

Manual de operações Transmissor M300

- pH/Redox, Oxigênio Dissolvido, Condutividade/Resistividade, Ozônio Dissolvido, versão de canal único
- Cond/Cond versão de canal duplo
- Multiparâmetros versão de canal duplo para sensores analógicos
- Multiparâmetros versão de canal simples e duplo para sensores ISM

Transmissor M300 52 121 392

2

Manual de Operações Transmissor M300

Conteúdo

1 Introdução				9	
2	Instr	uções d	e segurança	10	
	2.1	Definiç	ão de símbolos e designações de equipamento e documentação	10	
	2.2	Desca	te correto da unidade	11	
3	Visã	o aeral (la unidade	12	
-	3.1	Visão	peral do 1/4DIN	12	
	3.2	Visão	neral do 1/2DIN	12	
	3.3	Teclas	de controle/naveaacão	13	
		3.3.1	Estrutura de menus	13	
		3.3.2	Teclas de naveaacão	13	
			3.3.2.1 Navegando na árvore de menus	13	
			3.3.2.2 Escapar	14	
			3.3.2.3 Enter	14	
			3.3.2.4 Menu	14	
			3.3.2.5 Modo de calibração	14	
			3.3.2.6 Modo Info	14	
		3.3.3	Navegação dos campos de entrada de dados	14	
		3.3.4	Entrada de valores de dados, seleção de opções de entrada de dados	14	
		3.3.5	Naveaacão com 1 na tela	15	
		3.3.6	Caixa de diálogo «Salvar Mudancas»	15	
		3.3.7	Senhas de seguranca	15	
	3.4	Displa	/	15	
л	Inetr	, Jacoba d	a instalgaño	16	
4	111511	Docom	e instalação	10 16	
	4.1		Informações dimensionais do recorte do nainel - Modelos 1/4DIN	10 16	
		4.1.1	Procedimento de instalação - modelos 1/4DIN		
		4.1.2	Informações dimensionais do recorte do nainel - Modelos 1/2DIN	17 18	
		4.1.3	Procedimento de instalação - modelos 1/2DIN	10	
		4.1.4		10	
		4.1.5	Varsão 1/2DIN _ Desenhos dimensionais	19 20	
		4.1.0	Versão 1/2DIN - Deserinos dimensionais	20	
		4.1.7	Versão 1/2DIN – Monagem do labo	20	
	42	Conexi	ăn da fante de forca	21	
	7.2	121	Cânara 1//DIM (montagem no painel)	22 22	
		4.2.1	Aloiamento 1/2DIN (montagem na parede)	22	
	43	Definic	ão do PINO conector	23	
	4.0	131		24 21	
		432	TB1 e TB2 para versões 1/2DIN e 1/4DIN - Sensores de Condutividade	24 24	
		433	TB3 e TB4* para versões 1/2DIN e 1/4DIN – Sensores de Orinalinidade	25	
		4.0.0	TB3 e TB4* para versões 1/2DIN e 1/4DIN -	20	
		4.0.4	Sensores de Oxigênio dissolvido/Ozônio dissolvido (exceto 58.037.221)	25	
		435	TB3 e TB4* nara versões 1/2DIN e 1/4DIN –	20	
		1.0.0	Sensor de Oxigânio dissolvido 58.037.221 gnengs (só Modelos Thornton)	26	
		436	TB3/TB4* – Sensores ISM (diaitais) de nH Condutividade e Oxigênio dissolvido	20	
	4.4	Conexi	To do Sensor Anglógico de pH/ORP	20	
		4.4.1	Conectando o sensor ao cabo VP	27	
		4.4.2	Designação do cabo VP	28	
		4.4.3	Fiacão típica (usando TB3/TB4)	29	
			4431 Exemplo 1	29	
			4.4.3.2 Exemplo 2	30	
		4.4.4	Exemplo 3	31	
			4.4.4.1 Exemplo 4	32	
	4.5	Conex	ăo do Sensor Analógico de Oxigênio Dissolvido/Ozônio Dissolvido (exceto 58 037 221)	33	
		4.5.1	Conectando o sensor ao cabo VP	33	
		4.5.2	Fiacão típica usando TB3/TB4	34	
	4.6	Conex	ăo de Sensor Analógico de Oxigênio Dissolvido 58 037 221	35	
	4.7	Conex	ăo do sensor ISM	35	
		4.7.1	Conexão do Sensor ISM para pH, Cond 4-e e Oxigênio dissolvido	35	
		4.7.2	Designação do cabo AK9	36	
		4.7.3	Conexão do Sensor ISM para Cond 2-e (somente modelos Thornton)	36	
		4.7.4	Designação do cabo do Sensor ISM para Cond 2-e (somente modelos Thornton)	36	
5	Colo	cando o	transmissor em ou fora de serviço	27	
5	5 1	Coloco	indio a transmissor em serviço	37 72	
	5.2	Coloce	ndo o transmissor em serviço	37 קצ	
	0.2	501000		0/	

CONT	nyunuçues kupnuds	3
	Dração do sensor	3
1.1	Enlite no mouo de Calibração	3
1.2	7.2.1 Calibração de um ponto do Sensor	4
	7.2.2. Calibração de dais pontos do Sensor (sensores de 4 eletrodos apenas)	4 4
	7.2.2 Calibração do processo	4 4'
73		4
7.0	7 3 1 Calibração de um ponto do Sensor	4
	7.3.1.1 Modo Automático	43
	7.3.1.2 Modo Manual	44
	7.3.2 Calibração do processo	44
7.4	Calibração de ozônio (somente modelos Thornton)	44
	7.4.1 Calibração de um ponto do Sensor	4
7.5	Calibração de pH	4
	7.5.1 Calibração de Um Ponto	4
	7.5.1.1 Modo Automático	46
	7.5.1.2 Modo Manual	46
	7.5.2 Calibração de Dois Pontos	46
	7.5.2.1 Modo Automático	47
	7.5.2.2 Modo Manual	47
	7.5.3 Calibração do processo	48
	7.5.4 Calibração de mV (não na versão ISM)	48
	7.5.5 Calibração de ORP (apenas na versão ISM)	49
7.6	Calibração da temperatura do sensor (não na versão ISM)	49
	7.6.1 Calibração de temperatura do sensor de 1 ponto (não na versão ISM)	49
	7.6.2 Calibragem da temperatura do sensor de dois pontos (não na versão ISM)	50
7.7	Editar constantes de calibração do sensor (não na versão ISM)	50
7.8	Verificação do sensor	51
Conf	figuração	52
8.1	Acesse o modo de Configuração	52
8.2	Medição	52
	8.2.1 Configuração de Canal	52
	8.2.2 Medições derivadas (somente modelos Thornton)	53
	8.2.2.1 Medição da % de rejeição	54
	8.2.2.2 pH calculado (somente aplicações em usinas de geração de energia)	54
	8.2.2.3 CO ₂ calculado (somente aplicações em usinas de geração de energia)	55
	8.2.3 Fonte de temperatura (não na versão ISM)	55
	8.2.4 Configurações Relacionadas ao Parâmetro	56
	8.2.4.1 Compensação de temperatura de condutividade/resistividade	57
	8.2.4.2 Parâmetros de pH/ORP	58
	8.2.4.3 Parâmetros de Oxigênio Dissolvido	59
	8.2.5 Definir média	60
8.3	Saídas Analógicas	60
8.4	Pontos de Definição	62
8.5	Alarme/Limpar	65
	8.5.1 Alarme	65
	8.5.2 Limpeza	66
8.6		66
	8.6.1 Medição	67
	8.6.2 Resolução	67
	8.6.3 Luz de fundo	67
	8.6.4 Nome	68
8.7	Refer saídas analógicas?	68
Siste	ema	69
9.1	Definir idioma	69
9.2	USB	69
9.3	Senhas	70
	9.3.1 Troca de senhas	70
	9.3.2 Configurando o acesso do operador aos menus	70
9.4	Configurar/limpar bloqueio	70
9.5	Reconfigurar	71
	9.5.1 Reconfigurar Sistema	71
	9.5.2 Reconfigurar calibração do medidor (não na versão ISM)	71
	9.5.3 Reconfigurar Calibração Analógica	
	9.5.4 Reconfigurar Dados de Calibração do Sensor para as Configurações de Fábrica	72
	- · · · · · · · · · · · · · · · · · · ·	

