Operating Instructions

Head Mount Transmitter

M100

Subject to technical changes. © Mettler-Toledo GmbH, Process Analytics 01/2016. Printed in Switzerland. 30 130 604

Contents

1	Introduction			7
		1.1	Information Regarding the Operating Instructions	7
		1.2	Explanation of Symbols	8
		1.3	Scope of Delivery	9
		1.4	Customer Service	9
		1.5	Environmental Protection	9
2	Safety			10
		2.1	Intended Use	10
		2.2	General Safety Instructions	10
		2.3	Changes and Conversions	11
		2.4	IECEx and ATEX Instructions	11
		2.5	CSA Instructions	12
		2.5.1	CSA Markings	12
		2.5.2	Applicable Requirements	12
		2.5.3	Condition of Certificate	12
		2.6	Labels M100 2XH	13
3	Function and D	esign		14
		3.1	Function	14
		3.2	Design	15
4	Installation			16
		4.1	Safety Instructions for Installation	16
		4.2	Assembly of Sensor and Transmitter	16
5	Wiring			17
		5.1	Safety Instructions for Wiring	17
		5.2	HART System Architecture	17
		5.3	Terminal Block (TB) Definition	19
6	Operation			20
		6.1	Start-up Operation via Configuration Tool or Asset Management Tool	20
		6.2	Start-up Operation via HART Handheld Terminal	21
		6.3	Change Sensor Type	21
7	Sensor Calibra	tion		22
		7.1	Terminate Sensor Calibration	22
		7.2	Perform Sensor Calibration via Configuration Tool or Asset Management Tool	23
		7.3	Perform Sensor Calibration via	- 00
		7 /	Perform Calibration for Current Input Ain	23 24
		/.+		24

8	Menu Overview a	ind Menu De	scription	25
		8.1	Menu Overview	25
		8.2	Menu "Sensor Calibration"	26
		8.2.1	Verify	26
		8.2.1.1	pH/ORP and pH/pNa	26
		8.2.1.2	O ₂	26
		8.2.1.3	Conductivity	26
		8.3	Menu "Diagnostics & Service"	27
		8.3.1	Device Info	27
		8.3.1.1	Messages	27
		8.3.1.2	ISM Sensor Info	29
		8.3.1.3	Calibration Data and Calibration History	29
		8.3.1.4	ISM Diagnostics and Sensor Monitoring	30
		8.3.1.5	Model/Software Revision	31
		8.3.2	Test Device	32
		8.3.3	HW Diagnostics	32
		8.4	Detailed Setup	32
		8.4.1	Load Configuration	32
		8.4.2	Measurements	33
		8.4.2.1	Channel Setup	33
		8.4.2.2	pH (pH/ORP and pH/pNa)	33
		8.4.2.3	02	34
		8.4.2.4	Cond 4e (Conductivity 4e)	35
		8.4.2.5	Analog Input	36
		8.4.3	Output Conditions	37
		8.4.3.1	Analog Output	37
		8.4.3.2	Hold Output	38
		8.4.4	HARI Info	39
		8.4.4.1		39
		8.4.5	ISM Setup	40
		8.4.5.1	Sensor Moniforing Setup	41
		8.4.5.2	Reset ISM Counter/Timer	41
		8.4.6	System	42
		8.4.6.1	Keser	42
		8.4.6.2	Date & lime	42
		8.4./	Alarm Setup	43
		8.5	Keview	43
9	Troubleshooting			44
10	Technical Data			45
11	Default Values			48
		11.1	Default Values for pH/ORP or pH/pNa Sensors	48
		11.2	Default Values for O ₂ Sensors	49
		11.3	Default Values for Coductivity Sensors	50

12	Buffer Tables			51
		12.1	Buffers for pH/ORP Sensors	51
		12.1.1	Mettler-9	51
		12.1.2	Mettler-10	52
		12.1.3	NIST Technical	52
		12.1.4	NIST Standard (DIN and JIS 19266: 2000–01)	53
		12.1.5	Hach	54
		12.1.6	Ciba (94)	54
		12.1.7	Merck Titrisole, Riedel-de-Haën Fixanale	55
		12.1.8	WTW	55
		12.1.9	JIS Z 8802	56
		12.1.10	Buffer for Dual Membrane pH Electrodes (pH/pNa)	56
		12.1.10.1	Mettler-pH/pNa (Na+ 3.9M)	56
13	Warranty			57

13 Warranty 5

Introduction

1

1.1 Information Regarding the Operating Instructions

These operating instructions offer important notes on handling of the M100 transmitter of METTLER TOLEDO. A prerequisite for safe work is compliance with all indicated safety notes and instructions.

Furthermore, local work safety regulations and general safety provisions applicable for the application of the transmitter must be complied with.

The operating instructions must be read carefully before starting any work! It is part of the product and must be kept in direct proximity of the transmitter, accessible for the staff at all times.

When passing on the transmitter to third parties, the operating instructions must be passed on as well.

Observe also the safety regulations and instructions of the connected sensor or of components from other suppliers.

1.2 Explanation of Symbols

Warning notes are marked by symbols in these operating instructions. The notes are initiated by signal words that express the scope of the danger.

Always comply with the notes and act carefully to prevent accidents, personal injury and property damage.

Warning notes

DANGER indicates a directly dangerous situation that will lead to death or serious injury if not avoided.

A WARNING

WARNING indicates a potentially dangerous situation that may lead to death or serious injury if not avoided.

CAUTION indicates a potentially dangerous situation that may lead to slight or minor injury if not avoided.

ATTENTION

ATTENTION indicates a potentially harmful situation that may lead to property damage if not avoided.

Advice and recommendations

NOTE emphasizes useful advice and recommendations, as well as information for efficient and interference-free operation.

1.3 Scope of Delivery

The following is included in the scope of delivery:

- M100 Transmitter
- iLink cable for iSense software
- Quick Setup Guide
- CD-ROM with documentation, device description (DD), iSense software and configuration tool PACTWare™

1.4 Customer Service

Our customer service is available for technical information.

You can find your local office on the last page.

NOTE!

For quick processing of the call, note the data on the product's label, such as serial number, part number, etc.

1.5 Environmental Protection

ATTENTION

Danger for the environment by improper disposal of the transmitter or components!

In case of improper disposal of the transmitter or components, damage to the environment may result.

- Observe the local and national laws and directives.
- Disassemble the transmitter according to its components (plastic, metal, electronics). Supply sorted components for recycling.

2 Safety

2.1 Intended Use

The M100 transmitter is designed for use in the process industries and is certified intrinsically safe for installation in hazardous areas.

METTLER TOLEDO accepts no liability for damages resulting from incorrect use or use other than that intended.

2.2 General Safety Instructions

The following is a list of general safety instructions and warnings. Failure to adhere to these instructions can result in damage to the equipment and/or personal injury to the operator.

- Installation of cable connections and servicing of this product requires access to shock hazard voltage levels.
- Mains power wired to a separate power source must be disconnected before servicing.
- Switch or circuit breaker shall be in close proximity to the equipment and within easy reach of the operator; it shall be marked as the disconnecting device for the equipment.
- Mains power must employ a switch or circuit breaker as the disconnecting device for the equipment.
- Electrical installation must be in accordance with the National Electrical Code and/or any other applicable national or local codes.
- The transmitter should be installed and operated only by personnel familiar with the transmitter and who are qualified for such work.
- The transmitter must only be operated under the specified operating conditions. See Chapter 10 "Technical Data" on Page 45.
- Repair of the transmitter must be performed by authorized, trained personnel only.
- With the exception of routine maintenance, cleaning procedures or fuse replacement as described in these operating instructions, the transmitter must not be tampered with or altered in any manner.
- METTLER TOLEDO accepts no responsibility for damage caused by unauthorized modifications to the transmitter.
- Follow all warnings, cautions, and instructions indicated on and supplied with this product.
- Install equipment as specified in these operating instructions. Follow appropriate local and national codes.
- The transmitter's protective lid must be in place at all times during normal operation.
- If this equipment is used in a manner not specified by the manufacturer, the protection provided by it against hazards may be impaired.

2.3 Changes and Conversions

Changes or conversions of the transmitter or the installation may cause unexpected dangers.

The manufacturer's written approval is required before any technical changes and expansions of the transmitter can be carried out.

2.4 IECEx and ATEX Instructions

M100 multi-parameter transmitters are produced by Mettler-Toledo GmbH.

The M100 transmitter has passed the inspection of IECEx and ATEX and conforms to the following standards:

- IEC 60079-0 Explosive atmospheres –
 Part 0: Equipment General requirements
- IEC 60079-1 Explosive atmospheres –
 Part 1: Equipment protection by flameproof enclosures "d"
- IEC 60079-11 Explosive atmospheres Part 11: Equipment protection by intrinsic safety "i"
- IEC 60079-26 Explosive atmospheres –
 Part 26: Equipment with equipment protection level (EPL) Ga
- IEC 60079-31 Explosive atmospheres –
 Part 1: Equipment dust ignition protection by enclosure "t"

Ex Marking:

- II 2(1) G Ex ib [ia Ga] IIC T4 Gb
- II 2(1) D Ex ib [ia Da] IIIC T80°C/ T90°C Db
- II 2(1) G Ex d [ia Ga] IIC T4 Gb
- II 2(1) D Ex tb [ia Da] IIIC T80°C/ T90°C Db

Certification No.:

- ATEX: SEV 14 ATEX 0128 X
- IECEX: IECEX CQM 14.0020 X

NOTE!

NEPSI: GYB14.1194X

For the special conditions of use refer to the corresponding certificate supplied on the CD.

2.5 CSA Instructions

2.5.1 CSA Markings

- Class I, Division 1, Groups A, B, C and D T4
- Class II, Division 1, Groups E, F and G and
- Class III
- Ex ia IIC T4 Ga; Class I, Zone O, AEx ia IIC T4 Ga

2.5.2 Applicable Requirements

- CSA C22.2 No. 0 –
 General Requirements Canadian Electrical Code Part II
- CSA C22.2 No. 61010-1-12 –
 Safety Requirements for Electrical equipment for measurement, Control and Laboratory use –
 Part 1: General requirements
- UL61010-1 3rd Ed –
 Safety Requirements for Electrical equipment for measurement, Control and Laboratory use –
 Part 1: General requirements
- CSA-C22.2 No. 60079-0:11 –
 Explosive atmospheres Part 0: Equipment General requirements
- CSA-C22.2 No.60079-11:14 Explosive atmospheres – Part 11: Equipment protection by intrinsic safety "i"
- ANSI/UL 913 8th Ed. –
 Intrinsically Safe Apparatus and Associated Apparatus for use in Class I, II and III, Division 1, Hazardous (Classified) Location
- UL60079-0:2013 –
 Explosive atmospheres Part 0: Equipment General requirements
- UL60079-11:2013 –
 Explosive atmospheres Part 11: Equipment protection by intrinsic safety "i"

2.5.3 Condition of Certificate

- 1. Installation per the Canadian Electrical Code Part 1 C22.1-15. , Section 18 and National Electrical Code NFPA70, Article 504 and Article 505
- Intrinsically safe with entity parameter when installed per control drawing, drawing number is 30127727
- When installed in combustible dust atmosphere, the end user shall take care of the influence of process temperature and ensure the maximum surface temperature on enclosure does not exceed 165 °C.
- 4. Avoid ignition hazard due to impact or friction to Aluminum alloy enclosure.
- 5. When transmitter is used in Class I, Division 1 or Class 1, Zone 0, or Class II and Class III cable gland or blanking plug of transmitter shall be used to ensure degree of protection IP 66 and the sensor shall be connected to transmitter via AK9 connector to ensure the degree of protection of transmitter complied with IP 66.

