

Bedienungsanleitung Transmitter M400/2XH Cond Ind

Bedienungsanleitung Transmitter M400/2XH Cond Ind

Inhalt

1	Einfül	hrung	
	1.1	Bestimmungsgemäße Verwendung	
2	Siche	rheitshinweise	
	2.1	Symbole und Bezeichnungen am Gerät und in der Dokumentation	8
	2.2	Richtige Entsorgung des Geräts	
	2.3	Ex-Anweisungen für Multiparameter-Transmitter der Reihe M400	1(
	2.4	Ex-Anweisungen für Multiparameter-Transmitter der Reihe M400 – FM-Zulassung	12
		2.4.1 Gemäß FM-Zulassung zu berücksichtigende Bedienungsanweisungen	12
		2.4.1.1 Allgemeine Hinweise]4
		2.4.1.2 Sicherheitshinweise, Warnungen und Kennzeichnungen	18
		2.4.1.3 Kontrollzeichnungen	17
3	Funkt	ion und Aufbau	18
-	3.1	Funktion	18
	3.2	Bauweise	18
	3.3	Navigationstasten	19
	3.4	Anzeigen	20
	3.5	Menüstruktur	2
4	Mont		
•	4 1	Gerät ausnacken und prüfen	22
	4.2		22
	4.2	Einhouwerfahren	22
	4.0		2
	4.5	Wandmontage	2
	4.0		2
5	Podre	iterina	2
5	5 1	Elektrischer Anschluss des Transmitters	20
	5.1	Liberijski jeko dio Ansoliusso uto indistriniteis	20
	5.2		20
	0.0	Anischildze dei Anischildzeiter 102. Sehischildzeiter	20
	51	HADT-Kommunikation	20
•	J.4		2
0			3ເ
	0.1		3(
-	0.2		30
/	QUICK	Serup	3
B	Sense	orkalibrierung	33
	8.1	Das Prozess-Sensorkalibrierungsverfahren	33
	8.2	Einpunkt-Sensorkalibrierung	34
	8.3	Nullpunkt-Sensorkalibrierung	3t
9	Konfi	guration	36
	9.1	Aufrufen des Konfigurationsmodus	36
	9.2	Messung	36
		9.2.1 Setup Kanal	36
		9.2.2 Temperaturquelle	37
		9.2.3 Spezifischer Widerstand – Leitfähigkeitstemperaturkompensation	38
		9.2.4 Konzentrationstabelle	39
		9.2.5 Set Durchschnitt	4
	9.3	Analog Ausgänge	4
	9.4	Sollwerte	42
	9.5	Alarm/Clean	44
		9.5.1 Alarm	44
		9.5.2 Clean	48
	9.6	Anzeige	48
		9.6.1 Messung	46
		9.6.2 Autlosung	46
		9.6.3 Backlight	46
		9.6.4 Name	47
	9.7	Hold-Funktion für analoge Ausgänge	47
10	Syste	m	48
	10.1	Sprache	48
	10.2	Passworte	49
		10.2.1 Passworte ändern	49
		10.2.2 Menüzugriffsrechte für den Benutzer konfigurieren	49

	10.4	Reset	50			
		10.4.1 Reset System	50			
		10.4.2 Reset Geräteiustierung	50			
		10.4.3 Reset Analoguistierung	00			
	10.5	Zeit Einstellungen	51			
11	PID-S		52			
••	111	PID-Setun	02			
	11.1		00			
	11.2	Modus	00			
	11.0	11.3.1 PID-Modus	00			
	114	Parameter einstellen	01			
	11.4	11.4.1 PID-Zuweisung und Einstellung	04			
		11.4.2 Sollwert und tote Zone	00			
		11.4.3 Proportionale Granzan	00 55			
			00			
	11.5		00			
12	Wartu		00			
12	121	ing	57 57			
	12.1	12 1 1 Model/Software Revision	57			
			07 58			
		12.1.2 Dignore Linguing	58			
		12.1.4 Trestelur	58			
		12.1.5 Memory	58			
		12.1.6 Set Kontakte	00 59			
		12.1.7 Lese Kontekte	00 59			
		12.1.8 Set analoge Ausgänge	00 50			
		12.1.9 Lese anglore Ausgänge	60			
	122		60			
	12.2	12.2.1 Justieren Geröt	60			
			60			
		12.2.2.1.1 tomporter	61			
	12.3	Erweiterte Wortung	61			
12	Info		01 62			
15	131	Maldungen	02 62			
	13.1	13.0 Institution				
	13.2	Model/Software Devision	02			
14	Wartu		00			
14		III	04			
	14.1 Oran		04			
15	Sucne		65			
	15.1	Le Dia der varhungen für Induktive Leitfanigkelissensoren – Liste der Warnungen und Alarme	65			
	15.2	Im Display angezeigie warnungen und Alarme	66			
		15.2.1 Warringen	66			
		15.2.2 Aldrm	66			
16	Zubeh	or und Ersatzteile	67			
17	Techn	ische Daten	68			
	17.1	Allgemeine technische Daten	68			
	17.2	Elektrische Spezifikationen	69			
		17.2.1 Allgemeine elektrische Spezifikationen	69			
		17.2.2 4 bis 20 mA (mit HART®)	69			
	17.3	Mechanische Daten	69			
	17.4	Umgebungsspezifikationen	70			
	17.5	Kontrollzeichnungen	71			
		17.5.1 Installation, Wartung und Inspektion	71			
		17.5.2 Kontrollzeichnung für die allgemeine Installation	72			
		17.5.3 Hinweise	76			
18	Tabell	e Voreinstellungen	77			
	18.1	Allgemeine Parameter	77			
	18.2	PID Standardwert	78			
	18.3	Parameter induktive Leitfähigkeit	78			
19	Garan	tie	79			

1 Einführung

1.1 Bestimmungsgemäße Verwendung

Der M400/2XH Cond Ind ist ein Zweileiter-Kopftransmitter für analytische Messungen mit HART[®]-Kommunikationsfunktionen. Er ist als Einkanal-Modell erhältlich und mit analogen induktiven Leitfähigkeitssensoren kompatibel.

Der Transmitter M400/2XH Cond Ind wurde für den Einsatz in der Prozessindustrie entwickelt. Darüber hinaus ist der Transmitter M400/2XH Cond Ind aufgrund seiner eigensicheren Konstruktion für Anwendungen in Gefahrenbereichen zugelassen.

METTLER TOLEDO haftet nicht für Schäden aufgrund unsachgemäßer Verwendung oder nicht bestimmungsgemäßer Verwendung.

M400/2XH Cond Ind Einsatzmöglichkeiten nach Parametern

Parameter	M400/2XH Cond Ind
	Analog
Cond Ind (induktive Leitfähigkeit) 1)	•
1) InPro 7250 ST, InPro 7250 PFA. InPro 7250 HT	

Tabelle 1: M400/2XH Cond Ind Einsatzmöglichkeiten nach Parametern

2 Sicherheitshinweise

In dieser Bedienungsanleitung werden Sicherheitshinweise folgendermaßen bezeichnet und dargestellt:

2.1 Symbole und Bezeichnungen am Gerät und in der Dokumentation

WARNUNG: VERLETZUNGSGEFAHR.

VORSICHT: Das Gerät könnte beschädigt werden oder es könnten Störungen auftreten.

HINWEIS: Wichtige Information zur Bedienung.

Das Symbol auf dem Transmitter oder in der Bedienungsanleitung zeigt an: Vorsicht bzw. andere mögliche Gefahrenquellen einschließlich Stromschlaggefahr (siehe die entsprechenden Dokumente)

Im Folgenden finden Sie eine Liste der allgemeinen Sicherheitshinweise und Warnungen. Zuwiderhandlungen gegen diese Hinweise können zur Beschädigung des Geräts und/oder zu Personenschäden führen.

- Der M400 Transmitter darf nur von Personen installiert und betrieben werden, die sich mit dem Transmitter auskennen und die für solche Arbeiten ausreichend qualifiziert sind.
- Der Transmitter M400 darf nur unter den angegebenen Betriebsbedingungen betrieben werden. Siehe Kapitel 17 «Technische Daten» auf Seite 68.
- Außer bei Routine-Wartungsarbeiten, Reinigung oder Austausch der Sicherung, wie sie in dieser Bedienungsanleitung beschrieben sind, darf am M400 Transmitter in keiner Weise herumhantiert oder das Gerät verändert werden.
- Befolgen Sie alle Warnhinweise, Vorsichtsmaßnahmen und Anleitungen, die auf dem Produkt angegeben sind oder mitgeliefert wurden.
- Installieren Sie das Gerät wie in dieser Bedienungsanleitung beschrieben. Befolgen Sie die entsprechenden örtlichen und nationalen Bestimmungen.
- Schutzabdeckungen müssen sich jederzeit während des normalen Betriebs an ihren Plätzen befinden.
- Wird dieses Gerät auf eine Art verwendet, die der Hersteller nicht vorgesehen hat, kann es sein, dass die vorhandenen Schutzvorrichtungen beeinträchtigt sind.

WARNHINWEISE:

Bei der Installation von Kabelverbindungen und bei der Wartung dieses Produktes muss auf gefährliche Stromspannungen zugegriffen werden.

Der Netzanschluss und OC (Relais-) Kontakte, die mit separaten Stromquellen verbunden sind, sind vor Wartungsarbeiten zu trennen.

Schalter und Unterbrecher müssen sich in unmittelbarer Nähe des Geräts befinden und für den BEDIENER leicht erreichbar sein. Sie müssen als Ausschalter des Geräts gekennzeichnet werden. Der Netzanschluss muss über einen Schalter oder Schutzschalter vom Gerät getrennt werden können.

 \sqrt{r}

Die elektrische Installation muss den nationalen Bestimmungen für elektrische Installationen und/oder anderen nationalen oder örtlichen Bestimmungen entsprechen.

HINWEIS: PROZESSSTÖRUNGEN

Da die Prozess- und Sicherheitsbedingungen von einem konstanten Betrieb des Transmitters abhängen können, müssen Sie die notwendigen Voraussetzungen dafür schaffen, dass während der Reinigung, dem Austausch der Sensoren oder der Kalibrierung des Messgeräts ein fortdauernder Betrieb gewährleistet ist.

HINWEIS: Dieses Gerät verfügt über 2-Leiter-Anschluss mit spannungsführendem Analogausgang 4–20 mA.

2.2 Richtige Entsorgung des Geräts

Wenn der Transmitter schließlich entsorgt werden muss, beachten Sie die örtlichen Umweltbestimmungen für die richtige Entsorgung.

2.3 Ex-Anweisungen für Multiparameter-Transmitter der Reihe M400

Multiparameter-Transmitter der Reihe M400 werden von der Mettler-Toledo GmbH hergestellt. Sie haben die Prüfung nach dem IECEx-Schema bestanden und entsprechen den folgenden Normen:

- IEC 60079-0: 2011
 Ausgabe: 6.0 Explosionsgefährdete Bereiche Teil 0: Allgemeine Anforderungen
- IEC 60079-11: 2011
 Ausgabe: 6.0 Explosionsgefährdete Bereiche Teil 11: Geräteschutz durch Eigensicherheit «i»
- IEC 60079-26: 2006
 Ausgabe: 2 Explosionsgefährdete Bereiche –
 Teil 26: Betriebsmittel mit Geräteschutzniveau (EPL) Ga

Ex-Kennzeichnung:

- Ex ib [ia Ga] IIC T4 Gb
- Ex ib [ia Da] IIIC T80 °C Db IP66

Zertifikat-Nr.:

- IECEX CQM 12.0021X
- SEV 12 ATEX 0132 X

1. Besondere Einsatzbedingungen (X-Kennzeichnung in der Zertifikatsnummer):

- 1. Vermeidung von Entzündungsgefahr durch Schlag- oder Reibfunken, Verhinderung mechanisch erzeugter Funken.
- 2. Vermeidung von elektrostatischen Ladungen auf der Gehäuseoberfläche, zur Reinigung nur feuchte Tücher verwenden.
- 3. In Gefahrenbereichen müssen IP66-Stopfbüchsen (im Lieferumfang enthalten) montiert werden.

2. Achtung:

- 1. Zulässiger Umgebungstemperaturbereich:
 - für Schutzgasatmosphäre: -20 ~ +60 °C
 - für Staubatmosphäre: $-20 \sim +57$ °C
- 2. Keine Arbeiten an der Upgrade-Schnittstelle in Gefahrenbereichen.
- 3. Benutzer dürfen keinen willkürlichen Austausch der inneren elektrischen Bauteile vornehmen.
- 4. Bei der Installation, Verwendung und Wartung sind die Anforderungen nach EN 60079-14 einzuhalten.
- 5. Bei Installation in explosionsgefährdeter Staubatmosphäre
 - 5.1 Stopfbüchse oder Blindstopfen nach IEC 60079-0:2011 und IEC 60079-11:2011 mit Ex ia III C IP66-Kennzeichnung verwenden.
 - 5.2 Schutzschalter des Multiparameter-Transmitters vor Licht schützen.
 - 5.3 Mechanische Gefahren am Schutzschalter sind zu vermeiden.
- Warnhinweise beachten: potenzielle Gefahr einer elektrostatischen Aufladung siehe Anweisungen, Vermeidung von Entzündungsgefahr durch Schlag- oder Reibfunken bei Ga-Anwendungen.
- 7. Verwenden Sie für Anschlüsse an eigensicheren Stromkreisen die folgenden Höchstwerte.

M400/2XH und M400G/2XH

Klemme	Funktion	Sicherheitspar	ameter			
10, 11	Aout1	U _i = 30 V	l _i = 100 mA	$P_{i} = 0,8 W$	Li ≈ 0	C _i = 15 nF
12, 13	Aout2	U _i = 30 V	l _i = 100 mA	$P_{i} = 0,8 W$	Li ≈ 0	C _i = 15 nF
1, 2; 3, 4;	Digitaler Eingang	U _i = 30 V	l _i = 100 mA	$P_{i} = 0,8 W$	Li ≈ 0	C _i ≈ 0
6, 7; 8, 9;	Relaisausgang	U _i = 30 V	l _i = 100 mA	P _i = 0,8 W	Li ≈ 0	C _i ≈ 0
P, Q	Analogeingang	U _i = 30 V	l _i = 100 mA	$P_{i} = 0,8 W$	Li ≈ 0	C _i = 15 nF
N, O	RS485 Sensor	$U_i = 30 V$	$I_i = 100 \text{ mA}$	$P_{i} = 0.8 W$	Li≈0	$C_{i} = 0,7 \ \mu F$
		$U_0 = 5,00 V$	$1_0 = 54 \text{ mA}$	$P_0 = 60 \text{ mW}$		$C_0 = 1.9 \mu F$
A, E, G	pH-Sensor	$U_{0} = 5,88 V$	$I_0 = 1.3 \text{ mA}$	$P_0 = 1.9 \text{ mW}$	$L_0 = 5 \text{ mH}$	$C_0 = 2,1 \mu F$
B, A, E, G	Leitfähigkeitssensor	U _o = 5,88 V	$I_{o} = 29 \text{ mA}$	$P_{o} = 43 \text{ mW}$	$L_{o} = 1 \text{ mH}$	C _o = 2,5 μF
K, J, I	Temperatursensor	U _o = 5,88 V	$l_{o} = 5,4 \text{ mA}$	$P_{o} = 8 \text{ mW}$	$L_{o} = 5 \text{ mH}$	$C_o = 2 \ \mu F$
H, B, D	Sensor für gelösten Sauerstoff	U _o = 5,88 V	l _o = 29 mA	$P_{o} = 43 \text{ mW}$	$L_{o} = 1 \text{ mH}$	$C_{o} = 2,5 \ \mu F$
L	Eindraht-Sensor	U _o = 5,88 V	$I_{o} = 22 \text{ mA}$	$P_{o} = 32 \text{ mW}$	$L_{o} = 1 \text{ mH}$	C _o = 2,8 μF

M400/2XH Cond Ind

Klemme	Funktion	Sicherheitspar	ameter			
10, 11	Aout1	U _i = 30 V	l _i = 100 mA	$P_{1} = 0.8 W$	Li ≈ 0	C _i = 15 nF
12, 13	Aout2	U _i = 30 V	l _i = 100 mA	$P_{1} = 0.8 W$	Li ≈ 0	C _i = 15 nF
1, 2; 3, 4;	Digitaler Eingang	U _i = 30 V	l _i = 100 mA	$P_{1} = 0.8 W$	Li ≈ 0	C _i ≈ 0
6, 7; 8, 9;	Relaisausgang	U _i = 30 V	l _i = 100 mA	$P_{i} = 0.8 W$	Li ≈ 0	C _i ≈ 0
D, E, F, G, H	Induktiver Leitfähigkeitssensor	U _o = 5,36 V	l _o = 17,2 mA	$P_{o} = 23 \text{ mW}$	L _o = 1 mH	C _o = 3,2 μF
K, J, I	Temperatursensor	U ₀ = 5,88 V	$l_{o} = 5,4 \text{ mA}$	$P_{o} = 8 \text{ mW}$	$L_{o} = 5 \text{ mH}$	C _o = 2 μF

Abb. 1: Etikett Modell M400/2XH

Abb. 2: Etikett Modell M400G/2XH

Abb. 3: Etikett Modell M400G/2XH Cond Ind

2.4 Ex-Anweisungen für Multiparameter-Transmitter der Reihe M400 – FM-Zulassung

2.4.1 Gemäß FM-Zulassung zu berücksichtigende Bedienungsanweisungen

Multiparameter-Transmitter der Reihe M400 werden von der Mettler-Toledo GmbH hergestellt. Sie sind nach Prüfung durch ein staatlich anerkanntes Prüflabor nach cFMus zugelassen und erfüllen die folgenden Anforderungen:

Die Erdung des Geräts erfolgt innenseitig durch Bond-Verdrahtung und eine freie Zuleitung.