10	0 Configuração de PID	73
	10.1 Digite a Configuração de PID	
	10.2 PID Automático/Manual	75
	10.3 Modo	75
	10.3.1 MOdo de PID	/5
	10.4 Puluineilos de ujusie	
	10.4.2 Ponto de giuste e Zong neutra	77
	10.4.3 Limites proporcionais	77
	10.4.4 Pontos de inflexão	77
	10.5 Tela do PID	77
11	1 Manutenção	
	11.1 Entrar no Menu de Manutenção	78
	11.2 Diagnóstico	78
	11.2.1 Revisao de modelo/software	/۵ حر
	11.2.2 Ellilouu ulgilui	/s 70
	1124 Teclado	79
	11.2.5 Memória	79
	11.2.6 Definir relé	80
	11.2.7 Ler Relés	80
	11.2.8 Definir saídas analógicas	80
	11.2.9 Ler saídas analógicas	80
	11.3 Calibrar medider (pão na versão ISM)	8
	11.3.1 Desistância	01
	11.3.1.2 Temperatura	67
	11.3.1.3 Corrente	83
	11.3.1.4 Voltagem	83
	11.3.1.5 Diagnóstico Rg	84
	11.3.1.6 Diagnóstico Rr	84
	11.3.2 Calibrar Analogica	85
	11.3.3 Cullibrar Desiravar 11.4 Servico técnico	0000
10		0
12	2 IIII0	
	12.1 Mena de Informações	86
	12.3 Dados de calibração	86
	12.4 Revisão de modelo/software	
	12.5 Informações do sensor ISM (somente versão do ISM)	87
13	3 Manutenção	
	13.1 Para obter suporte técnico	88
	13.2 Limpeza do painel frontal	38
14	4 Solução de problemas	89
	14.1 Irocando o Fusivel	85
	14.2 Mensagens de erro de pH/ Lisia de alarmes e avisos	90
	14.2.1 Sensoles de pri excelo elendos de pri de mem	909191
	14.2.3 Mensagens de ORP	91
	14.3 Mensagens de erro de O2/Lista de alarmes e avisos	92
	14.4 Cond Mensagens de erro / Aviso- e Lista de alarmes	92
	14.5 (I) Mensagens de erro de O_2 /Lista de alarmes e avisos	(somente modelos Thornton)92
	14.6 (V) Mensagens de erro de O_2 /Lista de alarmes e avisos	(somente modelos Thornton)93
	14. / Mensagens de erro de ozônio / Lista de alarmes e aviso	s (somente modelos Thornton)93
	14.8 Indicação de aviso	93
	14.8.2 Indicação de glarme	92
15	5 Acessórios e neces de renosição	OF
10		93
16	b Especificações	96
	10.1 ESPECIFICUÇUES VERUIS	
	16.3 Especificações mecânicas para a versão 1/4DIN	90 QF
	16.4 Especificações mecânicas para a versão 1/2DIN	00
	16.5 Especificações ambientais para	
	as versões 1/2DIN e 1/4DIN	99

17	Tabelas padrão	100
	17.1 M300 ISM (instrumentos de 1 canal)	100
	17.2 M300 ISM (instrumentos de 2 canais)	102
	17.3 M300 Condutividade (instrumentos de 1 canal)	104
	17.4 M300 O2 (instrumentos de 1 canal)	105
	17.5 M300 pH (instrumentos de 1 canal)	107
	17.6 M300 Multiparâmetros (instrumentos de 2 canais)	109
	17.7 M300 Condutividade (Instrumentos de canal único, somente modelos Thornton)	112
18	Garantia	114
19	Certificado	115
20) Tabelas de buffer	
	20.1 Buffers de pH padrão	116
	20.1.1 Mettler-9	116
	20.1.2 Mettler-10	117
	20.1.3 Buffers técnicos NIST	117
	20.1.4 Buffers padrão NIST (DIN e JIS 19266: 2000–01)	118
	20.1.5 Buffers Hach	118
	20.1.6 Buffers Ciba (94)	119
	20.1.7 Merck Titrisole, Riedel-de-Haën Fixanale	119
	20.1.8 Buffers WTW	120
	20.1.9 Buffers JIS Z 8802	120
	20.2 Buffers do eletrodo de pH de membrana dupla	121
	20.2.1 Buffers Mettler-pH/pNa (Na+ 3.9M)	121

7

8

1 Introdução

Declaração do uso pretendido – O Transmissor Multiparâmetros M300 é um instrumento de processo on-line de canal único ou duplo para a medição de diversas propriedades dos fluidos. Essas propriedades incluem Condutividade/resistividade, Oxigênio dissolvido, Ozônio dissolvido e pH/ORP. Ele fará interface com uma variedade de sensores Mettler-Toledo diferentes, que conectam ao transmissor com cabos de comprimentos variados.

Dependendo do tipo, o transmissor pode lidar com sensores analógicos convencionais ou os futuros sensores ISM (Intelligent Sensor Management) orientados.

Um monitor de cristal líquido grande de quatro linhas com luz de fundo transporta os dados de medição e as informações de configuração. A estrutura de menus permite ao operador modificar todos os parâmetros operacionais utilizando teclas no painel frontal. Há um recurso de bloqueio dos menus, com proteção por senha, para impedir o uso não autorizado do medidor. O Transmissor Multiparâmetros M300 pode ser configurado para usar suas 2 saídas analógicas (4 na versão de canal duplo) e/ou 4 saídas de relé (6 na versão de canal duplo) para controle do processo.

O Transmissor Multiparâmetros M300 está equipado com uma interface de comunicação USB. Essa interface fornece saída de dados em tempo real e capacidades de configuração completa do instrumento com monitoramento central por meio de computador pessoal (PC).

Este manual aplica-se a todos os transmissores M300 disponíveis, como:

- Versão de canal único e parâmetro único para pH/ORP, Oxigênio dissolvido, Condutividade/ resistividade e Ozônio dissolvido
- Versão multiparâmetros de canal duplo para sensores analógicos
- Versão multiparâmetros de canal simples e duplo para sensores ISM
- Versão de canal duplo Cond/Cond para sensores analógicos

Guia de ajuste de parâmetros do M300 Modelos Thornton M300

Designação	Pedido nº	Sensores analógicos	Sensores ISM
M300 ISM 1 canal 1/4DIN	58 000 301		pH, OD*, Cond
M300 ISM 1 canal 1/2DIN	58 000 311		pH, OD*, Cond
M300 ISM 2 canal 1/4DIN	58 000 302		pH, OD*, Cond
M300 ISM 2 canal 1/2DIN	58 000 312		pH, OD*, Cond
M300 pH 1 canal 1/4DIN	58 001 303	рН	
M300 pH 1 canal 1/2DIN	58 001 313	рН	
M300 Cond 1 canal 1/4DIN	58 002 301	Cond	
M300 Cond 1 canal 1/2DIN	58 002 311	Cond	
M300 Cond 2 canal 1/4DIN	58 001 304	Cond	
M300 Cond 2 canal 1/2DIN	58 001 314	Cond	
M300 Multi 2 canais 1/4DIN	58 001 306	pH, Cond, OD ppm*,	
		OD ppb*, 03*	
M300 Multi 2 canais 1/2DIN	58 001 316	pH, Cond, OD ppm*,	
		OD ppb*, 03*	