2.6 Labels M100 2XH

EU

Fig. 1: Labels M100 2XH, EU Left: Placed on the top of the housing Upper right: Placed inside the housing Lower right: Placed outside the housing

Address: Mettler-Toledo GmbH Process Analytics, Im Hackacker 15, CH-8902 Urdorf, Switzerland www.mt.com/pro

US

Fig. 2: Labels M100 2XH, US Left: Placed on the top of the housing Upper right: Placed inside the housing Lower right: Placed outside the housing Address: Mettler-Toledo, Thornton Inc, Billerica, MA 01821, USA

3 Function and Design

3.1 Function

The M100 is a 2-wire head mount transmitter with HART communication capability for analytical measurements. The M100 is a single-channel, multi-parameter transmitter for pH/ORP, ph/pNa, dissolved oxygen and conductivity measurement. It is only compatible with ISM sensors. The M100 transmitter is designed for use in the process industries and is certified intrinsically safe for installation in hazardous areas.

The M100 is available with M20 metric cable glands or NPT 3/4" cable conduits.

M100 parameter fit guide

Parameter	M100 2XH
	ISM
pH/ORP	•
pH/pNa	•
Conductivity 4-e	•
Amp. DO ppm $^{1)}$ / ppb $^{2)}$ / trace $^{2)}$	•

1) Ingold and Thornton sensors

2) Ingold sensors

Table 1: M100 parameter fit guide

3.2 Design

Fig. 3: Dimensions M100 transmitter

4 Installation

4.1 Safety Instructions for Installation

- Power off transmitter during installation.
- The transmitter tolerates harsh environments. However, for best results, install the transmitter in an area where temperature extremes, vibrations, and electromagnetic and radio frequency interference are minimized or absent.
- To prevent unintentional exposure of the transmitter circuitry to the plant environment, keep the security lock in place over the circuit end cap. To remove the circuit end cap, loosen the lock nut until the tab disengages from the end cap, then unscrew the cover.

4.2 Assembly of Sensor and Transmitter

- 1. Install sensor housing (4) as described in the documentation of the sensor housing.
- 2. Carefully insert sensor (3) into the sensor housing. Screw in sensor hand-tight.
- Screw sensor housing and extension tube (2) hand-tight. Do not turn the M100 transmitter (1). Turn extension tube only.
- 4. Unscrew cover of the M100 transmitter.
- 5. Perform wiring. See Chapter 5.3 "Terminal Block (TB) Definition" on Page 19.
- 6. Screw cover of the M100 transmitter.

Fig. 4: Assembly of sensor and transmitter

- 1 M100 transmitter
- 2 Extention tube
- 3 Sensor or electrode
- 4 Sensor housing

5 Wiring

5.1 Safety Instructions for Wiring

- Power off transmitter during wiring.
- Use water-tight cable glands to keep moisture out of the transmitter. If conduit is used, plug
 and seal the connections at the transmitter housing to prevent moisture from getting inside
 the transmitter.
- Connect wires firmly to the connection terminals.
- Screw cover properly after wiring.
- The Ingress Protection degree will no longer apply in the event of damage to the transmitter or the threads, seals, or cable glands on the transmitter head.

5.2 HART System Architecture

Configure the M100 transmitter either via a configuration tool, an asset management tool or via a HART handheld terminal.

The DD and the DTM files are on the supplied CD-ROM or can be downloaded via the Internet "www.mt.com/M100".

Fig. 5: HART[®] connection with HART handheld terminal

- 1 M100 transmitter
- 2 Repeater power supply, preferably HART transparent
- 3 Load resistor, is not required if one is installed in the repeater power supply
- 4 DCS (Distributed Control System) or PLC (Programmable Logic Controller)
- 5 HART handheld terminal, directly connected to the device even in the Ex i-area
- 6 HART handheld terminal e.g. 475 FieldCommunicator from Emerson

Fig. 6: HART® connection with HART modem and configuration tool

- 1 M100 transmitter
- 2 Repeater power supply, preferably HART transparent
- 3 Load resistor, is not required if one is installed in the repeater power supply
- 4 DCS (Distributed Control System) or PLC (Programmable Logic Controller)
- 5 HART modem
- 6 PC with configuration tool, e.g. PACTWare™ from Pepperl+Fuchs. PACTWare™ is on supplied CD-ROM or available as freeware.

Fig. 7: Terminal block (TB) definition

Terminal	Description
Port	Interface for service e.g. firmware update
Aout+, HART+ Aout-, HART-	Notice polarity. – Power connection: 14 to 30 V DC – Analog output – HART signal
DI+, DI-	Digital input (for switching transmitter in Hold state)
ISM-DATA, ISM-GND	Sensor input, see Table 1 on Page 14 and Fig. 4 on Page 16. Wired by factory. Do not disconnect.
Ain+, Ain-	Analog input: 4 to 20 mA (for pressure compensation)

Table 2: Terminal block (TB) definition

6 Operation

Configure the M100 transmitter either via a configuration tool, an asset management tool or via a HART handheld terminal.

The DD is on the supplied CD-ROM or can be downloaded via the Internet "www.mt.com/M100".

You can calibrate the sensor via iSense software.

NOTE!

6.1 Start-up Operation via Configuration Tool or Asset Management Tool

The configuration tool PACTWare[™] is on the supplied CD-ROM. You can download the DTM via the Internet "www.mt.com/M100".

Prerequisite: The M100 transmitter and the sensor are mounted and electrically connected.

For steps 1 to 5 and for step 12 refer to the documentation of the configuration tool or asset management tool.

- 1. Install configuration tool e.g. PACTWare™ or asset management tool.
- 2. Install DTM for HART interface and DTM for M100 transmitter.
- 3. Update device catalog.
- 4. Make a connection between the transmitter and the software. Check COM port settings if necessary.
- 5. Select **Sensor Type**. Menu path: Detailed Setup > Measurements > Channel Setup > Sensor Setup.
- 6. Load configuration from device.
- Set Tag or/and Long Tag. Menu path: Device Setup > Detailed Setup > HART Info
- 8. Set **Date** and **Time**. Set the time in the 24 hour format. The time format cannot be changed. Menu path: Device Setup > Detailed Setup > System
- Set range of the analog output signal. Menu path: Detailed setup > Output Condition > Analog Output > Range-
 - URV (Upper Range Value) and LRV (Lower Range Value)
 The values have to be within the measurement limits of the sensor.
 - USL (Upper Sensor Limit) and LSL (Lower Sensor Limit) The limits are defined by the sensor and cannot be changed.
- Define the process variables PV, SV, TV and QV Menu path: Device Setup > Detailed Setup > Measurements > Channel Setup
- Calibrate sensor. Menu path: Device Setup > Sensor Calibration See Chapter 7 "Sensor Calibration" on Page 22.
- 12. Perform further settings. See Chapter 8 "Menu Overview and Menu Description" on Page 25.
- 13. Store configuration to device.

6.2 Start-up Operation via HART Handheld Terminal

NOTE!

The DD "008E8E7D0101.hhd" is on the supplied CD-ROM. You can also download the DD via the Internet "www.mt.com/M100".

Prerequisite: The M100 transmitter and the sensor are mounted and electrically connected.

For step 1 refer to the documentation of the HART handheld terminal.

- 1. Check if the DD of the M100 transmitter has already been installed on the HART handheld terminal. Install the DD if necessary.
- 2. The communication is made automatically.
- 3. Select Sensor Type.

Menu path: Detailed Setup > Measurements > Channel Setup > Sensor Setup.

- 4. Load configuration from device. Menu path: Device Setup > Detailed Setup
- 5. Set Tag or/and Long Tag. Menu path: Device Setup > Detailed Setup > HART Info
- 6. Set **Date** and **Time**. Set the time in the 24 hour format. The time format cannot be changed. Menu path: Device Setup > Detailed Setup > System
- Set range of the analog output signal. Menu path: Detailed setup > Output Condition > Analog Output > Range-
 - URV (Upper Range Value) and LRV (Lower Range Value)
 The values have to be within the measurement limits of the sensor.
 - USL (Upper Sensor Limit) and LSL (Lower Sensor Limit) The limits are defined by the sensor and cannot be changed.
- Define the process variables PV, SV, TV and QV Menu path: Device Setup > Detailed Setup > Measurements > Channel Setup
- 9. Calibrate sensor. Menu path: Device Setup > Sensor Calibration See Chapter 7 "Sensor Calibration" on Page 22.
- 10. Perform further settings. See Chapter 8 "Menu Overview and Menu Description" on Page 25.

6.3 Change Sensor Type

If you change the sensor type e.g. a conductivity sensor with a pH sensor, perform the following procedure:

Prerequisite: The M100 transmitter and another sensor type are mounted and electrically connected.

- 1. Make a connection between the transmitter and the software/HART device.
- 2. Select Sensor Setup.
- Menu path: Detailed Setup > Measurements > Channel Setup > Sensor Setup.
- 3. Start "Sensor Setup".
- 4. Select the new sensor type for the **Sensor Type** parameter.
- 5. Load configuration from device.
- ⇒ The configuration in the configuration tool or in the HART handheld is updated. If you have selected the correct sensor type, the Verify menu will be shown.

Sensor Calibration

NOTE!

7

For best process calibration results observe the following points:

- Take grab sample as close as possible to the measurement point of the sensor.
- Measure the sample at process temperature.

NOTE!

Via configuration tool, asset management tool or HART handheld terminal you can calibrate the sensor with the "Process calibration" method. For other calibration methods use the iSense™ software.

For calibrating the sensor in the lab or in non-hazardous areas you can use iSense. The scope of delivery comprises the iSense software on CD-ROM and the iLink cable.

NOTE!

As soon as the calibration is in progress no other calibration can be started.

7.1 Terminate Sensor Calibration

After every successful calibration the following options are available:

- Adjust: Calibration values are adopted and used for the measurement. Additionally, the calibration values are stored in the calibration history.
- Calibrate: Calibration values are stored in the calibration history for documentation, but cannot be used for the measurement. The calibration values from the last valid adjustment are further used for the measurement.
- Abort: Calibration values are discarded.

