

Manuel d'instruction Transmetteur multiparamètre M300

Sous réserve de modifications techniques. © 02/2017 Mettler-Toledo GmbH, Process Analytics, Suisse 30 423 984. Imprimé en Suisse

Manuel d'instruction Transmetteur multiparamètre M300

Sommaire

1	Introd	uction		9				
2	Consi	anes de s	écurité	10				
	2.1	Définition des symboles et désignations présents						
	sur l'é	l'équipement et dans la documentation						
	2.2	Mise au	rebut adéquate de l'instrument	11				
3	Prése	ntation de	l'instrument	12				
	3.1	Versions	M300 ½ DIN	12				
	3.2	Versions	M300 ¼ DIN	13				
	3.3	Structure	e du menu	14				
	3.4	Ecran _		15				
	3.5	Comma		16				
	3.0 27	Entrer de	as donnees	10 16				
	ა./ ვე	Roîte de	dialogue « Epregister modif »	10 17				
	3.0 3.9	Mots de		17 17				
	3.10	Courbe	de mesure					
	0.10	3.10.1	Ouvrir la fenêtre du araphiaue	17				
		3.10.2	Paramètres d'affichage du graphique	18				
		3.10.3	Fermer la fenêtre du graphique	18				
4	Instru	ctions d'iu	nstallation	19				
-	4 1	Déballa	re et contrôle de l'équinement	19				
	4.2	Montaa	e des modèles ½ DIN	19				
		4.2.1	Dimensions du modèle ½ DIN	19				
		4.2.2	Procédure de montage – modèle ½ DIN	20				
		4.2.3	Modèle ½ DIN – montage sur panneau	21				
		4.2.4	Modèle ½ DIN – montage mural	22				
		4.2.5	Modèle ½ DIN – Montage sur conduite	23				
	4.3	Montage	e des versions 1/4 DIN	24				
		4.3.1	Dimensions des versions ¼ DIN	24				
	A A	4.3.Z	Procedure de moniage – versions ¼ DIN	20				
	4.4	Dófinitio	emeni elecinque	20 27				
	4.0		Définition du terminal TR1 - Toutes les versions de transmetteur	2/ 28				
		4.5.1	Définition de terminal TB1 – roues les versions de l'ansinelleur	20 28				
		4.5.3	Définition des terminaux TB2, TB2A et TB2B (modèles à une voie)	20				
		4.5.4	Définition des terminaux TB3 et TB4 pour les sondes analogiques de conductivité 2-e					
			et de conductivité 4-e	29				
		4.5.5	Définition des terminaux TB3 et TB4 pour les sondes analogiques de pH/redox	30				
		4.5.6	Définition des terminaux TB3 et TB4 pour les sondes analogiques d'oxygène ampérométrique					
			et d'ozone dissous	31				
		4.5.7	Définition des terminaux TB3 et TB4 pour les sondes ISM de pH/redox, d'oxygène ampérométrique,					
		4 5 0	d'OZONE dissous et de conductivite 4-e	31				
		4.5.8	Definition des termindux TB3 et TB4 pour les sondes ISM Unicond 2-e et Unicond 4-e	32				
5	Mise e	en service	e ou hors service du transmetteur	33				
	5.1	Mise en	service du transmetteur	33				
	5.2	Mise ho	rs service du transmetteur	33				
6	Étalon	nage		34				
	6.1	Étalonna	age de la sonde	34				
		6.1.1	Sélectionnez la voie	34				
		6.1.2	Sélectionnez la fâche d'étalonnage de la sonde voulue.	34				
	0.0	6.1.3	Fin de l'étalonnage de la sonde	35				
	6.2	Elaionna	dge des sondes Unicona ze et Unicona 4e (sondes ISM Uniquement)	30 25				
		0.2.1		30 רב				
			6.2.1.1 Eluloiniuge en deux nointe	ა/ ვი				
			6.2.1.2 Étalonnage en deux points	30 30				
		6.2.2	Étalonnage de la température des sondes UniCond 2e et UniCond 4e	03				
			6.2.2.1 Étalonnage en un point	40				
			6.2.2.2 Étalonnage en deux points	41				
			5 · ·					

7

6.3	Étalonnage des sondes Cond2e ou Cond4e	43
	6.3.1 Etalonnage en un point	43
	6.3.2 Eldionnage precédé	44
61	6.3.3 Eluionnage du pH	44 / F
0.4	6.4.1 Étalonnage en un point	45
	6.4.2 Étalonnage en deux points	46
	6.4.3 Étalonnage procédé	46
6.5	Étalonnage redox des électrodes de pH	47
6.6	Étalonnage de sondes à oxygène ampérométriques	48
	6.6.1 Étalonnage en un point	48
	6.6.2 Étalonnage procédé	49
6.7	Étalonnage des sondes à ozone	49
	6.7.1 Etalonnage en un point	50
6.0	6.7.2 Etalonnage procede	
0.8	Verification de la sonde	02
6.10	Étalonnage du transmetteur (sondes analogiques uniquement)	02 53
0.10	6 10 1 Résistance (sondes analogiques uniquement)	53
	6.10.2 Température (sondes analogiques uniquement)	00
	6.10.3 Tension (sondes analogiques uniquement)	55
	6.10.4 Courant (sondes analogiques uniquement)	56
	6.10.5 Rg (sondes analogiques uniquement)	56
	6.10.6 Rr (sondes analogiques uniquement)	56
6.11	Étalonnage des sorties analogiques	57
6.12	Maintenance	57
Config	guration	58
7.1	Mesure	58
	7.1.1 Configuration du canal	58
	7.1.2 Sonde analogique	58
	7.1.3 Sonde ISM	59
	7.1.4 Mesures derivees	60
	7.1.4.1 Mesure du pourcenidge de rejer	6U
	7.1.4.2 pH culcule (applications pour certificies electriques uniquement)	61
	7.1.6 Définition des paramètres	01 61
	7 1 6 1 Paramètres de conductivité	01
	7.1.6.2 Paramètres de pH	63
	7.1.6.3 Paramètres de mesure de l'oxygène basés sur des sondes ampérométriques	64
7.2	Source de température (sondes analogiques uniquement)	65
7.3	Sorties analogiques	65
7.4	Valeurs de consigne	66
7.5	Configuration d'ISM (sondes ISM uniquement)	67
	7.5.1 Dispositif de contrôle de la sonde	67
	7.5.2 Nombre maximum de cycles NEP	69
	7.5.3 Nombre maximum de cycles SEP	69
	7.5.4 Nombre maximum de cycles à duioclavage	70 71
	7.5.6 Paramètres du cycle SAN	71 71
	7.5.7 Réinitialisation des compteurs des sondes UniCond 2-e	72
	7.5.8 Définition de l'intervalle d'étalonnage des sondes UniCond 2-e	72
7.6	Alarme générale	72
7.7	ISM / Alarme capteur	73
7.8	Nettoyage	73
7.9	Config. affichage	74
7.10	Entrées numériques	74
7.11	Système	75
7.12		76
7.13	Service	80
	7.13.1 Regruye des sorties analogiques	8U 00
	7.13.2 Leonard des sonnes analogiques	00 אמ
	7.13.4 Lecture des relais	טט אר
	7.13.5 Lecture des entrées numériques	00 80
	7.13.6 Mémoire	
	7.13.7 Écran	81

		7 13 8 Étaloppage du clavier tactile	81
		7.13.0 Eluionnage du cluviel lucine	01 81
	7 14	Gestion utilisateur	82
	7.15	Redéfinir	82
		7.15.1 Réinitialisation du système	82
		7.15.2 Réinitialisation de l'étalonnage des sondes UniCond 2-e	83
	7.16	Sortie USB	83
		7.16.1 Configuration de la sortie de l'imprimante	84
8	ISM		85
•	8.1	iMonitor	85
	8.2	Messaaes	86
	8.3	Diagnostics ISM	86
		8.3.1 Électrodes pH/redox et sondes à oxygène, ozone et Cond4e	
		8.3.2 Sondes UniCond 2-e et UniCond 4-e	87
	8.4	Données cal	88
		8.4.1 Données d'étalonnage de toutes les sondes ISM (excepté les sondes UniCond 2-e et UniCond 4-e)	88
		8.4.2 Données d'étalonnage des sondes UniCond 2-e et UniCond 4-e	89
	8.5	Info capteur	89
	8.6	Version du matériel/logiciel	90
9	Favori	S	91
	9.1	Définition des favoris	91
	9.2	Accès aux favoris	91
10	Maint	enance	92
	10.1	Nettovage du pannegu avant	
	llister	inne du lagisiel	
11	HISTOR	Ique du logiciei	92
	11.1		92
	11.2	M300 Edu	92 92
	11.5		32
12	Dépar	inage	93
	12.1	Liste des messages d'erreur, des avertissements	00
	10.0	et des alarmes relatifs à la conductivite (resistivite) des sondes analogiques	93
	12.2	LISTE des messages d'erreur, des averilissements	04
	100		94
	12.3	Lisie des messages à eneur, des avenissemenis et des alames relations au p⊓	94
		12.3.1 Électrodes de pH à double membrane (nH/nNa)	94 QF
		12.3.2 Electrodes de pri d double membrane (pri/ pixa)	00
	12.4	Liste des messages d'erreur, des avertissements et des alarmes de la sonde ampérométrique O ₂	96
		12.4.1 Sondes de mesure de l'oxyaène en forte concentration	96
		12.4.2 Sondes de mesure de l'oxyaène en faible concentration	96
	12.5	Signalement des avertissements et des alarmes	97
		12.5.1 Signalement des avertissements	97
		12.5.2 Signalement des alarmes	98
13	Référe	ences de commande, accessoires et pièces détachées	99
	0		00
14		reristiques	100
	14.1	Caractéristiques électriques	100
	14.2		102
	14.5		102
	14.4		100
15	Garan	tie	104
16	Tablea	iux de tampons	105
	16.1	Tampons pH standard	105
		16.1.1 Mettler-9	105
		16.1.2 Mettler-10	106
		16.1.3 Tampons techniques NIST	106
		16.1.4 Tampons standard NIST (DIN et JIS 19266 : 2000–01)	107
		16.1.5 Tampons Hach	107
		16.1.6 Tampons Ciba (94)	108
		16.1.7 Merck Titrisole, Riedel-de-Haën Fixanale	108
		16.1.8 Tampons WTW	109
		16.1.9 Tampons JIS Z 8802	109
	16.2	Iampons pour electrode de pH a double membrane	110
		10.2.1 IUINPONS PH/PNA METTER (NA+ 3,9M)	

1 Introduction

Utilisation prévue – Le M300 est un transmetteur 4 fils qui permet de réaliser des mesures analytiques avec un signal de sortie de 4 (0) à 20 mA. Le M300 est un transmetteur multiparamètre servant à mesurer le pH/redox, la conductivité, l'oxygène dissous et l'ozone dissous. Il est disponible en modèle à 1 voie ou à 2 voies. Il est compatible avec les sondes analogiques et ISM.

Le transmetteur M300 est destiné à l'utilisation dans les industries de procédé, en zone non dangereuse.

Guide de sélection des paramètres M300 pour les versions à 1 et 2 voies

	M300 Pi	océdé	M300 Ec	IU ¹⁾	M300	Eau cond/rés.
	Analogiq	ue ISM	Analogiq	ue ISM	Analog	ique ISM
pH/Redox	•	•	•	•	-	_
pH/pNa	_	•	_	•	-	_
UniCond 2-e	_	•	_	•	-	_
UniCond 4-e	_	•	_	•	-	_
Conductivité à 2 électrodes	•	_	•	_	•	_
Conductivité à 4 électrodes	•	•	•	•	•	_
Oxygène Oxygène dissous	• / • ²)	•	- / • ²⁾	_/•	_	_
ppm/ppb						
Ozone dissous	•	•	•	•	-	_

1) Les températures mesurées supérieures à 100 °C (212 °F) ne sont pas affichées.

2) Sonde à oxygène dissous hautes performances THORNTON uniquement

Un écran tactile noir et blanc affiche les données de mesure et de configuration. La structure du menu permet à l'opérateur de modifier tous les paramètres de fonctionnement. Une fonction de verrouillage des menus, protégée par mot de passe, est disponible et empêche l'utilisation non autorisée du transmetteur. Le transmetteur M300 multiparamètre peut être configuré pour utiliser jusqu'à quatre sorties courant et/ou quatre sorties de relais pour le contrôle de procédé.

Le transmetteur multiparamètre M300 est équipé d'une interface de communication USB. Cette interface permet de transférer et de télécharger la configuration du transmetteur via un ordinateur personnel (PC).

Cette description correspond à la version 1.0 du progiciel installé. Des modifications sont apportées régulièrement sans notification préalable.

2 Consignes de sécurité

Ce manuel présente des informations relatives à la sécurité sous les désignations et les formats suivants.

2.1 Définition des symboles et désignations présents sur l'équipement et dans la documentation

AVERTISSEMENT : RISQUES DE BLESSURES CORPORELLES.

ATTENTION : risque de dommage ou de dysfonctionnement de l'appareil.

REMARQUE : information importante sur le fonctionnement.

Sur le transmetteur ou dans ce manuel : attention et/ou autre risque éventuel, y compris risque d'électrocution (voir les documents connexes).

Vous trouverez ci-dessous la liste des consignes et avertissements de sécurité d'ordre général. Le non-respect de ces consignes risque d'endommager l'équipement et/ou de blesser l'opérateur.

- Le transmetteur M300 doit être installé et exploité uniquement par du personnel familiarisé avec ce type d'équipement et qualifié pour ce travail.
- Le transmetteur M300 doit être utilisé uniquement dans les conditions de fonctionnement spécifiées (voir la section 14 «Caractéristiques»).
- Le transmetteur M300 ne doit être réparé que par du personnel autorisé et formé à cet effet.
- À l'exception de la maintenance régulière et des procédures de nettoyage, conformément aux descriptions de ce manuel, il est strictement interdit d'intervenir sur le transmetteur M300 ou de le modifier.
- Mettler-Toledo décline toute responsabilité en cas de dommages occasionnés par des modifications non autorisées apportées au transmetteur.
- Respectez les avertissements, les alertes et les instructions signalés sur ce produit et fournis avec celui-ci.
- Installez le matériel comme spécifié dans ce manuel d'instruction. Respectez les réglementations locales et nationales.
- Les protections doivent être systématiquement mises en place lors du fonctionnement normal.
- Toute autre utilisation de l'équipement que celle spécifiée par le fabricant peut rendre inopérante la protection fournie par celui-ci.

AVERTISSEMENTS :

- L'installation de câbles de raccordement et l'entretien de ce produit nécessitent l'accès à des niveaux de tensions qui entraînent un risque d'électrocution.
- L'alimentation principale et les relais à contact raccordés à une source électrique séparée doivent être déconnectés avant l'entretien.
- L'interrupteur ou le disjoncteur sera situé à proximité de l'équipement et à portée de l'OPÉRATEUR ; il sera signalé comme étant le dispositif de déconnexion de l'équipement.
- L'alimentation principale doit employer un interrupteur ou un disjoncteur comme dispositif de débranchement de l'équipement.
- L'installation électrique doit être conforme au Code électrique national américain et/ou toutes autres réglementations nationales ou locales en vigueur.

Ċ r	REMARQUE : ACTION DE COMMANDE DE RELAIS Les relais du transmetteur M300 se désactivent toujours en cas de perte d'alimentation, comme en état normal, quel que soit le réglage de l'état du relais pour un fonctionnement sous tension. Configurez tout système de contrôle utilisant ces relais en respectant une logique de sécurité absolue.
Ċ r	REMARQUE : PERTURBATIONS DU PROCÉDÉ Étant donné que les conditions de procédé et de sécurité peuvent dépendre du fonctionnement logique du transmetteur, fournissez les moyens appropriés pour éviter toute interruption pendant le nettoyage ou le remplacement de la sonde, ou pendant l'étalonnage de la sonde ou de l'instrument.
Ċ	REMARQUE : il s'agit d'un transmetteur à 4 fils équipé d'une sortie analogique active de 4-20 mA. Ne branchez pas les bornes de sortie analogique (TB2 : terminal 1 à 8, TB2A : terminal 1 à 4 et TB2B : terminal 1 à 4).

2.2 Mise au rebut adéquate de l'instrument

Lorsque le transmetteur n'est plus utilisé, respectez toutes les réglementations locales en matière d'environnement pour le jeter comme il convient.

3

Présentation de l'instrument

Le transmetteur M300 est disponible en modèle 1/2 DIN et 1/4 DIN.

Pour connaître les dimensions, voir 13 «Références de commande, accessoires et pièces détachées».

3.1 Versions M300 ½ DIN

Illustration 1 : Versions M300 1/2 DIN

- 1 Boîtier rigide en polycarbonate
- 2 Écran tactile noir et blanc
- 3 TB3 Bornier pour raccordement de sonde
- 4 TB4 Bornier pour raccordement de sonde (sur modèles à 2 voies uniquement)
- 5 Borniers pour tension d'alimentation
- 6 TB1 Bornier pour sorties de relais
- 7 TB2 Bornier pour sortie analogique et signaux d'entrée numérique
- 8 Périphérique USB Interface de mise à jour du logiciel
- 9 Port USB Connexion d'imprimante, consignation de données ¹⁾, chargement et enregistrement de la configuration ¹⁾
- 1) En cours de préparation

3.2 Versions M300 ¹/₄ DIN

Illustration 2 : Versions M300 ¼ DIN

- 1 Boîtier rigide en polycarbonate
- 2 Écran tactile noir et blanc
- 3 Borniers pour tension d'alimentation
- 4 TB1 Bornier pour sorties de relais
- 5 TB4 Bornier pour raccordement de sonde (sur modèles à 2 voies uniquement)
- 6 TB3 Bornier pour raccordement de sonde
- 7 Port USB Connexion d'imprimante, consignation de données ¹), chargement et enregistrement de la configuration ¹)
- 8 Périphérique USB Interface de mise à jour du logiciel
- 9 TB2A, TB2B Bornier pour sortie analogique et signaux d'entrée numérique

1) En cours de préparation

3.3 Structure du menu

Ci-dessous, l'arborescence du menu du M300 :

Illustration 3 : Présentation du menu

3.4 Écran

Illustration 4 : Affichage - Navigation M300

A Écran d'accueil (exemple)

- 1 Changement entre voie 1 et voie 2, sur modèles à 2 voies uniquement
- 2 1° ligne, configuration standard
- 3 2e ligne, configuration standard
- 4 3e ligne, dépend de la configuration
- 5 4e ligne, dépend de la configuration
- B Écran de menu (exemple)
- C Écran de menu ISM

REMARQUE : si une alarme se déclenche ou si une erreur se produit, un symbole apparaît en haut de l'écran du transmetteur M300. Cet en-tête clignote jusqu'à ce que la raison de son apparition ait été résolue (voir le chapitre 12.5 «Signalement des avertissements et des alarmes»).

REMARQUE : pendant un étalonnage ou un cycle de nettoyage, ou lorsqu'une entrée numérique avec sortie analogique/relais/USB est en mode « Maintien », un « H » clignote dans le coin supérieur droit de l'écran en face de la voie correspondante. Ce symbole reste visible pendant 20 secondes après la fin de l'étalonnage. Ce symbole demeure visible pendant 20 secondes supplémentaires après la fin de l'étalonnage ou d'un nettoyage. Il s'affiche aussi quand l'option Entrée Numérique est désactivée.

Ċ

Commande	Désignation
\bowtie	Accès au menu Messages
- Mu	Accès à l'écran de menu
1	Accès à l'écran d'accueil
ISM	Accès au menu ISM
*	Accès au menu Favori
<u></u>	Accès au menu Étalonnage
* ☆	Accès au menu Configuration
	Retour à l'écran de menu
	Accès au niveau de menu inférieur, par exemple ici iMonitor, Messages ou Diagnostics ISM
←	Retour au niveau de menu supérieur
<>	 Changement de page dans un même niveau de menu Changement de la voie 1 à la voie 2 (modèles à 2 voies uniquement)
←┘	Validation des valeurs et des options sélectionnées. Appuyez sur « ESC » si vous ne souhaitez pas conserver les changements.

3.5 Commandes

3.6 Entrer des données

Le transmetteur M300 présente un clavier qui vous permet de modifier les valeurs. Appuyez sur le bouton ← pour enregistrer la valeur concernée. Si vous souhaitez quitter le clavier sans modifier les données, appuyez sur le bouton « ESC ».

REMARQUE : il est possible de modifier l'unité de certaines valeurs. Dans ce cas, le clavier affiche un bouton avec un « U ». Pour choisir une autre unité pour la valeur saisie sur le clavier, appuyez sur le bouton « U ». Pour revenir en arrière, appuyez sur le bouton « 0-9 ».

REMARQUE : il est possible d'utiliser les lettres et/ou les nombres pour saisir certaines entrées. Dans ce cas, le clavier affiche un bouton « A,a,0 ». Appuyez sur ce bouton pour basculer entre les majuscules, les minuscules et les nombres sur le clavier.

3.7 Menus de sélection

Quelques menus nécessitent la sélection d'un paramètre et/ou de données. Dans ce cas, le transmetteur affiche une fenêtre contextuelle. Appuyez sur le champ correspondant à la valeur pour sélectionner celle-ci. La fenêtre contextuelle se ferme et la valeur sélectionnée est enregistrée.

3.8 Boîte de dialogue « Enregistrer modif. »

Plusieurs options sont proposées lorsque la boîte de dialogue « Enregistrer modif. » s'affiche. « Non » efface les valeurs saisies, « Oui » enregistre les modifications effectuées et « Annuler » vous permet de poursuivre la configuration.

3.9 Mots de passe

Le transmetteur M300 permet de verrouiller plusieurs menus. Si la fonction de verrouillage de sécurité du transmetteur est activée, un mot de passe doit être saisi afin d'accéder au menu. Voir le chapitre 7.14 «Gestion utilisateur».

3.10 Courbe de mesure

Chaque mesure peut être affichée sous forme de courbe sur une période donnée. Les grandeurs de mesure seront placées sur l'axe des ordonnées et la période concernée sur l'axe des abscisses du graphique affiché. Une mesure réelle de la valeur sélectionnée s'affichera également sous forme numérique au-dessus du graphique. Cette grandeur de mesure est actualisée toutes les secondes.

Le graphique affichera uniquement les valeurs comprises dans la plage minimum/maximum. Les valeurs en dehors de la plage de mesure ou les valeurs non valides ne seront pas affichées. L'axe des ordonnées affichera la valeur maximale de l'unité et sa plage de mesure ; l'unité de l'axe des abscisses indique « min » pour les mesures relevées en moins d'une heure et « hr » pour les mesures relevées dans une même journée. Il existe 4 échelles pour l'axe des abscisses/des ordonnées. La valeur maximale sur l'axe des ordonnées est exprimée avec une seule décimale.

3.10.1 Ouvrir la fenêtre du graphique

Depuis la fenêtre de menu, appuyez une fois sur n'importe quelle ligne de grandeur de mesure (1 voie, 2 voies, 4 mesures) à l'écran pour afficher la courbe de cette mesure.

lorsqu'une sonde est déconnectée/connectée, une fenêtre contextuelle s'affiche. Lorsque vous fermez cette fenêtre, vous revenez à l'écran de menu.

La ligne en haut de l'écran signale les messages reçus pendant l'affichage de la courbe. « H », « P », « AB » s'afficheront lorsque l'une de ces voies est en attente ou en cours d'utilisation.

3.10.2 Paramètres d'affichage du graphique

Pour modifier l'affichage du graphique, appuyez n'importe où sur le graphique pour afficher la fenêtre contextuelle des paramètres. Les paramètres sont définis par défaut, mais ils peuvent être modifiés lorsque plusieurs options sont disponibles.

Durée : bouton « Option ». Pour afficher la durée concernée (axe des abscisses)

REMARQUE : 1 h signifie : 1 mesure enregistrée/15 secondes, soit au total 240 mesures

- relevées en 1 heure. 1 jour signifie : 1 mesure enregistrée/6 minutes, soit au total 240 mesures relevées en 1 jour.
- Plage : bouton « Option » Par défaut (valeur par défaut) Personnalisée

1 h (valeur par défaut)

1 jour

Lorsque le mode « Par défaut » est défini sur la valeur maximale ou minimale, cela indique la plage de mesure complète pour cette unité. Aucun bouton « Max. » ou « Min. » n'est affiché. Si le paramètre peut être sélectionné, l'utilisateur peut définir manuellement les réglages maximum et minimum.

- Max : bouton « Editer ». Valeur maximale pour cette unité (axe des ordonnées). xxxxxx, virgule flottante.
- Min : bouton « Editer ». Valeur minimale pour cette unité (axe des ordonnées). xxxxxx, virgule flottante. Valeur Max. > Valeur Min.
- **REMARQUE** : les paramètres définis pour les deux axes et les grandeurs de mesure correspondantes sont stockés dans la mémoire du transmetteur. Une panne de courant rétablit les paramètres par défaut.

3.10.3 Fermer la fenêtre du graphique

Appuyez sur 🖄 dans la fenêtre du graphique pour revenir à l'écran de menu.

REMARQUE: lorsqu'une sonde est déconnectée/connectée, une fenêtre contextuelle s'affiche. Lorsque vous fermez cette fenêtre, vous revenez à l'écran de menu.

4 Instructions d'installation

4.1 Déballage et contrôle de l'équipement

Examinez l'emballage d'expédition. S'il est endommagé, contactez immédiatement le transporteur pour connaître les instructions à suivre. Ne jetez pas l'emballage.

En l'absence de dommage apparent, ouvrez l'emballage. Vérifiez que tous les éléments apparaissant sur la liste de colisage sont présents.

Si des éléments manquent, avertissez-en immédiatement Mettler-Toledo.

4.2 Montage des modèles ½ DIN

4.2.1 Dimensions du modèle ½ DIN

1 Dimensions de la découpe du panneau

4.2.2 Procédure de montage – modèle ½ DIN

Les transmetteurs du modèle ½ DIN sont conçus pour les types de montage suivants : montage sur panneau, montage mural ou sur conduite. Pour un montage mural, l'intégralité du capot arrière est utilisée.

Le matériel de fixation pour montage sur panneau ou conduite doit être commandé. Reportez-vous au chapitre 13 «Références de commande, accessoires et pièces détachées».

Assemblage :

Illustration 6 : Assemblage

- 1 1 presse-étoupe M25 x 1,5
- 2 4 presse-étoupes M20 x 1,5
- 3 4 vis

Instructions générales :

- Orientez le transmetteur de façon à ce que les chemins de câble soient positionnés vers le bas.
- L'acheminement du câblage dans les chemins de câble doit être compatible avec un usage en zones humides.
- Pour obtenir un boîtier de classification IP65, tous les presse-étoupes doivent être en place. Chaque presse-étoupe doit être muni d'un câble.
- Serrez les vis du panneau avant avec un couple de serrage de 1,5 Nm à 2 Nm.

4.2.3 Modèle ½ DIN – montage sur panneau

Pour garantir une bonne étanchéité, le panneau ou la porte doit être plat(e) et lisse. Les surfaces texturées ou rugueuses ne sont pas recommandées et risquent de limiter l'efficacité du joint fourni.

Illustration 7 : Montage sur panneau

- 1. Effectuez la découpe du panneau. Pour connaître les dimensions, voir 4.2.1 «Dimensions du modèle ½ DIN».
 - Vérifiez que les surfaces avoisinant la découpe sont propres, lisses et exemptes de bavures.
- 2. Glissez le joint plat autour du transmetteur en partant du dos de l'appareil.
- 3. Placez le transmetteur dans le trou découpé. Vérifiez l'absence d'écart entre le transmetteur et la surface du panneau.
- 4. Positionnez les deux supports de fixation de chaque côté du transmetteur, tel qu'illustré.
- 5. Tout en maintenant fermement le transmetteur dans le trou découpé, poussez les supports de fixation vers l'arrière du panneau.
- 6. Une fois les supports fixés, serrez-les contre le panneau à l'aide d'un tournevis. Pour obtenir un boîtier de classification environnementale IP65, les deux fixations fournies doivent être fermement serrées afin de créer un joint adéquat entre le panneau du boîtier et le transmetteur.
 - Le joint plat est alors comprimé entre le transmetteur et le panneau.

4.2.4 Modèle ½ DIN – montage mural

DANGER ! Danger de mort par électrocution ou risque d'électrocution : la profondeur maximale de vissage des orifices de fixation sur le boîtier est de 12 mm (0,47 pouce). Ne dépassez pas cette indication.

Illustration 8 : Montage mural avec kit de montage mural

- 1. Procédez à l'installation du boîtier à l'aide du kit de montage mural. Ne dépassez pas cette indication.
- 2. Installez le boîtier sur le mur à l'aide du kit de montage mural. Fixez l'ensemble au mur à l'aide du matériel de fixation adapté à la surface. Vérifiez que le transmetteur est à niveau et solidement fixé au mur. Assurez-vous également d'avoir respecté l'espace de dégagement requis pour l'entretien et la maintenance du transmetteur. Orientez le transmetteur de façon à ce que les chemins de câble soient positionnés vers le bas.