* Sensores THORNTON

Modelos Ingold M300			
Designação	Pedido nº	Sensores analógicos	Sensores ISM
M300 ISM 1 canal 1/4DIN	52 121 354		pH, OD**, Cond 4-e
M300 ISM 1 canal 1/2DIN	52 121 355		pH, OD**, Cond 4-e
M300 ISM 2 canais 1/4DIN	52 121 356		pH, OD**, Cond 4-e
M300 ISM 2 canais 1/2DIN	52 121 357		pH, OD**, Cond 4-e
M300 pH 1 canal 1/4DIN	52 121 286	рН	
M300 pH 1 canal 1/2DIN	52 121 289	рН	
M300 Cond 1 canal 1/4DIN	52 121 288	Cond	
M300 Cond 1 canal 1/2DIN	52 121 291	Cond	
M300 02 1 canal 1/4DIN	52 121 287	0D**	
M300 02 1 canal 1/2DIN	52 121 290	0D**	
M300 Multi 2 canais 1/4DIN	52 121 292	pH, Cond, OD**	
M300 Multi 2 canais 1/2DIN	52 121 293	pH, Cond, OD**	

** Sensores INGOLD

As imagens da tela de impressão neste manual possuem um caráter de explicação geral e podem ser diferentes do display real do transmissor.

Esta descrição corresponde ao release do firmware versão 1.4 do transmissor M300 ISM (resp. versão 1.1 do transmissor THORNTON M300 ISM) e à versão 1.6 para todos os outros transmissores M300. Mudanças estão ocorrendo constantemente, sem aviso prévio

Instruções de segurança 2

Este manual inclui informações de segurança com as designações e os formatos a seguir.

2.1 Definição de símbolos e designações de equipamento e documentação

AVISO: POSSIBILIDADE DE FERIMENTOS PESSOAIS.

CUIDADO: Possíveis danos ou avarias no instrumento

NOTA: Informações operacionais importantes.

O transmissor ou o texto deste manual indica: Cuidado e/ou outro risco possível, incluindo risco de choque elétrico (consulte os documentos anexos).

A seguir há uma lista de avisos e instruções gerais de segurança. A não observação dessas instruções poderá resultar em danos no equipamento e/ou ferimentos pessoais no operador.

- O Transmissor M300 (M300 Transmitter) deve ser instalado e operado apenas por pessoal familiarizado com o transmissor e qualificado para esse trabalho.
- O Transmissor M300 apenas deve ser operado sob as condições de operação especificadas (ver secção 16).
- A reparação do Transmissor M300 tem de ser efetuada apenas por pessoal autorizado e devidamente qualificado.
- Com exceção da manutenção de rotina, procedimentos de limpeza ou substituição de fusíveis, tal como descrito neste manual, o Transmissor M300 não deve ser adulterado ou alterado de qualquer forma.
- A Mettler-Toledo não se responsabiliza por danos causados por modificações não autorizadas no transmissor.
- Respeite todos os avisos, cuidados e instruções indicados e fornecidos com este produto.
- Instale o equipamento tal como especificado neste manual de instruções. Siga os códigos nacionais e locais apropriados.
- As coberturas protetoras têm de estar sempre colocadas no local adequado durante a operação normal.
- Se este equipamento for utilizado de uma forma não especificada pelo fabricante, a proteção fornecida pelo mesmo contra riscos pode ficar comprometida.

AVISOS:

A instalação de conexões de cabo e a manutenção deste produto exigem a acesso a níveis de tensão com risco de choques.

Os contatos de relés e da força principal conectados a fontes de força separadas deverão ser desconectados antes da manutenção.

O comutador ou disjuntor estará bem próximo do equipamento e a fácil alcance do OPERADOR; deverá ser marcado como o dispositivo de desconexão do equipamento.

A alimentação principal deverá empregar um comutador ou disjuntor como o dispositivo de desconexão do equipamento.

As instalações elétricas deverão estar de acordo com o Código Elétrico Nacional e/ou qualquer outro código nacional ou local aplicável.

NOTA! AÇÃO DE CONTROLE DO RELÉ: os relés do transmissor M300 irão sempre desenergizar ao ocorrer perda de energia, equivalente ao estado normal, independente da configuração do estado do relé para operação acionada. Configure qualquer sistema de controle usando esses relés com lógica à prova de falhas correspondente.

NOTA! PERTURBAÇÕES DE PROCESSO: Como as condições de processo e de segurança podem depender da operação consistente deste transmissor, forneça meios apropriados para manter a operação durante a limpeza ou substituição do sensor ou a calibração do sensor ou instrumento.

NOTA: Este é um produto de 4 cabos com uma saída analógica ativa de 4 a 20 mA. Não alimente nos pinos Pin1-Pin6 do TB2.

2.2 Descarte correto da unidade

Quando o transmissor for finalmente removido de serviço, observe todas as regulamentações ambientais locais para o descarte apropriado.

3 Visão geral da unidade

Os modelos M300 estão disponíveis nos tamanhos de estojo 1/4DIN e 1/2DIN. O 1/4DIN é um projeto somente para montagem no painel e os modelos 1/2DIN oferecem uma câmara IP65 integral para montagem na parede ou no tubo.

3.1 Visão geral do 1/4DIN

- 4.01 (102) 4.01 (102) 4.01 (102) 4.01 (102)
- 1: Estojo de policarbonato rígido
- 2: Cinco teclas de navegação de retorno tátil
- 3: Display de cristal líquido de 4 linhas
- 4: Terminais de fonte de força
- 5: Porta da interface USB
- 6: Terminais de saída de relê
- 7: Terminais de entrada digital/saída analógica
- 8: Terminais de entrada de sensor

3.2 Visão geral do 1/2DIN

- 1: Estojo de policarbonato rígido
- 2: Cinco teclas de navegação de retorno tátil
- 3: Display de cristal líquido de 4 linhas
- 4: Terminais de fonte de força

- 5: Porta da interface USB
- 6: Terminais de saída de relê
- 7: Terminais de entrada digital/saída analógica
- 8: Terminais de entrada de sensor

3.3 Teclas de controle/navegação

3.3.1 Estrutura de menus

A seguir está a estrutura da árvore de menus do M300:

3.3.2 Teclas de navegação

3.3.2.1 Navegando na árvore de menus

Acesse a ramificação desejada do menu principal com as teclas ◀ ► ou ▲. Use as teclas ▲ e ▼ para navegar pela ramificação selecionada do menu.

NOTA: Para fazer backup de uma página do menu sem precisar escapar para o modo de medição, movimente o cursor para debaixo do caractere de Seta para cima (1) no canto inferior direito da tela e pressione [Enter].

 $\zeta \overline{r}$

3.3.2.2 Escapar

Pressione as teclas ◀ e ► simultaneamente (escapar) para retornar ao modo Medição.

3.3.2.3 Enter

Use a tecla ← para confirmar a ação ou as seleções.

3.3.2.4 Menu

Pressione a tecla < para acessar o menu principal.

3.3.2.5 Modo de calibração

Pressione a tecla 🕨 para entrar no modo Calibração.

3.3.2.6 Modo Info

Pressione a tecla **V** para entrar no Modo de informações

3.3.3 Navegação dos campos de entrada de dados

Use a tecla ► para navegar para adiante ou a tecla < para navegar para trás nos campos de entrada de dados alteráveis da tela.

3.3.4 Entrada de valores de dados, seleção de opções de entrada de dados

Use a tecla ▲ para aumentar ou a tecla ▼ para diminuir um dígito. Use as mesmas teclas para navegar em uma seleção de valores ou nas opções de um campo de entrada de dados.

NOTA: Algumas telas precisam da configuração de vários valores no mesmo campo de dados (ex: a configuração de vários pontos de definição). Tenha certeza de usar a tecla ► ou a tecla
 ✓ para retornar ao campo primário e a tecla ▲ ou ▼ para alternar entre todas as opções de configuração antes de avançar para a próxima tela.