7.2 Perform Sensor Calibration via Configuration Tool or Asset Management Tool

- 1. Select Sensor Calibration menu. Menu path: Device Setup > Sensor Calibration
- 2. Select calibration method. Click [Step 1: Capture current measured value].
- 3. For O₂ calibration select calibration unit.
- \Rightarrow The current "Sensor Value" and "Status" are shown.
- 4. Click [Next] to store the measured value.
- ⇒ The following message appears: "Captured value is stored. Take a grab sample to measure in the lab or perform parallel measurement."
- 5. Click [OK].
- 6. Click [Step 2: Enter reference value]. NOTE! You can perform "Step 2" at any time.
- \Rightarrow The captured value of "Step 1" is shown.
- 7. Enter the measured reference value.
- 8. Click [Next] to store the reference value.
- \Rightarrow If the reference value is within the valid range, the Slope and Offset are shown.
- 9. Click [OK].
- ⇒ The following message appears "Complete calibration procedure. Select either Adjust, Calibrate or Abort".
- 10. Select Adjust, Calibrate or Abort.
- 11. Click [OK].

7.3 Perform Sensor Calibration via HART Handheld Terminal

- 1. Select Sensor Calibration menu. Menu path: Device Setup > Sensor Calibration
- 2. Select calibration method.
- ⇒ The following message appears: "Capture act. value".
- \Rightarrow For O₂ calibration the following message appears: "Select calibration unit".
- 3. For O₂ calibration select calibration unit. Press [ENTER].
- \Rightarrow The current "Sensor Value" and "Status" are shown.
- 4. Press [Next] to capture the current measured value.
- ⇒ The following message appears: "Captured value is stored. Take a grab sample to measure in the lab or perform parallel measurement."
- 5. Press [OK].
- ⇒ The following message is shown "Enter reference value". You can perform this step at any time.
- 6. Enter the measured reference value.
- 7. Press [ENTER] to store the reference value.
- \Rightarrow If the reference value is within the valid range, the Slope and Offset are shown.

23

- 8. Press [OK].
- \Rightarrow The following message appears "Select process, select either Adjust, Calibrate or Abort".
- 9. Select Adjust, Calibrate or Abort.
- 10. Press [ENTER].

7.4 Perform Calibration for Current Input Ain

For O_2 measurement you can connect an external pressure sensor for pressure compensation. The pressure sensor is connected to **Ain** terminals.

To improve the accuracy of the O_{2} measurement we recommend to calibrate the current input Ain.

- 1. Connect reference meter to **Ain** terminals.
- 2. Select Sensor Calibration menu. Menu path: Device Setup > Sensor Calibration
- 3. Select calibration method. Click [Ain Calibration].
- \Rightarrow The following message appears: "Set output to 4 mA".
- 4. Click [OK].
- \Rightarrow **Reference Value 1:** The old value for the 4 mA value is shown.
- 5. Enter the new reference value measured with the reference meter.
- 6. Click [OK] to store the new reference value for 4 mA.
- ⇒ "Reference Value", "Sensor Value" and "Status" are shown.
- 7. Click [Next].
- \Rightarrow The following message appears "Set output to 20 mA".
- 8. Click [OK].
- \Rightarrow **Reference value 2:** The old value for the 20 mA value is shown.
- 9. Enter the new reference value measured with the reference meter.
- 10. Click [OK] to store the new reference value for 20 mA.
- \Rightarrow "Reference Value", "Sensor Value" and "Status" are shown.
- 11. Click [Next].
- ⇒ The following message appears "Complete calibration procedure. Select either Adjust or Abort".
- 12. Select Adjust or Abort.

Menu Overview and Menu Description 8

8.1 **Menu Overview**

Printed in Switzerland

8.2 Menu "Sensor Calibration"

The **Sensor Calibration** menu is dependent on the connected sensor. This menu guides you through the sensor calibration process. See Chapter 7 "Sensor Calibration" on Page 22.

The **Ain Calibration** function is only applicable for O_2 sensors. See Chapter 7.4 "Perform Calibration for Current Input Ain" on Page 24.

8.2.1 Verify

The **Verify** menu is dependent on the connected sensor. This menu shows the raw signals of the connected sensor.

8.2.1.1 pH/ORP and pH/pNa

Menu	Description
UpH	Display of the raw voltage signal for pH measurement.
UORP	Display of the raw voltage signal for ORP measurement.
Rref	Display of the raw reference electrode resistance.
Rglass	Display of the raw glass electrode resistance.
Temperature	Display of the raw temperature signal.

Table 3: Menu "Verify" - pH/ORP and pH/pNa

8.2.1.2 O₂

Menu	Description
Measured current	Display of the measured current.
Temperature	Display of the raw temperature signal.

Table 4: Menu "Verify" $- O_2$

8.2.1.3 Conductivity

Menu	Description
Resistivity	Display of the raw resistance signal without temperature compensation.
Resistance	Display of the raw resistance signal with temperature compensation.
Temperature	Display of the raw temperature signal.

Table 5: Menu "Verify" - Conductivity

8.3 Menu "Diagnostics & Service"

Menu path: Device > Diagnostics & Service

The **Diagnostics & Service** menu shows information about the transmitter and the connected sensor and supports you in troubleshooting.

Menu	Description
Loop Test	With the Loop Test function you can check the hardware of the analog output by defining a constant analog output value. During the test we recommend to remove the loop from automatic control.
	 4 mA: The analog output is set to 4 mA. 20 mA: The analog output is set to 20 mA. Other: The analog output is set to the entered current value. End: The test is terminated.
D/A Trim	With the D/A Trim function you can calibrate the hardware of the analog output. During the trim we recommend to remove the loop from automatic control. For the D/A Trim, connect a reference meter to the Aout terminals and enter for the 4 mA and 20 mA values the values of the reference meter.

Table 6: Diagnostics & Service

8.3.1 Device Info

8.3.1.1 Messages

Menu path: Device > Diagnostics & Service > Device Info > Messages

The **Messages** menu shows current active alarms or current status returned in HART Command #48.

You can deactivate some alarms in the **Alarm Setup** menu. If an alarm occurs but is deactivated in the "Messages" menu, the alarm will not shown in the "Messages" menu. See Chapter 8.4.7 "Alarm Setup" on Page 43.

Some messages are only displayed for certain sensors or for specific settings. The column "Pre-requisites" of the following table shows the dependancies.

Status group (Byte)	Bit	Meaning	Prerequisites
0	0	Software failure	In "Alarm Setup" menu enabled.
	1	Sensor disconnected	_
	2	Wrong sensor connected	_
	3	Broken sensor (Rg, RpNa < 5 MOhm)	In "Alarm Setup" menu enabled.
	4	Open circuit (Rg, RpNa > 2000 MOhm)	In "Alarm Setup" menu enabled.
	5	Dry cond sensor	Conductivity sensorsIn "Alarm Setup" menu enabled.
	6	Shorted cell	Conductivity sensorsIn "Alarm Setup" menu enabled.
	7	Electrolyte level too low	 Amperometric O₂ sensors In "Alarm Setup" menu enabled.
1	0	Rg < 0.3 Rgcal	pH/ORP sensors
	1	Rg > 3 Rgcal	pH/pNa sensors
	2	Rr or RpNa < 0.3 Rrcal	pH/ORP sensors
	3	Rr or RpNa > 3 Rrcal	pH/pNa sensors
	4	Maintenance required (TTM expired) $^{\mbox{\tiny 1)}}$	TTM monitoring enabled.
	5	Calibration required (ACT expired) $^{\mbox{\tiny 1)}}$	ACT monitoring enabled.
	6	Change sensor (DLI expired) 1)	DLI monitoring enabled.
	7	Cell constant deviation	Conductivity sensorsIn Alarm Setup menu enabled.
2	0	CIP cycle counter expired 1)	CIP Limit enabled.
	1	SIP cycle counter expired 1)	SIP Limit enabled.
	2	Autoclave cycle counter expired ¹⁾	-
	3	Hold activated	-
	4	Calibration values out of range	_
	5 to 7	Not used	-
3	0	Change parameter	-
	1	Change sensor type	-
	2	Autoclave cycle counter increment	-
	3	Process calibration active	-
	4 to 7	Not used	_

1) In the "Reset ISM Counter/Timer" menu you can reset ISM Counter and Timer. See Chapter 8.4.5.2 "Reset ISM Counter/Timer" on Page 41.

Table 7: Messages

Clear Status Group

With the **Clear Status Group** function you can refresh the reading of the status. The status of the transmitter and the sensor is read constantly.

8.3.1.2 ISM Sensor Info

Menu path: Device > Diagnostics & Service > ISM Sensor Info

Parameter	Description
Sensor Type	Display of the connected sensor type.
Cal. Date	Display of the date of the last adjustment or calibration.
Part-No	Display of the part number (order number) of the transmitter.
Serial-No	Display of the serial number of the transmitter.
Master	Display of the firmware revision number of the transmitter.
Comm	Display of the firmware revision number of the communication PCB.

Table 8: ISM Sensor Info

8.3.1.3 Calibration Data and Calibration History

Menu path: Device > Diagnostics & Service > Device Info > Calibration Data

Parameter	Description
Calibration Data	Display of the current Slope and Offset. For ORP sensors the OPR Offset is displayed additionally.
	Note!
	The Calibration Data function requires the correct setting of Date and Time . See Chapter 8.4.6.2 "Date & Time" on Page 42.

Table 9: Calibration Data

Calibration History

Menu path: Device > Diagnostics & Service > Device Info > Calibration Data > Calibration History

Definitions:

- "S" means "Slope". "Z" means "Offset".
- Adjustment: The calibration procedure is completed with the "Adjust" command. The calibration values are adopted and used for measurement. Additionally, the calibration values are stored in the calibration history. The dataset "Act" and "Cal1" are identical. The current calibration dataset "Act" moves to "Cal2".
- Calibration: The calibration procedure is completed with the "Calibrate" command. The calibration values are stored in the calibration history as dataset "Cal1" for documentation, but cannot be used for the measurement. The measurement continuous with the last valid adjustment dataset "Act".

Parameter	Description
Calibration History	The Calibration History parameter shows the history of calibration data.
	 Fact (Factory calibration): This is the original dataset, determined in the factory. This dataset remains stored in the sensor for reference and cannot be overwritten.
	 Act (Actual adjustment): This is the current calibration dataset which is used for the measurement. This dataset moves to "Cal2" position after the next adjustment.
	 1. Adj (First adjustment): This is the first adjustment after the factory calibration. This dataset remains stored in the sensor for reference and cannot be overwritten.
	 Cal1 (latest calibration/adjustment): This is the latest executed calibration/adjustment. This dataset moves to "Cal2" when a new calibration/adjustment is performed.
	 Cal2 and Cal3: After calibration/adjustment the "Cal1" dataset moves to "Cal2" and "Cal2" moves to "Cal3". The former "Cal3" dataset is not available anymore.