4.2.5 Modèle ¹/₂ DIN – Montage sur conduite

Illustration 9 : Montage sur conduite – modèle 1/2 DIN

- Utilisez uniquement les composants fournis par le fabricant pour installer le transmetteur M300 sur conduite. Reportez-vous à la section 13 «Références de commande, accessoires et pièces détachées» pour plus d'informations concernant la commande.
- Serrez les vis de fixation avec un couple de serrage de 2-3 Nm.

4.3 Montage des versions 1/4 DIN

4.3.1 Dimensions des versions ¼ DIN

Illustration 10 : Dimensions de la version 1/4 DIN

1 Dimensions de la découpe du panneau

4.3.2 Procédure de montage – versions ¼ DIN

Les versions ¹/₄ DIN sont conçues pour être montées sur panneau uniquement. Chaque transmetteur est livré avec le matériel de fixation pour pouvoir être installé rapidement et simplement sur un panneau plat ou une porte de boîtier plane. Pour garantir une bonne étanchéité et assurer l'intégrité IP65 de l'installation, le panneau ou la porte doit être plat(e) et lisse.

Le matériel fourni est composé des éléments suivants :

- deux supports de montage encliquetables ;
- un joint de montage plat.
- 1. Effectuez la découpe du panneau. Pour connaître les dimensions, voir 4.3.1 «Dimensions des versions ¼ DIN».
 - Vérifiez que les surfaces avoisinant la découpe sont propres, lisses et exemptes de bavures.
- 2. Glissez le joint plat autour du transmetteur en partant du dos de l'appareil.
- 3. Placez le transmetteur dans le trou découpé. Vérifiez l'absence d'écart entre le transmetteur et la surface du panneau.
- 4. Positionnez les deux supports de fixation de chaque côté du transmetteur, tel qu'illustré.
- 5. Tout en maintenant fermement le transmetteur dans le trou découpé, poussez les supports de fixation vers l'arrière du panneau.
- 6. Une fois les supports fixés, serrez-les contre le panneau à l'aide d'un tournevis. Pour obtenir un boîtier de classification environnementale IP65, les deux fixations fournies doivent être fermement serrées afin de créer un joint adéquat entre le panneau du boîtier et la face avant du transmetteur M300.
 - Le joint plat est alors comprimé entre le transmetteur et le panneau.

ATTENTION : Ne serrez pas excessivement les supports.

4.4 Raccordement électrique

 $\overline{\mathbf{r}}$

DANGER ! Danger de mort par électrocution : éteignez l'instrument lors du raccordement électrique.

REMARQUE : il s'agit d'un transmetteur à 4 fils équipé d'une sortie analogique active de 4-20 mA.
 Ne branchez pas les bornes de sortie analogique (TB2 : terminal 1 à 8, TB2A : terminal 1 à 4 et TB2B : terminal 1 à 4).

Les terminaux se situent à l'intérieur du boîtier.

Tous les transmetteurs M300 sont conçus pour être raccordés à une source d'alimentation de 20 à 30 V CC ou 80 à 255 V CA. Reportez-vous aux caractéristiques techniques pour connaître la puissance nominale requise, puis dimensionnez le câblage en conséquence.

Les terminaux sont conçus pour recevoir des conducteurs simples et des fils souples dotés d'une section de fils comprise entre 0,2 mm² et 1,5 mm² (AWG 16-24).

- Pour une tension d'alimentation comprise entre 80 V CA et 255 V CA, branchez l'alimentation sur les terminaux L, N et 1 (terre).
 Pour une tension d'alimentation comprise entre 20 V CC et 30 V CC, branchez le fil neutre (-) sur le terminal « N » et le fil de charge sur le terminal « L ».
- Modèle à 1 voie : Branchez la sonde sur le bornier TB3. Modèle à 2 voies : brancher la sonde sur le bloc du terminal TB3 ou TB4.
- 3. Brancher les signaux de sortie analogique et d'entrée numérique sur le bloc terminal TB2 (TB2A, TB2B).
- 4. Branchez les signaux de sortie relais sur le bornier TB1.

4.5 Définition des terminaux

Illustration 11 : Définition des borniers

- 1 TB3 Bornier pour raccordement de sonde
- 2 TB4 Bornier pour raccordement de sonde (sur modèles à 2 voies uniquement)
- 3 Borniers pour tension d'alimentation
- 4 TB1 Bornier pour sorties de relais
- 5 TB2 (TB2A, TB2B) Bornier pour sortie analogique et signaux d'entrée numérique
- 6 Périphérique USB Interface de mise à jour du logiciel
- 7 Port USB Connexion d'imprimante, consignation de données ¹), chargement et enregistrement de la configuration ¹)

1) En cours de préparation

 $\langle \mathcal{P} \rangle$

4.5.1 Définition du terminal TB1 – Toutes les versions de transmetteur

Terminal TB1	Désignation	Charge sur les contacts
1	NC1	250 V CA ou 30 V CC, 3 A
2	COM1	_
3	N02	250 V CA ou 30 V CC, 3 A
4	COM2	_
5	NO3	250 V CA ou CC, 0,5 A, 10 W
6	COM3	
7	NO4	250 V CA ou CC, 0,5 A, 10 W
8	COM4	

4.5.2 Définition des terminaux TB2, TB2A et TB2B – Modèles à 2 voies

REMARQUE : il s'agit d'un transmetteur à 4 fils équipé d'une sortie analogique active de 4-20 mA.

Ne branchez pas les bornes de sortie analogique (TB2 : terminal 1 à 8, TB2A : terminal 1 à 4 et TB2B : terminal 1 à 4).

TB2 – Bo í	itier ½ DIN	TB2A – B	oîtier ¼ DIN	TB2B – Boîtier ¼ DIN		
Terminal TB2	Désignation	Terminal TB2A	Désignation	Terminal TB2A	Désignation	
1	AO1+	1	AO1+	1	AO1-	
2	AO1-	2	AO2+	2	AO2-	
3	A02+	3	A03+	3	AO3-	
4	A02-	4	AO4+	4	AO4-	
5	AO3+	5	DI1+	5	DI1-	
6	A03-	6	DI2+	6	DI2-	
7	AO4+	7	_	7	_	
8	A04-	8	_	8	_	
9	DI1+					
10	DI1-/DI2-					
11	DI2+					
12 à 16	Non utilisés					

4.5.3 Définition des terminaux TB2, TB2A et TB2B (modèles à une voie)

REMARQUE : il s'agit d'un transmetteur à 4 fils équipé d'une sortie analogique active de 4-20 mA.
 Ne branchez pas les bornes de sortie analogique (TB2 : terminal 1 à 8, TB2A : terminal 1 à 4 et TB2B : terminal 1 à 4).

TB2 – B 0î	itier ½ DIN	TB2A – B	oîtier ¼ DIN	TB2B – Boîtier ¼ DIN		
Terminal TB2	Désignation	Terminal TB2A	Désignation	Terminal TB2A	Désignation	
1	AO1+	1	A01+	1	A01-	
2	AO1-	2	A02+	2	AO2-	
3	A02+	3	Non utilisés	3	Non utilisés	
4	A02-	4	Non utilisés	4	Non utilisés	
5	Non utilisés	5	DI1+	5	DI1-	
6	Non utilisés	6	Non utilisés	6	Non utilisés	
7	Non utilisés	7	Non utilisés	7	Non utilisés	
8	Non utilisés	8	Non utilisés	8	Non utilisés	
9	DI1+					
10	DI1-					
11 à 16	Non utilisés					

4.5.4 Définition des terminaux TB3 et TB4 pour les sondes analogiques de conductivité 2-e et de conductivité 4-e

Terminal TB4 pour version à deux voies uniquement

Terminal TB3/TB4	Fonction	Couleur
1	Cnd intérieur 1 ¹⁾	Blanc
2	Cnd extérieur 1 ¹⁾	Blanc/bleu
3	Cnd ext1	-
4	Non utilisés	-
5	Cnd ext2	-
6	Cnd intérieur2 ²⁾	Bleu
7	Cnd extérieur2 (terre) 2)	Noir
8	Non utilisés	-
9	Ret. capteur de température/terre	Blindage nu
10	Détection capteur de tempé- rature	Rouge
11	Capteur de température	Vert
12 à 18	Non utilisés	-

 Pour les sondes de conductivité à 2 électrodes de fabricants tiers, un cavalier sera peut-être nécessaire entre les bornes 1 et 2.

2) Pour les sondes de conductivité à 2 électrodes de fabricants tiers, un cavalier sera peut-être nécessaire entre les bornes 6 et 7.

4.5.5 Définition des terminaux TB3 et TB4 pour les sondes analogiques de pH/redox

Terminal TB4 pour modèles à 2 voies uniquement

	рH		Redox	
Terminal TB3 / TB 4	Fonction	Couleur ¹⁾	Fonction	Couleur
1	Verre	Transparent	Platine	Transparent
2	Non utilisés	_	_	_
3	Non utilisés	_	_	_
4	Non utilisés	_	_	_
5	Référence	Rouge	Référence	Rouge
6	Référence 2)	_	Référence 2)	_
7	Masse liquide 2)	Bleu 3)	Masse liquide 2)	_
8	Non utilisés	_	_	_
9	Ret. capteur de température/terre	Blanc	_	_
10	Détection capteur de température	_	_	-
11	Capteur de température	Vert	-	_
12	Non utilisés	_	_	_
13	Blindage (terre)	Vert/jaune	Blindage (terre)	Vert/jaune
14 à 18	Non utilisés	_	_	_

1) Fil gris non utilisé.

2) Installez un cavalier entre les bornes 6 et 7 pour les sondes redox et électrodes de pH sans masse liquide.

3) Fil bleu pour l'électrode avec masse liquide.

4.5.6 Définition des terminaux TB3 et TB4 pour les sondes analogiques d'oxygène ampérométrique et d'ozone dissous

Terminal TB4 pour modèles à 2 voies uniquement

		Oxygène		Ozone	
		InPro 6800	Oxygène haute performance	InPro 6510	
Terminal	Fonction	Couleur	Couleur	Couleur	
1	Non utilisés	_	_	_	
2	Anode	Rouge	Rouge	Rouge	
3	Anode	_ 1)	_ 1)	_ 1)	
4	Référence	_ 1)	_ 1)	_ 1)	
5	Non utilisés	_			
6	Non utilisés	_	-	_	
7	Garde	_	_	_	
8	Cathode	Transparent	Gris	Gris	
9	Ret. NTC (terre)	Blanc	Blanc	Blanc	
10	Non utilisés	_	_	_	
11	NTC	Vert	Vert	Vert	
12	Non utilisés	_	_	_	
13	Blindage (terre)	Vert/jaune	Vert/jaune	Vert/jaune	
14 à 18	Non utilisés	_	_	_	

1) Installez un cavalier entre les terminaux 3 et 4 pour les sondes à oxygène haute performance et InPro 6510.

4.5.7 Définition des terminaux TB3 et TB4 pour les sondes ISM de pH/redox, d'oxygène ampérométrique, d'ozone dissous et de conductivité 4-e

Terminal TB4 pour modèles à 2 voies uniquement

Terminal TB3/TB4	Fonction	Couleur
1à11	Non utilisés	_
12	1 fil	Transparent (âme du câble)
13	GND	Rouge (blindage)
14	RS485-B	_
15	RS485-A	_
16	5 V	_
17	TERRE 24 V	_
18	24 V	_

4.5.8 Définition des terminaux TB3 et TB4 pour les sondes ISM UniCond 2-e et UniCond 4-e

Terminal TB4 pour modèles à 2 voies uniquement

Terminal TB3/TB4	Fonction	Couleur
1 à 11	Non utilisés	_
12	Non utilisés	_
13	GND	Blanc
14	RS485-B	Noir
15	RS485-A	Rouge
16	5 V	Bleu
17 à 18	Non utilisés	_

5 Mise en service ou hors service du transmetteur

5.1 Mise en service du transmetteur

Une fois le transmetteur branché au circuit d'alimentation, il est activé dès la mise sous tension du circuit.

5.2 Mise hors service du transmetteur

Déconnectez d'abord l'appareil de la source d'alimentation principale, puis débranchez toutes les autres connexions électriques. Retirez l'appareil du panneau. Utilisez les instructions d'installation de ce manuel comme référence pour démonter le matériel de fixation.

Tous les paramètres du transmetteur stockés en mémoire sont conservés après mise hors tension.

Étalonnage 6

Pour consulter la structure du menu, reportez-vous au chapitre 3.10 «Courbe de mesure».

CHEMIN D'ACCÈS : 🗥 \ Cal

REMARQUE : durant l'étalonnage, les sorties de la voie correspondante conservent leurs valeurs actuelles pendant 20 secondes après la fermeture du menu Étalonnage. Un « H » clignote dans le coin supérieur droit de l'écran lorsque les sorties sont en mode « Maintien ». Reportez-vous aux chapitres 7.3 «Sorties analogiques» et 7.4 «Valeurs de consigne» pour modifier le mode « Maintien » des sorties.

6.1 Étalonnage de la sonde

CHEMIN D'ACCÈS : 🗥 \ Cal \ Calibrer capteur

6.1.1 Sélectionnez la voie

后\CAL\C 1000 Unit Cal

Sélectionnez la voie (Voie) que vous souhaitez étalonner.

REMARQUE: durant l'étalonnage de la sonde, les sorties conservent leurs valeurs actuelles pendant 20 secondes après la fermeture du menu Étalonnage. Un « H » clignote dans le coin supérieur droit de l'écran lorsque les sorties sont en mode « Maintien ». Reportez-vous aux chapitres 7.3 «Sorties analogiques» et 7.4 «Valeurs de consigne» pour modifier le mode « Maintien » des sorties.

Lisez les explications suivantes pour en savoir plus sur les options et la procédure d'étalonnage.

Sélectionnez la tâche d'étalonnage 6.1.2 de la sonde voulue.

Les sondes analogiques suivantes sont disponibles en fonction du type de sonde :

Sonde analogique	Tâche d'étalonnage
рН	pH, mV, Température, Editer, Vérifier
Conductivité	Conductivité, Résistivité, Température, Editer, Vérifier
Oxygène Oxygène	Oxygène, Température, Editer, Vérifier
Ozone	Ozone, Température*, Editer*, Vérifier

Les sondes ISM (numériques) suivantes sont disponibles en fonction du type de sonde :

Sonde ISM	Tâche d'étalonnage
рН	pH, Redox, Vérifier
Conductivité	Conductivité, Résistivité, Vérifier
Oxygène Oxygène	Oxygène, Vérifier
Ozone	Ozone, Vérifier

6.1.3 Fin de l'étalonnage de la sonde

Après chaque étalonnage réussi, plusieurs options sont disponibles. Si vous sélectionnez « Ajuste », « Enr. cal. » ou « Calibrer », le message « Cal. enregistrée ! Réinstaller le capteur » apparaît. Appuyez sur la touche « Fait » pour accéder au mode Mesure.

Option	Sondes analogiques	Sondes ISM (numériques)
Sondes analogiques : Enr. cal. Sondes ISM : Ajuste	Les valeurs d'étalonnage sont enregistrées dans le transmetteur et sont utilisées pour la mesure. Elles sont également enregistrées dans les données d'étalonnage.	Les valeurs d'étalonnage sont enregistrées dans la sonde et sont utilisées pour la mesure. Elles sont également enregistrées dans l'historique d'étalonnage.
Calibrer	La fonction « Calibrer » n'est pas applicable aux sondes analogiques.	Les valeurs d'étalonnage sont enregistrées dans l'historique d'étalonnage à titre de référence, mais elles ne sont pas utilisées pour la mesure. Les valeurs d'étalonnage du dernier ajustement valable seront utilisées par la suite pour la mesure.
Annuler	Les valeurs d'étalonnage sont effacées.	Les valeurs d'étalonnage sont effacées.

6.2 Étalonnage des sondes UniCond 2e et UniCond 4e (sondes ISM uniquement)

6.2.1 Étalonnage de la conductivité des sondes UniCond 2e et UniCond 4e

Le M300 permet de réaliser un étalonnage en un ou deux points ou un étalonnage procédé de la conductivité ou de la résistivité des sondes à deux ou quatre électrodes.

REMARQUE : les résultats varient en fonction des méthodes, des instruments d'étalonnage et/ou de la qualité des références utilisés lors de l'étalonnage d'une sonde de conductivité.

REMARQUE : pour la réalisation des mesures, il convient de prendre en compte la compensation de température pour l'application telle qu'elle est définie dans les réglages de conductivité, et non la compensation de température sélectionnée lors de la procédure d'étalonnage (voir également le chapitre 7.1.6.1 «Paramètres de conductivité» ; CHEMIN D'ACCÈS : M\CONFIG.\Mesure\Paramétrage).

Ouvrez le menu « Calibrer capteur » (voir le chapitre 6.1 «Étalonnage de la sonde» ; CHEMIN D'ACCÈS :
(A) Calibrer capteur) et choisissez la voie à étalonner.

1CAL \Calibrate Sensor		
Chan	CHAN_1 UniCond	
Unit	S/cm	
Method	1-Point	
Options	Options	
Verify	Cal	

Vous pouvez accéder aux menus suivants :

- Unité : choisissez l'unité de conductivité (S/cm) ou l'unité de résistivité (Ω-cm).
 Méthode : sélectionnez la procédure d'étalonnage de votre choix. Vous pouvez choisir l'étalonnage en 1 point, l'étalonnage en 2 points ou l'étalonnage procédé.
- **Options :** sélectionnez le mode de compensation de votre choix pour la procédure d'étalonnage.
 - Vous pouvez choisir « Aucune », « Standard », « Light 84 », « Std 75 °C », « Linéaire 25 °C », « Linéaire 20 °C », « Glycol.5 », « Glycol1 », « Cation », « Alcool » ou « NH3 » (ammoniaque).
 - Avec « Aucune », la valeur de conductivité mesurée n'est pas compensée. La valeur non compensée sera affichée et traitée.
 - La compensation standard comprend une compensation des effets de la pureté élevée non linéaire ainsi que des impuretés des sels neutres traditionnels. Elle est conforme aux normes ASTM D1125 et D5391.
 - La compensation « Light 84 » correspond aux résultats des recherches sur l'eau pure du Dr T.S. Light publiées en 1984. À n'employer que si votre établissement a établi des normes sur la base de ce travail.
 - L'option de compensation « Std 75 °C » est l'algorithme de compensation standard avec la référence de 75 °C. Cette compensation peut être privilégiée pour la mesure de l'eau ultrapure (UPW) à une température élevée (la résistivité de l'eau ultrapure compensée à 75 °C est 2,4818 Mohm-cm).
 - La compensation « Linéaire 25 °C » ajuste la lecture au moyen d'un coefficient ou facteur exprimé en « % par °C » (écart par rapport à 25 °C). À n'utiliser que si la solution a un coefficient de température linéaire bien défini. La valeur usine par défaut est de 2,0 %/°C. 2,4818 Mohm-cm).
 - La compensation « Linéaire 20 °C » ajuste la lecture au moyen d'un coefficient ou facteur exprimé en « % par °C » (écart par rapport à 20 °C). À n'utiliser que si la solution a un coefficient de température linéaire bien défini. La valeur usine par défaut est de 2,0 %/°C.
 - La compensation « Glycol.5 » correspond aux caractéristiques thermiques de 50% d'éthylène glycol dans de l'eau. Les mesures compensées basées sur cette solution peuvent dépasser 18 Mohm-cm.
 - La compensation « Glycol1 » correspond aux caractéristiques thermiques de l'éthylène glycol 100 %. Les mesures compensées peuvent largement dépasser 18 Mohm-cm.
 - La compensation « Cation » est utilisée dans des applications de l'industrie de l'énergie afin de mesurer l'échantillon après un échange cationique. Elle tient compte des effets de la température sur la dissociation de l'eau pure en présence d'acides.
 - La compensation « Alcool » correspond aux caractéristiques thermiques d'une solution contenant 75% d'alcool isopropylique dans l'eau pure. Les mesures compensées basées sur cette solution peuvent dépasser 18 Mohm-cm.
 - La compensation « NH3 » est utilisée pour les applications de l'industrie de l'énergie pour la conductivité spécifique mesurée sur des échantillons grâce à un traitement avec de l'eau contenant de l'ammoniaque et/ou de l'ETA (éthanolamine). Elle tient compte des effets de la température sur la dissociation de l'eau pure en présence de ces bases.

REMARQUE : si vous avez sélectionné le mode de compensation « Linéaire 25 °C » ou « Linéaire 20 °C », vous pouvez modifier le coefficient d'ajustement de la valeur. Dans ce cas, un champ de saisie supplémentaire s'affichera.

Les modifications prennent effet lorsque vous quittez le mode d'étalonnage. Une fois le mode d'étalonnage fermé, les valeurs définies dans le menu Configuration sont de nouveau valides.
6.2.1.1 Étalonnage en un point

Sélectionnez la procédure d'étalonnage en 1 point (voir le chapitre 6.2.1 «Étalonnage de la conductivité des sondes UniCond 2e et UniCond 4e»). Avec les sondes à deux ou quatre électrodes, un étalonnage en un point correspond à un étalonnage de la pente. La procédure suivante décrit la méthode d'étalonnage avec une sonde à deux électrodes. L'étalonnage avec une sonde à quatre électrodes doit être adapté en conséquence.

Appuyez sur le bouton « Cal » pour lancer l'étalonnage.

<u></u> 1	CAL\Calibrate Sensor		
Chan	Ch1 UniCond 1-Point	н	
Unit	Press "Next" when sens	or is in	
Metho	solution 1		
Option			
1	Cancel	Next	

Placez l'électrode dans la solution de référence et appuyez sur le bouton « Suivant ».

<u> </u>	们 \CAL \Calibrate Sensor			
Chan	Ch1 UniCo	nd 1-Point	н]
			1	
Unit	Point1	1.416	mS/cm	
Metho		1.416	mS/cm	
0.64				
Option				
N 1	Cancel	Back	Next	
				5

La deuxième valeur affichée à l'écran est celle mesurée par le transmetteur et la sonde dans les unités sélectionnées par l'utilisateur.

Appuyez sur le champ **Point1** pour saisir la valeur du point d'étalonnage. Le M300 affiche un clavier pour modifier la valeur. Appuyez sur le bouton ← pour modifier la valeur concernée.

$$\bigcirc$$

ChL UcCalbrate Sensor Chan Chi UniCond 1-Peint H Point 1.413 mSkm Metho Cyton Cancel Back Net **REMARQUE :** pour choisir une autre unité pour la valeur saisie sur le clavier, appuyez sur le bouton « U ». Pour revenir en arrière, appuyez sur le bouton « 0-9 ».

L'écran affiche la valeur saisie pour la solution de référence (1° ligne) et la valeur mesurée du M300 (2° ligne).

Appuyez sur le bouton « Suivant » pour lancer le calcul des résultats de l'étalonnage.

<u></u> 10	CAL \ Cali	brate Sensor		
Chan	Ch1 UniC	ond 1-Point	т	
Unit	Slope	0.0997		
Metho	Offset	0.0000		
Option				
	Cancel	SaveCal Back		
			1	

<u><u></u>山</u>	CAL1Calibrate Sensor			
Chan	Ch1 UniCond 1-Point H			
Unit	Calibration Saved Successfully! Re-			
Metho	install sensor.			
Option				
\ \	Done			
		5		

L'écran indique la valeur de la pente et du décalage comme résultats de l'étalonnage.

Les valeurs d'étalonnage sont enregistrées dans l'historique d'étalonnage et remplacées (appuyez sur « Enr. Cal ») ou supprimées (appuyez sur « Annuler »).

Utilisez la flèche de retour pour revenir à l'étape précédente de la procédure d'étalonnage.

습**\CAL\C** Chan

Unit

6.2.1.2 Étalonnage en deux points

Sélectionnez la procédure d'étalonnage en 2 points. Avec les sondes à quatre électrodes, un étalonnage en deux points correspond à un étalonnage de la pente et du décalage. La procédure suivante décrit la méthode d'étalonnage avec une sonde à quatre électrodes.

Appuyez sur le bouton « Cal » pour lancer l'étalonnage.

<u>1</u>	CAL\Calibrate Sensor	
Chan	Ch1 UniCond 2-Point H	
CONTRACT.		
Unit	Press "Next" when sensor is in	
Metho	solution 1	
Option		

UniCond

Cal

Placez l'électrode dans la première solution de référence et appuyez sur « Suivant ».

ATTENTION : rincez les sondes avec une solution aqueuse de pureté élevée entre les points d'étalonnage afin d'éviter toute contamination des solutions de référence.

<u>尚</u> \0	AL\Calib	rate Sensor		
Chan	Ch1 UniCo	nd 2-Point	н	
Unit	Point1	1,416	mS/cm	
Metho		1.416	mS/cm	
Option				
	Cancel	Back	Next	
				5

La deuxième valeur affichée à l'écran est celle mesurée par le transmetteur et la sonde dans les unités sélectionnées par l'utilisateur.

Appuyez sur le champ **Point1** pour saisir le point d'étalonnage. Le M300 affiche un clavier pour modifier la valeur. Appuyez sur ← pour accepter la valeur.

$$\bigcirc$$

REMARQUE : pour choisir une autre unité pour la valeur saisie sur le clavier, appuyez sur le bouton « U ». Pour revenir en arrière, appuyez sur le bouton « 0-9 ».

Chan	Ch1 UniCo	nd 2-Point	н	
Unit	Point1	1.413	mS/cm	
Metho		1.416	mS/cm	
Option				
1	Cancel	Back	Next	

L'écran affiche la valeur saisie pour la première solution de référence (1 re ligne) et la valeur mesurée du M300 (2° ligne).

Appuyez sur « Suivant » pour poursuivre l'étalonnage.

<u></u> 10	CAL\Calib	orate Sensor		
Chan	Ch1 UniCo	nd 1-Point	н	
Unit	Slope	0.0997		
Metho	Offset	0.0000		
Option				
	Cancel	SaveCal Back		
				_

Placez l'électrode dans la deuxième solution de référence et appuyez sur « Suivant ».

La deuxième valeur affichée à l'écran est celle mesurée par le transmetteur et la sonde dans les unités sélectionnées par l'utilisateur.

Appuyez sur le champ **Point2** pour saisir le point d'étalonnage. Le M300 affiche un clavier pour modifier la valeur. Appuyez sur ← pour accepter la valeur.

$$\bigcirc$$

REMARQUE : pour choisir une autre unité pour la valeur saisie sur le clavier, appuyez sur le bouton « U ». Pour revenir en arrière, appuyez sur le bouton « 0-9 ».

Chi UhiCond 2-Point H Sope 0.0997 Metro Offset 0.0018 Canol SaveCal Back

🛱 \CAL \Calibrate Sensor			
Chan	Ch1 UniCond 2-Point H]	
Unit	Calibration Saved Successfully! Re- install sensor.		
Option	Done		
		5	

L'écran affiche la valeur saisie pour la deuxième solution de référence (1 re ligne) et la valeur mesurée du M300 (2° ligne).

Appuyez sur le bouton « Suivant » pour lancer le calcul des résultats de l'étalonnage.

L'écran indique la valeur de la pente et du décalage comme résultats de l'étalonnage.

Les valeurs d'étalonnage sont enregistrées dans l'historique d'étalonnage. Appuyez sur « Enr. Cal » pour enregistrer ou sur « Annuler » pour annuler.

Utilisez la flèche de retour pour revenir à l'étape précédente de la procédure d'étalonnage.

6.2.1.3 Étalonnage procédé

Sélectionnez la procédure d'étalonnage « Procédé » (voir le chapitre 6.2.1 «Étalonnage de la conductivité des sondes UniCond 2e et UniCond 4e»). Avec les sondes à deux ou quatre électrodes, un étalonnage procédé correspond toujours à un étalonnage de la pente. La procédure suivante décrit la méthode d'étalonnage avec une sonde à deux électrodes. L'étalonnage avec une sonde à quatre électrodes doit être adapté en conséquence.

Appuyez sur le bouton « Cal » pour lancer l'étalonnage.

Chan	CHAN_1 UniCond
Unit	Silom
Method	Process
Options	Options
Verify	Cal
	5

Chi LCAL LCalibrate Sensor Chi UniCond Process Pross Enter 1o capture the messured value 700.92 nStcm Cpton Carcol Prélevez un échantillon et appuyez de nouveau sur le bouton ← pour mémoriser la mesure actuelle. Pour indiquer que le procédé d'étalonnage est en cours, un « P » clignote dans la fenêtre d'accueil et l'écran de menu si la voie concernée est sélectionnée dans la fenêtre.

Après avoir déterminé la valeur de conductivité de l'échantillon, appuyez à nouveau sur l'icône de l'étalonnage dans l'écran de menu.

