사용자 설명서

헤드 마운트 트랜스미터

M100

기술적 변경 사항이 있을 수 있습니다. © Mettler-Toledo GmbH, Process Analytics 01/2016 스위스에서 인쇄. 30 238 714 목차

1	소개			5
		1.1	사용자 설명서 관련 정보	5
		1.2	기호 설명	6
		1.3	배송범위	7
		1.4	고객서비스	7
		1.5	환경 보호	7
2	안전성			8
		2.1	사용 목적	8
		2.2	일반 안전 지침	8
		2.3	변경 및 변환	9
		2.4	IECEx 및 ATEX 지침	9
		2.5	CSA 지침	10
		2.5.1	CSA 마킹	10
		2.5.2	해당 요건	10
		2.5.3	인승 조건	10
		2.6	라몔 M100 2XH	
3	기능 및 설계			12
		3.1	기능	12
		3.2	설계	13
4	설치			14
		4.1	설치 안전 지침	14
		4.2	센서 및 트랜스미터 어셈블리	14
5	배선			15
		5.1	배선 안전 지침	15
		5.2	HART 시스템 구조	15
		5.3	터미널 블록(TB) 정의	17
6	작동			18
		6.1	구성 도구 또는 자산 관리 도구를 통한 시작 작업	18
		6.2	HART 소형 터미널을 통한 시작 작업	19
		6.3	센서 유형 변경	19
7	센서 교정			20
		7.1	센서 교정 종료	20
		7.2	구성 도구 또는 자산 관리 도구를 통한 센서 교정 수행	21
		7.3	HART 소형 터미널을 통해 센서 교정을 수행합니다.	22
		7.4	현재 입력 Ain 교정 수행	23
8	메뉴 개요 및 메	뉴 설명		24
		8.1	메뉴 개요	24
		8.2	메뉴 "Sensor Calibration"(센서 교정)	26
		8.2.1	Verify(확인)	26
		8.2.1.1	pH/ORP 및 pH/pNa	26
		8.2.1.2	0 ₂	26
		8.2.1.3	전도도	27
		8.3	메뉴 "Diagnostics & Service"(진단 및 서비스)	27
		8.3.1	Device Info(장치 정보)	28
		8.3.1.1	Messages(메시지)	28
		8.3.1.2	ISM Sensor Info(ISM 센서 정보)	29

		8.3.1.3	Calibration Data(교정 데이터) 및 Calibration History(교정 이력)	30
		8.3.1.4	ISM Diagnostics(ISM 진단) 및 Sensor Monitoring (세서 모니터링)	31
		8.3.1.5	Model/Software Revision(모델/소프트웨어 개정본)	32
		8.3.2	Test Device(장치 시험)	33
		8.3.3	HW Diagnostics(HW 진단)	33
		8.4	Detailed Setup(자세한 설정)	33
		841	Load Configuration(구성 로드)	33
		8.4.2	Measurements(측정)	34
		8.4.2.1	Channel Setup(채널 설정)	34
		8.4.2.2	pH(pH/ORP 및 pH/pNg)	35
		8.4.2.3	0 ₂	36
		8.4.2.4	Cond 4e(전도도 4e)	37
		8.4.2.5	Anglog Input(아날로그 입력)	38
		8.4.3	Output Conditions(출력 조건)	39
		8.4.3.1	Analog Output(아날로그 출력)	39
		8.4.3.2	Hold Output(홀드 출력)	40
		8.4.4	HART Info(HART 정보)	41
		8.4.4.1	HART Output(HART 출력)	41
		8.4.5	ISM Setup(ISM 설정)	42
		8.4.5.1	Sensor Monitoring Setup(센서 모니터링 설정)	43
		8.4.5.2	Reset ISM Counter/Timer(ISM 카운터/타이머 재설정)	43
		8.4.6	System(시스템)	44
		8.4.6.1	Reset(재설정)	44
		8.4.6.2	Date & Time(날짜/시간)	44
		8.4.7	Alarm Setup(경보 설정)	45
		8.5	Review(검토)	45
9	문제해결			46
10	기술 데이터			47
11	기본값			50
		11.1	pH/ORP 또는 pH/pNa 센서 기본값	50
		11.2	O₂ 센서 기본값	51
		11.3	전도도 센서 기본값	52
12	버퍼 표			53
		12.1	pH/ORP 센서 버퍼	53
		12.1.1	Mettler-9	53
		12.1.2	Mettler-10	54
		12.1.3	NIST 기술	54
		12.1.4	NIST 표준(DIN 및 JIS 19266: 2000–01)	55
		12.1.5	Hach	55
		12.1.6	Ciba(94)	56
		12.1.7	Merck Titrisole, Riedel-de-Haën Fixanale	57
		12.1.8	WTW	57
		12.1.9	JIS Z 8802	58
		12.1.10	이중 멤브레인 pH 전극 버퍼(pH/pNa)	58
		12.1.10.1	Mettler-pH/pNa(Na+ 3.9M)	58
13	보증			59

1 소개

1.1 사용자 설명서 관련 정보

이 사용자 설명서는 METTLER TOLEDO M100 트랜스미터의 취급에 대한 중요 참고 사항 을 제공합니다. 안전한 작업을 위해서는 반드시 표시된 안전 참고 사항과 지침을 준수 해야 합니다.

또한 트랜스미터의 사용과 관련된 현지 작업 안전 규정 및 일반 안전 조항을 준수해야 합니다.

작업을 시작하기 전에는 반드시 사용자 설명서를 자세히 읽어 보십시오! 사용자 설명 서는 제품의 일부로서 언제든 직원들이 볼 수 있도록 반드시 트랜스미터와 가까운 곳 에 보관해야 합니다.

제3자에게 트랜스미터를 전달할 때에는 사용자 설명서도 함께 전달해야 합니다.

연결된 센서나 다른 공급업체의 구성품에 대한 안전 규정과 지침 또한 반드시 준수하 십시오.

1.2 기호 설명

이 사용자 설명서에서 경고 참고 사항은 기호로 표시됩니다. 해당 참고 사항은 위험 범 위를 표현하는 신호 단어로 시작됩니다.

이 참고 사항을 항상 준수하여 사고, 부상 및 재산 손실을 예방할 수 있도록 조심하십 시오.

경고 참고 사항

🚺 DANGER(위험)

위험은 직접적으로 위험한 상황을 의미하며 이를 방지하지 않을 경우 사망 또는 심각한 부상이 발생하게 됩니다.

🛕 WARNING(경고)

경고는 잠재적으로 위험한 상황을 의미하며 이를 방지하지 않을 경우 사 망 또는 심각한 부상이 발생할 수 있습니다.

A CAUTION(주의)

주의는 잠재적으로 위험한 상황을 의미하며 이를 방지하지 않을 경우 경 미하거나 작은 부상이 발생할 수 있습니다.

ATTENTION(주목)

주목은 잠재적으로 유해한 상황을 의미하며 이를 방지하지 않을 경우 재 산상의 손실이 발생할 수 있습니다.

조언 및 권장 사항

참고는 유용한 조언과 권장 사항을 비롯해 더욱 효율적이고 간섭 없는 작 동을 위한 정보를 강조합니다.

1.3 배송 범위

배송 범위에는 다음이 포함됩니다.

- M100 트랜스미터
- iSense 소프트웨어용 iLink 케이블
- 빠른 설정 가이드
- 문서, 장치 설명서(DD), iSense 소프트웨어 및 구성 도구 PACTWare™가 포함된 CD-ROM

1.4 고객 서비스

당사의 고객 서비스는 기술 정보를 제공합니다.

현지 사무실은 마지막 페이지에서 확인하실 수 있습니다.

참고! 빠른 전화 처리를 위해 일련 번호, 부품 번호 등 제품 라벨상의 데이터를 참고해 주십시오.

1.5 환경 보호

E랜스미터 또는 구성품의 부적절한 폐기로 인한 환경 위험입니다! 트랜스미터 또는 구성품을 부적절하게 폐기하는 경우 환경에 피해를 줄
수 있습니다. - 현지 및 국가 법률과 지침을 준수하십시오. - 트랜스미터는 해당 구성품(플라스틱, 금속, 전자부품)별로 분해하십
시오. 구성품을 재활용할 수 있도록 분류하십시오.

2 안전성

2.1 사용 목적

M100 트랜스미터는 공정 산업에서 사용되도록 설계되었고 방폭 지역에서의 설치를 위 한 본질 안전 승인을 받았습니다.

METTLER TOLEDO는 부적절한 사용 또는 제시된 용도 이외의 사용에 따른 손해를 책임지 지 않습니다.

2.2 일반 안전 지침

다음은 일반적인 안전 지침과 경고 목록입니다. 이러한 지침을 따르지 않으면 장비의 손상 및/또는 작업자의 부상이 발생할 수 있습니다.

- 케이블 연결 설치와 본 제품 서비스 시에는 감전 위험 수준의 전압에 대한 액세스가 필요합니다.
- 별도의 전원에 연결된 주 전원은 반드시 서비스 전에 분리해야 합니다.
- 스위치나 회로 차단기는 작업자가 쉽게 사용할 수 있도록 장비 근처에 위치해야 하
 며 장비에 대한 분리 장치로 표시되어야 합니다.
- 주 전원은 장비에 대한 분리 장치로서 스위치나 회로 차단기를 사용해야 합니다.
- 전기 설치는 미국전기 규약(NEC) 및/또는 해당 국가나 지역의 규범에 의거해야 합니다.
- 본 트랜스미터는 트랜스미터에 익숙하고 해당 작업에 대한 자격을 갖춘 직원만 설치
 및 조작해야 합니다.
- 본 트랜스미터는 지정된 작동 조건에서만 조작해야 합니다. 47페이지의 10장 "기술 데 이터" 내용을 참조하십시오.
- 본 트랜스미터의 수리는 숙련된 공인 직원만이 수행해야 합니다.
- 본 트랜스미터는 본 사용자 설명서에 설명된 정기 유지보수, 세척 절차나 퓨즈 교체 를 제외한 어떤 방식으로도 조작 또는 변경해서는 안 됩니다.
- METTLER TOLEDO는 본 트랜스미터의 미허가 개조에 따른 손해를 책임지지 않습니다.
- 본 제품과 함께 공급되고 본 제품에 표시된 모든 경고, 주의사항과 지침을 따르십시오.
- 장비 설치는 본 사용자 설명서에 명시된 대로 수행하십시오. 적절한 현지 및 국가 규 범을 따르십시오.
- 본 트랜스미터의 보호 뚜껑은 정상 작동 시 항상 제 위치에 씌워 두어야 합니다.
- 본 장비가 제조업체가 명시하지 않은 방식으로 사용되는 경우 제품에서 위험을 보호 하는 방식이 손상될 수 있습니다.

30 238 714

2.3 변경 및 변환

본 트랜스미터 또는 설비의 변형 또는 변환 시 예기치 않은 위험이 발생할 수 있습니다. 본 트랜스미터의 기술적 변경 및 확장을 수행하려면 제조업체의 서면 승인이 필요합 니다.

2.4 IECEx 및 ATEX 지침

M100 멀티 파라미터 트랜스미터는 Mettler-Toledo GmbH 에서 생산하였습니다.

M100 트랜스미터는 IECEx 및 ATEX 검사를 통과하였으며 다음과 같은 표준을 준수합 니다.

- IEC 60079-0 폭발성 대기 -파트 0: 장비 - 일반 요건
- IEC 60079-1 폭발성 대기 파트 1: 방염 인클로저 "d"로 장비 보호
- IEC 60079-11 폭발성 대기 파트 11: 본질 안전 "i"로 장비 보호
- IEC 60079-26 폭발성 대기 파트 26: 장비 보호 레벨(EPL) Ga의 장비
- IEC 60079-31 폭발성 대기 -파트 1: 인클로저 "f"로 장비 먼지 발화 보호

Ex 표시:

- II 2(1) G Ex ib [ia Ga] IIC T4 Gb
- II 2(1) D Ex ib [ia Da] IIIC T80°C/ T90°C Db
- II 2(1) G Ex d [ia Ga] IIC T4 Gb
- II 2(1) D Ex tb [ia Da] IIIC T80°C/ T90°C Db

인증 번호:

- ATEX: SEV 14 ATEX 0128 X
- IECEX: IECEX CQM 14.0020 X

참고!

- NEPSI: GYB14.1194X

특별한 사용 조건은 CD에 제공된 해당 인증을 참고하십시오.