8.3.1.4 ISM Diagnostics and Sensor Monitoring

Menu path: Device > Diagnostics & Service > Device Info > ISM Diagnostics

The ISM Diagnostics menu is not available for Conductivity sensors.

The **ISM Diagnostics** menu shows the limits and the current counts of the cleaning cycles counter as well as the maximum temperature. You can configure the cleaning cycles counter in the **ISM Setup** menu. See Chapter 8.4.5 "ISM Setup" on Page 40.

NOTE!

This function requires the correct setting of **Date** and **Time**. See Chapter 8.4.6.2 "Date & Time" on Page 42.

Parameter	Description
CIP Limit	Display of the limit for the CIP cycles counter.
CIP Cycles	Display of the current amount of executed CIP cycles.
SIP Limit	Display of the limit for the SIP cycles counter.
SIP Cycles	Display of the current amount of executed SIP cycles.
Autoclave Limit	Display of the limit for the Autoclave cycles counter.
Autoclave Cycles	Display of the current amount of executed Autoclave cycles.
Max. Temp.	Display of the maximum temperature of the sensor. During autoclaving the Max. Temp. is not recorded.
Max. Temp. Date	Display of the date of the maximum temperature.

Table 11: ISM Diagnostics

Sensor Monitoring

Menu path: Device > Diagnostics & Service > Device Info > ISM Diagnostics > Sensor monitoring

The Sensor Monitoring menu shows the status of the different timers.

Parameter	Description
DLI (d)	Display of the remaining days for the Dynamic Lifetime Indicator . The days are set by the manufacturer.
DLI (%)	Display of the remaining time for the Dynamic Lifetime Indicator in per- centage. The days are set by the manufacturer.
TTM (d)	Display of the remaining days for the Time To Maintenance indicator. You can set the days with the Max TTM parameter in the Sensor Monitor- ing Setup menu. See Chapter 8.4.5.1 "Sensor Monitoring Setup" on Page 41.
TTM (%)	Display of the remaining time for the Time To Maintenance indicator in percentage. 100 percent corresponds to the set days for the Max TTM parameter.
ACT (d)	Display of the Adaptive Cal Timer in days.
	The Adaptive Cal Timer estimates when the next calibration should be performed to keep the best possible measurement performance. The Adaptive Cal timer is reset to its initial value after a successful adjust- ment or calibration.
	You can set the days with the Max ACT parameter in the Sensor Monitor- ing Setup menu. See Chapter 8.4.5.1 "Sensor Monitoring Setup" on Page 41.
ACT (%)	Display of the Adaptive Cal Timer in percentage. 100 percent corresponds to the set days for the Max ACT parameter.
Operating Days	Display of the operating days of the connected sensor.

Table 12: Sensor Monitoring

8.3.1.5 Model/Software Revision

Menu path: Device > Diagnostics & Service > Device Info > Model/Software Revision

Parameter	Description
Part-No	Display of the part number of the transmitter.
Serial-No	Display of the serial number of the transmitter.
Master	Display of the firmware revision number of the transmitter.
Comm	Display of the firmware revision number of the communication PCB.
Sensor FW	Display of the firmware version of the sensor.
Sensor HW	Display of the hardware version of the sensor.

Table 13: Model/Software Revision

8.3.2 Test Device

Menu path: Device > Diagnostics & Service > Test Device

Function	Description
Self Test	With the Self Test a diagnostic routine is performed. This test detects electronics failures or other failures that affect performance.
Device Reset	With the Device Reset a reset is performed. This reset is identical to a power reset, switching power off and on again.

Table 14: Test Device

8.3.3 HW Diagnostics

Menu path: Device > Diagnostics & Service > HW Diagnostics

Menu	Description
Analog Input	Display of the current analog input value.
Din 1 Status	Display of the current status of the digital input. Options: High and Low

Table 15: HW Diagnostics

8.4 Detailed Setup

8.4.1 Load Configuration

Menu path: Device > Detailed Setup > Measurement > Load Configuration

The Load Configuration menu is only available via HART handheld terminal.

With this function you load the latest configuration data from the transmitter to the HART handheld terminal.

8.4.2 Measurements

The Measurements menu is dependent on the connected sensor.

8.4.2.1 Channel Setup

Menu path: Device > Detailed Setup > Measurements > Channel Setup

Parameter	Description
Sensor Setup	Select the measured variable of the connected sensor type. Options: pH/ORP, pH/pNa, Cond 4e, O_2 Hi, O_2 Lo, O_2 Trace
Sensor Channel	The Sensor Channel parameter is set to "ISM" and cannot be changed.
PV is	Select a measured variable as Primary Value.
SV is	Select a measured variable as Secondary Value.
TV is	Select a measured variable as Tertiary Value.
QV is	Select a measured variable as Quaternary Value.
PV / SV / TV and QV Average	With the Average parameters you set the averaging method (noise filter) for the corresponding value.
	- None: No averaging or filtering
	- Low: Equivalent to 3 point moving average
	- Medium: Equivalent to 6 point moving average
	 High: Equivalent to 10 point moving average
	 Special (Default): Averaging dependent on the signal change, normally High averaging but Low averaging for large changes in input signal

Table 16: Channel Setup

8.4.2.2 pH (pH/ORP and pH/pNa)

If a pH/ORP or pH/pNa sensor is connected, the pH menu is shown.

Menu path: Device > Detailed Setup > Measurements > pH

For pH measurement you can set the following parameters.

Parameter	Description
pH Buffer	Select pH Buffer.
	Options: Mettler-9, Mettler-10, Nist-Tech, Nist-Std, Hach, Ciba, Merck, WTW, None, JIS Z 8802, Na+3.9
	For dual membrane pH electrodes (pH/pNa) select buffer Na+3.9.
	See Chapter 10 "Technical Data" on Page 45.
IP	Set the Isothermal Point value. For most applications use the default value. For specific compensation requirements or non-standard inner buffer values change the value.

Parameter	Description
STC Ref Mode	Use the STC Ref Mode parameter for STC compensation.
	 Yes: The measured pH value is compensated with values of the STC Value and STC Ref Temp parameter.
	 No: The measured pH value is compensated with the current mea- sured temperature.
STC Value	Set the STC Value . The STC Value is the Solution Temperature Coefficient in pH/°C. The coefficient is referred to the temperature set with the STC Ref Temp.
STC Ref Temp	Set the reference temperature for the STC Value parameter.

Table 17: pH

8.4.2.3 O₂

If a O_2 Lo, O_2 Hi or O_2 Trace sensor is connected, the $\boldsymbol{0_2}$ menu is shown.

Menu path: Device > Detailed Setup > Measurement > 02

For O_2 measurement there is a difference between measuring mode and calibration mode. Measuring mode means that the sensor is placed in the real process. Calibration mode means that the sensor is placed in a reference medium outside the real process.

For O₂ measurement you can set the following parameters.

Parameter	Description
Pcal_Pres Unit	Select the pressure unit for process calibration.
Pcal_Pressure	Set the pressure for process calibration.
Process Cal Pressure Source	 Select the pressure source for process calibration. Pcal_Pressure: The pressure is set with the Pcal_Pressure parameter. Proc_Pressure: The pressure is set with the Process_Pressure Mode and Process_Pressure parameters.
Process_Pressure Mode	 Select mode for entering the pressure during the measuring mode. Edit: The process pressure is set manually with the Process_Pressure parameter. Ain: The pressure is given by the input signal at the analog input terminals Ain.
Process_Pressure Unit	Select the pressure unit for measuring mode.
Process_Pressure	Set the pressure for measuring mode. For the Process_Pressure Mode parameter the option "Edit" has been selected.
Salinity	Set salinity of the measured solution.
Rel Humidity	Set relative humidity of the calibration gas. When no humidity measurement is available use 50 $\%.$

Parameter	Description
UpolMeas	Set the polarization voltage of amperometric oxygen sensors in the mea- suring mode.
	NOTE: During a process calibration, the polarization voltage UpolMeas, defined for the measuring mode, will be used.
	 0 to -550 mV: The connected sensor is set to a polarization voltage of -500 mA.
	- Less than 550 mV: The connected sensor is set to a polarization voltage of -674 mA.
UpolCal	Set the polarization voltage of amperometric oxygen sensors for the cali- bration mode.
	 0 to -550 mV: The connected sensor is set to a polarization voltage of -500 mA.
	 Less than 550 mV: The connected sensor is set to a polarization volt- age of -674 mA.

Table 18: 02

8.4.2.4 Cond 4e (Conductivity 4e)

If a conductivity sensor is connected, the **Conductivity** menu is shown.

Menu path: Device > Detailed Setup > Measurement > Conductivity

For conductivity measurement you can set the following parameters.

Parameter	Description
PV / SV / TV / QV Comp Mode	Select temperature compensation mode for the corresponding value. See table "Compensation Mode".
PV / SV / TV / QV Linear Coef	Set linear coefficient in %/°C for the compensation mode "Linear 25 °C" and "Linear 20 °C" of the corresponding value.

Table 19: Conductivity

Compensation Mode

Compensation Mode	Description
Standard	The Standard compensation mode includes compensation for non-linear high purity effects and conventional neutral salt impurities. This mode conforms to ASTM standards D1125 and D5391.
Linear 25°C	The Linear 25°C compensation mode adjusts the reading by a coefficient expressed as %/°C, deviation from 25 °C. Use this mode only if the solution has a well-characterized linear temperature coefficient. The coefficient is set with the Linear Coef parameter.
Linear 20°C	The Linear 20°C compensation mode adjusts the reading by a coefficient expressed as %/°C, deviation from 20 °C. Use this mode only if the solution has a well-characterized linear temperature coefficient. The coefficient is set with the Linear Coef parameter.

Compensation Mode	Description
Light 84	The Light 84 compensation mode matches the high purity water re- search results of Dr. T.S. Light published in 1984. Use this mode only if your institution has standardized on that work.
Std 75°C	The Std 75°C compensation mode is the Standard compensation algorithm referenced to 75 °C.
Glycol 0.5	The Glycol 0.5 compensation mode matches the temperature character- istics of 50 % ethylene glycol in water. Compensated measurements us- ing this solution may go above 18 Mohm-cm.
Glycol 1.0	The Glycol 1.0 compensation mode matches the temperature character- istics of 100 % ethylene glycol. Compensated measurements may go well above 18 Mohm-cm.
Cation	The Cation compensation mode is used in power industry applications measuring the sample after a cation exchanger. This mode takes into account the effects of temperature on the dissociation of pure water in the presence of acids.
Alcohol	The Alcohol compensation mode provides for the temperature character- istics of a 75 % solution of isopropyl alcohol in pure water. Compensat- ed measurements using this solution may go above 18Mohm-cm.
Ammonia	The Ammonia compensation mode is used in power industry applica- tions for specific conductivity measured on samples using ammonia and/or ETA (ethanolamine) water treatment. This mode into account the effects of temperature on the dissociation of pure water in the presence of these bases.
None	The None compensation mode does not make any compensation of the measured conductivity value.