3.3.5 Navegação com 1 na tela

Se um ↑ for exibido no canto inferior direito da tela, você pode usar a tecla ► ou ◄ para navegar até ele. Se você clicar em [ENTER] irá navegar para trás pelo menu (voltar uma tela). Essa pode ser uma opção muito útil para voltar pela árvore do menu sem precisar sair para o modo de medição e entrar novamente no menu.

3.3.6 Caixa de diálogo «Salvar Mudanças»

Três opções são possíveis na caixa de diálogo «Salvar Mudanças Sim&Sair» (Salvar as alterações e sair para o modo de medição), «Sim e 1» (Salvar as alterações e voltar uma tela) e «Não&Sair» (Não salvar as alterações e sair para o modo de medição). A opção «Sim & 1» é muito útil para continuar a configuração sem precisar entrar novamente no menu.

3.3.7 Senhas de segurança

O transmissor M300 permite bloqueio de segurança de diversos menus. Se o recurso de bloqueio de segurança do transmissor foi ativado, uma senha de segurança deverá ser digitada para permitir acesso ao menu. Consulte a seção 9.3 para obter mais informações.

3.4 Display

NOTA: No caso de um alarme ou outra condição de erro, o transmissor M300 exibirá um piscando no canto superior direito da tela. Esse símbolo permanecerá até ser removida a condição que o causou.

NOTA: Durante calibrações, limpeza, Entrada digital com saída analógica/Relé/USB em estado Hold, um H piscando aparecerá no canto superior esquerdo da tela. Esse símbolo permanecerá durante 20 segundos até após a calibração ou limpeza estar concluída. Este símbolo também desaparecerá quando a Entrada Digital for desativada.

4 Instruções de instalação

4.1 Desembalagem e inspeção do equipamento

Inspecione o recipiente de remessa. Se estiver danificado, entre em contato com a transportadora imediatamente para obter instruções. Não jogue fora a caixa.

Se não houver dano aparente, desembrulhe o recipiente. Confira se todos os itens da lista de embarque estão presentes.

Se houver itens faltando, notifique a Mettler-Toledo imediatamente.

4.1.1 Informações dimensionais do recorte do painel – Modelos 1/4DIN

Os transmissores modelo 1/4DIN são projetados somente para instalação com montagem no painel. Cada transmissor é fornecido com hardware de montagem para permitir instalação rápida e simples em um painel plano ou em uma porta de revestimento plano. Para garantir uma boa vedação e manter a integridade de IP da instalação, o painel ou a porta deverá ser plano e ter acabamento liso. O hardware consiste em:

Dois suportes de montagem de pressão Uma vedação de gaxeta de montagem

As dimensões e a montagem do transmissor são mostradas nas figuras a seguir.

4.1.2 Procedimento de instalação – modelos 1/4DIN

- Faça o recorte no painel (consulte as dimensões no desenho do recorte).
- Verifique se a superfície ao redor do recorte está limpa, lisa e isenta de rebarbas.
- Deslize a gaxeta da face (fornecida como transmissor) em torno do transmissor a partir da traseira da unidade.
- Coloque o transmissor no furo do recorte. Observe a inexistência de folga entre o transmissor e a superfície do painel.
- Coloque os dois suportes de montagem nos lados do transmissor como mostrado.
- Enquanto segura firme o transmissor no furo do recorte, empurre os suportes de montagem em direção à parte traseira do painel.
- Quando estiver preso, use uma chave de fenda para apertar os suportes no painel. Para assegurar uma classificação IP65 para o revestimento ambiental, as duas braçadeiras fornecidas devem ser apertadas com firmeza para criar uma vedação adequada entre o revestimento do painel e a superfície dianteira do M300.
- A gaxeta da face ficará comprimida entre o transmissor e o painel.

CUIDADO: Não aperte demais os suportes.

4.1.3 Informações dimensionais do recorte do painel – Modelos 1/2DIN

Os transmissores modelo 1/2DIN são projetados com uma tampa traseira integral para instalação com montagem independente na parede.

A unidade também pode ser montada na parede usando a tampa traseira integral. Consulte as instruções de instalação na Seção 4.1.4.

A seguir estão as dimensões de recorte necessárias para os modelos 1/2DIN quando montados em um painel plano ou em uma porta de revestimento plano. Essa superfície deve ser plana e lisa. Superfícies com texturas ou rugosidade não são recomendáveis e podem limitar a eficiência da vedação de gaxeta fornecida.

Há acessórios de hardware opcionais disponíveis que permitem montagens no painel ou no tubo.

Consulte a Seção 15 «Acessórios e Peças sobressalentes» para obter informações sobre o pedido.

4.1.4 Procedimento de instalação – modelos 1/2DIN

Geral:

- Oriente o transmissor de forma que as presilhas do cabo fiquem voltadas para baixo.
- A fiação que passa pelas presilhas do cabo deve ser própria para uso em locais molhados.
- Para assegurar uma classificação IP65, todas as buchas do cabo devem estar no lugar.
 Cada bucha do cabo deve ser preenchida usando um cabo, ou uma Vedação de Orifício da Bucha do Cabo adequada.

Para montagem na parede:

- Remova a tampa traseira do alojamento dianteiro.
- Comece tirando os quatro parafusos localizados na face do transmissor, um em cada canto. Isso permite que a tampa dianteira seja retirada do alojamento traseiro.
- Remova o pino da dobradiça apertando o pino em cada extremidade.
 Isso permite que o alojamento dianteiro seja removido do alojamento traseiro.
- Monte o alojamento traseiro na parede. Fixe o kit de montagem ao M300 de acordo com as instruções fornecidas. Fixe-o na parede usando o hardware de montagem apropriado para a superfície da parede. Certifique-se de que esteja nivelado e preso com segurança, e que a instalação obedece todas as dimensões de espaço livre necessárias para a manutenção do transmissor. Oriente o transmissor de forma que as presilhas do cabo fiquem voltadas para baixo.
- Troque a caixa dianteira com a caixa traseira. Aperte bem os parafusos da tampa traseira para garantir que seja mantida a classificação ambiental do gabinete IP65. A unidade está pronta para ser conectada.

Para montagem no tubo:

 Use somente componentes fornecidos pelo fabricante na montagem do transmissor M300 no tubo e instale segundo as instruções fornecidas. Consulte a seção 15 para obter informações de pedido.

4.1.5 Montagem – versão 1/2DIN

- 1: 3 Pg 13,5 buchas dos cabos
- 2: 2 plugues de plástico
- 3: 4 parafusos

4.1.8 Versão 1/4DIN – Desenhos dimensionais

110 mm/4.33" 102 mm/4.02" 90 mm/3.54"

Fuse O

102 mm/4.02"

10

00

٥Q

90 mm/3.54"

Â

тв4 = тв3

TB1A

TB1B

000

TB2

4.2 Conexão da fonte de força

Todas as conexões com o transmissor são feitas no painel traseiro de todos os modelos.

Certifique-se de que a força para todas todos os fios está desligada antes de realizar a instalação. Poderá haver alta tensão presente nos fios de força de entrada e fios dos relés.

Há um conector de dois terminais no painel traseiro de todos os modelos M300 para conexão da força. Todos os modelos M300 são projetados para operar com fonte de força de 20–30 V CC ou de 100 a 240 V CA. Consulte as especificações para saber os requisitos de força e o

tamanho e capacidade nominal da fiação de força correspondente.

