentration2, Concentration3, etc.

REMARQUE : Les valeurs de la conductivité aux différentes températures doivent augmenter ou diminuer comme suit : Concentration1, Concentration2, Concentration3, etc. Les minima et/ou les maxima ne sont pas autorisés. Si les valeurs de la conductivité à Temp1 augmentent avec les différentes concentrations, elles doivent également augmenter aux autres températures. Si les valeurs de la conductivité à Temp1 diminuent avec les différentes concentrations, elles doivent également différentes concentrations, elles doivent également augmenter aux autres températures.

8.2.3.3 Paramètres de pH/redox

Si vous avez choisi le paramètre pH/redox lors de la configuration du canal (reportez-vous à la section 8.2.1, « Configuration Canal »), ou si une électrode de pH basée sur la technologie ISM est branchée au transmetteur, vous pouvez définir ou modifier les paramètres Contrôle Dérive, Reconnaissance Tampon, STC, IP et FixCalTemp (Température de calibrage fixe), ainsi que les unités affichées en vue d'un étalonnage de la pente et au point zéro.

Pour procéder à de tels ajustements ou paramétrages, choisissez le menu « pH » qui s'affiche (voir la section 8.2.3, « Configuration des paramètres »).

Sélectionnez le **Contrôle Dérive** pour l'étalonnage Auto (les critères de dérive et de temps doivent être remplis) ou Manuel (l'utilisateur peut déterminer quand un signal est suffisamment stable pour effectuer l'étalonnage), puis le tableau de tampons correspondant pour la reconnaissance automatique du tampon. Si la valeur de dérive est inférieure à 0,4 mV pendant un intervalle de 19 secondes, la lecture est stable et l'étalonnage est effectué à l'aide de la dernière lecture. Si les critères de dérive ne sont pas satisfaits dans les 300 secondes, l'étalonnage est interrompu et le message suivant s'affiche : « Calibrage non terminé, ENTER pour quitter ».

Appuyez sur [ENTER].

Pour la **reconnaissance automatique du tampon** lors de l'étalonnage, sélectionnez le jeu de solutions tampons utilisé : Mettler-9, Mettler-10, NIST Tech, NIST Std = JIS Std, HACH, CIBA, MERCK, WTW, JIS Z 8802 ou Aucun. Voir la section 19, « Tableaux de tampons », pour les valeurs des tampons. Si la fonction de tampon automatique n'est pas utilisée ou si les tampons disponibles diffèrent des tampons ci-dessus, sélectionnez Aucun. Appuyez sur [ENTER].

Drift Control = Auto pH Buffer= Mettler-9 ↑

в

В

в

STC représente le coefficient de température de la solution en pH/°C à 25 °C (valeur par défaut = 0,000 pour la plupart des applications). Pour l'eau pure, une valeur de 0,016 pH/°C doit être utilisée. Pour des échantillons de centrales thermiques à faible conductivité, proche de 9 pH, une valeur de 0,033 pH/°C doit être utilisée. Ces coefficients positifs compensent l'influence négative de la température sur le pH de ces échantillons. Appuyez sur [ENTER].

IP correspond à la valeur du point isothermique (par défaut = 7,000 pour la plupart des applications). En cas de compensation spécifique ou pour une valeur de tampon interne non standard, cette valeur peut être modifiée. Appuyez sur [ENTER].

STC RefTemp permet de définir la température à laquelle correspond la compensation de température de la solution. La valeur affichée et le signal de sortie renvoient à ce paramètre. Si vous sélectionnez « Non », la compensation de température de la solution ne sera pas employée. La température de référence la plus courante est 25 °C. Appuyez sur [ENTER].

Il est possible de choisir les unités affichées à l'écran pour la pente et le point de zéro. La valeur par défaut de l'unité de la pente est [%] et peut être modifiée en [pH/mV]. Pour le point de zéro, la valeur par défaut de l'unité est [pH] et peut être modifiée en [mV]. Utilisez la touche \blacktriangleright pour accéder au champ de saisie et sélectionnez l'unité à l'aide de la touche \blacktriangle ou \mathbf{V} .

Appuyez de nouveau sur la touche [ENTER] pour afficher la boîte de dialogue Sauver changements. Sélectionnez Non pour effacer les valeurs saisies et revenir à l'écran d'affichage des mesures ou Oui pour enregistrer les modifications.

8.2.3.4 Paramètres de mesure de l'oxygène basés sur des sondes ampérométriques

Si vous avez choisi le paramètre O2 hi ou O2 lo our O2 Trace dans la configuration du canal (voir la section 8.2.1, « Configuration Canal »), ou si une sonde à oxygène basée sur la technologie ISM est connectée au transmetteur, vous pouvez paramétrer ou ajuster les paramètres CalPress, PresProcs, ProCalPres, Salinité et Humidité Relative. Si une sonde ISM est branchée, vous pouvez également ajuster la tension de paramétrisation.

Pour procéder à de tels ajustements ou paramétrages, choisissez le menu « O2 » qui s'affiche (voir la section 8.2.3, « Configuration des paramètres »).

Saisissez la pression de l'étalonnage ligne 3. La valeur par défaut de CalPres correspond à 759,8 avec mmHg comme unité par défaut.

Sélectionnez Modifier à la ligne 4 pour saisir manuellement la pression de procédé appliquée. Sélectionnez Ain si un signal d'entrée analogique est utilisé pour la pression de procédé appliquée. Sélectionnez FF si la valeur de compensation de la pression est fournie via FF. Appuyez sur [ENTER].

Si l'option Modifier a été choisie, un champ de saisie s'affiche pour saisir la valeur manuellement. Si l'option Ain a été sélectionnée, vous devez saisir la valeur de départ (4 mA) et la valeur de fin (20 mA) de la plage pour le signal d'entrée de 4 à 20 mA.

ProcPres= 759.8 mmHe Appuyez sur [ENTER].

Xair

٥C

%air

<u>۹</u>С

.

CalPres = 759.8 mmH9 ProcPres= Edit

25.0

^B 21.7 _{%air} ^B 25.0 ∘c	Pour l'algorithme d'étalonnage du procédé, la pression appliquée (ProcCalPres) doit être définie. La valeur de la pression de procédé (PresProc) ou de la pression d'étalonnage (CalPres) peut être utilisée. Choisissez la pression à appliquer lors de l'étalonnage du procédé en fonction de l'algorithme.
ProcCalPres= CalPres Drift Control = Ruto ↑	Sélectionnez le contrôle dérive requis pour le signal de mesure pendant la procédure d'étalonnage. Choisissez Manual (Manuel) si vous voulez que l'utilisateur puisse déterminer lorsqu'un signal est suffisamment stable pour permettre l'étalonnage. Choisissez Auto si vous préférez qu'un contrôle de stabilité du signal de la sonde soit automatiquement effectué durant l'étalonnage par le biais du transmetteur. Appuyez sur [ENTER].
^B 21.7 _{%air}	À l'étape suivante, la salinité de la solution mesurée peut être modifiée.
B 25.0 ℃ Salinity = 0.000 g/Kg RelativeHumid = 100 % ↑	De plus, l'humidité relative du gaz d'étalonnage peut également être saisie. Les valeurs autorisées pour l'humidité relative sont comprises entre 0 % et 100 %. Lorsqu'aucune mesure d'humidité n'est disponible, utilisez 50 % (la valeur par défaut).
	Appuyez sur [ENTER].
B 21.7 %air B 25.0 °C Umeaspol = -674. mU Ucalpol = -674. mU ↑	Si une sonde ISM a été branchée ou configurée, vous pouvez également ajuster la tension de polarisation de la sonde. Vous pouvez saisir des valeurs différentes pour le mode Mesure (Umeaspol) et pour le mode Calibrage (Ucalpol). Pour des valeurs saisies se situant entre 0 mV et -550 mV, la sonde branchée sera paramétrée à une tension de polarisation de -500 mV. Si la valeur saisie est inférieure à -550 mV, la sonde branchée sera paramétrée sera paramétrée à une tension de polarisation de -674 mV.
() ()	REMARQUE : Au cours d'un étalonnage de procédé, on utilisera la tension de polarisation Umeaspol définie pour le mode Mesure.
Ċ	REMARQUE : Si l'on exécute un étalonnage en un point, le transmetteur envoie à la sonde la tension de polarisation valable pour l'étalonnage. Si les tensions de polarisation pour le mode Mesure et le mode Calibrage sont différentes, le transmetteur attend 120 secondes avant de commencer l'étalonnage. Dans ce cas, le transmetteur continuera également à fonctionner pendant 120 secondes après l'étalonnage, jusqu'au mode HOLD, avant de revenir au mode Mesure.
	Appuyez sur [ENTER].
B 21.7 %air B 25.0 °C Save Changes Ves & Exit	L'affichage présente la boîte de dialogue Sauver changements. Sélectionnez Non pour effacer les valeurs saisies et revenir à l'écran d'affichage des mesures, sélectionnez Oui pour enregistrer les modifications.

в

в

в

くア

в

в

23.0

25.0

CalPres = 759.8 mmH9 ProcPres= Edit

23.0

25 0

ProcPres= 759.8 mmH9

23 N

ProcCalPres=CalPres Drift Control = Auto

23.0

25.0

Salinity = 0.000 g⁄Kg RelativeHumid = 100 % ↑

PPb02

PPb02

ppb02

•

PPb02

<u>ە</u>ر

or

٥c

8.2.3.5 Paramètres de mesure de l'oxygène avec des sondes optiques

Si vous avez choisi le paramètre O₂ Opt lors de la configuration de la voie (reportez-vous à la section 8.2.1 « Configuration Canal »), vous pouvez paramétrer ou ajuster les paramètres d'étalonnage de pression, de pression de procédé, ProCalPres, salinité, contrôle de dérive et humidité relative.

Pour procéder à ces ajustements, choisissez le menu « O_2 optical » qui s'affiche (reportez-vous à la section 8.2.3 « Configuration des paramètres »).

Appuyez sur [ENTER].

Saisissez la pression d'étalonnage (ligne 3). La valeur par défaut de CalPres correspond à 759,8 avec mmHg comme unité par défaut.

Sélectionnez Modifier à la ligne 4 pour saisir manuellement la pression de procédé appliquée. Sélectionnez Ain si un signal d'entrée analogique est utilisé pour la pression de procédé appliquée. Appuyez sur [ENTER].

Si l'option Edit a été choisie, un champ de saisie s'affiche pour saisir la valeur manuellement. Si l'option Ain a été sélectionnée, vous devez saisir la valeur de départ (4 mA) et la valeur de fin (20 mA) de la plage pour le signal d'entrée de 4 à 20 mA.

Appuyez sur [ENTER].

REMARQUE : Reportez-vous à la section 4.3.6 « TB2 - Sondes (numériques) ISM à oxygène optique ».

La pression appliquée (ProcCalPres) doit être définie pour l'algorithme d'étalonnage procédé. La valeur de la pression de procédé (ProcPres) ou de la pression d'étalonnage (CalPres) peut être utilisée. Choisissez la pression à appliquer lors de l'étalonnage procédé en fonction de l'algorithme.

Définissez le contrôle de dérive pour l'étalonnage sur Auto (les critères de dérive et de temps doivent être remplis) ou Manual (l'utilisateur peut déterminer quand un signal est suffisamment stable pour effectuer l'étalonnage). Lorsque le mode Auto est sélectionné, la dérive est contrôlée par la sonde. Si le critère de dérive n'est pas satisfait dans un délai défini (en fonction du modèle de la sonde), l'étalonnage est interrompu et le message « Calibrage non terminé. ENTER pour quitter » s'affiche.

Appuyez sur [ENTER].

À l'étape suivante, la salinité de la solution mesurée peut être modifiée.

De plus, l'humidité relative du gaz d'étalonnage peut également être saisie. Les valeurs autorisées pour l'humidité relative sont comprises entre 0 % et 100 %. Lorsqu'aucune mesure d'humidité n'est disponible, utilisez 50 % (la valeur par défaut).

Appuyez sur [ENTER].

ProcCal = Calibration \uparrow

À l'aide du paramètre **ProcCal**, choisissez entre Scaling (mise à l'échelle) et Calibration (étalonnage), pour l'étalonnage procédé. Si vous choisissez la mise à l'échelle, la courbe d'étalonnage de la sonde reste identique, mais son signal de sortie est mis à l'échelle. Avec une valeur d'étalonnage < 1 %, le décalage du signal de sortie de la sonde est modifié pendant la mise à l'échelle, tandis qu'avec une valeur > 1 %, c'est la pente de la sortie de la sonde qui est ajus-

tée. Pour plus d'informations concernant la mise à l'échelle, consultez le manuel de la sonde.

66

Appuyez de nouveau sur [ENTER] pour afficher la boîte de dialogue Sauver changements. Sélectionnez No pour effacer les valeurs saisies et revenir à l'écran d'affichage des mesures ; sélectionnez Yes pour enregistrer les modifications.

8.2.3.6 Réglage du taux d'échantillonnage pour les sondes optiques

Si vous avez choisi le paramètre O_2 Opt lors de la configuration de la voie (reportez-vous à la section 8.2.1 « Configuration Canal »), vous pouvez régler le taux d'échantillonnage de ce paramètre.

Pour effectuer ce réglage, choisissez le menu « O_2 opt sampling rate » (reportez-vous à la section 8.2.3 « Configuration des paramètres »).

L'intervalle de temps entre deux cycles de mesure de la sonde peut être ajusté, c'est-à-dire adapté à l'application. Une valeur élevée prolongera la durée de vie de l'OptoCap de la sonde.

Appuyez sur [ENTER] pour afficher la boîte de dialogue Sauver changements. Sélectionnez No pour effacer les valeurs saisies et revenir à l'écran d'affichage des mesures ; sélectionnez Yes pour enregistrer les modifications.

8.2.3.7 Mode DEL

Si vous avez choisi le paramètre O_2 Opt lors de la configuration de la voie (reportez-vous à la section 8.2.1 « Configuration Canal »), vous pouvez régler les paramètres LED, T off et DI 1 LED control.

Pour procéder à ces ajustements, choisissez le menu « LED Mode » (reportez-vous à la section 8.2.3 « Configuration des paramètres »).

Vous pouvez sélectionner le mode de fonctionnement de la DEL de la sonde. Les options suivantes sont disponibles.

- Off : La DEL est désactivée en permanence.
- On : La DEL est activée en permanence.
- Auto : La DEL est allumée si la température du milieu mesurée est inférieure à Toff (cf. prochaine valeur) ou éteinte via le signal d'entrée numérique (cf. valeurs postérieures).

REMARQUE: Aucune mesure de l'oxygène n'est effectuée si la DEL est allumée.

Appuyez sur [ENTER].

в

в

LED: Auto

23.0

25 0

PPb02

Selon la température du milieu mesurée, la DEL de la sonde peut s'éteindre automatiquement. Si la température du fluide est supérieure à Toff, la DEL s'éteindra. La DEL s'allumera dès que la température du milieu sera inférieure à Toff - 3K. Cette fonction permet d'accroître la durée de vie de l'OptoCap en éteignant la DEL par l'intermédiaire des cycles SEP ou NEP.

REMARQUE : Cette fonction n'est active que si le mode de fonctionnement de la DEL est paramétré sur « Auto ».

Appuyez sur [ENTER].

Le mode de fonctionnement de la DEL de la sonde peut également être influencé par le signal d'entrée numérique DI1 du transmetteur. Si le paramètre « DI 1 LED control » est réglé sur Oui, la DEL est désactivée lorsque DI1 est actif. Si le paramètre « DI 1 LED control » est réglé sur Non, le signal de DI1 influence le mode de fonctionnement de la DEL de la sonde.

Cette fonction est utile pour le contrôle à distance de la sonde par l'intermédiaire d'un SPS ou d'un DCS.

REMARQUE : Cette fonction n'est active que si le mode de fonctionnement de la DEL est paramétré sur « Auto ».

Appuyez sur [ENTER] pour afficher la boîte de dialogue Sauver changements. Sélectionnez No pour effacer les valeurs saisies et revenir à l'écran d'affichage des mesures ; sélectionnez Yes pour enregistrer les modifications.

8.2.3.8 Paramètres de CO2 dissous

Si vous avez choisi le paramètre CO_2 lors de la configuration de la voie (reportez-vous à la section 8.2.1 « Configuration Canal »), vous pouvez paramétrer ou ajuster les paramètres de contrôle de dérive, salinité, HCO3 et TotPres ainsi que les unités affichées en vue d'un étalonnage de la pente et du point de zéro.

Pour effectuer ce réglage ou paramétrage, choisissez le menu « CO_2 » qui s'affiche (reportez-vous à la section 8.2.3 « Configuration des paramètres »).