Table 20: Conductivity – Compensation Mode

8.4.2.5 Analog Input

Menu path: Device > Detailed Setup > Measurement > Analog Input

For O_2 measurement you can connect an external pressure sensor for pressure compensation. The pressure sensor is connected to Ain terminals. To improve the accuracy of the O_2 measurement we recommend to calibrate the current input Ain. See Chapter 7.4 "Perform Calibration for Current Input Ain" on Page 24.

Parameter	Description
4 mA Unit	Select pressure unit for the 4 mA analog input value.
4 mA Value	Set value for the 4 mA analog input value.
20 mA Unit	Select pressure unit for the 20 mA analog input value.
20 mA Value	Set value for the 20 mA analog input value.

Table 21: Analog Input

8.4.3 Output Conditions

8.4.3.1 Analog Output

Menu path: Device > Detailed Setup > Output Conditions > Analog Output

Menu / Function	Description
Loop Current Mode	Configure the signal of the analog output. - Enabled: The output current depends on the current measured value and the pattings for the analog output
	 Disabled: The output current is set to 4 mA. Use this setting e.g. for multi-drop applications.
Alarm Type	 Select the output current for the case of an alarm for an alarm of the "Status group 0". See Chapter 8.3.1.1 "Messages" on Page 27. High: Output current is 22.0 mA. Low: Output current is 3.6 mA.
Hold Mode	 Select the output current of the analog output during Hold state. You can change in the Hold state either by the parameter Manual Hold or by a signal at the digital input terminals. See Chapter 8.4.4.1 "HART Output" on Page 39. Last Value: The output current is the last valid output. Fixed: The output current is set to the defined value of the Hold Fixed parameter. Off: The output current is calculated by the PV, PV LRV and PV URV parameters.
Hold Fixed	Set the output current of the analog output during Hold state for the Hold Mode parameter, option "Fixed".

Table 22: Analog Output

 $\textcircled{\mbox{\sc only}}$ 01/2016 Mettler-Toledo GmbH, CH-8606 Greifensee, Switzerland Printed in Switzerland

Range

Menu path: Device > Detailed Setup > Output Conditions > Analog Output > Range

With the **Range** menu you can configure the upper and lower measurement value for the 4 mA and 20 mA output values.

Menu	Description
PV URV	Set the Upper Range Value for the Primary Value. The Upper Range Value corresponds to the 20 mA output value. The value has to be within the measurement limits of the sensor. Default: PV USL
PV LRV	Set the Lower Range Value for the Primary Value. The Lower Range Value corresponds to the 4 mA output value. The value has to be within the measurement limits of the sensor. Default: PV LSL
PV USL	Display of the Upper Sensor Limit of the connected sensor. This value cannot be changed.
PV LSL	Display of the Lower Sensor Limit of the connected sensor. This value cannot be changed.

Table 23: Range

8.4.3.2 Hold Output

Menu path: Device > Detailed Setup > Output Conditions > Hold Output

With the **Hold Output** menu you start and stop the Hold state. The behavior of the analog output during the Hold state you configure with the **Analog Output** menu.

Parameter	Description
Manual Hold	Start and stop the Hold state manually.
	- Start: The transmitter changes in the Hold state.
	 Stop: The Manual Hold mode is determined.
Din1 Hold State	Set the signal level to start and stop the Hold state with the signal at the digital input terminals (Din).
	 Low: The transmitter changes in Hold state when the signal is Low. When the signal is High the Hold state is stopped.
	 High: The transmitter changes in Hold state when the signal is High. When the signal is Low the Hold state is stopped.
	 Off: A signal at the digital input terminals will not evaluated.

Table 24: Hold Output

8.4.4 HART Info

Menu path: Device > Detailed Setup > HART Info

Parameter	Description
Тад	Identifies the transmitter. 8 packed ASCII characters
Long Tag	Identifies the transmitter. 32 ISO Latin-1 characters
Date	Enter a date. The date is used for record keeping.
Write Protection	Display of the status of the write protection.
Descriptor	Enter a description for describing the transmitter.
Message	Enter a message.
Final assembly number	Enter a number to identify materials and electronics of the transmitter.

Table 25: HART Info

8.4.4.1 HART Output

Menu path: Device > Detailed Setup > HART Info > HART Output

Menu	Description
Poll addr	Set the polling address of the transmitter.
	 O: Point-to-point installations. The digital signal is overlaid on the 4 to 20 mA output current.
	 A number between 1 and 63: Multidrop installations. Each transmitter needs to have a unique address to allow automatic identification by a master. In multidrop only the digital signal is used. The analog output current is fixed at 4 mA. In multidrop mode it is possible to have more than one transmitters on one signal cable.
Num req preams	Display of the number of requested preambles.
Num resp preams	Set number of preambles.

Table 26: HART Output

8.4.5 ISM Setup

The ISM Setup menu is not available for Conductivity sensors.

Menu path: Device > Detailed Setup > ISM Setup

With the **ISM Setup** menu you configure the CIP cycle counter, SIP cycle counter and the Autoclave cycle counter. You can reset each counter in the **Reset ISM Counter** menu. See Chapter 8.4.5.2 "Reset ISM Counter/Timer" on Page 41.

CIP or SIP cycles are automatically recognized by the sensor. The algorithm of the counter recognizes an increase of the measured temperature above the set temperature. If the temperature remains for longer than five minutes at the set temperature, the transmitter is locked for the next two hours. The counter is incremented by one.

Menu		Description
DLI Stress Adjustment	nent	With the DLI Stress Adjustment parameter you can adapt DLI, TTM and ACT to application requirements and/or experiences. This parameter is available for pH sensors only.
		 Low: DLI, TTM and ACT are increased approximately 25% compared to "Medium"
		 Medium (default): No change for DLI, TTM and ACT
		 High: DLI, TTM and ACT are reduced approximately 25% compared to "Medium".
CIP Limit		Set limit of the CIP cycle counter. If the counter exceeds the set value, the message "CIP cycle counter expired" is shown. The function is switched off by entering the value "000".
CIP Temperature		Set the temperature at which the sensor recognizes CIP cleaning. If the sensor measures the entered temperature or higher, the CIP cycle counter is incremented by one.
SIP Limit		Set limit of the SIP cycle counter. If the counter exceeds the set value, the message "SIP cycle counter expired" is shown. The function is switched off by entering the value "000".
SIP Temperature		Set the temperature at which the sensor recognizes SIP cleaning. If the sensor measures the entered temperature or higher, the SIP cycle counter is incremented by one.
Autoclave Limit		Set limit of the Autoclave cycle counter. If the counter exceeds the set value, the message "Autoclave cycle counter expired" is shown. The function is switched off by entering the value "000".
L		

Table 27: ISM Setup

8.4.5.1 Sensor Monitoring Setup

Menu path: Device > Detailed Setup > ISM Setup > Sensor Monitoring Setup

Parameter	Description
DLI Monitoring	Switch on or off the Dynamic Lifetime Indicator.
	The Dynamic Lifetime Indicator estimates the remaining lifetime to en- sure a reliable measurement. For amperometric oxygen sensors, the Dynamic Lifetime Indicator is re- lated to the inner-body of the sensor.
TTM Monitoring	Switch on or off the Time To Maintenance indicator.
	The Time To Maintenance indicator estimates when the next cleaning cy- cle should be performed to keep the best possible measurement perfor- mance. The indicator is influenced by significant changes on the DLI pa- rameters. For amperometric oxygen sensors, the Time To Maintenance indicator shows the maintenance cycle for the membrane and electrolyte.
ACT Monitoring	Switch on or off the Adaptive Calibration Timer.
	The Adaptive Cal Timer estimates when the next calibration should be performed to keep the best possible measurement performance. The Adaptive Cal Timer is reset to its initial value after a successful adjust- ment or calibration.
Max TTM	Set the interval for the Time to Maintenance indicator. As soon as the timer reaches the set interval a message is shown in the Message menu.
Max ACT	Set the interval for the Adaptive Cal Timer . As soon as the timer reaches the set interval a message is shown in the Message menu.

Table 28: Sensor Monitoring Setup

8.4.5.2 Reset ISM Counter/Timer

Menu path: Device > Detailed Setup > ISM Setup > Reset ISM Counter/Timer

With the **Reset ISM Counter/Timer** menu you can reset each counter and timer individually. The view of this menu is dependent on the connected sensor.

8.4.6 System

Menu path:	Device :	> Detailed	Setup >	- System
------------	----------	------------	---------	----------

Parameter	Description
Lock/Unlock Device	Lock or unlock the transmitter. In the "Lock" state no other master can write to the transmitter.

Table 29: System

8.4.6.1 Reset

Menu path: Device > Detailed Setup > System > Reset

Parameter	Description
Reset System	Reset all parameters to the default values. The meter calibration is not affected.
Reset MeterCal	Reset electronics factors to default values. Use this function after an in- correct analog input calibration.
ResetAnalogOutCal	Reset analog output factors to default values. Use this function after an incorrect analog output calibration.

Table 30: Reset

8.4.6.2 Date & Time

Menu path: Device > Detailed Setup > System > Date & Time

Parameter	Description
Get Current Date and Time	Display of the Date and Time stored in the transmitter.
YY / MM / DD / HH / MM / SS	Set Date and Time.
	- Date: YY-MM-DD
	- Time: HH-MM-SS in 24 hour format

Table 31: Date & Time

8.4.7 Alarm Setup

Menu path: Device > Detailed Setup > Alarm Setup

Tick checkbox for activating option. Multiple selection is possible.

If an alarm is activated and the alarm occurs, the alarm will be shown in the **Message** menu. See Chapter 8.3.1.1 "Messages" on Page 27.

Parameter	Description			
Alarm Byte O	 Diagnostic functions for pH sensors: Rg: Rg is out of tolerance, e.g. a broken measuring electrode. Rr, RpNa: Rr is out of tolerance, e.g. coated or depleted reference electrode 			
Alarm Byte 1	 General Software Failure: Watchdog time-out function. Diagnostic functions for conductivity sensors: Dry Cond Sensor: The conductivity sensor is in air e.g. in an empty pipe. Cell Constant Deviation: Cell constant is out of tolerance, i.e. has changed too much compared to the value thru factory calibration. Cond Sensor Shorted: Conductivity sensor has a short circuit. Diagnostic function for amperometric oxygen sensors Electrolyte Level: Electrolyte in the membrane body reaches such a low level that the connection between cathode and reference electrode is disturbed. 			