US-Kennzeichnung	
Betriebstemperaturbereich	-20 bis +60 °C
Umgebungseinstufung	Gehäusetyp NEMA 4X, IP66
Eigensicher	Klasse I, Division 1, Gruppen A, B, C, D T4
	Klasse II, Division 1, Gruppen E, F, G
	Klasse III
Eigensicher	Klasse I, Zone O, AEx ia IIc T4 Ga
Parameter	Entity: Kontrollzeichnung 12112601 und 12112602(4)
	• FISCO:
	Kontrollzeichnung 12112603 und 12112602(4)
Nicht zündgefährlich	Klasse I, Division 2, Gruppen A, B, C, D T4A
	Klasse I, Zone 2, Gruppen IIc T4
Zertifikats-Nr.	FM16US0216X

US-Kennzeichnung	
Normen	FM3810:2005 Approval Standard for Electrical Equipment for Measuerement, Control and Laoratory Use
	 ANSI/IEC-60529:2004 Degrees of Protection Provided by Enclosures (IP Codes) ANSI/ISA-61010-1:2004 Ausgabe: 3.0 Safety Requirements for Electrical Equipment for Measurement, Control, and Laboratory Use Part 1: General Requirements
	 ANSI/NEMA 250:1991 Enclosures for Electrical Equipement (max. 1000 V) EM3600:2011
	Approval Standard for Electrical Equipment for Use in Hazardous (Classified) Locations – General Requirements • FM3610:2015
	Approval Standard for Intrinsically Safe Apparatus and Associated Apparatus for Use in Class I, II & III, Division 1, Hazardous (Classified) Locations
	 FM3611:2004 Approval Standard for Nonincendive Electrical Equipment for Use in Class I & II, Division 2, and Class III, Division 1 & 2, Hazardous (Classified) Locations
	 ANSI/ISA-60079-0:2013 Ausgabe: 6.0 Explosive Atmospheres – Part 0: General Requirements
	ANSI/ISA-60079-11:2012 Ausgabe: 6.0 Explosive Atmospheres – Part 11: Equipement Protection by Intrinsic Safety «i»

Kanadische Kennzeichnung	
Betriebstemperaturbereich	-20 bis +60 °C
Umgebungseinstufung	Gehäusetyp NEMA 4X, IP66
Eigensicher	• Klasse I, Division 1, Gruppen A, B, C, D T4
	• Klasse II, Division 1, Gruppen E, F, G
	Klasse III
Eigensicher	Klasse I, Zone O, Ex ia IIc T4 Ga
Parameter	 Entity: Kontrollzeichnung 12112601 und 12112602(4) FISCO: Kontrollzeichnung 12112603 und 12112602(4)
Nicht zündgefährlich	Klasse I, Division 2, Gruppen A, B, C, D T4A
Zertifikats-Nr.	FM16CA0119X

Kanadische Kennzeichnung			
Normen	• CAN/CSA-C22.2 Nr. 60529:2010		
	Degrees of Protection Provided by Enclosures (IP Codes)		
	• CAN/CSA-C22.2 Nr. 61010-1:2004		
	Ausgabe: 3.0 Safety Requirements for Electrical Equipment		
	for Measurement, Control, and Laboratory Use – Part 1: General Requirements		
	• CAN/CSA-C22.2 Nr. 94:1976		
	Special Purpose Exclosures – Industrial Products		
	• CAN/CSA-C22.2 Nr. 213-M1987:2013		
	Non-Incendive Equipment for Use in Calss I, Division 2 Hazardous Locations – Industrial Products		
	• CAN/CSA-C22.2 Nr. 60079-0:2015		
	Ausgabe: 2.0 Explosive Atmospheres –		
	Part 0: General Requirements		
	• CAN/CSA-C22.2 Nr. 60079-11:2014		
	Ausgabe: 2.0 Explosive Atmospheres –		
	Part 11: Equipement Protection by Intrinsic Safety «i»		

2.4.1.1 Allgemeine Hinweise

Die Multiparameter-Transmitter M400/2(X)H, M400G/2XH, M400FF, M400PA und der M400/2XH Cond Ind sind geeignet für den Einsatz in explosionsfähiger Atmosphäre aller brennbaren Stoffe der Explosionsgruppen A, B, C, D, E, F und G in Anwendungen, die Instrumente der Klassen I, II, III, Division 1 erfordern, der Explosionsgruppen A, B, C und D in Anwendungen, die Instrumente der Klasse I, Division 2 erfordern (National Electrical Code[®] (ANSI/NFPA 70 (NEC[®]), Article 500; oder Canadian Electrical (CE) Code[®] (CEC Part 1, CAN/CSA-C22.1), Appendix F bei Installation in Kanada oder der Explosionsgruppen IIC, IIB oder IIA in Anwendungen, die Instrumente der Klasse I, Zone O, AEx/Ex ia IIC T4, Ga erfordern (National Electrical Code[®] (ANSI/NFPA 70 (NEC[®]), Article 500; oder Canadian Electrical (CE) Code[®] (CEC Part 1, CAN/CSA-C22.1), Appendix F bei Installation in Kanada).

Bei Installation und Betrieb der Multiparameter-Transmitter M400/2(X)H, M400G/2XH, M400FF, M400PA und M400/2XH Cond Ind in Gefahrenbereichen müssen sowohl die allgemeinen Vorschriften für Installationen in Ex-Bereichen sowie die vorliegenden Sicherheitshinweise beachtet werden.

Die Bedienungsanleitung sowie die Vorschriften und Normen, die den Explosionsschutz bei der Installation elektrischer Systeme regeln, müssen unbedingt beachtet werden.

Die Installation explosionsgefährdeter Systeme darf nur von Fachkräften durchgeführt werden.

Für Hinweise zur Montage an bestimmten Ventilen siehe die dem Montagekit beiliegende Montageanleitung. Die Montage hat keinerlei Einfluss auf die Eignung des Ventilstellungsreglers SVI FF für den Einsatz in explosionsgefährdeten Umgebungen.

Das Gerät ist nicht für den Gebrauch als persönliche Schutzausrüstung vorgesehen. Um Verletzungen zu vermeiden, lesen Sie die Betriebsanleitung vor dem Gebrauch sorgfältig durch.

Wenn Sie Hilfe bei der Übersetzung benötigen, wenden Sie sich an Ihren Vertriebspartner vor Ort oder senden Sie eine E-Mail an process.service@mt.com.

2.4.1.2 Sicherheitshinweise, Warnungen und Kennzeichnungen

Hinweise zu explosionsgefährdeten Bereichen:

- 1. Für Hinweise zu Installationen in den USA siehe ANSI/ISA-RP12.06.01, Installation of Intrinsically Safe Systems for Hazardous (Classified) Locations.
- Installationen in den USA müssen den maßgeblichen Anforderungen des National Electrical Code[®] (ANSI/NFPA 70 (NEC[®])) entsprechen.
- 3. Installationen in Kanada müssen den maßgeblichen Anforderungen des Canadian Electrical (CE) Code[®] (CEC Part 1, CAN/CSA-C22.1) entsprechen.
- 4. Die Verdrahtung muss allen f
 ür die Installation ma
 ßgeblichen lokalen und nationalen Vorschriften entsprechen und f
 ür Abweichungen um mindestens +10 °C von der h
 öchsten zu erwartenden Umgebungstemperatur ausgelegt sein.
- 5. Wenn die Schutzart die Verwendung von Kabeldurchführungen erforderlich macht, müssen diese Durchführungen für die erforderliche Schutzart sowie für die auf dem Typenschild des Geräts oder des Gesamtsystems angegebene Bereichsklassifizierung zugelassen sein.
- Die innere Erdungsklemme dient als vorrangiges Erdungsmittel, die äußere Erdungsklemme dient lediglich als ergänzende (sekundäre) Potentialausgleichsverbindung, sofern die lokalen Behörden eine solche Verbindung erlauben oder erfordern.
- 7. Bei Installation in leitfähigen und nicht leitfähigen Staubumgebungen der Klasse II sowie in brennbaren Flugstaubumgebungen der Klasse III muss eine staubdichte Leerrohrabdichtung verwendet werden.
- 8. Es sind zugelassene wasser- und staubdichte Dichtungen erforderlich. Um höchsten Eindringschutz zu gewährleisten, sind alle Armaturen mit NPT- oder metrischem Gewinde mit Dichtband oder Gewindedichtmittel abzudichten.
- 9. Wenn das Gerät mit Staubschutzstöpseln aus Kunststoff in den Öffnungen der Leerrohre und Stopfbüchsen geliefert wird, ist der Endkunde für die Bereitstellung entsprechender für die Installationsumgebung geeigneter Stopfbüchsen, Adapter oder Blindstopfen verantwortlich. Bei Installation in einem explosionsgefährdeten Bereich müssen die Stopfbüchsen, Adapter und Blindstopfen außerdem für diesen explosionsgefährdeten Bereich sowie für die Produktzertifizierung geeignet und von der für die Installation zuständigen Behörde zugelassen sein.
- 11. Ziehen Sie die Deckelschrauben mit einem Anzugsdrehmoment von 1,8 Nm fest. Ein zu hohes Anzugsdrehmoment kann zu einer Beschädigung des Gehäuses führen.
- 12. Das minimale Anzugsdrehmoment für M4-Klemmschrauben in Schutzleiterklemmen beträgt 1,2 Nm. Abweichende Angaben beachten!
- Bei der Installation ist jegliche Freisetzung von Zündenergie durch Stöße, Schläge oder Reibung zu vermeiden.
- 14. Es dürfen nur Leiter aus Kupfer, kupferbeschichtetem Aluminium oder reinem Aluminium verwendet werden.
- 15. Das empfohlene Anzugsdrehmoment für die Feldverdrahtungsklemmen beträgt 0,8 Nm. Abweichende Angaben beachten!
- Die nicht zündgefährlichen Ausführungen der Multiparameter-Transmitter M400/2(X)H und M400G/2XH dürfen nur an leistungsbegrenzte Stromkreise gemäß NEC Class 2 nach

National Electrical Code[®] (ANSI/NFPA 70 (NEC[®])) angeschlossen werden. Bei Anschluss der Geräte an eine redundante Stromversorgung (zwei separate Stromversorgungen) müssen beide Stromversorgungen diese Anforderung erfüllen.

- 17. Die Zulassungen für Klasse I, Zone 2 basieren auf der Bereichsunterteilung und der Kennzeichnung nach Artikel 505 des National Electrical Code[®] (ANSI/NFPA 70 (NEC[®])).
- Die bewerteten Multiparameter-Transmitter M400/2(X)H, M400G/2XH, M400FF, M400PA und M400/2XH Cond Ind erhielten die FM-Zulassungen gemäß einem in ISO-Leitfaden 67 genannten Typ-3-Zertifizierungssystem.
- 19. Unerlaubte Änderungen und die Verwendung von Komponenten anderer Hersteller können den sicheren Einsatz des Systems beeinträchtigen.
- 20. Elektrische Steckverbindungen dürfen erst dann hergestellt oder getrennt werden, wenn der Bereich erwiesenermaßen frei von entflammbaren Dämpfen ist.
- 21. Die Multiparameter-Transmitter M400/2(X)H, M400G/2XH, M400FF, M400PA und M400/2XH Cond sind nicht f
 ür Wartung oder Wartungsbetrieb vorgesehen. Fehlerhafte Ger
 äte, die nicht mehr innerhalb der Herstellerspezifikationen funktionieren, sind zu entsorgen und durch neue, einwandfrei funktionierende Ger
 äte zu ersetzen.
- 22. Der Austausch von Komponenten kann die Eigensicherheit beeinträchtigen.
- 23. Nicht öffnen in explosionsfähiger Atmosphäre.
- 24. Explosionsgefahr: Spannungsführende Stromkreise nur dann trennen, wenn Explosionsgefahr mit Sicherheit ausgeschlossen werden kann.
- 25. Explosionsgefahr: Austausch von Komponenten kann die Eignung für Klasse I, Division 2 beeinträchtigen.

Die eigensicheren, Entity-konformen Multiparameter-Transmitter M400/2XH, M400G/2XH tragen folgende Kennzeichnung:

Abb. 4: Etikett der Modelle M400/2XH, M400G/2XH

Der eigensichere, Entity-konforme Transmitter M400/2XH Cond Ind trägt folgende Kennzeichnung:

Intrinsically Safe Version SÉCURITÉ INTRINSÉQUE, Exia C/US IS/I,II,III/1/ABCDEFG/T4 US I/0/AEx ia/IIC/T4 C I/0/Ex ia/IIC/T4 Entity	APPROVED Enclosure Type 4X IP66 -20 °C ≤ Ta ≤ +60 °C Control Drawing No. 12112601 FM16US0216X, FM16CA0119X	Entry thread: Metric, 5xM20; NOTE: 1. Conduit Hubs/Fittings Entry Thread; 2. Must use minimum Class I, Division2, Groups A, B, C, D, Type 4X and IP66 suitable Hubs/Fittings & Cable Glands to fulfill the complete FM certification. Operation Manual No. 30396563				
WARNING - EXPLOSION HAZARD. DO NOT REMOVE OR REPLACE WHILE CIRCUIT IS LIVE WHEN A FLAMMABLE OR COMBUSTIBLE ATMOSPHERE IS PRESENT. WARNING - POTENTIAL ELECTROSTATIC CHARGE HAZARD. USE ONLY DAMP CLOTH WHEN CLEANING OR WIPING. DO NOT USE SOLVENT. AVERTISSEMENT - RISQUE D'EXPLOSION. NE PAS DÉBRANCHER TANT QUE LE CIRCUIT EST SOUS TENSION, À MOINS QU'IL NE S'AGISSE D'UN EMPLACEMENT NON DANGEREUX						

Die nicht zündgefährliche Ausführung des Multiparameter-Transmitters M400/2H trägt folgende Kennzeichnung:

Abb. 6: Etikett des Modells M400/2H

2.4.1.3 Kontrollzeichnungen

Siehe Kapitel 17.5 «Kontrollzeichnungen» auf Seite 71.

3 Funktion und Aufbau

3.1 Funktion

Der M400/2XH Cond Ind ist ein Zweileiter-Kopftransmitter für analytische Messungen mit HART®-Kommunikationsfunktionen. Der M400/2XH Cond Ind ist als Einkanal-Version erhältlich und ist kompatibel zu analogen induktiven Leitfähigkeitssensoren.

M400/2XH Cond Ind Einsatzmöglichkeiten nach Parametern

Parameter	M400/2XH Cond Ind
	Analog
Cond Ind (induktive Leitfähigkeit) 1)	•

1) InPro 7250 ST, InPro 7250 PFA. InPro 7250 HT

Tabelle 2: M400/2XH Cond Ind Einsatzmöglichkeiten nach Parametern

3.2 Bauweise

Abb. 7: Bauweise (Übersicht) des Transmitters M400

- 1 Hartes 1/2-DIN-Polykarbonatgehäuse
- 2 Vierzeilige LC-Anzeige
- 3 Fünf Navigationstasten mit taktiler Rückmeldung
- 4 TB1 analoges Eingangs- und Ausgangssignal
- 5 TB2 Sensorsignal

3.3 Navigationstasten

Navigationstaste	Beschreibung
Menu	Aufrufen des Menümodus.Rückwärtsnavigation innerhalb eines veränderbaren Datenfeldes.
Cal	Aufrufen des Kalibriermodus.Vorwärtsnavigation innerhalb eines veränderbaren Datenfeldes.
ESC Menu Cal	Rückkehr in den Messmodus. Drücken Sie gleichzeitig die Tasten ◀ und ► (Escape). HINWEIS: Um die Daten nur einer Menüseite zu sichern, bewegen Sie den Cursor
	unter das Nach-OBEN-Pfeilsymbol (1), unten an der rechten Bildschirmseite, und drücken [Enter].
	Erhöhen eines ZahlenwertesNavigieren innerhalb ausgewählter Werte oder Optionen eines Datenfeldes
Info	 Aufrufen des Infomodus Verringern eines Zahlenwertes Navigieren innerhalb ausgewählter Werte oder Optionen eines Datenfeldes
Enter	Bestätigen der Aktion oder der Auswahl

Tabelle 3: Navigationstaste

Abb. 8: Links: Messmodus (Beispiel), rechts: Bearbeitungsmodus (Beispiel)

1 Kanalinformation

2

- A: Analogsensor ist angeschlossen.
- H: Transmitter befindet sich im HOLD-Zustand.
- Erste Zeile (a), Standardkonfiguration
- 3 Zweite Zeile (b), Standardkonfiguration
- 4 Dritte Zeile (c), Messmodus: Der Bildschirm ist konfigurationsabhängig. Bearbeitungsmodus: Navigation durch das Menü oder die Bearbeitungsparameter
- 5 Vierte Zeile (d): Messmodus: Der Bildschirm ist konfigurationsabhängig. Bearbeitungsmodus: Navigation durch das Menü oder die Bearbeitungsparameter
- 6 Falls ein 1 angezeigt wird, verwenden Sie die Tasten ► oder ◄, um sich dorthin zu bewegen. Mit [ENTER] bewegen Sie sich rückwärts durch das Menü (Sie gehen eine Seite zurück).

Sie können festlegen, welche Informationen in den einzelnen Zeilen des Displays angezeigt werden. Standardmäßig werden im Messmodus keine Werte in der dritten und vierten Zeile des Displays angezeigt. Siehe Kapitel 9.2.1 «Setup Kanal» auf Seite 36.

Anzeige	Beschreibung
HOLD-Modus	Bei Kalibrierung, Reinigung, Digital In mit analogem Ausgang/OC schaltet der Transmitter in den Modus HOLD. Nach Abschluss der Kalibrierung oder Reinigung blinkt das «H» noch 20 Sekunden lang weiter. Das «H» wird nicht mehr angezeigt, wenn Digital In deaktiviert wird.
A	Zeigt, dass ein Alarm oder eine Störung aufgetreten ist. Das Symbol wird so lange angezeigt, wie die Ursache für den Alarm oder die Störung vorliegt.

Tabelle 4: Hold-Modus und Alarmsymbol

Dialogfeld «Save Changes» (Änd. speichern?)	Beschreibung
Yes & Exit (Ja&Exit)	Änderungen speichern und in den Messmodus schalten.
Yes & 1 (Ja&1)	Änderungen speichern und eine Seite zurückgehen. Mit dieser Optionen können Sie die Konfiguration fortsetzen, ohne erneut in den Bearbeitungsmodus zu schalten.
No & Exit (Nein&Exit)	Änderungen nicht speichern und in den Messmodus schalten.

Tabelle 5: Dialogfeld «Save Changes» (Änd. speichern?)

3.5 Menüstruktur

Abb. 9: Menüstruktur M400 Cond Ind

4 Montage

4.1 Gerät auspacken und prüfen

Den Transportbehälter untersuchen. Falls dieser beschädigt ist, kontaktieren Sie bitte sofort den Spediteur und fragen nach Anweisungen. Den Behälter nicht entsorgen.

Falls keine wahrnehmbare Beschädigung vorliegt, den Behälter auspacken. Stellen Sie sicher, dass alle auf der Packliste vermerkten Teile vorhanden sind.

Falls Teile fehlen, Mettler-Toledo sofort informieren.

4.2 Abmessungen

Abb. 10: Abmessungen Transmitter M400

1 Aussparung in der Schalttafel zur Wandmontage

4.3 Einbauverfahren

Der M400/2XH Cond Ind ist als 1/2-DIN-Gerät mit integralem IP66/NEMA4X-Gehäuse erhältlich. Der M400/2XH Cond Ind kann wie folgt installiert werden:

- Schalttafeleinbau
- Wandmontage
- Rohrmontage.

Mit optional erhältlichen Zubehörteilen kann das Gerät in Schalttafeln, an der Wand oder an Röhren angebracht werden. Siehe Kapitel 16 «Zubehör und Ersatzteile» auf Seite 67.

Einbau

Abb. 11: Einbau

- 1 Stopfbüchsen M20 x 1,5 (drei Stück)
- 2 Blindstopfen
- 3 Schrauben (vier Stück)

Allgemein

- Den Transmitter so ausrichten, dass die Stopfbüchsen in Richtung Boden zeigen.
- Die Leitungen müssen für Nassbereiche geeignet sein.
- Damit das Gehäuse nach Schutzart IP66 geschützt ist, müssen sämtliche Stopfbüchsen eingebaut sein. In jeder Stopfbüchse muss sich ein Kabel befinden.
- Nicht verwendete Stopfbüchsen müssen mit geeigneten Blindstopfen verschlossen werden.
- Ziehen Sie die Schrauben der Frontplatte mit einem Anzugsdrehmoment von 1,5 bis 2 Nm fest.

4.4 Einbau in Schalttafeln

Der Schalttafel-Einbaukit wird in Kapitel 16 «Zubehör und Ersatzteile» auf Seite 67 beschrieben.

Um eine gute Abdichtung zu gewährleisten, muss die Schalttafel oder die Tür flach sein und eine glatte Oberfläche aufweisen. Grobe oder raue Oberflächen werden nicht empfohlen und können die Wirkung der Dichtung beeinträchtigen.