2.5 CSA 지침

2.5.1 CSA 마킹

- Class I, Division 1, Groups A, B, C 및 D T4
- Class II, Division 1, Groups E, F 및 G 및
- Class III
- Ex ia IIC T4 Ga; Class I, Zone O, AEx ia IIC T4 Ga

2.5.2 해당 요건

- CSA C22.2 No. 0 –
 General Requirements Canadian Electrical Code Part II
- CSA C22.2 No. 61010-1-12 Safety Requirements for Electrical equipment for measurement, Control and Laboratory use – Part 1: General requirements
- UL61010-1 3rd Ed Safety Requirements for Electrical equipment for measurement, Control and Laboratory use – Part 1: General requirements
- CSA-C22.2 No. 60079-0:11 –
 Explosive atmospheres Part 0: Equipment General requirements
- CSA-C22.2 No.60079-11:14 –
 Explosive atmospheres Part 11: Equipment protection by intrinsic safety "i"
- ANSI/UL 913 8th Ed. –
 Intrinsically Safe Apparatus and Associated Apparatus for use in Class I, II and III, Division 1, Hazardous (Classified) Location
- UL60079-0:2013 –
 Explosive atmospheres Part 0: Equipment General requirements
- UL60079-11:2013 –
 Explosive atmospheres Part 11: Equipment protection by intrinsic safety "i"

2.5.3 인증 조건

- 1. 캐나다 전기 규약 제1부 C22.1-15, 섹션 18 및 미국 전기 규약 NFPA70, 504조 및 505조에 따른 설치
- 제어 도면에 따라 설치된 경우의 엔터티 파라미터를 통한 본질 안전, 도면 번호는 30127727
- 가연성 분진 대기에 설치될 경우 최종 사용자는 공정 온도의 영향을 관리하고 인 클로저의 최대 표면 온도가 165 ℃를 초과하지 않도록 해야할 것입니다.
- 4. 알루미늄 합급 인클로저로 충돌 또는 마찰로 인한 발화 위험을 예방하십시오.
- 5. 트랜스미터가 Class I, Division 1 또는 Class 1, Zone 0, 또는 Class II 및 Class III에 사용되는 경우 IP 66 보호 등급 보장을 위해 케이블 글랜드 또는 트랜스미터의 블랭 킹 플러그를 사용해야 하며 트랜스미터 보호 등급이 IP 66을 준수할 수 있도록 AK9 커넥터를 통해 센서를 트랜스미터에 연결해야 할 것입니다.

2.6 라벨 M100 2XH

EU

그림 1: 라벨 M100 2XH, EU 왼쪽: 하우징 상단에 위치 상단 오른쪽: 하우징 내부에 위치 하단 오른쪽: 하우징 외부에 위치 주소: Mettler-Toledo GmbH 공정 분석, Im Hackacker 15, CH-8902 Urdorf, Switzerland www.mt.com/pro

미국

그림 2: 라벨 M100 2XH, US 왼쪽: 하우징 상단에 위치 상단 오른쪽: 하우징 내부에 위치 하단 오른쪽: 하우징 외부에 위치 주소: Mettler-Toledo, Thornton Inc, Billerica, MA 01821, USA

3 기능 및 설계

3.1 기능

M100은 분석 측정을 위한 HART 통신 기능을 갖춘 2선식 헤드 마운트 트랜스미터입니 다. M100은 pH/ORP, pH/pNo, 용존 산소 및 전도도 측정을 위한 단일 채널 멀티 파라미터 트랜스미터입니다. 이 트랜스미터는 ISM 센서만 호환 가능합니다. M100 트랜스미터는 공정 산업에서 사용되도록 설계되었고 방폭 지역에서의 설치를 위 한 본질 안전 승인을 받았습니다.

M100은 M20 미터 케이블 글랜드 또는 NPT 3/4" 케이블 도관과 사용 가능합니다.

M100 파라미터 핏 가이드

파라미터	M100 2XH
	ISM
pH/ORP	•
pH/pNa	•
전도도 4-e	•
Amp. DO ppm ¹⁾ / ppb ²⁾ / 미량 ²⁾	•

1) Ingold 및 Thornton 센서

2) Ingold 센서

표 1: M100 파라미터 핏 가이드

3.2 설계

그림 3: 치수 M100 트랜스미터

4 설치

4.1 설치 안전 지침

- 설치 중에는 트랜스미터의 전원을 끄십시오.
- 본 트랜스미터는 가혹한 환경에서도 내구성이 우수합니다. 그러나 최상의 결과를 위 해서는 극한 온도, 진동, 전자기 및 무선 주파수 간섭이 최소화되었거나 존재하지 않 는 곳에 트랜스미터를 설치하십시오.
- 의도치 않게 트랜스미터 회로가 공장 환경에 노출되지 않도록 예방하려면 회로 엔드 캡 위의 보안 잠금을 제자리에 유지하십시오. 회로 엔드 캡을 제거하려면 잠금 너트 를 풀어 탭과 엔드 캡을 분리한 뒤 커버의 나사를 푸십시오.

4.2 센서 및 트랜스미터 어셈블리

- 1. 센서 하우징 문서에 설명된 대로 센서 하우징(4)을 설치합니다.
- 2. 센서(3)를 센서 하우징으로 조심스럽게 삽입합니다. 센서를 손으로 돌려 조입니다.
- 센서 하우징과 연장 튜브(2)를 손으로 돌려 조입니다.
 M100 트랜스미터(1)는 돌리지 마십시오. 연장 튜브만 돌리십시오.
- 4. M100 트랜스미터의 커버를 돌려 엽니다.
- 5. 배선을 수행합니다. 17페이지의 5.3장 "터미널 블록(TB) 정의" 내용을 참조하십시오.
- 6. M100 트랜스미터 커버를 돌려 조입니다.

그림 4: 센서 및 트랜스미터 어셈블리

- 1 M100 트랜스미터
- 2 연장 튜브
- 3 센서 또는 전극
- 4 센서 하우징

5 배선

5.1 배선 안전 지침

- 배선 작업 중에는 트랜스미터의 전원을 끄십시오.
- 트랜스미터를 수분으로부터 보호할 수 있도록 방수 케이블 글랜드를 사용하십시오.
 도관을 사용하는 경우 트랜스미터에 수분이 유입되지 않도록 트랜스미터 하우징의 연결부를 막고 밀폐하십시오.
- 와이어와 연결 터미널을 단단히 연결하십시오.
- 배선 작업 후 커버를 적절히 조이십시오.
- 본 유입 보호 등급은 트랜스미터 또는 트랜스미터 헤드의 나사, 씰 또는 케이블 글랜
 드에 손상이 발생한 경우 더 이상 적용되지 않습니다.

5.2 HART 시스템 구조

구성 도구, 자산 관리 도구 또는 HART 소형 터미널을 통해 M100 트랜스미터를 구성하 십시오.

DD 및 DTM 파일은 제공된 CD-ROM에 있으며 인터넷을 통해 "www.mt.com/M100"에서 다 운로드할 수 있습니다.

그림 5: HART 소형 터미널과의 HART® 연결

- 1 M100 트랜스미터
- 2 리피터 전원 공급 장치, 주로 투명한 HART 사용
- 3 부하 저항, 리피터 전원 공급 장치에 설치된 경우에는 필요하지 않음
- 4 DCS(분산 제어 시스템) 또는 PLC(프로그램 가능한 로직 제어기)
- 5 HART 소형 터미널, Ex i-지역에서도 장치에 직접 연결됨
- 6 HART 소형 터미널(예: Emerson의 475 FieldCommunicator)

그림 6: HART 모뎀 및 구성 도구와의 HART® 연결

- 1 M100 트랜스미터
- 2 리피터 전원 공급 장치, 주로 투명한 HART 사용
- 3 부하 저항, 리피터 전원 공급 장치에 설치된 경우에는 필요하지 않음
- 4 DCS(분산 제어 시스템) 또는 PLC(프로그램 가능한 로직 제어기)
- 5 HART 모뎀
- 6 Pepperl+Fuchs의 PACTWare™와 같은 구성 도구를 갖춘 PC. PACTWare™는 제공된 CD-ROM을 통해 또는 프리웨어로 사용 가능합니다.

5.3 터미널 블록(TB) 정의

그림 7: 터미널 블록(TB) 정의

터미널	설명
Port	펌웨어 업데이트와 같은 서비스를 위한 인터페이스
Aout+, HART+ Aout-, HART-	극성을 유의하십시오. - 전원 연결: 14 ~ 30 V DC - 아날로그 출력 - HART 신호
DI+, DI-	디지털 입력(홀드 상태에서 트랜스미터 전환용)
ISM-DATA, ISM-GND	센서 입력, 12페이지의 표 1 및 14페이지의 그림 4 참조. 초기 설정으로 배선됨. 분리하지 마십시오.
Ain+, Ain-	아날로그 입력: 4 ~ 20 mA(압력 보상용)

표 2: 터미널 블록(TB) 정의

6 작동

구성 도구, 자산 관리 도구 또는 HART 소형 터미널을 통해 M100 트랜스미터를 구성하 십시오.

DD는 제공된 CD-ROM에 있으며 인터넷을 통해 "www.mt.com/M100"에서 다운로드할 수 있습니다.

센서는 iSense 소프트웨어를 통해 교정할 수 있습니다.

6.1 구성 도구 또는 자산 관리 도구를 통한 시작 작업

참고! 구성 도구 PACTWare™는 제공된 CD-ROM에 있습니다. DTM은 인터넷을 통해 "www.mt.com/M100"에서 다운로드할 수 있습니다.

필수조건: M100 트랜스미터 및 센서가 장착되어 있으며 전기적으로 연결되어야 합니다.

1~5단계 및 12단계는 구성 도구 또는 자산 관리 도구 문서를 참조하십시오.

- 1. PACTWare™ 또는 자산 관리 도구와 같은 구성 도구를 설치합니다.
- 2. HART 인터페이스용 DTM 및 M100 트랜스미터용 DTM을 설치합니다.
- 3. 장치 카탈로그를 업데이트합니다.
- 트랜스미터와 소프트웨어를 연결합니다. 필요한 경우 COM 포트 설정을 확인합 니다.
- 5. Sensor Type(센서 유형)을 선택합니다. 메뉴 경로: Detailed Setup > Measurements > Channel Setup > Sensor Setup.
- 6. 장치에서 구성을 로드합니다.
- 7. Tag(태그) 및/또는 Long Tag(긴 태그)를 설정합니다. 메뉴 경로: Device Setup > Detailed Setup > HART Info
- Bate(날짜) 및 Time(시간)을 설정합니다. 시간을 24시간 표시 형식으로 설정합니다. 시간 표시 형식은 변경할 수 없습니다. 메뉴 경로: Device Setup > Detailed Setup > System
- 9. 아날로그 출력 신호의 범위를 설정합니다. 메뉴 경로: Detailed setup > Output Condition > Analog Output > Range-
 - URV(상한값) 및 LRV(하한값)
 이 값은 센서 측정 한계 내에 포함되어야 합니다.
 - USL(센서 상한) 및 LSL(센서 하한)
 이 한계는 센서에서 정의하며 변경할 수 없습니다.
- 10. 공정 변수 PV, SV, TV 및 QV를 정의합니다 메뉴 경로: Device Setup > Detailed Setup > Measurements > Channel Setup
- 11. 센서를 교정합니다. 메뉴 경로: Device Setup > Sensor Calibration20페이지의 7장 "센서 교정" 내용을 참조하십시오.
- 12. 추가 설정을 수행합니다. 24페이지의 8장 "메뉴 개요 및 메뉴 설명" 내용을 참조하 십시오.
- 13. 장치에 구성을 저장합니다.

6.2 HART 소형 터미널을 통한 시작 작업

참고!

DD "008E8E7D0101.hhd"는 제공된 CD-ROM에 있습니다. DD는 인터넷을 통해 "www.mt.com/M100"에서 다운로드할 수도 있습니다.

필수조건: M100 트랜스미터 및 센서가 장착되어 있으며 전기적으로 연결되어야 합니다.

1단계는 HART 소형 터미널 문서를 참조하십시오.

- M100 트랜스미터의 DD가 이미 HART 소형 터미널에 설치되었는지 확인하십시오. 필요한 경우 DD를 설치합니다.
- 2. 통신은 자동으로 구축되어 있습니다.
- 3. Sensor Type을 선택합니다. 메뉴 경로: Detailed Setup > Measurements > Channel Setup > Sensor Setup.
- 4. 장치에서 구성을 로드합니다. 메뉴 경로: Device Setup > Detailed Setup
- 5. Tag 및/또는 Long Tag를 설정합니다. 메뉴 경로: Device Setup > Detailed Setup > HART Info
- 6. Date 및 Time을 설정합니다. 시간을 24시간 표시 형식으로 설정합니다. 시간 표시 형식은 변경할 수 없습니다. 메뉴 경로: Device Setup > Detailed Setup > System
- 아날로그 출력 신호의 범위를 설정합니다.
 메뉴 경로: Detailed setup > Output Condition > Analog Output > Range-
 - URV(상한값) 및 LRV(하한값)
 이 값은 센서 측정 한계 내에 포함되어야 합니다.
 - USL(센서 상한) 및 LSL(센서 하한)
 이 한계는 센서에서 정의하며 변경할 수 없습니다.
- 8. 공정 변수 PV, SV, TV 및 QV를 정의합니다 메뉴 경로: Device Setup > Detailed Setup > Measurements > Channel Setup
- 9. 센서를 교정합니다. 메뉴 경로: Device Setup > Sensor Calibration 20페이지의 7장 "센서 교정" 내용을 참조하십시오.
- 10. 추가 설정을 수행합니다. 24페이지의 8장 "메뉴 개요 및 메뉴 설명" 내용을 참조하 십시오.