Appuyez sur le champ **Point1** pour saisir la valeur de conductivité de l'échantillon. Appuyez sur le bouton « Suivant » pour lancer le calcul des résultats de l'étalonnage.

	PROCESS	
< 0	Ch1 UniCond Process	>
	Stope 0.0996	
	Offset 0.0018	
ISI	Cancel SaveCal Back	**

L'écran indique la valeur de la pente et du décalage comme résultats de l'étalonnage.

Les valeurs d'étalonnage sont enregistrées dans l'historique d'étalonnage. Appuyez sur « Enr. Cal » pour enregistrer ou sur « Annuler » pour annuler.

Utilisez la flèche de retour pour revenir à l'étape précédente de la procédure d'étalonnage.

6.2.2 Étalonnage de la température des sondes UniCond 2e et UniCond 4e

Le M300 permet de réaliser un étalonnage en un ou deux points de la sonde de température UniCond 2-e et UniCond 4-e.

Ouvrez le menu « Calibrer capteur » (voir le chapitre 6.1 «Étalonnage de la sonde» ; CHEMIN D'ACCÈS :
(A) Calibrer capteur) et choisissez la voie à étalonner.

Vous pouvez accéder aux menus suivants :

<u>امعا الله</u>	Calibrate Sensor	
Chan	CHAN_1 UniCond	i .
Unit	°C	
Method	1-Point	Slope
Verify		Cal
-		5

Unité :	choisissez l'unité de température (°C ou °F).
Méthode :	sélectionnez la procédure d'étalonnage de votre choix. Vous pouvez choisir
	l'étalonnage en 1 point ou l'étalonnage en 2 points.

6.2.2.1 Étalonnage en un point

Sélectionnez la procédure d'étalonnage en 1 point. Avec les sondes à deux ou quatre électrodes, un étalonnage de la température en un point correspond à un étalonnage de la pente ou du décalage. La procédure suivante décrit la méthode d'étalonnage avec une sonde à deux électrodes. L'étalonnage avec une sonde à quatre électrodes doit être adapté en conséquence.

Appuyez sur le champ de saisie droit **Méthode**. Choisissez un étalonnage de la pente ou du décalage en appuyant sur le champ correspondant.

Chan	CHAN_1	UniCond		
Unit	Υ	1		
Method	1-Point	Î D	Offset	

Appuyez sur le bouton « Cal » pour lancer l'étalonnage.

Transmetteur M300

Ch11bi nd 1-Point Offset н 25.09 -1 °C 25.72 °Ċ Back Next Ch1 UniCo nd 1-Point Offset н Point1 25.00 °C 25.72 °C Back Next

La deuxième valeur affichée à l'écran est celle mesurée par le transmetteur et la sonde.

Placez l'électrode dans la solution de référence et appuyez sur le bouton « Suivant ».

Appuyez sur le champ **Point1** pour saisir la valeur du point d'étalonnage. Le M300 affiche un clavier pour modifier la valeur. Appuyez sur ← pour accepter la valeur.

L'écran affiche la valeur saisie pour la solution de référence (1° ligne) et la valeur mesurée du M300 (2° ligne).

Appuyez sur le bouton « Suivant » pour lancer le calcul des résultats de l'étalonnage.

<u>高</u> 10	CAL\Cali	brate Sensor	
Chan	Ch1 UniC	and 1-Point Offset	
Unit	Slope	1.0000	
Metho	Offset	-2.6663	22
	Cancel	SaveCal Back	

L'écran indique la valeur de la pente et du décalage comme résultats de l'étalonnage.

Les valeurs d'étalonnage sont enregistrées dans l'historique d'étalonnage. Appuyez sur « Enr. Cal » pour enregistrer ou sur « Annuler » pour annuler.

Utilisez la flèche de retour pour revenir à l'étape précédente de la procédure d'étalonnage.

6.2.2.2 Étalonnage en deux points

Sélectionnez la procédure d'étalonnage en 2 points (voir le chapitre 6.2.2 «Étalonnage de la température des sondes UniCond 2e et UniCond 4e»). Avec les sondes à deux ou quatre électrodes, un étalonnage en deux points correspond à un étalonnage de la pente ou du décalage. La procédure suivante décrit la méthode d'étalonnage avec une sonde à deux électrodes. L'étalonnage avec une sonde à quatre électrodes doit être adapté en conséquence.

Appuyez sur le bouton « Cal » pour lancer l'étalonnage.

Placez l'électrode dans la première solution de référence et appuyez sur « Suivant ».

La deuxième valeur affichée à l'écran est celle mesurée par le transmetteur et la sonde dans les unités sélectionnées par l'utilisateur.

Appuyez sur le champ **Point1** pour saisir le point d'étalonnage. Le M300 affiche un clavier pour modifier la valeur. Appuyez sur ← pour accepter la valeur.

L'écran affiche la valeur saisie pour la première solution de référence (1 re ligne) et la valeur mesurée du M300 (2° ligne).

Appuyez sur « Suivant » pour poursuivre l'étalonnage.

Placez l'électrode dans la deuxième solution de référence et appuyez sur « Suivant ».

<u></u> 10	CAL\Calib	rate Sensor		
Chan	Ch1 UniCo	nd 2-Point	н	
Unit	Point2	0.000	°C	
Metho		100.88	°C	
	Cancel	Back	Next	
				5

 Chi CALL Calibrate Sensor

 Chi UniCond 2-Point
 H

 Unit
 Point2
 100.0
 *C

 Metho
 100.88
 *C
 Metho

La deuxième valeur affichée à l'écran est celle mesurée par le transmetteur et la sonde dans les unités sélectionnées par l'utilisateur.

Appuyez sur le champ **Point2** pour saisir le point d'étalonnage. Le M300 affiche un clavier pour modifier la valeur. Appuyez sur ← pour accepter la valeur.

L'écran affiche la valeur saisie pour la deuxième solution de référence (1 re ligne) et la valeur mesurée du M300 (2° ligne).

Appuyez sur le bouton « Suivant » pour lancer le calcul des résultats de l'étalonnage.

<u></u> 10	CAL \ Calil	brate Sensor		
Chan	Ch1 UniCo	and 2-Point	н	
Unit	Slope	0.9902		
Metho	Offset	7.5702		
	Cancel	SaweCal Back		
				5

Chi UcCallStrate Sensor
Chi UniCond 2-Point H
Unit
Unit
Calibration Saved Successfully Reinstall sensor.
Done

L'écran indique la valeur de la pente et du décalage comme résultats de l'étalonnage.

Les valeurs d'étalonnage sont enregistrées dans l'historique d'étalonnage. Appuyez sur « Enr. Cal » pour enregistrer ou sur « Annuler » pour annuler.

Utilisez la flèche de retour pour revenir à l'étape précédente de la procédure d'étalonnage.

6.3 Étalonnage des sondes Cond2e ou Cond4e

CHEMIN D'ACCÈS : 🗥 \ Cal \ Calibrer capteur

Le M300 permet de réaliser un étalonnage en un ou deux points ou un étalonnage procédé de la conductivité ou de la résistivité des sondes à deux ou quatre électrodes.

REMARQUE : les résultats varient en fonction des méthodes, des instruments d'étalonnage et/ou de la qualité des références utilisés lors de l'étalonnage d'une sonde de conductivité.

REMARQUE : pour la réalisation des mesures, il convient de prendre en compte la compensation de température pour l'application telle qu'elle est définie dans les réglages de conductivité, et non la compensation de température sélectionnée lors de la procédure d'étalonnage (voir également le chapitre 7.1.6.1 «Paramètres de conductivité»).

Vous pouvez accéder aux menus suivants :

Unité : choisissez	l'unité de conductivité	ou de résistivité.
--------------------	-------------------------	--------------------

Méthode : sélectionnez la procédure d'étalonnage de votre choix (1 point, 2 points ou procédé).

Options : sélectionnez le mode de compensation de la température de votre choix pour la procédure d'étalonnage.

REMARQUE : si vous avez sélectionné le mode de compensation « Linéaire 25 °C » ou « Linéaire 20 °C », vous pouvez modifier le coefficient d'ajustement de la valeur.

Les modifications prennent effet lorsque vous quittez le mode d'étalonnage. Une fois le mode d'étalonnage fermé, les valeurs définies dans le menu Configuration sont de nouveau valides.

6.3.1 Étalonnage en un point

Avec les sondes à deux ou quatre électrodes, un étalonnage en un point correspond à un étalonnage de la pente. La procédure suivante décrit la méthode d'étalonnage avec une sonde à deux électrodes. L'étalonnage avec une sonde à quatre électrodes doit être adapté en conséquence.

 Image: Charle Sensor

 Chan
 CHAN_1

 Cond4e

 Uhit
 S/cm

 Method
 1-Point

 Options

 Verify
 Cal

Appuyez sur le bouton « Cal » pour lancer l'étalonnage.

Placez l'électrode dans la solution de référence et appuyez sur le bouton « Suivant ».

Saisissez la valeur du point d'étalonnage (Point1).

Appuyez sur le bouton « Suivant » pour lancer le calcul des résultats de l'étalonnage.

L'écran indique la valeur de la pente et du décalage comme résultats de l'étalonnage.

Pour les sondes ISM (numériques), sélectionnez « Ajuste », « Calibrer » ou « Annuler » pour terminer l'étalonnage. Pour les sondes analogiques, sélectionnez « Enr. Cal » ou « Annuler » pour terminer l'étalonnage. Voir 6.1.3 «Fin de l'étalonnage de la sonde».

	Gallorate Cerrae	•	
Chan	CHAN_1 Cor	nd4e	
Unit	S/cm		
Method	1-Point		
Options	Options		
Verify		Cal	
		Ţ	

6.3.2 Étalonnage en deux points

Avec les sondes à deux ou quatre électrodes, un étalonnage en deux points correspond à un étalonnage de la pente ou du décalage. La procédure suivante décrit la méthode d'étalonnage avec une sonde à deux électrodes. L'étalonnage avec une sonde à quatre électrodes doit être adapté en conséquence.

Appuyez sur le bouton « Cal » pour lancer l'étalonnage.

Placez l'électrode dans la première solution de référence et appuyez sur « Suivant ».

ATTENTION : rincez les sondes avec une solution aqueuse de pureté élevée entre les points d'étalonnage afin d'éviter toute contamination des solutions de référence.

Saisissez la valeur du premier point d'étalonnage (Point 1).

Appuyez sur « Suivant » pour poursuivre l'étalonnage.

Placez l'électrode dans la deuxième solution de référence et appuyez sur « Suivant ».

Saisissez la valeur du deuxième point d'étalonnage (Point 2).

Appuyez sur le bouton « Suivant » pour lancer le calcul des résultats de l'étalonnage.

L'écran indique la valeur de la pente et du décalage comme résultats de l'étalonnage.

Pour les sondes ISM (numériques), sélectionnez « Ajuste », « Calibrer » ou « Annuler » pour terminer l'étalonnage. Pour les sondes analogiques, sélectionnez « Enr. Cal » ou « Annuler » pour terminer l'étalonnage. Voir 6.1.3 «Fin de l'étalonnage de la sonde».

6.3.3 Étalonnage procédé

Avec les sondes à deux ou quatre électrodes, un étalonnage procédé correspond toujours à un étalonnage de la pente. La procédure suivante décrit la méthode d'étalonnage avec une sonde à deux électrodes. L'étalonnage avec une sonde à quatre électrodes doit être adapté en conséquence.

습\CAL\Calibrate Sensor				
Chan	CHAN_1 Cond4e			
Unit	S/cm			
Method	Process			
Options	Options			
Verify		Cal		
		5		

Appuyez sur le bouton « Cal » pour lancer l'étalonnage.

Prélevez un échantillon et appuyez de nouveau sur le bouton ← pour mémoriser la mesure actuelle. Pour indiquer que le procédé d'étalonnage est en cours, un « P » clignote dans la fenêtre d'accueil et l'écran de menu si la voie concernée est sélectionnée dans la fenêtre.

Après avoir déterminé la valeur de conductivité de l'échantillon, appuyez à nouveau sur l'icône de l'étalonnage dans l'écran de menu.

Saisissez la valeur de conductivité de l'échantillon. Appuyez sur le bouton « Suivant » pour lancer le calcul des résultats de l'étalonnage.

L'écran indique la valeur de la pente et du décalage comme résultats de l'étalonnage.

Pour les sondes ISM (numériques), sélectionnez « Ajuste », « Calibrer » ou « Annuler » pour terminer l'étalonnage. Pour les sondes analogiques, sélectionnez « Enr. Cal » ou « Annuler » pour terminer l'étalonnage. Voir 6.1.3 «Fin de l'étalonnage de la sonde».

6.4 Étalonnage du pH

CHEMIN D'ACCÈS : 🗥 \ Cal \ Calibrer capteur

Pour les électrodes de pH, le transmetteur M300 permet de réaliser des étalonnages en un point, en deux points ou procédé avec 9 jeux de tampons prédéfinis ou une saisie manuelle. Les valeurs de tampons font référence à une température de 25 °C. Pour étalonner l'instrument avec reconnaissance automatique du tampon, vous avez besoin d'une solution tampon pH standard correspondant à l'une de ces valeurs. Sélectionnez le tableau de tampons adéquat avant de procéder à l'étalonnage automatique (voir le chapitre 16 «Tableaux de tampons»). La stabilité du signal de la sonde pendant l'étalonnage peut être contrôlée par l'utilisateur ou vérifiée automatiquement par le transmetteur (voir le chapitre 7.1.6.2 «Paramètres de pH»).

REMARQUE : pour les électrodes de pH à double membrane (pH/pNa), seul le tampon Na+ 3,9M (voir le chapitre 16.2.1 «Tampons pH/pNa Mettler (Na+ 3,9M)») est disponible.

Vous pouvez accéder aux menus suivants :

Unité : sélectionnez « pH ».

Options : vous pouvez sélectionner le tampon utilisé pour l'étalonnage ainsi que la stabilité du signal de la sonde requise pendant l'étalonnage (voir aussi le chapitre 7.1.6.2 «Paramètres de pH»). Les modifications prennent effet lorsque vous quittez le mode d'étalonnage. Une fois le mode d'étalonnage fermé, les valeurs définies dans le menu Configuration sont de nouveau valides.

6.4.1 Étalonnage en un point

Avec les électrodes de pH, un étalonnage en un point correspond à un étalonnage du décalage.

 Chain
 CHAN_1

 pHUCRP

 Unit
 pH

 Method
 1-Point

 Options
 Options

Appuyez sur le bouton « Cal » pour lancer l'étalonnage.

Placez l'électrode dans la solution tampon et appuyez sur « Suivant ».

L'écran indique le tampon reconnu par le transmetteur (Point 1), ainsi que la valeur mesurée.

Le M300 contrôle la stabilité du signal de mesure et agit dès que le signal est suffisamment stable.

REMARQUE : si l'option **Stabilité** est définie sur « Manuel », appuyez sur « Suivant » une fois que le signal de mesure est suffisamment stable pour continuer l'étalonnage.

Le transmetteur affiche la valeur pour la pente et pour le décalage comme résultat de l'étalonnage.

Pour les sondes ISM (numériques), sélectionnez « Ajuste », « Calibrer » ou « Annuler » pour terminer l'étalonnage. Pour les sondes analogiques, sélectionnez « Enr. Cal » ou « Annuler » pour terminer l'étalonnage. Voir 6.1.3 «Fin de l'étalonnage de la sonde».

<u> (1001)</u>	CAL 1 Calibrate Sensor				
Chan	CHAN_1 pH/OR	e de			
Unit	pН				
Method	1-Point				
Options	Options				
Verify		Cal			
		L I			

6.4.2 Étalonnage en deux points

Avec les électrodes de pH, un étalonnage en deux points correspond à un étalonnage de la pente et du décalage.

 CAL (Calibrate: Sensor

 Chan
 CHAN_1 pH/CRP

 Uhit
 pH

 Method
 2-Point

 Cytions
 Cytions

 Verify
 Cal

Appuyez sur « Cal » pour lancer l'étalonnage.

Placez l'électrode dans la solution tampon 1 et appuyez sur « Suivant ».

L'écran indique le tampon reconnu par le transmetteur (Point 1), ainsi que la valeur mesurée.

Le M300 contrôle la stabilité du signal de mesure et agit dès que le signal est suffisamment stable.

 $\widehat{\mathcal{T}}$

REMARQUE : si l'option **Stabilité** est définie sur « Manuel », appuyez sur « Suivant » une fois que le signal de mesure est suffisamment stable pour continuer l'étalonnage.

Le transmetteur vous invite à placer l'électrode dans la deuxième solution tampon.

Appuyez sur le bouton « Suivant » pour continuer l'étalonnage.

L'écran indique le tampon reconnu par le transmetteur (Point 2), ainsi que la valeur mesurée.

Le M300 contrôle la stabilité du signal de mesure et agit dès que le signal est suffisamment stable.

REMARQUE : si l'option **Stabilité** est définie sur « Manuel », appuyez sur « Suivant » une fois que le signal de mesure est suffisamment stable pour continuer l'étalonnage.

Le transmetteur affiche la valeur pour la pente et pour le décalage comme résultat de l'étalonnage.

Pour les sondes ISM (numériques), sélectionnez « Ajuste », « Calibrer » ou « Annuler » pour terminer l'étalonnage. Pour les sondes analogiques, sélectionnez « Enr. Cal » ou « Annuler » pour terminer l'étalonnage. Voir 6.1.3 «Fin de l'étalonnage de la sonde».

6.4.3 Étalonnage procédé

Avec les électrodes de pH, un étalonnage procédé correspond à un étalonnage du décalage.

Appuyez sur « Cal » pour lancer l'étalonnage.

Prélevez un échantillon et appuyez de nouveau sur le bouton ← pour mémoriser la mesure actuelle. Pour indiquer que le procédé d'étalonnage est en cours, un « P » clignote dans la fenêtre d'accueil et l'écran de menu si la voie concernée est sélectionnée dans la fenêtre.

Une fois le pH de l'échantillon déterminé, appuyez de nouveau sur l'icône de l'étalonnage dans l'écran de menu.

Saisissez la valeur du pH de l'échantillon. Appuyez sur le bouton « Suivant » pour lancer le calcul des résultats de l'étalonnage.

L'écran indique la valeur de la pente et du décalage comme résultats de l'étalonnage.

Pour les sondes ISM (numériques), sélectionnez « Ajuste », « Calibrer » ou « Annuler » pour terminer l'étalonnage. Pour les sondes analogiques, sélectionnez « Enr. Cal » ou « Annuler » pour terminer l'étalonnage. Voir 6.1.3 «Fin de l'étalonnage de la sonde».

6.5 Étalonnage redox des électrodes de pH

CHEMIN D'ACCÈS : 🗥 \ Cal \ Calibrer capteur

Pour les électrodes de pH avec masse liquide basée sur la technologie ISM, le transmetteur M300 vous permet d'effectuer un étalonnage redox en plus de l'étalonnage de pH.

REMARQUE: si vous choisissez l'étalonnage redox, les paramètres définis pour le pH (voir le chapitre 7.1.6.2 «Paramètres de pH») ne seront pas pris en compte. Pour les électrodes de pH, le transmetteur M300 permet de réaliser un étalonnage redox en un point.

Vous pouvez accéder aux menus suivants :

Unité : sélectionnez « Redox » en appuyant sur le champ correspondant. **Méthode :** « 1-point » s'affiche.

Appuyez sur le bouton « Cal » pour lancer l'étalonnage.

Saisissez la valeur du premier point d'étalonnage (Point1).

Appuyez sur le bouton « Suivant » pour lancer le calcul des résultats de l'étalonnage.

L'écran indique la valeur de la pente et du décalage comme résultats de l'étalonnage.

Pour les sondes ISM (numériques), sélectionnez « Ajuste », « Calibrer » ou « Annuler » pour terminer l'étalonnage. Pour les sondes analogiques, sélectionnez « Enr. Cal » ou « Annuler » pour terminer l'étalonnage. Voir 6.1.3 «Fin de l'étalonnage de la sonde».

6.6 Étalonnage de sondes à oxygène ampérométriques

CHEMIN D'ACCÈS : 🗥 \ Cal \ Calibrer capteur

Le M300 permet de réaliser un étalonnage en un point ou un étalonnage procédé des sondes à oxygène ampérométriques.

REMARQUE : avant d'exécuter l'étalonnage à l'air, pour une précision maximale, vous devez saisir la pression barométrique et l'humidité relative, comme indiqué dans le chapitre 7.1.6.3 «Paramètres de mesure de l'oxygène basés sur des sondes ampérométriques».

Vous pouvez accéder aux menus suivants :

III ICAL	Calibrate Sensor	
Chan	CHAN_1 Oa hi	
Unit	% air	
Method	1-Point	Slope
Options	Options	
Verify		Cal
		5

Unité : vous pouvez choisir entre plusieurs unités pour l'oxygène dissous.

Méthode : sélectionnez la procédure d'étalonnage de votre choix (1 point ou procédé).

Options : si vous avez choisi la méthode « 1-point », la pression d'étalonnage, l'humidité relative et – pour l'étalonnage de la pente – le mode de stabilité du signal de la sonde pendant l'étalonnage peuvent être sélectionnés. Pour la méthode « Procédé », vous pouvez modifier la pression du procédé, la pression de l'étalonnage et le paramètre « Pres. Cal/Proc ». Voir aussi le chapitre 7.1.6.3 «Paramètres de mesure de l'oxygène basés sur des sondes ampérométriques». Les modifications prennent effet lorsque vous quittez le mode d'étalonnage. Une fois le mode d'étalonnage fermé, les valeurs

définies dans le menu Configuration sont de nouveau valides.

6.6.1 Étalonnage en un point

Un étalonnage en un point des sondes à oxygène correspond toujours à un étalonnage de la pente en un point (autrement dit à l'air) ou un étalonnage zéro (décalage). Un étalonnage de la pente en un point est effectué dans l'air et un étalonnage du décalage en un point est réalisé à 0 ppb d'oxygène. L'étalonnage zéro pour l'oxygène dissous est possible, mais normalement il n'est pas recommandé, car il est extrêmement difficile d'atteindre un état zéro oxygène. Il n'est conseillé de procéder à un étalonnage au point zéro que si un haut degré de précision est exigé à des concentrations d'oxygène faibles (inférieures à 5 % de l'air).

Chan CHAN_1 On hi Unit % air Method 1-Point Stope Options Options

Choisissez un étalonnage de la pente ou du décalage en appuyant sur le champ correspondant.

Appuyez sur le bouton « Cal » pour lancer l'étalonnage.

REMARQUE: si les tensions de polarisation pour le mode Mesure et le mode Calibrage sont différentes, le transmetteur attend 120 secondes avant de commencer l'étalonnage. Dans ce cas, le transmetteur continuera également de fonctionner 120 secondes après la fin de l'étalonnage, jusqu'à ce qu'il passe en mode « Maintien », avant de revenir au mode Mesure.

Placez la sonde dans l'air ou dans le gaz d'étalonnage, puis appuyez sur le bouton « Suivant ».

Saisissez la valeur du point d'étalonnage (Point1).

Le M300 contrôle la stabilité du signal de mesure et agit dès que le signal est suffisamment stable.

REMARQUE : si l'option **Stabilité** est définie sur « Manuel », appuyez sur « Suivant » une fois que le signal de mesure est suffisamment stable pour continuer l'étalonnage.

REMARQUE : le mode Auto n'est pas disponible pour l'étalonnage du décalage. Si vous avez sélectionné le mode Auto et êtes passé ensuite d'un étalonnage de la pente à un étalonnage du décalage, le transmetteur réalisera l'étalonnage en mode Manuel.

Le transmetteur affiche la valeur pour la pente et pour le décalage comme résultat de l'étalonnage.

Pour les sondes ISM (numériques), sélectionnez « Ajuste », « Calibrer » ou « Annuler » pour terminer l'étalonnage. Pour les sondes analogiques, sélectionnez « Enr. Cal » ou « Annuler » pour terminer l'étalonnage. Voir 6.1.3 «Fin de l'étalonnage de la sonde».

6.6.2 Étalonnage procédé

Un étalonnage procédé des sondes à oxygène correspond à un étalonnage de la pente ou du décalage.

Choisissez un étalonnage de la pente ou du décalage en appuyant sur le champ correspondant.

Appuyez sur le bouton « Cal » pour lancer l'étalonnage.

Prélevez un échantillon et appuyez de nouveau sur le bouton ← pour mémoriser la mesure actuelle. Pour indiquer que le procédé d'étalonnage est en cours, un « P » clignote dans la fenêtre d'accueil et l'écran de menu si la voie concernée est sélectionnée dans la fenêtre.

Après avoir déterminé la concentration d'oxygène de l'échantillon, appuyez à nouveau sur l'icône de l'étalonnage dans l'écran de menu.

Saisissez la concentration d'oxygène de l'échantillon. Appuyez sur le bouton « Suivant » pour lancer le calcul des résultats de l'étalonnage.

L'écran indique la valeur de la pente et du décalage comme résultats de l'étalonnage.

Pour les sondes ISM (numériques), sélectionnez « Ajuste », « Calibrer » ou « Annuler » pour terminer l'étalonnage. Pour les sondes analogiques, sélectionnez « Enr. Cal » ou « Annuler » pour terminer l'étalonnage. Voir 6.1.3 «Fin de l'étalonnage de la sonde».

6.7 Étalonnage des sondes à ozone

Le M300 permet de réaliser un étalonnage en un point ou un étalonnage procédé des sondes à ozone. L'étalonnage de l'ozone dissous doit être réalisé rapidement, car l'ozone se décompose vite dans l'oxygène, en particulier dans un environnement chaud.

Ouvrez le menu « Calibrer capteur » (voir le chapitre 6.1 «Étalonnage de la sonde» ; CHEMIN D'ACCÈS : Cal\Calibrer capteur) et choisissez la voie à étalonner.

Vous pouvez accéder aux menus suivants :

Unité : vous pouvez choisir entre plusieurs unités pour l'ozone dissous.Méthode : sélectionnez la procédure d'étalonnage de votre choix (1 point ou procédé).

<u> </u>				
Chan	CHAN_1 Oa hi			
Unit	% air			
Method	Process	Offset		
Options	Options			
Verify		Cal		
		<u> </u>		

Uni

6.7.1 Étalonnage en un point

Sélectionnez la méthode d'étalonnage en un point. Un étalonnage en un point des sondes à ozone correspond à un étalonnage zéro (décalage).

Appuyez sur le bouton « Cal » pour lancer l'étalonnage.

Edit

Cal

Placez la sonde dans le gaz d'étalonnage (l'air, par exemple), puis appuyez sur le bouton « Suivant ».

<u></u> 10	CAL \ Calib	rate Sensor		
Chan	Ch1 O ₀ 1-F	Point	н	
Unit	Point1	0.000	ppm	
Metho		0.000	ppm	
	Cancel	Back	Next	
				5

La deuxième valeur affichée à l'écran est celle mesurée par le transmetteur et la sonde dans les unités sélectionnées par l'utilisateur.

Appuyez sur le champ **Point1** pour saisir la valeur du point d'étalonnage. Le M300 affiche un clavier pour modifier la valeur. Appuyez sur ← pour accepter la valeur.

Une fois le signal de mesure stable, appuyez sur le bouton « Suivant » pour continuer l'étalonnage.

CAL \ Calibrate Sensor				
Chan	Ch1 O ₈ 1-	Point	н	
Unit	Slope	- 0.11000	n.A./ppb	
Metho	Offset	0.000	nA.	
	Save	Adjust	Calibrate	
	Cancel	Back		
			1	5

L'écran indique la valeur de la pente et du décalage comme résultats de l'étalonnage.

Pour les sondes ISM (numériques), sélectionnez « Ajuste », « Calibrer » ou « Annuler » pour terminer l'étalonnage. Pour les sondes analogiques, sélectionnez « Enr. Cal » ou « Annuler » pour terminer l'étalonnage. Voir 6.1.3 «Fin de l'étalonnage de la sonde».

Utilisez la flèche de retour pour revenir à l'étape précédente de la procédure d'étalonnage

∰\CAL\Calibrate Sensor				
Chan	Ch1 Os 1-Point	н		
Unit	Calibration Saved Succes install sensor.	sfullyl Re-		
	Done			
		1	5	

6.7.2 Étalonnage procédé

Sélectionnez la méthode d'étalonnage « Procédé ». Un étalonnage procédé de sondes O₃ peut être effectué comme étalonnage « Pente » ou « Décalage ».

Sélectionnez la méthode souhaitée.

Appuyez sur « Cal » pour lancer l'étalonnage.

Method	Pro	0055	Slope
Veri	y	Edit	Cal
			ţ
ි් \CA	L\Calibra h1 O₂ Proc	ate Sensor ess Slope	

0.136 ppm

Prélevez un échantillon et appuyez de nouveau sur le bouton ← pour mémoriser la mesure actuelle. Un « P » clignotera dans la fenêtre de mesure pour indiquer qu'un étalonnage procédé est en cours.