- 1. Schneiden Sie eine Aussparung in die Schalttafel. Siehe Kapitel 4.2 «Abmessungen» auf Seite 22.
 - Stellen Sie sicher, dass die Oberfläche um den Ausschnitt sauber, glatt und frei von Schnittgraten ist.
- 2. Schieben Sie die Flachdichtung von hinten um den Transmitter.
- 3. Setzen Sie den Transmitter in den Ausschnitt ein. Vergewissern Sie sich, dass keine Lücken zwischen Transmitter und Schalttafeloberfläche vorhanden sind.
- 4. Befestigen Sie die beiden Montageklammern wie dargestellt auf beiden Seiten des Transmitters.
- 5. Drücken Sie die Montageklammern zur Rückseite der Schalttafel, während Sie den Transmitter fest im Ausschnitt halten.
- 6. Wenn er fest sitzt, schrauben sie die Klammern mit einem Schraubenzieher gegen die Schalttafel fest. Damit das Gehäuse nach Schutzart IP66/NEMA4X geschützt ist, müssen die beiden mitgelieferten Klammern ordnungsgemäß befestigt sein, damit zwischen Schalttafel und Transmitter gute Abdichtung vorliegt.
 - Die Dichtung wird zwischen Transmitter und Schalttafel eingeklemmt.

4.5 Wandmontage

Der Wandmontagekit wird in Kapitel 16 «Zubehör und Ersatzteile» auf Seite 67 beschrieben.

- 1. Bringen Sie den Wandmontagekit am Gehäuse an. Die Einschraubtiefe darf keinesfalls überschritten werden.
- 2. Bringen Sie das Wandmontagekit mitsamt dem Transmitter-Gehäuse an der Wand an. Montieren Sie das hintere Gehäuseteil mit den entsprechenden Befestigungsteilen zur Wandmontage an der Wand. Vergewissern Sie sich, dass das Gehäuse gerade sitzt und sicher befestigt ist und die Installation die erforderlichen Abstände für Wartung und Reparatur des Transmitters aufweist. Den Transmitter so drehen, dass die Kabelverschraubungen in Richtung Boden zeigen.

4.6 Rohrmontage

Der Transmitter darf nur unter Verwendung des Rohrmontagekits an einem Rohr befestigt werden. Siehe Kapitel 16 «Zubehör und Ersatzteile» auf Seite 67.

Abb. 12: Rohrmontage

1. Ziehen Sie die Befestigungsschrauben mit einem Anzugsdrehmoment von 2 bis 3 Nm fest.

5 Bedrahtung

5.1 Elektrischer Anschluss des Transmitters

Transmitter vor der Verdrahtung ausschalten.

Die Verdrahtung fest mit den Anschlussklemmen verbinden.

Die Anforderungen an die Stromzufuhr und die Nennwerte werden in Kapitel 17.2.1 «Allgemeine elektrische Spezifikationen» auf Seite 69 beschrieben.

Alle Anschlüsse des Transmitters befinden sich an der Rückseite.

1. Die Stromversorgung trennen.

5.2

(

- 2. Die Stromversorgung (14 bis 30 V DC) an die Klemmen AO1+ / HART und AO1- / HART oder an die Klemmen AO2+ und AO- anschließen. Polarität beachten!
- Die digitalen Ein- und Ausgangssignale (OC) sowie das Analogausgangssignal an die Anschlussleiste TB1 anschließen. Siehe Kapitel 5.2 «Übersicht über die Anschlussleisten im Transmitter» auf Seite 26.
- 4. Sensor an Anschlussleiste TB2 anschließen. Siehe Kapitel 5.3 «Anschluss der Anschlussleiste TB2: Sensoranschluss» auf Seite 28.

Übersicht über die Anschlussleisten im Transmitter

TB2

TB1

 \oplus

3

9

Abb. 13: Übersicht über die Anschlussleisten im Transmitter

- 1 TB1: Anschlussleiste 1 Stromanschluss, HART-Signal, digitales Eingangssignal, digitale Ausgangssignale (OCs) und analoge Ausgangssignale
- 2 Anschluss des HART-Modems
- 3 TB2: Anschlussleiste 2 Sensorsignal

Q

3

 \oplus

Klemme		Beschreibung		
TB1	1	DI1+	Digitaler Eingang 1	
	2	DI1-		
	3	DI2+	Beim Transmitter M400/2XH Cond Ind nicht aktiv	
	4	DI2-		
	5	nicht verwendet	_	
-	6	OC1+	Digitalausgang 1 (Open-Collector)	
	7	OC1-		
	8	0C2+	Digitalausgang 2 (Open-Collector)	
	9	0C2-		
	10	AO1+, HART+	Stromanschluss 14 bis 30 V DC. Polarität beachten!	
	11	AO1-, HART-	• Analogausgangssignal 1	
			• HART-Signal	
	12	A02+	Stromanschluss 14 bis 30 V DC. Polarität beachten!	
	13	A02-	Analogausgangssignal 2	
	14	nicht verwendet	-	
	15	Ŧ	Erdung	
TB2	A – Q	_	Sensoreingang. Siehe Kapitel 5.3 «Anschluss der Anschluss- leiste TB2: Sensoranschluss» auf Seite 28.	

Tabelle 6: Anschlussleistenbelegung (TB) M400

5.3 Anschluss der Anschlussleiste TB2: Sensoranschluss

5.3.1 Analoge induktive Leitfähigkeitssensoren

Der analoge induktive Leiffähigkeitssensor wird an Anschlussleiste TB2 angeschlossen.

Klemme		Funktion	Farbe		
			InPro 7250 ST/ InPro 7250 PFA	InPro 7250 HT	
TB2	А	nicht verwendet	-	-	
	В	nicht verwendet	_	-	
	С	nicht verwendet	_	_	
	D	Sendenhoch	blau	schwarz oder transparent	
	E	Senden Niedrig	Braun	violett	
	F	Schirm (GND)	grün-gelb	grün-gelb	
	G	Empfangen Niedrig	rot	Gelb	
	Н	Empfangen hoch	schwarz oder transparent	rot	
	I	RTD	weiß	weiß	
	J	RTD-Fühler	Grau	Grau	
	K	RTD	grün	grün	
	L – Q	nicht verwendet	-	-	

Tabelle 7: Analoge induktive Leitfähigkeitssensoren

5.4 HART-Kommunikation

Der Transmitter M400 wird entweder über das Konfigurationstool, ein Asset-Management-Tool oder über ein HART-Handterminal konfiguriert.

Der Gerätetreiber und die DTM-Dateien können von der Internetseite «www.mt.com/M400» heruntergeladen werden. Der Gerätetreiber befindet sich auch auf der beiliegenden CD-ROM.

Abb. 14: HART®-Anschluss mit HART-Handterminal

- 1 Transmitter M400
- 2 Speisetrenner, vorzugsweise HART transparent
- 3 Lastwiderstand, nicht erforderlich, wenn im Speisetrenner vorhanden
- 4 PLS (Prozessleitsystem) oder SPS (speicherprogrammierbare Steuerung)
- 5 HART-Handterminal, z. B. 475 FieldCommunicator von Emerson

Abb. 15: HART®-Anschluss mit HART-Modem und Konfigurationstool

- 1 Transmitter M400
- 2 Speisetrenner, vorzugsweise HART transparent
- 3 Lastwiderstand, nicht erforderlich, wenn im Speisetrenner vorhanden
- 4 PLS (Prozessleitsystem) oder SPS (speicherprogrammierbare Steuerung)
- 5 HART-Modem
- 6 PC mit Konfigurationstool, z. B. PACTWare™ von Pepperl+Fuchs

PACTWare™ befindet sich auf der beiliegenden CD-ROM, ist aber auch als Freeware erhältlich.

6 Inbetriebnahme oder Außerbetriebsetzung des Transmitters

6.1 Inbetriebnahme des Transmitters

Nach Anschluss des Transmitters an das Stromnetz wird er aktiviert, sobald der Strom eingeschaltet wird.

6.2 Außerbetriebnahme des Transmitters

Trennen Sie das Gerät zuerst von der Stromversorgung, trennen Sie dann alle übrigen elektrischen Verbindungen. Entfernen Sie das Gerät von der Wand/Schalttafel. Verwenden Sie die Installationsanleitung in dieser Betriebsanleitung zum Ausbau der Hardware.

Sämtliche Transmittereinstellungen werden in einem nichtflüchtigen, permanenten Speicher gesichert.

7 Quick Setup

(PFAD: Menu/Quick Setup)

Wählen Sie «Quick Setup» und drücken Sie die Taste [ENTER]. Geben Sie wenn nötig das Sicherheitspasswort ein. Siehe Kapitel 10.2 «Passworte» auf Seite 49.

HINWEIS: Verwenden Sie das Menü «Quick Setup» nicht mehr, nachdem der Transmitter konfiguriert wurde, da sonst einige Parameter, wie z. B. der Analogausgang, zurückgesetzt werden.

Parameter	Beschreibung	
Kanal Auswahl	Wählen Sie den angeschlossenen Sensortyp «Analog».	
Parameter	Wählen Sie den Messwert. Bei analoger induktiver Leitfähigkeit steht nur der Parameter «Cond Ind» zur Verfügung.	
Sensor	 Wählen Sie den angeschlossenen Sensortyp. InPro7250 InPro7250-PFA Sonstiges: Geben Sie bei dieser Option die Werte «Transfer Ratio» (Übertragungsverhältnis) und «Frequency» (Frequenz) ein. 	
Zellkonstanten (Ap: M und A/As: M und A)	Geben Sie die auf dem Sensoretikett oder dem Zertifikat angegebenen Zellkonstanten ein.	
a und b	 Geben Sie den ersten und zweiten Parameter ein. Diese Option richtet sich nach dem angeschlossenen Sensor. a: Der erste Parameter steht in der ersten Zeile der Anzeige. b: Der zweite Parameter steht in der zweiten Zeile der Anzeige. 	
Analogausgänge	Nur die Option «Yes» (Ja) steht zur Verfügung. Der Analogausgang ist aktiviert.	

Tabelle 8: Quick Setup

Die folgenden Parameter werden angezeigt, wenn die Option «a» ausgewählt wurde.

Parameter	Beschreibung
Aout1 min, Aout1 max	Stellen Sie den Analogausgang für den ersten Parameter (a) ein.
	 Aout1 min: Definiert den Wert f ür den 4-mA-Ausgangswert. Beispiel: 4 mA bei 0,000 mS/cm
	 Aout1 max: Definiert den Wert f ür den 20-mA-Ausgangswert. Beispiel: 20 mA bei 100,0 mS/cm
a Sollwert	Aktivieren oder deaktivieren Sie den «a Sollwert» für den ersten Parameter.
	Ja: Sollwert ist aktiviert.Nein: Sollwert ist deaktiviert.

Parameter	Beschreibung
SP1 Type (SW1 Typ)	Stellen Sie den Sollwerttyp des ersten Parameters ein. Der Sollwert wird dem Digitalausgang (OC) mittels des Parameters «Use OC #» (SW1 OC Nr. verwenden) zugewiesen.
	• Off (Aus): Der Sollwert ist deaktiviert.
	• Between (Zwischen): Der Sollwert schaltet um, wenn der Messwert zwischen dem unteren und dem oberen Sollwert liegt.
	• Outside (Ausserhalb): Der Sollwert schaltet um, wenn der Messwert entweder unter dem unteren oder über dem oberen Sollwert liegt.
	• Low (Lo): Der Sollwert schaltet um, wenn der Messwert unter dem Sollwert liegt.
	 High (Hi): Der Sollwert schaltet um, wenn der Messwert über dem Sollwert liegt.
	Stellen Sie die anderen erforderlichen Parameter ein. Die Parameter sind abhängig von der gewählten Option.
SP1 use OC #	Voraussetzung: Sollwert 1 ist aktiviert.
(SWI OC Nr. verwenden	Weisen Sie den Sollwert für den ersten Parameter dem Digitalausgang (OC) zu. Nr. 2 muss ausgewählt sein.

Tabelle 9: Quick Setup - Aout1, SW1

Die folgenden Parameter werden angezeigt, wenn die Option «b» ausgewählt wurde.

Parameter	Beschreibung
Aout2 min, Aout2 max	Stellen Sie den Analogausgang für den zweiten Parameter (b) ein.Aout1 min: Definiert den Wert für den 4-mA-Ausgangswert.
	Beispiel: 4 mA bei 0,000 °C • Aout1 max: Definiert den Wert für den 20-mA-Ausgangswert. Beispiel: 20 mA bei 100,0 °C
b Sollwert	Aktivieren oder deaktivieren Sie den «b Sollwert» für den zweiten Parameter.Ja: Sollwert ist aktiviert.Nein: Sollwert ist deaktiviert.
SP2 Type (SW2 Typ)	Stellen Sie den Sollwerttyp des zweiten Parameters ein. Der Sollwert wird dem Digitalausgang (OC) mittels des Parameters «SP2 Use OC #» (SW2 OC Nr. verwenden) zugewiesen.
	Off (Aus): Der Sollwert ist deaktiviert.
	• Between (Zwischen): Der Sollwert schaltet um, wenn der Messwert zwischen dem unteren und dem oberen Sollwert liegt.
	• Outside (Ausserhalb): Der Sollwert schaltet um, wenn der Messwert entweder unter dem unteren oder über dem oberen Sollwert liegt.
	• Low (Lo): Der Sollwert schaltet um, wenn der Messwert unter dem Sollwert liegt.
	• High (Hi): Der Sollwert schaltet um, wenn der Messwert über dem Sollwert liegt.
	Stellen Sie die anderen erforderlichen Parameter ein. Die Parameter sind abhängig von der gewählten Option.
SP2 use OC #	Voraussetzung: Der Sollwert 2 ist aktiviert.
(SW2 OC Nr. verwenden)	Weisen Sie den Sollwert für den zweiten Parameter dem Digitalausgang (OC) zu. Nr. 2 muss ausgewählt sein.

Tabelle 10: Quick Setup - Aout2, SW2

Sensorkalibrierung 8

(PFAD: Cal)

Die Kalibriertaste ► ermöglicht dem Benutzer einen Zugriff per Knopfdruck auf die Sensorkalibrierung und die Überprüfungsfunktionen.

HINWEIS: Während der Kalibrierung von Kanal A blinkt ein «H» (Hold) in der linken oberen Ecke der Anzeige und zeigt an, dass eine Kalibrierung im Gange und die Haltebedingung aktiviert ist. (Die Funktion «Hold output» (Hold Ausgänge) muss aktiviert sein.) Siehe Kapitel 3.4 «Anzeigen» auf Seite 20.

HINWEIS: Bei der Kalibrierung eines Leiffähigkeitssensors variieren die Ergebnisse abhängig von der verwendeten Methode, dem Kalibriergerät bzw. der Qualität des Referenzstandards.

HINWEIS: Bei Messaufgaben erfolgt die Temperaturkompensation für die Anwendung gemäß der Einstellungen im Menü «Resistivity» (Widerstand) und nicht die Temperaturkompensation, die mit der Kalibrierung gewählt wurde. Siehe Kapitel 9.2.3 «Spezifischer Widerstand – Leitfähigkeitstemperaturkompensation» auf Seite 38 (Menu/ Configure/Measurement/Resitivity).

Bei induktiven Leitfähigkeitssensoren stehen die Kalibrierungsverfahren «Process», (Prozess) «1 Point» (1 Punkt) und «Zero Point» (Punkt Null) zur Verfügung. Prozesskalibrierung und Einpunktkalibrierung erfolgen stets als Kalibrierung der Steilheit. Bei der Nullpunktkalibrierung aeht das System davon aus, dass die Leitfähigkeit des Bezugssystems «O» beträgt.

8.1 Das Prozess-Sensorkalibrierungsverfahren

Drücken Sie im Messmodus die Taste [CAL (►)]. Falls die Anzeige Sie zur Eingabe des Sicherheitspasswortes für die Kalibrierung auffordert, drücken Sie zur Einrichtung dieses Passwortes die Taste ▲ oder ▼. Drücken Sie anschließend die Taste [ENTER], um das Sicherheitspasswort für die Kalibrierung zu bestätigen.

Wählen Sie das Kalibrierverfahren, hier «Conductivity» (Leitfähigkeit). Drücken Sie die Taste ▲ oder ▼, um den gewünschten Typ aufzurufen. Die folgenden Optionen stehen zu Ihrer Verfügung: «Conductivity» (Leitfähigkeit), «Resistivity» (Spezifischer Widerstand), «Temperature» (Temperatur), «Edit und Verify» (Editieren und Verifizieren).

Drücken Sie die Taste [ENTER].

Drücken Sie die Taste [ENTER].

Wählen Sie den Kompensationsmodus, z. B. «Standard». Siehe Tabelle «Kompensationsmodus» auf Seite 38.

2.17 mS/cm Α 25.0 Cal Compensation Standard

25.0

Conductivity Calibration Type = Process

ENTER to Capture C = 2.174 mS/cm

°r

Α

A

Α

Α

Α

Wählen Sie «Process» (Prozess) als Kalibrierart. Die Prozesskalibrierung erfolgt stets als Kalibrierung der Steilheit (Slope).

Drücken Sie die Taste [ENTER].

Ergebnis: Die Anzeige zeigt die Meldung «Press ENTER to Capture» (ENTER drücken zur Erfassung).

Nehmen Sie eine Probe.

Drücken Sie die Taste [ENTER], um den aktuellen Messwert zu speichern.

ms/cm

°c

Ergebnis: Während des laufenden Kalibrierprozesses blinkt in der Anzeige der Buchstabe «A».

Nach der Bestimmung der Leitfähigkeit der Probe drücken Sie die Taste [CAL (►)] erneut, um mit der Kalibrierung fortzufahren.

Geben Sie den Leitfähigkeitswert der Probe ein.

Drücken Sie die Taste [ENTER], um die Ergebnisse der Kalibrierungsergebnisse zu berechnen.

Ergebnis: Nach der Kalibrierung zeigt die Anzeige den Multiplikator oder Steilheitskalibrierfaktor «M» und den Additionsfaktor bzw. Offsetfaktor «A» der Kalibrierung.

Wählen Sie ADJUST (JUSTIERUNG) oder ABORT (ABBRECHEN), um die Kalibrierung zu beenden. Justierung: Die Kalibrierwerte werden im Transmitter gespeichert und für die Messung verwendet. Zusätzlich werden die Kalibrierwerte in der Kalibrierdatenbank gespeichert. Abbrechen: Die Kalibrierwerte werden verworfen.

Ergebnis: In der Anzeige erscheint die Meldung «RE-INSTALL SENSOR and Press [ENTER]» (SENSOR INSTALLIEREN und [ENTER] drücken).

Drücken Sie die Taste [ENTER], um in den Messmodus zurückzukehren.

8.2 Einpunkt-Sensorkalibrierung

(Das Display zeigt eine typische Kalibrierung eines Leitfähigkeitssensors)

Drücken Sie im Messmodus die Taste [CAL (▶)]. Falls die Anzeige Sie zur Eingabe des Sicherheitspasswortes für die Kalibrierung auffordert, drücken Sie zur Einrichtung dieses Passwortes die Taste 🛦 oder 🔻. Drücken Sie anschließend die Taste [ENTER], um das Sicherheitspasswort für die Kalibrierung zu bestätigen.

Wählen Sie das Kalibrierverfahren, hier «Conductivity» (Leitfähigkeit). Drücken Sie die Taste 🔺 oder V, um den gewünschten Typ aufzurufen. Die folgenden Optionen stehen zu Ihrer Verfügung: «Conductivity» (Leitfähigkeit), «Resistivity» (Spezifischer Widerstand), «Temperature» (Temperatur), «Edit und Verify» (Editieren und Verifizieren).

Drücken Sie die Taste [ENTER].

Wählen Sie den Kompensationsmodus, z. B. «Standard». Siehe Tabelle «Kompensationsmodus» auf Seite 38.

Drücken Sie die Taste [ENTER].

Wählen Sie das Kalibrierverfahren, hier «1 Punkt». Die Einpunktkalibrierung erfolgt stets als Kalibrierung der Steilheit (Slope).

Tauchen Sie den Sensor in die Referenzlösung.

Drücken Sie die Taste [ENTER].

Geben Sie den Wert für Punkt 1 ein, einschließlich Dezimalkomma und Einheiten. In der zweiten Textzeile erscheint der vom Sensor gemessene Wert, der vom Transmitter in den vom Benutzer vorgegebenen Einheiten angezeigt wird.