Sélectionnez **Drift Control** (contrôle de dérive) pour l'étalonnage réglé sur Auto (les critères de dérive et de temps doivent être respectés) ou Manual (l'utilisateur peut décider qu'un signal est suffisamment stable pour terminer l'étalonnage), puis indiquez le tableau de tampons approprié pour la reconnaissance automatique des tampons. Si la valeur de dérive est inférieure à 0,4 mV pendant un intervalle de 19 secondes, la lecture est stable et l'étalonnage est effectué à l'aide de la dernière lecture. Si le critère de dérive n'est pas satisfait dans les 300 secondes, l'étalonnage est interrompu et le message « Calibrage non terminé. ENTER pour quitter » s'affiche.

Pour la **reconnaissance automatique du tampon** lors de l'étalonnage, sélectionnez le tampon Mettler-9. Employez pour l'étalonnage la solution avec pH = 7,00 et/ou pH = 9,21. Si la fonction de tampon automatique n'est pas utilisée ou si les tampons disponibles diffèrent des tampons ci-dessus, sélectionnez None (Aucun). Appuyez sur la touche [ENTER] pour continuer.

La **salinité (Salinity)** indique la quantité totale de sels dissous dans l'électrolyte de CO_2 de la sonde connectée au transmetteur. Il s'agit d'un paramètre spécifique à la sonde. La valeur par défaut (28,00 g/L) est valable pour le modèle InPro 5000. Ne modifiez pas ce paramètre si vous utilisez le modèle InPro 5000.

Le paramètre HCO_3 indique la concentration de carbonate acide dans l'électrolyte de CO_2 de la sonde connectée au transmetteur. Il s'agit aussi d'un paramètre spécifique à la sonde. La valeur par défaut 0,050 Mol/L est valable pour le modèle InPro 5000. Ne modifiez pas ce paramètre si vous utilisez le modèle InPro 5000.

Appuyez une nouvelle fois sur la touche [ENTER] pour continuer.

Si l'unité pour le CO2 dissous mesuré est %sat, il faut tenir compte de la pression pendant l'étalonnage ou la mesure. Pour cela, il convient de régler le paramètre TotPres. Si vous avez sélectionné une autre unité que %sat, le résultat ne sera pas influencé par ce paramètre.

Il est possible de choisir les unités affichées à l'écran pour la pente et le point de zéro. La valeur par défaut de l'unité de la pente est [%] et peut être modifiée en [pH/mV]. Pour le point de zéro, la valeur par défaut de l'unité est [pH] et peut être modifiée en [mV]. Utilisez la touche 🕨 pour accéder au champ de saisie et sélectionnez l'unité à l'aide de la touche 🛦 ou 🛡.

Appuyez de nouveau sur la touche [ENTER] pour afficher la boîte de dialogue Sauver changements. Sélectionnez No pour effacer les valeurs saisies et revenir à l'écran d'affichage des mesures ; sélectionnez Yes pour enregistrer les modifications.

8.2.4 Paramétrage Filtrage

Accédez au mode Configuration comme indiqué à la section 8.1, « Accès au mode Configuration », et sélectionnez le menu Mesure (voir 8.2, « Mesure »).

Sélectionnez le menu « Paramétrage Filtrage » à l'aide de la touche ▲ ou ▼. Appuyez sur [ENTER].

La méthode de la moyenne (filtre de bruit) pour chaque ligne de mesure peut désormais être sélectionnée.

Les options sont Spécial (Par défaut), Aucune, Bas, Moyen et Haut :

Set Averaging

Aucune = aucune moyenne ou aucun filtre. Bas = équivaut à une moyenne mobile à 3 points

- Moven = équivaut à une movenne mobile à 6 points
- Haut = équivaut à une moyenne mobile à 10 points
- Spécial = La moyenne dépend de la modification du signal (normalement, elle est haute, mais elle peut être basse en cas de modifications importantes du signal d'entrée).

Appuyez de nouveau sur [ENTER] pour afficher la boîte de dialogue Sauver changements. Sélectionnez Non pour effacer les valeurs saisies et revenir à l'écran d'affichage des mesures, sélectionnez Oui pour enregistrer les modifications.

8.3 Alarme/nettoyage

(CHEMIN D'ACCÈS : Menu/Configure/Alarm/Clean)

A	0.28	µS∕cm
A	25.0	°C
Set	up Alarm	ŧ

Accédez au mode Configuration comme indiqué à la section section 8.1, « Accès au mode Configuration ».

8.3.1 Alarme

Ce menu permet de configurer la fonction d'alarme pour l'écran. L'interface FF vous permet de lire l'état de d'alarme fourni par le bloc d'entrée discrète. Pour plus d'informations, consultez la documentation « FOUNDATION fieldbus parameter Multi-parameter Transmitter M400 FF » sur CD-ROM.

Pour sélectionner Setup Alarm, appuyez sur les touches 🛦 ou 🔻. Confirmez la sélection en appuyant sur [ENTER].

uS/car °C

.

Les conditions de déclenchement des alarmes sont les suivantes :

- 1. Une panne de courant ou un cycle de mise hors/sous tension survient,
- 2. Le chien de garde du logiciel effectue une réinitialisation.
- 3. Rg est hors tolérance : par exemple, électrode de mesure cassée (uniquement pour le pH ; les diagnostics Rg pH/pNa détectent aussi bien les verres de membranes pH que pNa)
- 4. Rr est hors tolérance : par exemple, électrode de référence recouverte ou usée (uniquement pour les électrodes de pH, sauf pH/pNa)
- 5. Si la sonde de conductivité est exposée à l'air (par exemple dans un tuyau vide) (uniquement pour les sondes de conductivité résistive)
- 6. Si la sonde de conductivité a un court-circuit (uniquement pour les sondes de conductivité résistive)
- 7. Si aucune sonde n'est connectée sur le canal B (uniquement pour les sondes ISM)
- 8. Si la température est hors limite, si la lumière directe est trop forte (à cause d'une fibre de verre cassée, par exemple) ou si le corps de l'électrode a été enlevé (reportez-vous également à la section 10.1 « Diagnostic ») CHEMIN D'ACCÈS : Menu/Service/Diagnostics/O₂ optical) (uniquement pour les sondes

optiques)

- 9. Si le signal ou la valeur de température est hors limite (reportez-vous également à la section 10.1 « Diagnostic »)
 CHEMIN D'ACCÈS : Menu/Service/Diagnostics/O₂ optical) (uniquement pour les sondes optiques)
- 10. Si une erreur matérielle a été détectée (reportez-vous également à la section 10.1 « Diagnostic ») CHEMIN D'ACCÈS : Menu/Service/Diagnostics/O₂ optical) (uniquement pour les sondes optiques)
- Si la sonde de conductivité est exposée à l'air (par exemple dans un tuyau vide) (uniquement pour les sondes de conductivité ISM)
- 12. Si la constante de cellule (le multiplicateur) est hors limite, autrement dit s'il a été trop modifié par rapport à la valeur de l'étalonnage d'usine (uniquement pour les sondes de conductivité ISM)
- 13. Si l'électrolyte dans le corps à membrane atteint un niveau si faible que la connexion entre la cathode et la référence est perturbée (le cas échéant, une action immédiate, par exemple le remplacement de l'électrolyte, puis son remplissage est requise).

70

Pour 1 et 2, l'indicateur d'alarme est désactivé lorsque le message d'alarme est effacé. Il est réactivé si l'alimentation fait l'objet d'un cycle permanent ou si le chien de garde réinitialise de manière répétée le système.

Uniquement pour les électrodes de pH

Pour 3 et 4, l'indicateur d'alarme s'éteint si le message est effacé et si la sonde a été remplacée ou réparée de sorte que les valeurs Rg et Rr se trouvent au sein des spécifications. Si le message Rg ou Rr est effacé et que Rg ou Rr se trouve toujours hors limites, l'alarme reste active et le message s'affiche de nouveau. Les alarmes Rg et Rr peuvent être désactivées en accédant à ce menu et en réglant Diagnostic Rg et/ou Diagnostic Rr sur Non. Le message peut ensuite être effacé et l'indicateur d'alarme se désactive même si Rg ou Rr se trouve hors limite.

Appuyez de nouveau sur [ENTER] pour afficher la boîte de dialogue Sauver changements. Sélectionnez Non pour supprimer les valeurs saisies, sélectionnez Oui pour valider les valeurs saisies comme valeurs courantes.

REMARQUE : Il existe d'autres types d'alarmes susceptibles de s'afficher à l'écran. Il est conseillé de consulter la liste des alarmes et avertissements figurant dans le chapitre 14, « Dépannage ».

8.3.2 Nettoyage

Ce menu permet de configurer les fonctions de nettoyage pour l'écran.

L'intervalle du cycle de nettoyage peut être réglé de 0,000 à 999,9 heures. Un réglage sur 0 désactive le cycle de nettoyage. La durée du nettoyage peut être comprise entre 0 et 9 999 secondes et doit être inférieure à l'intervalle du cycle de nettoyage.

Appuyez de nouveau sur [ENTER] pour afficher la boîte de dialogue Sauver changements. Sélectionnez Non pour effacer les valeurs saisies et revenir à l'écran d'affichage des mesures, sélectionnez Oui pour enregistrer les modifications.

Remarque : La fonction de nettoyage est également disponible via l'interface FF.

uS/cm

A

8.4 Configuration ISM (pour sondes ISM, pH, oxygène et CO2 dissous)

(CHEMIN D'ACCÈS : Menu/Configure/ISM Setup)

Accédez au mode Configuration comme indiqué à la section 8.1, « Accès au mode Configuration », et naviguez jusqu'au menu de « configuration ISM » à l'aide de la touche \blacktriangle ou $\mathbf{\nabla}$. Appuyez sur [ENTER].

8.4.1 Contrôle de la sonde

Sélectionnez le menu « Contrôle de la sonde » en appuyant sur [ENTER].

Les options de contrôle de sonde peuvent être activées ou désactivées. L'interface FF vous permet de lire les valeurs de contrôle de la sonde fournies par le bloc d'entrée discrète. L'option suivante est possible :

Indicateur durée de vie : L'indication dynamique de durée de vie permet d'estimer, d'après les contraintes réelles subies, à quel moment l'électrode de pH ou l'élément sensible d'une sonde à oxygène ampérométrique arrive en fin de vie. La sonde prend toujours en compte la contrainte moyenne des derniers jours et peut augmenter/réduire la durée de vie en fonction du résultat.

Indicateur durée de vieOUI/NONAlarmeOUI/NON

Les paramètres suivants affectent l'indicateur de durée de vie :

Paramètres dynamiques :

Paramètres statiques : – Historique d'étalonnage

- Température
 Valeur de pH ou d'oxygène
- Zéro et pente
- Valeur de pH ou d'oxygène
- Impédance du verre (uniquement pH) Cycles NEP/SEP/d'autoclavage
- Impédance de référence (uniquement pH)

La sonde conserve les informations enregistrées dans les circuits intégrés ; celles-ci peuvent être récupérées via un transmetteur ou via le logiciel de gestion des actifs iSense.

L'alarme est réinitialisée lorsque l'indicateur de durée de vie n'est plus 0 jour (par exemple après la connexion d'une nouvelle sonde ou la modification des conditions de mesure).

Pour les sondes à oxygène ampérométriques, l'indicateur de durée de vie dépend de l'élément sensible de la sonde. Suite au remplacement de cet élément, réinitialisez l'indicateur de durée de vie de la manière décrite à la section 8.4.5, « Réinitialisation du compteur/minuterie ISM ».

Si l'indicateur de durée de vie est activé, en mode Mesure, la valeur est automatiquement affichée sur la ligne 3.

Appuyez sur [ENTER].

B 25.0 °C

7.00

РH

в

Lifetime Indicator No
^в 7.00 мн В 25.0 ма	Temps avant Maint : Cette minuterie estime le moment où doit être effectué le prochain cycle de nettoyage pour assurer la meilleure performance de mesure. Elle tient compte des modifications importantes apportées aux paramètres DLI.	
Time to Maint No 🕴	Temps avant maintenance Alarme	OUI/NON OUI/NON
	Le délai de maintenance peut être ramené du compteur/minuterie ISM » (voir la secti ISM »). Pour les sondes à oxygène ampér cycle de maintenance pour la membrane	à la valeur initiale à l'aide du menu « Réinitialisation on 8.4.5, « Réinitialisation du compteur/minuterie rométriques, le délai de maintenance représente un et l'électrolyte.
	Appuyez sur [ENTER].	
^в 7.00 _{РН} в 25.0 ∞	Activation de la Minuterie d'étalonnage a moment où doit être effectué le prochain é mesure. Elle tient compte des modification	Idaptatif : Cette minuterie (Adapt Timer Cal) estime le talonnage pour assurer la meilleure performance de ns importantes apportées aux paramètres DLI.
Adapt Cal Timer No 🕴 Alarm No 🕴	Adapt Timer Cal Alarme	OUI/NON OUI/NON
	La minuterie d'étalonnage adaptatif sera ra plus, après un étalonnage, l'alarme sera r activé, la valeur est automatiquement affic	amenée à sa valeur initiale après un étalonnage. De éinitialisée. Si la minuterie d'étalonnage adaptatif est chée sur la ligne 4.
	Appuyez sur [ENTER].	
^в 7.00 _{РН} в 25.0 ∞ [△]	Les valeurs initiales du délai de maintenar être modifiées en fonction de l'expérience	nce et de la minuterie d'étalonnage adaptatif peuvent concernant l'application et chargées sur la sonde.
Time to Maint 820.0d Adapt Cal Timer 007d 🛧		
Ċ	REMARQUE : Lorsqu'une sonde est conne minuterie d'étalonnage adaptatif sont lues	ectée, les valeurs du délai de maintenance et/ou de la par la sonde.

Appuyez de nouveau sur [ENTER] pour afficher la boîte de dialogue Sauver changements. Sélectionnez Non pour effacer les valeurs saisies et revenir à l'écran d'affichage des mesures, sélectionnez Oui pour enregistrer les modifications.

^в 7.00 рн ^в 25.0 °с ^{ISM} Setup CIP Cycle Linit ↑ ^в 7.00 рн ^в 25.0 °с ^с 25.0 °с ^с 25.0 °с ^с 25.0 °с

L

8.4.2 Nb Max. Cycles NEP

Accédez au menu « Nb Max. Cycles NEP » à l'aide des touches \blacktriangle et ∇ , puis appuyez sur [ENTER].

Le nombre max. de cycles NEP compte le nombre de cycles NEP. Si la limite (définie par l'utilisateur) est atteinte, une alarme apparaît à l'écran. L'interface FF vous permet de lire la limite de cycle NEP fournie par le bloc d'entrée discrète. L'option suivante est disponible :

NEP Max 000	Temp. 055
Alarme	OUI/NON

Si la valeur Max est 000, le compteur est désactivé. L'alarme est réinitialisée après le remplacement de la sonde. Pour les sondes à oxygène, le compteur peut être réinitialisé (voir la section 8.4.5, « Réinitialisation du compteur/minuterie ISM »).

Caractéristiques NEP : Les cycles NEP sont automatiquement reconnus par la sonde. L'intensité des cycle NEP étant variable (durée et température) selon les applications, l'algorithme du compteur reconnaît l'augmentation de la température de mesure au-dessus d'une limite réglable (paramètre **Temp** en °C). Si la température ne baisse pas en dessous de la limite définie dans les 5 minutes, le compteur augmente d'une unité et est verrouillé pour les deux heures suivantes. Si le NEP dure plus de deux heures, le compteur est à nouveau incrémenté d'une unité.

Appuyez sur [ENTER] pour afficher la boîte de dialogue Sauver changements. Sélectionnez Non pour supprimer les valeurs saisies, sélectionnez Oui pour valider les valeurs saisies comme valeurs courantes.

8.4.3 Nb Max. Cycles SEP

Accédez au menu « Nb Max. Cycles SEP » à l'aide des touches \blacktriangle et ∇ , puis appuyez sur [ENTER].

Le nombre max. de cycles SEP compte le nombre de cycles SEP. Si la limite (définie par l'utilisateur) est atteinte, une alarme apparaît à l'écran. L'interface FF vous permet de lire la limite de cycle SEP fournie par le bloc d'entrée discrète. L'option suivante est disponible :

SEP Max 000 Alarme Temp. 115 OUI/NON

Si la valeur Max est 000, le compteur est désactivé. L'alarme est réinitialisée après le remplacement de la sonde. Pour les sondes à oxygène, le compteur peut être réinitialisé (voir la section 8.4.5, « Réinitialisation du compteur/minuterie ISM »).

Caractéristiques SEP : Les cycles SEP sont automatiquement reconnus par la sonde. L'intensité des cycles SEP étant variable (durée et température) selon les applications, l'algorithme du compteur reconnaît l'augmentation de la température de mesure au-dessus d'une limite réglable (paramètre **Temp** en °C). Si la température ne baisse pas en dessous de la limite définie dans les 5 minutes, le compteur augmente d'une unité et est verrouillé pour les deux heures suivantes. Si le SEP dure plus de deux heures, le compteur est à nouveau incrémenté d'une unité.