O bloco de terminais para as conexões de força está rotulado «Força» no painel traseiro do transmissor. Um terminal está rotulado – **N** para o fio do neutro e o outro + **L** para o fio de carga. Os terminais são adequados para cabos simples e pontas flexíveis de até 2,5 mm² (AWG 14). Não há terminal de aterramento no transmissor. Por essa razão os fios de força internos do transmissor têm isolamento duplo e o rótulo do produto designa isso com o símbolo \Box

4.2.1 Câmara 1/4DIN (montagem no painel)

1: Conexão da fonte de força

2: Terminal para sensores

22

4.2.2 Alojamento 1/2DIN (montagem na parede)

1: Conexão da fonte de força

2: Terminal para sensores

Definição do PINO conector 4.3

4.3.1 TB1 e TB2 para versões 1/2DIN e 1/4DIN

As conexões de energia estão rotuladas - N para o Neutro e +L para Linha, para 100 até 240 VCA ou 20-30 VCC.

2

2

NO: normalmente aberto (contato aberto se não acionado)	AO: Saída Analógica
NC: normalmente fechado	(contato fechado se não acionado)	DI: Entrada digital

4.3.2 TB3 e TB4* para versões 1/2DIN e 1/4DIN – Sensores de Condutividade

TB 3 fornece acesso às entradas de sinais do canal A, TB4* fornece acesso às entradas de sinais do canal B.

Os sensores de condutividade usam cabos série 58 080 20X ou 58 080 25X.

Pino nº	Cor do fio do sensor**	Função
1	branco	Cnd interno 1
2	branco/azul	Cnd externo 1
3	azul	Cnd interno 2
4	preto	Cnd externo 2/Blindagem
5	-	não usado
6	blindagem descoberta	RTD ret/GND
7	vermelho	Sensor RTD
8	verde	RTD
9	-	+5V

* Somente na versão de canal duplo

** Transparente não conectado.

Os terminais 4 e 6 são conectados internamente, qualquer um deles pode ser usado para conectar um fio.

4.3.3 TB3 e TB4* para versões 1/2DIN e 1/4DIN – Sensores de pH/ORP

Os sensores de pH/ORP usam cabos VP série 52 300 1XX ou AS9 série 10 001 XX02 (somente ORP).

Pino nº	Cor do fio do sensor	Função
1	Coaxial interno/transparente	Vidro
2		não usado
3**	Coaxial blindado/vermelho	Referência
4**	verde/amarelo, azul	Solução de aterramento/blindagem
5	_	não usado
6	branco	RTD ret/aterramento
7		Sensor RTD
8	verde	RTD
9	_	+5V
	cinza (sem conexão)	

* Somente na versão de canal duplo.

Os terminais 4 e 6 são conectados internamente, qualquer um deles pode ser usado para conectar um fio.

NOTA: ** Instale Jumper 3 a 4 quando usado sem solução de aterramento.

NOTA: Para sensores com ponta de prova de temperatura Pt100, o adaptador Pt100 será requerido. O adaptador Pt100 é incluído na embalagem de cada transmissor.

4.3.4 TB3 e TB4* para versões 1/2DIN e 1/4DIN – Sensores de Oxigênio dissolvido/Ozônio dissolvido (exceto 58 037 221)

Esses sensores usam cabos VP série 52 300 1XX.

Pino nº	Cor do fio do sensor	Função
]**	-	não usado
2	Coaxial blindado/vermelho	Ânodo
3**	-	não usado
4**	verde/amarelo	Blindagem/aterramento
5	Coaxial interno/transparente	Cátodo
6	branco, cinza	Temperatura, guarda
7	-	não usado
8	verde	Temperatura
9	-	+5V

O fio azul não é usado.

* Somente na versão de canal duplo.

Os terminais 4 e 6 são conectados internamente, qualquer um deles pode ser usado para conectar um fio.

NOTA: ** Instale jumper (fornecido) 1 a 3 a 4 ao usar os sensores de ozônio e oxigênio dissolvido Thornton.

4.3.5 TB3 e TB4* para versões 1/2DIN e 1/4DIN – Sensor de Oxigênio dissolvido 58 037 221 apenas (só Modelos Thornton)

Esse sensor usa cabos série 58 080 25X.

Pino nº	Cor do fio do sensor	Função
1	branco	Sinal
2	branco/azul,	Intervalo
3	_	
4	preto, blindagem desencapada	Blindagem, aterramento
5	_	
6	Transparente	Aterramento
7	vermelho	Temperatura
8	verde	Temperatura
9	azul	+5V

* Somente na versão de canal duplo.

Os terminais 4 e 6 são conectados internamente, qualquer um deles pode ser usado para conectar um fio.

4.3.6 TB3/TB4* – Sensores ISM (digitais), de pH, Condutividade e Oxigênio dissolvido

A fiação dos conectores digitais de 9 terminais é:

		pH, Oxigênio, Cond 4-e	Cond 2-e***
Pino nº	Função	Cor	Cor**
1	24 VCC	-	-
2	GND (24 VCC)	-	-
3	1-Fio	Transparente (Núcleo do cabo)	_
4	GND (5 VCC)	vermelho (blindado)	_
5	-	-	-
6	GND (5 VCC)	-	branco
7	RS485-B	-	preto
8	RS485-A	-	vermelho
9	5 VCC	-	azul

* Somente na versão de canal duplo

** Fio sem capa não é conectado

*** Somente em modelos Thornton

- 4.4 Conexão do Sensor Analógico de pH/ORP
- 4.4.1 Conectando o sensor ao cabo VP

NOTA: Comprimentos de cabo de >20 m podem piorar a resposta durante a medição do pH. Certifique-se de observar o manual de instruções do sensor.

4.4.2 Designação do cabo VP

- 1/T2: Sonda de temperatura para conexão de 2 fios
- T3: Conexão adicional para a sonda de temperatura (conexão de 3 fios)

4.4.3 Fiação típica (usando TB3/TB4)

4.4.3.1 **Exemplo 1**

Medição de pH sem solução de aterramento.

NOTA: Adaptador Pt 100 necessário (anexado) para sensores com sonda de temperatura Pt100. Para obter os detalhes de cabeamento, consulte a página 24.

Cores dos fios válidas somente para conexão com cabo VP; azul e cinza não conectados. 6: Solução GND/RTD ret

1: Vidro

Impresso na Suíça

- 2: Não usado
- 3: Referência
- 4: Blindagem/aterramento
- 5: Não usado
- 8: RTD

7: Não usado

9: Não usado

4.4.3.2 Exemplo 2

Medição de pH com solução de aterramento

Ċ C NOTA: Cores dos fios válidas somente para conexão com o cabo VP, cinza não conectado.

NOTA: Adaptador Pt100 necessário (anexado) para sensores com sonda de temperatura Pt100. Para obter os detalhes de cabeamento, consulte a página 24.

- 1: Vidro
- 2: Não usado
- 3: Referência
- 4: Blindagem/solução de aterramento
- 5: Não usado

- 6: GND/RTD ret
- 7: Não usado
- 8: RTD
- 9: Não usado

30

4.4.4 Exemplo 3

Medição ORP (redox) (temperatura opcional).

NOTA: Jumpeie os terminais 3 e 4.

NOTA: Adaptador Pt100 necessário (anexado) para sensores com sonda de temperatura Pt100. Para obter os detalhes de cabeamento, consulte a página 24.

6: RTD ret

8: RTD

7: Não usado

1 : Platina	
I : Platina	

- 2: Não usado
- 3: Referência
 - 4: Blindagem/aterramento 9: Não usado
- 5: Não usado

4.4.4.1 Exemplo 4

Medição de ORP com eletrodo de solução de aterramento de pH (por exemplo, InPro 3250 SG, InPro 4800 SG).

NOTA: Jumpeie os terminais 3 e 4.

NOTA: Adaptador Pt100 necessário (anexado) para sensores com sonda de temperatura Pt100. Para obter os detalhes de cabeamento, consulte a página 24.