Drücken Sie [ENTER], wenn dieser Wert für eine Kalibrierung stabil genug ist.

ms/am

ms/cm

Conductivity Calibration Type = 1 Point

25.0

A Point 1 = 1.413 mS/cm A C = 2.174 mS/cm

Cal Compensation

A

Α

Α

Α

25.0

A Point 1 = 1.413 mS/cm A C = 2.174 mS/cm

A

Α

Α 2.17 mS/cm A Calibrate Sensor Channel A Conductivity ↑

Ergebnis: Nach der Kalibrierung zeigt die Anzeige den Multiplikator oder Steilheitskalibrierfaktor «M» und den Additionsfaktor bzw. Offsetfaktor «A» der Kalibrierung.

Wählen Sie ADJUST (JUSTIEREN) oder ABORT (ABBRECHEN), um die Kalibrierung zu beenden. Justierung: Die Kalibrierwerte werden im Transmitter gespeichert und für die Messung verwendet. Zusätzlich werden die Kalibrierwerte in der Kalibrierdatenbank gespeichert. Abbrechen: Die Kalibrierwerte werden verworfen.

Ergebnis: In der Anzeige erscheint die Meldung «RE-INSTALL SENSOR and Press [ENTER]» (SENSOR INSTALLIEREN und [ENTER] drücken).

Drücken Sie die Taste [ENTER], um in den Messmodus zurückzukehren.

8.3 Nullpunkt-Sensorkalibrierung

(Das Display zeigt eine typische Kalibrierung eines Leitfähigkeitssensors)

Drücken Sie im Messmodus die Taste [CAL (\blacktriangleright)]. Falls die Anzeige Sie zur Eingabe des Sicherheitspasswortes für die Kalibrierung auffordert, drücken Sie zur Einrichtung dieses Passwortes die Taste \blacktriangle oder \blacktriangledown . Drücken Sie anschließend die Taste [ENTER], um das Sicherheitspasswort für die Kalibrierung zu bestätigen.

Wählen Sie das Kalibrierverfahren, hier «Conductivity» (Leiffähigkeit). Drücken Sie die Taste ▲ oder ▼, um den gewünschten Typ aufzurufen. Die folgenden Optionen stehen zu Ihrer Verfügung: «Conductivity» (Leitfähigkeit), «Resistivity» (Spezifischer Widerstand), «Temperature» (Temperatur), «Edit und Verify» (Editieren und Verifizieren).

Drücken Sie die Taste [ENTER].

Wählen Sie den Kompensationsmodus, z. B. «Standard». Siehe Tabelle «Kompensationsmodus» auf Seite 38.

Drücken Sie die Taste [ENTER].

Wählen Sie das Kalibrierverfahren, hier «Zero Point» (Punkt Null). Das System geht davon aus, dass die Leitfähigkeit des Bezugssystems «O» beträgt.

Tauchen Sie den Sensor in die Referenzlösung.

Drücken Sie die Taste [ENTER].

Ergebnis: In der ersten Textzeile steht «0,0», in der zweiten Textzeile steht der von Transmitter und Sensor gemessene Wert in der vom Benutzer vorgegebenen Einheit.

Drücken Sie [ENTER], wenn dieser Wert für eine Kalibrierung stabil genug ist.

Ergebnis: Nach der Kalibrierung zeigt die Anzeige den Multiplikator oder Steilheitskalibrierfaktor «M» und den Additionsfaktor bzw. Offsetfaktor «A» der Kalibrierung.

Wählen Sie ADJUST (JUSTIEREN) oder ABORT (ABBRECHEN), um die Kalibrierung zu beenden. Justierung: Die Kalibrierwerte werden im Transmitter gespeichert und für die Messung verwendet. Zusätzlich werden die Kalibrierwerte in der Kalibrierdatenbank gespeichert. Abbrechen: Die Kalibrierwerte werden verworfen.

Ergebnis: In der Anzeige erscheint die Meldung «RE-INSTALL SENSOR and Press [ENTER]» (SENSOR INSTALLIEREN und [ENTER] drücken).

Drücken Sie die Taste [ENTER], um in den Messmodus zurückzukehren.

2 17

25.0

A=1.00000

A

A

C M=1.4136 Save Adjust

2 17

25.0

Calibrate Sensor Channel A Conductivity

mS/cm

A

Α

9 Konfiguration

(PFAD: Menu/Configure)

9.1 Aufrufen des Konfigurationsmodus

Drücken Sie im Messmodus die Taste [MENU (◄)] (Menü).

Drücken Sie die Tasten \blacktriangle oder ∇ , um in das Menü «Configure» zu gelangen. Drücken Sie die Taste [ENTER].

9.2 Messung

(PFAD: Menu/Configure/Measurement)

Aufrufen des Konfigurationsmodus. Siehe Kapitel 9.1 «Aufrufen des Konfigurationsmodus» auf Seite 36.

Drücken Sie die Tasten \blacktriangle oder ∇ , um in das Menü «Measurement» (Messung) zu gelangen. Drücken Sie die Taste [ENTER].

Die folgenden Untermenüpunkte können nun aufgerufen werden:

«Channel Setup» (Setup Kanal), «Resistivity» (Widerstand),

«Concentration Table and Set Averaging» (Konzentrationstabelle und Set Durchschnitt).

9.2.1 Setup Kanal

(PFAD: Menu/Configure/Measurement/Channel Setup)

Aufrufen des Konfigurationsmodus. Siehe Kapitel 9.1 «Aufrufen des Konfigurationsmodus» auf Seite 36.

Drücken Sie die Tasten \blacktriangle oder ∇ , um in das Menü «Measurement» (Messung) zu gelangen. Drücken Sie die Taste [ENTER].

Wählen Sie das Menü «Channel setup» (Setup Kanal) Drücken Sie die Taste [ENTER].

Ergebnis: Auf der Anzeige steht «Kanalauswahl = Analog» und «Parameter = Cond Ind».

Drücken Sie die Taste [ENTER].

A	2.17	mS/c
A	25.0	°c
Senso	r=InPro7250	

Channel Select=Analog Parameter = Cond Ind

> Wählen Sie für «Sensor» eine der folgenden Optionen: InPro 7250: InPro 7250 und InPro 7250 HT InPro 7250-PFA: Für InPro 7250-PFA: Sonstiges: Für alle anderen induktiven Leiffähigkeitssensoren.

Α

Α

A

A

Α

Measurement Cahnnel Set

Configure Measurement

2.17

mS/cm

A 2.17 ms/am A 25 0 cA ----bA ----)) ↑

A

A

Save Changes Yes & Press ENTER to Exit

Konfigurieren Sie die erste und zweite Zeile der Anzeige a und b. Drücken Sie die Tasten 🕨 oder ◄, um zwischen den Messungen/Einheiten und Multiplikatoren umzuschalten. Drücken Sie die Taste ▲ oder ▼, um die Optionen auszuwählen.

Drücken Sie die Taste [ENTER].

Konfigurieren Sie die dritte und vierte Zeile der Anzeige c und d. Drücken Sie die Tasten 🕨 oder , um zwischen den Messungen/Einheiten und Multiplikatoren umzuschalten. Drücken Sie die Taste \blacktriangle oder ∇ , um die Optionen auszuwählen.

Drücken Sie die Taste [ENTER].

Ergebnis: Das Dialogfeld «Save Changes» (Änd. speichern?) öffnet sich.

Wählen Sie eine der Optionen. Wählen Sie «No» (Nein), um die eingegebenen Werte zu verwerfen und zur Messanzeigebildschirm zurückzukehren. Mit «Yes» (Ja) speichern Sie die Änderungen.

9.2.2 Temperaturguelle

(PFAD: Menu/Configure/Measurement/Temperature Source)

Aufrufen des Konfigurationsmodus. Siehe Kapitel 9.1 «Aufrufen des Konfigurationsmodus» auf Seite 36.

Drücken Sie die Tasten 🔺 oder 🔍, um in das Menü «Measurement» (Messung) zu gelangen. Drücken Sie die Taste [ENTER].

Wählen Sie die das Menü «Temperature Source» (Temperaturquelle). Drücken Sie die Taste **FENTER1**.

Wählen Sie eine der folgenden Optionen:

Auto:	Der Transmitter erkennt die Temperaturquelle automatisch.
«Use NTC22K» (Verwende NTC22K):	Der Temperatureingang kommt vom angeschlossenen
	Sensor.
«Use Pt1000» (Verwende Pt1000):	Der Temperatureingang kommt vom angeschlossenen
	Sensor.
«Use Pt100» (Verwende Pt100):	Der Temperatureingang kommt vom angeschlossenen
	Sensor.
«Fixed = 25 °C» (Konstant = 25 °C):	Erlaubt die Eingabe eines spezifischen Temperaturwertes.
Drücken Sie die Taste [ENTER].	

Ergebnis: Das Dialogfeld «Save Changes» (Änd. speichern?) öffnet sich.

Wählen Sie eine der Optionen. Wählen Sie «No» (Nein), um die eingegebenen Werte zu verwerfen und zur Messanzeigebildschirm zurückzukehren. Mit «Yes» (Ja) speichern Sie die Änderungen.

A:Auto

Α

Α

Save Changes Yes & Press ENTER to Exi

9.2.3 Spezifischer Widerstand – Leitfähigkeitstemperaturkompensation

(PFAD: Menu/Configure/Measurement/Resistivity)

Aufrufen des Konfigurationsmodus. Siehe Kapitel 9.1 «Aufrufen des Konfigurationsmodus» auf Seite 36.

Drücken Sie die Tasten ▲ oder ▼, um in das Menü «Measurement» (Messung) zu gelangen. Drücken Sie die Taste [ENTER].

Wählen Sie das Menü «Resistivity» (Widerstand). Drücken Sie die Taste [ENTER].

Die Temperaturkompensation muss der jeweiligen Anwendung entsprechend eingestellt werden. Der Transmitter berücksichtigt diesen Wert bei der Temperaturkompensation, berechnet die gemessene Leitfähigkeit und zeigt das Ergebnis an.

HINWEIS: Für Kalibrierzwecke wird die Temperaturkompensation, die im Menü «Cal/ Compensation» vorgegeben wurde, für die Proben berücksichtigt.

Die beiden ersten Messwertzeilen werden auf der Anzeige dargestellt. In diesem Abschnitt wurden Verfahren für die erste Messwertzeile beschrieben. Mit der Taste ► wählen Sie die zweite Zeile aus. Zur Auswahl der Zeilen 3 und 4 drücken Sie [ENTER]. Das Verfahren selbst arbeitet in jeder Messwertzeile auf die gleiche Weise.

Wählen Sie einen der folgenden Kompensationsmodi und drücken Sie die Taste [ENTER].

Kompensationsmodus

Kompensationsmodus	Beschreibung	
Standard	Der Standard (Standard-) Kompensationsmodus umfasst die Kompensation für nichtlineare Reinheit sowie normale neutrale Salzunreinheiten. Dieser Modus entspricht den ASTM-Normen D1125 und D5391.	
Linear 25 °C	Der Kompensationsmodus Linear 25 °C passt die Anzeige mit einem Koeffizienten an, der als %/°C Abweichung von 25 °C ausgedrückt wird. Nur verwenden, wenn die Messlösung einen bestimmten linearen Temperaturkoeffizienten hat. Der Koeffizient wird mit dem Parameter Comp festgelegt. (Standard: 2,0 %/°C)	
Linear 20 °C	Der Kompensationsmodus Linear 20 °C passt die Anzeige mit einem Koeffizienten an, der als %/°C Abweichung von 20 °C ausgedrückt wird. Nur verwenden, wenn die Messlösung einen gut definierten linearen Temperaturkoeffizienten hat. Der Koeffizient wird mit dem Parameter Comp festgelegt. (Standard: 2,0 %/°C)	
Light 84	Der Kompensationsmodus Light 84 entspricht den Forschungsergebnissen über hochreines Wasser von Dr. T.S. Light, 1984 veröffentlicht. Nur verwenden, wenn sich Ihr Institut auf diese Arbeit festgelegt hat.	
Std 75 °C	Der Kompensationsmodus Std 75 °C ist das standardmäßige Kompensationsverfahren bezogen auf eine Temperatur von 75 °C.	
Glykol ,5 (Glykol 0,5)	Der Kompensationsmodus Glycol ,5 (Glykol 5) entspricht den Temperatureigenschaften von 50 % Ethylenglykol in Wasser. Mit dieser Lösung kompensierte Messungen können mehr als 18 MOhm-cm erreichen.	

Kompensationsmodus	Beschreibung
Glykol 1	Der Kompensationsmodus Glycol 1 (Glykol 1) entspricht den Temperatureigenschaften von 100 % Ethylenglykol in Wasser. Kompensierte Messungen können weit über 18 MOhm-cm erreichen.
Kationen	Der Kompensationsmodus Cation (Kation) wird in Kraftwerksanwendungen verwendet, bei denen die Probe nach einem Kationenaustauscher gemessen wird. Dieser Modus berücksichtigt die Wirkungen der Temperatur auf die Dissoziation von reinem Wasser in Gegenwart von Säuren.
Alkohol	Der Kompensationsmodus Alcohol (alkohol) liefert die Temperatureigenschaften einer Lösung mit 75 % Isopropylalkohol in reinem Wasser. Mit dieser Lösung kompensierte Messungen können mehr als 18 MOhm-cm erreichen.
Ammoniak	Der Kompensationsmodus Ammonia (Ammoniak) wird in Kraftwerksanwendungen zur Messung der spezifischen Leitfähigkeit bei der Wasserbehandlung mit Ammoniak und/oder ETA (Ethanolamin) verwendet. Dieser Modus berücksichtigt die Wirkungen der Temperatur auf die Dissoziation von reinem Wasser in Gegenwart von Basen.
Keine	Der Kompensationsmodus None (keine) bedeutet, dass keine Kompensation des gemessenen Leitfähigkeitswerts erfolgt.

Tabelle 11: Spezifischer Widerstand - Kompensationsmodus

Wurde als Kompensationsmodus «Lin 25 °C» oder «Lin 20 °C» gewählt, dann kann der Faktor zur Justierung des Messwerts «Comp» modifiziert werden.

Drücken Sie die Taste [ENTER].

Ergebnis: Das Dialogfeld «Save Changes» (Änd. speichern?) öffnet sich.

Wählen Sie eine der Optionen. Wählen Sie «No» (Nein), um die eingegebenen Werte zu verwerfen und zur Messanzeigebildschirm zurückzukehren. Mit «Yes» (Ja) speichern Sie die Änderungen.

9.2.4 Konzentrationstabelle

(PFAD: Menu/Configure/Measurement/Concentration Table)

Zur Anpassung an kundenspezifische Lösungen lassen sich bis zu neun Konzentrationswerte zusammen mit bis zu neun Temperaturwerten in einer Matrix bearbeiten. Die gewünschten Werte können im Menü für die Konzentrationstabelle bearbeitet werden. Außerdem lassen sich hier auch die Leitfähigkeitswerte für die entsprechenden Temperatur - und Konzentrationswerte bearbeiten.

Aufrufen des Konfigurationsmodus. Siehe Kapitel 9.1 «Aufrufen des Konfigurationsmodus» auf Seite 36.

Drücken Sie die Tasten \blacktriangle oder ∇ , um in das Menü «Measurement» (Messung) zu gelangen. Drücken Sie die Taste [ENTER].

Save Changes Yes & Exit Press ENTER to Exit

A A Measur Concen	2.17 ms/cm 25.0 °c ement Setup tration Table	Wählen Sie das Menü «Concentration Table» (Konzentrationstabelle). Drücken Sie die Taste [ENTER].
A 2.17 ms/cm		Die gewünschte Unit (Einheid) festlegen.
A Unit =	25.0 •c *conc.	Drücken Sie die Taste [ENTER].
\bigcirc		HINWEIS: Die in der Anzeige verwendete Einheit auswählen. Siehe Kapitel 9.2.1 «Setup Kanal» auf Seite 36.
A A	2.17 ms/cm	Geben Sie die Anzahl der gewünschten Temperaturpunkte (Temp Point) und Konzentrationspunkte (Concerntration points) ein.
Temp P Concen	∠J.U °c oint = 2 tration Point=2 ↑	Drücken Sie die Taste [ENTER].
A	2.17 ms/cm	Geben Sie die Werte für die verschiedenen Konzentrationen (ConcentrationX) ein.
A A Poin A	25.0 °c t 1 = 1.413 mS/cm c = 2.174 mS/cm î	Drücken Sie die Taste [ENTER].
A A	2.17 ms/cm	Geben Sie den Wert für die erste Temperatur (Temp1) und den Wert für die Leitfähigkeit ein, die zur ersten Konzentration und dieser Temperatur gehört.
Temp1	20.00 °c	Drücken Sie die Taste [ENTER].
Cond_1	.250 = 1.100µS/cm î	Geben Sie den Wert für die Leitfähigkeit ein, der zur zweiten Konzentration und dem ersten Temperaturwert gehört und drücken Sie [ENTER] usw.
		Nach Eingabe aller zu den verschiedenen Konzentrationen und dem ersten Temperaturpunkt gehörenden Leitfähigkeitswerte geben Sie auf gleiche Weise den Wert für den 2. Temperaturpunkt (Temp2) und den Wert für die Leitfähigkeit ein, die zum zweiten Temperaturpunkt und zum ersten Konzentrationswert gehört. Drücken Sie [ENTER] und fahren Sie in derselben Weise mit dem nächsten Konzentrationspunkt fort, wie für den ersten Temperaturpunkt beschrieben.
		Geben Sie die Werte bei jedem Temperaturpunkt auf diese Weise ein. Nach Eingabe des letzten Wertes drücken Sie erneut [ENTER]. Es erscheint das Dialogfeld «Save Changes» (Änderungen speichern). Wählen Sie «No» (Nein), um die eingegebenen Werte zu verwerfen und zum Messanzeigebildschirm zurückzukehren. Mit «Yes» (Ja) speichern Sie die Änderungen.
Ċ		HINWEIS: Die Werte für die Temperatur müssen beginnend mit Temp1 über Temp2, Temp3 usw. stets größer werden. Die Werte für die Konzentration müssen, beginnend mit Konzentration1 über Konzentration2, Konzentration3 usw. stets größer werden.
Ċ		HINWEIS: Die Leiffähigkeitswerte müssen bei den unterschiedlichen Temperaturen größer oder kleiner werden, beginnend bei Konzentration1 über Konzentration2, Konzentration3 usw Maxima und/oder Minima sind nicht erlaubt. Wenn die Leiffähigkeitswerte bei Temp1 bei verschiedenen Konzentrationen größer werden, müssen sie auch bei anderen Temperaturen größer werden. Wenn die Leiffähigkeitswerte bei Temp1 bei verschiedenen Konzentrationen kleiner werden, müssen sie auch bei anderen Temperaturen kleiner werden, müssen sie auch bei anderen Temperaturen kleiner werden.

9.2.5 Set Durchschnitt

(PFAD: Menu/Configure/Measurement/Set Averaging)

Aufrufen des Konfigurationsmodus. Siehe Kapitel 9.1 «Aufrufen des Konfigurationsmodus» auf Seite 36.

Drücken Sie die Tasten ▲ oder ▼, um in das Menü «Measurement» (Messung) zu gelangen. Drücken Sie die Taste [ENTER].

Wählen Sie das Menü «Set Averagina» (Set Durchschnitt). Drücken Sie die Taste [ENTER].

Die Art der Errechnung des Mittelwertes (Filterung) kann nun für jede Messwertzeile gewählt werden.