6.3 센서 유형 변경

센서 유형을 pH 센서가 포함된 전도도 센서와 같은 유형으로 변경하는 경우, 다음 절차 를 따르십시오.

필수조건: M100 트랜스미터 및 다른 센서 유형이 장착되어 있으며 전기적으로 연결되 어야 합니다.

- 1. 트랜스미터와 소프트웨어/HART 장치를 연결합니다.
- Sensor Setup(센서 설정)을 선택합니다. 메뉴 경로: Detailed Setup > Measurements > Channel Setup > Sensor Setup.
- 3. "Sensor Setup"을 시작합니다.
- 4. Sensor Type 파라미터에 대해 새로운 센서 유형을 선택합니다.
- 5. 장치에서 구성을 로드합니다.
- ⇒ 구성 도구 또는 HART 소형 터미널에서 구성을 업데이트합니다. 올바른 센서 유형을 선택했으면 Verify(확인) 메뉴가 나타날 것입니다.

센서 교정

참고!

- 최고의 공정 교정 결과를 위해서는 다음을 준수하십시오.
- 샘플을 센서의 측정 지점과 최대한 근접하여 채집합니다.
- 샘플을 공정 온도에서 측정합니다.

7

참고!

참고!

구성 도구, 자산 관리 도구 또는 HART 소형 터미널을 통해 "Process calibration"(공정 교정) 방법으로 센서를 교정할 수 있습니다. 기타 교정 방 법은 iSense™ 소프트웨어를 사용하십시오.

센서 교정용 실험실 또는 비방폭 지역에서 교정하는 경우에는 iSense를 사용할 수 있습니다. 배송 범위는 CD-ROM상의 iSense 소프트웨어와 iLink 케이블로 구성됩니다.

교정이 공정 중에 있을 때에는 다른 교정을 시작할 수 없습니다.

7.1 센서 교정 종료

교정에 성공하고 나면 다음 옵션을 이용할 수 있습니다.

- Adjust(조정): 측정에 교정값이 채택되어 사용됩니다. 또한 교정값이 교정 이력에 저 장됩니다.
- Calibrate(교정): 교정값이 문서화를 위해 교정 이력에 저장되지만 측정에 사용되지
 는 않습니다. 최근 유효 조정의 교정값이 이후 측정에 사용됩니다.
- Abort(중지): 교정값이 삭제됩니다.

7.2 구성 도구 또는 자산 관리 도구를 통한 센서 교정 수행

- 1. Sensor Calibration(센서 교정) 메뉴를 선택합니다. 메뉴 경로: Device Setup > Sensor Calibration
- 2. calibration method(교정 방법)를 선택합니다. [Step 1: Capture current measured value] ([1단계: 현재 측정값 캡처])를 클릭합니다.
- 3. 0₂ 교정의 경우 calibration unit(교정 장치)을 선택합니다.
- ⇒ 현재 "Sensor Value"(센서 값) 및 "Status"(상태)가 표시됩니다.
- 4. 측정값을 저장하려면 [Next]를 클릭합니다.
- ⇒ 이 경우 "Captured value is stored. Take a grab sample to measure in the lab or perform parallel measurement."(캡처한 값을 저장합니다. 실험실에서 측정을 수행하기 위해 샘플을 채취하거나 병렬 측정을 수행하십시오.) 메시지가 나타납니다.
- 5. [OK]를 클릭합니다.
- [Step 2: Enter reference value]([2단계: 기준 값 입력])를 클릭합니다. 참고! "Step 2" (2단계)는 언제든 수행할 수 있습니다.
- ⇒ "Step 1"(1단계)에서 캡처된 값이 표시됩니다.
- 7. 측정된 기준 값을 입력합니다.
- 8. [Next]를 클릭하여 기준 값을 저장합니다.
- ⇒ 기준 값이 유효 범위 내에 있을 경우 "Slope"(기울기) 및 "Offset"(오프셋)이 표시됩 니다.
- 9. [OK]를 클릭합니다.
- ⇒ 이 경우 "Complete calibration procedure. Select either Adjust, Calibrate or Abort"(교정 절 차를 완료하였습니다. 조정, 교정 또는 중지 중 하나를 선택하십시오) 메시지가 나 타납니다.
- 10. Adjust, Calibrate 또는 Abort를 선택하십시오.
- 11. [OK]를 클릭합니다.

7.3 HART 소형 터미널을 통해 센서 교정을 수행합니다.

- 1. Sensor Calibration 메뉴를 선택합니다. 메뉴 경로: Device Setup > Sensor Calibration
- 2. 교정 방법을 선택합니다.
- ⇒ 이 경우 "Capture act. value"(활성 값을 캡처하십시오) 메시지가 나타납니다.
- ⇒ 0_2 교정의 경우에는 "Select calibration unit"(교정 장치를 선택하십시오) 메시지가 나타납니다.
- 3. 0₂ 교정의 경우 calibration unit을 선택합니다. [ENTER]를 누릅니다.
- ⇒ 현재 "Sensor Value" 및 "Status"가 표시됩니다.
- 4. [Next]를 눌러 현재 측정된 값을 캡처합니다.
- ⇒ 이경우 "Captured value is stored. Take a grab sample to measure in the lab or perform parallel measurement." 메시지가 나타납니다.
- 5. [OK]를 누릅니다.
- ⇒ 이 경우 "Enter reference value"(기준 값 입력) 메시지가 나타납니다. 이 단계는 언제 든지 수행할 수 있습니다.
- 6. 측정된 기준 값을 입력합니다.
- 7. [ENTER]를 눌러 기준 값을 저장합니다.
- ⇒ 기준 값이 유효 범위 내에 있을 경우 Slope 및 Offset이 표시됩니다.
- 8. [OK]를 누릅니다.
- ⇒ 이 경우 "Select process, select either Adjust, Calibrate or Abort"(공정을 선택하고 조정, 교정 또는 중지 중 하나를 선택하십시오) 메시지가 나타납니다.
- 9. Adjust, Calibrate 또는 Abort를 선택하십시오.
- 10. [ENTER]를 누릅니다.

7.4 현재 입력 Ain 교정 수행

O₂ 측정의 경우 압력 보상용 외부 압력 센서를 연결할 수 있습니다. 압력 센서는 Ain(아 날로그 입력) 터미널에 연결됩니다.

0₂ 측정의 정확도를 개선하려면 현재 입력 Ain의 교정을 권장합니다.

- 1. 기준 측정기를 Ain 터미널에 연결합니다.
- 2. Sensor Calibration 메뉴를 선택합니다. 메뉴 경로: Device Setup > Sensor Calibration
- 3. 교정 방법을 선택합니다. [Ain Calibration]([아날로그 입력 교정])을 클릭합니다.
- ⇒ 이 경우 "Set output to 4 mA"(4 mA로 출력 설정) 메시지가 나타납니다.
- 4. [OK]를 클릭합니다.
- ⇒ Reference Value 1(기준 값 1): 4 mA 값에 대한 이전 값이 표시됩니다.
- 5. 기준 측정기로 측정된 새로운 기준 값을 입력합니다.
- 6. [OK]를 클릭하여 4 mA에 대한 새로운 기준 값을 저장합니다.
- ⇒ "Reference Value"(기준 값), "Sensor Value"(센서 값) 및 "Status"(상태)가 표시됩니다.
- 7. [Next]를 클릭합니다.
- ⇒ 이 경우 "Set output to 20 mA" 메시지가 나타납니다.
- 8. [OK]를 클릭합니다.
- ⇒ Reference value 2(기준 값 2): 20 mA 값의 이전 값이 표시됩니다.
- 9. 기준 측정기로 측정된 새로운 기준 값을 입력합니다.
- 10. [OK]를 클릭하여 20 mA에 대한 새로운 기준 값을 저장합니다.
- ⇒ "Reference Value", "Sensor Value" 및 "Status"가 표시됩니다.
- 11. [Next]를 클릭합니다.
- ⇒ 이 경우 "Complete calibration procedure. Select either Adjust or Abort"(교정 절차를 완료 하였습니다. 조정 또는 중지 중 하나를 선택하십시오.) 메시지가 나타납니다.
- 12. Adjust 또는 Abort를 선택하십시오.

8 메뉴 개요 및 메뉴 설명

8.1 메뉴 개요

그림 8: 메뉴 개요

8.2 메뉴 "Sensor Calibration"(센서 교정)

Sensor Calibration 메뉴는 연결된 센서에 따라 달라집니다. 이 메뉴는 센서 교정 과정을 안내합니다. 20페이지의 7장 "센서 교정" 내용을 참조하십시오.

Ain Calibration(아날로그 입력 교정) 기능은 O₂ 센서에만 적용됩니다. 23페이지의 7.4장 " 현재 입력 Ain 교정 수행" 내용을 참조하십시오.

8.2.1 Verify(확인)

Verify 메뉴는 연결된 센서에 따라 달라집니다. 이 메뉴는 연결된 센서의 원 신호를 보여 줍니다.

8.2.1.1 pH/ORP 및 pH/pNa

메뉴	설명
UpH	pH 측정에 대한 원 전압 신호를 표시합니다.
UORP	ORP 측정을 위한 원 전압 신호를 표시합니다.
Rref	원 기준 전극 저항을 표시합니다.
Rglass	원 유리 전극 저항을 표시합니다.
Temperature	원 온도 신호를 표시합니다.

표 3: 메뉴 "확인" – pH/ORP 및 pH/pNa

8.2.1.2 0₂

메뉴	설명
Measured current	측정된 전류를 표시합니다.
Temperature	원 온도 신호를 표시합니다.

표 4: 메뉴 "확인" – 02

8.2.1.3 전도도

메뉴	설명
Resistivity	온도 보상 없이 원 저항 신호를 표시합니다.
Resistance	온도 보상을 포함하여 원 저항 신호를 표시합니다.
Temperature	원 온도 신호를 표시합니다.

표 5: 메뉴 "확인" – 전도도

8.3 메뉴 "Diagnostics & Service"(진단 및 서비스)

메뉴 경로: Device > Diagnostics & Service

Diagnostics & Service 메뉴는 트랜스미터와 연결된 센서에 대한 정보를 표시하고 문제 해결을 지원합니다.

메뉴	설명
Loop Test	Loop Test(루프 시험) 기능을 사용하면 연속 아날로그 출력 값을 정 의하여 아날로그 출력 하드웨어를 점검할 수 있습니다. 시험 중에 는 자동 제어에서 루프를 제외시킬 것을 권장합니다.
	- 4 mA: 아날로그 출력이 4 mA로 설정됩니다. - 20 mA: 아날로그 출력이 20 mA로 설정됩니다. - Other(기타): 아날로그 출력이 현재 입력된 값으로 설정됩니다. - End(종료): 시험이 종료됩니다.
D/A Trim	D/A Trim(D/A 트림) 기능을 사용하면 아날로그 출력의 하드웨어를 교정할 수 있습니다. 트림 중에는 자동 제어에서 루프를 제외할 것 을 권장합니다. D/A Trim은 기준 측정기를 Aout 터미널에 연결하며 4 mA 및 20 mA 값에 대해 기준 측정기 값을 입력합니다.

표 6: 진단 및 서비스

8.3.1 Device Info(장치 정보)

8.3.1.1 Messages(메시지)

메뉴 경로: Device > Diagnostics & Service > Device Info > Messages

Messages 메뉴는 현재 활성 상태의 경보 또는 현재 HART 명령 #48에 반환된 상태를 표 시합니다.

Alarm Setup(경보 설정) 메뉴에서 일부 알람을 비활성화할 수 있습니다. 경보가 발생했 으나 "Messages" 메뉴에서 비활성화된 경우, 이 경보는 "Messages" 메뉴에 표시되지 않 습니다. 45페이지의 8.4.7장 "Alarm Setup(경보 설정)" 내용을 참조하십시오. 일부 메시지는 특정 센서 또는 특정 설정에 대해서만 표시됩니다. 다음 표의 "필수조 건" 열은 의존성을 보여 줍니다.

상태 그룹 (바이트)	비트	의미	필수조건
0	0	소프트웨어 고장	"Alarm Setup"(경보 설정) 메뉴에서 활성화됨.
	1	센서 분리됨	_
	2	잘못된 센서가 연결됨	_
	3	센서 고장(Rg, RpNa < 5 MOhm)	"Alarm Setup" 메뉴에서 활성화됨.
	4	개방 회로(Rg, RpNa > 2000 MOhm)	"Alarm Setup" 메뉴에서 활성화됨.
	5	건조 cond 센서	- 전도도 센서 - "Alarm Setup" 메뉴에서 활성화됨.
	6	단락된 셀	- 전도도 센서 - "Alarm Setup" 메뉴에서 활성화됨.
	7	전해질 수준이 너무 낮음	– 전류 측정 O ₂ 센서 – "Alarm Setup" 메뉴에서 활성화됨.
1	0	Rg < 0.3 Rgcal	pH/ORP 센서
	1	Rg > 3 Rgcal	pH/pNa 센서
	2	Rr 또는 RpNa < 0.3 Rrcal	pH/ORP 센서
	3	Rr 또는 RpNa > 3 Rrcal	pH/pNa 센서
	4	유지보수 필요(TTM 만료) ¹⁾	TTM 모니터링이 활성화됨.
	5	교정 필요(ACT 만료) ¹⁾	ACT 모니터링 활성화됨.
	6	센서 교체(DLI 만료) ¹⁾	DLI 모니터링 활성화됨.
	7	셀 상수 편차	- 전도도 센서 - "Alarm Setup" 메뉴에서 활성화됨.