Appuyez sur [ENTER] pour afficher la boîte de dialogue Sauver changements. Sélectionnez Non pour supprimer les valeurs saisies, sélectionnez Oui pour valider les valeurs saisies comme valeurs courantes.

8.4.4 Nb Max. Cycles Autoclav

REMARQUE : Le transmetteur reconnaît la sonde ISM connectée et ne propose ce menu que si une sonde autoclavable est branchée.

Accédez au menu « Nb Max. Cycles Autoclav » à l'aide des touches \blacktriangle et ∇ , puis appuyez sur [ENTER].

La limite de cycles d'autoclavage compte le nombre de cycles d'autoclavage. Si la limite (définie par l'utilisateur) est atteinte, une alarme apparaît à l'écran. L'interface FF vous permet de lire la limite de cycles d'autoclavage fournie par le bloc d'entrée discrète. L'option suivante est disponible :

Autoclave Max 000 Alarme OUI/NON

Si la valeur Max est 000, le compteur est désactivé. L'alarme est réinitialisée après le remplacement de la sonde. Pour les sondes à oxygène, le compteur peut également être réinitialisé en mode manuel (reportez-vous à la section 8.4.5 « Réinitialisation du compteur/minuterie ISM »).

Caractéristiques d'autoclave : La sonde n'étant pas connectée au transmetteur pendant un cycle d'autoclave, le système vous demandera pour chaque sonde connectée si elle a été passée en autoclave. Selon votre réponse, le compteur sera incrémenté ou non.

Appuyez sur [ENTER] pour afficher la boîte de dialogue Sauver changements. Sélectionnez Non pour supprimer les valeurs saisies, sélectionnez Oui pour valider les valeurs saisies comme valeurs courantes.

в	25.0	°C
ISM Aut	Setup oClave Cycle L	.imit ↑

7.00

в

в

8.4.5 Réinitialisation du compteur/minuterie ISM

Ce menu permet de réinitialiser les fonctions de compteur et de minuterie ne pouvant pas être réinitialisées automatiquement. La minuterie d'étalonnage adaptatif est réinitialisée après un ajustement ou un étalonnage.

Accédez au menu « Réinit. ISM Compt/Timer » à l'aide des touches \blacktriangle et ∇ , puis appuyez sur [ENTER].

ISM Setup Reset ISM Counter/Timer†

Ze at

or

71 5

в	71.5	%sat
в	25.0	°C
Reset	Time to M	aint No ↑

71.5

25.0

Reset CIP No Reset SIP No

в

Veat

°C

Si une électrode de pH ou une sonde à oxygène ampérométrique est branchée, le menu de réinitialisation du délai de maintenance s'affiche. Le délai de maintenance doit être réinitialisé après les opérations suivantes.

Electrodes de pH : Cycle de maintenance manuelle de la sonde.
 Sonde à oxygène : Cycle de maintenance manuelle de la sonde ou remplacement de l'élément sensible ou de la membrane.

Appuyez sur la touche [ENTER].

Si une sonde à oxygène est branchée, le menu de réinitialisation des compteurs NEP et SEP s'affiche. Ces compteurs doivent être réinitialisés après les opérations suivantes.

Sonde ampérométrique : remplacement du élément sensible de la sonde

Appuyez sur la touche [ENTER].

versions de microprogramme adéquates.

FENTER1.

8.4.6 Menu d'ajustement de tension DLI (uniquement pour électrodes de pH ISM)

Ce menu permet d'adapter le calcul des données de diagnostic DLI, TTM et ACT en fonction des exigences de l'application et/ou de l'expérience.

REMARQUE : Cette fonction n'est disponible que pour les électrodes de pH ISM avec des

Accédez au menu d'ajustement de tension DLI à l'aide de la touche ▲ ou ▼ et appuyez sur

 \bigcirc

^в 7.00 _₽н ^в 25.0 ∞

ISM Setup DLI Stress Adjustment †

в	7.00	РH
в	25.0	°C

DLI Stress Adjustment Process Stress Medium 🛧 Réglez le paramètre de tension du procédé selon l'application et/ou les exigences.

Bas : Les valeurs DLI, TTM et ACT seront augmentées d'environ 25 % par rapport à la valeur Moyen.

Moyen : Valeur par défaut (identique aux valeurs DLI, TTM et ACT employées sur le transmetteur dans les versions antérieures du microprogramme).

Haut : Les valeurs DLI, TTM et ACT seront réduites d'environ 25 % par rapport à la valeur Moyen.

Appuyez sur [ENTER] pour afficher la boîte de dialogue Sauver changements. La sélection de Non efface les valeurs saisies. La sélection de Oui active les valeurs saisies.

0.28

uS/cm

°C

.

.

A

A

Configure Display

8.5 Affichage

(CHEMIN D'ACCÈS : Menu/Configure/Display)

Accédez au mode Configuration comme indiqué à la section 8.1, « Accès au mode Configuration ».

Ce menu permet de configurer les valeurs à afficher, ainsi que l'écran lui-même.

8.5.1 Mesure

L'écran comporte 4 lignes, la ligne 1 se trouvant en haut et la ligne 4 en bas.

Sélectionnez les valeurs (Mesure a, b, c ou d) à afficher sur chaque ligne de l'écran.

Cette sélection s'effectue dans le menu Configuration/Measurement/Channel Setup.

Sélectionnez le mode « Erreur Affichage ». Si ce paramètre est activé, lorsqu'une alarme ou un avertissement survient, le message « Erreur – Presser ENTER » s'affiche sur la ligne 4 en mode de mesure normal.

Appuyez de nouveau sur [ENTER] pour afficher la boîte de dialogue Sauver changements. Sélectionnez Non pour supprimer les valeurs saisies ou Oui pour les valider comme valeurs actives.

8.5.2 Résolution

Ce menu permet de régler la résolution de chacune des valeurs affichées.

Ce paramétrage ne garantit pas la précision de la mesure.

A 0.28 μ 5/cm A 25.00 c $a = 0.01 \ b = 0.1 \ c$ Les paramètres possibles sont 1; 0,1; 0,01; 0,001 ou Auto.

Appuyez sur [ENTER] pour afficher la boîte de dialogue Sauver changements.

Display Setup Measurement

.

µS/cm

°C

.

us/en

°C

.

µs/cm

°C

7.00 pH

25.00 °C

Backlight On

0.28

0.28

25.00

0.28

25.00

Name 1= METTLER Name 2= TOLEDO

Display Setup Name

A

A

A

A

A

A

B METTLER

E TOLEDO

8.5.3 Rétroéclairage

Ce menu permet de régler les options de rétroéclairage de l'écran.

Les paramètres disponibles sont Act., Act. 50% ou Auto 50%. Si l'option Auto 50% est sélectionnée, le rétroéclairage est réduit à 50% de ses capacités après 4 minutes d'inactivité au niveau du clavier. Le rétroéclairage s'active de nouveau automatiquement si une touche est enfoncée.

Appuyez sur [ENTER] pour afficher la boîte de dialogue Sauver changements.

8.5.4 Nom

Ce menu permet de configurer un nom alphanumérique affiché sur les 9 premiers caractères des lignes 3 et 4 de l'écran. Par défaut, ce paramètre est vierge.

Lorsqu'un nom est saisi sur la ligne 3 et/ou 4, une mesure peut encore s'afficher sur celle-ci.

Utilisez les touches ◀ et ► pour passer d'un caractère à l'autre. Utilisez les touches ▲ et ▼ pour modifier le caractère à afficher. Une fois que tous les chiffres des deux canaux d'affichage ont été saisis, appuyez sur [ENTER] pour afficher la boîte de dialogue Sauver changements.

En mode mesure, le nom s'affiche sur les lignes 3 et 4 devant les mesures.

8.5.5 Contrôle de sonde ISM (disponible uniquement si une sonde ISM est connectée)

Le contrôle de sonde permet d'afficher les informations relatives au contrôle sur les lignes 3 et 4. Les options suivantes sont disponibles :

Sensor Monitoring Line3 Life Indicator ↑ Ligne3 Désact./Durée de vie/Tps av. Maint/Timer Cal Adapt. Ligne4 Désact./Durée de vie/Tps av. Maint/Timer Cal Adapt.

8.6 Sortie Hold

(CHEMIN D'ACCÈS : Menu/Configure/Hold Outputs)

Accédez au mode Configuration comme indiqué à la section 8.1, « Accès au mode Configuration ».

La fonction « **Sorties Hold** » s'applique pendant le procédé d'étalonnage. Si l'option « Hold outputs » est paramétrée sur Oui, l'entrée analogique correspondante de l'interface FF sera maintenue pendant l'étalonnage. Le mode Hold dépend des paramètres définis. Consultez la liste cidessous pour connaître les paramètres possibles. Les options suivantes sont disponibles :

 R
 0.28
 μ5/cm

 R
 25.0
 °C

 Hold Outputs?
 Yes
 ↑

Sorties Hold ? Oui/Non

Système

9

(CHEMIN D'ACCÈS : Menu/System)

En mode Mesure, appuyez sur la touche ◀. Appuyez sur la touche ▼ ou ▲ pour accéder au menu « Système », puis appuyez sur [ENTER].

9.1 **Choix Langue**

(CHEMIN D'ACCÈS : Menu/System/Set Language)

Ce menu permet de configurer la langue de l'affichage.

Les choix possibles sont les suivants : anglais, français, allemand, italien, espagnol, portugais, russe ou japonais (katakana).

Appuyez sur [ENTER] pour afficher la boîte de dialogue Sauver changements.

9.2 Mots de passe

(CHEMIN D'ACCÈS : Menu/System/Passwords)

A 0.28µS/cm A 25.00 °C System . Passwords A 0.28µs/cm A °C Enter Password 00000 Change Administrator .

Ce menu permet de configurer les mots de passe de l'opérateur et de l'administrateur et de dresser une liste des menus accessibles pour l'opérateur. L'administrateur dispose de droits pour accéder à tous les menus. Pour les transmetteurs neufs, tous les mots de passe par défaut sont « 00000 ».

Le menu Mots de passe est protégé : saisissez le mot de passe de l'administrateur pour accéder au menu.

.

Cal Key Yes

Quick Setup Yes

9.2.1 Modification des mots de passe

Reportez-vous à la section 9.3 pour prendre connaissance de la procédure d'accès au menu Mots de passe. Sélectionnez Changer Administrateur ou Changer Opérateur et définissez le nouveau mot de passe.

Appuyez sur la touche [ENTER] pour confirmer le nouveau mot de passe. Appuyez sur [ENTER] pour afficher la boîte de dialogue Sauver changements.

9.2.2 Configuration de l'accès aux menus de l'opérateur

Reportez-vous à la section 9.3 pour prendre connaissance de la procédure d'accès au menu Mots de passe. Sélectionnez Configurer Opérateur pour configurer la liste d'accès de l'opérateur. Il est possible d'attribuer ou de refuser des droits aux menus suivants : Touche Cal, Configuration Rapide, Configuration, Système, Configuration PID et Service.

Choisissez Oui ou Non pour accorder ou refuser l'accès aux menus mentionnés ci-dessus et appuyez sur [ENTER] pour passer aux rubriques suivantes. Appuyez sur la touche [ENTER] après avoir configuré tous les menus pour afficher la boîte de dialogue Sauver changements. Sélectionnez Non pour supprimer les valeurs saisies, sélectionnez Oui pour valider les valeurs saisies comme valeurs courantes.

9.3 Set/Effacer lockout

(CHEMIN D'ACCÈS : Menu/System/Set/Clear Lockout)

Ce menu permet d'activer/de désactiver la fonction de verrouillage du transmetteur. L'utilisateur est invité à saisir un mot de passe pour pouvoir accéder aux menus si la fonction Verrouillage est activée.

Le menu Lockout est protégé : saisissez le mot de passe de l'administrateur ou de l'opérateur et choisissez OUI pour activer la fonction de verrouillage ou NON pour la désactiver. Après la sélection, appuyez sur la touche [ENTER] pour afficher la boîte de dialogue Sauver changements. Sélectionnez Non pour supprimer la valeur saisie, sélectionnez Oui pour valider la valeur comme valeur courante.

9.4 Réinitialisation

(CHEMIN D'ACCÈS : Menu/System/Reset)

REMARQUE : Si la réinitialisation est effectuée via l'affichage, les paramètres FF correspondants sont également réinitialisés avec le réglage d'usine par défaut. Pour plus d'informations, consultez la documentation « FOUNDATION fieldbus parameter Multi-parameter Transmitter M400 FF » sur CD-ROM.

Ce menu permet d'accéder aux options suivantes :

Réinit. Système, Réinit. Transm Cal, Réinit. Cal mA.

9.4.1 Réinitialisation du système

Ce menu permet de réinitialiser le transmetteur avec les réglages d'usine par défaut. L'étalonnage du transmetteur n'est pas concerné.

Après la sélection, appuyez sur la touche [ENTER] pour afficher un message de confirmation. Sélectionnez Non pour revenir au mode Mesure sans modification. Sélectionnez Oui pour réinitialiser l'instrument.

9.4.2 Réinitialisation de l'étalonnage du transmetteur

Ce menu permet de rétablir les dernières valeurs usine pour les facteurs d'étalonnage de l'instrument.

Après la sélection, appuyez sur la touche [ENTER] pour afficher un message de confirmation. Sélectionnez Non pour revenir au mode Mesure sans modification. Sélectionnez Oui pour réinitialiser les facteurs d'étalonnage de l'appareil.

9.5 Réglage de la date et de l'heure

Vous devez saisir la date et l'heure actuelles. Les options suivantes sont disponibles : Cette fonction s'active automatiquement à chaque démarrage.

Date (AA-MM-JJ) : Heure (HH:MM:SS) :

0.28

25.00

Press ENTER to Continue&

0.28

25.00

et System

uS/cm

°C

nS/cm

°C

uS/cm

°C

.

? Yes

A

A

A

A

A

A

в

в

Reset Syst

0.28

25.00

7.00

25.0

System Set Date&Time

°C

Reset Meter Calibration Are you sure? Yes

00

10 Service

(CHEMIN D'ACCÈS : Menu/Service)

En mode Mesure, appuyez sur la touche ◀. Appuyez sur la touche ▲ ou ▼ pour accéder au menu « Service » et appuyez sur [ENTER]. Les options de configuration du système disponibles sont détaillées ci-dessous.

10.1 Diagnostic

(CHEMIN D'ACCÈS : Menu/Service/Diagnostics)

Ce menu est un outil précieux pour le dépannage et permet de diagnostiquer les éléments suivants : Modèle/Version logicielle, Affichage, Clavier, Mémoire, Read Analog Inputs, Optique O2.

10.1.1 Modèle/Version logicielle

Une information essentielle pour chaque demande de service est le modèle et le numéro de version logicielle. Ce menu affiche la référence, le modèle et le numéro de série du transmetteur. La touche ▼ permet de parcourir ce menu et d'obtenir des renseignements supplémentaires comme la version du micrologiciel installé sur le transmetteur (Master V_XXXX et Comm V_XXXX) ; de même, si une sonde ISM est connectée, sont fournies les versions du micrologiciel (sonde FW V_XXX) et du matériel constitutif de la sonde (sonde HW XXXX).

Appuyez sur [ENTER] pour quitter cet écran.

10.1.2 Affichage

Tous les pixels de l'écran s'allument pendant 15 secondes pour permettre de déceler les éventuels problèmes. Au bout de 15 secondes, le transmetteur revient au mode de mesure normal ; pour quitter plus tôt, appuyez sur [ENTER].

10.1.3 Clavier

0.28

25.00

Service

uS/cm

°C

.

0.28

25

Diagnostics Display uS/cm

۰с

.

A

A

A

Key press

0.28

25.00

= (MENU) Press ENTER to Continue

uS/cm

°C

Pour le diagnostic du clavier, l'écran indique la touche activée. Appuyez sur la touche [ENTER] pour que le transmetteur revienne au mode de mesure normal.

A 0.28 uS/cm 25.00°C. Diagnostics Memory . A

0.2811S / cm A 25.00۰c Passed Press ENTER to Continue

10.1.4 Mémoire

Si le menu Mémoire est sélectionné, le transmetteur effectue un test sur la mémoire vive (RAM) et la mémoire morte (ROM). Des modèles de test sont écrits sur tous les emplacements de la mémoire vive, d'autres sont lus à partir de ces mêmes emplacements. La somme de contrôle ROM est recalculée et comparée à la valeur enregistrée dans la mémoire morte.

10.1.5 **Read Analog Inputs**

Ce menu affiche la valeur mA de l'entrée analogique.

Appuyez sur [ENTER] pour quitter cet écran.