Après avoir déterminé la valeur d'ozone de l'échantillon, appuyez sur l'icône de l'étalonnage pour terminer l'étalonnage procédé.

Appuyez sur le champ **Point1** pour saisir la valeur d'ozone de l'échantillon. Appuyez sur \leftarrow pour accepter la valeur.

Appuyez sur le bouton « Suivant » pour lancer le calcul des résultats de l'étalonnage.

		ROCESS	
< (Ch1 O ₅ P	rocess Slope	>
	Slope	-0.11000 nA/ppb	
	Offset	0.000 nA	
	Save	Adjust Calibrate	
ISI	Cancel	Back	.Ø

L'écran indique la valeur de la pente et du décalage comme résultats de l'étalonnage.

Pour les sondes ISM (numériques), sélectionnez « Ajuste », « Calibrer » ou « Annuler » pour terminer l'étalonnage. Pour les sondes analogiques, sélectionnez « Enr. Cal » ou « Annuler » pour terminer l'étalonnage. Voir 6.1.3 «Fin de l'étalonnage de la sonde».

Utilisez la flèche de retour pour revenir à l'étape précédente de la procédure d'étalonnage.

6.8 Vérification de la sonde

Ouvrez le menu « Calibrer capteur » (voir le chapitre 6.1 «Étalonnage de la sonde» ; CHEMIN D'ACCÈS : 🗥 \ Cal \ Calibrer capteur) et choisissez la voie à vérifier.

Appuyez sur le bouton « Vérifier » pour lancer la vérification.

Le signal mesuré pour la mesure principale et secondaire est exprimé dans les unités de base (principalement électriques). Les facteurs d'étalonnage du transmetteur sont utilisés lors du calcul de ces valeurs.

Appuyez sur le bouton ← pour revenir au menu d'étalonnage.

6.9 Étalonnage des composants électroniques UniCond 2-e (sondes ISM uniquement)

Le M300 permet d'étalonner ou de vérifier les circuits électroniques des sondes de conductivité UniCond 2-e. Les sondes UniCond 2-e sont équipées de 3 circuits dont la plage de résistance doit être étalonnée. Ces circuits de mesure sont étalonnés à l'aide du module d'étalonnage des sondes de conductivité ISM THORNTON, référence 58 082 305, et du connecteur Y fourni. Avant de commencer l'étalonnage, retirez la sonde du procédé, rincez-la à l'eau désionisée et laissez-la sécher complètement. Connectez le transmetteur et la sonde à la source d'alimentation au moins 10 minutes avant de lancer l'étalonnage pour stabiliser la température de fonctionnement des circuits.

<u>ាំ\CAL</u>	Calibrate Electronic:	8
Chan	CHAN_1 UniCond	
	Resistance	
Verify		Cal
		IJ

Appuyez sur le bouton « Cal ».

Ouvrez le menu « Cal. électronique ».

Appuyez sur le bouton « Voie_x » et sélectionnez la voie à étalonner.

Choisissez Vérifier ou Cal pour étalonner les circuits électroniques de la sonde.

Reportez-vous au module d'étalonnage des sondes de conductivité ISM THORNTON (référence 58 082 305) pour des instructions détaillées en matière d'étalonnage et de vérification.

Calibrate Sensor Calibrate Electronics

Calibrate Meter

Maintenance

1/2 >

Calibrate Analog Outputs

•

-

•

.

l

6.10 Étalonnage du transmetteur (sondes analogiques uniquement)

Bien qu'en général il ne soit pas nécessaire de procéder au réétalonnage du transmetteur, sauf si le menu de vérification de la calibration indique un fonctionnement non conforme du transmetteur en raison de conditions extrêmes, il peut s'avérer nécessaire de procéder à une vérification ou à un réétalonnage périodique pour satisfaire aux exigences de qualité. L'étalonnage de la fréquence nécessite un étalonnage en deux points. Il est recommandé que le point 1 soit situé au niveau du seuil minimal de la plage de fréquence et le point 2 au niveau du seuil maximal.

Appuyez sur le bouton « Cal ».

Ouvrez le menu « Calibrer transm. ».

Le transmetteur est doté de cinq (5) plages de mesure internes. Chaque plage de résistance (consistant chacune en un étalonnage en deux points) et de température est étalonnée séparément.

Le tableau ci-dessous indique les valeurs de résistance de toutes les plages d'étalonnage.

Plage	Point 1	Point 2	Point 4
Résistivité 1	1,0 Mohm	10,0 Mohms	-
Résistivité 2	100,0 Kohms	1,0 Mohm	-
Résistivité 3	10,0 Kohms	100,0 Kohms	-
Résistivité 4	1,0 Kohms	10,0 Kohms	-
Résistivité 5	100 ohms	1,0 Kohms	-
Température	1 000 ohms	3,0 Kohms	66 Kohms

Appuyez sur le champ « Résistance ».

Appuyez sur le bouton « Cal ».

ect source 1 to input ten and then press "Next".

Cb2 Re

н

Connectez la source 1 aux terminaux d'entrée. Chaque plage de résistance requiert un étalonnage en deux points.

Appuyez sur le bouton « Suivant » pour continuer.

Appuyez sur le bouton « Suivant » pour lancer l'étalonnage.

Transmetteur M300

Appuyez sur le champ « Point 1 » pour saisir la valeur du point d'étalonnage. Le M300 affiche un clavier pour modifier la valeur. Appuyez sur le bouton \leftarrow pour modifier la valeur concernée.

La deuxième ligne indique la valeur actuelle.

Chan Ch2 Resistance5 H Chan Ch2 Resistance5 H Connect source 2 to input terminals and then press "Next".

Connectez la source 2 aux terminaux d'entrée.

Appuyez sur le bouton « Suivant » pour continuer.

Chan Ch2 Resistance5 H Stope 1.2300 Offset 0.1230

Appuyez sur le champ « Point 2 » pour saisir la valeur du point d'étalonnage. Le M300 affiche un clavier pour modifier la valeur. Appuyez sur ← pour accepter la valeur.

La deuxième ligne indique la valeur actuelle.

L'écran indique la valeur de la pente et du décalage comme résultats de l'étalonnage.

Sélectionnez « Enr. Cal » ou « Annuler » pour terminer l'étalonnage. Voir 6.1.3 «Fin de l'étalonnage de la sonde».

Utilisez la flèche de retour pour revenir à l'étape précédente de la procédure d'étalonnage.

Chan Analog pHCRP Temperature

Appuyez sur le champ de saisie à la deuxième ligne pour sélectionner « température ».

L'étalonnage de la température s'effectue en trois points. Le tableau de la section 7.17.1

Température (sondes analogiques uniquement)

Appuyez sur le bouton « Cal ».

indique les valeurs de résistance de ces trois points.

6.10.2

Connectez la source 1 aux terminaux d'entrée. Appuyez sur le bouton « Suivant » pour lancer l'étalonnage.

Transmetteur M300

Ch2 Ter н ect source 2 to input ter and then press "Next". Back Next

쉽\CAL\Calibrate Meter					
Chan	Ch2 Ter	mperature	н		
Q11011	٨	1.2300			
	в	0.1230			
	с	0.4560			
	Cancel	SaveCal Back			
			1	5	

Appuyez sur le champ « Point 1 » pour saisir la valeur du point d'étalonnage. Le M300 affiche un clavier pour modifier la valeur. Appuyez sur le bouton ← pour modifier la valeur concernée.

La deuxième ligne indique la valeur actuelle.

Connectez la source 2 aux terminaux d'entrée.

Appuyez sur le bouton « Suivant » pour continuer.

Répétez le processus d'étalonnage du Point 1 pour le Point 2 et le Point 3.

L'écran indique le résultat de l'étalonnage.

Sélectionnez « Enr. Cal » ou « Annuler » pour terminer l'étalonnage. Voir 6.1.3 «Fin de l'étalonnage de la sonde».

Utilisez la flèche de retour pour revenir à l'étape précédente de la procédure d'étalonnage.

6.10.3 Tension (sondes analogiques uniquement)

L'étalonnage de la tension s'effectue en deux points.

Appuyez sur le champ de saisie à la deuxième ligne pour sélectionner « température ».

Appuyez sur le bouton « Cal ».

<u>6</u> 10	CAL1Calibrate Meter		
Chan	Ch2 Voltage	н	
C. Mart	Connect source 1 to input termina and then press "Next".	k	
	Cancel	đ	

Connectez la source 1 aux terminaux d'entrée. Appuyez sur le bouton « Suivant » pour lancer l'étalonnage.

Appuyez sur le champ « Point 1 » pour saisir la valeur du point d'étalonnage. Le M300 affiche un clavier pour modifier la valeur. Appuyez sur 🕂 pour accepter la valeur.

La deuxième ligne indique la valeur actuelle.

Connectez la source 2 aux terminaux d'entrée.

Appuyez sur le bouton « Suivant » pour continuer.

Répétez le processus d'étalonnage du Point 1 pour le Point 2 et le Point 3.

尚 10	CAL \ Calib	orate Meter		
Chap	Ch2 Volta	90	н	
0.11081	Slope	1.2300		
	Offset	0.1230		
	Cancel	SaveCal Back		
				-

L'écran indique le résultat de l'étalonnage.

Pour les sondes analogiques, sélectionnez « Enr. Cal » ou « Annuler » pour terminer l'étalonnage. Voir 6.1.3 «Fin de l'étalonnage de la sonde».

Utilisez la flèche de retour pour revenir à l'étape précédente de la procédure d'étalonnage.

6.10.4 Courant (sondes analogiques uniquement)

L'étalonnage du courant s'effectue en deux points.

Suivez les instructions de la section 6.10.3 «Tension (sondes analogiques uniquement)» pour procéder à l'étalonnage du courant.

6.10.5 Rg (sondes analogiques uniquement)

L'étalonnage du « Diagnostic Rg » s'effectue en deux points.

Suivez les instructions de la section 6.10.3 «Tension (sondes analogiques uniquement)» pour procéder à l'étalonnage du courant.

6.10.6 Rr (sondes analogiques uniquement)

L'étalonnage du « Diagnostic Rr » s'effectue en deux points.

Suivez les instructions de la section 6.10.3 «Tension (sondes analogiques uniquement)» pour procéder à l'étalonnage du courant.

6.11 Étalonnage des sorties analogiques

CHEMIN D'ACCÈS : 🗥 \ CAL \ Calibrer sorties ana.

Chaque sortie analogique peut être étalonnée à 4 et 20 mA. Sélectionnez le signal de sortie à étalonner en appuyant sur le bouton #1 pour le signal de sortie 1, le bouton #2 pour le signal de sortie 2, etc.

Connectez un milliampèremètre précis au terminal de sortie analogique, puis ajustez le nombre à 5 chiffres affiché à l'écran pour régler la sortie sur 4,00 mA. Répétez l'opération pour 20,00 mA.

À mesure qu'on augmente/diminue le nombre à 5 chiffres, le courant de sortie augmente/diminue. Par conséquent, des changements grossiers peuvent être apportés au courant de sortie en modifiant les chiffres des centaines et des milliers ; des changements précis peuvent être effectués en modifiant les chiffres des dizaines et des unités.

Une fois ces valeurs ajustées, appuyez sur le bouton « Suivant » pour lancer le calcul des résultats de l'étalonnage.

L'écran indique la valeur de la pente et du point zéro comme résultats de l'étalonnage du signal de sortie.

Sélectionnez « Enr. Cal » ou « Annuler » pour terminer l'étalonnage. Voir 6.1.3 «Fin de l'étalonnage de la sonde».

6.12 Maintenance

CHEMIN D'ACCÈS : 🗥 \ CAL \ Maintenance

Les voies du transmetteur M300 peuvent être activées ou désactivées manuellement en mode « Maintien ». Vous pouvez également lancer ou arrêter manuellement un cycle de nettoyage.

Sélectionnez la voie que vous souhaitez régler manuellement sur « Maintien ».

Appuyez sur le bouton « Start » en face de **HOLD manuel** pour activer le mode « Maintien » de la voie sélectionnée. Pour désactiver le mode « Maintien », appuyez sur le bouton « Stop » situé à la place du bouton « Start ».

Appuyez sur le bouton « Start » en face de **Nett. manuel** pour modifier le mode pour lancer un cycle de nettoyage. Pour désactiver le mode, appuyez sur le bouton « Stop » situé à la place du bouton « Start ».

7 Configuration

Pour consulter la structure du menu, reportez-vous au chapitre 3.3 «Structure du menu».

7.1 Mesure

CHEMIN D'ACCÈS : 🗥 \ CONFIG. \ Mesure

7.1.1 Configuration du canal

CHEMIN D'ACCÈS : 🖄 \ CONFIG. \ Mesure \ Config. voie

Sélectionnez la **voie** à configurer en appuyant sur le bouton #1 pour la voie 1, le bouton #2 pour la voie 2, etc.

Appuyez sur le champ de saisie droit de la ligne du réglage pour **Voie**. Vous pouvez sélectionner un paramètre correspondant à la voie que vous avez choisie en appuyant sur le champ approprié.

Lorsque « Auto » est sélectionné, le transmetteur M300 reconnaît automatiquement le type de sonde ISM. La voie peut également être définie sur un certain paramètre de mesure, selon le type de transmetteur.

7.1.2 Sonde analogique

Sélectionnez le type de sonde Analogique.

Les types de mesure disponibles sont les suivants (en fonction du type de transmetteur) :

Paramètre de mesures	Désignation	Transmetteur		
		M300 Procédé	M300 Eau	M300 Eau cond/rés.
pH/redox	pH ou redox	•	•	_
Cond2e	Conductivité 2 électrodes	•	•	•
Cond4e	Conductivité 4 électrodes	•	•	•
O ₂ Hi	Oxygène Oxygène dissous (ppm)	•	_	_
O ₂ Lo	Oxygène Oxygène dissous (ppb)	•	•	_
0 ₃	Ozone	•	•	-

7.1.3 Sonde ISM

Sélectionnez le type de sonde ISM.

Lors du raccordement d'une sonde ISM, le transmetteur reconnaît automatiquement (paramètre = Auto) le type de sonde. Vous pouvez également définir un certain paramètre de mesure (p. ex. « pH »), en fonction de votre type de transmetteur.

Paramètre de mesures	Désignation	Transmetteur		
		M300 Procédé	M300 Eau	M300 Eau cond/rés.
pH/redox	pH ou redox	•	•	-
pH/pNa	pH et redox	•	•	-
	(avec électrode pH/pNa)			
UniCond 2e/4e	Conductivité UniCond	•	•	-
Cond2e	Conductivité 2 électrodes	•	•	-
Cond4e	Conductivité 4 électrodes	•	•	-
O ₂ Hi	Oxygène Oxygène dissous (ppm)	•	_	-
O ₂ Lo	Oxygène Oxygène dissous (ppb)	•	•	-
03	Ozone	•	•	_

Saisissez le nom de la voie (6 caractères maximum) en appuyant sur le champ **Description**. Le nom de la voie sera toujours affiché, si la voie doit être sélectionnée. Son nom sera également affiché sur la fenêtre d'accueil et la fenêtre de menu si le mode d'affichage (voir la section 7.1.5 «Mode d'affichage») est réglé sur « 1 voie » ou « 2 voies ».

Sélectionnez l'une des mesures **M1 à M4** (par ex. le bouton gauche pour définir la mesure M1 et le bouton droit pour définir la mesure M2).

Sélectionnez dans le champ de saisie le paramètre de Mesure à afficher.

REMARQUE : en dehors des paramètres « pH », « O₂ », « T », etc., les valeurs ISM « DLI », « TTM » et « ACT » peuvent également être associées aux mesures.

Choisissez **Param. plage** de la mesure. Seuls certains paramètres permettent de modifier la plage.

Le menu **Résolution** permet de régler la résolution des mesures. Ce réglage ne garantit pas la précision de la mesure. Les réglages possibles sont 1, 0, 1, 0, 01, 0, 001.

Sélectionnez le menu **Filtre**. Vous pouvez sélectionner la méthode de calcul de la moyenne (filtre bruit) de la mesure. Les options disponibles sont : « Aucune » (option par défaut), « Bas », « Moyen », « Haut », « Spécial » et « Personnalisé ».

Option	Désignation
Aucune	Ni moyenne, ni filtre
Faible	Équivaut à une moyenne mobile à 3 points
Moyen	Équivaut à une moyenne mobile à 6 points
Élevé(e)	Équivaut à une moyenne mobile à 10 points
Spécial	La moyenne dépend de la modification du signal
	(normalement, elle est haute, mais elle peut être basse en cas de modifications
	importantes du signal d'entrée).
Personnalisé	Sélection d'une moyenne mobile de 1 à 15 points

7.1.4 Mesures dérivées

Le M300 permet de configurer les mesures dérivées (total, différence, rapport) en fonction de deux mesures telles que le pH, la conductivité, etc. Pour obtenir les mesures dérivées, configurez d'abord les deux principales mesures qui seront utilisées pour calculer la mesure dérivée. Définissez les mesures principales comme si elles étaient des mesures distinctes. Puis, choisissez l'unité pour la mesure dérivée de la première voie. Le transmetteur M300 affichera le menu supplémentaire **Autre voie** pour sélectionner la deuxième voie avec sa mesure correspondante.

Il existe trois mesures dérivées supplémentaires pour une configuration avec deux sondes de conductivité : %Rej (% de rejet) et pH Cal (pH calculé).

7.1.4.1 Mesure du pourcentage de rejet

Pour les applications d'osmose inverse (RO), le pourcentage de rejet est mesuré avec la conductivité afin de déterminer le taux d'impuretés retirées du produit ou de l'eau purifiée par rapport à la quantité totale d'impuretés dans l'eau d'alimentation. La formule pour obtenir le pourcentage de rejet est la suivante :

[1 – (Produit/Alimentation)] X 100 = % de rejet

Les valeurs indiquées pour le produit et l'alimentation correspondent aux valeurs de conductivité mesurées par les sondes respectives.

La figure A présente le schéma d'une installation à osmose inverse avec les sondes en place pour le pourcentage de rejet.

REMARQUE : la sonde de contrôle du produit doit être installée sur la voie mesurant le pourcentage de rejet. Si la sonde de conductivité du produit est installée sur la voie 1, le pourcentage de rejet doit être mesuré sur la voie 1.

7.1.4.2 pH calculé (applications pour centrales électriques uniquement)

Le pH calculé peut être obtenu avec une grande précision à partir des valeurs de conductivité spécifique et cationique en centrale électrique quand le pH est situé entre 7,5 et 10,5 du fait de l'ammoniaque ou des amines et quand la conductivité spécifique est nettement supérieure à la conductivité cationique. Ce calcul n'est pas effectué lorsque les phosphates sont en forte concentration. Le M300 utilise cet algorithme quand on sélectionne la mesure pH CAL.

Le pH calculé doit être configuré sur la même voie que la conductivité spécifique. Par exemple, configurez la mesure M1 sur Voie_1 pour la conductivité spécifique, la mesure M1 sur Voie_2 pour la conductivité cationique, la mesure M2 sur Voie_1 pour le pH calculé et la mesure M3 sur Voie_1 pour la température. Sélectionnez le mode de compensation « NH3 » pour la mesure M1 définie sur Voie_1 et « Cation » pour la mesure M1 définie sur Voie_2.

REMARQUE : si l'opération ne se déroule pas dans les conditions recommandées, il est nécessaire de mesurer le pH avec une électrode de verre pour obtenir une valeur précise. D'autre part, quand les conditions de l'échantillon sont conformes aux valeurs indiquées ci-dessus, le pH calculé fournit un standard fiable pour l'étalonnage en un point de la mesure de pH de l'électrode.

7.1.5 Mode d'affichage

CHEMIN D'ACCÈS : 🗥 \ CONFIG. \ Mesure \ Mode affichage

Appuyez sur le champ **Mode affichage** et choisissez les mesures à afficher sur la fenêtre d'accueil et la fenêtre de menu.

Choisissez d'afficher les mesures pour une voie ou deux voies.

REMARQUE : les mesures affichées pour la voie 1 ou la voie 2 sont définies dans le menu « Config. voie » (voir la section 7.1.1 «Configuration du canal»). Si vous avez choisi « 1-voie », les mesures M1 à M4 de chaque voie seront affichées. Si vous avez choisi « 2-voies », les mesures M1 et M2 de chaque voie seront affichées.

REMARQUE : en dehors des grandeurs de mesure « pH », « O₂ », « T », etc., les valeurs ISM « DLI », « TTM » et « ACT » peuvent également être affichées.

7.1.6 Définition des paramètres

CHEMIN D'ACCÈS : 🗥 \ CONFIG. \ Mesure \ Paramétrage

Les paramètres de mesure et d'étalonnage peuvent être définis pour les paramètres de pH, de conductivité et d'oxygène.

ش۱،۱Parameter Setting		
CHAN_1 pH/ORP		
MT-9		
Medium		
7.00		
0.00		

Ouvrez le menu Voie pour sélectionner une voie.

Différents paramètres de mesure et d'étalonnage s'affichent en fonction de la voie sélectionnée et de la sonde affectée.

Lisez les explications suivantes pour en savoir plus sur les différents paramètres existants.

ក្នុង	arameter Setting	
Channel .	CHAN I CH	
Channel		040
Measure	M1 S/0	m
Compen.	Standard	
		-
_		Ţ
イア		

7.1.6.1 Paramètres de conductivité

Sélectionnez la mesure de votre choix (M1-M4). Pour en savoir plus sur les mesures, consultez le chapitre 7.1.1 «Configuration du canal».

Si la mesure sélectionnée peut être compensée par la température, vous pouvez sélectionner une méthode de compensation.

REMARQUE : pendant l'étalonnage, vous devez également sélectionner une méthode de compensation (voir les chapitres 6.2 «Étalonnage des sondes UniCond 2e et UniCond 4e (sondes ISM uniquement)» et 6.3 «Étalonnage des sondes Cond2e ou Cond4e»).

Appuyez sur **Comp.** pour sélectionner la méthode de compensation de la température souhaitée. Vous pouvez choisir « Aucune », « Standard », « Light 84 », « Std 75 °C », « Linéaire 25 °C », « Linéaire 20 °C », « Glycol.5 », « Glycol1 », « Cation », « Alcool » ou « NH3 » (ammoniaque).

Avec « Aucune », la valeur de conductivité mesurée n'est pas compensée. La valeur non compensée sera affichée et traitée.

La compensation standard comprend une compensation des effets de la pureté élevée non linéaire ainsi que des impuretés des sels neutres traditionnels. Elle est conforme aux normes ASTM D1125 et D5391.

La compensation « Light 84 » correspond aux résultats des recherches sur l'eau pure du Dr T.S. Light publiées en 1984. À n'employer que si votre établissement a établi des normes sur la base de ce travail.

L'option de compensation « Std 75 °C » est l'algorithme de compensation standard avec la référence de 75 °C. Cette compensation peut être privilégiée pour la mesure de l'eau ultrapure (UPW) à une température élevée (la résistivité de l'eau ultrapure compensée à 75 °C est 2,4818 Mohm-cm).

La compensation « Linéaire 25 °C » ajuste la lecture au moyen d'un coefficient ou facteur exprimé en « % par °C » (écart par rapport à 25 °C). À n'utiliser que si la solution a un coefficient de température linéaire bien défini. La valeur usine par défaut est de 2,0 %/°C.

La compensation « Linéaire 20 °C » ajuste la lecture au moyen d'un coefficient ou facteur exprimé en « % par °C » (écart par rapport à 20 °C). À n'utiliser que si la solution a un coefficient de température linéaire bien défini. La valeur usine par défaut est de 2,0 %/°C.

La compensation « Glycol.5 » correspond aux caractéristiques thermiques de 50 % d'éthylène glycol dans de l'eau. Les mesures compensées basées sur cette solution peuvent dépasser 18 Mohm-cm.

La compensation « Glycol1 » correspond aux caractéristiques thermiques de l'éthylène glycol 100 %. Les mesures compensées peuvent largement dépasser 18 Mohm-cm.

La compensation « Cation » est utilisée dans des applications de l'industrie de l'énergie afin de mesurer l'échantillon après un échange cationique. Elle tient compte des effets de la température sur la dissociation de l'eau pure en présence d'acides.

La compensation « Alcool » correspond aux caractéristiques thermiques d'une solution contenant 75 % d'alcool isopropylique dans l'eau pure. Les mesures compensées basées sur cette solution peuvent dépasser 18 Mohm-cm.

La compensation « NH3 » est utilisée pour les applications de l'industrie de l'énergie pour la conductivité spécifique mesurée sur des échantillons grâce à un traitement avec de l'eau contenant de l'ammoniaque et/ou de l'ETA (éthanolamine). Elle tient compte des effets de la température sur la dissociation de l'eau pure en présence de ces bases.

REMARQUE : si vous avez sélectionné le mode de compensation « Linéaire 25 °C » ou « Linéaire 20 °C », vous pouvez modifier le coefficient d'ajustement de la valeur. Dans ce cas, un champ de saisie supplémentaire s'affichera.

Appuyez sur le champ **Coef.** pour ajuster le coefficient ou le facteur de compensation.

ຟີ່\\Pa	rameter Setting
Channel	CHAN_1 pH/ORP
Buffer Tab	MT-9
Stability	Medium
IP pH	7.00
STC pH/*C	0.00
	1

7.1.6.2 Paramètres de pH

Si une électrode de pH est connectée à la voie sélectionnée alors que le mode Auto a été choisi pendant la configuration des voies (voir la section 7.1.1 «Configuration du canal»), vous pouvez définir ou modifier les paramètres « Table Tampons », « Stabilité », « IP », « Compens. T sol. » et la température de calibration, ainsi que l'unité de la pente et/ou du point zéro. Les mêmes paramètres s'afficheront si le mode « pH/redox » a été défini pendant la configuration des voies.

Sélectionnez le tampon via le paramètre Table Tampons.

Pour la reconnaissance automatique du tampon lors de l'étalonnage, sélectionnez le jeu de solutions tampons utilisé : Mettler-9, Mettler-10, NIST Tech, NIST Std = JIS Std, HACH, CIBA, MERCK, WTW, JIS Z 8802 ou Aucune. Voir 16 «Tableaux de tampons» pour les valeurs des tampons. Si la fonction de tampon automatique n'est pas utilisée ou si les tampons disponibles diffèrent des tampons ci-dessus, sélectionnez « Aucune ».

REMARQUE : pour les électrodes de pH à double membrane (pH/pNa), seul le tampon Na+ 3,9M (voir le chapitre 16.2.1 «Tampons pH/pNa Mettler (Na+ 3,9M)») est disponible.

Sélectionnez la **Stabilité** requise pour le signal de mesure pendant la procédure d'étalonnage. Choisissez « Manuel » si vous voulez que l'utilisateur puisse déterminer si un signal est suffisamment stable pour procéder à l'étalonnage. Choisissez « Bas », « Moyen » ou « Strict » si vous préférez que le transmetteur contrôle automatiquement la stabilité du signal de la sonde pendant l'étalonnage.

Si le paramètre de stabilité est réglé sur « Moyen » (paramètre par défaut), la déviation du signal doit être inférieure à 0,8 mV sur un intervalle de 20 secondes afin que le transmetteur le considère comme stable. L'étalonnage s'effectue à partir de la dernière mesure. Si le critère n'est pas satisfait dans les 300 secondes, l'étalonnage est interrompu et le message « Vérif. non effectuée » s'affiche.

Modifiez le paramètre IP pH.

IP correspond à la valeur du point isothermique (par défaut = 7,000 pour la plupart des applications). En cas de compensation spécifique ou pour une valeur de tampon interne non standard, cette valeur peut être modifiée.

Modifiez la valeur du paramètre STC pH/°C.

« STC pH/°C. » représente le coefficient de température de la solution en pH/°C par rapport à la température définie (par défaut = 0,000 pH/°C pour la plupart des applications). Pour l'eau pure, une valeur de -0,016 pH/°C doit être utilisée. Pour des échantillons de centrales électriques à faible conductivité, proche de 9 pH, une valeur de -0,033 pH/°C doit être utilisée.

Si la valeur de « STC pH/°C. » est \neq 0,000 pH/°C, un champ supplémentaire s'affichera pour saisir la température de référence.

La valeur pour **Temp. ref pH** indique la température de référence à laquelle correspond la compensation de température de la solution. La valeur affichée et le signal de sortie renvoient à cette température. La température de référence la plus courante est 25 °C.

岱\\Pa	rameter Se	tting	
Channel	CHAN_1	02 hi	
Cal Pressure	1013.0	mbar	
ProcPress [Options]	
ProcCalPress	ProcPress		
Stability [Auto	1	
< 1/2	>		IJ

7.1.6.3 Paramètres de mesure de l'oxygène basés sur des sondes ampérométriques

Si une sonde à oxygène ampérométrique est connectée à la voie sélectionnée alors que le mode Auto a été choisi pendant la configuration des voies (voir la section 7.1.1 «Configuration du canal»), vous pouvez définir ou modifier les paramètres « Pression cal. », « Pression Proc », « Pres. Cal/Proc », « Stabilité », « Salinité », « Humidité rel. », « Mes. U pol. » et « Vérif. U pol. ». Les mêmes paramètres s'afficheront si les paramètres « O_2 hi » ou « O_2 lo » ont été définis pendant la configuration des voies.