상태 그룹 (바이트)	비트	의미	필수조건
2	0	CIP 주기 카운터 만료 ¹⁾	CIP 한계 활성화됨.
	1	SIP 주기 카운터 만료 ¹⁾	SIP 한계 활성화됨.
	2	오토클레이브 주기 카운터 만료 ¹⁾	_
	3	흘드 활성화됨	_
	4	교정 값이 범위를 벗어남	_
	5 ~ 7	사용되지 않음	_
3	0	파라미터 변경	_
	1	센서 유형 변경	_
	2	오토클레이브 주기 카운터 증가	_
	3	공정 교정 활성	_
	4 ~ 7	사용되지 않음	_

1) "Reset ISM Counter/Timer"(ISM 카운터/타이머 재설정) 메뉴에서는 ISM 카운터와 타이머를 재설정할 수 있습니다. 43페이지의 8.4.5.2장 "Reset ISM Counter/Timer(ISM 카운터/타이머 재설정)" 내용을 참조하십시오.

표 7: 메시지

Clear Status Group(상태 그룹 지우기)

Clear Status Group 기능을 사용하면 상태 판독값을 새로 고침할 수 있습니다. 트랜스미 터 상태와 센서의 상태는 계속하여 판독됩니다.

8.3.1.2 ISM Sensor Info(ISM 센서 정보)

메뉴 경로: Device > Diagnostics & Service > ISM Sensor Info

파라미터	설명
Sensor Type	연결된 센서 유형을 표시합니다.
Cal. Date	최근 조정 또는 교정 날짜를 표시합니다.
Part-No	트랜스미터의 부품 번호(주문 번호)를 표시합니다.
Serial-No	트랜스미터의 일련 번호를 표시합니다.
Master	트랜스미터의 펌웨어 버전 번호를 표시합니다.
Comm	통신 PCB의 펌웨어 개정 번호를 표시합니다.

표 8: ISM 센서 정보

8.3.1.3 Calibration Data(교정 데이터) 및 Calibration History(교정 이력)

메뉴 경로: Device > Diagnostics & Service > Device Info > Calibration Data

파라미터	설명
교정 데이터	현재 "Slope" 및 "Offset"을 표시합니다. ORP 센서는 OPR 오프셋이 추 가로 표시됩니다.
	참고!
	Calibration Data 기능을 사용하려면 Date 및 Time 을 정확하게 설정 해야 합니다. 44페이지의 8.4.6.2장 "Date & Time(날짜/시간)" 내용을 참조하십시오.

표 9: 교정 데이터

Calibration History

메뉴 경로:

Device > Diagnostics & Service > Device Info > Calibration Data > Calibration History

정의:

- "S"는 "Slope"를 의미합니다. "Z"는 "Offset"을 의미합니다.
- Adjustment(조정): 교정 절차가 "Adjust"(조정) 명령으로 완료됩니다. 교정값이 채택되고 측정에 사용됩니다. 또한 교정값이 교정 이력에 저장됩니다. 데이터세트 "Act"와 "Cal1"이 동일합니다. 현재 교정 데이터세트 "Act"가 "Cal2"로 이동합니다.
- Calibration(교정): 교정 절차가 "Calibrate"(교정) 명령으로 완료됩니다. 교정값은 문서 화를 위해 교정 이력에 데이터세트 "Cal1"로 저장되지만 측정에는 사용할 수 없습니 다. 측정은 최근 유효 조정 데이터세트 "Act"로 지속됩니다.

파라미터	설명
Calibration History	Calibration History(교정 이력) 파라미터는 교정 데이터 이력을 보 여 줍니다.
	 Fact(공장 교정): 공장에서 결정된 원래의 데이터세트입니다. 이 데이터세트는 참조를 위해 센서에 저장되어 유지되며 덮어쓸 수 없습니다.
	 Act(실제 조정): 측정에 사용된 현재 교정 데이터세트입니다. 이 데이터세트는 다음 조정 후 "Cal2" 위치로 이동됩니다.
	 - 1. Adj(첫 번째 교정): 공장 교정 이후 첫 번째 조정입니다. 이 데 이터세트는 참조를 위해 센서에 저장되어 유지되며 덮어쓸 수 없 습니다.
	 Cal1(최근 교정/조정): 마지막으로 실행된 교정/조정입니다. 이 데이터세트는 새 교정/조정이 수행될 때 "Cal2"로 이동됩니다.
	- Cal2 및 Cal3: 교정/조정 후 "Cal1" 데이터세트는 "Cal2"로 이동되 며 "Cal2"는 "Cal3"로 이동됩니다. 이전의 "Cal3" 데이터세트는 더 이상 사용할 수 없습니다.

표 10: 교정 이력

8.3.1.4 ISM Diagnostics(ISM 진단) 및 Sensor Monitoring (센서 모니터링)

메뉴 경로: Device > Diagnostics & Service > Device Info > ISM Diagnostics

ISM Diagnostics 메뉴는 전도도 센서에 사용할 수 없습니다.

ISM Diagnostics 메뉴는 세척 주기 카운터의 한계와 현재 카운트를 비롯해 최대 온도를 표시합니다. 세척 주기 카운터는 ISM Setup(ISM 설정) 메뉴에서 구성할 수 있습니다. 42 페이지의 8.4.5장 "ISM Setup(ISM 설정)" 내용을 참조하십시오.

이 기능을 사용하려면 Date 및 Time을 올바르게 설정해야 합니다. 44페이지 의 8.4.6.2장 "Date & Time(날짜/시간)" 내용을 참조하십시오.

파라미터	설명
CIP Limit	CIP 주기 카운터 한계를 표시합니다.
CIP Cycles	현재 실행된 CIP 주기의 수를 표시합니다.
SIP Limit	SIP 사이클 카운터의 한계를 표시합니다.
SIP Cycles	현재 실행된 SIP 주기의 수를 표시합니다.
Autoclave Limit	오토클레이브 주기 카운터의 한계를 표시합니다.
Autoclave Cycles	현재 실행된 오토클레이브 주기의 수를 표시합니다.
Max. Temp.	센서의 최대 온도를 표시합니다. 오토클레이빙 중에는 Max. Temp.(최대 온도)가 기록되지 않습니다.
Max. Temp. Date	최대 온도 날짜를 표시합니다.

표 11: ISM 진단

Sensor Monitoring(센서 모니터링)

메뉴 경로:

Device > Diagnostics & Service > Device Info > ISM Diagnostics > Sensor monitoring

Sensor Monitoring 메뉴는 다양한 타이머 상태를 보여 줍니다.

파라미터	설명
DLI (d)	Dynamic Lifetime Indicator(동적 수명 표시기)의 남은 일수를 표시 합니다. 이 일수는 제조업체에서 설정합니다.
DLI (%)	Dynamic Lifetime Indicator의 남은 시간을 퍼센트로 표시합니다. 이 일수는 제조업체에서 설정합니다.
TTM (d)	Time To Maintenance(유지보수 시간) 표시기의 남은 일수를 표시합 니다. 이 일수는 "Sensor Monitoring" 설정 메뉴의 최대 TTM 파라미터 로 설정할 수 있습니다. 43페이지의 8.4.5.1장 "Sensor Monitoring Setup(센서 모니터링 설정)" 내용을 참조하십시오.
TTM (%)	Time To Maintenance 표시기의 남은 시간을 퍼센트로 표시합니다. 100퍼센트는 최대 TTM 파라미터 설정 일수와 부합합니다.

파라미터	설명
ACT (d)	Adaptive Cal Timer(활성 교정 타이머)를 일수로 표시합니다.
	"Adaptive Cal Timer"는 최상의 측정 성능을 유지할 수 있도록 다음 교 정이 수행되어야 하는 시간을 추정합니다. "Adaptive Cal Timer"는 조 정 또는 교정이 성공적으로 완료된 후 최초 값으로 재설정됩니다.
	이 일수는 "Sensor Monitoring" 설정 메뉴에서 최대 ACT 파라미터로 설정할 수 있습니다. 43페이지의 8.4.5.1장 "Sensor Monitoring Setup(센서 모니터링 설정)" 내용을 참조하십시오.
ACT (%)	Adaptive Cal Timer를 퍼센트로 표시합니다. 100퍼센트는 최대 ACT 파라미터의 설정 일수와 부합합니다.
Operating Days	연결된 센서의 작동 일수를 표시합니다.

표 12: 센서 모니터링

8.3.1.5 Model/Software Revision(모델/소프트웨어 개정본)

파라미터	설명
Part-No	트랜스미터의 부품 번호를 표시합니다.
Serial-No	트랜스미터의 일련 번호를 표시합니다.
Master	트랜스미터의 펌웨어 버전 번호를 표시합니다.
Comm	통신 PCB의 펌웨어 개정 번호를 표시합니다.
Sensor FW	센서의 펌웨어 버전을 표시합니다.
Sensor HW	센서의 하드웨어 버전을 표시합니다.

메뉴 경로: Device > Diagnostics & Service > Device Info > Model/Software Revision

표 13: 모델/소프트웨어 개정본

8.3.2 Test Device(장치 시험)

메뉴 경로: Device > Diagnostics & Service > Test Device

기능	설명
Self Test	Self Test(자가 시험)를 사용하면 진단 루틴이 수행됩니다. 이 시험 은 전자 장애 또는 성능에 영향을 주는 기타 장애를 감지합니다.
Device Reset	Device Reset(장치 재설정)을 사용하면 재설정이 수행됩니다. 이 재 설정은 전원을 껐다가 다시 켜는 전원 재설정과 같습니다.

```
표 14: 장치 시험
```

8.3.3 HW Diagnostics(HW 진단)

메뉴 경로: Device > Diagnostics & Service > HW Diagnostics

메뉴	설명
Analog Input	현재 아날로그 입력 값을 표시합니다.
Din1 Status	현재 디지털 입력 상태를 표시합니다. Options(옵션): 높음 및 낮음

표 15: HW 진단

8.4 Detailed Setup(자세한 설정)

8.4.1 Load Configuration(구성 로드)

메뉴 경로: Device > Detailed Setup > Measurement > Load Configuration

Load Configuration 메뉴는 HART 소형 터미널을 통해서만 사용 가능합니다.

이 기능을 사용하면 트랜스미터의 최근 구성 데이터를 HART 소형 터미널에 로드할 수 있습니다.

8.4.2 Measurements(측정)

Measurements 메뉴는 연결된 센서에 따라 달라집니다.

8.4.2.1 Channel Setup(채널 설정)

메뉴 경로: Device > Detailed Setup > Measurements > Channel Setup

파라미터	설명
Sensor Setup	연결된 센서 유형의 측정 변수를 선택합니다. 옵션: pH/ORP, pH/pNa, Cond 4e, O ₂ Hi, O ₂ Lo, O ₂ 미량
Sensor Channel	Sensor Channel(센서 채널) 파라미터는 "ISM"으로 설정되며 변경할 수 없습니다.
PV is	측정된 변수를 "Primary Value" (주요 값)로 선택합니다.
SV is	측정된 변수를 "Secondary Value" (두 번째 값)로 선택합니다.
TV is	측정된 변수를 "Tertiary Value" (세 번째 값)로 선택합니다.
QV is	측정된 변수를 "Quaternary Value" (네 번째 값)로 선택합니다.
PV / SV / TV and QV Average	Average(평균) 파라미터를 사용하면 대응되는 값의 평균화 방법(소 음 필터)을 설정할 수 있습니다. - None(없음): 평균화 또는 필터링 없음 - Low(낮음): 3점 이동 평균과 동등 - Medium(중간): 6점 이동 평균과 동등 - High(높음): 10점 이동 평균과 동등 - Special(Default)(특수(기본)): 신호 변화에 좌우되는 평균화, 보통 높음 평균화이지만 입력 신호 변동이 큰 경우 낮음 평균화

표 16: 채널 설정

8.4.2.2 pH(pH/ORP 및 pH/pNa)

pH/ORP 또는 pH/pNa 센서가 연결된 경우 pH 메뉴가 표시됩니다.

메뉴 경로: Device > Detailed Setup > Measurements > pH

pH 측정 시 다음 파라미터를 설정할 수 있습니다.