1 : Platina	6: RTD ret
2: Não usado	7: Não usado
3: Referência	8: RTD
4: Blindagem/aterramento	9: Não usado
5: Não usado	

Ċ

- 4.5 Conexão do Sensor Analógico de Oxigênio Dissolvido/Ozônio Dissolvido (exceto 58 037 221)
- 4.5.1 Conectando o sensor ao cabo VP

NOTA: Certifique-se de observar o manual de instruções do sensor.

 \sqrt{r}

NOTA: Cores dos fios válidas somente para conexão com o cabo VP, azul não conectado.

4.5.2 Fiação típica usando TB3/TB4

Conector M300:

- 1: não utilizado
- 2: Ânodo
- 3: não utilizado
- 4: Blindagem/aterramento
- 5: Cátodo
- 6: NTC ret, isolamento
- 7: Não usado
- 8: NTC 2
- 9: não utilizado

4.6 Conexão de Sensor Analógico de Oxigênio Dissolvido 58 037 221

Este sensor consiste em uma sonda de oxigênio dissolvido Thornton Long Life conectado diretamente a uma caixa de pré-amplificador. O pré-amplificador conecta ao M300 usando um cabo série 58 080 25X. Use as conexões mostradas na última tabela da seção 4.3 e siga as instruções adicionais fornecidas com o sensor.

4.7 Conexão do sensor ISM

4.7.1 Conexão do Sensor ISM para pH, Cond 4-e e Oxigênio dissolvido

NOTA: Conecte o Sensor e gire a cabeça do plugue no sentido horário (aperte firme com a mão).

C ∕ ¬

4.7.2 Designação do cabo AK9

- A: 1-cabo de dados (transparente)
- B: Terra/blindagem
- 4.7.3 Conexão do Sensor ISM para Cond 2-e (somente modelos Thornton)

4.7.4 Designação do cabo do Sensor ISM para Cond 2-e (somente modelos Thornton)

- A: GND (branco)
- B: Dados RS485-B (preto)
- C: Dados RS485-A (vermelho)
- D: 5 VCC (azul)
5 Colocando o transmissor em ou fora de serviço

Após conectar o transmissor ao circuito da fonte de força, ele estará ativo assim que o circuito for energizado.

5.2 Colocando o transmissor fora de serviço

Primeiro desconecte a fonte de força da rede elétrica e, em seguida, desconecte todas as conexões elétricas restantes. Remova a unidade da parede /painel. Use as instruções de instalação neste manual como referência para desmontar o hardware de montagem.

Configurações Rápidas

(CAMINHO: Menu/Quick Setup)

6

Selecione Configurações Rápidas e pressione a tecla [ENTER]. Insira o código de segurança se necessário (consulte a seção 9.3 «Códigos »).

- **NOTA:** A descrição completa da rotina Configuração rápida pode ser encontrada no livreto separado «Guia de configuração rápida do Transmissor M300» anexo na caixa.
- **NOTA:** Não use o menu Configurações Rápidas depois da configuração do transmissor, porque alguns dos parâmetros, p. ex. configuração da saída analógica, podem ser redefinidos.
- NOTA: Consulte a seção 3.3 «Teclas de Controle/ Navegação» para obter informações sobre a navegação de menus.

7 Calibração do sensor

(CAMINHO: Cal)

A tecla de calibração ► permite usar acesso de um toque aos recursos de Calibração e verificação do sensor. Os modelos Thornton também permitem o acesso à calibração do medidor e da saída analógica (veja os capítulos 11.3.1 e 11.3.2). Todos os outros modelos também permitem acesso fácil à calibração do medidor e da saída analógica se o acesso tiver sido previamente desbloqueado (vide capítulo 11.3.3 «Calibrar Destravar »).

NOTA: Durante a calibração, um H piscando no canto superior esquerdo da tela indica que uma calibração está em processo com uma condição Hold ativa. (A função de saída hold precisa ser ativada.) Consulte também o capítulo 3.3 «Display»

7.1 Entre no Modo de Calibração

No modo Medição, pressione a tecla ►. Se o visor solicitar a digitação do código de segurança da calibração, pressione a tecla ▲ ou ▼ para definir o código de segurança da calibração, em seguida pressione a tecla [ENTER] para confirmar o código.

Para dispositivos de canal duplo: Usando a tecla ▲ or ▼ no campo «Canal A» o usuário pode alterar o canal a ser calibrado. Então use a tecla ► para passar para o campo de calibração.

Pressione a tecla \blacktriangle ou ∇ para selecionar o tipo de calibração desejado. As opções para cada tipo de sensor são:

Condutividade	= Condutividade, Resistividade, Temperatura*, Editar*, Verificar	
Oxigênio**	= Oxigênio, Temperatura*, Editar*, Verificar	
Ozônio**	= Ozônio, Temperatura*, Editar*, Verificar	
рН	= pH, mV, Temperatura*, Editar pH*, Editar mV, Verificar, ORP***	
Pressione [ENTER]		

- * não na versão ISM
- ** para transmissores Thornton (peças nº 58 001 316 e 58 001 306), um jumper é requerido entre os terminais 1, 3 e 4 no TB3 e/ou TB4.
- *** somente com sensores ISM

Após cada calibração bem sucedida, as seguintes opções estarão disponíveis:

Calibrar: Os valores de calibração serão tomados e usados para a medição. Adicionalmente, os dados serão armazenados no sensor*.

Abortar: Os valores da calibração serão descartados.

* somente disponível com sensores ISM

39

7.2 Calibração da Condutividade/Resistividade

Este recurso fornece a capacidade de realizar calibração do sensor de condutividade de um ponto ou dois pontos ou de Condutividade do processo com relação ao «Sensor» de Resistividade para sensores de dois ou quatro eletrodos. O procedimento descrito a seguir funciona para os dois tipos de calibração. Não há razão para realizar uma calibração de 2 pontos em um sensor de condutividade de dois eletrodos. Também não é prático calibrar os sensores de condutividade de referência (de baixa condutividade). É recomendável que os sensores de condutividade sejam enviados de volta à fábrica para calibração. Consulte a fábrica para obter assistência.

NOTA: Ao realizar a calibração de um sensor de condutividade, os resultados irão variar dependendo dos métodos, do aparelho de calibração e/ou da qualidade dos padrões de referência utilizados para realizar a calibração.

NOTA: Para tarefas de medição, será considerada a compensação de temperatura da aplicação como definido no menu Resistividade (resp. para o M300 de canal duplo, o menu Comp/pH/ O2) e não a compensação de temperatura selecionada via o procedimento de calibração (veja também o capítulo 8.2.4.1 «Compensação de temperatura de condutividade/resistividade; CAMINHO:Menu/Configure/Measurement/Resitivity).

Acesse o modo de calibração do sensor de condutividade como descrito na seção 7.1 «Entrar no Modo de Calibração».

Ao configurar os transmissores modelo Thornton, após selecionar a calibração do sensor desejado e pressionar [ENTER], a próxima tela pedirá para selecionar o tipo de modo de compensação de temperatura desejado durante o processo de calibração. As opções são «Nenhum», «Padrão», «Light 84», «Pad 75°C», «Lin 20°C = 02,0%/°C» (valor selecionável pelo usuário), «Linear 25°C = 02,0%/°C» (valor selecionável pelo usuário), «Glicol.5», «Glicol1», «Álcool» e «Nat H2O».

Todos os outros Modelos oferecem as opções «Padrão», «Lin 20°C = 02,0%/°C» (valor selecionável pelo usuário), e «Linear 25°C = 02,0%/°C» (valor selecionável pelo usuário) como Modo de Compensação via calibração.

Compensação padrão	inclui a compensação de efeitos de alta pureza não linear, além de impurezas convencionais de sal neutro e conforma-se às normas ASTM D1125 e D5391.
A compensação Linear 25 °C	ajusta a leitura por um fator expresso como uma «% por °C» no desvio de 25 °C. O fator pode ser modificado.
A compensação Linear 20 °C	ajusta a leitura por um fator expresso como uma «% por °C» no desvio de 20 °C. O fator pode ser modificado.