10.1.6 0₂ optique

в	13.4	%AIR
в	25.3	°C
Dia9nostics O2 Optical		+

Ce menu affiche l'état et le mode de fonctionnement de la sonde O₂ optique. Les touches ▲ ou ▼ permettent de parcourir ce menu et d'obtenir des renseignements supplémentaires. Appuyez sur [ENTER] pour quitter cet écran.

10.2 Calibrer

(CHEMIN D'ACCÈS : Menu/Service/Calibrate)

A 0.28 µS/cm A 25.00 °C Calibrate Meter Channel A Resistance 1 A Accédez au menu Service en suivant la procédure de la section 10, « Service », sélectionnez Calibrer et appuyez sur la touche [ENTER].

Ce menu présente les options d'étalonnage du transmetteur et des entrées analogiques, ainsi que la fonction de déverrouillage de l'étalonnage.

10.2.1 Étalonnage de l'instrument (uniquement pour le canal A)

Le transmetteur M400 est étalonné en usine selon les spécifications établies. Normalement, il n'est pas nécessaire de procéder au réétalonnage de l'instrument de mesure, sauf si des conditions extrêmes mènent à un fonctionnement non conforme aux spécifications signalé dans le menu Vérification du calibrage. Une vérification ou un réétalonnage périodique peut également être nécessaire afin d'assurer la conformité avec les exigences de qualité. Il existe plusieurs options d'étalonnage de l'instrument : Courant (utilisé pour l'oxygène dissous), Voltage, Rg Diagnostic, Rr Diagnostic (utilisé pour le pH) et Température (utilisé pour toutes les mesures).

10.2.1.1 Résistance

Le transmetteur de mesure est doté de cinq (5) plages de mesure internes sur chaque voie. Chaque plage de résistance (consistant chacune en un étalonnage en deux points) et de température est étalonnée séparément.

Le tableau ci-dessous indique les valeurs de résistance de toutes les plages d'étalonnage.

Plage	Point 1	Point 2	Point 4
Résistivité 1	1,0 Mohm	10,0 Mohms	-
Résistivité 2	100,0 Kohms	1,0 Mohm	-
Résistivité 3	10,0 Kohms	100,0 Kohms	-
Résistivité 4	1,0 Mohm	10,0 Kohms	-
Résistivité 5	100 Ohms	1,0 Mohm	-
Température	1 000 Ohms	3,0 Kohms	66 Kohms

Nous recommandons l'utilisation du Calibrator Module (module d'étalonnage) du M400 pour l'étalonnage et la vérification (reportez-vous à la liste des accessoires à la section 15). Les instructions d'utilisation de cet accessoire sont fournies avec le Calibrator Module.

Accédez à l'écran d'étalonnage du transmetteur et sélectionnez la voie A ou B, et la résistance 1, pour indiquer que le transmetteur est prêt à étalonner la résistance de la première plage. Il est possible de modifier cette résistance en sélectionnant la plage de 1 à 5. Chaque plage de résistance se compose d'un étalonnage en deux points.

Appuyez sur [ENTER] pour démarrer l'étalonnage.

La première ligne de texte demande la valeur de résistance du point 1 (cela correspond à la valeur de la résistance 1 indiquée sur l'accessoire Calibration Module). La deuxième ligne de texte indique la valeur de résistance mesurée. Lorsque la valeur se stabilise, appuyez sur [ENTER] pour effectuer l'étalonnage.

° 0.28 μ≤νσα ° 25.0 ∞

A

A

A

A

0.28

25.0

0 28

A Point1 = 1.0000 MΩ A R1 = 0.0000 Ω

Calibrate Meter Channel A Resistance 1 *

uSZCM

µS∕ cm

ŧ

٥c

L'écran du transmetteur invite l'utilisateur à saisir la valeur pour le point 2 et R1 affiche la valeur de résistance mesurée. Lorsque cette valeur se stabilise, appuyez sur [ENTER] pour étalonner cette plage et afficher l'écran de confirmation.

Choisissez Oui pour enregistrer les valeurs d'étalonnage. La réussite de l'étalonnage est confirmée à l'écran. Le transmetteur revient en mode de mesure au bout de 5 secondes environ.

Une fois les points 1 et 2 étalonnés, revenez à l'écran Calibrer Transm. Déplacez le curseur pour passer à la Résistance 2, désignant la deuxième plage d'étalonnage. Continuez avec le procédé d'étalonnage en deux points comme pour la première plage. Le même procédé doit être suivi pour réaliser l'étalonnage de la résistance des 5 plages.

10.2.1.2 Température

L'étalonnage de la température s'effectue en trois points. Le tableau ci-dessous indique les valeurs de résistance de ces trois points.

Accédez à l'écran Calibrer Transm. et choisissez Calibrage température pour le canal A.

Appuyez sur [ENTER] pour démarrer l'étalonnage de la température.

La première ligne de texte demande la valeur de température du point 1 (cela correspond à la valeur de la température 1 affichée sur le module d'étalonnage). La seconde ligne de texte indique la valeur de résistance mesurée. Lorsque la valeur se stabilise, appuyez sur [ENTER] pour effectuer l'étalonnage.

L'écran du transmetteur invite l'utilisateur à saisir la valeur pour le point 2 et T2 affiche la valeur de résistance mesurée. Lorsque cette valeur se stabilise, appuyez sur [ENTER] pour étalonner ce domaine.

Répétez ces étapes pour le point 3.

Appuyez sur [ENTER] pour afficher un écran de confirmation. Choisissez Oui pour enregistrer les valeurs d'étalonnage, le message « Calibrage réussi » s'affiche.

Le transmetteur revient en mode de mesure au bout de 5 secondes environ.

A 25.00 °C Calibrate Meter Channel A Current A A 0.28 µS/cm A 25.00

10.2.1.3 Courant

L'étalonnage du courant s'effectue en deux points.

Accédez à l'écran Calibrer Transm. et sélectionnez le canal A.

Saisissez la valeur en milliampères pour le point 1 de la source de courant connectée à l'entrée. La seconde ligne de texte indique la valeur de courant mesurée. Appuyez sur [ENTER] pour démarrer l'étalonnage.

Saisissez la valeur en milliampères pour le point 2 de la source de courant connectée à l'entrée. Le courant mesuré est affiché sur la deuxième ligne.

Après la saisie de la valeur du Point 2, appuyez sur la touche [ENTER] pour afficher un message de confirmation. Choisissez Oui pour enregistrer les valeurs d'étalonnage, le message « Calibrage Réussier » s'affiche. Le transmetteur revient en mode de mesure au bout de 5 secondes environ.

Remarque : En fonction de la plage du courant mesuré par la sonde à oxygène connectée, sélectionnez la plage d'entrée à étalonner. Sélectionnez Current1 pour un signal d'entrée 0 à env. -750 nA et Current2 pour un signal d'entrée 0 à env. -7 500 nA.

675.00 nA

.

I = 776.36 nA

A Point2

A

88

25.00

0.28

-1.500 V

v = -0.000 v

00

V = 0.1231 V

0.28

Save Calibration Yes Press ENTER to Exit

1.5000 V

°C

.

µS/ca

°C

.

nS/cm

°C

.

A

A

A

A

A

A

A

A Foint1 A V

A Point2

L'étalonnage de la tension s'effectue en deux points.

Accédez à l'écran Calibrer Transm. et sélectionnez le canal A et Voltage.

Saisissez la valeur en volts pour le Point 1 connecté à l'entrée. La tension mesurée est affichée sur la deuxième ligne. Appuyez sur [ENTER] pour démarrer le calibrage.

Saisissez la valeur en volts pour le point 2 de la source connectée à l'entrée. La tension mesurée est affichée sur la deuxième ligne.

Après la saisie de la valeur du Point 2, appuyez sur la touche [ENTER] pour afficher un message de confirmation. Choisissez Oui pour enregistrer les valeurs d'étalonnage, le message « Calibrage réussi » s'affiche. Le transmetteur revient en mode de mesure au bout de 5 secondes environ.

10.2.1.5 Diagnostic Rg

L'étalonnage Diagnostic Rg s'effectue en deux points. Accédez à l'écran Calibrer Transm. et sélectionnez le canal A et Diagnostic Rg.

Saisissez la valeur du Point 1 de l'étalonnage en fonction de la résistance connectée via l'entrée de mesure de l'électrode de verre pH. Appuyez sur [ENTER] pour démarrer l'étalonnage.

Saisissez la valeur du Point 2 de l'étalonnage en fonction de la résistance connectée via l'entrée de mesure de l'électrode de verre pH.

Après la saisie de la valeur du Point 2, appuyez sur la touche [ENTER] pour afficher un message de confirmation. Choisissez Oui pour enregistrer les valeurs d'étalonnage, le message « Calibrage réussi » s'affiche. Le transmetteur revient en mode de mesure au bout de 5 secondes environ.

0.28

us/en

0.28

25.00

Calibrate Meter Channel A Rr Diagnostics

us/cm

°C

°C

A

A

A

Save Calibration Yes Press ENTER to Exit

L'étalonnage Diagnostic Rr s'effectue en deux points. Accédez à l'écran Calibrer Transm. et sélectionnez le canal A et Diagnostic Rr.

Saisissez la valeur du Point 1 de l'étalonnage en fonction de la résistance connectée via l'entrée de mesure de la référence pH. Appuyez sur [ENTER] pour démarrer l'étalonnage.

Saisissez la valeur du Point 2 de l'étalonnage en fonction de la résistance connectée via l'entrée de mesure de la référence pH.

Après la saisie de la valeur du Point 2, appuyez sur la touche [ENTER] pour afficher un message de confirmation. Choisissez Oui pour enregistrer les valeurs d'étalonnage, le message « Calibrage Réussier » s'affiche. Le transmetteur revient en mode de mesure au bout de 5 secondes environ.

10.2.1.7 Étalonnage du signal d'entrée analogique

L'étalonnage de l'entrée analogique peut se faire à deux valeurs actuelles (par ex. 4 mA et 20 mA).

Branchez un milliampèremètre précis aux bornes d'alimentation de l'entrée analogique. Saisissez la valeur du Point 1, par ex. la valeur 4 mA. La deuxième ligne indique le courant mesuré.

Appuyez sur [ENTER] pour continuer.

Saisissez la valeur du Point 2, par ex. la valeur 20 mA.

Lorsque vous appuyez sur [ENTER] après avoir saisi le Point 2, un écran de confirmation apparaît. Sélectionnez Non pour supprimer les valeurs saisies, sélectionnez Oui pour valider les valeurs saisies comme valeurs courantes.

A 0.28 µs/cm A 25.00 °c Calibrate Unlock

10.2.2 Calibrage Déverrouillé

Choisissez ce menu pour configurer le menu CAL, reportez-vous à la section 7.

Si vous sélectionnez Oui, les menus d'étalonnage du transmetteur seront accessibles sous le menu CAL. Si vous sélectionnez Non, seul l'étalonnage de la sonde sera disponible dans le menu CAL. Après la sélection, appuyez sur [ENTER] pour afficher un message de confirmation.

10.3 Service technique

(CHEMIN D'ACCÈS : Menu/Tech Service)

REMARQUE : Le menu Service technique est réservé exclusivement au personnel d'entretien de Mettler Toledo.

11 Info

associationavec les sondes ISM.

A 0.28 μs/cm Cd A 25.00 *c INFO Messages A

Appuyez sur la touche ▼ pour afficher le menu Info avec les options Messages, Données Calibrage et Modèle/Logiciel Rev.

11.1 Messages

(CHEMIN D'ACCÈS : Info/Messages)

Le dernière message s'affiche. Les flèches vers le haut et le bas permettent de faire défiler les quatre derniers messages.

A 0.28 µS/cm A 25.00 °c Messages Clear Messages No A

0.28

25.00

µs/cm

°C

.

A

A

Messages

Error

L'option Effacer messages supprime tous les messages. Les messages sont ajoutés à la liste lorsque la condition à l'origine du message s'est produite la première fois. Si tous les messages sont effacés et qu'une condition de message existe toujours, mais qu'elle avait démarré avant la suppression, elle n'apparaît pas dans la liste. Pour que ce message soit visible dans la liste, la condition doit disparaître et se renouveler.

Appuyez sur [ENTER] pour quitter cet écran.

11.2 Données Calibrage

(CHEMIN D'ACCÈS : Info/Calibration Data)

La sélection de Données Calibrage permet d'afficher les constantes d'étalonnage pour chaque sonde.

- P = constantes d'étalonnage de la mesure principale
- S = constantes d'étalonnage de la mesure secondaire

Appuyez sur ▼ pour obtenir les données d'étalonnage redox des électrodes de pH ISM.

Appuyez sur [ENTER] pour quitter cet écran.

A

°C

.00

A

A

в

7.00

ChB Type: InPro3250 ChB Cal Date:08/01/01 ↑

11.3 Modèle/Version logicielle

(CHEMIN D'ACCÈS : Info/Model/Software Revision)

Cette sélection affiche la référence, le modèle et le numéro de série du transmetteur.

La touche ▼ permet de parcourir ce menu et d'obtenir des renseignements supplémentaires comme la version du micrologiciel installé sur le transmetteur (Master V_XXXX et Comm V_XXXX); ainsi que – si une sonde ISM est connectée – la version du micrologiciel (Sensor FW V_XXX) et du matériel constitutif de la sonde (Sensor HW XXXX).

Les informations affichées sont importantes pour toute demande de service. Appuyez sur [ENTER] pour quitter cet écran.

11.4 Info de la sonde ISM (disponible uniquement si une sonde ISM est connectée)

(CHEMIN D'ACCÈS : Info/ISM Sensor Info)

Après avoir branché une sonde ISM, il est possible de parcourir le menu « ISM Sensor Info » à l'aide des touches \blacktriangle ou \blacktriangledown .

Appuyez sur la touche [ENTER] pour sélectionner le menu.

Les informations suivantes concernant la sonde seront présentées dans ce menu. Utilisez les flèches Haut et Bas pour faire défiler le menu. Type : Type de sonde (par ex. InPro 3250)

Date Cal : Date du dernier réglage

- No. Série : Numéro de série de la sonde connectée
- Réf. : Référence de la sonde connectée

Appuyez sur [ENTER] pour quitter cet écran.

11.5 Diagnostic de la sonde ISM (disponible uniquement si une sonde ISM est connectée)

(CHEMIN D'ACCÈS : Info/ISM Diagnostics)

Après avoir branché une sonde ISM, il est possible de parcourir le menu « ISM Diagnostics » à l'aide des touches \blacktriangle ou \blacktriangledown .

Appuyez sur la touche [ENTER] pour sélectionner le menu.

Accédez à l'un des menus décrits dans cette section et appuyez de nouveau sur la touche [ENTER].

B	7.00	PH	
B	25.0	°C	
INFO ISM Dia⊖nostics ↑			

0.28

SN XXXXXXXXXX

0.28

µS/cn

µS/can °C

B 7.00 PH B 25.0 ℃	Historique de calibrage L'historique de calibrage est enregistré avec une indication de temps dans la sonde ISM et s'affiche sur le transmetteur. L'historique de calibrage fournit les informations suivantes : Fact (Étalonnage en usine) : Jeu de données d'origine, déterminé en usine. Ce jeu de données est conservé dans la sonde à titre de référence et ne peut pas être effacé.
^в 7.00 рн ^в 25.0 ос Fact 88/81/81 ₹=8:882 ^н	 Act (Réglage réel) : Jeu de données d'étalonnage utilisé pour les mesures. Ce jeu de données passe en position Cal2 après un nouveau réglage. 1. Adj (Premier réglage) : Premier réglage après le calibrage en usine. Ce jeu de données est conservé dans la sonde à titre de référence et ne peut pas être effacé.
	Cal1 (dernier calibrage/réglage) : Dernier calibrage/réglage exécuté. Ce jeu de données passe en position Cal2, puis Cal3 lorsqu'un nouvel étalonnage ou un nouveau réglage est effectué. Après ce niveau, le jeu de données n'est plus disponible. Cal2 et Cal3 fonctionnent de la même manière que Cal1.
	Définition : Réglage : La procédure d'étalonnage est terminée et les valeurs d'étalonnage sont prises en compte, utilisées pour les mesures (Act) et énoncées dans Cal1. Les valeurs actuelles de Act passent au niveau Cal2.
	Calibrage : La procédure d'étalonnage est terminée, mais les valeurs d'étalonnage ne sont pas prises en compte et les mesures se poursuivent avec le dernier jeu de données de réglage valide (Act). Le jeu de données est enregistré en tant que Cal1.
	L'historique de calibrage est utilisé pour l'estimation de l'indicateur de durée de vie des sondes ISM.
	Appuyez sur [ENTER] pour quitter cet écran.
\frown	REMARQUE : Cette fonction nécessite le réglage adéquat de la date et de l'heure pendant les tâches d'étalonnage et/ou d'ajustement (reportez-vous à la section 9.5, « Réglage de la date et de l'heure »).
в 7.00 рн в 25.0 ос	Contrôle des sondes (non disponible pour la sonde Cond 4-e) Le contrôle des sondes permet d'afficher les différentes fonctions de diagnostic de chaque sonde ISM. Les informations suivantes sont disponibles :
В 7.00 рн В 25.0 ос Lifetime Indicator 18d	Ind. Durée de vie : Affiche une estimation de la durée de vie restante afin d'assurer la fiabilité des mesures. La durée de vie est indiquée en jours (d) et pourcentage (%). Une description de l'indicateur de durée de vie est fournie dans la section 8.4 « Configuration ISM (pour sondes ISM, pH, oxygène et CO2 dissous) » . Pour les sondes à oxygène, cet indicateur dépend de l'élément sensible de la sonde. Si vous souhaitez afficher l'indicateur par histogramme sur l'écran, consultez la section 8.5.5, « Contrôle de sonde ISM » pour activer les fonctions ISM.
В 7.00 рн В 25.0 ос Adart Cal Timer 250.0d	Adapt Timer Cal : Cette minuterie indique le moment où doit être effectué le prochain étalonnage pour assurer les meilleures performances de mesure. La minuterie d'étalonnage est indiquée en jours (d) et pourcentage (%). La section 8.4 « Configuration ISM (pour sondes ISM, pH, oxygène et CO2 dissous) » fournit une description de la minuterie d'étalonnage.