파라미터	설명
pH Buffer	pH Buffer(pH 버퍼)를 선택합니다.
	옵션: Mettler-9, Mettler-10, Nist-Tech, Nist-Std, Hach, Ciba, Merck, WTW, 없음, JIS Z 8802, Na+3.9
	이중 멤브레인 pH 전극(pH/pNa)의 경우 버퍼 Na+3.9를 선택합니다.
	47페이지의 10장 "기술 데이터" 내용을 참조하십시오.
IP	lsothermal Point(등온점) 값을 설정합니다. 대부분 기본값을 사용 합니다. 특정 보상 요건 또는 비표준 내부 버퍼값의 경우 이 값을 변경합니다.
STC Ref Mode	STC 보상에 대해 STC Ref Mode (STC 기준 모드) 파라미터를 사용합 니다.
	- 예: 측정된 pH 값이 STC Value(STC 값) 및 STC Ref Temp(STC 참고 온도) 파라미터 값으로 보상됩니다.
	– 아니오: 측정된 pH 값이 현재 측정된 온도로 보상됩니다.
STC Value	STC Value를 설정합니다. STC Value는 pH/°C 단위의 용액 온도 계수 입니다. 이 계수는 STC 기준 온도로 설정된 온도입니다.
STC Ref Temp	STC Value 파라미터 기준 온도를 설정합니다.

표17: pH

8.4.2.3 0₂

0₂ Lo, 0₂ Hi 또는 0₂ 미량 센서가 연결된 경우 **0₂** 메뉴가 표시됩니다.

메뉴 경로: Device > Detailed Setup > Measurement > 02

O₂측정은 측정 모드와 교정 모드 간에 차이가 존재합니다. 측정 모드는 센서가 실제 공 정에 배치됨을 의미합니다. 교정 모드는 센서가 실제 공정 외부의 기준 중간에 배치됨 을 의미합니다.

02 측정의 경우 다음 파라미터를 설정할 수 있습니다.

파라미터	설명
Pcal_Pres Unit	공정 교정의 압력 단위를 선택합니다.
Pcal_Pressure	공정 교정의 압력을 설정합니다.
Process Cal Pressure Source	공정 교정의 압력 소스를 선택합니다. - Pcal_Pressure: 압력이 Pcal_Pressure 파라미터로 설정됩니다. - Proc_Pressure: 압력이 Process_Pressure 모드와 Process_Pressure 파라미터로 설정됩니다.
Process_Pressure Mode	측정 모드 중 압력을 입력하는 모드를 선택합니다. - Edit(편집): 공정 압력이 the Process_Pressure 파라미터로 수동 설 정됩니다. - Ain(아날로그 입력): 아날로그 입력 터미널 Ain에서 입력 신호를 통해 압력이 제공됩니다.
Process_Pressure Unit	측정 모드의 압력 단위를 선택합니다.
Process_Pressure	측정 모드의 압력을 설정합니다. Process_Pressure 모드 파라미터의 경우 "Edit" 옵션이 선택됩니다.
Salinity	측정된 용액의 염도를 설정합니다.
Rel Humidity	교정 가스의 상대 습도를 설정합니다. 습도 측정을 사용할 수 없는 경우 50 %를 사용합니다.
UpolMeas	측정 모드용 전류 측정 산소 센서의 분극화 전압을 설정합니다. 참고: 공정 교정 중에는 측정 모드를 위해 정의된 분극화 전압 UpolMeas가 사용됩니다. - 0 ~ -550 mV: 연결된 센서가 -500 mA의 분극화 전압으로 설정됩 니다. - 550 mV 미만: 연결된 센서가 -674 mA의 분극화 전압으로 설정됩 니다.
UpolCal	교정 모드용 전류 측정 산소 센서의 분극화 전압을 설정합니다. - 0 ~ -550 mV: 연결된 센서가 -500 mA의 분극화 전압으로 설정됩 니다. - 550 mV 미만: 연결된 센서가 -674 mA의 분극화 전압으로 설정됩 니다.

표 18: 0₂

8.4.2.4 Cond 4e(전도도 4e)

전도도 센서가 연결된 경우 Conductivity(전도도) 메뉴가 표시됩니다.

메뉴 경로: Device > Detailed Setup > Measurement > Conductivity

전도도 측정 시에는 다음 파라미터를 설정할 수 있습니다.

파라미터	설명
PV / SV / TV / QV Comp Mode	해당 값의 온도 보상 모드를 선택합니다. 표 "보상 모드"를 참조하 십시오.
PV / SV / TV / QV Linear Coef	해당 값의 보상 모드 "Linear 25 °C" 및 "Linear 20 °C"에 대해 선형 계 수를 %/°C 단위로 설정합니다.

표 19: 전도도

Compensation Mode(보상 모드)

보상 모드	설명
Standard	Standard (표준) 보상 모드에는 비선형 고순도 효과와 기존의 중성 염 불순물에 대한 보상이 포함됩니다. 이 모드는 ASTM 표준 D1125 및 D5391을 준수합니다.
Linear 25°C	Linear 25°C(선형 Linear 25°C) 보상 모드는 %/°C 단위로 표현된 계 수(25°C의 편차)를 통해 판독을 조정합니다. 이 모드는 용액이 올 바르게 특성화된 선형 온도 계수인 경우에만 사용합니다. 이 계수 는 Linear Coef(선형 계수) 파라미터로 설정됩니다.
Linear 20°C	Linear 20°C(선형 Linear 20°C) 보상 모드는 %/°C 단위로 표현된 계 수(20°C의 편차)를 통해 판독을 조정합니다. 이 모드는 용액이 올 바르게 특성화된 선형 온도 계수인 경우에만 사용합니다. 이 계수 는 Linear Coef(선형 계수) 파라미터로 설정됩니다.
Light 84	Light 84 보상 모드는 1984년에 발표된 T.S. Light 박사의 고순도 용 수 연구 결과와 일치합니다. 이 모드는 기관이 해당 작업을 표준화 한 경우에만 사용합니다.
Std 75°C	Std 75°C 보상 모드는 75℃를 기준으로 하는 표준 보상 알고리즘입 니다.
Glycol 0.5	Glycol 0.5 보상 모드는 물 속의 50 % 에틸렌 글리콜 온도 특성과 일치합니다. 이 용액을 이용한 보상된 측정은 18 Mohm-cm 이상으 로 올라갈 수 있습니다.
Glycol 1.0	Glycol 1.0 보상 모드는 100 % 에틸렌 글리콜 온도 특성과 일치합 니다. 보상된 온도는 18 Mohm-cm 이상이 될 수 있습니다.
Cation	Cation 보상 모드는 양이온 교환기 후 샘플을 측정하는 발전소 응 용 분야에서 사용됩니다. 이 모드는 산 존재 시 순수의 해리도에 대 한 온도의 영향을 고려합니다.
Alcohol	Alcohol 보상 모드는 순수의 이소프로필 알콜 75% 용액의 온도 특 성을 규정합니다. 이 용액을 이용한 보상된 측정은 18 Mohm-cm 이 상으로 올라갈 수 있습니다.

37

보상 모드	설명
Ammonia	Ammonia 보상은 암모니아 및/또는 ETA(에탄올아민) 수처리를 이용 하여 샘플에서 측정된 특정 전도도를 위해 발전도 응용 분야에서 사용됩니다. 이 모드는 이러한 염기의 존재 시 순수의 해리에 대한 온도의 영향을 고려합니다.
None	None 보상 모드는 측정된 전도도 값을 전혀 보상하지 않습니다.

표 20: 전도도 – 보상 모드

8.4.2.5 Analog Input(아날로그 입력)

메뉴 경로: Device > Detailed Setup > Measurement > Analog Input

O₂ 측정의 경우 압력 보상용 외부 압력 센서를 연결할 수 있습니다. 압력 센서는 Ain 터 미널에 연결됩니다. O₂ 측정의 정확도를 개선하려면 현재 입력 Ain의 교정을 권장합니 다. 23페이지의 7.4장 "현재 입력 Ain 교정 수행" 내용을 참조하십시오.

파라미터	설명
4 mA Unit	4 mA 아날로그 입력 값의 압력 단위를 선택합니다.
4 mA Value	4 mA 아날로그 입력 값의 값을 설정합니다.
20 mA Unit	20 mA 아날로그 입력 값의 압력 단위를 선택합니다.
20 mA Value	20 mA 아날로그 입력 값의 값을 설정합니다.

표 21: 아날로그 입력

8.4.3 Output Conditions(출력 조건)

8.4.3.1 Analog Output(아날로그 출력)

메뉴 경로: Device > Detailed Setup > Output Conditions > Analog Output

메뉴/기능	설명
Loop Current Mode	아날로그 출력의 신호를 구성합니다.
	 Enabled(활성화됨): 출력 전류가 현재 측정된 값과 아날로그 출력 설정에 좌우됩니다.
	 Disabled(비활성화됨): 출력 전류가 4 mA로 설정됩니다. 예를 들 어 멀티 드롭 응용 분야 등에 이 설정을 사용합니다.
Alarm Type	"Status group 0"(상태 그룹 0)의 경보에 대한 경보가 발생하는 경우 출력 전류를 선택합니다. 28페이지의 8.3.1.1장 "Messages(메시지)" 내용을 참조하십시오.
	- High(높음): 출력 전류가 22.0 mA입니다. - Low(낮음): 출력 전류가 3.6 mA입니다.
Hold Mode	"Hold state"(홀드 상태) 중 아날로그 출력의 출력 전류를 선택합니다. 파라미터 "Manual Hold"(수동 홀드) 또는 디지털 입력 터미널의 신 호를 통해 Hold state를 변경할 수 있습니다. 41페이지의 8.4.4.1장 "HART Output(HART 출력)" 내용을 참조하십시오.
	 Last Value(마지막 값): 출력 전류는 마지막으로 유효한 출력입니다. Fixed(고정): 출력 전류가 흘드 고정 파라미터의 정의된 값으로 설정됩니다.
	- Off(꺼짐): 출력 전류가 PV, PV LRV 및 PV URV 파라미터로 계산됩 니다.
Hold Fixed	Hold Mode (홀드 모드) 파라미터, "Fixed"(고정) 옵션에 대해 Hold stote 중 아날로그 출력의 출력 전류를 설정합니다.

표 22: 아날로그 출력

Range(범위)

메뉴 경로: Device > Detailed Setup > Output Conditions > Analog Output > Range

Range 메뉴를 사용하면 4 mA 및 20 mA 출력 값의 상위 및 하위 측정 값을 구성할 수 있 습니다.

메뉴	설명
PV URV	Primary Value(주요 값)에 대한 Upper Range Value(상위 값)를 설정합 니다. 상위 값은 20 mA 출력 값에 해당됩니다. 이 값은 센서 측정 한계 내에 포함되어야 합니다. Default(기본값): PV USL
PV LRV	Primary Value(주요 값)에 대한 Lower Range Value(하위 값)를 설정합 니다. 하위 값은 4 mA 출력 값에 해당됩니다. 이 값은 센서 측정 한 계 내에 포함되어야 합니다. Default: PV LSL
PV USL	연결된 센서의 Upper Sensor Limit(센서 상한)를 표시합니다. 이 값은 변경할 수 없습니다.
PV LSL	연결된 센서의 Lower Sensor Limit(센서 하한)를 표시합니다. 이 값은 변경할 수 없습니다.

표 23: 범위

8.4.3.2 Hold Output(홀드 출력)

메뉴 경로: Device > Detailed Setup > Output Conditions > Hold Output

Hold Output 메뉴를 사용하면 홀드 상태를 시작 및 정지할 수 있습니다. 홀드 상태 중 아 날로그 출력 거동은 Analog Output(아날로그 출력) 메뉴에서 구성할 수 있습니다.

파라미터	설명
Manual Hold	"Hold state"(홀드 상태)를 수동으로 시작 및 정지합니다. - Start(시작): 트랜스미터가 Hold state를 변경합니다. - Stop(정지): "Manual Hold"(수동 홀드) 모드가 결정됩니다.
Din1 Hold State	디지털 입력 터미널(Din)의 신호로 Hold state를 시작 및 정지할 수 있는 신호 레벨을 설정합니다. - Low(낮음): 신호가 Low일 때 트랜스미터가 Hold state를 변경합 니다. 신호가 High(높음)일 때는 Hold state가 정지됩니다.
	- High(높음): 신호가 High일 때 트랜스미터가 Hold state들 변경합 니다. 신호가 Low일 때는 Hold state가 정지됩니다. - Off(꺼짐): 디지털 입력 터미널의 신호가 평가되지 않습니다.

표 24: 홀드 출력

8.4.4 HART Info(HART 정보)

메뉴 경로: Device > Detailed Setup > HART Info

파라미터	설명
Tag	트랜스미터를 확인합니다. 8팩 ASCII 문자
Long Tag	트랜스미터를 확인합니다. 32 ISO Latin-1 문자
Date	날짜를 입력합니다. 날짜는 기록 보관에 사용됩니다.
Write Protection	쓰기 보호 상태를 표시합니다.
Descriptor	트랜스미터를 설명하는 설명을 입력합니다.
Message	메시지를 입력합니다.
Final assembly number	트랜스미터의 재료와 전자 장치를 확인하는 번호를 입력합니다.