Table 32: Alarm Setup

8.5 Review

Menu path: Device > Review

The Review menu shows important information of the transmitter and of the connected sensor.

9 Troubleshooting

If the transmitter is used in a manner not specified by METTLER TOLEDO the protection provided by the transmitter may be impaired.

Review the table below for possible causes of common problems.

Problem	Possible cause	Action
HART communication error	Wiring is incorrect	 Check wiring. See Chapter 5 "Wiring" on Page 17. Notice polarity of supply voltage. See Chapter 5.3 "Terminal Block (TB) Defini- tion" on Page 19.
	Device is in multi-drop mode	Set for the polling address "0". See Chapter 8.4.4.1 "HART Output" on Page 39.
Current output is always 22 mA	Sensor is disconnected or incorrectly con- nected.	Connect sensor. See Chapter 4.2 "Assembly of Sensor and Transmitter" on Page 16.
Incorrect measurement readings	Sensor is incorrectly configured.	 Configure sensor correctly. See Chapter 8 "Menu Overview and Menu Description" on Page 25. Perform reset. See Chapter 8.4.6.1 "Re- set" on Page 42.
Settings cannot be changed.	Transmitter is locked	Unlock transmitter. See Chapter 8.4.6 "System" on Page 42.

Table 33: Troubleshooting

NOTE!

The **Diagnostics & Service** menu shows information about the transmitter and the connected sensor and supports you in troubleshooting. See Chapter 8.3 "Menu "Diagnostics & Service" on Page 27.

Alarms are shown in the **Messages** menu. See Chapter 8.3.1.1 "Messages" on Page 27.

10 Technical Data

pH/ORP (incl. pH/pNa)

Measurement parameters	pH, mV and temperature
pH measuring range	-2.00 to +20.00 pH
ORP input range	-1500 to +1500 mV
Temperature measuring range	-30 to 130 °C (-22 to 266 °F)
Calibration	 Configuration tool: Process iSense software: 1-point and 2-point

Amperometric oxygen

Measurement parameters Dissolved oxygen: Saturation or concentration and temper		
Oxygen measuring ranges	– Saturation: 0 to 500 % air, 0 to 200 % O_2 – Concentration: 0 ppb (µg/L) to 50.00 ppm (mg/L)	
Polarization voltage	-550 mV or -674 mV (configurable)	
Temperature input	NTC 22 kΩ, Pt1000, Pt100	
Temperature compensation	Automatic	
Temperature measuring range	-10 to +80 °C (+14 to +176 °F)	
Calibration	 Configuration tool: Process iSense software: 1-point and 2-point 	

Conductivity 4-e

Magguramont paramotors	Conductivity/registivity and temperature			
Conductivity ranges	0.01 to 650 mS /cm (1.54 Ω x cm to 0.1 M Ω x cm)			
Chemical concentration curves	$\begin{array}{llllllllllllllllllllllllllllllllllll$			
TDS ranges	NaCl, CaCO ₃			
Temperature input	Pt1000			
Temperature measuring range	-40 to +200 °C (-40 to +392 °F)			
Calibration	 Configuration tool: Process iSense software: 1-point and 2-point 			

General electrical specifications

Output	Analog output 4 to 20 mA with HART®			
HART Communication	Digital communication via FSK modulation of the analog output, device identification, measured values, status and messages, parc eters, calibration, ISM diagnostics (DLI, ACT and TTM)			
Operation	Via configuration tool, Asset Management Tool or HART handheld terminal			
Supply voltage	14 to 30 V DC			
Connection terminals	Spring cage terminals, appropriate for wire cross section 0.2 to 1.5 mm ² (AWG $16 - 24$)			
Galvanic isolation	Inputs, output and earth/ground are galvanically isolated up to 500 V.			
Analog output	Loop current 4 to 20 mA, protected against wrong polarity			
Accuracy analog output	< ±0.05 mA over 4 to 20 mA			
Analog input	4 to 20 mA (for pressure compensation)			
Digital input	For switching transmitter in Hold state Switching voltage (selectable): – Low: 0.0 to 1.0 V DC – High: 2.3 to 30.0 V DC			
Alarm	For sensor disconnected, 22 mA			
Real time clock	Fixed time and date format. The format cannot be changed. Power reserve: > 5 days			

Environmental specifications

Storage temperature	-40 to +70 °C (-40 to +158 °F)
Ambient temperature operating range	-20 to +60 °C (-4 to +140 °F)
Relative humidity	0 to 95 % non-condensing
EMC	According to EN 61326-1 (general requirements) Emission: Class B, Immunity: Class A
Certificates and approvals	ATEX/IECEx , NEPSI Zone 1 – II 2(1) G Ex ib [ia Ga] IIC T4 Gb – II 2(1) D Ex ib [ia Da] IIIC T80°C/ T90°C Db – II 2(1) G Ex d [ia Ga] IIC T4 Gb – II 2(1) D Ex tb [ia Da] IIIC T80°C/ T90°C Db
	CSA – Class I, Division 1, Groups A, B, C and D T4 – Class II, Division 1, Groups E, F and G and – Class III – Ex ia IIC T4 Ga; Class I, Zone O, AEx ia IIC T4 Ga
CE mark	The measuring system is in conformity with the statutory requirements of the EC Directives. METTLER TOLEDO confirms successful testing of the device by affixing to it the CE mark.

Mechanical specifications

Dimensions	See Chapter 3.2 "Design" on Page 15.	See Chapter 3.2 "Design" on Page 15.			
Cable glands	 M100 2xH (30 026 578): 2 pieces M20 x 1.5 M100 2xH (30 0xx xxx): 2 pieces NPT 3/4" 				
Weight	1.2 kg				
Material	aterial – Die cast aluminum for top housing – Stainless steel 304 for lower parts				
Enclosure rating	IP 66/NEMA4X				

11 Default Values

11.1 Default Values for pH/ORP or pH/pNa Sensors

Menu	Sub menu	Parameter	Value	Unit
Measurements	Channel Setup	PV is	рН	рН
		SV is	Temperature	°C
		TV is	DLI	days
		QV is	TTM	days
		PV / SV / TV / QV Average	Special	_
	рН	pH Buffer	pH/ORP: Mettler-9	_
			pH/pNa: Na+3.9M	_
		IP	7.0	рН
		STC Ref Mode	No	_
		STC Value	0.00	pH/°C
		STC Ref Temp	25	°C
Output Condition	Analog Output	Loop Current Mode	Disabled	_
		Alarm Type	Hi (22.0 mA)	_
		Hold Mode	Last Value	_
		Hold Fixed	3.6	mA
	Analog Output > Range	PV LRV = PV LSL	2	рН
		PV URV = PV USL	12	рН
	Hold Output	Manual Hold	Stop (when power on)	-
		Din1 Hold State	Off	_
ISM Setup	-	CIP Limit	0	_
		SIP Limit	0	_
		Autoclave Limit	0	_
	Sensor Monitoring Setup	DLI Monitoring	On	_
		TTM Monitoring	On	_
		ACT Monitoring	On	-
Alarm Setup	-	Alarm Byte O	Rg diagnostics = Yes	-
			Rr diagnostics = Yes	-
		Alarm Byte 1	Software Failure = No	-

11.2 Default Values for O₂ Sensors

Menu	Sub menu	Parameter	Value	Unit
Measurements	Channel Setup	PV is	02	O ₂ Hi: %air
				$\rm O_2$ Lo and O2 Trace: ppb
		SV is	Temperature	0°
		TV is	DLI	days
		QV is	TTM	days
		PV / SV / TV / QV Average	Special	_
	02	Pcal Pressure	759.8	mmHg
		Process Cal Pressure Source	Pcal_Pressure	_
		Process Pressure Mode	Edit	_
		Process Pressure	759.8	mmHg
		Salinity	0	g/kg
		Humidity	100	%
		Umeaspol	Reading from sensor	mV
		Ucalpol	-674	mV
Output Condition	Analog Output	Loop Current Mode	Disabled	-
		Alarm Type	Hi (22.0 mA)	_
		Hold Mode	Last Value	_
		Hold Fixed	3.6	mA
	Analog Output > Range	PV LRV = PV LSL	0	Same as PV is
		PV URV = PV USL	100	Same as PV is
	Hold Output	Manual Hold	Stop (when power on)	-
		Din1 Hold State	Off	-
ISM Setup	-	CIP Limit	0	-
		SIP Limit	0	_
		Autoclave Limit	0	_
	Sensor Monitoring Setup	DLI Monitoring	On	-
		TTM Monitoring	On	-
		ACT Monitoring	On	-
Alarm Setup	-	Alarm Byte 1	Software Failure = No	-
			Electrolyte Level = Yes	-

Menu	Sub menu	Parameter	Value	Unit
Measurements	Channel Setup	PV is	Conductivity	mS/cm
		SV is	Temperature	°C
		TV is	None	-
		QV is	None	-
		PV / SV / TV / QV Average	Special	_
	Conductivity	Compensation Mode	Standard	-
		Linear Coefficient	2.0 %/°C	_
Output Condition	Analog Output	Loop Current Mode	Disabled	_
		Alarm Type	Hi (22.0 mA)	_
		Hold Mode	Last Value	_
		Hold Fixed	3.6	mA
	Analog Output > Range	PV LRV = PV LSL	0	mS/cm
		PV URV = PV USL	500	mS/cm
Alarm Setup	_	Alarm Byte 1	Software Failure = No	_
			Dry Cond Sensor = No	_
			Cell Constant Deviation = No	_
			Cond Sensor Shorted = No	_

11.3 Default Values for Coductivity Sensors

12 Buffer Tables

M100 transmitters have the ability to do automatic pH buffer recognition. The following tables show different standard buffers that are automatically recognized.