Saisissez la valeur pour la pression d'étalonnage via le paramètre Pression Cal.

REMARQUE : pour modifier l'unité de la pression d'étalonnage, appuyez sur « U » sur le clavier affiché à l'écran.

Appuyez sur le bouton « Option » en face du paramètre **Pression Proc** et sélectionnez la méthode d'application de la pression du procédé en choisissant le **Type**.

Vous pouvez saisir la pression du procédé appliquée en sélectionnant « Editer » ou vous pouvez la mesurer par le biais de l'entrée analogique du M300 en choisissant « Entrée ana.1 ».

Si l'option « Editer » a été choisie, un champ de saisie s'affiche pour saisir la valeur manuellement. Si l'option « Entrée ana.1 » a été sélectionnée, deux champs de saisie s'affichent pour saisir la valeur de départ (4 mA) et la valeur de fin (20 mA) de la plage pour le signal d'entrée de 4 à 20 mA.

La pression appliquée doit être définie pour l'algorithme d'étalonnage procédé. Sélectionnez la pression via le paramètre **Pres. Cal/Proc**. Pour l'étalonnage procédé, la valeur de la pression de procédé (« Pression Proc ») ou de la pression d'étalonnage (« Pression cal. ») peut être utilisée.

Sélectionnez **Stabilité** requise pour le signal de mesure pendant la procédure d'étalonnage. Choisissez « Manuel » si vous voulez que l'utilisateur puisse déterminer si un signal est suffisamment stable pour procéder à l'étalonnage. Choisissez « Auto » si vous préférez que le transmetteur contrôle automatiquement la stabilité du signal de la sonde pendant l'étalonnage.

Des paramètres supplémentaires peuvent être définis en accédant à la page suivante du menu.

La Salinité de la solution mesurée peut être modifiée.

De plus, l'humidité relative (bouton **Humidité Rel**) du gaz d'étalonnage peut également être définie. Les valeurs autorisées pour l'humidité relative sont comprises entre 0% et 100%. Lorsqu'aucune mesure d'humidité n'est disponible, utilisez 50% (la valeur par défaut).

Vous pouvez modifier la tension de polarisation des sondes à oxygène ampérométriques dans le mode Mesure via le paramètre **Mes. U pol**. Pour des valeurs saisies entre 0 mV et -550 mV, la sonde connectée sera réglée sur une tension de polarisation de -500 mV. Si la valeur saisie est inférieure à -550 mV, la sonde connectée sera réglée sur une tension de polarisation de -674 mV.

Vous pouvez modifier la tension de polarisation des sondes à oxygène ampérométriques via le paramètre **Vérif. U pol.** Pour des valeurs saisies entre 0 mV et –550 mV, la sonde connectée sera réglée sur une tension de polarisation de -500 mV. Si la valeur saisie est inférieure à –550 mV, la sonde connectée sera réglée sur une tension de polarisation de –674 mV.

ش۱.

Salinit

Rel Hum

UpolMea UpolCal

REMARQUE : au cours d'un étalonnage procédé, on utilisera la tension de polarisation « Mes. U pol. » définie dans le mode Mesure.

REMARQUE : si l'on exécute un étalonnage en un point, le transmetteur envoie à la sonde la tension de polarisation valable pour l'étalonnage. si les tensions de polarisation pour le mode Mesure et le mode Calibrage sont différentes, le transmetteur attend 120 secondes avant de commencer l'étalonnage. Dans ce cas, le transmetteur continuera également de fonctionner 120 secondes après la fin de l'étalonnage, jusqu'à ce qu'il passe en mode « Maintien », avant de revenir au mode Mesure.

7.2 Source de température (sondes analogiques uniquement)

CHEMIN D'ACCÈS : 🗥 \ CONFIG. \ Mesure \ Source de température

Source : « Auto » (par défaut), « Pt100 », « Pt1000 », « NTC22K », « Fixe »

La troisième ligne indique le réglage de la température associée. Plage : -40 à 200 °C. Température par défaut : 25 °C

7.3 Sorties analogiques

CHEMIN D'ACCÈS : 🗥 \ CONFIG. \ Sorties ana.

que vous souhaitez associer au signal de sortie.

sélectionnée) au signal de sortie.

Sélectionnez la Plage du signal de sortie.

déclenchent sur le transmetteur seront prises en compte.

transmetteur ne passe en mode « Maintien ») ou une valeur fixe.

Lisez les explications suivantes pour en savoir plus sur les différents réglages des sorties analogiques.

Appuyez sur le champ **Sortie ana.**, puis sélectionnez le signal de sortie que vous souhaitez configurer en appuyant sur #1 pour le signal de sortie 1, #2 pour le signal de sortie 2, etc. Appuyez sur le bouton correspondant pour affecter la voie (**Voie**). Sélectionnez la voie

Appuyez sur le bouton permettant d'affecter un paramètre de mesure (en fonction de la voie

REMARQUE : en dehors des grandeurs de mesure « pH », « O2 », « T », etc., les valeurs ISM

Pour ajuster la valeur du signal de sortie analogique si une alarme se produit, appuyez sur le champ **Alarme**. « Désactivé » signifie que l'alarme a une influence sur le signal de sortie.

Vous pouvez définir la valeur du signal de sortie si le transmetteur passe en mode « Maintien ».

REMARQUE : outre les alarmes survenant sur la voie affectée, toutes les alarmes qui se

Vous pouvez choisir entre la dernière valeur (c'est-à-dire la valeur affichée avant que le

Appuyez sur le champ Mode Maintien pour sélectionner la valeur de votre choix.

Si vous sélectionnez une valeur fixe, un autre champ de saisie s'affiche.

« DLI », « TTM » et « ACT » peuvent également être associées au signal de sortie.

∰\CONFI	G\Analog Outputs
Aout	#1
Chan	CHAN_1 pH
Range	4-20mA
Alarm	Off
Hold Mode	Last Value
< 1/2	> 5

\sim	

CONFIG \ Analog Outputs

Le paramètre **Type sortie ana.** propose les valeurs suivantes : « Normal », « Bi-linéaire », « Auto-domaine » ou « Logarithm. ». La plage peut être comprise entre 4 et 20 mA ou 0 et 20 mA. « Normal » est défini par défaut. Il donne une mise à l'échelle linéaire entre les limites de mise à l'échelle minimale et maximale. « Bi-linéaire » invite également à saisir une valeur de mise à l'échelle pour le point central du signal et permet deux segments linéaires différents entre les limites de mise à l'échelle minimale et maximale.

Des paramètres supplémentaires peuvent être définis en accédant à la page suivante du menu.

Appuyez sur le champ **Valeur min.**, qui correspond à la valeur de début de la plage de sortie analogique.

Appuyez sur le champ **Valeur max.**, qui correspond à la valeur de fin de précipitation du signal de sortie analogique.

Selon le type de sortie analogique sélectionné, des valeurs supplémentaires peuvent être saisies.

Bi-linéaire invite également à saisir une valeur de mise à l'échelle pour la valeur centrale du signal et permet deux segments linéaires différents entre les valeurs minimales et maximales définies.

La mise à l'échelle **Auto-domaine** propose deux plages de sortie. Ce paramètre permet de travailler avec une API pour donner une plage de mesure étendue à l'extrémité supérieure de l'échelle et une plage plus étroite avec une haute résolution à l'extrémité inférieure de l'échelle. Deux configurations distinctes sont utilisées : l'une pour la limite maximale de la plage supérieure et l'autre pour la limite maximale de la plage inférieure, et ce, pour le seul signal 0/4-20 mA.

« Max. 1 » est la limite maximale de la plage inférieure automatique. La valeur maximale de la plage supérieure automatique a été définie dans « Valeur max. ». Ces deux plages présentent la même valeur minimale, définie dans « Valeur min. ». Si la valeur d'entrée est supérieure à la valeur Max. 1, le transmetteur bascule automatiquement sur la deuxième plage. Pour indiquer la plage valide, un relais peut être affecté. Le relais sera activé si le transmetteur change de plage.

Si vous avez sélectionné **Logarithm.**, vous serez invité à saisir la valeur max. et le nombre de décades.

7.4 Valeurs de consigne

CHEMIN D'ACCÈS : 🖀 \ CONFIG. \ Vals de consigne

Lisez les explications suivantes pour en savoir plus sur les différents réglages des valeurs de consigne.

đ١c	ONFIC	Set Points	
Set Poi	nts	#1	
Chan	MI	CHAN_1	pH
Туре		High	
High		7.3000	pН
<	1/2	>	t I

 $\zeta \overline{r}$

Appuyez sur le champ **Valeur Seuil**, puis sélectionnez le seuil que vous souhaitez configurer en appuyant sur #1 pour le seuil 1, #2 pour le seuil 2, etc.

Appuyez sur le champ (**Voie**) à côté de voie pour affecter la voie associée. Sélectionnez la voie que vous souhaitez associer au seuil.

Appuyez sur le bouton permettant d'affecter un paramètre de mesure (en fonction de la voie sélectionnée) à associer au seuil.

« Mx » indique la mesure affectée au seuil (voir le chapitre 7.1.1 «Configuration du canal»).

REMARQUE : en dehors des paramètres « pH », « O₂ », « T », « mS/cm », « %EP WFI », etc., les valeurs ISM « DLI », « TTM » et « ACT » peuvent également être associées au seuil.

Dans **Type**, vous pouvez choisir le type de seuil : « Haut », « Bas », « Between ht », « Outside » ou « Désactivé ». Une valeur réglée sur « Outside » déclenchera une alarme dès que la mesure dépasse sa limite maximale ou minimale. Une valeur réglée sur « Between ht » déclenchera une alarme dès que la mesure se trouve entre sa limite maximale et sa limite minimale.

REMARQUE : si le type de seuil n'est pas réglé sur « Désactivé », vous pouvez définir des paramètres supplémentaires. Voir la description suivante.

En fonction du type de seuil sélectionné, vous pouvez définir les limites des valeurs de consigne.

Des paramètres supplémentaires peuvent être définis en accédant à la page suivante du menu.

<u>៍</u> ដែលNFK	Set Points	
Out Range	No	
Relay	#3	Normal
Delay	10	980
Hysteresis	0.5000	pН
Hold Mode	Last Value	
< 2/2	>	t I

Une fois la configuration terminée, un relais peut être activé si la condition **Hors plage** est détectée sur la voie d'entrée affectée.

Pour sélectionner le relais souhaité qui sera activé si les conditions définies sont remplies, appuyez sur le champ **Relais seuil**. Si le relais choisi est utilisé pour une autre tâche, le transmetteur affiche le message « Conflit relais ».

Vous pouvez définir le mode de fonctionnement du relais.

Les contacts du relais sont en mode normal jusqu'à ce que le seuil associé soit dépassé, ensuite le relais est activé et le mode du contact change. Sélectionnez « Inversé » pour inverser le mode de fonctionnement normal du relais (par exemple, les contacts normalement ouverts sont en position fermée et les contacts normalement fermés sont en position ouverte, jusqu'à ce que le seuil soit dépassé).

Saisissez le délai en secondes dans **Délai**. Le relais sera activé uniquement si le seuil est dépassé de manière continue pendant le laps de temps spécifié. Si la condition disparaît avant que le délai soit écoulé, le relais ne sera pas activé.

Saisissez une valeur pour **Hystérèse**. Une valeur d'hystérésis nécessite que la mesure revienne dans les limites de seuil selon un pourcentage spécifié avant la désactivation du relais.

Lorsque le seuil est élevé, la mesure doit diminuer davantage que le pourcentage indiqué sous la consigne avant la désactivation du relais. Lorsque le seuil est faible, la mesure doit augmenter davantage que le pourcentage indiqué au-dessus de la consigne avant la désactivation du relais. Par exemple, avec une valeur de consigne élevée de 100, lorsque cette valeur est dépassée, la mesure doit descendre en dessous de 90 avant que le relais ne soit désactivé.

Sélectionnez « Désactivé », « Dernière val » ou « Activé » pour le paramètre du relais **Mode Maintien**. Il s'agit de l'état du relais lorsqu'il se trouve en mode « Maintien ».

7.5 Configuration d'ISM (sondes ISM uniquement)

CHEMIN D'ACCÈS : 🗥 \ CONFIG. \ Config. ISM

Lisez les explications suivantes pour en savoir plus sur la configuration d'ISM.

<u>៏ដែលNFR</u>	G\ISM Setup
Channel	CHAN_1 pH/ORP
ISM Para	Sensor Monitor
	CIP Cycle Limit
	SIP Cycle Limit
	AutoClave Cycle Limit

7.5.1 Dispositif de contrôle de la sonde

Si une électrode de pH/redox, une sonde O_2 hi, O_2 lo ou O_3 est connectée à la voie sélectionnée alors que le mode Auto a été choisi pendant la configuration des voies (voir la section 7.1.1 «Configuration du canal»), vous pouvez définir ou ajuster le paramètre « Surveill. capteur ». Le menu « Surveill. capteur » s'affichera également si l'une des sondes susmentionnées a été installée pendant la configuration des voies.

Appuyez sur le bouton « Surveill. capteur ».

Saisissez le nombre de jours pour définir la valeur initiale du délai de maintenance (**TTM initial**). La valeur initiale peut être modifiée en fonction de l'utilisation de l'application.

Pour les électrodes de pH/redox, la minuterie estime le moment où doit être effectué le prochain cycle de nettoyage pour garantir les meilleures performances de mesure. Elle tient compte des modifications importantes apportées aux paramètres DLI.

Pour les sondes à oxygène ampérométriques et les sondes à ozone, le délai de maintenance indique le cycle de maintenance de la membrane et de l'électrolyte.

67

Appuyez sur le champ Réinit TTM. Sélectionnez « Oui » pour réinitialiser le délai de maintenance (TTM) de la sonde à sa valeur initiale.

Le délai de maintenance doit être réinitialisé après les opérations suivantes.

Électrodes de pH :	Cycle de maintenance manuelle de la sonde.
Sonde à oxygène ou ozone :	Cycle de maintenance manuelle de la sonde
	ou remplacement de la membrane de la sonde.

REMARQUE: lorsque vous connectez une sonde, la sonde affiche le délai avant sa prochaine maintenance.

Saisissez la valeur de ACT Initial en jours. La nouvelle valeur sera transmise à la sonde une fois les modifications enregistrées.

Le minuteur d'étalonnage adaptif (ACT) estime le moment où doit être effectué le prochain étalonnage pour garantir les meilleures performances de mesure. Elle tient compte des modifications importantes apportées aux paramètres DLI. ACT reprendra sa valeur initiale une fois l'étalonnage effectué. La valeur initiale peut être modifiée en fonction de l'utilisation de l'application et transmise à la sonde.

REMARQUE : lorsque vous connectez une sonde, la sonde affiche le délai avant son prochain étalonnage.

Appuyez sur le champ Réinit. DLI. Sélectionnez « Oui » pour réinitialiser l'Indicateur dynamique de durée de vie (DLI) de la sonde à sa valeur initiale. La réinitialisation sera effectuée une fois les modifications enregistrées.

Le DLI permet d'estimer, d'après les contraintes réelles subies, à quel moment l'électrode de pH, l'élément sensible d'une sonde à oxygène ampérométrique ou d'une sonde à ozone, arrive en fin de vie. La sonde prend toujours en compte la contrainte moyenne des derniers jours et peut augmenter/réduire la durée de vie en fonction du résultat.

Les paramètres suivants affectent l'indicateur de durée de vie :

Paramètre dynamique

- Température
- Valeur de pH ou d'oxygène
- Impédance du verre (uniquement pH)
- Résistance de référence (uniquement pH)

Paramètres fixes

- Historique des étalonnages
- Zéro et pente
- Cycles NEP/SEP/d'autoclavage

La sonde conserve les informations enregistrées dans les circuits intégrés ; celles-ci peuvent être récupérées via un transmetteur ou via le logiciel de gestion des actifs iSense.

Pour les sondes à oxygène ampérométriques, le DLI dépend de l'élément sensible de la sonde. Une fois que vous avez remplacé l'élément sensible de la sonde, réinitialisez le DLI.

REMARQUE: lorsque vous connectez une sonde, la sonde affiche sa durée de vie restante.

REMARQUE : le paramètre « Réinit. DLI » n'est pas disponible pour les électrodes de pH. Si la valeur du DLI d'une électrode de pH est égale à 0, vous devez remplacer l'électrode.

7.5.2 Nombre maximum de cycles NEP

Si une électrode de pH/redox, une sonde à oxygène ou une sonde de conductivité est connectée à la voie sélectionnée alors que le mode Auto a été choisi pendant la configuration des voies (voir la section 7.1.1 «Configuration du canal»), vous pouvez définir ou ajuster le paramètre « Nb max. NEP » (nombre maximum de cycles NEP). Le paramètre « Nb max. NEP » s'affichera également si l'une des sondes susmentionnées a été installée pendant la configuration des voies.

Appuyez sur « Nb max. NEP ».

Appuyez sur le champ **Cycles max.** pour saisir le nombre maximum de cycles NEP. La nouvelle valeur sera transmise à la sonde une fois les modifications enregistrées.

Les cycles NEP sont comptabilisés par le transmetteur. Si la limite (valeur saisie dans « Cycles max. ») est atteinte, une alarme peut être indiquée et définie pour un relais de sortie.

Si la valeur indiquée dans « Cycles max. » est égale à 0, le compteur est désactivé.

Appuyez sur le champ **Temp.** pour saisir la température qui doit être dépassée pour lancer le décompte d'un cycle NEP.

Les cycles NEP sont automatiquement reconnus par le transmetteur. L'intensité des cycles NEP étant variable (durée et température) selon les applications, l'algorithme du compteur reconnaît l'augmentation de la température de mesure au-dessus de la valeur saisie dans « Temp. ». Si la température ne baisse pas en dessous de la température définie -10 °C 5 minutes après que la première température a été atteinte, le compteur augmente d'une unité et est verrouillé pour les deux heures suivantes. Si le NEP dure plus de deux heures, le compteur est à nouveau incrémenté d'une unité.

Appuyez sur le champ **RAZ**. Sélectionnez « Oui » si le compteur NEP de la sonde doit être remis à zéro. La réinitialisation sera effectuée une fois les modifications enregistrées.

Lorsqu'une sonde à oxygène est connectée, le compteur doit être réinitialisé après les opérations suivantes.

Sonde ampérométrique : remplacement de l'élément sensible de la sonde.

REMARQUE : le paramètre « RAZ » n'est pas disponible sur les électrodes de pH/redox. L'électrode de pH/redox doit être remplacée si le nombre maximum de cycles a été dépassé.

7.5.3 Nombre maximum de cycles SEP

Si une électrode de pH/redox, une sonde à oxygène ou une sonde de conductivité est connectée à la voie sélectionnée alors que le mode Auto a été choisi pendant la configuration des voies (voir la section 7.1.1 «Configuration du canal»), vous pouvez définir ou ajuster le paramètre « Nb max. SEP » (nombre maximum de cycles SEP). Le paramètre « Nb max. SEP » s'affichera également si l'une des sondes susmentionnées a été installée pendant la configuration des voies.

Appuyez sur « Nb max. SEP ».

Appuyez sur le champ **Cycles max.** pour saisir le nombre maximum de cycles SEP. La nouvelle valeur sera transmise à la sonde une fois les modifications enregistrées.

Les cycles SEP sont comptabilisés par le transmetteur. Si la limite (valeur saisie dans « Cycles max. ») est atteinte, une alarme peut être indiquée et définie pour un relais de sortie.

Si la valeur indiquée dans « Cycles max. » est égale à 0, le compteur est désactivé.

Appuyez sur le champ **Temp** pour saisir la température qui doit être dépassée pour lancer le décompte d'un cycle SEP.

Les cycles SEP sont automatiquement reconnus par le transmetteur. L'intensité des cycles SEP étant variable (durée et température) selon les applications, l'algorithme du compteur reconnaît l'augmentation de la température de mesure au-dessus de la valeur saisie dans « Temp. ». Si la température ne baisse pas en dessous de la température définie -10 °C 5 minutes après que la première température a été atteinte, le compteur augmente d'une unité et est verrouillé pour les deux heures suivantes. Si le SEP dure plus de deux heures, le compteur est à nouveau incrémenté d'une unité.

Appuyez sur le champ **RAZ**. Sélectionnez « Oui » si le compteur SEP de la sonde doit être remis à zéro. La réinitialisation sera effectuée une fois les modifications enregistrées.

Lorsqu'une sonde à oxygène est connectée, le compteur doit être réinitialisé après les opérations suivantes. Sonde ampérométrique : remplacement de l'élément sensible de la sonde.

REMARQUE : le paramètre « RAZ » n'est pas disponible sur les électrodes de pH/redox. L'électrode de pH/redox doit être remplacée si le nombre maximum de cycles a été dépassé.

7.5.4 Nombre maximum de cycles d'autoclavage

Si une électrode de pH/redox ou une sonde à oxygène ampérométrique est connectée à la voie sélectionnée alors que le mode Auto a été choisi pendant la configuration des voies (voir la section 7.1.1 «Configuration du canal»), vous pouvez définir ou ajuster le paramètre « Nb max. cycles Autoclav. ». Le paramètre « Nb max. cycles Autoclav. » s'affichera également si l'une des sondes susmentionnées a été installée pendant la configuration des voies.

Appuyez sur « Nb max. cycles Autoclav. ».

Appuyez sur le champ **Cycles max.** pour saisir le nombre maximum de cycles d'autoclavage. La nouvelle valeur sera transmise à la sonde une fois les modifications enregistrées.

Si la valeur indiquée dans « Cycles max. » est égale à 0, le compteur est désactivé.

La sonde n'étant pas connectée au transmetteur pendant un cycle d'autoclavage, le système vous demandera pour chaque sonde connectée si elle a été passée en autoclave. Selon votre réponse, le compteur sera incrémenté ou non. Si la limite (valeur saisie dans « Cycles max. ») est atteinte, une alarme peut être indiquée et définie pour un relais de sortie. Appuyez sur le champ **RAZ**. Sélectionnez « Oui » si le compteur « Autoclavage » de la sonde doit être remis à zéro. La réinitialisation sera effectuée une fois les modifications enregistrées.

Lorsqu'une sonde à oxygène est connectée, le compteur doit être réinitialisé après les opérations suivantes. Sonde ampérométrique : remplacement de l'élément sensible de la sonde.

REMARQUE : le paramètre « RAZ » n'est pas disponible sur les électrodes de pH/redox. L'électrode de pH/redox doit être remplacée si le nombre maximum de cycles a été dépassé.

7.5.5 Ajustement de la tension DLI

Si une électrode de pH/redox est connectée à la voie sélectionnée alors que le mode Auto a été choisi pendant la configuration des voies (voir la section 7.1.1 «Configuration du canal»), vous pouvez ajuster le paramètre « Ajustage DLI ». Grâce à ce paramètre, l'utilisateur peut ajuster la sensibilité de la sonde à la tension exercée par son utilisation afin de calculer le DLI.

ISM Para	DLI Stress Adjustment	

Allez à la page 2 de la Configuration ISM (Config ISM).

Appuyez sur le bouton Ajustage DLI.

Sélectionnez le type d'ajustement de votre choix : « Bas », « Moyen » ou « Haut ».

BAS : DLI étendue (-30 % de sensibilité)

MOYEN : DLI standard (par défaut)

HAUT : DLI réduite (+30 % de sensibilité)

Appuyez sur ← pour valider le réglage.

7.5.6 Paramètres du cycle SAN

Lorsqu'une sonde à ozone est connectée, vous pouvez définir les paramètres du cycle SAN suivants : « Cycles max. » (nombre maximum de cycles de sanitisation), « Conc. max. » (concentration maximale d'ozone autorisée), « Conc. min. » (concentration minimale d'ozone autorisée), « Temps cycle » (durée du cycle) et « RAZ » (réinitialisation).

Appuyez sur le bouton « Paramètres cycles SAN ».

Appuyez sur le champ « Cycles max. » pour saisir le nombre maximum de cycles SAN. Appuyez sur le bouton ← pour accepter la valeur. La nouvelle valeur sera transmise à la sonde une fois les modifications enregistrées.

Les cycles SAN sont comptabilisés par le transmetteur. Si la limite (valeur saisie dans « Cycles max. ») est atteinte, une alarme peut être configurée. Si la valeur indiquée dans « Cycles max. » est égale à 0, le compteur est désactivé.

Appuyez sur le champ « Conc. max. » pour saisir la concentration d'ozone au-delà de laquelle un cycle de sanitisation doit être détecté. Appuyez sur ← pour accepter la valeur.

Appuyez sur le champ « Conc. min. » pour saisir la concentration d'ozone en deçà de laquelle un cycle de sanitisation ne doit plus être détecté. Appuyez sur \leftarrow pour accepter la valeur.

Appuyez sur le champ « Temps Cycle ». Saisissez la durée du cycle. La concentration d'ozone doit être supérieure à la valeur définie dans « Conc. min. » lorsque la valeur « Conc. max. » a été dépassée pour compter un cycle de sanitisation. Appuyez sur \leftarrow pour accepter la valeur.

Appuyez sur le champ « RAZ ». Sélectionnez « Oui » pour remettre à zéro le compteur de sanitisation. L'assainissement est généralement réalisé après le remplacement de la sonde. La réinitialisation sera effectuée une fois les modifications enregistrées.

Appuyez sur ← pour quitter le menu « Paramètres Cycles SAN ».

7.5.7 Réinitialisation des compteurs des sondes UniCond 2-e

Pour les sondes UniCond 2-e, les compteurs suivants peuvent être réinitialisés : « Temp. élevée » et « Conductivité haute ».

Appuyez sur le bouton « Réinit. compteurs ».

Sélectionnez « Oui » pour réinitialiser le compteur souhaité, puis appuyez sur « Entrée ». La réinitialisation sera effectuée une fois les modifications enregistrées.

Appuyez sur ← pour quitter le menu « Réinit. compteurs ».

7.5.8 Définition de l'intervalle d'étalonnage des sondes UniCond 2-e

Pour les sondes UniCond 2-e, vous pouvez définir l'intervalle d'étalonnage (« Interv. cal. »).

Appuyez sur le bouton « Interv. cal. ».

Appuyez sur le champ **Interv. cal.** pour saisir l'intervalle d'étalonnage. Le transmetteur calculera la durée avant le prochain étalonnage (TTCal) à partir de cette valeur. Appuyez sur ← pour accepter la valeur. La nouvelle valeur sera transmise à la sonde une fois les modifications enregistrées.

Appuyez sur ← pour quitter le menu « Interv. cal. ».

7.6 Alarme générale

CHEMIN D'ACCÈS : 🗥 \ CONFIG. \ Alarme générale

Lisez les explications suivantes pour en savoir plus sur les différents réglages de l'alarme générale.

Appuyez sur le bouton « Évènements » à côté de **Option** pour sélectionner les événements qui déclencheront une alarme.

Pour activer un relais lorsque les conditions définies sont remplies, appuyez sur le champ **Relais**. Seul le relais 1 peut être affecté à l'alarme générale. Pour les alarmes générales, le mode de fonctionnement du relais affecté est toujours inversé.

Saisissez le délai en secondes dans **Délai**. Le relais sera activé uniquement si le seuil est dépassé de manière continue pendant le laps de temps spécifié. Si la condition disparaît avant que le délai soit écoulé, le relais ne sera pas activé.
7.7 ISM / Alarme capteur

CHEMIN D'ACCÈS : 🗥 \ CONFIG. \ Alarme ISM / capteur

Lisez les explications suivantes pour en savoir plus sur les différents réglages de l'alarme de la sonde ISM.

් i CONFI	G\ISM / Sensor	Alarm
Options	CHAN_1	Events
Relay	#2	Normal
Delay	5	sec
		←

Sélectionnez la voie souhaitée en appuyant sur le bouton Option.

Vous pouvez sélectionner différents événements (**Evènements**) qui déclencheront une alarme en fonction de la voie sélectionnée et de la sonde affectée. Certaines alarmes seront prises en compte dans n'importe quelle circonstance et ne doivent pas être sélectionnées ou désactivées.

Pour sélectionner le relais souhaité qui sera activé si un événement se produit, appuyez sur le champ **Relais**.

Vous pouvez définir le mode de fonctionnement du relais.

Les contacts du relais sont en mode normal jusqu'à ce que l'un des événements sélectionnés se soit produit. Ensuite, le relais est activé et l'état du contact change. Sélectionnez « Inversé » pour inverser le mode de fonctionnement normal du relais (par exemple, les contacts ouverts sont généralement en position ouverte et les contacts fermés en position fermée si un événement s'est produit).