표 25: HART 정보

8.4.4.1 HART Output(HART 출력)

메뉴 경로: Device > Detailed Setup > HART Info > HART Output

메뉴	설명
Poll addr	트랜스미터의 폴링 주소를 설정합니다.
	 - 0: 점대점 설치입니다. 디지털 신호가 4 ~ 20 mA 출력 전류에 오 버레이됩니다.
	 1과 63 사이의 숫자: 멀티드롭 설치입니다. 마스터에 의한 자동 식별을 위해 각 트랜스미터에 고유한 주소가 존재해야 합니다. 멀티드롭에서는 디지털 신호만 사용됩니다. 아날로그 출력 전류 는 4 mA로 고정됩니다. 멀티드롭 모드에서는 하나의 신호 케이 블에 한 개 이상의 트랜스미터를 사용할 수 있습니다.
Num req preams	요청된 프리앰블 수를 표시합니다.
Num resp preams	프리앰블 수를 설정합니다.

표 26: HART 출력

8.4.5 ISM Setup(ISM 설정)

ISM Setup 메뉴는 전도도 센서에서 사용할 수 없습니다.

메뉴 경로: Device > Detailed Setup > ISM Setup

ISM Setup 메뉴를 사용하면 CIP 주기 카운터, SIP 주기 카운터, 오토클레이브 주기 카운 터를 구성할 수 있습니다. 각 카운터는 Reset ISM Counter(ISM 카운터 재설정) 메뉴에서 재설정할 수 있습니다. 43페이지의 8.4.5.2장 "Reset ISM Counter/Timer(ISM 카운터/타이머 재설정)" 내용을 참조하십시오.

CIP 또는 SIP 주기는 센서가 자동 인식합니다. 카운터 알고리즘은 측정된 온도가 설정 온도를 초과하는 경우를 인지합니다. 온도가 설정 온도에서 5분 이상 유지되는 경우에 는 트랜스미터가 두 시간 동안 잠깁니다. 카운터는 하나씩 증가합니다.

메뉴	설명
DLI Stress Adjustment	DLI Stress Adjustment(DLI 스트레스 조정) 파라미터를 사용하면 응 용 분야 요건 및/또는 경험에 맞추어 DLI, TTM 및 ACT를 조정할 수 있습니다. 이 파라미터는 pH 센서에서만 사용 가능합니다.
	- Low(낮음): DLI, TTM 및 ACT는 "Medium"에 비해 약 25% 증가합 니다.
	 Medium(default)(중간(기본)): DLI, TTM 및 ACT에 변화가 없습니다. High(높음): DLI, TTM 및 ACT가 "Medium(중간)" 에 비해 약 25% 감소합니다.
CIP Limit	CIP 주기 카운터의 한계를 설정합니다. 카운터가 설정 값을 초과하 는 경우 "CIP cycle counter expired"(CIP 주기 카운터 만료) 메시지가 표시됩니다. 이 기능은 "000" 값을 입력하면 꺼집니다.
CIP Temperature	센서가 CIP 세척을 인식하는 온도를 설정합니다. 센서가 입력 온도 이상을 측정하는 경우 CIP 주기 카운터가 하나씩 증가합니다.
SIP Limit	SIP 주기 카운터 한계를 설정합니다. 카운터가 설정 값을 초과하는 경우 "SIP cycle counter expired"(SIP 주기 카운터 만료) 메시지가 표 시됩니다. 이 기능은 "000" 값을 입력하면 꺼집니다.
SIP Temperature	센서가 SIP 세척을 인식하는 온도를 설정합니다. 센서가 입력 온도 이상을 측정하는 경우 SIP 주기 카운터가 하나씩 증가합니다.
Autoclave Limit	오토클레이브 카운터 한계를 설정합니다. 카운터가 설정 값을 초 과하는 경우 "Autoclave cycle counter expired"(오토클레이브 주기 카 운터 만료) 메시지가 표시됩니다. 이 기능은 "000" 값을 입력하면 꺼집니다.

표 27: ISM 설정

8.4.5.1 Sensor Monitoring Setup(센서 모니터링 설정)

메뉴 경로: Device > Detailed Setup > ISM Setup > Sensor Monitoring Setup

파라미터	설명
DLI Monitoring	Dynamic Lifetime Indicator(동적 수명 표시기)를 켜거나 끕니다.
	Dynamic Lifetime Indicator는 신뢰할 수 있는 측정을 모장할 수 있도 록 남은 수명을 추정합니다. 전류 산소 센서의 경우에는 Dynamic Lifetime Indicator가 센서의 내부 전극과 관련되어 있습니다.
TTM Monitoring	Time To Maintenance indicator(유지보수 시간 표시기)를 켜거나 끕 니다.
	Time To Maintenance indicator는 최상의 측정 성능을 유지할 수 있도 록 다음 세척 주기를 수행해야 하는 시간을 추정합니다. 이 표시기 는 DLI 파라미터의 중대한 변화로부터 영향을 받습니다. 전류 산소 센서의 경우에는 Time To Maintenance indicator가 멤브레 인과 전해질 유지보수 주기를 표시합니다.
ACT Monitoring	Adaptive Calibration Timer(적응형 교정 타이머)를 켜거나 끕니다.
	Adaptive Cal Timer는 최상의 측정 성능을 유지할 수 있도록 다음 교 정을 수행해야 하는 시간을 추정합니다. Adaptive Cal Timer는 조정 또는 교정이 성공적으로 완료된 후 최초 값으로 재설정됩니다.
Max TTM	Time to Maintenance indicator 간격을 설정합니다. 타이머가 간격에 도달하면 즉시 메시지 메뉴에 메시지가 표시됩니다.
Max ACT	Adaptive Cal Timer 간격을 설정합니다. 타이머가 간격에 도달하면 즉시 메시지 메뉴에 메시지가 표시됩니다.

표 28: 센서 모니터링 설정

8.4.5.2 Reset ISM Counter/Timer(ISM 카운터/타이머 재설정)

메뉴 경로: Device > Detailed Setup > ISM Setup > Reset ISM Counter/Timer

Reset ISM Counter/Timer 메뉴를 사용하면 각 카운터와 타이머를 설정할 수 있습니다. 이 메뉴의 보기는 연결된 센서에 따라 달라집니다.

8.4.6 System(시스템)

메뉴 경로: Device > Detailed Setup > System

파라미터	설명
Lock/Unlock Device	트랜스미터를 잠그거나 잠금 해제합니다. "Lock"(잠금) 상태에서는 어떤 마스터도 트랜스미터에 쓰기 작업을 수행할 수 없습니다.

표 29: 시스템

8.4.6.1 Reset(재설정)

메뉴 경로: Device > Detailed Setup > System > Reset

파라미터	설명
Reset System	모든 파라미터를 기본값으로 재설정합니다. 측정기 교정은 영향을 받지 않습니다.
Reset MeterCal	전자 장치 계수들을 기본값으로 재설정합니다. 이 기능은 아날로 그 입력 교정이 부정확하게 이루어진 후에 사용합니다.
ResetAnalogOutCal	아날로그 출력 계수를 기본값으로 재설정합니다. 이 기능은 아날 로그 출력 교정이 부정확하게 이루어진 후에 사용합니다.

표 30: 재설정

8.4.6.2 Date & Time(날짜/시간)

메뉴 경로: Device > Detailed Setup > System > Date & Time

파라미터	설명
Get Current Date and Time	트랜스미터에 저장된 날짜와 시간을 표시합니다.
YY / MM / DD / HH / MM / SS	날짜와 시간을 설정합니다. – Date(날짜): YY-MM-DD – Time(시간): 24시간 형식 HH-MM-SS

표 31: 날짜 및 시간

8.4.7 Alarm Setup(경보 설정)

메뉴 경로: Device > Detailed Setup > Alarm Setup

옵션을 활성화하려면 체크박스에 체크하십시오. 다양한 옵션을 선택할 수 있습니다.

경보가 활성화되어 경보가 발생하는 경우 이 경보는 Message 메뉴에 표시됩니다. 28페 이지의 8.3.1.1장 "Messages(메시지)" 내용을 참조하십시오.

파라미터	설명
Alarm Byte O	pH 센서 진단 기능:
	 Rg: 측정 전극이 고장나는 등의 이유로 인해 Rg가 허용 한계를 벗 어난 상태입니다.
	 - Rr, RpNa: 기준 전극이 코팅되었거나 열화되어 Rr이 허용 한계를 벗어난 상태입니다.
Alarm Byte 1	일반
	- Software Failure: 감시자 타임 아웃 기능.
	전도도 센서 진단 기능:
	 Dry Cond Sensor: 전도도 센서가 빈 파이프 안에 있는 등 공기 중 에 있습니다.
	– Cell Constant Deviation: 셀 상수가 공장 교정 값과 큰 차이를 보이 는 등 허용 범위를 벗어난 상태입니다.
	- Cond Sensor Shorted: 전도도 센서에 단락이 있습니다. 저르 추저 사소 세서 지다 기는
	- Electrolyte Level: 멤브레인 본체 내 전해실 꾸준이 너무 낮아서 음 극과 기준 전극 간의 연결이 방해되고 있습니다.

표 32: 경보 설정

8.5 Review(검토)

메뉴 경로: Device > Review

Review 메뉴는 트랜스미터와 연결된 센서에 대한 중요 정보를 제공합니다.

9 문제해결

트랜스미터가 METTLER TOLEDO에서 지정한 방식 이외의 방식으로 사용되는 경우 트랜 스미터에서 제공하는 보호 기능이 손상될 수 있습니다.

일반적인 문제의 가능한 원인은 아래 표를 참조하십시오.

문제	가능한 원인	조치
HART 통신 오류	잘못된 배선	 배선을 점검하십시오. 15페이지의 5장 " 배선" 내용을 참조하십시오. 공급 전압의 극성을 확인하십시오. 17페 이지의 5.3장 "터미널 블록(TB) 정의" 내용을 참조하십시오.
	장치가 멀티 드롭 모드임	폴링주소를 "0"으로설정하십시오.41페이 지의 8.4.4.1장 "HART Output(HART 출력)" 내용을 참조하십시오.
전류 출력이 항상 22 mA임	센서가 분리되었거나 잘못 연결되었습니다.	센서를 연결하십시오. 14페이지의 4.2장 " 센서 및 트랜스미터 어셈블리" 내용을 참 조하십시오.
잘못된 측정 판독	센서가 잘못 구성되었습니다.	 센서를 올바르게 구성하십시오. 24페이 지의 8장 "메뉴 개요 및 메뉴 설명" 내 용을 참조하십시오. 재설정하십시오. 44페이지의 8.4.6.1장 "Reset(재설정)" 내용을 참조하십시오.
설정을 변경할 수 없습니다.	트랜스미터 잠김	트랜스미터를잠금해제하십시오.44페이 지의 8.4.6장 "System(시스템)" 내용을 참조하십시오.

표 33: 문제해결

참고!

Diagnostics & Service 메뉴는 트랜스미터와 연결된 센서에 대한 정보를 표시하고 문제해결을 지원합니다. 27페이지의 8.3장 "메뉴 "Diagnostics & Service"(진단 및 서비스)" 내용을 참조하십시오.

경보는 **Messages** 메뉴에 표시됩니다. 28페이지의 8.3.1.1장 "Messages(메 시지)" 내용을 참조하십시오.