Wählbar sind die Optionen Spezial (voreingestellt), Keine, Niedrig, Mittel und Hoch:

Set Averaging

n8/m °c

Lo

Hi

= keine Mittelwertbildung oder Filterung Keine

= entspricht einem gleitenden Mittelwert über 3 Punkte

= entspricht einem gleitenden Mittelwert über 6 Punkte Mittel

= entspricht einem gleitenden Mittelwert über 10 Punkte

Spezial = die Mittelwertbildung hängt von den Signaländerungen ab (normal hoher Mittelwert, jedoch niedriger Mittelwert bei größeren Veränderungen des Eingangssignals)

Drücken Sie die Taste [ENTER] erneut, um das Dialogfeld zum Speichern der Änderungen aufzurufen. Wählen Sie «No» (Nein), um die eingegebenen Werte zu verwerfen und zum Messanzeigebildschirm zurückzukehren. Mit «Yes» (Ja) speichern Sie die Änderungen.

9.3 Analog Ausgänge

(PFAD: Menu/Configure/Analog Outputs)

Im Menü «Analog Outputs» (Analog Ausgänge) werden die beiden Analogausgänge konfiguriert.

Aufrufen des Konfigurationsmodus. Siehe Kapitel 9.1 «Aufrufen des Konfigurationsmodus» auf Seite 36.

Navigieren Sie mit den Tasten 🛦 oder 🔻 zum Menü «Analog Outputs» (Analog Ausgänge).

Drücken Sie die Taste [ENTER].

Sobald die analogen Ausgänge gewählt wurden, wechseln Sie mit den Tasten < und 🕨 zwischen den konfigurierbaren Parametern. Wurde ein Parameter gewählt, können die Einstellungen wie in der folgenden Tabelle festgelegt werden.

uS/cm °C Lout1 Mas If Alarm Set Off

Wird ein Alarmwert eingestellt, so ist dies der Wert, den der analoge Ausgang annimmt, sobald eine Alarmbedingung auftritt. Siehe Kapitel 9.5.1 «Alarm» auf Seite 44.

Mit dem Parameter «Aout1 Measurement = a» (Aout1 Messung = a) wird der Analogausgang 1 dem Messwert «a» zugewiesen. Mit dem Parameter «Aout2 Megsurement = b» (Aout2 Measurement = b) wird der Analogausgang 2 dem Messwert «b» zugewiesen.

0.28

uS/cm

A

Mit dem Parameter «If Alarm Set» (Alarmsignal) wird der Ausgangsstrom für den Alarmfall auf 3,6 oder 22,0 mA eingestellt.

Der Parameter «AoutX Type» (AoutX Typ) ist «Normal». Der Parameter «AoutX Range» (AoutX Bereich) ist «4–20 mA».

Geben Sie den minimalen und den maximalen Wert für Aout ein.

= 4-20

Aout1 Range

µS/on °C

u\$/ca

*c

٠

uS/cm

°c

Aout1 max1=20.00 MQ-cm A

Save Change Yes & Exit Press ENTER to Exit

A

A

A

Α

Configure Set Points

Aout1 hold m

Wenn «Auto-Range» gewählt wird, dann kann max1 für Aout konfiguriert werden. Aout max1 ist der Höchstwert für den ersten Bereich von Auto-Range. Der Höchstwert für den zweiten Bereich von Auto-Range wurde im vorhergehenden Menüpunkt eingestellt. Wenn logarithmisch ausgewählt wurde, ist auch die Anzahl der Dekaden als «Aout1 # of Decades =2» (Aout1 Dekadenzahl =2) einzugeben.

Als Wert für den HOLD-Modus kann der letzte Wert oder ein fester Wert konfiguriert werden.

Drücken Sie die Taste [ENTER] erneut, um das Dialogfeld zum Speichern der Änderungen aufzurufen. Wählen Sie «No» (Nein), um die eingegebenen Werte zu verwerfen und zum Messanzeigebildschirm zurückzukehren. Mit «Yes» (Ja) speichern Sie die Änderungen.

9.4 Sollwerte

(PFAD: Menu/Configure/Set Points)

Im Menü «Set Points» (Sollwerte) können bis zu sechs Sollwerte konfiguriert werden.

Aufrufen des Konfigurationsmodus. Siehe Kapitel 9.1 «Aufrufen des Konfigurationsmodus» auf Seite 36.

Navigieren Sie mit den Tasten ▲ oder V zum Menü «Set Points» (Sollwerte).

Drücken Sie die Taste [ENTER].

A 2.17 ms/cm A 25.0 °c SPl on Measurement a f

25.0

2.17 ms/cm

Bis zu sechs Sollwerte können für jede Messung (a bis d) konfiguriert werden. Mögliche Sollwerte sind «Off» (Aus), «High» (Hoch), «Low» (Niedrig), «Outside (<->) und Between (>-<)» (Außerhalb (<->) und Zwischen (>-<)).

Der Sollwert «Outside» (Ausserhalb) löst immer dann eine Alarmbedingung aus, wenn die Messung den Sollwert «High» oder «Low» (High (Hi) – Low (Lo)) übersteigt. Die Einstellung «Between» (Zwischen) löst immer dann eine Alarmbedingung aus, wenn die Messung zwischen «Hi» und «Lo» liegt.

2.17 ms/cm

Geben Sie den/die gewünschten Wert(e) für den Sollwert ein und drücken Sie die Taste [ENTER].

Je nach eingestelltem Sollwert bietet dieser Bildschirm die Möglichkeit, die Werte für die Sollwerte anzupassen.

Drücken Sie die Taste [ENTER].

Out of Range (Ausserhalb)

Wenn das gewählte Relais konfiguriert ist, wird es aktiviert, sobald am zugewiesenen Eingangskanal eine Bereichsüberschreitung eines Sensors festgestellt wird. Wählen Sie den Sollwert und «Yes» (Ja) oder «No» (Nein). Wählen Sie das Relais, das aktiviert werden soll, wenn der Sollwert die Alarmbedingung erfüllt.

Drücken Sie die Taste [ENTER].

Relay (Kontakt)

Geben Sie die Ansprechzeit in Sekunden ein. Mit der Verzögerungszeit legen Sie fest, wie lange der Sollwert dauerhaft überschritten werden muss, bis das Relais aktiviert wird. Verschwindet die Bedingung, bevor die Verzögerungszeit abgelaufen ist, wird das Relais nicht aktiviert.

Hysteresis (Hysterese)

Geben Sie die Hysterese als Prozentwert ein. Bei eingestelltem Hysteresewert muss die Messung zu einem vorgegebenen Prozentsatz wieder in den Sollwertbereich zurückkehren, bevor das Relais deaktiviert wird.

Bei einem hohen Sollwert muss die Messung tiefer als die angegebene Hysterese unter den Sollwert sinken, bevor das Relais deaktiviert wird. Bei einem niedrigen Sollwert muss die Messung mindestens um diese Hysterese über den Sollwert steigen, bevor das Relais deaktiviert wird. Beispiel: Der obere Sollwert ist auf 100 eingestellt und die Hysterese auf 10. Wenn dieser Wert überschritten wird, muss der gemessene Wert erst wieder unter 90 fallen, bevor das Relais deaktiviert wird.

Drücken Sie die Taste [ENTER].

Hold

Geben Sie den Relaishaltstatus ein: «Last» (Letzter), «On» (Ein) oder «Off» (Aus). Diesen Zustand nimmt das Relais während eines HOLD-Status ein.

State (Status)

Relaiskontakte bleiben in normalem Zustand bis der zugewiesene Sollwert überschritten wird. Dann zieht das Relais an und die Kontakte wechseln.

Wählen Sie «Inverted» (Invertiert), um den normalen Betriebszustand des Relais umzukehren (d. h. Schließkontakte (NO, normalerweise geöffnet) sind geschlossen und Öffnerkontakte (NC, normalerweise geschlossen) sind offen, bis der Sollwert überschritten wird). Im Betriebszustand «Inverted» (Invertiert) ist die Relaisfunktion umgekehrt. Alle Relais können konfiguriert werden.

Drücken Sie die Taste [ENTER] erneut, um das Dialogfeld zum Speichern der Änderungen aufzurufen. Wählen Sie «No» (Nein), um die eingegebenen Werte zu verwerfen und zum Messanzeigebildschirm zurückzukehren. Mit «Yes» (Ja) speichern Sie die Änderungen.

А mS/cm A OC Hold Last OC2 State = Inverted

A

A

SP 1 Out Use OC #

9.5 Alarm/Clean

(PFAD: Menu/Configure/Alarm/Clean)

In diesem Menüpunkt können sie die Funktionen Alarm und Clean konfigurieren.

Aufrufen des Konfigurationsmodus. Siehe Kapitel 9.1 «Aufrufen des Konfigurationsmodus» auf Seite 36.

Navigieren Sie mit den Tasten ▲ oder ▼ zum Menü «Alarm/Clean».

Drücken Sie die Taste [ENTER].

Wählen Sie die Option «Setup Alarm» zum Konfigurieren der Alarmfunktionen. Wählen Sie die Option «Setup Clean» zum Konfigurieren der Reinigungsfunktionen.

9.5.1 Alarm

Um «Setup Alarm» auszuwählen, drücken Sie die Taste ▲ oder ▼, damit «Alarm» blinkt.

Gehen Sie mit den Tasten ◀ und ► zu «Use OC #» (OC Nr. verwenden). Wählen Sie mit den Tasten 🛦 oder 🔻 das Relais, das für den Alarm verwendet werden soll und drücken Sie [ENTER].

Wählen Sie das Alarmereignis mit den Tasten ▲ oder ▼ aus. Weisen Sie jedem Alarmereignis die Option «Yes» (Ja) oder «No» (Nein) zu.

Folgende Alarmereignisse stehen zur Verfügung:

Alarmereignis (Kriterien)	Bedingung für den Alarm
Power Failure (Speisungsausfall) Software Failure (Softwarefehler)	Stromausfall oder Ein- und Ausschalten
Softwarefehler	Software-Überwachung (Watchdog) führt einen Reset durch
Cond Ind Defect (Cond Ind defekt)	Wenn der Sensor defekt ist, z. B. durch defekte Kabel oder einen Kurzschluss

Tabelle 12: Alarmereignisse

Wenn eines dieser Alarmereignisse auf «Yes» (Ja) eingestellt ist und die Alarmbedingungen erfüllt sind, erscheint das blinkende Symbol \land in der Anzeige, Das ausgewählte Relais wird aktiviert.

Eine Alarmmeldung wird gespeichert. Siehe Kapitel 13.1 «Meldungen» auf Seite 62 (PFAD: Info/Messages).

Außerdem kann ein Alarm über den Stromausgang angezeigt werden, wenn dies so eingestellt wurde. Siehe Kapitel 9.3 «Analog Ausgänge» auf Seite 41.

Bei den Alarmereignissen «Power Failure» (Speisungsausfall) und «Software Failure» (Softwarefehler) erlischt die Alarmanzeige, wenn die Alarmmeldung gelöscht wird. Sie erscheint erneut, wenn der Strom weiterhin unterbrochen wird oder wenn die Überwachung (Watchdog) das System erneut zurücksetzt.

	Z .17	mS/cm
A	25.0	°c
Setup Use O	Alarm C 2	t
A	2.17	mS/cm
A	25.0	°c
Alarm Power	Failure	Yesî

A 4 -

Α

Α

A

Α

Α

A

Setup Clean Use OC 1

2.17

25.0

2 17

25.0

CleanInterval= 0.000 hrs Clean Time = 0000 sec

2.17

OC State = Normal

0

ms/cm

Hinweis: Bitte beachten Sie, dass es weitere Alarmmeldungen gibt, die in der Anzeige angezeigt werden. Siehe Kapitel 15 «Suche und Beseitigung von Fehlern» auf Seite 65.

9.5.2 Clean

Wählen Sie das Relais, das für den Reinigungsvorgang verwendet werden soll.

Voreingestellt ist Relais 1.

Das Reinigungsintervall kann auf 0,000 bis 999,9 Stunden eingestellt werden. Die Einstellung 0 bedeutet, dass der Reinigungszyklus ausgeschaltet ist. Die Reinigungszeit kann von 0 bis 9999 Sekunden eingestellt werden und muss kleiner als das Reinigungsintervall sein.

Wählen Sie den gewünschten Relaiszustand: Normal oder Invertiert.

Drücken Sie die Taste [ENTER] erneut, um das Dialogfeld zum Speichern der Änderungen aufzurufen. Wählen Sie «No» (Nein), um die eingegebenen Werte zu verwerfen und zum Messanzeigebildschirm zurückzukehren. Mit «Yes» (Ja) speichern Sie die Änderungen.

9.6 Anzeige

(PFAD: Menu/Configure/Display)

In diesem Menü können die angezeigten Werte sowie die Anzeige selbst konfiguriert werden.

Aufrufen des Konfigurationsmodus. Siehe Kapitel 9.1 «Aufrufen des Konfigurationsmodus» auf Seite 36.

Navigieren Sie mit den Tasten ▲ oder ▼ zum Menü «Display» (Anzeige).

Drücken Sie die Taste [ENTER].

9.6.1 Messung

(PFAD: Menu/Configure/Display/Measurement)

Die Anzeige ist vierzeilig. Zeile 1 befindet sich oben, Zeile 4 unten.

Wählen Sie die Werte (Messung a, b, c oder d), die in jeder Zeile der Anzeige angezeigt werden sollen.

Die Auswahl der Werte für a, b, c, d erfolgt unter Configuration/Measurement/Channel Setup.

Wählen Sie den Modus «Error Display» (Fehleranzeige). Ist dieser nach Auslösen eines Alarms auf «On» (Ein) eingestellt, dann erscheint die Meldung «Failure – Press ENTER» (Fehler – ENTER drücken) in Zeile 4, wenn im normalen Messmodus ein Alarm ausgelöst wird.

Drücken Sie die Taste [ENTER] erneut, um das Dialogfeld zum Speichern der Änderungen aufzurufen. Wählen Sie «No» (Nein), um die eingegebenen Werte zu verwerfen. Wählen Sie «Yes» (Ja), um die eingegebenen Werte als aktuelle Werte zu übernehmen.

9.6.2 Auflösung

(PFAD: Menu/Configure/Display/Resolution)

In diesem Menü können Sie die Auflösung der angezeigten Werte einstellen.

Die Messsicherheit wird durch diese Einstellung nicht beeinträchtigt.

Mögliche Einstellungen sind 1/0,1/0,01/0,001 oder Auto.

Drücken Sie die Taste [ENTER], um das Dialogfeld «Save Changes» (Änd. speichern?) aufzurufen.

9.6.3 **Backlight**

(PFAD: Menu/Configure/Display/Backlight)

In diesem Menüpunkt können Sie die Hintergrundbeleuchtung der Anzeige einstellen.

Mögliche Einstellungen sind On, On 50 % oder Auto Off 50 % (Ein, Ein 50 % oder Auto aus 50 %). Wird «Backlight Auto off 50 %» gewählt (Hintergrundbeleuchtung Auto aus 50 %), schaltet die Beleuchtung nach vier Minuten auf 50 %, wenn keine Taste gedrückt wird. Die Beleuchtung schaltet automatisch wieder ein, wenn eine Taste gedrückt wird.

Drücken Sie die Taste [ENTER], um das Dialogfeld «Save Changes» (Änd. speichern?) aufzurufen.

-c

٠

ns/cm

°C

uS/cm

-a

.

0.01 b = 0.1 d = 0.1

25.00

0.28

25.00

Display Setup Backlight

cklight On

0.1

А

9.6.4 Name

(PFAD: Menu/Configure/Display/Name)

In diesem Menüpunkt können Sie eine alphanumerische Bezeichnung eingeben, deren erste neun Zeichen in den Zeilen 3 und 4 der Anzeige erscheinen. Voreingestellt ist kein Text (leer).

Wenn in die Zeilen 3 und/oder 4 eine Bezeichnung eingegeben wurde, kann die Messung weiterhin in derselben Zeile angezeigt werden.

Mit den Tasten ◀ und ► wechseln Sie zwischen den zu ändernden Ziffern. Mit den Tasten ▲ und 🔻 ändern Sie das anzuzeigende Zeichen. Sobald Sie alle Ziffern beider angezeigten Kanäle eingegeben haben, drücken Sie [ENTER], um das Dialogfeld «Save Changes» (Änd. speichern?) aufzurufen.

Die Anzeige im Messmodus erscheint in den Zeilen 3 und 4 vor den Messwerten.

9.7 Hold-Funktion für analoge Ausgänge

(PFAD: Menu/Configure/Hold Outputs)

Aufrufen des Konfigurationsmodus. Siehe Kapitel 9.1 «Aufrufen des Konfigurationsmodus» auf Seite 36.

Navigieren Sie mit den Tasten 🛦 oder 🔻 zum Menü «Hold Outputs» (Hold Ausgänge).

Drücken Sie die Taste [ENTER].

Die Funktion «Hold Outputs» (Hold Ausgänge) gilt während der Kalibrierung. Wenn für «Hold Outputs» (Hold Ausgänge) während der Kalibrierung «Yes» (Ja) gewählt wurde, befindet sich der Relaisausgang im Hold-Zustand. Der Hold-Zustand richtet sich nach den Einstellungen. Die möglichen Zustände enthält die nachfolgende Liste. Folgende Optionen können gewählt werden:

Hold Ausgänge? «Yes/No» (Ja/Nein)

Die Funktion «DigitalIn» gilt während der gesamten Zeit. Sobald ein Signal am digitalen Eingang aktiv ist, wechselt der Transmitter in den Hold-Modus und die Werte am analogen Ausgang, dem Relaisausgang befinden sich im Hold-Zustand.

DigitalIn1 Zustand = Off/Low/High (Aus/Lo-Niedrig/Hi-Hoch)

HINWEIS: DigitalIn1 hält Kanal A (herkömmlicher Sensor) an

Mögliche Hold-Zustände: Relaisausgang: Ein/Aus (Konfiguration/Sollwert) Analoger Ausgang: Letzter Wert/konstant (Konfiguration/Analogausgang) **PID-Relais** Letzter Wert/Aus (PID Setup/Modus)

s/c

- 0

30 455 147

B METTLER

B TOLEDO

0.28

uS/cm

°c

7.00 pH 25.00 °C

Hold Outputs? Yes

DigitalIn#1 State=Low

10 System

(PFAD: Menu/System)

Drücken Sie im Messmodus die Taste \blacktriangleleft . Drücken Sie die Taste \blacktriangle oder ∇ , um den Menüpunkt «System» zu wählen und drücken Sie [ENTER]. Die Optionen zur Systemkonfiguration werden nachfolgend beschrieben.

10.1 Sprache

(PFAD: Menu/System/Set Language)

In diesem Menü können Sie die Anzeigesprache konfigurieren.

Folgende Sprachen können gewählt werden: Englisch, Französisch, Deutsch, Italienisch, Spanisch, Portugiesisch, Russisch, Japanisch (Katakana).

Drücken Sie die Taste [ENTER], um das Dialogfeld «Save Changes» (Änd. speichern?) aufzurufen.

2.17

25.0

mS/cm

°c

A

Α

System Passwords

10.2 Passworte

(PFAD: Menu/System/Passwords)

In diesem Menü können Sie das Bedienerpasswort und das Administratorpasswort festlegen sowie eine Liste der erlaubten Menüs für den Bediener definieren. Der Administrator hat Zugriffsrechte auf alle Menüs. Alle voreingestellten Passworte für neue Transmitter lauten «00000».

Das Menü «Passwords» (Passworte) ist geschützt: Geben Sie das Administrator-Passwort ein, um das Menü aufzurufen.

10.2.1 Passworte ändern

Öffnen Sie das Menü «Passwords» (Passworte). Siehe Kapitel 10.2 «Passworte» auf Seite 49.

Wählen Sie die Option «Change Administrator» (Administrator ändern) oder «Change Operator» (Bediener ändern).

Geben Sie das neue Passwort ein.