В 7.00 рн В 25.0 °C	Temps avant Maint : Cette minuterie indique le moment où doit être effectué le prochain cycle de nettoyage pour assurer les meilleures performances de mesure. Le délai de maintenance est indiqué en jours (d) et pourcentage (%). La section 8.4 « Configuration ISM (pour sondes ISM, pH, oxygène et CO2 dissous) », fournit une description du délai de maintenance. Pour les sondes à oxygène, le délai de maintenance représente un cycle de maintenance pour la membrane et l'électrolyte. Appuyez sur [ENTER] pour quitter cet écran.
В 7.00 рн В 25.0 °С ISM Diagnostics ChB Max. Temperature ↑	Température maximale La température maximale est la plus grande température jamais observée par cette sonde, elle est accompagnée d'une indication de temps. Cette valeur est enregistrée dans la sonde et ne peut pas être modifiée. La température maximale n'est pas enregistrée pendant l'autoclavage. Température Max Tmax XXX°CAA/MM/JJ
	Appuyez sur [ENTER] pour quitter cet écran.
()	REMARQUE : Cette fonction nécessite le réglage adéquat de la date et de l'heure sur le transmetteur (reportez-vous à la section 9.5, « Réglage de la date et de l'heure »).
В 7.00 рн В 25.0 °C	Cycles NEP Indique le nombre de cycles NEP auxquels a été exposée la sonde. La section 8.4 « Configuration ISM (pour sondes ISM, pH, oxygène et CO2 dissous) » fournit une description de l'indicateur de cycles NEP.
ChB CIP C⊌cles ↑	Cycles NEP xxx / xxx
	Appuyez sur [ENTER] pour quitter cet écran.
В 7.00 рн В 25.0 ос	Cycles SEP Indique le nombre de cycles SEP auxquels a été exposée la sonde. La section 8.4 « Configuration ISM (pour sondes ISM, pH, oxygène et CO2 dissous) » fournit une description de l'indicateur de cycles SEP.
	Cycles SEP xxx / xxx
	Appuyez sur [ENTER] pour quitter cet écran.
В 7.00 рн В 25.0 ос	Cycles d'autoclave Indique le nombre de cycles d'autoclave auxquels a été exposée la sonde. La section 8.4 « Configuration ISM (pour sondes ISM, pH, oxygène et CO ₂ dissous) » fournit une description de l'indicateur de cycles d'autoclave.
ChB AutoClave Cycles 1	Cycles d'autoclave xxx / xxx
	Appuyez sur [ENTER] pour quitter cet écran.

12 Interface FOUNDATION Fieldbus

12.1 Caractéristiques générales

12.1.1 Architecture du système

Le diagramme suivant illustre des exemples typiques de réseau FOUNDATION fieldbus avec les composants associés.

FF-HSE FOUNDATION fieldbus Éthernet haut débit

- FF-H1 FOUNDATION fieldbus H1
- LD Dispositif de liaison FF-HSE/FF-H1
- BT Terminaison du bus
- PS Alimentation du bus
- SB Barrière de sécurité

12.2 Modèle de bloc M400 FF

Avec l'interface FF, tous les paramètres de l'instrument sont classifiés en fonction de leurs propriétés fonctionnelles et de leurs tâches. Ils sont généralement assignés à trois blocs différents.

Un instrument FF comporte les types de bloc suivants :

Un bloc de ressource (bloc du dispositif)

Ce bloc contient toutes les caractéristiques spécifiques au dispositif.

Deux blocs transducteurs

Le bloc transducteur général contient tous les paramètres de mesure et les paramètres spécifiques à l'instrument. Le bloc transducteur de la sonde contient les principes de mesure et les paramètres spécifiques à la sonde.

Un ou plusieurs blocs de fonction

Les blocs de fonction contiennent les fonctions d'automatisation de l'instrument. Il existe différents blocs de fonction, comme le bloc d'entrée analogique ou le bloc d'entrée discrète. Chacun de ces blocs de fonction est utilisé pour exécuter différentes fonctions d'application.

Les blocs de fonction peuvent être raccordés au moyen d'un programme de configuration FF, en fonction de la tâche d'automatisation. L'instrument réalise ainsi des fonctions de contrôle simples, ce qui permet d'alléger la charge de travail sur le système de contrôle du procédé de plus haut rang.

M400 FF contient les blocs suivants :

- Bloc de ressource (bloc du dispositif)
- 2 blocs transducteurs
- 9 blocs de fonction : 4 blocs d'entrée analogique (AI), 1 bloc de sortie analogique (AO),
 2 blocs d'entrée discrète (DI), 2 blocs de sortie discrète (DO), 1 PID

12.2.1 Configuration de bloc

 \sim

REMARQUE : En cas de réinitialisation avec le paramètre RESTART, l'option « Default » du bloc de ressource est exécutée, les liens entre les blocs sont supprimés et les paramètres FF sont réinitialisés avec leurs valeurs par défaut.

12.3 Mise en service

12.3.1 Configuration réseau

Pour configurer un instrument et l'intégrer dans un réseau FF, les éléments suivants sont nécessaires :

- Un programme de configuration FF
- Le fichier cff (Common File Format : *.cff, *.fhx)
- La description de l'appareil (DD : *.sym, *.ffo)

Des DD standard prédéfinis, qui peuvent être obtenus via FF, sont disponibles pour les fonctions de base des instruments. Pour pouvoir accéder à toutes les fonctions, vous devez disposer du fichier DD spécifique à l'appareil. La description de l'appareil figure sur le CD-ROM fourni (intitulé « METTLER TOLEDO M400 FF Transmitter Series, Operation Documentation »).

Il est également possible de se procurer les fichiers correspondant au M400 FF aux adresses suivantes :

- METTLER TOLEDO sur Internet : http://www.mt.com/m400-2wire
- FOUNDATION fieldbus sur Internet : http://www.fieldbus.org

L'instrument est intégré au réseau FF, de la manière suivante :

- Lancez le programme de configuration FF.
- Téléchargez le fichier cff et les fichiers de description du dispositif (fichiers ffo, *.sym, *.cff ou *.fhx) sur le système.
- Configurez l'interface.
- Configurez l'instrument pour la tâche de mesure et le système FF.

REMARQUE : Pour plus d'informations sur l'intégration de l'instrument dans le système FF, consultez la description sur le logiciel de configuration utilisé.

Lors de l'intégration de l'instrument dans le système FF, vérifiez que vous utilisez les bons fichiers. Vous pouvez lire la version requise à l'aide des paramètres DEV_REV et DD_REV dans le bloc de ressource.

12.3.2 Identification et adressage

L'instrument est identifié par l'interface FF dans l'hôte ou le système de configuration, via l'identifiant de l'appareil (DEVICE_ID). L'identifiant DEVICE_ID est une combinaison de l'ID du fabricant et du nom et du numéro de série de l'instrument. Il est unique et ne peut jamais être reproduit.

L'instrument apparaît sur l'affichage du réseau une fois que vous avez lancé le programme de configuration FF et intégré l'instrument au réseau. Les blocs disponibles sont affichés sous le nom de l'instrument.

L'indication pour M400 FF est la suivante :

METTLER TOLEDO : 465255 Type d'appareil (M400 FF) : 0400 N° de série de l'appareil : xxxxxx (voir certificat)

 $\overline{\mathbf{r}}$

12.3.3 Mise en service via un programme de configuration FF

Vous pouvez obtenir des programmes spéciaux de configuration et de fonctionnement auprès de divers fabricants pour la configuration. Ces programmes de configuration permettent de configurer les fonctions FF et tous les paramètres spécifiques à l'instrument. Les blocs de fonction prédéfinie permettent un accès uniforme à toutes les données relatives au réseau et à l'instrument. Pour plus d'informations, consultez le mode d'emploi correspondant au programme de configuration utilisé.

- 1. Allumez le transmetteur.
- 2. Notez l'identifiant DEVICE_ID. Voir la plaque d'identification.
- 3. Ouvrez le programme de configuration FF.
- 4. Téléchargez le fichier cff et les fichiers de description du dispositif dans le système hôte ou le programme de configuration. Vérifiez que vous utilisez les bons fichiers système. Lors de la première connexion de l'instrument, les indications suivantes s'affichent :
 - MT M400 xxxxxx (Tag name PD TAG)
 - 4652550400-xxxxx (DEVICE ID)
 - Si la description de l'appareil n'a pas encore été chargée, les blocs indiquent « Unknown » (inconnu) ou « (UNK) ».

Texte à l'écran	Adresse de registre	Description
RESOURCE_4652550400-xxxxxx		Bloc de ressource
TRANSDUCER_GENERAL_4652550400-xxxxxx	500	Bloc transducteur « Géné- ral »
TRANSDUCER_SENSOR_4652550400-xxxxxx	1000	Bloc transducteur « sonde »
ANALOG_INPUT_1_4652550400-xxxxxx		Bloc entrée analogique 1
ANALOG_INPUT_2_4652550400-xxxxxx		Bloc entrée analogique 2
ANALOG_INPUT_3_4652550400-xxxxxx		Bloc entrée analogique 3
ANALOG_INPUT_4_4652550400-xxxxxx		Bloc entrée analogique 4
ANALOG_OUTPUT_4652550400-xxxxxx	200	Bloc sortie analogique 1
DISCRETE_INPUT_1_4652550400-xxxxxx		Bloc d'entrée discrète 1
DISCRETE_INPUT_2_4652550400-xxxxxx		Bloc d'entrée discrète 2
DISCRETE_OUTPUT_1_4652550400-xxxxxx	100	Bloc de sortie discrète 1
DISCRETE_OUTPUT_2_4652550400-xxxxxx		Bloc de sortie discrète 2

REMARQUE : L'instrument est fourni avec l'adresse de bus « 247 ». Le LAS (Link Active Scheduler) assigne automatiquement à l'appareil une adresse de bus libre lors de la phase d'initialisation.

5. Identifiez l'instrument à l'aide du DEVICE_ID. Assignez à l'instrument le nom de balise de votre choix, à l'aide du paramètre PD_TAG.

Configuration du bloc de ressource

- 1. Ouvrez le bloc de ressource.
- 2. Si nécessaire, changez le nom du bloc. Réglage par défaut : RESOURCE_4652550400xxxxxx
- 3. Si nécessaire, assignez une description au bloc, à l'aide du paramètre TAG_DESC.
- 4. Si nécessaire, changez d'autres paramètres en fonction des exigences.

Configuration du bloc transducteur

Le M400 FF contient un bloc transducteur « général » et un bloc transducteur « sonde ».

- 1. Si nécessaire, changez le nom du bloc. Réglage par défaut : TRANSDUCER_GENERAL_ 4652550400-xxxxxx
- 2. Réglez le mode bloc sur OOS avec le paramètre MODE_BLK, élément TARGET (cible).
- 3. Réglez les paramètres SENSOR_TYPE et SENSOR_CHANNEL pour sélectionner la bonne sonde.
- 4. Configurez le bloc conformément à la tâche de mesure.
- 5. Réglez le mode bloc sur Auto avec le paramètre MODE_BLK, élément TARGET (cible).
- 6. Si nécessaire, changez le nom du bloc. Réglage par défaut : TRANSDUCER_SENSOR_ 4652550400-xxxxxx
- 7. Réglez le mode bloc sur OOS avec le paramètre MODE_BLK, élément TARGET (cible).
- 8. Configurez le bloc conformément à la tâche de mesure.
- 9. Réglez le mode bloc sur Auto avec le paramètre MODE_BLK, élément TARGET (cible).

REMARQUE : Pour que l'instrument fonctionne correctement, le mode du bloc transducteur doit être réglé sur « Auto ».

Configuration des blocs d'entrée analogique

Le M400 FF contient 4 blocs d'entrée analogique, qui peuvent être assignés aux diverses variables de procédé en fonction des besoins. Les variables de procédé PRIMARY_VALUE, SECONDARY_VALUE, THIRD_VALUE et FOURTH_VALUE sont assignées à un bloc d'entrée analogique. Un bloc d'entrée analogique est assigné à une ligne d'affichage. Le réglage d'usine par défaut est :

- Valeur mesurée 1 (PRIMARY_VALUE) Bloc d'entrée analogique 1 Première ligne d'affichage
- Valeur mesurée 2 (SECONDARY_VALUE) Bloc d'entrée analogique 2 Deuxième ligne d'affichage
- Valeur mesurée 3 (THIRD_VALUE) Bloc d'entrée analogique 3 Troisième ligne d'affichage
- Valeur mesurée 4 (FOURTH_VALUE) Bloc d'entrée analogique 4 : Quatrième ligne d'affichage
- Si nécessaire, changez le nom du bloc. Réglage par défaut : ANALOG INPUT BLOCK_4652550400-xxxxxx
- 2. Ouvrez le bloc d'entrée analogique.
- 3. Réglez le mode bloc sur OOS avec le paramètre MODE_BLK, élément TARGET (cible).
- 4. Utilisez le paramètre CHANNEL (voie) pour sélectionner la variable de procédé qui doit être utilisée comme valeur d'entrée pour le bloc d'entrée analogique. Pour plus d'informations, consultez la documentation « FOUNDATION fieldbus parameter Multi-parameter Transmitter M400 FF » sur CD-ROM.
- Utilisez le paramètre XD_SCALE pour sélectionner l'unité d'ingénierie souhaitée et la plage d'entrée du bloc pour la variable de procédé. Reportez-vous à « Mise à l'échelle du paramètre OUT ».

Vérifiez que l'unité sélectionnée correspond à la variable de procédé sélectionnée. Si la variable de procédé ne correspond pas à l'unité, le paramètre BLOCK_ERROR signale une erreur de configuration de bloc (« Block Configuration Error ») et il est impossible de régler le mode bloc sur « Auto ».

5. Utilisez le paramètre L_TYPE pour sélectionner le type de linéarisation pour la variable d'entrée (réglage par défaut : Direct).

Vérifiez que les réglages des paramètres XD_SCALE et OUT_SCALE sont les mêmes pour le type de linéarisation « Direct ». Si les valeurs de procédé et les unités ne correspondent pas, le paramètre BLOCK_ERROR signale une erreur de configuration de bloc (« Block Configuration Error ») et il est impossible de régler le mode bloc sur « Auto ».

- Entrez les messages d'alarme et d'alarme critique à l'aide des paramètres HI_HI_LIM, HI_ LIM, LO_LO_LIM et LO_LO_LIM. Les valeurs limites saisies doivent se situer dans la plage de valeur spécifiée pour le paramètre OUT_SCALE.
- Spécifiez les priorités d'alarme à l'aide des paramètres HI_HI_PRI, HI_PRI, LO_LO_PRI et LO_PRI. Seules les alarmes affichant une priorité supérieure à 2 sont communiquées au système d'hôte sur site.
- 8. Réglez le mode bloc sur Auto avec le paramètre MODE_BLK, élément TARGET (cible). Pour cela, le bloc de ressource doit également être réglé sur le mode bloc « Auto ».

Autres configurations

- 1. En fonction de la tâche de contrôle ou d'automatisation, vous pouvez configurer d'autres blocs de fonction et blocs de sortie.
- 2. Reliez les blocs de fonction et les blocs de sortie.
- Après avoir spécifié le LAS actif, téléchargez l'ensemble des données et des paramètres vers l'appareil sur site.
- Réglez le mode bloc sur Auto avec le paramètre MODE_BLK, élément TARGET (cible). Pour cela, le bloc de ressource doit également être réglé sur le mode bloc « Auto » et les blocs de fonction doit être correctement reliés les uns aux autres.