10 기술 데이터

pH/ORP(pH/pNa 포함)

 측정 파라미터	pH, mV 및 온도	
 pH 측정 범위	-2.00 ~ +20.00 pH	
ORP 입력 범위	–1500 ~ +1500 mV	
 온도 측정 범위	−30 ~ 130 °C(−22 ~ 266 °F)	
교정	– 구성 도구: 공정 – iSense 소프트웨어: 1점 및 2점	

전류 측정 산소

		(
 측정 파라미터	용존 산소: 포화도 또는 농도 및 온도	
 산소 측정 범위	– 포화: 0 ~ 500 % 공기, 0 ~ 200 % 0₂ – 농도: 0 ppb(µg/L) ~ 50.00 ppm(mg/L)	
 분극 전압	–550 mV 또는 –674 mV(구성 가능)	
 온도 입력	NTC 22 k Q, Pt1000, Pt100	
 온도 보상	자동	
 온도 측정 범위	-10 ~ +80 °C(+14 ~ +176 °F)	
교정	– 구성 도구: 공정 – iSense 소프트웨어: 1점 및 2점	

전도도 4-e

측정 파라미터	전도도/비저항 및 온도			
전도도 범위	0.01 ~ 650 mS /cm(1.54 Ω x cm ~ 0.1 MΩ x cm)			
화학 농도 곡선	$\begin{array}{lll} \mbox{NaCl:} & 0-26\%@0^\circ \mbox{C} \sim 0-28\%@+100^\circ \mbox{C} \\ \mbox{NaOH:} & 0-12\%@0^\circ \mbox{C} \sim 0-16\%@+40^\circ \mbox{C} \sim 0-6\%@+100^\circ \mbox{C} \\ \mbox{HCl:} & 0-18\%@-20^\circ \mbox{C} \sim 0-18\%@0^\circ \mbox{C} \sim 0-5\%@+50^\circ \mbox{C} \\ \mbox{HNO}_3: & 0-30\%@-20^\circ \mbox{C} \sim 0-30\%@0^\circ \mbox{C} \sim 0-8\%@+50^\circ \mbox{C} \\ \mbox{H}_2\mbox{SO}_4: & 0-26\%@-12^\circ \mbox{C} \sim 0-26\%@+5^\circ \mbox{C} \\ \mbox{H}_3\mbox{PO}_4: & 0-35\%@+5^\circ \mbox{C} \sim +80^\circ \mbox{C} \end{array}$			
TDS 범위	NaCl, CaCO ₃			
온도 입력	Pt1000			
온도 측정 범위	-40 ~ +200 °C(-40 ~ +392 °F)			
 교정	- 구성 도구: 공정 - iSense 소프트웨어: 1점 및 2점			

일반 전기 규격

출력	HART®사용 시 아날로그 출력 4 ~ 20 mA
HART 통신	FSK 아날로그 출력 변조, 장치 식별, 측정 값, 상태 및 메시지, 파 라미터, 교정, ISM 진단(DLI, ACT 및 TTM)을 사용하는 디지털 통신
작동	구성 도구, 자산 관리 도구 또는 HART 소형 터미널 사용
공급 전압	14 ~ 30 V DC
연결 터미널	스프링 케이지 터미널, 선 단면 0.2 ~ 1.5 mm²(AWG 16 – 24)에 적합
갈바닉 절연	입력, 출력 및 접지는 최대 500 V까지 갈바닉 절연
아날로그 출력	루프 전류 4 ~ 20 mA, 잘못된 극성 보호
정확도 아날로그 출력	4 ~ 20 mA에서 < ± 0.05 mA
아날로그 입력	4 ~ 20 mA(압력 보상용)
디지털 입력	홀드 상태에서 트랜스미터 전환 전환 전압(선택 가능): - 낮음: 0.0 ~ 1.0 V DC - 높음: 2.3 ~ 30.0 V DC
경보	분리된 센서용, 22 mA
실시간 시각	고정 시간 및 날짜 형식. 형식은 변경할 수 없습니다. 전력 예비율: > 5일

환경 규격

보관 온도	-40 ~ +70 °C(-40 ~ +158 °F)	
~ 주변 온도 작동 범위	-20 ~ +60 °C(-4 ~ +140 °F)	
상대 습도	0~95%비응축	
EMC	EN 61326-1에 따름(일반 요구사항) 방출: 등급 B, 내성: 등급 A	
인증 및 승인	ATEX/IECEx , NEPSI 구역 1 - II 2(1) G Ex ib [ia Ga] IIC T4 Gb - II 2(1) D Ex ib [ia Da] IIIC T80°C/ T90°C Db - II 2(1) G Ex d [ia Ga] IIC T4 Gb - II 2(1) D Ex tb [ia Da] IIIC T80°C/ T90°C Db	
	CSA - Class I, Division 1, Groups A, B, C 및 D T4 - Class II, Division 1, Groups E, F 및 G 및 - Class III - Ex ia IIC T4 Ga; Class I, Zone O, AEx ia IIC T4 Ga	
CE 마크	측정 시스템은 EC 지침의 법적 요건을 준수합니다. METTLER TOLEDO는 CE 마크를 부착함으로써 기기의 시험에 성공했음을 입증합니다.	

기계 규격

치수	13페이지의 3.2장 "설계" 내용을 참조하십시오.
케이블 글랜드	– M100/2XH (30 026 578): 27∦ M20 x 1.5 – M100/2XH (30 246 352): 27∦ NPT 3/4"
중량	1.2 kg
재질	– 상단 하우징에 다이캐스트 알루미늄 – 하단 부분에 스테인리스 스틸 304
· 인클로저 등급	IP 66/NEMA4X

11 기본값

11.1 pH/ORP 또는 pH/pNa 센서 기본값

메뉴	하위 메뉴	파라미터	값	단위
Measurements	Channel Setup	PV is	рН	рН
		SV is	Temperature	°C
		TV is	DLI	days
		QV is	TTM	days
		PV / SV / TV / QV Average	Special	_
	рН	pH Buffer	pH/ORP: Mettler-9	_
			pH/pNa: Na+3.9M	-
		IP	7.0	рН
		STC Ref Mode	No	-
		STC Value	0.00	pH/°C
		STC Ref Temp	25	٥°
Output Condition	Analog Output	Loop Current Mode	Disabled	-
		Alarm Type	Hi (22.0 mA)	-
		Hold Mode	Last Value	-
		Hold Fixed	3.6	mA
	Analog Output > Range	PV LRV = PV LSL	2	рН
		PV URV = PV USL	12	рН
	Hold Output	Manual Hold	Stop (when power on)	-
		Din1 Hold State	Off	-
ISM Setup	-	CIP Limit	0	-
		SIP Limit	0	-
		Autoclave Limit	0	-
	Sensor Monitoring Setup	DLI Monitoring	On	-
		TTM Monitoring	On	_
		ACT Monitoring	On	_
Alarm Setup	_	Alarm Byte 0	Rg diagnostics = Yes	_
			Rr diagnostics = Yes	_
		Alarm Byte 1	Software Failure = No	-

11.2 0₂ 센서 기본값

메뉴	하위 메뉴	파라미터	값	단위
Measurements	Channel Setup	PV is	02	O ₂ Hi: %air
				O2 Lo and O2 Trace: ppb
		SV is	Temperature	°C
		TV is	DLI	days
		QV is	TTM	days
		PV / SV / TV / QV Average	Special	-
	02	Pcal Pressure	759.8	mmHg
		Process Cal Pressure Source	Pcal_Pressure	-
		Process Pressure Mode	Edit	-
		Process Pressure	759.8	mmHg
		Salinity	0	g/kg
		Humidity	100	%
		Umeaspol	Reading from sensor	mV
		Ucalpol	-674	mV
Output Condition	Analog Output	Loop Current Mode	Disabled	_
		Alarm Type	Hi (22.0 mA)	_
		Hold Mode	Last Value	_
		Hold Fixed	3.6	mA
	Analog Output > Range	PV LRV = PV LSL	0	Same as PV is
		PV URV = PV USL	100	Same as PV is
	Hold Output	Manual Hold	Stop (when power on)	-
		Din1 Hold State	Off	-
ISM Setup	-	CIP Limit	0	-
		SIP Limit	0	-
		Autoclave Limit	0	-
	Sensor Monitoring Setup	DLI Monitoring	On	-
		TTM Monitoring	On	-
		ACT Monitoring	On	_
Alarm Setup	-	Alarm Byte 1	Software Failure = No	-
			Electrolyte Level = Yes	_

11.3 전도도 센서 기본값

메뉴	하위 메뉴	파라미터	값	단위
Measurements	Channel Setup	PV is	Conductivity	mS/cm
		SV is	Temperature	°C
		TV is	None	_
		QV is	None	_
		PV / SV / TV / QV Average	Special	_
	Conductivity	Compensation Mode	Standard	_
		Linear Coefficient	2.0 %/°C	-
Output Condition	Analog Output	Loop Current Mode	Disabled	_
		Alarm Type	Hi (22.0 mA)	_
		Hold Mode	Last Value	_
		Hold Fixed	3.6	mA
	Analog Output > Range	PV LRV = PV LSL	0	mS/cm
		PV URV = PV USL	500	mS/cm
Alarm Setup	-	Alarm Byte 1	Software Failure = No	_
			Dry Cond Sensor = No	_
			Cell Constant Deviation = No	_
			Cond Sensor Shorted = No	_

12 버퍼표

M100 트랜스미터는 자동 pH 버퍼 인식 수행 기능이 있습니다. 다음 표에는 자동으로 인식되는 다양한 종류의 표준 버퍼가 표시되어 있습니다.

12.1 pH/ORP 센서 버퍼

12.1.1 Mettler-9

온도(°C)	완충액 pH			
0	2.03	4.01	7.12	9.52
5	2.02	4.01	7.09	9.45
10	2.01	4.00	7.06	9.38
15	2.00	4.00	7.04	9.32
20	2.00	4.00	7.02	9.26
25	2.00	4.01	7.00	9.21
30	1.99	4.01	6.99	9.16
35	1.99	4.02	6.98	9.11
40	1.98	4.03	6.97	9.06
45	1.98	4.04	6.97	9.03
50	1.98	4.06	6.97	8.99
55	1.98	4.08	6.98	8.96
60	1.98	4.10	6.98	8.93
65	1.98	4.13	6.99	8.90
70	1.99	4.16	7.00	8.88
75	1.99	4.19	7.02	8.85
80	2.00	4.22	7.04	8.83
85	2.00	4.26	7.06	8.81
90	2.00	4.30	7.09	8.79
95	2.00	4.35	7.12	8.77

12.1.2 Mettler-10

온도(°C)	완충액 pH			
0	2.03	4.01	7.12	10.65
5	2.02	4.01	7.09	10.52
10	2.01	4.00	7.06	10.39
15	2.00	4.00	7.04	10.26
20	2.00	4.00	7.02	10.13
25	2.00	4.01	7.00	10.00
30	1.99	4.01	6.99	9.87
35	1.99	4.02	6.98	9.74
40	1.98	4.03	6.97	9.61
45	1.98	4.04	6.97	9.48
50	1.98	4.06	6.97	9.35
55	1.98	4.08	6.98	
60	1.98	4.10	6.98	
65	1.99	4.13	6.99	
70	1.98	4.16	7.00	
75	1.99	4.19	7.02	
80	2.00	4.22	7.04	
85	2.00	4.26	7.06	
90	2.00	4.30	7.09	
95	2.00	4.35	7.12	

12.1.3 NIST 기술

온도(°C)	완충액 pH				
0	1.67	4.00	7.115	10.32	13.42
5	1.67	4.00	7.085	10.25	13.21
10	1.67	4.00	7.06	10.18	13.01
15	1.67	4.00	7.04	10.12	12.80
20	1.675	4.00	7.015	10.07	12.64
25	1.68	4.005	7.00	10.01	12.46
30	1.68	4.015	6.985	9.97	12.30
35	1.69	4.025	6.98	9.93	12.13
40	1.69	4.03	6.975	9.89	11.99
45	1.70	4.045	6.975	9.86	11.84
50	1.705	4.06	6.97	9.83	11.71
55	1.715	4.075	6.97		11.57
60	1.72	4.085	6.97		11.45
65	1.73	4.10	6.98		
70	1.74	4.13	6.99		
75	1.75	4.14	7.01		
80	1.765	4.16	7.03		
85	1.78	4.18	7.05		
90	1.79	4.21	7.08		
95	1.805	4.23	7.11		

트랜스미터 M100 30 238 714

12.1.4 NIST 표준(DIN 및 JIS 19266: 2000-01)

온도(°C)	완충액 pH			
0				
5	1.668	4.004	6.950	9.392
10	1.670	4.001	6.922	9.331
15	1.672	4.001	6.900	9.277
20	1.676	4.003	6.880	9.228
25	1.680	4.008	6.865	9.184
30	1.685	4.015	6.853	9.144
35	1.694	4.028	6.841	9.095
40	1.697	4.036	6.837	9.076
45	1.704	4.049	6.834	9.046
50	1.712	4.064	6.833	9.018
55	1.715	4.075	6.834	8.985
60	1.723	4.091	6.836	8.962
70	1.743	4.126	6.845	8.921
80	1.766	4.164	6.859	8.885
90	1.792	4.205	6.877	8.850
95	1.806	4.227	6.886	8.833

참고!

이차 기준 재료의 개별 전하의 pH(S) 값은 인증된 연구소의 인증서로 문서 화되어 있습니다. 이 인증서는 각각의 버퍼 재료와 함께 공급됩니다. 이러 한 pH(S) 값은 이차 기준 버퍼 재료를 위한 표준값으로 사용되어야 합니다. 그에 따라 이 표준은 실용적인 용도를 위한 표준 pH 값 표를 포함하지 않습 니다. 상기 표에는 예비 교육을 위한 pH(PS) 값의 예만 제공합니다.