Bestätigen Sie das neue Passwort mit [ENTER].

Drücken Sie die Taste [ENTER] erneut, um das Dialogfeld zum Speichern der Änderungen aufzurufen.

10.2.2 Menüzugriffsrechte für den Benutzer konfigurieren

Öffnen Sie das Menü «Passwords» (Passworte). Siehe Kapitel 10.2 «Passworte» auf Seite 49.

Wählen Sie «Configure Operator» (Bediener konfigurieren), um die Zugriffsliste für den Bediener zu definieren. Sie können Rechte für die folgenden Menüpunkte vergeben/verweigern: CAL-Taste, Quick Setup, Configuration, System, PID Setup und Service (Quick Setup, Konfiguration, System, PID Setup und Service).

Wählen Sie entweder «Yes» oder «No» (Ja oder Nein), um den Zugriff auf die oben genannten Menüs zu erlauben oder zu verweigern, und drücken Sie [ENTER], um mit dem nächsten Punkt fortzufahren. Drücken Sie die Taste [ENTER], nachdem Sie alle Punkte festgelegt haben, um das Dialogfeld zum Speichern der Änderungen aufzurufen. Wählen Sie «No» (Nein), um die eingegebenen Werte zu verwerfen. Wählen Sie «Yes» (Ja), um die eingegebenen Werte als aktuelle Werte zu übernehmen.

Enter Password 00000 Configure Operator

Re-enter password New Password = 00000

Α

Α

A

Α

A

Α

System Set/Clear Lockout

Password = 00000 Enable Lockout = ms/am

10.3 Set/Lösche Sperrung

(PFAD: Menu/System/Set/Clear Lockout)

Das Sperrfunktionsmenü ist geschützt: Geben Sie das Administrator- oder Bediener-Passwort ein und wählen Sie «YES» (JA) zur Aktivierung oder «NO» (NEIN) zur Deaktivierung der Sperrfunktion. Drücken Sie nach der Auswahl die Taste [ENTER], um das Dialogfeld «Save Changes» (Änd. speichern?) aufzurufen. Wählen Sie «No» (Nein), um den eingegebenen Wert zu verwerfen, wählen Sie «Yes» (Ja), um den eingegebenen Wert als aktuellen Wert anzunehmen.

10.4 Reset

(PFAD: Menü/System/Reset)

In diesem Menüpunkt können Sie folgende Optionen einstellen:

Reset System, Reset Meter Cal (Reset Gerätekal.), Reset Analog Cal. (Reset Analog Kal.)

A 2.17 mS/cm A 25.0 °c Reset System ? Yes Press ENTER to Continue A 2.17 mS/cm A 25.0 °c Reset System Are you sure? Yes

10.4.1 Reset System

In diesem Menü können Sie das Messgerät auf die Werkseinstellungen zurücksetzen (Sollwerte aus, Analogausgänge aus usw.). Die Messgerät-Kalibrierung und die Kalibrierung des analogen Ausgangs sind hiervon nicht betroffen.

Drücken Sie nach der Auswahl die Taste [ENTER], um den Bestätigungsbildschirm zu öffnen. Mit der Auswahl «No» (Nein) kehren Sie ohne Änderungen in den Messmodus zurück. Mit der Auswahl «Yes» (Ja) wird das Messgerät zurückgesetzt.

10.4.2 Reset Gerätejustierung

In diesem Menü können Sie die Kalibrierfaktoren des Messgeräts auf die letzten werksseitig eingestellten Kalibrierwerte zurücksetzen.

A 2.17 μs/cm A 25.0 √c System t t

Drücken Sie nach der Auswahl die Taste [ENTER], um den Bestätigungsbildschirm zu öffnen. Mit der Auswahl «No» (Nein) kehren Sie ohne Änderungen in den Messmodus zurück. Mit der Auswahl «Yes» (Ja) werden die Kalibrierfaktoren des Messgeräts zurückgesetzt.

10.4.3 **Reset Analogjustierung**

In diesem Menü können Sie die Kalibrierfaktoren des Analogausgangs auf die letzten werksseitig eingestellten Kalibrierwerte zurücksetzen.

Reset Analog Calibration Are you sure? Yes

Drücken Sie nach der Auswahl die Taste [ENTER], um den Bestätigungsbildschirm zu öffnen. Mit der Auswahl «No» (Nein) kehren Sie ohne Änderungen in den Messmodus zurück. Mit der Auswahl «Yes» (Ja) werden die Kalibrierfaktoren des Analogausgangs zurückgesetzt.

10.5 Zeit Einstellungen

Bitte geben Sie das aktuelle Datum und die Uhrzeit ein. Folgende Optionen können gewählt werden. Diese Funktion wird bei jedem Einschalten aktiviert.

25 System Set Date&Time

mS/cm

2.17

A

Α

Datum (JJ-MM-TT): Zeit (HH:MM:SS):

11 PID-Setup

(PFAD: Menu/PID Setup)

Der PID-Regler ist eine Proportional-Integral-Differential-Regelung, welche die einheitliche Regelung eines Prozesses ermöglicht. Vor der Konfiguration des Transmitters müssen die folgenden Prozessdaten festgelegt werden.

Identifizieren Sie die Regelungsrichtung des Prozesses (Leitfähigkeit):

- Verdünnung direkte Aktion, bei der eine Erhöhung des Messwerts eine Erhöhung des Regelungsergebnisses verursacht, wie z. B. die Regelung der Zugabe von Verdünnungswasser mit niedriger Leitfähigkeit zum Spülen von Tanks, Kühltürmen oder Kesseln.
- Konzentrieren umgekehrte Aktion, bei der eine Erhöhung des Messwerts ein Herabsetzen des Regelungsergebnisses verursacht, wie z. B. die Regelung der Zugabe von Chemikalien, um eine bestimmte Konzentration zu erreichen.

Identifizieren Sie den **control output type** (Regelungsausgangstyp) basierend auf dem zu verwendenden Regler:

- Pulsfrequenz für Impuls-Dosierpumpen
- Impulslänge für Magnetventile
- Analog bei Stromeingangsgeräten wie z. B. Elektroantrieb, analogen Dosierpumpen oder I/P-Wandler f
 ür pneumatische Steuerventile

Die voreingestellten Regler-Einstellungen ermöglichen einen lineare Regelung. Wenn Sie die PID-Einstellungen für diese Parameter vornehmen, ignorieren Sie bitte die Einstellungen der toten Zone und der Eckpunkte bei der Abstimmung der Parameter.

Eine verbesserte Regelung kann erzielt werden, wenn die Nichtlinearität von einer entgegengesetzten Nichtlinearität im Regler begleitet wird. Eine Titrationskurve einer Prozessprobe liefert die besten Informationen. Nahe dem Sollwert entsteht oft ein sehr hoher Gain oder Empfindlichkeit des Prozesses und weiter entfernt vom Sollwert ein niedrigerer Gain. Um dem entgegenzuwirken, verfügt das Gerät über eine einstellbare nichtlineare Regelung mit Einstellmöglichkeiten für eine tote Zone um den Sollwert, weiter entfernten Eckpunkten und proportionalen Grenzen an den Endpunkten der Regelung, wie in der Abbildung unten dargestellt.

11.1 PID-Setup

Drücken Sie im Messmodus die Taste ◀. Drücken Sie die Taste ▲ oder ▼, um den Menüpunkt PID-Setup zu wählen, und drücken Sie [ENTER].

11.2 PID Auto/Manuell

(PFAD: MENÜ/PID-Setup/PID A/M)

Dieses Menü erlaubt die Wahl zwischen automatischem oder manuellem Betrieb. Wählen Sie automatischen oder manuellen Betrieb.

Drücken Sie die Taste [ENTER], um das Dialogfeld «Save Changes» (Änd. speichern?) aufzurufen.

11.3 Modus

(PATH: MENU / PID Setup / Mode)

Dieses Menü enthält eine Auswahl von Regelmodi für Relais.

Drücken Sie [ENTER].

11.3.1 PID-Modus

Dieses Menü weist ein Relais oder Analogausgang für eine PID-Regelungsaktion zu, sowie Details für den Betrieb. Wählen Sie je nach verwendetem Regler einen der folgenden drei Abschnitte für Magnetventil, Impulsdosierpumpe oder analogen Regler.

Pulse Length (Pulslänge) – Falls ein Magnetventil verwendet wird, wählen Sie «OC» (Kontakte) und «PL» (Pulslänge).

Wählen Sie für die erste Kontaktposition #1 (empfohlen) und/oder die zweite Kontaktposition #2 (empfohlen) sowie die entsprechende Impulslänge (PL) aus nachstehender Tabelle. Ein längerer Impuls reduziert den Verschleiß des Magnetventils. Die anteilige Einschaltdauer (%) im Zyklus ist proportional zum Regelausgang.

HINWEIS: Es können alle Relais von #1 bis #2 für die Regelfunktion verwendet werden.

	1. Kontakt	2. Kontakt	Impulsrelais
Leitfähigkeit	Regelung der Zugabe des konzentrierten Reagens	Regelung der Zugabe von Verdünnungswasser	Eine kurze Impulslänge (PL) sorgt für gleichmäßigere Zugabe. Vorgeschlagener Startpunkt = 30 s.

Pulse Frequency (Pulsfrequenz) – Falls eine Impulseingangs-Messpumpe verwendet wird, wählen Sie «OC» (Kontakt) und «PF» (Pulsfrequenz). Wählen Sie für die erste Relaisposition #1 und/oder für die zweite Relaisposition #2 aus nachstehender Tabelle. Stellen Sie die Pulsfrequenz auf die maximal erlaubte Frequenz der jeweiligen verwendeten Pumpe, normalerweise 60 bis 100 Pulse/Minute. Die Regelung wird diese Frequenz als 100 % annehmen.

$$\langle \mathcal{P} \rangle$$

PIDMode= OC PF _# _# Pulse Frequency= 001p/m

А

A

ms/cm

HINWEIS: Es können alle Relais von #1 bis #2 für die Regelfunktion verwendet werden.

VORSICHT: Stellen Sie die Impulsfrequenz nicht zu hoch ein, dies könnte zur Überhitzung der Pumpe führen.

	1. Kontakt	2. Kontakt	Impulsfrequenz (PF)
Leitfähigkeit	Regelung der Zugabe einer konzentrierten Chemikalie	Regelung der Zugabe von Verdünnungswasser	Maximal erlaubt für die verwendete Pumpe (normalerweise 60 bis 100 Impulse/Minute)

11.4 Parameter einstellen

(PFAD: MENU/PID Setup/Tune Parameters)

In diesem Menü weisen Sie einer Messung eine Regelung zu und stellen den Sollwert, die Einstellung der Parameter und die nichtlinearen Funktionen des Reglers über eine Reihe von Anzeigebildschirmen ein.

A 2.17 ms/cm A 25.0 °c SetPoint = 0.000 Dead Band= +/-0.000

11.4.1 PID-Zuweisung und Einstellung

Weisen Sie die Messung a, b, c, oder d zu, die nach «PID on_» geregelt werden soll. Stellen Sie Gain (ohne Einheit), Integral oder Reset Time (Rückstellzeit) Tr (Minuten) und Rate oder Derivative Time (Differenzialzeit) Td (Minuten) für die Regelung ein. Drücken Sie [ENTER]. Gain, Reset und Rate werden später durch Ausprobieren basierend auf der Prozessreaktion eingestellt. Immer erst mit Td bei Null beginnen.

11.4.2 Sollwert und tote Zone

Geben Sie den gewünschten Sollwert und die tote Zone um den Sollwert ein, an dem keine proportionale Regelung erfolgen soll. Stellen Sie sicher, dass der Multiplikator der Einheiten µ oder m für Leitfähigkeit enthalten ist. Drücken Sie [ENTER].

11.4.3 Proportionale Grenzen

Geben Sie die niedrigste und höchste proportionale Grenze ein – den Bereich, in dem eine Regelung gewünscht ist. Stellen Sie sicher, dass der Multiplikator der Einheiten μ oder m für Leitfähigkeit enthalten ist. Drücken Sie [ENTER].

11.4.4 Eckpunkte

Geben Sie die unteren und oberen Eckpunkte in Leitfähigkeit, pH, gelösten Sauerstoffeinheiten und die entsprechenden Ausgangswerte von -1 bis +1, wie in der Abbildung als -100 bis +100 % dargestellt, ein. Drücken Sie [ENTER].

11.5 PID Anzeige

(PFAD: Menu/PID Setup/PID Display Setup)

Dieser Bildschirm aktiviert die Anzeige des PID-Reglerstatus im normalen Messmodus.

Wird «PID Display» (PID Anzeige) gewählt, werden der Status «Man» oder «Auto» (manuell oder auto) und die Reglerausgabe (%) in der untersten Zeile angezeigt. Um die Anzeige zu aktivieren, muss zusätzlich eine Messung unter «Tune Parameters» (Parameter einstellen) zugeordnet werden. Außerdem muss unter Modus ein Relaiskontakt oder analoger Ausgang zugeordnet werden.

Im manuellen Modus kann der Reglerausgang mit den Pfeiltasten nach oben und unten eingestellt werden. (Die Tastenfunktion «Info» steht im manuellen Modus nicht zur Verfügung.)

2.17 ms/cm

2.17 ms/cm

25.0 ..

25.0 ..

Α

A

Α

Α

Service Diagnostics

MENU Service

12 Wartung

(PFAD: Menu/Service)

Drücken Sie im Messmodus die Taste ◀. Drücken Sie die Tasten ▲ oder ▼, um den Menüpunkt «Service» (Wartung) zu wählen, und drücken Sie [ENTER]. Die Optionen zur Systemkonfiguration werden nachfolgend beschrieben.

12.1 Diagnose

(PFAD: Menu/Service/Diagnostics)

Dieses Menü ist ein wertvolles Hilfsmittel zur Fehlersuche und bietet Diagnosefunktionen für folgende Punkte: Model/Software Revision, Digitaler Eingang, Anzeige, Tastatur, Memory, Set Kontakte, Lese Kontakte, Set analoge Ausgänge und Lese analoge Ausgänge.

12.1.1 Model/Software Revision

PN XXXXXXXX M400 CondInd SN XXXXXXXXX Eine wesentliche Information für jeden Serviceanruf ist die Versionsnummer des Modells und der Software. Dieser Menüpunkt zeigt Bestellnummer, Modell und die Seriennummer des Transmitters an. Mit der Taste ▼ bewegen Sie sich vorwärts durch dieses Menü und können zusätzliche Informationen wie etwa die aktuelle Firmware-Version des Transmitters abfragen: (Master V_ XXXX und Comm V_XXXX.

Drücken Sie [ENTER], um die Anzeige zu verlassen.

A 2.17 ms/cm A 25.0 °c Diagnostics Digital Input ↑ A 2.17 ms/cm A 2.17 c A 2.10 °c Digital Input 1 = 0 ,

12.1.2 Digitaler Eingang

Das Menü «Digital Input» (Digitaler Eingang) zeigt den Status des digitalen Eingangs an. Drücken Sie [ENTER], um die Anzeige zu verlassen.

12.1.3 Anzeige

Alle Pixel der Anzeige werden für 15 Sekunden beleuchtet, um eine Fehlersuche in der Anzeige zu ermöglichen. Nach 15 Sekunden kehrt der Transmitter in den normalen Messmodus zurück oder drücken Sie [ENTER], um den Menüpunkt schneller zu verlassen.

A 2.17 ms/cm A 25.0 °c Diagnostics Keypad 1 A 2.17 ms/cm A 25.0 °c Key pressed = (MENU) Press Enter to Continue 1

12.1.4 Tastatur

Für die Tastatur-Diagnose zeigt die Anzeige an, welche Taste gedrückt wird. Wenn Sie [ENTER] drücken, kehrt der Transmitter wieder in den normalen Messmodus zurück.

Gedruckt in der Schweiz

12.1.5 Memory

Wenn Sie Memory wählen, führt der Transmitter einen RAM- und ROM-Speichertest durch. Testmuster werden von allen RAM-Speicherorten geschrieben und gelesen. Die ROM-Prüfsumme wird neu berechnet und mit dem gespeicherten Wert im ROM verglichen.

OC2 = 1

2.17 ms/cm

25.0 ..

0C1 = 0

A

A

12.1.6 Set Kontakte

Mit dem Diagnosemenü «Set OC» (Set Kontakte) können Sie jeden Kontakt manuell aktivieren bzw. deaktivieren.

0 = Kontakt aktivieren

1 = Kontakt deaktivieren

Drücken Sie [ENTER], um in den Messmodus zurückzukehren.

12.1.7 Lese Kontakte

Das Diagnosemenü «Read OC» (Lese Kontakte) zeigt den Zustand jedes Kontakts wie unten dargestellt an.

Drücken Sie [ENTER] erneut, um die Anzeige zu verlassen.

Diagnostics Read OC		
[▲] 2.	17 ms/cm	
[▲] 25	. 0	
OC1 = 0	OC2 = 1 ↑	

0 = Normal1 = Umgekehrt

12.1.8 Set analoge Ausgänge

Mit diesem Menüpunkt können Sie alle Analogausgänge auf einen beliebigen mA-Wert innerhalb des Bereichs 0 – 22 mA einstellen. Drücken Sie [ENTER], um die Anzeige zu verlassen.

A 2.17 ms/cm A 25.0 •c Diagnostics •c 1 A 2.17 ms/cm A 2.17 ms/cm A 2.5.0 •c

Analog out1=04.35 mA Analog out2=08.00 mA 12.1.9 Lese analoge Ausgänge

Diese Menü zeigt die mA-Werte der Analogausgänge an.

Drücken Sie [ENTER], um diese Anzeige zu verlassen.

12.2 Justieren

(PFAD: Menu/Service/Calibrate)

Öffnen Sie das Menü «Service» (Wartung). Siehe Kapitel 12 «Wartung» auf Seite 57.

Wählen Sie «Justieren» aus und drücken Sie [ENTER].

In diesem Menüpunkt finden Sie Optionen zur Justierung des Transmitters und der Analogausgänge. Außerdem kann hier die Kalibrierfunktion entsperrt werden.

12.2.1 Justieren Gerät

Der M400 Transmitter ist werksseitig innerhalb des Toleranzbereichs kalibriert. Das Messgerät muss nicht erneut kalibriert werden, es sei denn, außergewöhnliche Bedingungen erfordern den Betrieb außerhalb der eingestellten Bereiche, die in der «Calibration Verification» (Justierung verifizieren) angezeigt werden. Regelmäßige Überprüfung/erneute Kalibrierung kann notwendig sein, um QS-Anforderungen zu erfüllen. Die Kalibrierung des Messgeräts kann als Temperatur oder Widerstand ausgewählt werden.

12.2.1.1 Temperatur

Für Temperatur wird eine Dreipunktkalibrierung verwendet. In der Tabelle oben sind die Widerstandswerte für diese drei Punkte aufgeführt.

Wechseln Sie zum Bildschirm Justieren Gerät und wählen Sie die Temperaturkalibrierung für Kanal A.

Drücken Sie [ENTER], um die Temperaturkalibrierung zu starten.

Channel A Temperature

Die erste Zeile fragt nach dem Temperatur-Widerstandswert für Punkt 1 (dieser entspricht dem vom Kalibriermodul angezeigten Wert für Temperatur 1). Die zweite Zeile zeigt den gemessenen Widerstandswert. Wenn sich der Wert stabilisiert, drücken Sie [ENTER] für die Kalibrierung.

ns/a

A

°C

us/ca °c

Press ENTER to Exit

ation Yes

Save Calib

A

Der Transmitter-Bildschirm fordert den Benutzer auf, den Wert für Punkt 2 einzugeben. T2 zeigt den gemessenen Widerstandswert. Wenn sich dieser Wert stabilisiert, drücken Sie [ENTER] für die Kalibrierung dieses Bereiches.