12.1 Buffers for pH/ORP Sensors

12.1.1 Mettler-9

Temp (°C)	pH of buffer solutio	ns		
0	2.03	4.01	7.12	9.52
5	2.02	4.01	7.09	9.45
10	2.01	4.00	7.06	9.38
15	2.00	4.00	7.04	9.32
20	2.00	4.00	7.02	9.26
25	2.00	4.01	7.00	9.21
30	1.99	4.01	6.99	9.16
35	1.99	4.02	6.98	9.11
40	1.98	4.03	6.97	9.06
45	1.98	4.04	6.97	9.03
50	1.98	4.06	6.97	8.99
55	1.98	4.08	6.98	8.96
60	1.98	4.10	6.98	8.93
65	1.98	4.13	6.99	8.90
70	1.99	4.16	7.00	8.88
75	1.99	4.19	7.02	8.85
80	2.00	4.22	7.04	8.83
85	2.00	4.26	7.06	8.81
90	2.00	4.30	7.09	8.79
95	2.00	4.35	7.12	8.77

12.1.2 Mettler-10

Temp (°C)	pH of buffer solutio	ns		
0	2.03	4.01	7.12	10.65
5	2.02	4.01	7.09	10.52
10	2.01	4.00	7.06	10.39
15	2.00	4.00	7.04	10.26
20	2.00	4.00	7.02	10.13
25	2.00	4.01	7.00	10.00
30	1.99	4.01	6.99	9.87
35	1.99	4.02	6.98	9.74
40	1.98	4.03	6.97	9.61
45	1.98	4.04	6.97	9.48
50	1.98	4.06	6.97	9.35
55	1.98	4.08	6.98	
60	1.98	4.10	6.98	
65	1.99	4.13	6.99	
70	1.98	4.16	7.00	
75	1.99	4.19	7.02	
80	2.00	4.22	7.04	
85	2.00	4.26	7.06	
90	2.00	4.30	7.09	
95	2.00	4.35	7.12	

12.1.3 NIST Technical

Temp (°C)	pH of buffer sol	utions			
0	1.67	4.00	7.115	10.32	13.42
5	1.67	4.00	7.085	10.25	13.21
10	1.67	4.00	7.06	10.18	13.01
15	1.67	4.00	7.04	10.12	12.80
20	1.675	4.00	7.015	10.07	12.64
25	1.68	4.005	7.00	10.01	12.46
30	1.68	4.015	6.985	9.97	12.30
35	1.69	4.025	6.98	9.93	12.13
40	1.69	4.03	6.975	9.89	11.99
45	1.70	4.045	6.975	9.86	11.84
50	1.705	4.06	6.97	9.83	11.71
55	1.715	4.075	6.97		11.57
60	1.72	4.085	6.97		11.45
65	1.73	4.10	6.98		
70	1.74	4.13	6.99		
75	1.75	4.14	7.01		
80	1.765	4.16	7.03		
85	1.78	4.18	7.05		
90	1.79	4.21	7.08		
95	1.805	4.23	7.11		

12.1.4 NIST Standard (DIN and JIS 19266: 2000–01)

Temp (°C)	pH of buffer solutions			
0				
5	1.668	4.004	6.950	9.392
10	1.670	4.001	6.922	9.331
15	1.672	4.001	6.900	9.277
20	1.676	4.003	6.880	9.228
25	1.680	4.008	6.865	9.184
30	1.685	4.015	6.853	9.144
35	1.694	4.028	6.841	9.095
40	1.697	4.036	6.837	9.076
45	1.704	4.049	6.834	9.046
50	1.712	4.064	6.833	9.018
55	1.715	4.075	6.834	8.985
60	1.723	4.091	6.836	8.962
70	1.743	4.126	6.845	8.921
80	1.766	4.164	6.859	8.885
90	1.792	4.205	6.877	8.850
95	1.806	4.227	6.886	8.833

NOTE!

The pH(S) values of the individual charges of the secondary reference materials are documented in a certificate of an accredited laboratory. This certificate is supplied with the respective buffer materials. Only these pH(S) values shall be used as standard values for the secondary reference buffer materials. Correspondingly, this standard does not include a table with standard pH values for practical use. The table above only provides examples of pH(PS) values for orientation.

12.1.5 Hach

Buffer values up to 60 °C as specified by Bergmann & Beving Process AB.

Temp (°C)	pH of buffer solutions		
0	4.00	7.14	10.30
5	4.00	7.10	10.23
10	4.00	7.04	10.11
15	4.00	7.04	10.11
20	4.00	7.02	10.05
25	4.01	7.00	10.00
30	4.01	6.99	9.96
35	4.02	6.98	9.92
40	4.03	6.98	9.88
45	4.05	6.98	9.85
50	4.06	6.98	9.82
55	4.07	6.98	9.79
60	4.09	6.99	9.76

12.1.6 Ciba (94)

Temp (°C)	pH of buffer solutio	ns		
0	2.04	4.00	7.10	10.30
5	2.09	4.02	7.08	10.21
10	2.07	4.00	7.05	10.14
15	2.08	4.00	7.02	10.06
20	2.09	4.01	6.98	9.99
25	2.08	4.02	6.98	9.95
30	2.06	4.00	6.96	9.89
35	2.06	4.01	6.95	9.85
40	2.07	4.02	6.94	9.81
45	2.06	4.03	6.93	9.77
50	2.06	4.04	6.93	9.73
55	2.05	4.05	6.91	9.68
60	2.08	4.10	6.93	9.66
65	2.07*	4.10*	6.92*	9.61*
70	2.07	4.11	6.92	9.57
75	2.04*	4.13*	6.92*	9.54*
80	2.02	4.15	6.93	9.52
85	2.03*	4.17*	6.95*	9.47*
90	2.04	4.20	6.97	9.43
95	2.05*	4.22*	6.99*	9.38*

* Extrapolated

12.1.7 Merck Titrisole, Riedel-de-Haën Fixanale

Temp (°C)	pH of buffer sol	utions			
0	2.01	4.05	7.13	9.24	12.58
5	2.01	4.05	7.07	9.16	12.41
10	2.01	4.02	7.05	9.11	12.26
15	2.00	4.01	7.02	9.05	12.10
20	2.00	4.00	7.00	9.00	12.00
25	2.00	4.01	6.98	8.95	11.88
30	2.00	4.01	6.98	8.91	11.72
35	2.00	4.01	6.96	8.88	11.67
40	2.00	4.01	6.95	8.85	11.54
45	2.00	4.01	6.95	8.82	11.44
50	2.00	4.00	6.95	8.79	11.33
55	2.00	4.00	6.95	8.76	11.19
60	2.00	4.00	6.96	8.73	11.04
65	2.00	4.00	6.96	8.72	10.97
70	2.01	4.00	6.96	8.70	10.90
75	2.01	4.00	6.96	8.68	10.80
80	2.01	4.00	6.97	8.66	10.70
85	2.01	4.00	6.98	8.65	10.59
90	2.01	4.00	7.00	8.64	10.48
95	2.01	4.00	7.02	8.64	10.37

12.1.8 WTW

Temp (°C)	pH of buffer solutio	ns		
0	2.03	4.01	7.12	10.65
5	2.02	4.01	7.09	10.52
10	2.01	4.00	7.06	10.39
15	2.00	4.00	7.04	10.26
20	2.00	4.00	7.02	10.13
25	2.00	4.01	7.00	10.00
30	1.99	4.01	6.99	9.87
35	1.99	4.02	6.98	9.74
40	1.98	4.03	6.97	9.61
45	1.98	4.04	6.97	9.48
50	1.98	4.06	6.97	9.35
55	1.98	4.08	6.98	
60	1.98	4.10	6.98	
65	1.99	4.13	6.99	
70		4.16	7.00	
75		4.19	7.02	
80		4.22	7.04	
85		4.26	7.06	
90		4.30	7.09	
95		4.35	7.12	

Temp (°C)	pH of buffer solution	ns		
0	1.666	4.003	6.984	9.464
5	1.668	3.999	6.951	9.395
10	1.670	3.998	6.923	9.332
15	1.672	3.999	6.900	9.276
20	1.675	4.002	6.881	9.225
25	1.679	4.008	6.865	9.180
30	1.683	4.015	6.853	9.139
35	1.688	4.024	6.844	9.102
38	1.691	4.030	6.840	9.081
40	1.694	4.035	6.838	9.068
45	1.700	4.047	6.834	9.038
50	1.707	4.060	6.833	9.011
55	1.715	4.075	6.834	8.985
60	1.723	4.091	6.836	8.962
70	1.743	4.126	6.845	8.921
80	1.766	4.164	6.859	8.885
90	1.792	4.205	6.877	8.850
95	1.806	4.227	6.886	8.833

12.1.9 JIS Z 8802

12.1.10 Buffer for Dual Membrane pH Electrodes (pH/pNa)

12.1.10.1 Mettler-pH/pNa (Na+ 3.9M)

Temp (°C)	pH of buffer solutio	ns		
0	1.98	3.99	7.01	9.51
5	1.98	3.99	7.00	9.43
10	1.99	3.99	7.00	9.36
15	1.99	3.99	6.99	9.30
20	1.99	4.00	7.00	9.25
25	2.00	4.01	7.00	9.21
30	2.00	4.02	7.01	9.18
35	2.01	4.04	7.01	9.15
40	2.01	4.05	7.02	9.12
45	2.02	4.07	7.03	9.11
50	2.02	4.09	7.04	9.10

13 Warranty

METTLER TOLEDO warrants this product to be free from significant deviations in material and workmanship for a period of one year from the date of purchase. If repair is necessary and not the result of abuse or misuse within the warranty period, please return by freight pre-paid and amendment will be made without any charge. METTLER TOLEDO's Customer Service Dept. will determine if the product problem is due to deviations or customer abuse. Out-of-warranty products will be repaired on an exchange basis at cost.

The above warranty is the only warranty made by METTLER TOLEDO and is lieu of all other warranties, expressed or implied, including, without limitation, implied warranties of merchantability and fitness for a particular purpose. METTLER TOLEDO shall not be liable for any loss, claim, expense or damage caused by, contributed to or arising out of the acts or omissions of the Buyer or Third Parties, whether negligent or otherwise. In no event shall METTLER TOLEDO's liability for any cause of action whatsoever exceed the cost of the item giving rise to the claim, whether based in contract, warranty, indemnity, or tort (including negligence).