12.3.4 Mise à l'échelle du paramètre OUT

Dans le bloc d'entrée analogique, la valeur d'entrée ou la plage d'entrée peuvent être mis à l'échelle conformément aux exigences d'automatisation.

Exemple :

La plage de mesure X_LRV à X_URV doit être remise à l'échelle, de 0 à 100 %.

- 1. Sélectionnez le groupe XD_SCALE.
 - Pour EU_0, entrez « X_LRV ».
 - Pour EU_100, entrez « X_URV ».
 - Pour UNITS_INDEX, entrez « Unit ».
- 2. Sélectionnez le groupe OUT_SCALE.
 - Pour EU_0, entrez « 0 ».
 - Pour EU_100, entrez « 10000 ».
 - Pour UNITS_INDEX, sélectionnez « % » par exemple.

Résultat : La valeur OUT comprise entre 0 et 10 000 correspond à la valeur mesurée et elle est dirigée vers un bloc en aval ou vers le PCS.

L'unité sélectionnée ici n'a aucune incidence sur la mise à l'échelle. Cette unité ne s'affiche pas sur l'écran sur site.

REMARQUE : Si vous avez sélectionné le mode « Direct » pour le paramètre L_TYPE, vous ne pouvez pas modifier les valeurs et les unités pour XD_SCALE et OUT_SCALE. Les paramètres L_TYPE, XD_SCALE et OUT_SCALE sont modifiables uniquement dans le mode bloc OOS. Vérifiez que la mise à l'échelle de la sortie du bloc transducteur SCALE_OUT correspond bien à la mise à l'échelle de l'entrée du bloc d'entrée analogique XD_SCALE.

13 Maintenance

13.1 Nettoyage du panneau avant

Nettoyez la face avant avec un chiffon doux et humide (uniquement à l'eau, pas de solvants). Essuyez délicatement la surface et séchez-la à l'aide d'un chiffon doux.

14 Dépannage

Si l'équipement est utilisé d'une manière autre que celle spécifiée par Mettler-Toledo GmbH, la protection fournie par celui-ci peut ne pas être assurée. Le tableau ci-dessous présente les causes possibles de problèmes courants :

Problème	Cause possible	
L'affichage est vierge.	 Absence d'alimentation du M400. Le contraste de l'écran LCD est mal réglé. Panne matérielle. 	
Lectures de mesure incorrectes.	 Sonde mal installée. Multiplicateur d'unités saisi incorrect. Compensation de température mal réglée ou désactivée. Étalonnage de la sonde ou du transmetteur requis. Câble de raccordement ou de la sonde défectueux ou plus long que la recommandation. Panne matérielle. 	
Lectures de mesure instables.	 Sondes ou câbles installés trop près de l'équipement, ce qui génère beaucoup de bruit électrique. Câble plus long que la recommandation. Réglage trop bas de la moyenne. Câble de raccordement ou de la sonde défectueux. 	
Le symbole 🛆 affiché clignote.	 Le seuil est en état d'alarme (seuil dépassé). Une alarme a été sélectionnée (voir la section 8.3.1, « Alarme ») et s'est déclenchée. 	
Impossible de modifier les réglages du menu.	 Utilisateur exclu pour des raisons de sécurité. 	

14.1 Liste des messages d'erreur, avertissements et alarmes Cond (résistif) pour sondes analogiques

Alarmes	Description
Temporisation du chien de garde*	Défaut logiciel/système
Cell Cond ouverte*	La cellule tourne à sec (absence de solution de mesure) ou des fils sont rompus.
Cond court-circuit*	Court-circuit causé par la sonde ou le câble

* Selon le paramétrage du transmetteur (voir la section 8.3.1, « Alarme » ; CHEMIN D'ACCÈS : Menu/Configure/Alarm/Clean/Setup Alarm)

14.2 Liste des messages d'erreur, avertissements et alarmes Cond (résistif) pour sondes ISM

Alarmes	Description
Temporisation du chien de garde*	Défaut logiciel/système
Sonde Cond sèche*	La cellule tourne à sec (absence de solution de mesure)
Déviation de la cellule*	Multiplicateur hors tolérances** (selon le modèle de sonde).

* Selon le paramétrage du transmetteur (voir la section 8.3.1, « Alarme » ; CHEMIN D'ACCÈS : Menu/Configure/Alarm/Clean/Setup Alarm)

** Pour plus d'informations, consultez la documentation de la sonde.

14.3 Liste des messages d'erreur/avertissements et alarmes pour le pH

14.3.1 Électrodes de pH sauf celles à double membrane

Avertissements	Description
Att. pH Pente >102%	Pente trop importante
Att. pH Pente < 90 %	Pente trop faible
Att. pH Zéro > 7,5 pH	Décalage du zéro trop important
Att. pH Zéro <6,5 pH	Décalage du zéro trop faible
Att. pH Verre mod < 0,3**	Résistance de l'électrode de verre modifiée d'un facteur supérieur à 0,3
Att. pH Verre mod > 3**	Résistance de l'électrode de verre modifiée d'un facteur supérieur à 3
Att. pH Ref mod < 0,3**	Résistance de l'électrode de référence modifiée d'un facteur supérieur à 0,3
Att. pH Ref mod > 3**	Résistance de l'électrode de référence modifiée d'un facteur supérieur à 3

a	
Alarmes	Description
Temporisation du chien de garde*	Défaut logiciel/système
Erreur pH Pente > 103 %	Pente trop importante
Erreur pH Pente < 80 %	Pente trop faible
Erreur pH Zéro > 8,0 pH	Décalage du zéro trop important
Erreur pH Zéro < 6,0 pH	Décalage du zéro trop faible
Erreur pH Res Ref > 150 K Ω^{**}	Résistance trop élevée de l'électrode de référence (coupure)
Erreur pH Res Ref < 2 000 Ω^{**}	Résistance trop basse de l'électrode de référence (court-circuit)
Erreur pH Rés. électrode verre > 2 000 $M\Omega^{**}$	Résistance de l'électrode de verre trop importante (coupure)
Erreur pH Rés. électrode verre < 5 M Ω^{**}	Résistance de l'électrode de verre trop faible (court-circuit)

* Sondes ISM uniquement

** Selon le paramétrage du transmetteur (voir la section 8.3.1, « Alarme » ; CHEMIN D'ACCÈS : Menu/Configure/Alarm/Clean/Setup Alarm)

14.3.2 Électrodes de pH à double membrane (pH/pNa)

Avertissements	Description
Att. pH Pente >102%	Pente trop importante
Att. pH Pente < 90 %	Pente trop faible
Att. pH Zéro > 8,0 pH	Décalage du zéro trop important
Att. pH Zéro < 6,0 pH	Décalage du zéro trop faible
Att. pH Verre mod < 0,3*	Résistance de l'électrode de verre modifiée d'un facteur supérieur à 0,3
Att. pH Verre mod > 3*	Résistance de l'électrode de verre modifiée d'un facteur supérieur à 3
Att. variation pNa verre < 0, 3*	Résistance de l'électrode de verre modifiée d'un facteur supérieur à 0,3
Att. variation pNa verre > 3^*	Résistance de l'électrode de référence modifiée d'un facteur supérieur à 3

Alarmes	Description
Temporisation du chien de garde	Défaut logiciel/système
Erreur pH Pente > 103 %	Pente trop importante
Erreur pH Pente < 80 %	Pente trop faible
Erreur pH Zéro > 9,0 pH	Décalage du zéro trop important
Erreur pH Zéro < 5,0 pH	Décalage du zéro trop faible
Erreur pNa Rés. électrode verre > 2 000 MΩ*	Résistance de l'électrode de verre trop importante (coupure)
Erreur pNa Rés. électrode verre $< 5 M\Omega^*$	Résistance de l'électrode de verre trop faible (court-circuit)
Erreur pH Rés. électrode verre $> 2 000 M\Omega^*$	Résistance de l'électrode de verre trop importante (coupure)
Erreur pH Rés. électrode verre $< 5 M\Omega^*$	Résistance de l'électrode de verre trop faible (court-circuit)

* Selon le paramétrage du transmetteur (voir la section 8.3.1, « Alarme » ; CHEMIN D'ACCÈS : Menu/Configure/Alarm/Clean/Setup Alarm)

14.3.3 Messages redox

Avertissements*	Description
Att. redox Pt Zéro > 30 mV	Décalage du zéro trop important
Att. redox Pt Zéro <-30 mV	Décalage du zéro trop faible

Alarmes*	Description
Temporisation du chien de garde	Défaut logiciel/système
Erreur redox Zéro > 60 mV	Décalage du zéro trop important
Erreur redox Zéro <-60 mV	Décalage du zéro trop faible

* Sondes ISM uniquement

14.4 Liste des messages d'erreur, avertissements et alarmes pour sondes O₂ ampérométriques

14.4.1 Sondes de mesure de l'oxygène en forte concentration

Avertissements	Description
Att. O_2 Pente < -90 nA	Pente trop importante
Att. O_2 Pente > -35 nA	Pente trop faible
Att O_2 Zéro > 0,3 nA	Décalage du zéro trop important
Att O_2 Zéro < -0,3 nA	Décalage du zéro trop faible

Alarmes	Description
Temporisation du chien de garde*	Défaut logiciel/système
Erreur O_2 Pente < -110 nA	Pente trop importante
Erreur O_2 Pente > -30 nA	Pente trop faible
Erreur O ₂ Zéro >0,6 nA	Décalage du zéro trop important
Erreur O ₂ Zéro < -0,6 nA	Décalage du zéro trop faible
Niv. électrolyte bas*	Niveau d'électrolyte trop bas

* Sondes ISM uniquement

14.4.2 Sondes de mesure de l'oxygène en faible concentration

Avertissements	Description
Att. O_2 Pente < -460 nA	Pente trop importante
Att. O_2 Pente > -250 nA	Pente trop faible
Att. O_2 Zéro > 0,5 nA	Décalage du zéro trop important
Att. O_2 Zéro < -0,5 nA	Décalage du zéro trop faible

Alarmes	Description
Temporisation du chien de garde*	Défaut logiciel/système
Erreur Strap O ₂ absent	Avec le modèle InPro 6900, il convient d'installer un cavalier (voir la section 4.3.5 TB2 – Sondes (numériques) ISM pH, oxygène ampéromé- trique, conductivité 4-E et CO_2 dissous (faible)
Erreur O ₂ Pente < -525 nA	Pente trop importante
Erreur O_2 Pente > -220 nA	Pente trop faible
Erreur O ₂ Zéro > 1,0 nA	Décalage du zéro trop important
Erreur O ₂ Zéro < -1,0 nA	Décalage du zéro trop faible
Niv. électrolyte bas*	Niveau d'électrolyte trop bas

* Sondes ISM uniquement

Avertissements	Description
Att. O_2 Pente < -5 000 nA	Pente trop importante
Att. O_2 Pente > -3 000 nA	Pente trop faible
Att. O_2 Zéro > 0,5 nA	Décalage du zéro trop important
Att. O_2 Zéro < -0,5 nA	Décalage du zéro trop faible

14.4.3 Sondes de mesure de l'oxygène à l'état de trace

Alarmes	Description
Temporisation du chien de garde	Défaut logiciel/système
Erreur O_2 Pente < -6 000 nA	Pente trop importante
Erreur O ₂ Pente > -2000 nA	Pente trop faible
Erreur O_2 Zéro > 1,0 nA	Décalage du zéro trop important
Erreur O_2 Zéro < $-1,0$ nA	Décalage du zéro trop faible
Niv. électrolyte bas*	Niveau d'électrolyte trop bas

* Sondes ISM uniquement

14.5 Liste des messages d'erreur, des avertissements et des alarmes de la sonde optique O₂

Avertissements	Description
Étal. voies requis*	ACT = 0 ou valeurs mesurées hors limite
Chx NEP Counter Expired	Limite de cycles NEP atteinte
Chx SEP Counter Expired	Limite de cycles SEP atteinte
Chx Autocl. Count. Exp.	Limite de cycles d'autoclavage atteinte

* Si cet avertissement s'affiche, vous trouverez d'autres renseignements sur la cause possible dans Menu/Service/Diagnostics/O₂ optical.

Alarmes	Description
Watchdog time-out	Défaut logiciel/système
Chx Signal error**	Signal ou valeur de température hors limite
Chx Shaft error**	Température hors limite, lumière directe trop intense (à cause d'une fibre optique cassée, par exemple) ou bien le corps de l'électrode a été enlevé
Chx Hardware error**	Défaillance de composants électroniques

** Selon le paramétrage du transmetteur (reportez-vous à la section 8.3.1, « Alarme ») CHEMIN D'ACCÈS : Menu/Configure/Alarm/Clean/Setup Alarm)

Si une alarme se produit, vous trouverez d'autres renseignements sur la cause possible dans Menu/Service/Diagnostics/O $_2$ optical

14.6 Liste des messages d'erreur, des avertissements et des alarmes pour sonde à CO2 dissous

Avertissements	Description
Warning pH slope >102%	Pente trop importante
Warning pH Slope < 90%	Pente trop faible
Warning pH Zero >7.5 pH	Décalage du zéro trop important
Warning pH Zero < 6.5 pH	Décalage du zéro trop faible
Warning pHGIs change < 0.3*	Résistance de l'électrode de verre modifiée d'un facteur supérieur à 0,3
Warning pHGIs change > 3*	Résistance de l'électrode de verre modifiée d'un facteur supérieur à 3

Alarmes	Description
Watchdog time-out*	Défaut logiciel/système
Error pH Slope >103%	Pente trop importante
Error pH Slope < 80%	Pente trop faible
Error pH Zero > 8.0 pH	Décalage du zéro trop important
Error pH Zero < 6.0 pH	Décalage du zéro trop faible
Error pH GIs Res > 2000 M Ω^*	Résistance de l'électrode de verre trop importante (coupure)
Error pH GIs Res $< 5 M\Omega^*$	Résistance de l'électrode de verre trop faible (court-circuit)

* Selon le paramétrage du transmetteur (reportez-vous à la section 8.3.1, « Alarme ») CHEMIN D'ACCÈS : Menu/Configure/Alarm/Clean/Setup Alarm).
14.7 Signalement des avertissements et des alarmes sur l'écran

14.7.1 Signalement des avertissements

Si une condition générant un avertissement se présente, le message est enregistré et peut être sélectionné via le menu Messages (CHEMIN D'ACCÈS : Info / Messages ; reportez-vous également à la section 11.1, « Messages »). Selon la configuration du transmetteur, le message « Erreur – Presser ENTER » s'affiche sur la ligne 4 de l'écran lorsqu'une alarme ou un avertissement survient (reportez-vous aussi à la section 8.5, « Affichage » ; CHEMIN D'ACCÈS : Menu/Configure/Display/Measurement).

14.7.2 Signalement des alarmes

Les alarmes sont signalées sur l'écran par un symbole clignotant \triangle et sont enregistrées via le menu Messages (CHEMIN D'ACCÈS : Info/Messages ; reportez-vous également à la section 11.1, « Messages »).

Par ailleurs, la détection de certaines alarmes peut être activée ou désactivée (reportez-vous à la section 8.3, « Alarme/Nettoyage » ; CHEMIN D'ACCÈS : Menu/Configure/Alarm/Clean) pour activer le signalement sur l'écran. Si l'une de ces alarmes survient et que la détection ait été activée, le symbole clignotant ▲ s'affiche et le message est enregistré via le menu Messages (reportez-vous à la section 11.1, « Messages » ; CHEMIN D'ACCÈS : Info / Messages).

Selon le paramétrage du transmetteur, le message « Erreur – Presser ENTER » s'affiche sur la ligne 4 de l'écran lorsqu'une alarme ou un avertissement survient (reportez-vous également à la section 8.5, « Affichage » ; CHEMIN D'ACCÈS : Menu/Configure/Display/Measurement).

15 Accessoires et pièces détachées

Pour plus d'informations sur les autres accessoires et pièces détachées proposés, contactez votre bureau de vente ou votre représentant local Mettler-Toledo GmbH.