Wiederholen Sie diese Schritte für Punkt 3.

Drücken Sie [ENTER], um einen Bestätigungsbildschirm aufzurufen. Wählen Sie Ja, um die Kalibrierwerte zu speichern. Eine erfolgreiche Kalibrierung wird im Display bestätigt.

Der Transmitter kehrt in circa fünf Sekunden in den Messmodus zurück.

12.2.2 Justieren freigeben

Wählen Sie dieses Menü, um das Kalibrierungsmenü zu konfigurieren.

Calibrate Unlock

Wählen Sie «Yes» (Ja), um auf die Kalibriermenüs für Messgerät und Analogausgang im Menü CAL zugreifen können. Wenn Sie «No» (Nein) wählen, haben Sie im Menü CAL nur auf den Menüpunkt Kalibrieren Sensor Zugriff. Drücken Sie nach erfolgter Auswahl [ENTER], um einen Bestätigungsbildschirm aufzurufen.

12.3 **Erweiterte Wartung**

(PFAD: Menu/Tech Service)

Hinweis: Dieser Menüpunkt ist nur für Servicemitarbeiter von Mettler Toledo bestimmt.

13 Info

A 0.28µ8/cm A °c INFO Messages ٠

Wenn Sie die Taste 🔻 drücken, wird das Info-Menü mit den Optionen Meldungen, Kalibrierdaten und Model/Software Revision angezeigt.

13.1 Meldungen

(PFAD: Info/Messages)

Die letzte Meldung wird angezeigt. Mit den Pfeilen nach oben und nach unten können Sie durch die letzten vier angezeigten Meldungen blättern.

Meldungen löschen löscht alle Meldungen. Meldungen werden zur Liste der Meldungen hinzugefügt, wenn die Bedingung für das Ausgeben einer Meldung zum ersten Mal auftritt. Werden alle Meldungen gelöscht und eine Meldebedingung besteht immer noch, begann aber vor dem Löschen, so erscheint die Meldung nicht in der Liste. Damit diese Meldung wieder in der Liste erscheint, muss die Bedingung zunächst verschwinden und dann wieder auftreten.

Drücken Sie [ENTER], um die Anzeige zu verlassen.

13.2 Justierdaten

(PFAD: Info/Calibration Data)

Die Auswahl «Calibration Data» (Justierdaten) zeigt die Kalibrierkonstanten für jeden Sensor an.

AP M=100.00 m A=0.0000

AS M=1.0000 A=0.0000

P = Kalibrierkonstanten für die primäre Messung

S = Kalibrierkonstanten für die sekundäre Messung

Drücken Sie [ENTER], um die Anzeige zu verlassen.

A

A

INFO

13.3 Model/Software Revision

(PFAD: Info/Model/Software Revision)

Wenn Sie «Model/Software Revision» auswählen, erscheinen in der Anzeige Bestellnummer, Modell und Seriennummer des Transmitters.

Mit der Taste ▼ bewegen Sie sich vorwärts durch das Menü und können zusätzliche Informationen, wie die aktuelle Firmwareversion des Transmitters (Master V_XXXX und Comm V_XXXX), abfragen.

0.28

25.00

Model/Software Revision&

µS/cm

°C

Die angezeigte Information ist für jeden Service-Anruf wichtig. Drücken Sie [ENTER], um die Anzeige zu verlassen.

14 Wartung

14.1 Reinigung der Frontplatte

Reinigen Sie die Frontplatte mit einem weichen, feuchten Lappen (nur Wasser, keine Lösungsmittel). Wischen Sie vorsichtig über die Oberfläche und trocknen Sie diese mit einem weichen Tuch ab.

15 Suche und Beseitigung von Fehlern

Falls die Ausrüstung in einer Weise benutzt wird, die durch Mettler Toledo nicht zugelassen ist, können die vorgesehenen Schutzfunktionen beeinträchtigt werden. In der nachfolgenden Tabelle finden Sie eine Liste möglicher Ursachen allgemeiner Probleme:

Problem	Mögliche Ursache
Anzeige bleibt leer.	M400 ist ohne Netzanschluss.Der Kontrast der LCD-Anzeige ist falsch eingestellt.
	Hardwarefehler.
Falsche Messwerte.	 Der Sensor wurde nicht richtig installiert. Es wurden falsche Multiplikatoren gewählt. Die Temperaturkompensation falsch eingestellt oder deaktiviert. Sensor oder Transmitter müssen justiert werden. Sensor oder Steckkabel defekt oder länger als empfohlen. Hardwarefehler.
Messwertanzeige nicht stabil.	 Sensor oder Kabel wurden zu dicht am Gerät installiert, was zu starkem elektrischem Rauschen führt. Die empfohlene Kabellänge wurde überschritten. Die Durchschnittsbildung ist zu niedrig eingestellt. Sensor- oder Steckkabel sind defekt.
Das Symbol ∆ blinkt in der Anzeige.	 Grenzwert löst Alarmbedingung aus (Sollwert überschritten). Alarm wurde ausgewählt und ausgelöst. Siehe Kapitel 9.5.1 «Alarm» auf Seite 44.
Menüeinstellungen können nicht geändert werden.	Zugriff für Benutzer aus Sicherheitsgründen gesperrt.

Tabelle 13: Behebung von Störungen

15.1 Fehlermeldungen für induktive Leitfähigkeitssensoren – Liste der Warnungen und Alarme

Alarme 1)	Beschreibung
Watchdog time-out	Software-/Systemfehler
Ausgangsseite offen	Drähte der Sendespule durchtrennt oder defekt
Kurzschluss sendeseitig	Kurzschluss durch Sensor oder Kabel in Sendespule
Eingangsseite offen	Drähte der Empfangsspule durchtrennt oder defekt

1) Entsprechend den Parametereinstellungen des Transmitters. Siehe Kapitel 9.5.1 «Alarm» auf Seite 44 (PFAD: Menu/Configure/Alarm/Clean/Setup Alarm).

Tabelle 14: Fehlermeldungen für induktive Leiffähigkeitssensoren

15.2 Im Display angezeigte Warnungen und Alarme

15.2.1 Warnungen

Wenn Bedingungen herrschen, unter denen eine Warnung ausgelöst wird, dann wird diese Warnmeldung gespeichert und kann über den Menüpunkt «Message» (Meldungen) aufgerufen werden. Siehe Kapitel 13.1 «Meldungen» auf Seite 62 (PFAD: Info/Messages).

Entsprechend den Parametereinstellungen des Transmitters erscheint in Zeile 4 der Anzeige der Hinweis «Failure – Press ENTER» (Fehler – ENTER drücken) nach Auslösen einer Warnung oder eines Alarms. Siehe Kapitel 9.6 «Anzeige» auf Seite 45 (PFAD: Menu/Configure/Display/Measurement).

15.2.2 Alarm

Alarme, die durch Überschreiten eines voreingestellten Sollwerts oder Bereichs ausgelöst werden, erscheinen in der Anzeige ebenfalls mit einem blinkenden Symbol 🛆 und werden über das Menü «Messages» (Meldungen) gespeichert. Siehe Kapitel 9.4 «Sollwerte» auf Seite 42 (PFAD: Menu/Configure/Setpoint). Siehe Kapitel 13.1 «Meldungen» auf Seite 62 (PFAD: Info/Messages).

Entsprechend den Parametereinstellungen des Transmitters erscheint in Zeile 4 der Anzeige der Hinweis «Failure – Press ENTER» (Fehler – ENTER drücken) nach Auslösen einer Warnung oder eines Alarms. Siehe Kapitel 9.6 «Anzeige» auf Seite 45 (PFAD: Menu/Configure/Display/ Measurement).

16 Zubehör und Ersatzteile

Wenden Sie sich bitte an Ihren örtlichen Mettler Toledo Händler oder Ihre Vertretung für Informationen über zusätzliche Zubehör- und Ersatzteile.

Beschreibung	Bestellnr.
Kit für Rohrmontage für 1/2 DIN-Modelle	52 500 212
Kit für Schalttafeleinbau für 1/2 DIN-Modelle	52 500 213
Wandmontage-Kit für 1/2 DIN-Modelle	30 300 482
Schutzhaube für 1/2 DIN-Modelle	52 500 214

Tabelle 15: Zubehör

17 Technische Daten

17.1 Allgemeine technische Daten

Induktive Leitfähigkeit

Messparameter	Leitfähigkeit und Temperatur		
Anzeigebereich	0 bis 2.000 mS/cm		
Konzentrationskurven Chemikalien	• NaCl: 0-26 % bei 0 °C bis 0-28 % bei +100 °C		
	 NaOH-1: 0-13 % bei 0 °C bis 0 - 24 % bei +100 °C 		
	 NaOH-3: 15-50 % bei 0 °C bis 35 - 50 % bei +100 °C 		
	• HCI-1: 0-18 % bei -20 bis +50 °C		
	• HCI-2: 22-39 % bei -20 bis +50 °C		
	 HNO₃-1: 0−30 % bei −20 bis +50 °C 		
	 HNO₃-2: 35-96 % bei -20 bis +50 °C 		
	• H₂SO₄-1: 0-26 % bei -12 °C bis 0-37 % bei +100 °C		
	 H₂SO₄-2: 28-88 % bei 0 °C bis 39-88 % bei +95 °C 		
	 H₂SO₄-3: 94-99 % bei -12 °C bis 89-99 % bei +95 °C 		
	 H₃PO₄: 0−35 % bei +5 °C bis +80 °C 		
	Benutzerdefinierte Konzentrationstabelle (5 x 5-Matrix)		
TDS-Bereiche	NaCl, CaCO ₃		
Leitfähigkeit: Messunsicherheit	±1,0 % der Messwerte oder ±0,005 mS/cm		
Leitfähigkeit: Wiederholbarkeit	±1,0 % der Messwerte oder ±0,005 mS/cm		
Leitfähigkeit: Auflösung	Auto/0,001/0,01/0,1/1 (wählbar)		
Temperatureingang	P†1000 / P†100 / NTC22K		
Messbereich Temperatur	-40 bis +200 °C		
Auflösung Temperaturmesswert	Auto/0,001/0,01/0,1/1 (wählbar)		
Messunsicherheit Temperatur	• ±0,25 K		
	im Bereich von -30 bis +150 °C		
	• ±0,50 K Untergrenze		
Wiederholbarkeit Temperatur	±0,13 °C		
Max. Kabellänge zum Sensor	10 m		
Kalibrierung	Einpunkt-, Nullpunkt- oder Prozesskalibrierung		

17.2 Elektrische Spezifikationen

17.2.1 Allgemeine elektrische Spezifikationen

Anzeige	LC-Display mit Hintergrundbeleuchtung, vier Zeilen	
Laufleistung	ca. vier Tage	
Tastatur	Fünf Tasten mit taktiler Rückmeldung	
Sprachen	8 (Englisch, Deutsch, Französisch, Italienisch, Spanisch,	
	Portugiesisch, Russisch und Japanisch)	
Anschlussklemmen	Anschlussklemmen mit Federhülsen für Leitungsquerschnitte	
	von 0,2 bis 1,5 mm ² (AWG 16 – 24)	
Analogeingang	4 bis 20 mA (für Druckkompensation)	

17.2.2 4 bis 20 mA (mit HART®)

Stromversorgung	14 bis 30 V DC	
Anzahl der Ausgänge (analog)	2	
Stromausgänge	Schleifenstrom 4 bis 20 mA, galvanisch getrennt bis zu 60 V	
	vom Eingang und gegen Erde/Masse, verpolungssicher,	
	Versorgungsspannung 14 bis 30 V DC	
Messfehler durch analoge Ausgänge < \pm 0,05 mA über einen Bereich von 1 bis 20 mA		
Konfiguration Analogausgang	Linear	
PID-Prozessregler	Impulslänge, Impulsfrequenz	
Hold Eingang/Alarmkontakt	Ja/Ja (Alarmverzögerung 0 bis 999 s)	
Digitale Ausgänge	2 Open-Kollektor (OC), 30 V DC, 100 mA, 0,9 W	
Digitaler Eingang	1, galvanisch getrennt bis zu 60 V vom Eingang, analogem	
	Eingang und Erdung/Masse mit Schaltgrenzen 0,00 V DC bis	
	1,00 V DC inaktiv 2,30 V DC bis 30,00 V DC aktiv	
Alarmeinschaltverzögerung	0 bis 999 s	

17.3 Mechanische Daten

Abmessungen	Gehäuse – Höhe x Breite x Tiefe	144 x 144 x 116 mm (5,7 x 5,7 x 4,6 Zoll)
	Frontblende –	150 x 150 mm
	Höhe x Breite	(5,9 x 5,9 Zoll)
	Max. Tiefe – Schalttafeleir	nbau 87 mm (ohne Steckverbindungen)
Gewicht		1,50 kg
Material		Aluminiumdruckguss
Schutzart		IP66/NEMA 4X

70

17.4 Umgebungsspezifikationen

−40 bis +70 °C	
-20 bis +60 °C	
0 bis 95 % nicht kondensierend	
Gemäß EN 61326-1 (allgemeine Anforderungen)	
Emission: Störaussendungen: Klasse B Immunität: Klasse A	
ATEX/IECEx Zone 1 Ex ib [ia Ga] IIC T4 Gb	
ATEX/IECEx Zone 21 Ex ib [ia Da] IIIC T80 °C Db IP66	
 cFMus Klasse I, Division 1, Gruppen A, B, C, D T4 	
 cFMus Klasse II, Division 1, Gruppen E, F, G 	
cFMus Klasse III	
 cFMus Klasse I, Zone O, AEx ia IIC T4 Ga 	
NEPSI Ex Zone	
Das Messsystem entspricht den gesetzlichen Vorgaben gemäß EG-Richtlinien. METTLER TOLEDO bestätigt die erfolgreiche Prüfung des Geräts mit der CE-Kennzeichnung.	

17.5 Kontrollzeichnungen

17.5.1 Installation, Wartung und Inspektion

- 1. Eigensichere Geräte können eine Zündquelle darstellen, wenn interne Abstände überbrückt oder Anschlüsse geöffnet werden.
- 2. Eigensichere Stromkreise sind zwar an sich energiearm, aufgrund der Betriebsspannung besteht dennoch die Gefahr von Stromschlägen.
- 3. Vor Arbeiten an zugehörigen Betriebsmitteln sind die schriftlichen Herstelleranweisungen zu beachten.
- 4. Um sicherzustellen, dass die Eigensicherheit nicht beeinträchtigt wurde, sind regelmäßige Inspektionen durchzuführen. Bei diesen Inspektionen sind die Geräte auf unerlaubte Änderungen, Korrosion, Beschädigungen, Veränderungen brennbarer Materialien und Alterungserscheinungen zu überprüfen.
- 5. Durch den Benutzer austauschbare Teile eines eigensicheren Systems dürfen nur gegen gleichartige Teile desselben Herstellers ausgetauscht werden.
- 6. Unter folgenden Bedingungen sind Wartungsarbeiten an eingeschalteten Geräten in Gefahrenbereichen zulässig:
 - Freischalten und Ausbauen oder Austauschen von Komponenten elektrischer Geräte und Verkabelung, sofern diese Ma
 ßnahmen nicht dazu f
 ühren, dass verschiedene eigensichere Stromkreise kurzgeschlossen werden
 - Justieren von Steuer- und Regeleinrichtungen, sofern dies f
 ür die Kalibrierung des elektrischen Ger
 äts oder Systems erforderlich ist
 - Es d
 ürfen nur die in den schriftlichen Anweisungen genannten Pr
 üfger
 äte verwendet werden.
 - Sonstige Wartungsma
 ßnahmen, sofern diese ausdr
 ücklich durch die ma
 ßgeblichen Kontrollzeichnungen und Bedienungsanleitungen erlaubt sind
- 7. Die Wartung zugehöriger Geräte und Teile eigensicherer Stromkreise in nicht klassifizierten Bereichen ist auf die oben genannten Maßnahmen derart zu beschränken, dass elektrische Geräte oder Teile von Stromkreisen mit Teilen eigensicherer Systeme in Gefahrenbereichen verbunden bleiben. Masseverbindungen von Sicherheitsbarrieren dürfen erst nach Freischalten der Stromkreise der Gefahrenbereiche entfernt werden.
- 8. Sonstige Wartungsarbeiten an zugehörigen Betriebsmitteln oder Teilen eines eigensicheren Stromkreises in einem nicht klassifizierten Bereich dürfen erst dann vorgenommen werden, wenn das betreffende elektrische Betriebsmittel oder der betreffende Teil eines Stromkreises von dem im Gefahrenbereich befindlichen Teil des Stromkreises getrennt wurde.
- 9. Die Klassifizierung des Einbauortes und die Eignung des eigensicheren Systems für diese Klassifizierung sind zu pr
 üfen. Hierzu geh
 ört die Pr
 üfung, ob Klasse, Gruppe und Temperatureinsatzgrenzen der eigensicheren Ger
 äte und der zugeh
 örigen Betriebsmittel der tats
 ächlichen Klassifikation des Einbauortes entsprechen.

- 10. Vor dem Einschalten eines eigensicheren Systems ist durch Inspektion Folgendes sicherzustellen:
 - Die Installation entspricht der Dokumentation.

 - Kabel und Leitungsabschirmungen sind entsprechend der Installationsdokumentation geerdet.
 - Änderungen wurden genehmigt.
 - Kabel und Verdrahtung sind nicht beschädigt.
 - Potentialausgleich und Masseverbindungen sind fest.
 - Potentialausgleich und Masseverbindungen sind frei von Korrosion.
 - Die Widerstände von Schutzleitern, einschlie
 ßlich des Abschlusswiderstands zwischen Nebenwiderstand und Erder, d
 ürfen 1
 Ω nicht
 überschreiten.
 - Die Schutzwirkung wurde nicht durch Umgehung aufgehoben.
 - Geräte und Anschlüsse weisen keinerlei Anzeichen von Korrosion auf.
- 11. Sämtliche Mängel sind zu beseitigen.

17.5.2 Kontrollzeichnung für die allgemeine Installation

Hazardous Classified Area Sensor Board belonging to

12112602 A

control drawing 12112601 or 12112603 M400 Multi-parameter Transmitters

A B

	In type of	protection int	rinsic sofetv c	ally for conne	ection
Sensor Interface	to M400, w	ith the follow	ring maximum	values	
	U(V)	l(mA)	P(mW)	L(mH)	C(uF)
pH measuring loop, Terminal A,E,G	Uo=5.88	lo=1.3	Po=1.9	Lo=5	Co=2.1
Conductivity measuring loop, Terminal A,B,E,G	Uo=5.88	lo=29	Po=43	Lo=1	Co=2.5
D0 measuring loop, Terminal B,C,D,H	Uo=5.88	lo=29	Po=43	Lo=1	Co=2.5
Temperature measuring loop, Terminal I,J,K	Uo=5.88	lo=5.4	Po=8	Lo=5	Co=2
One-wire measuring loop, Terminal L,M	Uo=5.88	lo=22	Po=32	Lo=1	Co=2.8
485 measuring loop, Terminal N,O	Uo=5.88 Ui=30V	lo=54 li=100	Po=80 Pi=0.8	Lo=1 Li=0	Co=1.9 Ci=0.7
Analog input measuring loop, Terminal P,Q	Ui=30	li=100	Pi=800	Li=0	Ci=0.015

Sensor Board Interface, J3 Only to connect to Mainbard, M400

٢ſ

Notes IECEX, ATEX, FM, CSA 1. When installed in M400, intrinsically Safe Equipment connecting to A-Q must be approved or be a Simple Apparatus. 2. A Simple Apparatus is defined as a device that does not generates more than 1.5V, 0.1A or 25mW. 3. Check out the maxim values for IS (intristically safe) in this page for use.