12.1.5 Hach

Bergmann & Beving Process AB에서 지정한 최대 60 °C의 버퍼값

온도(°C)	완충액 pH		
0	4.00	7.14	10.30
5	4.00	7.10	10.23
10	4.00	7.04	10.11
15	4.00	7.04	10.11
20	4.00	7.02	10.05
25	4.01	7.00	10.00
30	4.01	6.99	9.96
35	4.02	6.98	9.92
40	4.03	6.98	9.88
45	4.05	6.98	9.85
50	4.06	6.98	9.82
55	4.07	6.98	9.79
60	4.09	6.99	9.76

12.1.6 Ciba(94)

온도(°C)	완충액 pH			
0	2.04	4.00	7.10	10.30
5	2.09	4.02	7.08	10.21
10	2.07	4.00	7.05	10.14
15	2.08	4.00	7.02	10.06
20	2.09	4.01	6.98	9.99
25	2.08	4.02	6.98	9.95
30	2.06	4.00	6.96	9.89
35	2.06	4.01	6.95	9.85
40	2.07	4.02	6.94	9.81
45	2.06	4.03	6.93	9.77
50	2.06	4.04	6.93	9.73
55	2.05	4.05	6.91	9.68
60	2.08	4.10	6.93	9.66
65	2.07*	4.10*	6.92*	9.61*
70	2.07	4.11	6.92	9.57
75	2.04*	4.13*	6.92*	9.54*
80	2.02	4.15	6.93	9.52
85	2.03*	4.17*	6.95*	9.47*
90	2.04	4.20	6.97	9.43
95	2.05*	4.22*	6.99*	9.38*

* 추정

12.1.7 Merck Titrisole, Riedel-de-Haën Fixanale

온도(°C)	완충액 pH				
0	2.01	4.05	7.13	9.24	12.58
5	2.01	4.05	7.07	9.16	12.41
10	2.01	4.02	7.05	9.11	12.26
15	2.00	4.01	7.02	9.05	12.10
20	2.00	4.00	7.00	9.00	12.00
25	2.00	4.01	6.98	8.95	11.88
30	2.00	4.01	6.98	8.91	11.72
35	2.00	4.01	6.96	8.88	11.67
40	2.00	4.01	6.95	8.85	11.54
45	2.00	4.01	6.95	8.82	11.44
50	2.00	4.00	6.95	8.79	11.33
55	2.00	4.00	6.95	8.76	11.19
60	2.00	4.00	6.96	8.73	11.04
65	2.00	4.00	6.96	8.72	10.97
70	2.01	4.00	6.96	8.70	10.90
75	2.01	4.00	6.96	8.68	10.80
80	2.01	4.00	6.97	8.66	10.70
85	2.01	4.00	6.98	8.65	10.59
90	2.01	4.00	7.00	8.64	10.48
95	2.01	4.00	7.02	8.64	10.37

12.1.8 WTW

온도(°C)	완충액 pH			
0	2.03	4.01	7.12	10.65
5	2.02	4.01	7.09	10.52
10	2.01	4.00	7.06	10.39
15	2.00	4.00	7.04	10.26
20	2.00	4.00	7.02	10.13
25	2.00	4.01	7.00	10.00
30	1.99	4.01	6.99	9.87
35	1.99	4.02	6.98	9.74
40	1.98	4.03	6.97	9.61
45	1.98	4.04	6.97	9.48
50	1.98	4.06	6.97	9.35
55	1.98	4.08	6.98	
60	1.98	4.10	6.98	
65	1.99	4.13	6.99	
70		4.16	7.00	
75		4.19	7.02	
80		4.22	7.04	
85		4.26	7.06	
90		4.30	7.09	
95		4.35	7.12	

온도(°C)	완충액 pH			
0	1.666	4.003	6.984	9.464
5	1.668	3.999	6.951	9.395
10	1.670	3.998	6.923	9.332
15	1.672	3.999	6.900	9.276
20	1.675	4.002	6.881	9.225
25	1.679	4.008	6.865	9.180
30	1.683	4.015	6.853	9.139
35	1.688	4.024	6.844	9.102
38	1.691	4.030	6.840	9.081
40	1.694	4.035	6.838	9.068
45	1.700	4.047	6.834	9.038
50	1.707	4.060	6.833	9.011
55	1.715	4.075	6.834	8.985
60	1.723	4.091	6.836	8.962
70	1.743	4.126	6.845	8.921
80	1.766	4.164	6.859	8.885
90	1.792	4.205	6.877	8.850
95	1.806	4.227	6.886	8.833

12.1.9 JIS Z 8802

12.1.10 이중 멤브레인 pH 전극 버퍼(pH/pNa)

12.1.10.1 Mettler-pH/pNa(Na+ 3.9M)

온도(°C)	완충액 pH			
0	1.98	3.99	7.01	9.51
5	1.98	3.99	7.00	9.43
10	1.99	3.99	7.00	9.36
15	1.99	3.99	6.99	9.30
20	1.99	4.00	7.00	9.25
25	2.00	4.01	7.00	9.21
30	2.00	4.02	7.01	9.18
35	2.01	4.04	7.01	9.15
40	2.01	4.05	7.02	9.12
45	2.02	4.07	7.03	9.11
50	2.02	4.09	7.04	9.10

13 보증

METTLER TOLEDO는 구매일로부터 1년의 기간 동안 본 제품이 재료나 기능상의 중요한 규격 이탈이 없다는 사실을 보증합니다. 수리가 필요하고 장애가 보증 기간 동안 남용 이나 오용의 결과가 아닌 경우, 운송료를 선불로 하여 반송하시면 별도의 청구 없이 수 리해 드립니다. METTLER TOLEDO의 고객 서비스 부서에서는 제품 문제가 규격 이탈이나 고객 남용으로 인한 것인지 판단할 것입니다. 보증 제외 제품은 교환을 기본으로 하여 유상 수리됩니다.

상기 보증은 METTLER TOLEDO가 한 보증일 뿐이며 상업성이나 특정한 목적에 대한 적합 성의 보증을 포함한 어떤 다른 명백한 또는 암시된 보증을 대신하지 않습니다. METTLER TOLEDO는 고의 여부와 관계없이 구매자나 제 3자의 행위나 태만으로 인해 초래되거나, 이에 기여하거나, 이로부터 발생된 모든 손실, 클레임, 비용이나 손상에 대해 어떤 책임 도 지지 않을 것입니다. 어떤 경우에도 어떤 원인에 대한 METTLER TOLEDO의 책임은 계 약, 보증, 면책 또는 불법 행위(태만 포함) 등 어떤 수단에 기반을 두는지 관계없이, 클 레임으로 이어지는 해당 항목의 비용을 초과해서는 안 됩니다.

METTLER TOLEDO Market Organizations

Sales and Service:

Australia

Mettler-Toledo Limited 220 Turner Street Port Melbourne, VIC 3207 Australia Phone +61 1300 659 761 e-mail info.mtaus@mt.com

Austria

Mettler-Toledo Ges.m.b.H. Laxenburger Str. 252/2 AT-1230 Wien Phone +43 1 607 4356 e-mail prozess@mt.com

Brazil

Mettler-Toledo Ind. e Com. Ltda. Avenida Tamboré, 418 Tamboré BR-06460-000 Barueri/SP Phone +55 11 4166 7400 e-mail mtbr@mt.com

Canada

Mettler-Toledo Inc. 2915 Argentia Rd #6 CA-ON L5N 8G6 Mississauga Phone +1 800 638 8537 e-mail ProInsideSalesCA@mt.com

China

Mettler-Toledo International Trading (Shanghai) Co. Ltd. 589 Gui Ping Road Cao He Jing CN - 200233 Shanghai Phone +86 21 64 85 04 35 e-mail ad@mt.com

Croatia

Mettler-Toledo d.o.o. Mandlova 3 HR-10000 Zagreb Phone +385 1 292 06 33 e-mail mt.zagreb@mt.com

Czech Republic

Mettler-Toledo s.r.o. Trebohosticka 2283/2 CZ-100 00 Praha 10 Phone +420 2 72 123 150 e-mail sales.mtcz@mt.com

Denmark

Mettler-Toledo A/S Naverland 8 DK-2600 Glostrup Phone +45 43 27 08 00 e-mail info.mtdk@mt.com

Management System certified according to ISO 9001 / ISO 14001

France

Mettler-Toledo Analyse Industrielle S.A.S. 30, Boulevard de Douaumont FR-75017 Paris Phone +33 1 47 37 06 00 e-mail mtpro-f@mt.com

Germany

Mettler-Toledo GmbH ProzeBanalytik Ockerweg 3 DE-35396 Gießen Phone +49 641 507 444 e-mail prozess@mt.com

Great Britain

Mettler-Toledo LTD 64 Boston Road, Beaumont Leys GB-Leicester LE4 1AW Phone +44 116 235 7070 e-mail enquire.mtuk@mt.com

Hungary

Mettler-Toledo Kereskedelmi KFT Teve u. 41 HU-1139 Budapest Phone +36 1 288 40 40 e-mail mthu@axelero.hu

India

Mettler-Toledo India Private Limited Amar Hill, Saki Vihar Road Powai IN - 400 072 Mumbai Phone +91 22 2857 0808 e-mail sales.mtin@mt.com

Indonesia

PT. Mettler-Toledo Indonesia GRHA PERSADA 3rd Floor JI. KH. Noer Ali No.3A, Kayuringin Jaya Kalimalang, Bekasi 17144, ID Phone +62 21 294 53919 e-mail mt-id.customersupport@mt.com

Italy

Mettler-Toledo S.p.A. Via Vialba 42 IT-20026 Novate Milanese Phone +39 02 333 321 e-mail customercare.italia@mt.com

Japan

((

Mettler-Toledo K.K. Process Division 6F Ikenohata Nisshoku Bldg. 2-9-7, Ikenohata Taito-ku JP-110-0008 Tokyo Phone +81 3 5815 5606 e-mail helpdesk.ing.jp@mt.com

Malaysia

Mettler-Toledo (M) Sdn Bhd Bangunan Electroscon Holding, U 1-01 Lot 8 Jalan Astaka U8/84 Seksyen U8, Bukit Jelutong MY -40150 Shah Alam Selangor Phone +60 3 78 44 58 88 e-mail MT-MY.CustomerSupport@mt.com

Mexico

Mettler-Toledo S.A. de C.V. Ejército Nacional #340 Polanco V Sección C.P. 11560 MX - México D.F. Phone +52 55 1946 0900 e-mail mt.mexico@mt.com

Norway

Mettler-Toledo AS Ulvenveien 92B NO-0581 Oslo Norway Phone +47 22 30 44 90 e-mail info.mtn@mt.com

Poland

Mettler-Toledo (Poland) Sp.z.o.o. ul. Poleczki 21 PL-02-822 Warszawa Phone +48 22 545 06 80 e-mail polska@mt.com

Russia

Mettler-Toledo Vostok ZAO Sretenskij Bulvar 6/1 Office 6 RU-101000 Moscow Phone +7 495 621 56 66 e-mail inforus@mt.com

Singapore

Mettler-Toledo (S) Pte. Ltd. Block 28 Ayer Rajah Crescent #05-01 SG-139959 Singapore Phone +65 6890 00 11 e-mail mt.sg.customersupport@mt.com

Slovakia

Mettler-Toledo s.r.o. Hattalova 12/A SK-83103 Bratislava Phone +4212 4444 12 20-2 e-mail predai@mt.com

Slovenia

Mettler-Toledo d.o.o. Pot heroja Trtnika 26 SI-1261 Ljubljana-Dobrunje Phone +386 1 530 80 50 e-mail keith.racman@mt.com

South Korea

Mettler-Toledo (Korea) Ltd. 1 & 4 F, Yeil Building 21 Yangjaecheon-ro 19-gil SeoCho-Gu Seoul 06753 Korea Phone +82 2 3498 3500 e-mail Sales_MTKR@mt.com

Spain

Mettiler-Toledo S.A.E. C/Miguel Hernández, 69-71 ES-08908 L'Hospitalet de Llobregat (Barcelona) Phone +34 902 32 00 23 e-mail mtemkt@mt.com

Sweden

Mettler-Toledo AB Virkesvägen 10 Box 92161 SE-12008 Stockholm Phone +46 8 702 50 00 e-mail sales.mts@mt.com

Switzerland

Mettler-Toledo (Schweiz) GmbH Im Langacher, Postfach CH-8606 Greifensee Phone +41 44 944 47 60 e-mail ProSupport.ch@mt.com

Thailand

Mettler-Toledo (Thailand) Ltd. 272 Soi Soonvijai 4 Rama 9 Rd., Bangkapi Huay Kwang TH-10320 Bangkok Phone +66 2 723 03 00 e-mail MT-TH.CustomerSupport@mt.com

Turkey

Mettiler-Toledo Türkiye Haluk Türksoy Sokak No: 6 Zemin ve 1. Bodrum Kat 34662 Üsküdar-Istanbul, TR Phone +90 216 400 20 20 e-mail sales.mttr@mt.com

USA

METTLER TOLEDO Process Analytics 900 Middlesex Turnpike, Bld. 8 Billerica, MA 01821, USA Phone +1 781 301 8800 Freephone +1 800 352 8763 e-mail mtprous@mt.com

Vietnam

Mettler-Toledo (Vietnam) LLC 29A Hoang Hoa Tham Street, Ward 6 Binh Thanh District Ho Chi Minh City, Vietnam Phone +84 8 35515924 e-mail MT-VN.CustomerSupport@mt.com

기술적 변경 사항이 있을 수 있습니다. © Mettler-Toledo GmbH, Process Analytics 01/2016 스위스에서 인쇄. 30 238 714

Mettler-Toledo GmbH, Process Analytics Im Hackacker 15, CH-8902 Urdorf, Suisse Tél. +41 44 729 62 11, Fax +41 44 729 66 36