Saisissez le délai en secondes dans **Délai**. Un délai nécessite que l'événement se produise de manière continue pendant le laps de temps spécifié avant que le relais ne s'active. Si la condition disparaît avant que le délai soit écoulé, le relais ne sera pas activé.

7.8 Nettoyage

CHEMIN D'ACCÈS : 🗥 \ CONFIG. \ Nettoyage

Lisez les explications suivantes pour en savoir plus sur les différents réglages du nettoyage.

Interval	3.5	hrs
Clean Time	300	sec
Assign	Channels]
Relay	#7	Normal

Saisissez le nombre d'heures avant le prochain nettoyage dans **Intervalle**. L'intervalle de nettoyage peut être compris entre 0,000 et 99 999 heures. Un réglage sur 0 désactive le cycle de nettoyage.

Saisissez la durée du nettoyage en nombre de secondes dans **Temps Nett.**. La durée du nettoyage peut être comprise entre 0 et 9 999 secondes et doit être inférieure à l'intervalle de nettoyage.

Sélectionnez la (les) voie(s) à affecter aux cycles de nettoyage dans le champ **Attribuer**. Les voies affectées passeront en mode « Maintien » pendant le nettoyage.

Choisissez un **Relais**. Les contacts du relais sont en mode normal jusqu'à ce que le cycle de nettoyage commence, ensuite le relais est activé et le mode du contact change. Sélectionnez « Inversé » pour inverser le mode de fonctionnement normal du relais (par exemple, les contacts ouverts sont normalement en position ouverte et les contacts fermés en position fermée lorsqu'un cycle de nettoyage commence).

7.9 Config. affichage

CHEMIN D'ACCÈS : 🗥 \ CONFIG. \ Config. affichage

Lisez les explications suivantes pour en savoir plus sur les différents réglages de la configuration de l'affichage.

	Display Setup
InstrumentTag	METTLER
BackLight	Auto Off
LightTime	5 minutes
Max	E E
Dim	- +
	<u> </u>

Saisissez le nom du transmetteur M300 (N° d'instrument). Le nom du transmetteur sera également affiché en haut de la fenêtre d'accueil et de l'écran de menu.

Utilisez le paramètre **Rétroécl.** pour éteindre l'écran du transmetteur ou baisser sa luminosité après un certain temps d'inutilisation. L'écran du transmetteur se rallumera automatiquement si vous appuyez dessus.

Saisissez la durée d'éclairage en minutes dans **durée éclairage**. La durée d'éclairage correspond au délai d'inutilisation avant que la luminosité de l'écran du transmetteur ne baisse ou que l'écran ne s'éteigne.

REMARQUE : si une alarme ou un avertissement n'est pas pris en compte par l'utilisateur, l'écran du transmetteur ne s'éteindra pas même si la durée d'éclairage est écoulée.

Le paramètre **Max** permet de régler le rétroéclairage lorsque le transmetteur est en cours d'utilisation. Avec le paramètre **Dim**, le rétroéclairage de l'écran du transmetteur peut être réglé lorsque sa luminosité est réduite. Appuyez sur les boutons + ou - situés sur la ligne correspondante pour régler ces paramètres.

7.10 Entrées numériques

CHEMIN D'ACCÈS : 🗥 \ CONFIG. \ Entrées num.

Lisez les explications suivantes pour en savoir plus sur les différents réglages des entrées numériques.

G1CONFIG	Digital Inputs	
Channel	CHAN_1	
Mode	Hold	
Digital Inputs	#1	
State	High	
		Ţ

Appuyez sur le champ « Voie » à côté de **voie** pour affecter la voie associée. Sélectionnez la voie que vous souhaitez associer au signal d'entrée.

Appuyez sur le champ **Mode** pour sélectionner le mode d'un signal d'entrée numérique actif. Choisissez « Maintien » pour mettre la voie affectée en mode « Maintien ».

Appuyez sur **Entrées num.** pour affecter les entrées numériques, puis sélectionnez le signal d'entrée numérique à associer à la voie.

Vous pouvez définir un autre paramètre si un signal d'entrée numérique a été sélectionné.

Appuyez sur le champ Etat pour indiquer l'intensité du signal d'entrée (élevée ou faible).

7.11 Système

CHEMIN D'ACCÈS : 🖄 \ CONFIG. \ Système

Lisez les explications suivantes pour en savoir plus sur les différents réglages du système.

Sélectionnez la langue de votre choix (**Langue**). Les langues suivantes sont disponibles : anglais, français, allemand, italien, espagnol, portugais, russe, chinois, coréen ou japonais.

Saisissez la date et l'heure (Date & Heure).

Le passage automatique de l'heure d'hiver à l'heure d'été (et vice versa) évite à l'utilisateur de modifier l'heure deux fois par an.

Le passage à l'heure d'été s'effectue automatiquement grâce à l'horloge de douze mois intégrée dans le transmetteur. Vous pouvez définir la date du changement d'heure avec le paramètre **Eté**.

Sous réserve que ce soit un dimanche, le changement d'heure s'effectuera le jour correspondant à la valeur saisie. À défaut, le changement d'heure se produira le dimanche suivant. Le changement d'heure saisonnier a lieu à 02:00 h.

Le passage à l'heure d'hiver s'effectue automatiquement grâce à l'horloge de douze mois intégrée dans le transmetteur. Vous pouvez définir la date du changement d'heure avec le paramètre **Hiver**.

Sous réserve que ce soit un dimanche, le changement d'heure s'effectuera le jour correspondant à la valeur saisie. À défaut, le changement d'heure se produira le dimanche suivant. Le changement d'heure saisonnier a lieu à 03:00 h.

Vous pouvez choisir le nombre d'heures à ajouter ou retirer lors du changement d'heure saisonnier. Pour cela, appuyez sur le bouton **Heure de travail**.

7.12 Régulateur PID

CHEMIN D'ACCÈS : 🖄 \ CONFIG. \ Contrôleur PID

La régulation du PID est une action de contrôle proportionnelle, intégrale et dérivée capable de réguler en douceur un procédé. Avant de configurer le transmetteur, les caractéristiques de procédé suivantes doivent être définies.

Définissez le sens de contrôle du procédé

- Conductivité :

Dilution : action directe dans laquelle une mesure en augmentation produit une augmentation de la sortie de contrôle, telle que le contrôle de l'alimentation en eau de dilution de faible conductivité pour le rinçage de moteur, les tours de refroidissement ou les chaudières.

Concentration : action inversée dans laquelle la mesure en augmentation produit une diminution de la sortie de contrôle, telle que le contrôle de l'alimentation en produit chimique pour atteindre la concentration souhaitée.

- Oxygène dissous :

Désaération : action directe dans laquelle l'augmentation de la concentration en oxygène dissous produit une augmentation de la sortie de contrôle, telle que le contrôle de l'alimentation en agent réducteur pour éliminer l'oxygène de l'eau alimentant les chaudières. Aération : action inversée dans laquelle l'augmentation de la concentration en O2 dissous produit une diminution de la sortie de contrôle, telle que le contrôle de la vitesse d'un ventilateur d'aération pour maintenir la concentration en O2 dissous souhaitée dans la fermentation ou le traitement des eaux usées.

- pH/redox :

Alimentation en acide uniquement : action directe dans laquelle l'augmentation du pH produit l'augmentation de la sortie de contrôle, également pour l'alimentation en réactif réduisant le redox.

Alimentation en base uniquement : action inversée dans laquelle l'augmentation du pH produit la diminution de la sortie de contrôle, également pour l'alimentation en réactif réduisant le redox.

Alimentation en acide et base : action directe et inversée.

Définissez le type de sortie de contrôle en fonction du dispositif de contrôle utilisé :

Fréquence d'impulsion : utilisée avec une pompe doseuse à entrée d'impulsion

Longueur d'impulsion : utilisée avec une électrovanne

Analogique : utilisée avec un dispositif d'entrée de courant, tel que des commandes électriques, pompes doseuses à entrée analogique ou convertisseurs électropneumatiques (I/P) pour vannes de commande pneumatiques

Les réglages du contrôle par défaut fournissent un contrôle linéaire adapté à la conductivité, à l'oxygène dissous. Par conséquent, pour la configuration de ces paramètres du PID (ou pour le contrôle simple du pH), il est inutile de vous préoccuper des réglages de la zone morte et des points excentrés dans le chapitre Paramètres de réglage ci-dessous. Les réglages de contrôle non linéaires sont utilisés dans des situations de contrôle de pH/redox plus délicates.

Si vous le souhaitez, définissez la non-linéarité du procédé pH/redox. Il est possible d'obtenir un meilleur contrôle si la non-linéarité correspond à une non-linéarité contraire dans le système de contrôle. Une courbe de titrage (graphique du pH ou redox/volume de réactif) réalisée sur un échantillon du procédé fournit les meilleures informations. Il existe souvent un gain ou une sensibilité de procédé très important(e) à proximité du seuil et un gain qui diminue avec l'éloignement par rapport au seuil. Pour contrecarrer ce phénomène, l'instrument permet d'ajuster le contrôle non linéaire en réglant une zone morte autour du seuil, des points excentrés et des limites proportionnelles en bouts de contrôle, tel qu'illustré dans la figure ci-dessous.

Déterminez les réglages appropriés pour chacun de ces paramètres de contrôle établis selon la forme de la courbe de titrage du procédé pH.

Lisez les explications suivantes pour en savoir plus sur les différents réglages du régulateur PID.

៉ែtCONFIG	1PID Controller	
PID	#1	
Chan	None	
Display For	M2	
PID Hold	Off	
PID A/M	Auto	
< 1/2	>	IJ

Le M300 est équipé d'un régulateur PID. Appuyez sur le champ de saisie de la ligne du réglage pour **PID.**

Appuyez sur le champ (**Voie**) à côté de voie pour affecter la voie associée. Sélectionnez la voie que vous souhaitez associer au régulateur PID. Pour désactiver le régulateur PID, appuyez sur « Aucune ».

Appuyez sur le bouton permettant d'affecter un paramètre de mesure (en fonction de la voie sélectionnée) à associer au régulateur PID. Choisissez le paramètre de mesure en appuyant sur le champ correspondant. « Mx » indique la mesure affectée au régulateur PID (voir le chapitre 7.1.1 «Configuration du canal»).

Le M300 permet d'afficher la sortie de contrôle (%PID) du régulateur PID dans la fenêtre d'accueil et la fenêtre de menu. Appuyez sur le champ **Affichage pour** pour afficher la sortie de contrôle souhaitée.

REMARQUE : la sortie de contrôle du régulateur PID s'affichera à la place de la mesure qui a été définie pour être affichée dans la ligne correspondante (voir le chapitre 7.1.1 «Configuration du canal»).

Avec le paramètre **PID HOLD**, sélectionnez l'état de la sortie de contrôle du régulateur PID si le transmetteur M300 est en mode « Maintien ». « Désactivé » signifie que le pourcentage de la sortie de contrôle sera de 0 % si le transmetteur est en mode « Maintien ». Si vous choisissez « Last Value », la valeur du signal de sortie du contrôle avant que le transmetteur ne passe en mode « Maintien » sera utilisée.

Le paramètre **PID A/M** vous permet d'indiquer le mode de fonctionnement du régulateur PID (automatique ou manuel). Si vous choisissez « Auto », le transmetteur calcule le signal de sortie à partir de la valeur mesurée et des paramètres du régulateur PID. Si vous sélectionnez « Manuel », deux autres boutons fléchés apparaissent dans l'écran de menu à l'endroit où le signal de sortie est affiché. Appuyez sur les flèches pour augmenter ou diminuer le signal de sortie PID.

REMARQUE : si vous avez choisi « Manuel », les valeurs indiquées pour les constantes de temps, le gain, les points excentrés, les limites proportionnelles, le seuil et la zone morte n'influencent pas le signal de sortie.

Des paramètres supplémentaires peuvent être définis en accédant à la page suivante du menu.

습/COM	IFIG \	PID Contro	ller	
PID Mode	[Relay PL	1	
Out	1	None	2	None
Pulse Lengt	h [1	sec	
Gain	[1.00]	
minutes	Tr [0.000] ta [0.000
< 2	13	>		IJ

Le **Mode PID** affecte un relais ou une sortie analogique au contrôle du PID. Selon le dispositif de contrôle utilisé, sélectionnez une des trois options proposées (« Relais long », « Relais fréq » et « Sortie ana. ») en appuyant sur le champ correspondant.

Relais long : si vous utilisez une électrovanne, sélectionnez « Relais long » (longueur d'impulsion du relais).

Relais fréq : si vous utilisez une pompe doseuse à entrée d'impulsion, sélectionnez « Relais fréq » (fréquence d'impulsion du relais).

Sortie ana. : pour utiliser une sortie analogique, sélectionnez « Sortie ana. ».

Associez le signal de sortie **Sortie 1, 2** du régulateur PID à la sortie du transmetteur souhaitée. Appuyez sur le bouton correspondant à « Sortie 1 » et « Sortie 2 » pour sélectionner le nombre correspondant au signal. #1 correspond au relais 1 ou à la sortie analogie 1, #2 correspond au relais 2 ou à la sortie analogique 2, etc.

REMARQUE : prenez soin de vérifier si les relais de type Reed sont associés à la fonction de régulation. Les relais de type Reed peuvent être utilisés par les dispositifs de contrôle de la fréquence d'impulsion et les applications peu exigeantes. L'alimentation est limitée à 0,5 A et 10 W (voir aussi le chapitre 14.2 «Caractéristiques électriques»). Ne raccordez pas ce relais à des dispositifs qui nécessitent une alimentation plus élevée.

Si le mode du PID (« Mode PID ») est défini sur « Relais long », vous pouvez ajuster la longueur d'impulsion du signal de sortie du transmetteur. Appuyez sur le bouton **Long impulsion**. Un clavier apparaîtra pour modifier la valeur. Saisissez la nouvelle valeur en secondes en vous aidant du tableau ci-dessous, puis appuyez sur ←.

REMARQUE : une longueur d'impulsion plus importante réduit l'usure de l'électrovanne. Le pourcentage de temps « actif » du cycle est proportionnel à la sortie de contrôle.

	1° position de relais (Sortie 1)	2º position de relais (Sortie 2)	Longueur d'impulsion (PL)
Conductivité	Contrôle de l'alimentation en réactif concentré	Contrôle d'eau de dilution	Une faible longueur d'impulsion (PL) assure une alimentation plus uniforme. Point de départ suggéré = 30 secondes
pH/redox	Alimentation en base	Alimentation en acide	Cycle d'ajout de réactif : une faible longueur d'impulsion assure un ajout de réactif plus uniforme. Point de départ suggéré = 10 secondes
Oxygène dissous	Contrôle en action inversée	Contrôle en action directe	Durée du cycle d'alimentation : une faible longueur d'impulsion (PL) assure une alimentation plus uniforme. Point de départ suggéré = 30 secondes

Si le mode du PID (« Mode PID ») est défini sur « Relais fréq », vous pouvez ajuster la fréquence d'impulsion du signal de sortie du transmetteur. Appuyez sur le bouton **Fréq impulsion** et saisissez la nouvelle valeur en impulsion/minute en vous aidant du tableau ci-dessous.

 $\widehat{\mathcal{T}}$

Â

REMARQUE : réglez la fréquence d'impulsion sur la valeur maximale admise pour la pompe spécifique utilisée ; en général 60 à 100 impulsions/minute. La régulation produit cette fréquence lorsque la sortie est optimale.

ATTENTION : un réglage trop élevé de la fréquence d'impulsion peut entraîner une surchauffe de la pompe.

	1° position de relais = #3	2° position de relais = #4	Fréquence d'impulsion (PF)
Conductivité	Contrôle de l'alimentation en produit chimique concentré	Contrôle d'eau de dilution	Max. autorisé pour la pompe utilisée (généralement 60 à 100 impulsions/minute)
pH/redox	Alimentation en base	Alimentation en acide	Max. autorisé pour la pompe utilisée (généralement 60 à 100 impulsions/minute)
Oxygène dissous	Contrôle en action inversée	Contrôle en action directe	Max. autorisé pour la pompe utilisée (généralement 60 à 100 impulsions/minute)

Si le mode du PID (« Mode PID ») est défini sur **Sortie ana.**, vous pouvez sélectionner le type de signal de sortie analogique du transmetteur. Appuyez sur le bouton correspondant pour choisir le type de signal de sortie (4-20 mA ou 0-20 mA).

Pour affecter le signal de sortie analogique, consultez le tableau ci-dessous.

	1° position du signal analogique = Sortie 1	2° position du signal analogique = Sortie 2
Conductivité	Contrôle de l'alimentation en produit chimique concentré	Contrôle d'eau de dilution
pH/redox	Alimentation en base	Alimentation en acide
Oxygène dissous	Contrôle en action inversée	Contrôle en action directe

Appuyez sur le champ **Gain** pour saisir le gain du régulateur PID (sans unité). « Gain » représente la valeur maximale du signal de sortie du régulateur PID en pourcentage (valeur 1 équivaut à 100%).

Appuyez sur le champ **min** pour modifier le temps de réinitialisation (ou temps intégral) **Tr** (champ gauche) et/ou le temps dérivé (ou intervalle) **Td** (champ droit).

 \bigcirc

REMARQUE : le gain, le temps intégral et le temps dérivé sont généralement réglés ultérieurement en tâtonnant en fonction de la réaction du procédé. Il est recommandé de commencer avec la valeur Td = 0.

Des paramètres supplémentaires peuvent être définis en accédant à la page suivante du menu.

L'écran affiche la courbe du régulateur PID. Elle présente des boutons pour saisir les points excentrés, le seuil et la limite proportionnelle pour 100%.

Appuyez sur le bouton **CP** pour accéder au menu où vous pouvez modifier les points excentrés.

La page 1 comporte les paramètres de la valeur minimale des points excentrés. Appuyez sur le bouton correspondant pour modifier la valeur du paramètre du procédé et du signal de sortie associé en %.

Allez à la page 2 pour consulter les paramètres de la valeur maximale des points excentrés. Appuyez sur le bouton correspondant pour modifier la valeur du paramètre du procédé et du signal de sortie associé en %.

Appuyez sur le bouton SP pour modifier le seuil et la zone morte.

Appuyez sur le bouton **Lim** pour modifier les limites proportionnelles maximale et minimale ; elles correspondent à la plage où une régulation est nécessaire.

7.13 Service

CHEMIN D'ACCÈS : 🗥 \ CONFIG. \ Service

Ce menu est un outil précieux pour le dépannage et permet de diagnostiquer les éléments suivants : « Clavier tactile », « Par sortie ana. », « Lire sortie mA », « Lire entrée mA » (lecture des entrées analogiques), « Config relais » (réglage des relais), « Lire Relais » (lecture des relais), « Lire entrée numérique » (lecture des entrées numériques), « Mémoire », « Affichage ».

Dans le champ **System**, sélectionnez l'élément que vous souhaitez diagnostiquer.

Dans **Voie**, sélectionnez la voie pour consulter les informations de diagnostic de la sonde. Ce menu apparaît uniquement si une sonde est connectée.

La fonction de diagnostic peut maintenant être sélectionnée en appuyant sur le bouton **Diagnostic**.

7.13.1 Réglage des sorties analogiques

Ce menu permet à l'utilisateur de régler toutes les sorties analogiques sur une valeur en mA comprise dans la plage 0-22 mA. Utilisez les boutons + et - pour ajuster le signal de sortie en mA. Le transmetteur ajustera les signaux de sortie en fonction de la mesure et de la configuration des signaux de sortie analogiques.

7.13.2 Lecture des sorties analogiques

Ce menu affiche la valeur en mA des sorties analogiques.

7.13.3 Réglage des relais

Ce menu permet à l'utilisateur d'ouvrir et de fermer chaque relais manuellement. Si l'utilisateur quitte le menu, le transmetteur ouvrira ou fermera le relais en fonction de sa configuration.

7.13.4 Lecture des relais

Ce menu affiche l'état de chaque relais. « Activé » indique que le relais est fermé ; « Désactivé » indique que le relais est ouvert.

7.13.5 Lecture des entrées numériques

Ce menu affiche l'état des signaux d'entrée numérique.

7.13.6 Mémoire

Si vous sélectionnez « Mémoire », le transmetteur testera la mémoire de toutes les cartes des sondes ISM et des transmetteurs connectés.

7.13.7 Affichage

L'écran du transmetteur s'affiche toutes les 5 secondes en rouge, vert, bleu, gris, puis en gris foncé, avant de revenir au menu de maintenance. Si vous appuyez sur l'écran avant la fin des 5 secondes au passage de chaque couleur, le transmetteur passera à l'étape suivante.

7.13.8 Étalonnage du clavier tactile

Pendant les 4 étapes d'étalonnage, appuyez toujours au centre des cercles affichés dans les 4 coins de l'écran. Le transmetteur affichera le résultat de l'étalonnage.

7.13.9 Diagnostic des voies

Si la sonde rencontre un problème, un message d'erreur correspondant apparaît.

7.14 Gestion utilisateur

CHEMIN D'ACCÈS : 🗥 \ CONFIG. \ Gestion utilisateur

Ce menu permet de configurer les différents mots de passe de l'utilisateur et de l'administrateur, et de dresser une liste des menus auxquels peuvent accéder les utilisateurs. L'administrateur dispose de droits pour accéder à tous les menus. Pour les transmetteurs neufs, tous les mots de passe par défaut sont « 00000000 ».

Appuyez sur le champ **Protection** pour sélectionner le type de protection souhaité. Les options suivantes sont disponibles :

Désactivé : Aucune protection

Actif : L'ouverture de l'écran de menu (voir le chapitre 3.4 «Écran») doit être confirmée.

Mot de passe : L'écran de menu ne peut être ouvert qu'avec un mot de passe.

Appuyez sur le bouton **Option** pour sélectionner le profil de l'administrateur (Admin.) ou le profil d'un des utilisateurs.

REMARQUE : l'administrateur dispose des droits pour accéder à tous les menus. Il est possible de définir les droits d'accès de plusieurs utilisateurs.

Appuyez sur le bouton **ID utilisateur** pour saisir le nom de l'utilisateur ou de l'administrateur. Le nom de l'utilisateur ou de l'administrateur s'affichera si la protection par mot de passe est sélectionnée pour ouvrir l'écran de menu.

Pour modifier le mot de passe de l'utilisateur sélectionné ou de l'administrateur, appuyez sur le champ **Mot de passe**. Saisissez l'ancien mot de passe dans le champ « Ancien mdp », le nouveau mot de passe dans le champ « Nouveau mdp », puis confirmez le mot de passe dans le champ « Confirmer mdp ». « 00000000 » est le mot de passe par défaut pour l'administrateur et tous les utilisateurs.

Si vous sélectionnez un profil d'utilisateur, un champ supplémentaire apparaît pour définir les droits d'accès.

Pour attribuer les droits d'accès, vous devez appuyer sur le bouton du menu correspondant. Lors de l'attribution des droits d'accès, le symbole \checkmark apparaît dans le bouton associé.

7.15 Redéfinir

CHEMIN D'ACCÈS : 🖄 \ CONFIG. \ RAZ

Différentes options de réinitialisation sont disponibles en fonction de la version et de la configuration du transmetteur.

Lisez les explications suivantes pour en savoir plus sur les différents réglages pour la réinitialisation des données et/ou des configurations.

7.15.1 Réinitialisation du système

Ce menu permet de réinitialiser le transmetteur M300 aux réglages d'usine (suppression des valeurs de consigne, des sorties analogiques, des mots de passe, etc.). Par ailleurs, les facteurs d'étalonnage des sorties et des entrées analogiques, et du transmetteur peuvent être réinitialisés aux dernières valeurs d'usine.

Appuyez sur le champ Options et sélectionnez « Système ».

Transmetteur M300

30 423 984

Appuyez sur le champ **Point** (bouton configurer) et sélectionnez les différents éléments de configuration à réinitialiser.

Si vous avez sélectionné un élément, le menu Action s'affiche. Appuyez sur le bouton « RAZ ».

7.15.2 Réinitialisation de l'étalonnage des sondes UniCond 2-e

Pour les sondes UniCond 2-e, les paramètres « Cal sonde » et « Cal élec » peuvent être réinitialisés aux réglages d'usine.

Appuyez sur le champ **Options** et sélectionnez la voie sur laquelle est connectée la sonde UniCond 2-e.

Appuyez sur le champ **Point** (bouton Configurer). Sélectionnez « Retour param. usine - Sonde » et/ou « Retour param. usine - Electr. » en cochant la case adjacente. Appuyez sur ← pour accepter la valeur.

Si vous avez sélectionné un élément, le menu Action s'affiche. Appuyez sur le bouton « RAZ ».

Le M300 ouvrira la fenêtre de confirmation. Sélectionnez « Oui » pour procéder à la réinitialisation. Appuyez sur « Non » pour revenir au menu « RAZ » sans procéder à la réinitialisation.

7.16 Sortie USB

CHEMIN D'ACCÈS : 🖄 \ CONFIG. \ Sortie USB

Ce menu vous permet d'imprimer les grandeurs de mesure de différentes voies via une imprimante ou de transférer celles-ci dans le journal des données via la communication USB. L'utilisateur peut modifier les paramètres, tels que l'intervalle d'impression et le nombre de mesures à imprimer par ligne.

Sélectionnez « Mode sortie », « Désactivé » ou « Imprimante ».

7.16.1 Configuration de la sortie de l'imprimante

Le menu Imprimante vous permet de configurer la sortie USB du M300 afin d'envoyer des données vers une imprimante. Vous pouvez définir les paramètres d'impression pour que l'imprimante imprime jusqu'à 6 mesures de configuration sur des lignes distinctes, pour chaque entrée disponible, y compris les voies d'entrée à impulsion. À chaque cycle d'impression, seront imprimées une ligne d'en-tête avec des données et l'heure indiquée par l'horloge interne du M300, ainsi qu'une ligne pour chaque mesure configurée, telle que la voie, la description de la mesure, la grandeur de mesure et l'unité de mesure.

Les données enregistrées apparaîtront de la manière suivante :

11 mai 2012 15:36

Voie Nom de la mesure

- 1 Voie_1 302 ppbO2
- 2 Voie_2 0,54 uS/cm
- 3 Voie_3 7,15 pH

습\ <u>CONFIG</u> \	USB Output	
Output Mode	Printer]
Lines to Print	4]
Output Time	60	minutes
	Configure]
		IJ

Pour définir les paramètres d'impression, sélectionnez l'option « Mode imprimante ». Configurez les options suivantes :

Lignes à imprimer permet de configurer le nombre de mesures à imprimer pour chaque cycle d'impression. Saisissez le nombre total de mesures à configurer pour l'impression. Vous pouvez régler 1 à 8 lignes à imprimer.

Temps sortie permet de définir la durée en minutes entre chaque cycle d'impression. L'intervalle d'impression peut être compris entre 1 et 1 000 minutes.

CONFIG \USB Output				
Outrut	USB Output Configure			
Lincol	1	CHAN_1	pН	
Lines t	2	CHAN_1	സ	
Output	3	CHAN_1	Volts	
	4	CHAN_1	DU	
			L,	
				5

Une fois l'intervalle d'impression et les lignes à imprimer définis, appuyez sur le bouton « Configurer » pour configurer la mise en pages. Le numéro situé à gauche de la fenêtre indique l'ordre d'apparition des lignes sur l'impression. Dans le premier menu déroulant, sélectionnez la voie à laquelle est connectée la sonde souhaitée. Cette liste déroulante affiche le nom des voies que vous avez configurées dans « Config. voie ». Dans la deuxième liste déroulante, sélectionnez l'unité de mesure à afficher. Notez que si vous sélectionnez plus de 4 lignes d'impression, utilisez les boutons < et > pour naviguer entre les pages à configurer.

8 ISM

Pour consulter la structure du menu, reportez-vous au chapitre 3.10 «Courbe de mesure».

CHEMIN D'ACCÈS : ₼ \ ISM

8.1 iMonitor

CHEMIN D'ACCÈS : 🗥 \ ISM \ iMonitor

iMonitor permet à l'utilisateur de connaître l'état de l'enchaînement en un coup d'œil.

L'interface iMonitor de la première voie s'affiche à l'écran. Pour naviguer dans l'interface des différentes voies, appuyez sur > en bas de l'écran.

Les valeurs « DLI », « TTM », et la valeur « TTCal » des sondes UniCond 2-e sont affichées dans un bargraphe. Si ces valeurs baissent sous les 20 % de la valeur initiale, le bargraphe passe du vert au jaune. Si ces valeurs baissent sous les 10 %, le bargraphe devient rouge.

Pour les sondes Cond4e, les jours de fonctionnement de la sonde sont affichés.

En outre, les cycles SEP, NEP, Autoclavage, SAN et les valeurs de Rg et Rref peuvent être affichés et affectés à un bouton de couleur si les valeurs sont fournies par la sonde.