WARNING - SUBSTITUTION OF COMPONENTS MAY IMPAIR INTRINSIC SAFETY WARNING - SUBSTITUTION OF COMPONENTS MAY IMPAIR THE SUITABILITY FOR ZONE 2

12112604 A							
Hazardous Classified Area Sensor Board belonging to M400 Multi-parameter Transmitters control drawing 12112601 OR 1211260:	~						
	In type of to M400.	f protection i with the follo	intrinsic safety owing maximur	; only for cor n values	nnection	Sensor Types Refereced in FM COC 3021227	
Sensor Interface	n(v)	l(mA)	P(mW)	(Hm)	C(uF)	SIM $*1/*2/*3$ is a sensor series of universal input parameters.	
Conductivity measuring loop, Terminal D,E,F,G,H	1 Uo=5.36	lo=17.2	Po=23	Lo=1	Co=3.2	InPR0725X*1/*2/*3 Inductive conductivity sensor	
Temperature measuring loop, Terminal I,J,K	Uo=5.88	lo=4.9	Po=6.6	Lo=5	Co=2	Temperature sensor is an assitant sensor, which is always intergrated with sensor types of all, such as pH, conductivity, or dissolved axyeen.	
The measuring circuits are galvanically connec	ted			ت ا عادی B	sor Board Inte t to connect t bard, M400	WARNING - SUBSTITUTION OF COMPONENTS MAY IMPAIR INTRINSIC SAFETY WARNING - SUBSTITUTION OF COMPONENTS MAY IMPAIR THE SUITABILITY FOR ZONE 2 WARNING - SUBSTITUTION OF COMPONENTS MAY IMPAIR THE SUITABILITY FOR ZONE 2 Notes Notes ECEX, ATEX, FM, CSA 1. When intabled in M400, Intrinsically Safe Equipment connecting to A–Q must be approved or be a S Apparatus. 2. A Simple Apparatus is defined as a device that does not generates more than 1.5V, 0.1A or 25mW. 3. Check out the maxim values for IS (intriscally safe) in this page for use.	a Simple
		د				Mettler-Toledo Inst	istruments
		×				(Shanghai) Co.	to. Ltd.
		z o				Control Drawing, Control Drawing, Sensor, Cond Ind	g, nd
] [_				Designer Manuary Color Jugar Data Data Data Designer	
						Check Approval S 1:1	
		,				Technics Date 1 Pares Pare 1 12112004 A	

17.5.3 Hinweise

- Nach dem Entity-Konzept der Eigensicherheit ist die Verknüpfung mehrerer FMzugelassener, eigensicherer Geräte mit nicht gesondert untersuchten Entity-Parametern zu einem System unter folgenden Bedingungen zulässig: Voc (Uo) oder Vt ≤ Vmax, lsc (Io) oder It ≤ Imax, Ca (Co) ≥ Ci + Ckabel, La (Lo) ≥ Li + Lkabel, Po ≤ Pi
- Nach dem Feldbus-Konzept der Eigensicherheit ist die Verknüpfung mehrerer FMzugelassener eigensicherer Geräte mit nicht gesondert untersuchten Feldbus-Eigensicherheitsparametern zu einem System unter folgenden Bedingungen zulässig: Voc (Uo) oder Vt < Vmax, Isc (Io) oder It ≤ Imax, Po ≤ Pi
- 3. Die Konfiguration der zugehörigen Betriebsmittel muss eine FM-Zulassung gemäß Entity-Konzept aufweisen.
- 4. Bei der Installation dieser Betriebsmittel ist die Installationszeichnung des Herstellers der zugehörigen Betriebsmittel zu beachten.
- 5. Die Konfiguration des Feldgerätesensors muss eine FM-Zulassung gemäß Entity-Konzept aufweisen.
- Die Installation muss den Anforderungen des National Electrical Code (ANSI/NFPA 70 (NEC.)), Artikel 504 und 505, sowie ANSI/ISA-RP12.06.01, bzw. bei Installation in Kanada des Canadian Electrical (CE) Code (CEC Part 1, CAN/CSA-C22.1), Anhang F, sowie ANSI/ISARP12.06.01 entsprechen.
- 7. Bei Installation in Umgebungen der Klassen II und III muss eine staubdichte Leerrohrabdichtung verwendet werden.
- 8. Die an die zugehörigen Betriebsmittel angeschlossenen Steuer- und Regeleinrichtungen dürfen nicht mehr als die maximal zulässige Spannung für nicht klassifizierte Einbauorte Um = 250 VAC/DC verwenden oder erzeugen.
- 9. Der Widerstand zwischen eigensicherer Erde und Erdung muss weniger als 1 Ω betragen.
- Die Installation der Multiparameter-Transmitter M400/2(X)H, M400G/2XH, M400FF, M400PA und M400 Cond Ind in Umgebungen der Klasse I, Zone 0 und Division 1 muss die Anforderungen nach ANSI/ISA RP12.06.01 «Installation of Intrinsically Safe Systems for Hazardous (Classified) Locations» und des National Electrical Code (ANSI/ NRPA 70) bzw. bei Installation in Kanada des Canadian Electrical (CE) Code (CEC Part 1, CAN/ CSA-C22.1) erfüllen.
- 11. Die Multiparameter-Transmitter M400/2(X)H, M400G/2XH, M400FF, M400PA und M400 Cond Ind besitzen FM-Zulassungen für Anwendungen in Umgebungen der Klasse I, Zone 0 und Division 1. Bei Anschluss zugehöriger Betriebsmittel vom Typ [AEx ib] oder [Ex ib] an die Multiparameter-Transmitter M400/2(X)H, M400G/2XH, M400FF, M400PA und M400 Cond Ind ist das oben genannte System lediglich für Umgebungen der Klasse I, Zone 1 geeignet, nicht jedoch für explosionsgefährdete Einbauorte der Klasse I, Zone 0 oder Division 1.
- 12. Bei Installationen in Umgebungen der Division 2 ist für die zugehörigen Betriebsmittel keine FM-Zulassung nach Entity-Konzept erforderlich, sofern die Installation der Multiparameter-Transmitter M400/2(X)H, M400G/2XH und M400 Cond Ind gemäß den Anforderungen des National Electrical Code (ANSI/NFPA 70), Artikel 504 und 505 bzw. Canadian Electrical (CE) Code., CAN/CSA-C22.1, Teil 1, Anhang F, an Verdrahtungsverfahren für Umgebungen der Division 2 (ausgenommen nicht zündgefährliche Verdrahtung) erfolgt.
- 13. Li darf größer sein als La und die induktivitätsbedingten (Lkabel) Beschränkungen der Kabellänge können außer Acht gelassen werden, wenn die beiden folgenden Bedingungen erfüllt sind: La/Ra (oder Lo/Ro) > Li/Ri; La/Ra (oder Lo/Ro) > Lkabel/Rkabel
- Wenn die elektrischen Parameter des verwendeten Kabels unbekannt sind, können die folgenden Werte verwendet werden: Kapazität: 197 pF/m, Induktivität: 0,66 μH/m
- 15. Ein einfaches Gerät ist definiert als ein Gerät, das nicht mehr als 1,5 V, 0,1 A oder 25 mW erzeugt.
- 16. Änderungen der Installationskontrollzeichnung ohne vorherige Genehmigung durch FM Approvals sind unzulässig.

18 Tabelle Voreinstellungen

18.1 Allgemeine Parameter

Parameter	Untergeordnete Parameter	Wert	Einheit
	Kontakt	2	
	Verzögerungszeit	1	
	Hysterese	Immer 0	
Alarm	Zustand	Invertiert	
	Stromausfall	Nein	
	Softwarefehler	Nein	
	Cond Ind defekt	Nein	
	Kontakt	1	
	HOLD-Modus	Hold	
Deinigen	Intervall	0	
Kenngen	Clean Zeit	0	
	Verzögerungszeit O Hysterese Immer O	0	
	Hysterese	Immer 0	
Halt-Ausgänge Digitalln Sperrfunktion Sprache	_	Ja	
DigitalIn	-	Off	
Sperrfunktion	_	Nein	
Sprache	_	Englisch	
Dacowarta	Administrator	00000	
Passwolle	Bediener	00000	
	Verzögerungszeit	10	Sek.
	Hysterese	5	Für Messeinheit °C, °F dieselbe Einheit. Für andere Messeinheiten, %
Alle Kontakte	Zustand	Normal	
	HOLD-Modus	letzte Wert	
	Alarm	22,0 mA	
	HOLD-Modus	letzte Wert	
	Aout 1 Dämpfung	1 s	
	PID A/M	Manuelle	
	PID Anzeige	Ja	
	PID ein	Keine	
חוח	PID-Modus	OC PL	
	PID PL	1	Sek.
	PID PF	1	p/m
	PID OC x,y	Kein, kein	
	PID Hold-Modus	OC Aus	

Tabelle 16: Standardtabelle, allgemeine Parameter

18.2 PID Standardwert

Leiffähigkeit 1 0 0 0 0 0 0 0 0, 0 0, 0	Parameter	Gain	Tr	Td	Sollwert	Tote Zone	Eckpunkt(e)	Proportionalgrenze(n)
	Leitfähigkeit	1	0	0	0	0	0, 0	0, 0

Tabelle 17: PID-Standardtabelle

18.3 Parameter induktive Leitfähigkeit

Parameter	Untergeordnete Parameter	Wert	Einheit
Kanal A	α	Leitfähigkeit	mS/cm
	b	Temperatur	0°
	C		
	d		
Temperaturquelle		Pt1000	
Kompensation		Standard	
Kalibriarkanatantan	Leitfähigkeit	M=2,175, A=0,0	
Kalibherkonsianien	Temperatur	M=1,0, A=0,0	
Auflägung	Leitfähigkeit	0,01	mS/cm
Autosung	Temperatur	0.1	0°
	1	a	
Analogausgange	2	b	
l sittäkisteit	Wert 4 mA	0	mS/cm
Lemangken	Wert 20 mA	100	mS/cm
Tomporatur	Wert 4 mA	0	0°
lemperatur	Wert 20 mA	Temperatur P+1000 Standard ieit M=2,175, A=0,0 ur M=1,0, A=0,0 ieit 0,01 ur 0.1 a b A 0 mA 100 A 0 mA 00 off 0 off 0 off 0 Mathematical Structure 0	0°
	Messung	a	
Sollwert 1 (SW1)	Тур	Off	
	Kontakt		
	Messung	b	
Sollwert 2 (SW2)	Тур	Off	
	Kontakt		
Alarm	Cond Ind defekt	Nein	

Tabelle 18: Parameter induktive Leitfähigkeit

19 Garantie

METTLER TOLEDO garantiert, dass dieses Produkt keine erheblichen Veränderungen in Material und Verarbeitung über den Zeitraum von einem Jahr ab Kaufdatum aufweist. Wenn eine Reparatur innerhalb der Garantiezeit notwendig wird und nicht durch einen Missbrauch oder falschen Gebrauch verursacht wurde, schicken Sie das Gerät frei ein, damit die Reparatur kostenlos durchgeführt werden kann. Das Kundendienstzentrum von METTLER TOLEDO entscheidet darüber, ob das Problem durch Materialfehler oder falsche Anwendung durch den Kunden entstanden ist. Geräte, deren Garantiezeit abgelaufen ist, werden gegen Entgelt auf Austauschbasis repariert.

Die vorliegende Garantie ist die einzige von METTLER TOLEDO ausgestellte Garantie, die alle anderen ausdrücklich oder implizit enthaltenen Garantien ersetzt. Uneingeschränkt eingeschlossen sind hierbei auch implizite Garantien der Marktgängigkeit und Gebrauchseignung für den jeweiligen Einsatzzweck. METTLER TOLEDO haftet nicht für Verluste, Ansprüche, Kosten oder Schäden, die durch fahrlässige oder sonstige Handlung oder Unterlassung des Käufers oder eines Dritten verursacht bzw. mitverursacht werden oder hieraus entstehen. Auf keinen Fall haftet METTLER TOLEDO für Ansprüche, welche die Kosten des Geräts überschreiten, ob basierend auf Vertrag, Gewährleistung, Entschädigung oder Schadenersatz (einschließlich Fahrlässigkeit).

METTLER TOLEDO Markt-Organisationen

Verkauf und Service:

Australien

Mettler-Toledo Limited 220 Turner Street Port Melbourne, VIC 3207, Australia +61 1300 659 761 Tel E-Mail info.mtaus@mt.com

Brasilien

Mettler-Toledo Ind. e Com. Ltda. Avenida Tamboré, 418 Tamboré BR-06460-000 Barueri/SP Tel. +55 11 4166 7400 E-Mail mtbr@mt.com

China

Mettler-Toledo International Trading (Shanghai) Co. Ltd. 589 Gui Ping Road, Cao He Jing CN-200233 Shanghai +86 21 64 85 04 35 Tel. E-Mail ad@mt.com

Dänemark

Mettler-Toledo A/S Naverland 8, DK-2600 Glostrup +45 43 27 08 00 Tel E-Mail info.mtdk@mt.com

Deutschland

Mettler-Toledo GmbH ProzeBanalytik Ockerweg 3, DE - 35396 Gießen Tel. +49 641 507 444 E-Mail prozess@mt.com

Frankreich

Mettler-Toledo Analyse Industrielle S.A.S. 30, Éoulevard de Douaumont FR-75017 Paris +33 1 47 37 06 00 Tel E-Mail mtpro-f@mt.com

Grossbritannien

Mettler-Toledo LTD 64 Boston Road, Beaumont Leys GB-Leicester LE4 1AW +44 116 235 7070 Tel. E-Mail enquire.mtuk@mt.com

Indien

Mettler-Toledo India Private Limited Amar Hill, Saki Vihar Road, Powai IN-400 072 Mumbai +91 22 4291 0111 Tel. E-Mail sales.mtin@mt.com

Indonesien

PT. Mettler-Toledo Indonesia GRHA PERSADA 3rd Floor JI. KH. Noer Ali No. 3A Kayuringin Jaya Kalimalang, Bekasi 17144, ID Tel. +62 21 294 53919 E-Mail mt-id.customersupport@mt.com

Management-System zertifiziert nach ISO 9001 / ISO 14001

Italien

Mettler-Toledo S.p.A. Via Vialba 42 IT-20026 Novate Milanese Tel +39 02 333 321 E-Mail customercare.italia@mt.com

Japan

Mettler-Toledo K.K. Process Division 6F Ikenohata Nisshoku Bldg. 2-9-7, Ikenohata, Taito-ku JP-110-0008 Tokyo +81 3 5815 5606 Tel E-Mail helpdesk.ing.jp@mt.com

Kanada

Mettler-Toledo Inc. 2915 Argentia Rd #6 CA-ON L5N 8G6 Mississauga +1 800 638 8537 Tel E-Mail ProInsideSalesCA@mt.com

Kroatien

Mettler-Toledo d.o.o. Mandlova 3, HR - 10000 Zagreb +385 1 292 06 33 Tel E-Mail mt.zagreb@mt.com

Malaysia

Mettler-Toledo (M) Sdn Bhd Bangunan Electroscon Holding, U1-01 Lot 8 Jalan Astaka U8/84 Seksyen U8, Bukit Jelutong MY-40150 Shah Alam Selangor +60 3 78 44 58 88 Tel E-Mail MT-MY.CustomerSupport@mt.com

Mexiko

Mettler-Toledo S.A. de C.V. Ejército Nacional #340 Polanco V Sección, C.P. 11560 MX-México D.F. +52 55 1946 0900 Tel. E-Mail mt.mexico@mt.com

Norwegen

Mettler-Toledo AS Ulvenveien 92B NO-0581 Oslo Norway +47 22 30 44 90 Tel E-Mail info.mtn@mt.com

Österreich

Mettler-Toledo Ges.m.b.H. Laxenburger Str. 252/2 AT - 1230 Wien +43 1 607 4356 Tel. E-Mail prozess@mt.com

Philippinen

Mettler-Toledo Philippines Inc. 6F NOL Towers, Commerce Ave. Madrigal Business Park Ayala Alabang Muntinlupa 1780 Philippines Tel. +63 2 528 8920 E-Mail MT-PH.CustomerSupport@mt.com

Polen

Mettler-Toledo (Poland) Sp.z.o.o. ul. Poleczki 21, PL-02-822 Warszawa +48 22 440 67 00 Tel. E-Mail polska@mt.com

Russland

Mettler-Toledo Vostok ZAO Sretensky blvd. 6/1, Office 6 RU-101000 Moskau +7 495 621 56 66 Tel E-Mail inforus@mt.com

Schweden

Mettler-Toledo AB Virkesvägen 10, Box 92161 SE - 12008 Stockholm Tel +46 8 702 50 00 E-Mail sales.mts@mt.com

Schweiz

Mettler-Toledo (Schweiz) GmbH Im Langacher, Postfach CH-8606 Greifensee +41 44 944 47 60 Tel E-Mail ProSupport.ch@mt.com

Singapur

Mettler-Toledo (S) Pte. Ltd. Block 28 Ayer Rajah Crescent # 05-01 SG - 139959 Singapore +65 6890 00 11 Tel. E-Mail mt.sg.customersupport@mt.com

Slowakei

Mettler-Toledo s.r.o. Hattalova 12/A SK-831 03 Bratislava +421 2 4444 1221 Tel. E-Mail predaj@mt.com

Slowenien

Mettler-Toledo d.o.o. Pot heroja Trtnika 26 SI - 1261 Ljubljana-Dobrunje +386 1 547 49 05 Tel. E-Mail darko.divjak@mt.com

Spanien

Mettler-Toledo S.A.E. C/Miguel Hernández, 69-71 ES-08908 L'Hospitalet de Llobregat (Barcelona) +34 902 32 00 23 Tel. E-Mail mtemkt@mt.com

Südkorea

Mettler-Toledo (Korea) Ltd. 1 & 4 F, Yeil Building 21 Yangjaecheon-ro 19-gil, SeoCho-Gu Seoul 06753 Korea +82 2 3498 3500 Tel. E-Mail Sales_MTKR@mt.com

Tschechische Republik

Mettler-Toledo s.r.o. Trebohosticka 2283/2 CZ-100 00 Praha 10 Tel +420 226 808 150 E-Mail sales.mtcz@mt.com

Thailand

Mettler-Toledo (Thailand) Ltd. 272 Soi Soonvijai 4 Rama 9 Rd., Bangkapi, Huay Kwang TH-10320 Bangkok Tel. +66 2 723 03 00 E-Mail MT-TH.CustomerSupport@mt.com

Türkei

Mettler-Toledo Türkiye Haluk Türksoy Sokak No: 6 Zemin ve 1. Bodrum Kat 34662 Üsküdar - Istanbul, TR Tel. +90 216 400 20 20 E-Mail sales.mttr@mt.com

Unaarn

Mettler-Toledo Kereskedelmi KFT Teve u. 41, HU-1139 Budapest +36 1 288 40 40 Tel. E-Mail order.mt-hu@mt.com

USA

METTLER TOLEDO Process Analytics 900 Middlesex Turnpike, Bld. 8 Billerica, MA 01821, USA Tel. +1 781 301 8800 Zollfrei +1 800 352 8763 E-Mail mtprous@mt.com

Vietnam

Mettler-Toledo (Vietnam) LLC G Floor, SCS Building, Plot T2-4 D1 Street, Saigon Hi-tech Park Tan Phu Ward, District 9 Ho Chi Minh City, Vietnam +84 28 73 090 789 Tel. E-Mail MT-VN.CustomerSupport@mt.com

Technische Änderungen vorbehalten. © Mettler-Toledo GmbH, Process Analytics

Mettler-Toledo GmbH Process Analytics Im Hackacker 15, CH-8902 Urdorf, Schweiz 08/2017 Gedruckt in der Schweiz. 30 455 147 Tel. +41 44 729 62 11, Fax +41 44 729 66 36

www.mt.com/pro