Selecione o modo de compensação, modifique o fator onde apropriado e pressione [ENTER].

A

A

7.2.1 Calibração de um ponto do Sensor

(A tela reflete a calibração típica do Sensor)

Digite o modo de calibração do sensor de Condutividade como descrito na seção 7.1 «Digitar Modo de Calibração» e selecione um dos modos de compensação (veja a seção 7.2 «Calibração de Condutividade/Resistividade»).

Selecione calibração de 1 ponto e pressione [ENTER]. Com sensores de condutividade uma calibração de um ponto é sempre executada como uma calibração de declive.

Coloque o eletrodo na solução de referência.

Insira o valor de calibração Ponto 1 e pressione a tecla [ENTER] para iniciar a calibração. O valor na segunda linha de texto é o valor medido real do sensor antes da calibração.

Após a calibração o Multiplicador ou fator de calibração de declive «M» e o Somador ou fator de calibração de compensação «A» são exibidos.

Selecione Sim para salvar os valores de calibração e a Calibração bem-sucedida é confirmada na tela. Se um sensor ISM for conectado, os dados de calibração serão armazenados no sensor.

O usuário recebe a mensagem «Reinstale o sensor» e «Pressione Enter» na tela. Depois de pressionar «Enter» o M300 retorna ao modo de medição.

7.2.2 Calibração de dois pontos do Sensor (sensores de 4 eletrodos apenas)

Digite o modo de calibração do sensor de Condutividade como descrito na seção 7.1 Digitar Modo de Calibração e selecione um dos modos de compensação (veja a seção 7.2 «Calibração de Condutividade/Resistividade»).

Selecione Calibração de 2 pontos e pressione [ENTER]. Coloque o eletrodo na primeira solução de referência.

CUIDADO: enxágue os sensores com solução de água de alta pureza entre os pontos de calibração para impedir a contaminação das soluções de referência.

Insira o Valor do Ponto 1 e pressione a tecla [ENTER]. Coloque o sensor na segunda solução de referência.

Insira o Valor do Ponto 2 e pressione a tecla [ENTER] para começar a calibração.

1 25

25.00

Type = 1 point

Conductivity Calibration

uS/cn

°C

.

Após a calibração o Multiplicador ou fator de calibragem de declive «M» e o Somador ou fator de calibragem de compensação «A» são exibidos.

Selecione Sim para salvar os valores de calibração e a Calibração bem-sucedida é confirmada na tela. Se um sensor ISM for conectado, os dados de calibração serão armazenados no sensor.

O usuário recebe a mensagem «Reinstale o sensor» e «Pressione Enter» na tela. Depois de pressionar «Enter» o M300 retorna ao modo de medição.

7.2.3 Calibração do processo

Digite o modo de calibração do sensor de Condutividade como descrito na seção 7.1 «Digitar Modo de Calibração» e selecione um dos modos de compensação (veja a seção 7.2 «Calibração de Condutividade/Resistividade»).

Selecione Calibração de Processo e pressione [ENTER]. Com sensores de condutividade a calibração de processo é sempre executada como uma calibração de declive.

Conductivity Calibration

25.0

10.00 ms/cm

on

^в 10.00 м≤∕см ^в 25.0 мс

Press ENTER to Capture B C = 10.00 mS/cm ↑

° 10.00 ms/cm 25.0 ∝

Point1 = 10_13 mS/cm C = 10.00 mS/cm *

> 10.00 ["]≲∕∝ 25.0 ∘

C M=0.10130 A=0.00000 Save Calibration Yes 🛧 Tome uma amostra e pressione [ENTER] novamente para armazenar o valor de medição atual.

Durante o processo contínuo de calibração, a letra do canal que está ocupado pela calibração, «A» ou «B,» fica piscando no visor.

Após determinar o valor de condutividade da amostra, pressione a tecla [CAL] novamente para continuar a calibração.

Insira o valor de condutividade da amostra e pressione [ENTER] para iniciar o cálculo dos resultados da calibração.

Após a calibração o Multiplicador ou fator de calibração de declive «M» e o Somador ou fator de calibração de compensação «A» são exibidos.

Selecione Sim para salvar os valores de calibração e a Calibração bem-sucedida é confirmada na tela.

в

в

в

н

в

C ∩ F

98.6

25.0

98.6

25.0

02 Calibration Type = 1 point Slope

98.6

25.0

98.6

25.0

B Point1 = 100.5 %sat B 02 = 98.6 %sat ↑

Press ENTER when Sensor is in Gas 1(Air)↑

Calibrate Sensor Channel B Oxygen %sat

°C

Xsat.

°C

Zair

۰C

%sat

٩C

*

7.3 Calibração de oxigênio

A calibragem do Oxigênio dissolvido é realizada como calibração de um ponto ou calibração de processo.

7.3.1 Calibração de um ponto do Sensor

Antes da calibração a ar, para uma maior precisão, digite a pressão barométrica e umidade relativa como descrito na seção 8.2.4.3 «Parâmetros de Oxigênio Dissolvido».

Entre no Modo de Calibração de Oxigênio como descrito na seção 7.1 «Digitar Modo de Calibração».

Uma calibragem de sensor OD é sempre uma calibração a Ar de um ponto (Declive) ou uma calibração Zero (Compensação). A calibração de zero oxigênio dissolvido de um ponto está disponível, mas normalmente não é recomendada porque o Zero OD é muito difícil de se alcançar.

Selecione 1 ponto seguido por Declive ou ZeroPt como o tipo de calibração. Pressione [EN-TER].

Coloque o sensor na solução resp. do gás de calibração (por exemplo, ar). Pressione [ENTER].

7.3.1.1 Modo Automático

NOTA: Para uma calibração de ponto zero, o modo Automático não está disponível. Se modo Automático foi configurado (veja a seção 8.2.4.3 «Parâmetros de Oxigênio Dissolvido») e uma calibração de compensação for executada, o transmissor executará a calibração no modo Manual.

Insira o valor do Ponto 1 incluindo uma casa decimal e unidades. O valor na segunda linha de texto é o valor que está sendo medido pelo transmissor e sensor nas unidades selecionadas pelo usuário.

Assim que os critérios de estabilização forem atendidos a tela muda. O visor mostra o valor do declive S e do deslocamento Z como resultado da calibração.

Selecione Sim para salvar os valores de calibração e a calibração bem-sucedida é confirmada na tela. Se um sensor ISM for conectado, os dados de calibração serão armazenados no sensor.

7.3.1.2 Modo Manual

в 98.6 %sat 25.0<u>ە</u>د B Point1 = 100.5 %sat B 02 = 98.6 %sat ↑ Insira o valor do Ponto 1 incluindo uma casa decimal e unidades. O valor na segunda linha de texto é o valor que está sendo medido pelo transmissor e sensor nas unidades selecionadas pelo usuário. Pressione [ENTER] quando esse valor estiver estável para realizar a calibração.

Após a calibração, o fator de calibragem de declive S e o fator de calibração de descompensação Z são exibidos.

Selecione Sim para salvar os valores de calibração e a Calibração bem-sucedida é confirmada na tela. Se um sensor ISM for conectado, os dados de calibração serão armazenados no sensor.

O usuário recebe a mensagem «Reinstale o sensor» e «Pressione Enter» na tela. Depois de pressionar «Enter» o M300 retorna ao modo de medição.

7.3.2 Calibração do processo

Entre no Modo de Calibração de Oxigênio como descrito na seção 7.1 «Digitar Modo de Calibração».

Selecione Processo seguido por Declive ou ZeroPt como o tipo de calibração. Pressione [ENTER]

Tome uma amostra e pressione a tecla [ENTER] novamente para armazenar o valor de medição atual. Para mostrar o processo de calibração em andamento, A ou B (dependendo do canal) exibido no canto superior esquerdo.