La couleur du bouton associé aux cycles SEP, NEP, Autoclavage et SAN passera du vert au jaune s'il reste moins de 20% de la quantité maximale définie et deviendra rouge s'il reste moins de 10%. Pour définir la quantité maximale du cycle, reportez-vous au chapitre 7.5 «Configuration d'ISM (sondes ISM uniquement)».

Les boutons Rg et Rref deviennent jaunes si les conditions d'un avertissement sont remplies et deviennent rouge si les conditions d'une alarme sont remplies. Ces boutons restent gris si l'alarme ISM correspondante n'est pas configurée (voir le chapitre 7.7 «ISM / Alarme capteur»).

Selon le paramètre mesuré (sonde connectée), les données suivantes sont disponibles dans le menu iMonitor :

pH :	DLI, TTM, ACT, NEP, Autoclavage, SEP*, Rg**, Rref**
O ₂ ampérométrique :	DLI, TTM, ACT, NEP, Autoclavage, SEP*, Électrolyte**
O ₃ :	DLI, TTM, ACT, SAN
Conductivité :	Jours de fonctionnement, TTCal****, NEP, SEP

- dans le cas où Autoclavage n'a pas été activé (voir le chapitre 7.7 «ISM / Alarme capteur»)
- ** dans le cas où l'alarme pour Rg et/ou Rref a été activée (voir le chapitre 7.7 «ISM / Alarme capteur»)
- *** dans le cas où l'alarme pour « Erreur niveau électrolyte » n'a pas été activée (voir le chapitre 7.7 «ISM / Alarme capteur»)
- **** dans le cas où la sonde UniCond 2-e est connectée

8.2 Messages

CHEMIN D'ACCÈS : 🗥 \ ISM \ Messages

Ce menu contient les messages affichés lorsqu'un avertissement ou une alarme se déclenche. Il peut afficher jusqu'à 100 messages.

5 messages sont affichés sur chaque page. S'il existe plus de 5 messages, d'autres pages apparaîtront.

Les alarmes et/ou les avertissements non acquittés seront affichés au début de la liste. Viendront ensuite les alarmes ou les avertissements acquittés, mais toujours en cours. À la fin de la liste sont décrits les alarmes et les avertissements résolus. Les messages sont triés dans l'ordre chronologique à l'intérieur de chaque groupe.

L'état de l'avertissement ou de l'alarme est indiqué de la manière suivante :

Symbole	Désignation	Signification
	Le symbole d'alarme clignote	Une alarme est présente et n'a pas été acquittée
	Le symbole d'alarme ne clignote pas	Une alarme est présente et a été acquittée
	Le symbole d'avertissement clignote	Un avertissement est présent et n'a pas été acquitté
	Le symbole d'avertissement ne clignote pas	Un avertissement est présent et a été acquitté
	Le symbole OK ne clignote pas	Un avertissement ou une alarme a été résolu

Pour acquitter une alarme ou un avertissement, vous devez appuyer sur le bouton **Info** situé sur la ligne correspondante.

Vous pouvez appuyer sur le bouton **Info** pour chaque message. Vous y trouverez la description du message, la date et l'heure à laquelle l'alarme ou l'avertissement s'est déclenché et l'état de l'alarme ou du message.

Si l'avertissement ou l'alarme a déjà été résolu, la fenêtre déroulante du message affiche un autre bouton pour effacer le message (c'est-à-dire pour le supprimer de la liste des messages).

8.3 Diagnostics ISM

Le transmetteur M300 propose un menu de diagnostic pour toutes les sondes ISM. Allez dans le menu « Voie » et sélectionnez la voie correspondante en appuyant sur le champ associé.

Différents menus de diagnostic s'affichent en fonction de la voie sélectionnée et de la sonde affectée. Lisez les explications suivantes pour en savoir plus sur les différents menus de diagnostic.

🗂 \ Messages	
Ch1Warning pHGIs change<0.3	<u>∧</u> info
Ch1Warning pH Offset<7.50pH	\Lambda 🕅
SP1High	info
Ch1Error ORP Offset<-60mV	🖨 🕅
SP4 Between	🍼 🖬
Clear All	
< 1/2 >	IJ

8.3.1 Électrodes pH/redox et sondes à oxygène, ozone et Cond4e

Chan	CHAN_1 pH/ORP
Diagnostic	Cycles
	Sensor Monitor
	Max. Temperature

Si une électrode de pH/redox, une sonde à oxygène, à ozone ou Cond4e est connectée à la voie sélectionnée, vous pouvez accéder aux menus « Cycles », « Surveill. capteur » et « Température max. ».

Appuyez sur le bouton **Cycle** pour afficher les informations sur les cycles NEP, SEP et Autoclavage de la sonde connectée. Les informations affichées indiquent le nombre de cycles qu'a connu la sonde et la limite max. du cycle correspondant, tel qu'elle a été définie dans le menu de configuration ISM (voir le chapitre 7.5 «Configuration d'ISM (sondes ISM uniquement)»).

REMARQUE : pour les sondes Cond4e, qui ne sont pas autoclavables, le menu « Cycles d'autoclavage » n'est pas affiché.

REMARQUE : pour les sondes à ozone, les cycles SAN sont affichés.

Appuyez sur le bouton **Surveill. capteur** pour afficher les informations « DLI », « TTM » et « ACT » de la sonde connectée. Les valeurs « DLI », « TTM » et « ACT » sont affichées dans un bargraphe. Si ces valeurs baissent sous les 20 % de la valeur initiale, le bargraphe passe du vert au jaune. Si ces valeurs baissent sous les 10 %, le bargraphe devient rouge.

REMARQUE : pour les sondes Cond4e, les jours de fonctionnement sont affichés.

Appuyez sur le bouton **Température Max.** pour afficher les informations sur la température maximale connue par la sonde connectée, ainsi que la date et l'heure à laquelle elle est survenue. Cette valeur est enregistrée dans la sonde et ne peut pas être modifiée. La température maximale n'est pas enregistrée pendant l'autoclavage.

Chan CHAN_1 UniCond2e Diagnostic Excursion Counters Highest Mesoured Cycles

 $\zeta \overline{r}$

8.3.2 Sondes UniCond 2-e et UniCond 4-e

Pour les sondes UniCond 2-e et UniCond 4-e, les éléments de diagnostic suivants peuvent être consultés : « Compteur dépass. » (qui comprend les éléments « Temp. élevée » et « Conductivité haute »), « Mesure max. » (qui comprend les éléments « Temp max. » et « Cond. max. ») et « Cycles » (qui comprend les éléments « Cycles NEP » et « Cycles SEP »).

8.4 Données cal.

CHEMIN D'ACCÈS : 🗥 \ ISM \ Données cal.

Le transmetteur M300 offre un historique d'étalonnage pour toutes les sondes ISM. L'historique d'étalonnage fournit différentes données en fonction de la voie sélectionnée et de la sonde affectée.

Lisez les explications suivantes pour en savoir plus sur les différentes données de l'historique d'étalonnage.

8.4.1 Données d'étalonnage de toutes les sondes ISM (excepté les sondes UniCond 2-e et UniCond 4-e)

Si une sonde ISM (excepté les sondes UniCond 2-e et UniCond 4-e) est connectée à la voie sélectionnée, les données d'étalonnage suivantes sont affichées.

Actuel (étalonnage réel) :

 Ce jeu de données passe en position « Cal1 » après un nouveau réglage.

 Usine (étalonnage usine) :
 jeu de données d'origine, déterminé en usine. Ce jeu de données est conservé dans la sonde à titre de référence

jeu de données d'étalonnage utilisé pour les mesures.

- Ajustage 1 (premier réglage) : premier réglage après l'étalonnage usine. Ce jeu de données est conservé dans la sonde à titre de référence et ne peut pas être effacé.
- Cal. 1 (dernière vérif/réglage) : jeu de données du dernier étalonnage/réglage exécuté. Ce jeu de données passe en position « Cal2 », puis « Cal3 » lorsqu'un nouvel étalonnage ou un nouveau réglage est effectué. Après ce niveau, le jeu de données n'est plus disponible. « Cal2 » et « Cal3 » fonctionnent de la même manière que « Cal1 ».

et ne peut pas être effacé.

Cal. 2 et **Cal. 3** peuvent être sélectionnés. Pour sélectionner le jeu de données d'étalonnage, appuyez sur le champ correspondant.

REMARQUE : les jeux de données « Cal1 », « Cal2 », « Cal3 » et « Ajustage 1 » ne sont pas présents sur la sonde à oxygène ampérométrique de THORNTON et la sonde à ozone.

Appuyez sur le bouton **Données cal.** pour afficher le jeu de données d'étalonnage correspondant. L'horodatage de l'étalonnage et l'ID utilisateur sont affichés.

REMARQUE : cette fonction nécessite le réglage adéquat de la date et de l'heure pendant les tâches d'étalonnage et/ou de réglage (voir le chapitre 7.11 «Système»).

ต่าเรmเ	Calibration Data	
Channel	CHAN_1 UniCond2e	
	Cal Data	
		5

8.4.2 Données d'étalonnage des sondes UniCond 2-e et UniCond 4-e

Pour les sondes UniCond 2-e et UniCond 4-e, vous pouvez sélectionner les trois jeux de données d'étalonnage suivants :

Actuel (étalonnage réel) : jeu de données d'étalonnage utilisé pour les mesures.

Usine (étalonnage usine) : jeu de données d'origine, déterminé en usine. Ce jeu de données est conservé dans la sonde à titre de référence et ne peut pas être effacé.

Cal1 (dernière vérif/réglage) : jeu de données du dernier étalonnage/réglage exécuté.

Appuyez sur le bouton Données cal. pour afficher le jeu de données d'étalonnage correspondant.

Si vous avez sélectionné le jeu de données d'étalonnage réel à la page 1, la date et l'heure de l'étalonnage, l'ID utilisateur, les constantes de l'étalonnage de la conductivité et les valeurs de conductivité de référence utilisées pour l'étalonnage sont affichés. La page 2 indique les valeurs de conductivité mesurées et l'écart entre les valeurs mesurées et les valeurs de référence. Les pages 3 et 4 indiquent les mêmes informations pour la température. La page 5 affiche les cycles d'étalonnage propres à la sonde et la prochaine date d'étalonnage de la conductivité (C) et de la température (T).

Si vous avez sélectionné le jeu de données d'étalonnage usine à la page 1, la date et l'heure de l'étalonnage, les constantes de l'étalonnage de la conductivité et les valeurs de conductivité de référence utilisées pour l'étalonnage sont affichées. La page 2 affiche les mêmes valeurs pour la température.

Appuyez sur ← pour quitter le menu « Données cal. ».

REMARQUE : cette fonction nécessite le réglage adéquat de la date et de l'heure pendant les tâches d'étalonnage et/ou de réglage (voir le chapitre 7.11 «Système»).

8.5 Info capteur

CHEMIN D'ACCÈS : 🗥 \ ISM \ Info capteur

Vous pouvez afficher sur l'écran le modèle, la version du matériel et du logiciel, la dernière date d'étalonnage ainsi que le numéro de produit et de série des sondes ISM connectées au transmetteur M300.

Appuyez sur « Info capteur ».

습\I <u>SM</u> \Sensor Info		
Chan	CHAN_2 pH/ORP	
Model:	Inpro 3250i	
Cal Date:	30/Jul/2012 16:53	
S/N	8121241	
P/N:	52005373	
SW Ver.	3.0	
HW Ver:	1.0	
	Ţ	

Imprimé en Suisse

Les informations de la première voie à laquelle est connectée une sonde sont affichées à l'écran. Appuyez sur le champ « Voie ». Pour consulter les informations de la sonde souhaitée, sélectionnez la voie correspondante en appuyant sur le champ associé.

Les informations suivantes sont affichées : « Modèle », « Date cal. » (date du dernier étalonnage), « S/N » (numéro de série), « P/N » (numéro du produit), « Vers. software » (version du logiciel) et « Vers. hardware » (version du matériel).

REMARQUE : si une sonde UniCond 2-e est connectée, les informations suivantes sont également affichées : « Sonde temp. » (sonde de température), « Electrode » (matériau

également affichées : « Sonde temp. » (sonde de température), « Electrode » (matériau de l'électrode), « Corps/isolant: » (matériau de l'isolant et/ou du corps), « El. Int. : » (matériau de l'électrode interne), « El. Ext. : » (matériau de l'électrode externe), « Raccord : » (matériau des raccords), « Class VI » (matériau de classe VI conforme à la FDA).

Pour quitter le menu « Info capteur », appuyez sur ←. Pour revenir à l'écran de menu, appuyez sur 🗥.

8.6 Version du matériel/logiciel

CHEMIN D'ACCÈS : 🗥 \ ISM \ Version logiciels

Vous pouvez afficher sur l'écran la version du matériel et du logiciel ainsi que le numéro de produit et de série du transmetteur M300 ou des différentes cartes qui y sont connectées.

 Image: Second state
 SW Version

 M800
 Transmitter

 SAL
 00000000001

 Pint
 680008002

 SW Ver:
 0.23.03

 HW Ver:
 B

Les informations du transmetteur sont affichées à l'écran. Appuyez sur le champ de saisie de la ligne **M300**. Pour sélectionner les informations de la carte souhaitée ou du transmetteur, appuyez sur le champ correspondant.

Les informations de la carte sélectionnée ou du transmetteur suivantes sont affichées : « S/N » (numéro de série), « P/N » (numéro du produit), « Vers. software » (version du logiciel) et « Vers. hardware » (version du matériel).

Favoris

9

CHEMIN D'ACCÈS : 🗥 \ FAVORI

Le transmetteur M300 permet de configurer jusqu'à 4 favoris pour accéder rapidement aux fonctions fréquemment utilisées.

9.1 Définition des favoris

CHEMIN D'ACCÈS : 🗥 \ FAVORI \ Sélectionner Favori

@\WIZARD\Set Wizard	
ISM	•
CAL	•
CONFIG	۲
	ţ

Les principaux menus sont affichés. Choisissez le menu contenant la fonction que vous souhaitez désigner en favori. Par exemple, sélectionnez le menu ISM en appuyant sur la flèche ► correspondante.

Choisissez la fonction que vous souhaitez désigner en favori en activant l'option. Une fonction définie en favori est désignée par le symbole ★.

REMARQUE : désactivez l'option en appuyant à nouveau sur le symbole. Le symbole \bigstar du favori disparaît.

9.2 Accès aux favoris

Allez dans le menu « Sélectionner Favori ». Les favoris définis sont affichés sur cette page. Appuyez sur la flèche ► correspondant à la fonction de votre choix.

10 Maintenance

10.1 Nettoyage du panneau avant

Nettoyez les surfaces avec un chiffon doux humide et séchez-les soigneusement.

11 Historique du logiciel

11.1 M300 Procédé

Version de logiciel	Date de sortie	Modifications du logiciel	Documentation / Problème
V1.0.0	Février 2016	_	30 423 984 Transmetteur M300 02/2017

11.2 M300 Eau

Version de logiciel	Date de sortie	Modifications du logiciel	Documentation / Problème
V1.0.0	Février 2016	_	30 423 984 Transmetteur M300 02/2017

11.3 M300 Eau cond/rés.

Version de logiciel	Date de sortie	Modifications du logiciel	Documentation / Problème
V1.0.0	Février 2016	_	30 423 984 Transmetteur M300 02/2017

12 Dépannage

Toute autre utilisation de l'équipement que celle spécifiée par Mettler-Toledo peut rendre inopérante la protection fournie par celui-ci.

Le tableau ci-dessous présente les causes possibles de problèmes courants :

Problème	Cause possible
Rien n'apparaît à l'écran.	 Absence d'alimentation du M300. Panne du matériel.
Lectures de mesure incorrectes.	 Sonde mal installée. Saisie incorrecte du multiplicateur d'unités Compensation de température mal réglée ou désactivée. Étalonnage de la sonde ou du transmetteur requis. Câble de raccordement ou câble de sonde défectueux ou plus long que la recommandation. Panne du matériel.
Lectures de mesure instables.	 Sondes ou câbles installés trop près de l'équipement, ce qui génère beaucoup de bruit électrique. Câble plus long que la recommandation. Réglage trop bas de la moyenne. Câble de raccordement ou câble de sonde défectueux.
Le symbole d'alarme apparaît.	 Le point de consigne est en état d'alarme (point de consigne dépassé). Une alarme a été sélectionnée (voir le chapitre 7.7 "ISM / Alarme capteur") et s'est déclenchée.
Impossible de modifier les réglages du menu.	 Utilisateur exclu pour des raisons de sécurité.

12.1 Liste des messages d'erreur, des avertissements et des alarmes relatifs à la conductivité (résistivité) des sondes analogiques

Alarmes	Désignation
Dépass. temps*	Défaut logiciel/système
Cellule cond ouverte*	La cellule tourne à sec (absence de solution de mesure) ou des fils sont rompus.
Court-circuit cellule cond*	Court-circuit causé par la sonde ou le câble

* Activez cette fonction dans les réglages du transmetteur (voir le chapitre 7.6 «Alarme générale» CHEMIN D'ACCÈS : Menu / Alarme générale).

12.2 Liste des messages d'erreur, des avertissements et des alarmes relatifs à la conductivité (résistivité) des sondes ISM

Alarmes	Désignation
Dépass. temps*	Défaut logiciel/système
Sécher la sonde de cond.*	La cellule tourne à sec (absence de solution de mesure)
Déviation cellule*	Multiplicateur hors tolérances** (selon le modèle de sonde).

 Activez cette fonction dans les réglages du transmetteur (voir le chapitre 7.7 «ISM / Alarme capteur»

CHEMIN D'ACCÈS : Menu/Alarme ISM / capteur).

** Pour plus d'informations, consultez la documentation de la sonde.

12.3 Liste des messages d'erreur, des avertissements et des alarmes relatifs au pH

12.3.1 Électrodes de pH sauf celles à double membrane

Avertissements	Désignation
Att. Pente pH >102%	Pente trop importante
Att. Pente pH <90%	Pente trop faible
Att. pH Zéro ±0,5 pH	Hors limite
Att. modif. verre pH <0,3**	Résistance de l'électrode de verre modifiée d'un facteur supérieur à 0,3
Att. modif. verre pH >3**	Résistance de l'électrode de verre modifiée d'un facteur supérieur à 3
Att. modif. réf. pH <0,3**	Résistance de l'électrode de référence modifiée d'un facteur supérieur à 0,3
Att. modif. réf. pH >3**	Résistance de l'électrode de référence modifiée d'un facteur supérieur à 3

Alarmes	Désignation	
Dépass. temps*	Défaut logiciel/système	
Erreur Pente pH >103%	Pente trop importante	
Erreur Pente pH < 80%	Pente trop faible	
Err. pH Zéro ± 1 pH	Hors limite	
Erreur Res Ref >150 KΩ**	Résistance trop élevée de l'électrode de référence (coupure)	
Erreur R. réf. pf < 1000 Ω**	Résistance trop basse de l'électrode de référence (court-circuit)	
Erreur R verre pH > $2000M\Omega^{**}$	Résistance de l'électrode de verre trop importante (coupure)	
Erreur R verre pH < 5 M Ω^{**}	Résistance de l'électrode de verre trop faible (court-circuit)	

* Sondes ISM uniquement

** Activez cette fonction dans les réglages du transmetteur (voir le chapitre 7.7 «ISM / Alarme capteur» CHEMIN D'ACCÈS : Menu/Alarme ISM / capteur).

12.3.2 Électrodes de pH à double membrane (pH/pNa)

Avertissements	Désignation
Att. Pente pH >102%	Pente trop importante
Att. Pente pH <90%	Pente trop faible
Att. pH Zéro ±1,3 pH	Hors limite
Att. modif. verre pH <0,3*	Résistance de l'électrode de verre modifiée d'un facteur supérieur à 0,3
Att. modif. verre pH >3*	Résistance de l'électrode de verre modifiée d'un facteur supérieur à 3
Att. modif. verre pNa<0,3*	Résistance de l'électrode de verre modifiée d'un facteur supérieur à 0,3
Att. modif. verre pNa >3*	Résistance de l'électrode de référence modifiée d'un facteur supérieur à 3

Alarmes	Désignation
Dépass. temps	Défaut logiciel/système
Erreur Pente pH >103%	Pente trop importante
Erreur Pente pH < 80%	Pente trop faible
Erreur pH Zéro ±2 pH	Hors limite
Erreur R verre pNa > 2000 M Ω^*	Résistance de l'électrode de verre trop importante (coupure)
Erreur R verre pNa < 5 M Ω^*	Résistance de l'électrode de verre trop faible (court-circuit)
Erreur R verre pH >2000MΩ*	Résistance de l'électrode de verre trop importante (coupure)
Erreur R verre pH < 5 MΩ*	Résistance de l'électrode de verre trop faible (court-circuit)

*Activez cette fonction dans les réglages du transmetteur (voir la section 7.7 «ISM / Alarme capteur» CHEMIN D'ACCÈS : Menu/Alarme ISM / capteur).

12.3.3 Messages redox

Avertissements*	Désignation
Att redox Zéro > 30 mV	Décalage du zéro trop important
Att redox Zéro <-30 mV	Décalage du zéro trop faible

Alarmes*	Désignation
Dépass. temps	Défaut logiciel/système
Erreur redox Zéro >60 mV	Décalage du zéro trop important
Erreur redox Zéro <-60 mV	Décalage du zéro trop faible

* Sondes ISM uniquement

12.4 Liste des messages d'erreur, des avertissements et des alarmes de la sonde ampérométrique O₂

12.4.1 Sondes de mesure de l'oxygène en forte concentration

Avertissements	Désignation
Att. pente O ₂ <-90nA	Pente trop importante
Att. pente $O_2 > -35nA$	Pente trop faible
Att. O_2 Zéro > 0,3 nA	Décalage du zéro trop important
Att. O_2 Zéro <-0,3 nA	Décalage du zéro trop faible

Alarmes	Désignation	
Dépass. temps*	Défaut logiciel/système	
Erreur pente $O_2 < -110$ nA	Pente trop importante	
Erreur pente $O_2 > -30$ nA	Pente trop faible	
Erreur O ₂ Zéro >0,6 nA	Décalage du zéro trop important	
Erreur O ₂ Zéro <-0,6 nA	Décalage du zéro trop faible	
Electrolyte Low*	Niveau d'électrolyte trop bas	

* Sondes ISM uniquement

12.4.2 Sondes de mesure de l'oxygène en faible concentration

Avertissements	Désignation	
Att. pente $O_2 < -460$ nA	Pente trop importante	
Att. pente $O_2 > -250nA$	Pente trop faible	
Att. O_2 Zéro > 0,5 nA	Décalage du zéro trop important	
Att. O_2 Zéro <-0,5 nA	Décalage du zéro trop faible	

Alarmes	Désignation
Dépass. temps*	Défaut logiciel/système
Erreur Install O ₂ Cavalier	Avec le modèle Hi Performance Oxygen, il convient d'installer un cavalier. Voir le chapitre 4.5.6 "Définition des terminaux TB3 et TB4 pour les sondes analogiques d'oxygène ampérométrique et d'ozone dissous".
Erreur pente O ₂ <-525 nA	Pente trop importante
Erreur pente $O_2 > -220$ nA	Pente trop faible
Erreur O ₂ Zéro >1 nA	Décalage du zéro trop important
Erreur O ₂ Zéro <-1 nA	Décalage du zéro trop faible
Electrolyte bas*	Niveau d'électrolyte trop bas

* Sondes ISM uniquement

12.5 Signalement des avertissements et des alarmes

Un message d'avertissement est enregistré et peut être sélectionné via le menu « Messages »

Les avertissements sont indiqués par un symbole d'avertissement en haut de l'écran

(CHEMIN D'ACCÈS : ANISM Messages ; voir aussi le chapitre 8.2 «Messages»).

12.5.1 Signalement des avertissements

du transmetteur.

C PROCESS ▲ < CHAN_1 H > 7.00 pH 25.0 °C 0.00 mV 250 DLI ISM ★ 上 ★ ※

 $\overline{\mathbf{r}}$

REMARQUE : Si l'avertissement n'est pas acquitté, l'en-tête de l'écran clignote. Si l'avertissement a été acquitté, l'en-tête de l'écran s'affiche en continu. Voir aussi le chapitre 8.2 «Messages». Si une alarme ou un avertissement n'est pas pris en compte par l'utilisateur, l'écran du transmetteur ne s'éteindra pas même si la durée d'éclairage est écoulée (voir le chapitre 7.9 «Config. affichage»).

REMARQUE : si une voie génère simultanément une alarme et un avertissement, l'alarme sera signalée en priorité. L'alarme sera indiquée (voir le chapitre 12.5 «Signalement des avertissements et des alarmes») sur l'écran de menu ou la fenêtre d'accueil, alors que l'avertissement ne sera pas affiché.

🛗 \ Messages	
Ch1Warning pHGIs change<0.3	<u>∧</u> info
Ch1Warning pH Offset<7.50pH	<u>∧</u> info
Ch1Error ORP Offset<-60mV	🏈 🖬
SP1High	🏈 🛛 info
SP4 Between	🖉 info
Clear All	
< 1/2 >	IJ

Appuyez sur l'en-tête de l'écran de menu pour accéder aux messages. Reportez-vous au chapitre 8.2 «Messages» pour lire la description de ce menu.

REMARQUE : la détection de certains avertissements peut être activée/désactivée en désactivant/ activant l'alarme correspondante. Reportez-vous au chapitre 7.7 «ISM / Alarme capteur».

12.5.2 Signalement des alarmes

Les alarmes sont indiquées par un symbole d'alarme en haut de l'écran du transmetteur. Un message d'alarme est enregistré et peut être sélectionné via le menu « Messages » (CHEMIN D'ACCÈS : MISM/Messages ; voir aussi le chapitre 8.2 «Messages»).

REMARQUE : si l'alarme n'est pas acquittée, l'en-tête de l'écran clignote. Si l'alarme a été acquittée, l'en-tête de l'écran s'affiche en continu. Voir aussi le chapitre 8.2 «Messages». Si une alarme ou un avertissement n'est pas pris en compte par l'utilisateur, l'écran du transmetteur ne s'éteindra pas même si la durée d'éclairage est écoulée (voir le chapitre 7.9 «Config. affichage»).

REMARQUE : si une voie génère simultanément une alarme et un avertissement, l'alarme sera signalée en priorité. L'alarme sera indiquée (voir le chapitre 12.5 «Signalement des avertissements et des alarmes») sur l'écran de menu ou la fenêtre d'accueil, alors que l'avertissement ne sera pas affiché.

්් 1Messages	
Ch1Warning pHGIs change<0.3	<u>∧</u> info
Ch1Warning pH Offset<7.50pH	<u>∧</u> info
SP1High	info
Ch1Error ORP Offset<-60mV	info
SP4 Between	🏈 info
Clear All	
< 1/2 >	IJ

Appuyez sur l'en-tête de l'écran de menu pour accéder aux messages. Reportez-vous au chapitre 8.2 «Messages» pour lire la description de ce menu.

REMARQUE : la détection de certaines alarmes peut être activée/désactivée. Reportez-vous au chapitre 7.7 «ISM / Alarme capteur».

REMARQUE : les alarmes provoquées par un dépassement de la limite d'une consigne ou de la plage de valeurs admises (CHEMIN D'ACCÈS : ACONFIG.\Vals de consigne ; voir aussi le chapitre 7.4 «Valeurs de consigne») seront aussi signalées à l'écran et enregistrées dans le menu « Messages » (CHEMIN D'ACCÈS : ANMMessages ; voir aussi le chapitre 8.2 «Messages»).

13 Références de commande, accessoires et pièces détachées

Pour plus d'informations sur les autres accessoires et pièces détachées proposés, contactez votre bureau de vente ou votre représentant local Mettler-Toledo.

Transmetteur	Réf.
M300 Procédé mixte 1 voie, ¼ DIN	30 280 770
M300 Procédé mixte 1 voie, ½DIN	30 280 771
M300 Procédé mixte 2 voies, ¼ DIN	30 280 772
M300 Procédé mixte 2 voies, ½DIN	30 280 773
M300 Eau mixte 1 voie, ¼ DIN	30 280 776
M300 Eau mixte 1 voie, ½DIN	30 280 777
M300 Eau mixte 2 voies, ¼ DIN	30 280 778
M300 Eau mixte 2 voies, ½ DIN	30 280 779
M300 Eau, 2 voies cond/rés, ¼ DIN	30 280 774
M300 Eau, 2 voies cond/rés, ½ DIN	30 280 775

Réf.	
30 300 480	
30 300 481	
30 300 482	
30 073 328	

14 Caractéristiques

14.1 Caractéristiques générales

pH/redox (dont pH/pNa)

Paramètres de mesure	pH, mV et température
Plage d'affichage du pH	-2,00 à +16,00 pH
Résolution pH	Auto/0,001/0,01/0,1/1 (peut être sélectionnée)
Précision pH 1)	Analogique : ±0,02 pH
Gamme mV	-1500 à + 1500 mV
Résolution mV	Auto/0,001/0,01/0,1/1 mV (peut être sélectionnée)
Précision mV ¹⁾	Analogique : ±1 mV
Saisie de la température ²⁾	Pt1000/Pt100/NTC22k
Plage de mesure de la température	-30 à +130 °C (-22 à +266 °F)
Résolution de température	Auto/0,001/0,01/0,1/1 (peut être sélectionnée)
Précision de la température 1)	Analogique : ±0,25 °C (±0,45 °F)
Compensation en température	Automatique/manuelle
Longueur max. du câble de sonde	Analogique : 10 à 20 m selon la sonde
	• ISM : 80 m (260 pi)
Étalonnage	1 point, 2 points ou procédé
1) La aignal d'antrés ICM na génèra nga	d'arraur augulámantaire

1) Le signal d'entrée ISM ne génère pas d'erreur supplémentaire.