Description	Réf. commande
Kit de montage sur canalisation pour versions 1/2DIN	52 500 212
Kit de montage sur panneau pour versions 1/2DIN	52 500 213
Cache de protection pour versions 1/2DIN	52 500 214

16 Spécifications

16.1 Caractéristiques générales

Spécifications de conductivité résist	ive		
Sonde à constante 0,01 cm ⁻¹	0,002 à 200 μS/cm (5 000 Ω x cm à 500 MΩ x cm)		
Sonde à constante 0,1 cm ⁻¹	0,02 à 2 000 μS/cm (500 Ω x cm à 50 MΩ x cm)		
Sonde à constante plage IO cm ⁻¹	10 à 40 000 μS/cm (25 Ω x cm à 100 KΩ x cm)		
Plage d'affichage pour sonde 2-e	0 à 40 000 mS/cm (25 Ω x cm à 100 M Ω x cm)		
Plage d'affichage pour sonde 4-e	0,01 à 650 mS/cm (1,54 Ω x cm à 0,1 MΩ x cm)		
Courbes de concentration chimique	$\begin{array}{rll} \mbox{NaCl}: & \mbox{De} \ 0-26 \ \% \ a \ 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		
Domaines des matières dissoutes totales	NaCl, CaCO3		
Distance maximale de la sonde	analogique : 61 m ; 15 m avec sondes à 4 électrodes ISM : 80 m (260 pi)		
Précision cond/rés.**	\pm 0,5 % par rapport à la valeur affichée ou 0,25 Ω, suivant la plus grande valeur, jusqu'à 10 MΩ-cm		
Répétabilité cond/rés.**	±0,25 % par rapport à la valeur affichée ou 0,25 ohm, selon la valeur la plus élevée		
Résolution cond./rés.	auto/0,001/0,01/0,1/1 (peut être sélectionnée)		
Entrée de température*	Pt1000/Pt100/NTC22K		
Plage de température	−40 à +200 °C		
Résolution de la température	auto/0,001/0,01/0,1/1 K (°F) (peut être sélectionnée)		
Précision mesure température**	\pm 0,25 K dans la plage de -30 à +150 °C \pm 0,50 K en extérieur		
Répétabilité de la température**	±0,13 Κ		

* non requis avec les sondes ISM

** pour un signal d'entrée analogique (le signal d'entrée ISM ne génère pas d'erreur supplémentaire).

Caractéristiques de pH :			
Domaine de pH	-2,00 à 16,00 pH		
Distance maximale de la sonde	Analogique : 10 à 20 m selon la sonde ISM : 80 m (260 pi)		
Résolution pH	auto/0,01/0,1/1 (peut être sélectionnée)		
Précision pH**	± 0,02 pH		
Domaine mV	– 1 500 à 1 500 mV		
Résolution mV	auto/0,01/0,1/1 mV		
Précision mV	±1 mV		
Entrée de température*	Pt1000/Pt100/NTC22K		
Plage de température	-30 à 130 °C		
Résolution de la température	auto/0,001/0,01/0,1/1 K (°F) (peut être sélectionnée)		
Précision mesure température**	±0,25 K		
Répétabilité de la température**	±0,13 K		

* non requis avec les sondes ISM

** pour un signal d'entrée analogique (le signal d'entrée ISM ne génère pas d'erreur supplémentaire).

Tampons standard MT 10 4

Tampons MT -9, tampons MT -10, tampons techniques NIST,		
Tampons standard NIST (DIN 19266:2000-01), tampons JIS Z 8802, tampons Hach,		
tampons CIBA (94) Merck Titrisols-Reidel Fixanals, tampons WTW		
Tampons pour électrodes de pH à double membrane (pH/pNa)		

Tampons pH/pNa Mettler (Na+ 3,9M)

Mesure de l'oxygène ampérométrique		
Paramètres de mesure	Oxygène dissous : – Saturation ou concentration et température Oxygène gazeux : – Concentration et température	
Plage de mesure du courant	0 à 7 000 nA pour les sondes analogiques	
Plages de mesure de l'oxygène	Oxygène dissous : – Saturation 0 à 500 % air, 0 à 200 % O2 – Concentration : 0 ppb (µg/I) à 50 ppm (mg/I) Sous forme gazeuse : – 0 à 9 999 ppm d'O2 gazeux, 0 à 100 % vol O2	
Précision des mesures d'oxygène*	 Oxygène dissous: Saturation : ±0,5 % par rapport à la valeur mesurée ou ±0,5 % suivant la valeur la plus élevée. Valeurs de concentration élevées : ±0,5 % par rapport à la valeur mesurée ou +0,050 ppm/±0,050 mg/l suivant la valeur la plus élevée. Valeurs de concentration faibles : ±0,5 % par rapport à la valeur mesurée ou +0,001 ppm/±0,001 mg/l suivant la valeur la plus élevée. Concentration à l'état de traces : ±0,5 % par rapport à la valeur mesurée ou ±0,100 ppb/±0,1 µg/l suivant la valeur la plus élevée. Sous forme gazeuse ±0,5 % par rapport à la valeur mesurée ou ±5 ppb suivant la valeur la plus élevée pour le gaz 02 de niveau ppm. ±0,5 % par rapport à la valeur mesurée ou ±0,01 % suivant la valeur la plus élevée pour le % vol 02. 	
Courant de résolution	6 pA	
Tension de polarisation	 1 000 à 0 mV pour les sondes analogiques 550 ou -674 mV pour les sondes ISM (configurable) 	
Entrée de température	NTC 22 kΩ, Pt1000	
Compensation de la température	Automatique	
Plage de température	–10 à 80 °C	
Précision de la température*	±0,25 K dans la plage -10/+80 °C	
Longueur max. du câble de sonde	Analogique : 20 m ; ISM : 80 m	
Étalonnage	Étalonnage en 1 point (de la pente ou du décalage), étalonnage de procédé (pente ou décalage)	

* pour un signal d'entrée analogique (le signal d'entrée ISM ne génère pas d'erreur supplémentaire).

Caractéristiques techniques des sondes optiques à oxygène		
Distance maximale de la sonde	15 mètres (50 ft)	
Plage de concentration d'O2 dissous	0,1 ppb (µg/I) à 50,00 ppm (mg/I)	
Plage de saturation d'O2 dissous	0 à 500 % d'air, 0 à 100% d'0 ₂	
Précision O2 dissous	± 1 chiffre	
Résolution	auto/0,001/0,01/0,1/1 (peut être sélectionnée)	
Plage de mesure de température	−30 à +150 °C (−22 à +302 °F)	
Résolution de la température	auto/0,001/0,01/0,1/1 K (°F) (peut être sélectionnée)	
Précision de la température	80 m (260 pi)	
Répétabilité de la température	± 1 chiffre	

Caractéristiques techniques pour le CO2 dissous		
Plages de mesure du CO ₂	0 à 5 000 mg/l 0 à 200 %sat 0 à 1 500 mmHg 0 à 2 000 mbar 0 à 2000 hPa	
Distance maximale de la sonde	80 m (260 pi)	
Précision CO ₂	±1 chiffre	
Résolution CO ₂	auto/0,001/0,01/0,1/1 (peut être sélectionnée)	
Plage mV	–1 500 à +1 500 mV	
Résolution mV	auto/0,01/0,1/1 mV	
Précision mV	± 1 chiffre	
Domaine de pression total (TotPres)	0 à 4 000 mbar	
Entrée de température	Pt1000/NTC22K	
Plage de mesure de température	−30 à +150 °C (−22 à +302 °F)	
Résolution de la température	auto/0,001/0,01/0,1/1 K (°F) (peut être sélectionnée)	
Précision de la température	±1 chiffre	
Répétabilité de la température	±1 chiffre	
Jeu de tampons existant :		
Tampons MT-9 avec une solution de pH = 7,00 et pH = 9,21 à 25 °C		

16.2 Caractéristiques électriques

Tension d'alimentation	 Zone non dangereuse (hors IS) : 9 à 32 V c.c. Barrière linéaire : 9 à 24 V c.c. FISCO : 9 à 17,5 V c.c.
Courant	22 mA
Courant max. en cas de dys- fonctionnement (FDE)	< 28 mA
Nombre d'entrées courant	1
Affichage	Rétroéclairé LCD, 4lignes de texte
Durée de fonctionnement	4 jours environ
Clavier	5 touches à retour tactile
Langues	8 (anglais, allemand, français, italien, espagnol, portu- gais, russe et japonais)
Durée du cycle	Env. 1 s
Entrée Hold/Contact d'alarme	Oui/Oui (temporisation d'alarme : 0 à 999 s)
Bornes de connexion	Bornes de cage à ressorts appropriées pour section de fil de 0,2 mm ² à 1,5 mm ² (AWG 16 – 24)
Entrée analogique	4 à 20 mA (pour la compensation de pression)
Temporisation d'alarme	0 – 999 s

16.3 Caractéristiques de l'interface FOUDATION fieldbus

Interface physique	Conforme à la norme CEI 61158-2		
Taux de transfert	31,25 kbit/s		
Profil	FF_H1 (Foundation fieldbus)		
Protocole de communication	FF-816		
Version ITK	6.0.1		
ID fabricant (DEV_TYPE)	0 x 465255		
Type FF (DEV_REV)	1		
Modèle de communication FF	 1 bloc de ressource 1 bloc physique 2 blocs transducteurs (général et sonde) 4 blocs d'entrée analogique 1 bloc de sortie analogique 2 blocs d'entrée discrète 2 blocs de sortie discrète 1 PID 		

16.4 Caractéristiques mécaniques

Dimensions (boîtier - h x l x p)*	144 x 144 x 116 mm (5,7 x 5,7 x 4,6 po)
Encadrement avant – h x I	150 x 150 mm (5,9 x 5,9 po)
Profondeur max. – Montage sur panneau	87 mm (hors connecteurs enfichables)
Poids	1,50 kg
Matériau	Fonte d'aluminium
Type de protection d'entrée	IP 66/NEMA4X

* h = hauteur, I = largeur, p = profondeur

16.5 Caractéristiques environnementales

Température de stockage	-40 à 70 °C
Plage de température ambiante de fonctionnement	-20 à 60 °C
Humidité relative	0 à 95 %, sans condensation
CEM	Conforme à la norme EN 61326-1 (exigences générales) Émission : classe B Immunité : classe A
Marque CE	Le système de mesure est conforme aux exigences régle- mentaires des directives CE. METTLER TOLEDO confirme la réussite des tests effectués sur le dispositif en y appo- sant la marque CE.
Environnements dangereux	ATEX/IECEx Zone 1, cFMus Class I Division1*, NEPSI EX Zone 1

* en cours

17 Tableau des valeurs par défaut

Paramètres communs

Paramètre	Sous-paramètre	Valeur	Unité
Mesure	Panne de courant	Non	
	Dysfonctionnement logiciel	Non	
	CanB déconnecté	Oui	
Nettoyago	Temps d'intervalle	0	heures
Nelloydge	Durée du nettoyage	0	Sec
Langue		Anglais	
Mate de pages	Administrateur	00000	
	Opérateur	00000	
Réglage/Suppression du verrouillage		Non	
Sortie Hold		Oui	
	Ligne 1	a	
	Ligne 2	b	
Affichage	Ligne 3	С	
	Ligne 4	d	
		On	
Nom 1	vierge		
Nom 2	vierge		
	Température	0,1	°C
	Conductivité	0,01	S/cm (Auto)
	Résistivité	0,01	Ω-cm (Auto)_
Résolution	рН	0,01	рН
	Redox	1,0	mV
	O2 ppb	1.	ppb
	O2 ppm	0,1	ppm
NEP Max		100	
Temp Nep		55 (30-100)	°C
Max SEP		100	
Temp Sep		115 (90-130)	°C
AutoClave Max		0	
ACT Initial		0	
TTM Initial		0	

рΗ

Paramètre	Sous-paramètre	Valeur	Unité
	a	рН	рН
Voie X	b	Température	°C
	С	Aucune	
	d	Aucune	
Source de température (pour sonde analogique)		Auto	
Tampon pH		Mettler-9	
Contrôle dérive		Auto	
IP		7,0 (valeur affichée sur la sonde ISM)	рН
STC		0.000 pH/°C	
Temp. cal. fixe		Non	
Constantes d'étalonnage	рН	S = 100,0 %, Z = 7,000 pH	
(pour sonde analogique)	Température	M = 1.0, A = 0.0	
Constantes d'étalonnage (pour sonde ISM)		Affichée sur la sonde	
Décolution	рН	0,01	рН
	Température	0,1	°C
Alarma	Diagnostic Rg	Oui	
Alume	Diagnostic Rr	Oui	

pH/pNa

Paramètre	Sous-paramètre	Valeur	Unité
	α	рН	рН
Voie X	b	Température	°C
	С	Aucune	
	d	Aucune	
Source de température (pour sonde analogique)		Auto	
Tampon pH		Na+3,9M	
Contrôle dérive		Auto	
IP		Affichée sur la sonde	pН
STC		0.000	pH/°C
Temp. cal. fixe		Non	
Constantes d'étal.		Affichée sur la sonde	
Résolution	рН	0,01	рН
	Température	0,1	°C
Alarme	Diagnostic Rg	Oui	

Oxygène

Paramètre	Sous-paramètre	Valeur	Unité
Voia V	α	02	% d'air - O2 Hi ppb - O2 Lo, Trace ppm - MecSens
	b	Température	°C
	С	Aucune	
	d	Aucune	°C
Source de température (pour sonde analogique)		UseNTC22K	
CalPres		759,8	mmHg
ProcPres		759,8	mmHg
ProcCalPres		CaPres	
Contrôle dérive		Auto	
Salinité		0,0	g/Kg
Humidité		100	%
Umeaspol		ISM : Affichée sur la sonde Analogique : -674 pour O2 Hi, autres : -500,0	
Ucalpol		-674	mV
	O2 haut	S = -70,00 nA, Z = 0,00 nA	
Constantes d'étalonnage	O2 bas	S = -350,00 nA, Z = 0,00 nA	
(pour sonde analogique)	O2 traces	S = -4000,0 nA ,Z = 0,00 nA	
	Température	M = 1.0, A = 0.0	
Constantes d'étalonnage (pour sonde ISM)		Affichée sur la sonde	
	02	0,1	% d'air
Résolution		1	ppb
	Température	0,1	0°
Alarme	Niv. électrolyte bas (Sonde ISM)	Oui	

Résistivité/conductivité

Paramètre	Sous-paramètre	Valeur	Unité
	a	Conductivité	mS/cm
Voie X	b	Température	°C
	С	Aucune	
	d	Aucune	
Source de température (pour sonde analogique)		Auto	
Compensation		Standard	
Constantes d'étalonnaae	Cond./Rés.	M = 0, 1, A = 0, 0	
(pour sonde analogique)	Température	M = 1,0, A = 0,0	
Constantes d'étalonnage (pour sonde ISM)		Affichée sur la sonde	
Résolution	Conductivité	0,01	mS/cm
	Température	0,1	°C
	Cond court-circuit	Non	
Alarme	Sonde Cond sèche	Non	
	Déviation de la cellule (Sonde ISM)	Non	

Paramètre	Sous-paramètre	Valeur	Unité
	a	%CO2	%CO2
Voie X	b	Température	°C
	С		
	d		
Source de température (pour sonde analo- gique)		Auto	
Tampon pH		Mettler-9	
Contrôle dérive		Auto	
Salinité		28,0	g/l
HCO3		0,05	mol/l
TotPres		750,1	mmHg
Constantes d'étal.	CO2	Affichée sur la sonde	
Désclution	CO2	0,1	hPa
	Température	0,1	٥C
Alarme	Diagnostic Rg	Non	

18 Garantie

METTLER TOLEDO garantit que ce produit est exempt de tout vice matériel et de conception pour une période d'une année à compter de la date d'achat. Au cours de la période de garantie, si des réparations sont nécessaires et qu'elles ne résultent pas d'une mauvaise utilisation du produit, retournez l'équipement franco de port et les modifications seront effectuées sans frais. Le service client de METTLER TOLEDO déterminera si le problème rencontré par le produit résulte d'une mauvaise utilisation ou d'un vice de fabrication. Les produits qui ne font pas l'objet d'une garantie seront réparés à vos frais sur la base d'un remplacement à l'identique.

La garantie ci-dessus est la garantie exclusive de METTLER TOLEDO et remplace toutes les autres garanties, expresses ou tacites, y compris mais sans s'y limiter, les garanties implicites de qualité marchande et de convenance à une fin particulière. METTLER TOLEDO ne sera pas considéré comme responsable pour tout dommage, perte, réclamation, manque à gagner fortuit ou induit, découlant des actes ou omissions de l'acquéreur ou de tiers, que ce soit par négligence ou autre. METTLER TOLEDO est dégagé de toute responsabilité en termes de réclamation, quelle qu'elle soit, qu'elle repose sur un contrat, une garantie, une indemnisation ou un délit (y compris la négligence), se révélant supérieure au prix d'achat du produit.

19 Tableaux de tampons

Les transmetteurs M400 ont la possibilité de reconnaître automatiquement un tampon pH. Les tableaux suivants indiquent les différents tampons standard reconnus automatiquement.