Index

Symbole

4 mA Unit	
4 mA Value	
20 mA Unit	
20 mA Value	

A

Abort (Sensor Calibration)	22
AUT (9()	01
ACI (%)	31
ACT (d)	31
Adaptive Cal Timer	31
ACT Monitoring	41
Adjust (Sensor calibration)	22
Alarm Byte 0	43
Alarm Byte 1	43
Alarm Setup	43
Alarm Type	37
Analog Input	32, 36
Analog Output	37
Assembly sensor and transmitter	16
Asset management tool	
Operation	20
Sensor calibration	23
Autoclave Limit	40

C

Cal. Dat	29
Calibrate (Sensor calibration)	22
Calibration	
Current input Ain	24
Sensor	22
Calibration Data	29
Calibration History	30
Channel Setup	33
Ciba (94)	54
CIP Limit	40
CIP Temperature	40
Clear Status Group	28
Comm	31
Compensation Mode	
Alcohol	36
Ammonia	36
Cation	36
Glycol 0.5	36
Glycol 1.0	36
Lienar 20°C	35
Light 84	36
Lineat 25°C	35
None	36
Standard	35
Std 75°C	36
Cond 4e	
Menu	35
Conductivity specifications	45
Configuration tool	
Operation	20
Sensor calibration	23

D

Date	
Date & Time	
Default values	48
Descriptor	
Design	15
Detailed Setup	32
Device Info	27
Device Reset	32
Diagnostics	27
Din1 Hold State	
Din1 Status	32
DLI	
DLI (%)	31
DLI (d)	31
Dynamic Lifetime Indicator	31
DLI Monitoring	41
DLI Stress Adjustment	40

E

Electrical specifications	46
Environmental specifications	46
Ex instructions	11

F

Final assembly number	
Function	14

G

Get Current Date and Time

H

Hach	54
HART handheld terminal	
Opeation	
Sensor calibration	
HART Info	
HART Output	
HART system architecture	
Hazardous areas	11
Hold Fixed	
Hold Mode	
Hold Output	
HW Diagnostics	

I

Installation Intended use	
IP	
iSense software	
ISM Diagnostics	
ISM Sensor Info	
ISM Setup	
J	

JIS Z 8802	 	 56

L

Load Configuration	32
Lock/Unlock Device	42
Long Tag	
Loop Current Mode	37

М

Manual Hold Master	
Max ACT	
Max TTM	41
Measurements	33
Mechanical specifications	47
Menu description	25
Menu overview	25
Merck Titrisole	55
Message	
Messages	27
Mettler-9	51
Mettler-10	52
Model/Software Revision	31

Ν

Na+ 3.9M	
NIST Standard	
NIST Technical	
Num reg preams	
Num resp preams	

0

O2 Menu	34
O2 specifications	45
Operating Days	31
Operation	
Asset-management-tool	20
Configuration tool	20
HART handheld terminal	21
Output Conditions	37

P

Part-No Pcal_Pressure Pcal_Pres Unit	29, 31 34 34
рн	
Menu	
pH Buffer	33
pH/pNa specifications	45
Poll addr	
Process Cal Pressure Source	34
Process_Pressure	34
Process_Pressure Mode	34
Process_Pressure Unit	34
PV Average	33
PV Comp Mode	35
PV is	33
PV Linear Coef	35
PV LRV	
PV LSL	
PV URV	
PV USL	38

Q

QV Average	
QV Comp Mode	
QV is	
QV Linear Coef	

R

Range	38
Rel Humidity	34
Reset	42
ResetAnalogOutCal	42
Reset ISM Counter/Timer	41
Reset MeterCal	42
Reset System	42
Review	43

S

Safety	10
Salinity	34
Scope of delivery	9
Self Test	32
Sensor calibration	22
Abort	22
Adjust	22
Asset-management-tool	23
Calibrate	22
Configuration tool	23
HART handheld terminal	23
Sensor Calibration	26
Sensor Channel	33
Sensor FW	31
Sensor HW	31
Sensor Monitoring	31
Sensor Monitoring Setup	41
Sensor Setup	33
Serial-No	29, 31
Service	27
SIP Limit	40
SIP Temperature	40
STC Ref Mode	34
STC Ref Temp	34
STC Value	34
SV Average	33
SV Comp Mode	35
SV is	33
SV Linear Coef	35
Symbols	8
System	42

T

Tables	
Technische Daten	45
Тад	
Technical data	
Amperometric oxygen	45
Conductivity 4-e	45
Electrical specification	46
Environmental specifications	46
Mechanical specifications	47
pH/ORP	45
pH/pNa	45

Terminal block	
Test Device	
Troubleshooting	44
TTM	
Time To Maintenance	
TTM (%)	
TTM (d)	
TTM Monitoring	41
TV Average	
TV Comp Mode	
TV is	
TV Linear Coef	
Туре	
• •	

U

UpolCal	
UpolMeas	35

V

Verify	
Conductivity	
02	
pH/ORP	
pH/pNa	26

W

Warning notes	8
Caution	8
Danger	8
Warning	8
Warranty	
Wiring	17
Write Protection	
WTW	

METTLER TOLEDO Market Organizations

Sales and Service:

Australia

Mettler-Toledo Limited 220 Turner Street Port Melbourne, VIC 3207 Australia Phone +61 1300 659 761 e-mail info.mtaus@mt.com

Austria

Mettler-Toledo Ges.m.b.H. Laxenburger Str. 252/2 AT-1230 Wien Phone +43 1 607 4356 e-mail prozess@mt.com

Brazil

Mettler-Toledo Ind. e Com. Ltda. Avenida Tamboré, 418 Tamboré BR-06460-000 Barueri/SP Phone +55 11 4166 7400 e-mail mettler@mettler.com.br service@mettler.com.br

Canada

Mettler-Toledo Inc. 2915 Argentia Rd #6 CA-ON L5N 8G6 Mississauga Phone +1 800 638 8537 e-mail Proinsidesales@mt.com

China

Mettler-Toledo International Trading (Shanghai) Co. Ltd. 589 Gui Ping Road Cao He Jing CN-200233 Shanghai Phone +86 21 64 85 04 35 e-mail ad@mt.com

Croatia

Mettler-Toledo d.o.o. Mandlova 3 HR-10000 Zagreb Phone +385 1 292 06 33 e-mail mt.zagreb@mt.com

Czech Republic

Mettler-Toledo s.r.o. Trebohosticka 2283/2 CZ-100 00 Praha 10 Phone +420 2 72 123 150 e-mail sales.mtcz@mt.com

Denmark

Mettler-Toledo A/S Naverland 8 DK-2600 Glostrup Phone +45 43 27 08 00 e-mail info.mtdk@mt.com

Management System certified according to ISO 9001 / ISO 14001

France

Mettler-Toledo Analyse Industrielle S.A.S. 30, Boulevard de Douaumont FR-75017 Paris Phone +33 1 47 37 06 00 e-mail mtpro-f@mt.com

Germany

Mettler-Toledo GmbH Prozeßanalytik Ockerweg 3 DE-35396 Gießen Phone +49 641 507 444 e-mail prozess@mt.com

Great Britain

Mettler-Toledo LTD 64 Boston Road, Beaumont Leys GB-Leicester LE4 1AW Phone +44 116 235 7070 e-mail enquire.mtuk@mt.com

Hungary

Mettler-Toledo Kereskedelmi KFT Teve u. 41 HU-1139 Budapest Phone +36 1 288 40 40 e-mail mthu@axelero.hu

India

Mettler-Toledo India Private Limited Amar Hill, Saki Vihar Road Powai IN-400 072 Mumbai Phone +91 22 2857 0808 e-mail sales.mtin@mt.com

Indonesia

PT. Mettler-Toledo Indonesia GRHA PERSADA 3rd Floor JI. KH. Noer Ali No.3A, Kayuringin Jaya Kalimalang, Bekasi 17144, ID Phone +62 21 294 53919 e-mail mt-id.customersupport@mt.com

Italy

Mettler-Toledo S.p.A. Via Vialba 42 IT-20026 Novate Milanese Phone +39 02 333 321 e-mail customercare.italia@mt.com

Japan

Mettler-Toledo K.K. Process Division 6F Ikenohata Nisshoku Bldg. 2-9-7, Ikenohata Taito-ku JP-110-0008 Tokyo Phone +81 3 5815 5606 e-mail helpdesk.ing.jp@mt.com

Malaysia

Mettler-Toledo (M) Sdn Bhd Bangunan Electroscon Holding, U 1-01 Lot 8 Jalan Astaka U8/84 Seksyen U8, Bukit Jelutong MY - 40150 Shah Alam Selangor Phone +60 3 78 44 58 88 e-mail MT-MY.CustomerSupport@mt.com

Mexico

Mettler-Toledo S.A. de C.V. Ejército Nacional #340 Polanco V Sección C.P. 11560 MX - México D.F. Phone +52 55 1946 0900 e-mail mt.mexico@mt.com

Norway

Mettler-Toledo AS Ulvenveien 92B NO-0581 Oslo Norway Phone +47 22 30 44 90 e-mail info.mtn@mt.com

Poland

Mettler-Toledo (Poland) Sp.z.o.o. ul. Poleczki 21 PL-02-822 Warszawa Phone +48 22 545 06 80 e-mail polska@mt.com

Russia

Mettler-Toledo Vostok ZAO Sretenskij Bulvar 6/1 Office 6 RU-101000 Moscow Phone +7 495 621 56 66 e-mail inforus@mt.com

Singapore

Mettler-Toledo (S) Pte. Ltd. Block 28 Ayer Rajah Crescent #05-01 SG-139959 Singapore Phone +65 6890 00 11 e-mail mt.sg.customersupport@mt.com

Slovakia

Mettler-Toledo s.r.o. Hattalova 12/A SK-83103 Bratislava Phone +4212 4444 12 20-2 e-mail predai@mt.com

Slovenia

Mettler-Toledo d.o.o. Pot heroja Trtnika 26 SI-1261 Ljubljana-Dobrunje Phone +386 1 530 80 50 e-mail keith.racman@mt.com

South Korea

Mettler-Toledo (Korea) Ltd. 1 & 4 F, Yeil Building 21 Yangjaecheon-ro 19-gil SeoCho-Gu Seoul 06753 Korea Phone +82 2 3498 3500 e-mail Sales_MTKR@mt.com

Spain

Mettiler-Toledo S.A.E. C/Miguel Hernández, 69-71 ES-08908 L'Hospitalet de Llobregat (Barcelona) Phone +34 902 32 00 23 e-mail mtemkt@mt.com

Sweden

Mettler-Toledo AB Virkesvägen 10 Box 92161 SE-12008 Stockholm Phone +46 8 702 50 00 e-mail sales.mts@mt.com

Switzerland

Mettler-Toledo (Schweiz) GmbH Im Langacher, Postfach CH-8606 Greifensee Phone +41 44 944 47 60 e-mail ProSupport.ch@mt.com

Thailand

Mettler-Toledo (Thailand) Ltd. 272 Soi Soonvijai 4 Rama 9 Rd., Bangkapi Huay Kwang TH-10320 Bangkok Phone +66 2 723 03 00 e-mail MT-TH.CustomerSupport@mt.com

Turkey

Mettier-Toledo Türkiye Haluk Türksoy Sokak No: 6 Zemin ve 1. Bodrum Kat 34662 Üsküdar-Istanbul, TR Phone +90 216 400 20 20 e-mail sales.mttr@mt.com

USA

METTLER TOLEDO Process Analytics 900 Middlesex Turnpike, Bld. 8 Billerica, MA 01821, USA Phone +1 781 301 8800 Freephone +1 800 352 8763 e-mail mtprous@mt.com

Vietnam

Mettler-Toledo (Vietnam) LLC 29A Hoang Hoa Tham Street, Ward 6 Binh Thanh District Ho Chi Minh City, Vietnam Phone +84 8 35515924 e-mail MT-VN.CustomerSupport@mt.com

Subject to technical changes. © Mettler-Toledo GmbH, Process Analytics 01/2016 Printed in Switzerland. 30 130 604 Mettler-Toledo GmbH, Process Analytics Im Hackacker 15, CH-8902 Urdorf, Switzerland Tel. +41 44 729 62 11, Fax +41 44 729 66 36

www.mt.com/pro