2) Non requis avec les sondes ISM.

Oxygène ampérométrique

Paramètres de mesure	Oxygène dissous (DO) : saturation ou concentration et température		
Plage de mesure du courant	Analogique : 0 à -7000 nA		
Plages d'affichage de l'O2 dissous	• Saturation : 0 à 500 % air, 0 à 200 % 0 ₂ sat.		
	 Concentration : 0 ppb (μg/I) à 50,00 ppm (mg/I) 		
Précision O_2 dissous ¹) • Saturation : ±0,5 % de la valeur mesurée ou ± 0,5 %			
	la valeur la plus élevée		
	Valeurs de concentration élevées : ±0,5% de la valeur mesurée		
	ou \pm 0,050 ppm/ \pm 0,050 mg/l suivant la valeur la plus élevée		
	Valeurs de concentration faibles : ±0,5% de la valeur mesurée		
	ou \pm 0,001 ppm/ \pm 0,001 mg/l suivant la valeur la plus élevée		
	 Concentration à l'état de traces : ±0,5% de la valeur mesurée 		
	ou $\pm 0,100$ ppb/ $\pm 0,1$ µg/l suivant la valeur la plus élevée		
Résolution O2 dissous	Auto/0,001/0,01/0,1/1 (peut être sélectionnée)		
Tension de polarisation	 O₂ élevé analogique : Étalonnage/mesure : –675 mV 		
	(non configurable)		
	 O₂ faible analogique : Étalonnage : -675 mV, 		
	Mesure : – 500 mV (non configurable)		
Entrée température	Pt1000/Pt100/NTC22k		
Compensation en température	Automatique		
Plage de mesure de la température	–10°C à +80 °C		
Résolution de température	Auto/0,001/0,01/0,1/1 °C (°F) (sélection possible)		
Précision de la température 1)	±0,25 °C (±0,45 °F)		
Longueur max. du câble de sonde	• Analogique : 20 m (65 ft)		
	• ISM : 80 m (260 pi)		
Étalonnage	1 point (pente et décalage) ou procédé (pente et décalage)		

1) Le signal d'entrée ISM ne génère pas d'erreur supplémentaire.

Ozone dissous

Paramètres de mesure	Concentration et température	
Plage d'affichage du courant	Analogique : 0 à -7 000 nA	
Plage de mesure de l'ozone	• Court terme : 0 à 5 ppm (mg/l) O ₃	
	• Continu : 0 à 500 ppb (μg/l) 0 ₃	
Précision de l'ozone 1)	Analogique : \pm 0,5 % de la valeur ou \pm 5 ppb	
Résolution	±1 digit	
Compensation en température	Automatique	
Plage de mesure de la température	0 à +50 °C (+32 à +122 °F)	
Résolution de température	Auto/0,001/0,01/0,1/1 (peut être sélectionnée)	
Précision de la température 1)	Analogique : ± 0.25 °C (± 0.45 °F)	
Longueur max. du câble de sonde	80 m	
Étalonnage	1 point (décalage) ou procédé (pente et décalage)	

1) Le signal d'entrée ISM ne génère pas d'erreur supplémentaire.

Conductivité à 2 ou 4 électrodes

Paramètres de mesure	Conductivité/résistivité et température		
Plages de conductivité	Cf. caractéristiques techniques de la sonde		
Courbes de concentration	NaCl : 0 – 26 % à 0 °C à 0 – 28 % à +100 °C		
chimique (utilisé avec les	NaOH : 0-12% à 0°C à 0-16% à+40°C à 0-6% à+100°C		
sondes à 4 électrodes)	HCl: 0−18% à−20 °C à 0−18% à0 °C à 0−5% à +50 °C		
	HNO ₃ : 0-30% à-20 °C à 0-30% à 0 °C à 0-8% à +50 °C		
	H ₂ SO ₄ : 0-26% à-12 °C à 0-26% à +5 °C à 0-9% à +100 °C		
	H ₃ PO ₄ : 0-35% à +5 °C à +80 °C		
Plages des solides	NaCl, CaCO ₃		
totaux dissous			
Précision Cond/Rés 1)	Analogique : ± 0.5 % de la valeur ou 0.25 Ω		
Répétabilité Cond/Rés 1)	Analogique : \pm 0,25 % de la valeur ou 0,25 Ω		
Résolution Cond/Rés	Auto/0,001/0,01/0,1/1 (peut être sélectionnée)		
Entrée température	Pt1000		
Plage de mesure	−40 °C à +200 °C		
de la température			
Résolution de température	Auto/0,001/0,01/0,1/1 (peut être sélectionnée)		
Précision de la température	Analogique : ±0,25 °C dans la plage comprise entre		
	-30 et +150 °C ; ±0,50 °C extérieur		
Longueur max. du câble	 Analogique : sondes 2 électrodes : 61 m (200 pi) ; 		
de sonde	sondes 4 électrodes : 15 m (50 pi)		
	 ISM : sondes 2 électrodes : 90 m (300 pi) ; 		
	sondes 4 électrodes : 80 m (260 pi)		
Étalonnage	1 point, 2 points ou procédé		

1) Le signal d'entrée ISM ne génère pas d'erreur supplémentaire.

14.2 Caractéristiques électriques

Tension d'alimentation	• De 80 à 255 V CA, de 50 à 60 Hz, 10 VA • 20 à 30 V CC, 10 VA		
Bornier de connexion	Terminaux à vis amovibles,		
	appropriés pour section transversale de fil de 0,2 à 1,5 mm ²		
	(AWG 16-24)		
Fusible secteur	2,0 A à action retardée, type FC		
Sorties analogiques	 4 pour les modèles à 2 voies 		
	• 2 pour les modèles à 1 voie		
Signaux de sortie analogique	0/4 à 20 mA, alarme 22 mA, avec isolation galvanique de l'entrée		
	et de la terre		
Erreur de mesure sur les sorties analogiques	$<\pm0,05$ mA sur la plage comprise entre 1 et 22 mA		
Configuration des sorties analo- aiaues	Linéaire, bilinéaire, logarithmique et automatique		
Charger	Μαχ. 500 Ω		
Régulateur PID	1 PID par longueur d'impulsion, fréquence d'impulsion ou contrôle		
0	analogique		
Durée du cycle de sortie analogique	env. 1 s		
Entrée MAINTIEN/Contact d'alarme	Oui/Oui		
Temporisation de sortie d'alarme	0 à 999 s, sélectionnable		
Relais	• 2 SPST mécaniques à 250 V CA ou 30 V CC, 3 A		
	 2 SPST type Reed, 250 V CA ou 250 V CC, 0,5 A, 10 W 		
Entrée numérique	• 2 pour les modèles à 2 voies		
	 1 pour les modèles à 1 voie 		
	Avec limites de commutation de 0,00 V CC à 1,00 V CC en inactif,		
	et de 2,30 V CC à 30,00 V CC en actif ; isolation galvanique jusqu'à		
	60 V de la sortie, de l'entrée analogique et de la terre		
Interface utilisateur	• Écran tactile TFT 4"		
	Noir et blanc		
	Résolution : ¼ VGA (320 x 240 pixels)		
Langues	10 (anglais, allemand, français, italien, espagnol, portugais, russe,		
	japonais, coréen et chinois)		
Interfaces	 1 port USB : connexion à une imprimante, consignation 		
	de données ¹⁾ , chargement de la configuration à partir		
	d'une clé USB et enregistrement de la configuration sur clé USB 1)		
	 1 périphérique USB : interface de mise à jour du logiciel 		

1) En cours de préparation

14.3 Caractéristiques environnementales

Température de stockage	−40 °C à +70 °C
Température ambiante domaine de	–10 °C à +50 °C
mesure	
Humidité relative	0 à 95 % sans condensation
Altitude	Max. 2000 m
CEM	Conforme à la norme EN 61326-1:2013 (environnements industriels)
	Émission : classe A, immunité : classe A
UL	Catégorie d'installation (surtension) II
Marque CE	Le système de mesure est conforme aux exigences réglementaires
	des directives CE. METTLER TOLEDO confirme la réussite des tests
	effectués sur le dispositif en y apposant la marque CE.

14.4 Caractéristiques mécaniques

Version DIN 1/2

Dimensions	Boîtier –	136 x 136 x 116 mm	
	hauteur x largeur x profondeu	(5,35 x 5,35 x 4,57 pouces)	
	Face avant –	150 x 150 mm	
	hauteur x largeur	(5,91 x 5,91 pouces)	
	Profondeur max. – en cas	116 mm (4,57 pouces)	
	de montage sur panneau	(hors connecteurs enfichables)	
Poids		0,95 kg (2 livres)	
Matériau		ABS/polycarbonate	
Classification du boîtier		IP 65	

Version DIN 1/4

Dimensions	Boîtier –	91 x 91 x 122 mm	
	hauteur x largeur x profondeur	(3,58 x 3,58 x 4,80 pouces)	
	Face avant –	112 x 112 mm	
	hauteur x largeur	(4,41 x 4,41 pouces)	
	Profondeur max. – en cas	122 mm (4,80 pouces)	
	de montage sur panneau	(hors connecteurs enfichables)	
Poids		0,6 kg (1,5 livre)	
Matériau		ABS/polycarbonate	
Classification du boîtier		IP65 (avant)/IP20 (arrière)	

15 Garantie

METTLER TOLEDO garantit que ce produit est exempt de tout vice matériel et de conception pour une période d'une (1) année à compter de la date d'achat. Au cours de la période de garantie, si des réparations sont nécessaires et qu'elles ne résultent pas d'une mauvaise utilisation du produit, veuillez le retourner avec les frais de transport prépayés. Les modifications seront effectuées sans frais. Le service client de METTLER TOLEDO déterminera si le problème rencontré par le produit résulte d'une mauvaise utilisation ou d'un vice de fabrication. Les produits qui ne font pas l'objet d'une garantie seront réparés à vos frais sur la base d'un remplacement à l'identique.

La garantie ci-dessus est la garantie exclusive de METTLER TOLEDO et remplace toutes les autres garanties, expresses ou tacites, y compris mais sans s'y limiter, les garanties implicites de qualité marchande et de convenance à une fin particulière. METTLER TOLEDO ne pourra être tenu responsable des dommages, des pertes, des réclamations, des manques à gagner fortuits ou induits, découlant des actes ou des omissions de l'acquéreur ou de tiers, que ce soit par négligence ou autre. METTLER TOLEDO est dégagé de toute responsabilité en termes de réclamation, quelle qu'elle soit, qu'elle repose sur un contrat, une garantie, une indemnisation ou un délit (y compris la négligence), se révélant supérieure au prix d'achat du produit.

16 Tableaux de tampons

Les transmetteurs M300 ont la possibilité de reconnaître automatiquement un tampon pH. Les tableaux suivants indiquent les différents tampons reconnus automatiquement.

16.1 Tampons pH standard

16.1.1 Mettler-9

Temp. (°C)	pH de solutions tampons			
0	2,03	4,01	7,12	9,52
5	2,02	4,01	7,09	9,45
10	2,01	4,00	7,06	9,38
15	2,00	4,00	7,04	9,32
20	2,00	4,00	7,02	9,26
25	2,00	4,01	7,00	9,21
30	1,99	4,01	6,99	9,16
35	1,99	4,02	6,98	9,11
40	1,98	4,03	6,97	9,06
45	1,98	4,04	6,97	9,03
50	1,98	4,06	6,97	8,99
55	1,98	4,08	6,98	8,96
60	1,98	4,10	6,98	8,93
65	1,98	4,13	6,99	8,90
70	1,99	4,16	7,00	8,88
75	1,99	4,19	7,02	8,85
80	2,00	4,22	7,04	8,83
85	2,00	4,26	7,06	8,81
90	2,00	4,30	7,09	8,79
95	2,00	4,35	7,12	8,77

Temp. (°C)	pH de solutions tampons			
0	2,03	4,01	7,12	10,65
5	2,02	4,01	7,09	10,52
10	2,01	4,00	7,06	10,39
15	2,00	4,00	7,04	10,26
20	2,00	4,00	7,02	10,13
25	2,00	4,01	7,00	10,00
30	1,99	4,01	6,99	9,87
35	1,99	4,02	6,98	9,74
40	1,98	4,03	6,97	9,61
45	1,98	4,04	6,97	9,48
50	1,98	4,06	6,97	9,35
55	1,98	4,08	6,98	
60	1,98	4,10	6,98	
65	1,99	4,13	6,99	
70	1,98	4,16	7,00	
75	1,99	4,19	7,02	
80	2,00	4,22	7,04	
85	2,00	4,26	7,06	
90	2,00	4,30	7,09	
95	2,00	4,35	7,12	

16.1.2 Mettler-10

16.1.3 Tampons techniques NIST

Temp. (°C)	pH de solutions tampons				
0	1,67	4,00	7,115	10,32	13,42
5	1,67	4,00	7,085	10,25	13,21
10	1,67	4,00	7,06	10,18	13,01
15	1,67	4,00	7,04	10,12	12,80
20	1,675	4,00	7,015	10,07	12,64
25	1,68	4,005	7,00	10,01	12,46
30	1,68	4,015	6,985	9,97	12,30
35	1,69	4,025	6,98	9,93	12,13
40	1,69	4,03	6,975	9,89	11,99
45	1,70	4,045	6,975	9,86	11,84
50	1,705	4,06	6,97	9,83	11,71
55	1,715	4,075	6,97		11,57
60	1,72	4,085	6,97		11,45
65	1,73	4,10	6,98		
70	1,74	4,13	6,99		
75	1,75	4,14	7,01		
80	1,765	4,16	7,03		
85	1,78	4,18	7,05		
90	1,79	4,21	7,08		
95	1,805	4,23	7,11		

Temp. (°C)	pH de solutions tampons			
0				
5	1,668	4,004	6,950	9,392
10	1,670	4,001	6,922	9,331
15	1,672	4,001	6,900	9,277
20	1,676	4,003	6,880	9,228
25	1,680	4,008	6,865	9,184
30	1,685	4,015	6,853	9,144
37	1,694	4,028	6,841	9,095
40	1,697	4,036	6,837	9,076
45	1,704	4,049	6,834	9,046
50	1,712	4,064	6,833	9,018
55	1,715	4,075	6,834	8,985
60	1,723	4,091	6,836	8,962
70	1,743	4,126	6,845	8,921
80	1,766	4,164	6,859	8,885
90	1,792	4,205	6,877	8,850
95	1,806	4,227	6,886	8,833

16.1.4 Tampons standard NIST (DIN et JIS 19266 : 2000–01)

REMARQUE : Les valeurs pH(S) des différentes charges des matériaux de référence secondaires sont documentées dans un certificat établi par un laboratoire agréé. Ce certificat est fourni avec le matériau correspondant du tampon. Seules ces valeurs pH(S) doivent être utilisées comme valeurs standard pour les matériaux de tampons de référence secondaires. En conséquence, cette valeur standard n'inclut pas de tableau avec des valeurs du pH standard pour l'application pratique. Le tableau ci-dessus fournit des exemples de valeurs pH(PS) à titre d'information uniquement.

16.1.5 Tampons Hach

Valeurs de tampons jusqu'à 60 °C tel que spécifié par Bergmann & Beving Process AB.

Temp. (°C)	pH de solutions tampons			
0	4,00	7,14	10,30	
5	4,00	60	10,23	
10	4,00	7,04	10,11	
15	4,00	7,04	10,11	
20	4,00	7,02	10,05	
25	4,01	7,00	10,00	
30	4,01	6,99	9,96	
35	4,02	6,98	9,92	
40	4,03	6,98	9,88	
45	4,05	6,98	9,85	
50	4,06	6,98	9,82	
55	4,07	6,98	9,79	
60	4,09	6,99	9,76	

Temp. (°C)	pH de solutions tampons			
0	2,04	4,00	7,10	10,30
5	2,09	4,02	7,08	10,21
10	2,07	4,00	7,05	10,14
15	2,08	4,00	7,02	10,06
20	2,09	4,01	6,98	9,99
25	2,08	4,02	6,98	9,95
30	2,06	4,00	6,96	9,89
35	2,06	4,01	6,95	9,85
40	2,07	4,02	6,94	9,81
45	2,06	4,03	6,93	9,77
50	2,06	4,04	6,93	9,73
55	2,05	4,05	6,91	9,68
60	2,08	4,10	6,93	9,66
65	2,07*	4,10*	6,92*	9,61*
70	2,07	4,11	6,92	9,57
75	2,04*	4,13*	6,92*	9,54*
80	2,02	4,15	6,93	9,52
85	2,03*	4,17*	6,95*	9,47*
90	2,04	4,20	6,97	9,43
95	2,05*	4,22*	6,99*	9,38*

16.1.6 Tampons Ciba (94)

*Extrapolé

16.1.7 Merck Titrisole, Riedel-de-Haën Fixanale

Temp. (°C)	pH de solutions tampons						
0	2,01	4,05	7,13	9,24	12,58		
5	2,01	4,05	7,07	9,16	12,41		
10	2,01	4,02	7,05	9,11	12,26		
15	2,00	4,01	7,02	9,05	12,10		
20	2,00	4,00	7,00	9,00	12,00		
25	2,00	4,01	6,98	8,95	11,88		
30	2,00	4,01	6,98	8,91	11,72		
35	2,00	4,01	6,96	8,88	11,67		
40	2,00	4,01	6,95	8,85	11,54		
45	2,00	4,01	6,95	8,82	11,44		
50	2,00	4,00	6,95	8,79	11,33		
55	2,00	4,00	6,95	8,76	11,19		
60	2,00	4,00	6,96	8,73	11,04		
65	2,00	4,00	6,96	8,72	10,97		
70	2,01	4,00	6,96	8,70	10,90		
75	2,01	4,00	6,96	8,68	10,80		
80	2,01	4,00	6,97	8,66	10,70		
85	2,01	4,00	6,98	8,65	10,59		
90	2,01	4,00	7,00	8,64	10,48		
95	2,01	4,00	7,02	8,64	10,37		
Temp. (°C)	pH de solutions tampons						
------------	-------------------------	------	------	-------	---	--	--
0	2,03	4,01	7,12	10,65			
5	2,02	4,01	7,09	10,52			
10	2,01	4,00	7,06	10,39			
15	2,00	4,00	7,04	10,26			
20	2,00	4,00	7,02	10,13			
25	2,00	4,01	7,00	10,00			
30	1,99	4,01	6,99	9,87			
35	1,99	4,02	6,98	9,74			
40	1,98	4,03	6,97	9,61			
45	1,98	4,04	6,97	9,48			
50	1,98	4,06	6,97	9,35			
55	1,98	4,08	6,98				
60	1,98	4,10	6,98				
65	1,99	4,13	6,99				
70		4,16	7,00				
75		4,19	7,02				
80		4,22	7,04				
85		4,26	7,06				
90		4,30	7,09				
95		4,35	7,12		_		

16.1.8 Tampons WTW

16.1.9 Tampons JIS Z 8802

Temp. (°C)	pH de solutions tampons						
0	1,666	4,003	6,984	9,464			
5	1,668	3,999	6,951	9,395			
10	1,670	3,998	6,923	9,332			
15	1,672	3,999	6,900	9,276			
20	1,675	4,002	6,881	9,225			
25	1,679	4,008	6,865	9,180			
30	1,683	4,015	6,853	9,139			
35	1,688	4,024	6,844	9,102			
38	1,691	4,030	6,840	9,081			
40	1,694	4,035	6,838	9,068			
45	1,700	4,047	6,834	9,038			
50	1,707	4,060	6,833	9,011			
55	1,715	4,075	6,834	8,985			
60	1,723	4,091	6,836	8,962			
70	1,743	4,126	6,845	8,921			
80	1,766	4,164	6,859	8,885			
90	1,792	4,205	6,877	8,850			
95	1,806	4,227	6,886	8,833			

16.2 Tampons pour électrode de pH à double membrane

16.2.1 Tampons pH/pNa Mettler (Na+ 3,9M)

Temp. (°C)	pH de solutions tampons					
0	1,98	3,99	7,01	9,51		
5	1,98	3,99	7,00	9,43		
10	1,99	3,99	7,00	9,36		
15	1,99	3,99	6,99	9,30		
20	1,99	4,00	7,00	9,25		
25	2,00	4,01	7,00	9,21		
30	2,00	4,02	7,01	9,18		
35	2,01	4,04	7,01	9,15		
40	2,01	4,05	7,02	9,12		
45	2,02	4,07	7,03	9,11		
50	2,02	4,09	7,04	9,10		

Vente et service après-vente :

Allemaane

Mettler-Toledo GmbH ProzeBanalytik Ockerweg 3, DE-35396 Gießen +49 641 507 444 Tél e-mail prozess@mt.com

Australie

Mettler-Toledo Limited 220 Turner Street, Port Melbourne, VIC 3207 Australia +61 1300 659 761 Tél e-mail info.mtaus@mt.com

Autriche

Mettler-Toledo Ges.m.b.H. Laxenburger Str. 252/2 AT - 1230 Wien +43 1 607 4356 Tél e-mail prozess@mt.com

Brésil

Mettler-Toledo Ind. e Com. Ltda. Avenida Tamboré, 418, Tamboré BR-06460-000 Barueri/SP +55 11 4166 7400 Tél e-mail mtbr@mt.com

Canada

Mettler-Toledo Inc. 2915 Argentia Rd #6 CA-ON L5N 8G6 Mississauga +1 800 638 8537 Tél. e-mail ProInsideSalesCA@mt.com

Chine

Mettler-Toledo International Trading (Shanghai) Co. Ltd. 589 Gui Ping Road, Cao He Jina CN-200233 Shanghai Tél +86 21 64 85 04 35 e-mail ad@mt.com

Corée du Sud

Mettler-Toledo (Korea) Ltd. 1 & 4 F, Yeil Building 21 Yangjaecheon-ro 19-gil SeoCho-Gu, Seoul 06753 Korea +82 2 3498 3500 Tél e-mail Sales_MTKR@mt.com

Croatie

Mettler-Toledo d.o.o. Mandlova 3, HR - 10000 Zagreb +385 1 292 06 33 Tél e-mail mt.zagreb@mt.com

Danemark

Mettler-Toledo A/S Naverland 8, DK-2600 Glostrup +45 43 27 08 00 Tél. e-mail info.mtdk@mt.com

Système de gestion certifié selon ISO 9001 / ISO 14001

Espaane

Mettler-Toledo S.A.E. C/Miguel Hernández, 69-71 ES-08908 L'Hospitalet de Llobregat (Barcelona) +34 902 32 00 23 ΤéΙ e-mail mtemkt@mt.com

États-Unis

METTLER TOLEDO **Process Analytics** 900 Middlesex Turnpike, Bld. 8 Billerica, MA 01821, USA +1 781 301 8800 Tél +1 800 352 8763 Tél. grat. mtprous@mt.com e-mail

France

Mettler-Toledo Analyse Industrielle S.A.S. 30, Boulevard de Douaumont FR-75017 Paris Tél. +33 1 47 37 06 00 e-mail mtpro-f@mt.com

Grande Bretagne

Mettler-Toledo LTD 64 Boston Road, Beaumont Leys GB-Leicester LE4 1AW +44 116 235 7070 Tél e-mail enquire.mtuk@mt.com

Honarie

Mettler-Toledo Kereskedelmi KFT Teve u. 41, HU-1139 Budapest +36 1 288 40 40 Tél e-mail order.mt-hu@mt.com

Inde

Mettler-Toledo India Private Limited Amar Hill, Saki Vihar Road, Powai IN-400 072 Mumbai +91 22 4291 0111 Tél e-mail sales.mtin@mt.com

Indonésie

PT. Mettler-Toledo Indonesia GRHA PERSADA 3rd Floor JI. KH. Noer Ali No. 3A Kayuringin Jaya Kalimalang, Bekasi 17144, ID +62 21 294 53919 Tél. e-mail mt-id.customersupport@mt.com

Italie

Mettler-Toledo S.p.A. Via Vialba 42 IT-20026 Novate Milanese Tél. +39 02 333 321 e-mail customercare.italia@mt.com

Japon

Mettler-Toledo K.K. Process Division 6F Ikenohata Nisshoku Bldg. 2-9-7, Ikenohata, Taito-ku JP-110-0008 Tokyo +81 3 5815 5606 Tél e-mail helpdesk.ing.jp@mt.com

Malaisie

Mettler-Toledo (M) Sdn Bhd Bangunan Electroscon Holding, U 1-01 Lot 8 Jalan Astaka U8/84 Seksyen U8, Bukit Jelutong MY-40150 Shah Alam Selangor +60 3 78 44 58 88 Tél e-mail MT-MY.CustomerSupport@mt.com

Mexique

Mettler-Toledo S.A. de C.V. Ejército Nacional #340 Polanco V Sección, C.P. 11560 MX - México D.F. +52 55 1946 0900 Tél e-mail mt.mexico@mt.com

Norvège

Mettler-Toledo AS Ulvenveien 92B NO-0581 Oslo Norway +47 22 30 44 90 Tél info.mtn@mt.com e-mail

Philippines

Mettler-Toledo Philippines Inc. 6F NOL Towers, Commerce Ave. Madrigal Business Park Ayala Alabang Muntinlupa 1780 Philippines +63 2 528 8920 Tél e-mail MT-PH.CustomerSupport@mt.com

Poloane

Mettler-Toledo (Poland) Sp.z.o.o. ul. Poleczki 21 PL-02-822 Warszawa +48 22 440 67 00 Tél polska@mt.com e-mail

République Tchèque

Mettler-Toledo s.r.o. Trebohosticka 2283/2 CZ-00 00 Praha 10 Tél. +420 226 808 150 sales.mtcz@mt.com e-mail

Russie

Mettler-Toledo Vostok ZAO Sretensky blvd. 6/1 - Office 6 RU - 101000 Moscow +7 495 621 56 66 Tél. e-mail inforus@mt.com

Singapour

Mettler-Toledo (S) Pte. Ltd. Block 28 Ayer Rajah Crescent # 05-01 SG-139959 Singapore +65 6890 00 11 Tél e-mail mt.sg.customersupport@ mt.com

Slovaauie

Mettler-Toledo s.r.o. Hattalova 12/A SK-831 03 Bratislava +421 2 4444 1221 Tél predaj@mt.com e-mail

Slovénie

Mettler-Toledo d.o.o. Pot heroja Trtnika 26 SI-1261 Ljubljana-Dobrunje Tél. +386 1 547 49 05 e-mail darko.divjak@mt.com

Suède

Mettler-Toledo AB Virkesvägen 10 Box 92161 SE - 12008 Stockholm +46 8 702 50 00 Tél e-mail sales.mts@mt.com

Suisse

Mettler-Toledo (Schweiz) GmbH Im Langacher, Postfach CH-8606 Greifensee +41 44 944 47 47 Tél e-mail ProSupport.ch@mt.com

Thaïlande

Mettler-Toledo (Thailand) Ltd. 272 Soi Soonvijai 4 Rama 9 Rd., Bangkapi Huay Kwang TH-10320 Banakok +66 2 723 03 00 Tél e-mail MT-TH.CustomerSupport@mt.com

Turquie

Mettler-Toledo Türkiye Haluk Türksoy Sokak No: 6 Zemin ve 1. Bodrum Kat 34662 Üsküdar - Istanbul, TR +90 216 400 20 20 Tél sales.mttr@mt.com e-mail

Viêt Nam

Mettler-Toledo (Vietnam) LLC G Floor, SCS Building, Plot T2-4 D1 Street, Saigon Hi-tech Park Tan Phu Ward, District 9 Ho Chi Minh City, Vietnam Tél. +84 28 73 090 789 e-mail MT-VN.CustomerSupport@mt.com

Mettler-Toledo GmbH, Process Analytics Im Hackacker 15, CH-8902 Urdorf, Suisse Tél. : +41 44 729 62 11, fax : +41 44 729 66 36

www.mt.com/pro

© Mettler-Toledo GmbH, Process Analytics

02/2017 Imprimé en Suisse. 30 423 984

Sous réserve de modifications techniques.