19.1 Tampons pH standard

19.1.1 Mettler-9

Temp (°C)	pH de solutions to	impons		
0	2,03	4,01	7,12	9,52
5	2,02	4,01	7,09	9,45
10	2,01	4,00	7,06	9,38
15	2,00	4,00	7,04	9,32
20	2,00	4,00	7,02	9,26
25	2,00	4,01	7,00	9,21
30	1,99	4,01	6,99	9,16
35	1,99	4,02	6,98	9,11
40	1,98	4,03	6,97	9,06
45	1,98	4,04	6,97	9,03
50	1,98	4,06	6,97	8,99
55	1,98	4,08	6,98	8,96
60	1,98	4,10	6,98	8,93
65	1,98	4,13	6,99	8,90
70	1,99	4,16	7,00	8,88
75	1,99	4,19	7,02	8,85
80	2,00	4,22	7,04	8,83
85	2,00	4,26	7,06	8,81
90	2,00	4,30	7,09	8,79
95	2,00	4,35	7,12	8,77

Temp (°C)	pH de solutions ta	mpons		
0	2,03	4,01	7,12	10,65
5	2,02	4,01	7,09	10,52
10	2,01	4,00	7,06	10,39
15	2,00	4,00	7,04	10,26
20	2,00	4,00	7,02	10,13
25	2,00	4,01	7,00	10,00
30	1,99	4,01	6,99	9,87
35	1,99	4,02	6,98	9,74
40	1,98	4,03	6,97	9,61
45	1,98	4,04	6,97	9,48
50	1,98	4,06	6,97	9,35
55	1,98	4,08	6,98	
60	1,98	4,10	6,98	
65	1,99	4,13	6,99	
70	1,98	4,16	7,00	
75	1,99	4,19	7,02	
80	2,00	4,22	7,04	
85	2,00	4,26	7,06	
90	2,00	4,30	7,09	
95	2,00	4,35	7,12	

19.1.2 Mettler-10

19.1.3 Tampons techniques NIST

Temp (°C)	Temp (°C) pH de solutions tampons				
0	1,67	4,00	7,115	10,32	13,42
5	1,67	4,00	7,085	10,25	13,21
10	1,67	4,00	7,06	10,18	13,01
15	1,67	4,00	7,04	10,12	12,80
20	1,675	4,00	7,015	10,07	12,64
25	1,68	4,005	7,00	10,01	12,46
30	1,68	4,015	6,985	9,97	12,30
35	1,69	4,025	6,98	9,93	12,13
40	1,69	4,03	6,975	9,89	11,99
45	1,70	4,045	6,975	9,86	11,84
50	1,705	4,06	6,97	9,83	11,71
55	1,715	4,075	6,97		11,57
60	1,72	4,085	6,97		11,45
65	1,73	4,10	6,98		
70	1,74	4,13	6,99		
75	1,75	4,14	7,01		
80	1,765	4,16	7,03		
85	1,78	4,18	7,05		
90	1,79	4,21	7,08		
95	1,805	4,23	7,11		

Temp (°C)	pH de solutions ta	mpons		
0				
5	1,668	4,004	6,950	9,392
10	1,670	4,001	6,922	9,331
15	1,672	4,001	6,900	9,277
20	1,676	4,003	6,880	9,228
25	1,680	4,008	6,865	9,184
30	1,685	4,015	6,853	9,144
35	1,694	4,028	6,841	9,095
40	1,697	4,036	6,837	9,076
45	1,704	4,049	6,834	9,046
50	1,712	4,064	6,833	9,018
55	1,715	4,075	6,834	8,985
60	1,723	4,091	6,836	8,962
70	1,743	4,126	6,845	8,921
80	1,766	4,164	6,859	8,885
90	1,792	4,205	6,877	8,850
95	1,806	4,227	6,886	8,833

19.1.4 Tampons standard NIST (DIN et JIS 19266: 2000–01)

REMARQUE : Les valeurs pH(S) des différentes charges des matériaux de référence secondaires sont documentées dans un certificat établi par un laboratoire agréé. Ce certificat est fourni avec le matériau correspondant du tampon. Seules ces valeurs pH(S) doivent être utilisées comme valeurs standard pour les matériaux de tampons de référence secondaires. En conséquence, cette valeur standard n'inclut pas de tableau avec des valeurs pH standard pour l'application pratique. Le tableau ci-dessus fournit des exemples de valeurs pH(PS) à titre d'information uniquement.

19.1.5 Tampons Hach

Valeurs de tampons jusqu'à 60 °C tel que spécifié par Bergmann & Beving Process AB.

Temp (°C)	pH de solutions tampons			
0	4,00	7,14	10,30	
5	4,00	7,10	10,23	
10	4,00	7,04	10,11	
15	4,00	7,04	10,11	
20	4,00	7,02	10,05	
25	4,01	7,00	10,00	
30	4,01	6,99	9,96	
35	4,02	6,98	9,92	
40	4,03	6,98	9,88	
45	4,05	6,98	9,85	
50	4,06	6,98	9,82	
55	4,07	6,98	9,79	
60	4,09	6,99	9,76	

Temp (°C)	pH de solutions tampons			
0	2,04	4,00	7,10	10,30
5	2,09	4,02	7,08	10,21
10	2,07	4,00	7,05	10,14
15	2,08	4,00	7,02	10,06
20	2,09	4,01	6,98	9,99
25	2,08	4,02	6,98	9,95
30	2,06	4,00	6,96	9,89
35	2,06	4,01	6,95	9,85
40	2,07	4,02	6,94	9,81
45	2,06	4,03	6,93	9,77
50	2,06	4,04	6,93	9,73
55	2,05	4,05	6,91	9,68
60	2,08	4,10	6,93	9,66
65	2,07*	4,10*	6,92*	9,61*
70	2,07	4,11	6,92	9,57
75	2,04*	4,13*	6,92*	9,54*
80	2,02	4,15	6,93	9,52
85	2,03*	4,17*	6,95*	9,47*
90	2,04	4,20	6,97	9,43
95	2,05*	4,22*	6,99*	9,38*

19.1.6 Tampons Ciba (94)

*Extrapolé

19.1.7 Merck Titrisole, Riedel-de-Haën Fixanale

Temp (°C)	(°C) pH de solutions tampons				
0	2,01	4,05	7,13	9,24	12,58
5	2,01	4,05	7,07	9,16	12,41
10	2,01	4,02	7,05	9,11	12,26
15	2,00	4,01	7,02	9,05	12,10
20	2,00	4,00	7,00	9,00	12,00
25	2,00	4,01	6,98	8,95	11,88
30	2,00	4,01	6,98	8,91	11,72
35	2,00	4,01	6,96	8,88	11,67
40	2,00	4,01	6,95	8,85	11,54
45	2,00	4,01	6,95	8,82	11,44
50	2,00	4,00	6,95	8,79	11,33
55	2,00	4,00	6,95	8,76	11,19
60	2,00	4,00	6,96	8,73	11,04
65	2,00	4,00	6,96	8,72	10,97
70	2,01	4,00	6,96	8,70	10,90
75	2,01	4,00	6,96	8,68	10,80
80	2,01	4,00	6,97	8,66	10,70
85	2,01	4,00	6,98	8,65	10,59
90	2,01	4,00	7,00	8,64	10,48
95	2,01	4,00	7,02	8,64	10,37

124

Temp (°C)	pH de solutions tampons				
0	2,03	4,01	7,12	10,65	
5	2,02	4,01	7,09	10,52	
10	2,01	4,00	7,06	10,39	
15	2,00	4,00	7,04	10,26	
20	2,00	4,00	7,02	10,13	
25	2,00	4,01	7,00	10,00	
30	1,99	4,01	6,99	9,87	
35	1,99	4,02	6,98	9,74	
40	1,98	4,03	6,97	9,61	
45	1,98	4,04	6,97	9,48	
50	1,98	4,06	6,97	9,35	
55	1,98	4,08	6,98		
60	1,98	4,10	6,98		
65	1,99	4,13	6,99		
70		4,16	7,00		
75		4,19	7,02		
80		4,22	7,04		
85		4,26	7,06		
90		4,30	7,09		
95		4,35	7,12		

19.1.8 Tampons WTW

19.1.9 Tampons JIS Z 8802

Temp (°C)	pH de solutions t	pH de solutions tampons				
0	1,666	4,003	6,984	9,464		
5	1,668	3,999	6,951	9,395		
10	1,670	3,998	6,923	9,332		
15	1,672	3,999	6,900	9,276		
20	1,675	4,002	6,881	9,225		
25	1,679	4,008	6,865	9,180		
30	1,683	4,015	6,853	9,139		
35	1,688	4,024	6,844	9,102		
38	1,691	4,030	6,840	9,081		
40	1,694	4,035	6,838	9,068		
45	1,700	4,047	6,834	9,038		
50	1,707	4,060	6,833	9,011		
55	1,715	4,075	6,834	8,985		
60	1,723	4,091	6,836	8,962		
70	1,743	4,126	6,845	8,921		
80	1,766	4,164	6,859	8,885		
90	1,792	4,205	6,877	8,850		
95	1,806	4,227	6,886	8,833		

19.2 Tampons pour électrode de pH à double membrane

19.2.1 Tampons pH/pNa Mettler (Na+ 3,9M)

Temp (°C)	pH de solutions tampons				
0	1,98	3,99	7,01	9,51	
5	1,98	3,99	7,00	9,43	
10	1,99	3,99	7,00	9,36	
15	1,99	3,99	6,99	9,30	
20	1,99	4,00	7,00	9,25	
25	2,00	4,01	7,00	9,21	
30	2,00	4,02	7,01	9,18	
35	2,01	4,04	7,01	9,15	
40	2,01	4,05	7,02	9,12	
45	2,02	4,07	7,03	9,11	
50	2,02	4,09	7,04	9,10	

Organisations du marché de METTLER TOLEDO

Vente et service après-vente :

Allemagne

Mettler-Toledo GmbH ProzeBanalytik Ockerweg 3 DE-35396 Gießen Tél. +49 641 507 444 e-mail prozess@mt.com

Australie

Mettler-Toledo Limited 220 Turner Street Port Melbourne, VIC 3207 Australia Tél. +61 1300 659 761 e-mail info.mtaus@mt.com

Autriche

Mettler-Toledo Ges.m.b.H. Laxenburger Str. 252/2 AT-1230 Wien Tél. +43 1 607 4356 e-mail prozess@mt.com

Brésil

Mettler-Toledo Ind. e Com. Ltda. Avenida Tamboré, 418 Tamboré BR-06460-000 Barueri/SP Tél. +55 11 4166 7400 e-mail mtbr@mt.com

Canada

Mettler-Toledo Inc. 2915 Argentia Rd #6 CA-ON L5N 8G6 Mississauga Tél. +1 800 638 8537 e-mail ProInsideSalesCA@mt.com

Chine

Mettler-Toledo International Trading (Shanghai) Co. Ltd. 589 Gui Ping Road Cao He Jing CN-200233 Shanghai Tél. +86 21 64 85 04 35 e-mail ad@mt.com

Corée du Sud

Mettler-Toledo (Korea) Ltd. 1 & 4 F, Yeil Building 21 Yangjaecheon-ro 19-gil Seocho-Gu Seoul 06753 Korea Tél. +82 2 3498 3500 e-mail Sales_MTKR@mt.com

Croatie

Mettler-Toledo d.o.o. Mandlova 3 HR-10000 Zagreb Tél. +385 1 292 06 33 e-mail mt.zagreb@mt.com

Danemark

Mettler-Toledo A/S Naverland 8 DK-2600 Glostrup Tél. +45 43 27 08 00 e-mail info.mtdk@mt.com

Espagne

Mettler-Toledo S.A.E. C/Miguel Hernández, 69-71 ES-08908 L'Hospitalet de Llobregat (Barcelona) Tél. +34 902 32 00 23 e-mail mtemkt@mt.com

États-Unis

METTLER TOLEDO Process Analytics 900 Middlesex Turnpike, Bld. 8 Billerica, MA 01821, USA Tél. +1 781 301 8800 Tél. grat. +1 800 352 8763 e-mail mtprous@mt.com

France

Mettler-Toledo Analyse Industrielle S.A.S. 30, Boulevard de Douaumont FR - 75017 Paris Tél. +33 1 47 37 06 00 e-mail mtpro-f@mt.com

Grande Bretagne

Mettler-Toledo LTD 64 Boston Road, Beaumont Leys GB-Leicester LE4 1AW Tél. +44 116 235 7070 e-mail enquire.mtuk@mt.com

Hongrie

Mettler-Toledo Kereskedelmi KFT Teve u. 41 HU-1139 Budapest Tél. +36 1 288 40 40 e-mail mthu@axelero.hu

Inde

Mettler-Toledo India Private Limited Amar Hill, Saki Vihar Road Powai IN-400 072 Mumbai Tél. +91 22 2857 0808 e-mail sales.mtin@mt.com

Indonésie

PT. Mettler-Toledo Indonesia GRHA PERSADA 3rd Floor JI. KH. Noer Ali No.3A, Kayuringin Jaya Kalimalang, Bekasi 17144, ID Tél. +62 21 294 53919 e-mail mt-id.customersupport@mt.com Italie

Mettler-Toledo S.p.A. Via Vialba 42 IT-20026 Novate Milanese Tél. +39 02 333 321 e-mail customercare.italia@mt.com

Japon

Mettler-Toledo K.K. Process Division 6F Ikenohata Nisshoku Bldg. 2-9-7, Ikenohata Taito-ku JP-110-0008 Tokyo Tél. +81 3 5815 5606 e-mail helpdesk.ing.jp@mt.com

Malaisie

Mettler-Toledo (M) Sdn Bhd Bangunan Electroscon Holding, U 1-01 Lot 8 Jalan Astaka U8/84 Seksyen U8, Bukit Jelutong MY-40150 Shah Alam Selangor Tél. +60 3 78 44 58 88 e-mail MT-MY.CustomerSupport@mt.com

Mexique

Mettler-Toledo S.A. de C.V. Ejército Nacional #340 Polanco V Sección C.P. 11560 MX-México D.F. Tél. +52 55 1946 0900 e-mail mt.mexico@mt.com

Norvège

Mettler-Toledo AS Ulvenveien 92B NO-0581 Oslo Norway Tél. +47 22 30 44 90 e-mail info.mtn@mt.com

Pologne

Mettler-Toledo (Poland) Sp.z.o.o. ul. Poleczki 21 PL-02-822 Warszawa Tél. +48 22 545 06 80 e-mail polska@mt.com

République Tchèque

Mettler-Toledo s.r.o. Trebohosticka 2283/2 CZ-100 00 Praha 10 Tél. +420 2 72 123 150 e-mail sales.mtcz@mt.com

Russie

Mettler-Toledo Vostok ZAO Sretenskij Bulvar 6/1 – Office 6 RU-101000 Moscow Tél. +7 495 621 56 66 e-mail inforus@mt.com

Singapour

Mettler-Toledo (S) Pte. Ltd. Block 28 Ayer Rajah Crescent #05-01 SG-139959 Singapore Tél. +65 6890 00 11 e-mail mt.sg.customersupport@mt.com

Slovaquie

Mettler-Toledo s.r.o. Hattalova 12/A SK-83103 Bratislava Tél. +4212 4444 12 20-2 e-mail predaj@mt.com

Slovénie

Mettler-Toledo d.o.o. Pot heroja Trtnika 26 SI-1261 Ljubljana-Dobrunje Tél. +386 1 530 80 50 e-mail keith.racman@mt.com

Suède

Mettler-Toledo AB Virkesvägen 10 Box 92161 SE-12008 Stockholm Tél. +46 8 702 50 00 e-mail sales.mts@mt.com

Suisse

Mettler-Toledo (Schweiz) GmbH Im Langacher, Postfach CH-8606 Greifensee Tél. +41 44 944 47 60 e-mail ProSupport.ch@mt.com

Thaïlande

Mettler-Toledo (Thailand) Ltd. 272 Soi Soonvijai 4 Rama 9 Rd., Bangkapi Huay Kwang TH-10320 Bangkok Tél. +66 2 723 03 00 e-mail MT-TH.CustomerSupport@mt.com

Turquie

Mettler-Toledo Türkiye Haluk Türksoy Sokak No: 6 Zemin ve 1. Bodrum Kat 34662 Üsküdar-Istanbul, TR Tél. +90 216 400 20 20 e-mail sales.mttr@mt.com

Viêt Nam

Mettler-Toledo (Vietnam) LLC 29A Hoang Hoa Tham Street, Ward 6 Binh Thanh District Ho Chi Minh City, Vietnam Tél. +84 8 35515924 e-mail MT-VN.CustomerSupport@mt.com

Système de gestion certifié selon ISO 9001 / ISO 14001 Sous réserve de modifications techniques. © Mettler-Toledo GmbH, Process Analytics 08/2016 Imprimé en Suisse. 30 078 304 Mettler-Toledo GmbH, Process Analytics Im Hackacker 15, CH-8902 Urdorf, Suisse Tél. +41 44 729 62 11, Fax +41 44 729 66 36

www.mt.com/pro