Após determinar o valor de O₂ da amostra, pressione novamente a tecla [CAL] para continuar a

Insira o valor O₂ da amostra e pressione a tecla [ENTER] para iniciar a calibragem.

Após a calibração, o fator de calibração de declive S e o fator de calibração de descompensação Z são exibidos. Selecione Sim para salvar os novos valores de calibração e a Calibração bem-sucedida é confirmada na tela. Se um sensor ISM for conectado, os dados de calibração serão armazenados no sensor. O A resp. B no canto superior esquerdo desaparece após 20 segundos.

7.4 Calibração de ozônio (somente modelos Thornton)

A calibragem de Ozônio dissolvido é realizada como uma calibragem de 1 ponto e deve ser realizada rapidamente porque o ozônio se decompõe rapidamente no oxigênio, particularmente em temperaturas tépidas.

٩C

B Point1 = 56.90 %sat B 02 = 57.1 %sat *

в

calibração.

© 01/2016 Mettler-Toledo GmbH, CH-8606 Greifensee, Suíça Impresso na Suíça

A 1.25 μs/cm A 25.00 °c 03 s=0.1000 z=0.0000 Save Calibration Yes A

 $\overline{7}$

A

25.0

PH Calibration

7.4.1 Calibração de um ponto do Sensor

Entre no Modo de Calibração de Ozônio como descrito na seção 7.1 «Digitar Modo de Calibração» e selecione Ozônio.

A calibração de sensor de ozônio é sempre uma calibração de Comparação de um ponto (Declive) ou uma calibração Zero (Compensação). Uma calibração de declive de um ponto é sempre obtida de um instrumento de comparação ou kit de teste colorimétrico e uma calibração de compensação de um ponto é feita no ar ou em água isenta de ozônio.

Selecione 1 ponto seguido por Declive ou ZeroPt como o tipo de calibração. Pressione [ENTER].

Insira o valor do Ponto 1 incluindo uma casa decimal e unidades. O valor na segunda linha de texto é o valor que está sendo medido pelo transmissor e sensor nas unidades selecionadas pelo usuário. Pressione [ENTER] quando esse valor estiver estável para realizar a calibração.

Após a calibração, o fator de calibragem de declive S e o fator de calibragem de descompensação Z são exibidos.

Selecione Sim para salvar os valores de calibração e a Calibração bem-sucedida é confirmada na tela.

O usuário recebe a mensagem «Reinstale o sensor» e «Pressione Enter» na tela. Depois de pressionar «Enter» o M300 retorna ao modo de medição.

7.5 Calibração de pH

Para sensores de pH, o transmissor M300 possui recursos de calibração de um ponto, de dois pontos (modo Automático ou Manual) ou de processo, com 9 conjuntos de buffer predefinidos ou entrada de buffer manual. Os valores do buffer referem-se a 25°C. Para calibrar o instrumento com reconhecimento de buffer automático é necessário uma solução de buffer padrão que corresponda a um desses valores (veja a seção 8.2.4.2 «Parâmetros de pH» para configurar os modos e selecionar conjuntos de buffers). Selecione a tabela de buffer correta antes de usar a calibração automática (consulte o capítulo 20 «Tabelas de buffer»).

NOTA: Somente a tabela de buffer 20.2.1 Mettler-pH/pNa está disponível para eletrodos de pH de membrana dupla (pH/pNa)

Entre no Modo de Calibração de pH como descrito na seção 7.1 «Digitar Modo de Calibração».

7.5.1 Calibração de Um Ponto

Selecione Calibração de 1 ponto. Com sensores de pH uma calibração de um ponto é sempre executada como uma calibração de deslocamento.

Dependendo dos parâmetros definidos para o controle de Desvio (veja o capítulo 8.2.4.2 «Parâmetros de pH»), um dos dois modos seguintes é ativado.

ΡН

۰c

7.5.1.1 Modo Automático

Coloque o eletrodo na solução buffer e pressione a tecla [ENTER] para começar a calibração.

O visor mostra o buffer que o transmissor reconheceu (Ponto 1) e o valor medido.

Assim que os critérios de estabilização forem cumpridos, a tela muda para mostrar o fator S de calibração de declive e o fator Z de calibração de compensação.

Selecione Sim para salvar os valores de calibração e a Calibração bem-sucedida é confirmada na tela. Se um sensor ISM for conectado, os dados de calibração serão armazenados no sensor.

O usuário recebe a mensagem «Reinstale o sensor» e «Pressione Enter» na tela. Depois de pressionar «Enter» o M300 retorna ao modo de medição.

7.5.1.2 Modo Manual

Coloque o eletrodo na solução de buffer. O visor mostra o buffer que o transmissor reconheceu (Ponto 1) e o valor medido. Pressione [ENTER] para continuar.

Agora o visor mostra o fator de calibração de inclinação S e o fator de calibração de deslocamento Z.

^в 8.29 ⊧н ^в 20.1 ∘с

PH S=100.0 % Z=6.743PH Save Calibration Yes

PH S=100.0 % Z=7.954PH Save Adjust.

8.29

20.1

A Point1 = 9.21 PH A PH = 8.29 PH

8.29

20.1

A

A

ΡН

20

PН

٩C

ŧ

Selecione Sim para salvar os valores de calibração e a Calibração bem-sucedida é confirmada na tela. Se um sensor ISM for conectado, os dados de calibração serão armazenados no sensor.

O usuário recebe a mensagem «Reinstale o sensor» e «Pressione Enter» na tela. Depois de pressionar «Enter» o M300 retorna ao modo de medição.

7.5.2 Calibração de Dois Pontos

7.26 PH P 20.1 ℃ PH Calibration Type = 2 Point ↑

Selecione Calibragem de 2 pontos.

Dependendo dos parâmetros definidos para o controle de Desvio (veja o capítulo 8.2.4.2 «Parâmetros de pH»), um dos dois modos seguintes é ativado.

8.29

20.1

8.29

20.1

A Point1 = 9.21 pH .. A pH = 8.29 pH ↑

Press ENTER when Sensor is in Buffer 1 🛧

A

А

A

А

Pres Sens

A

A Po A

А

А

eH S Save

А

A P A

А

A Po

A A

20.1

PH S=103.6 % Z=6.766PH Save Calibration Yes 🛧

٥C

PН

٥c

PН

°C

8.29 ⊪ 20.1 ∞	Assim que os critérios de estabilização forem cumpridos, o vis car o eletrodo no segundo buffer.
s ENTER when or is in Buffer 2 ↑	Coloque o eletrodo na segunda solução de buffer e pressione com a calibração.
7.17 ⊧н 20.1 ∝	O visor mostra o segundo buffer que o transmissor reconheceu
int2 = 7.00 pH · pH = 7.17 pH · ↑	
7.17 ⊪ 20.1 ∝	Assim que os critérios de estabilização forem cumpridos, a tele calibração de declive e o fator Z de calibração de compensaçã
=103.6 % Z=6.766PH Calibration Ves 🛧	Selecione Sim para salvar os valores de calibração e a Calibraç na tela. Se um sensor ISM for conectado, os dados de calibraç
	O usuário recebe a mensagem «Reinstale o sensor» e «Pressio pressionar «Enter» o M300 retorna ao modo de medição.
	7.5.2.2 Modo Manual
8.29 ⊧н 20.1 ∘c	Coloque o eletrodo na primeira solução de buffer. O visor mos reconheceu (Ponto 1) e o valor medido. Pressione [ENTER] p
pint1 = 9.21 pH pH = 8.29 pH ↑	
7.17 ⊮ 20.1 ∘	Coloque o transmissor na segunda solução de buffer. O visor reconheceu (Ponto 2) e o valor medido. Pressione [ENTER] pr
int2 = 7.00 pH pH = 7.17 pH ↑	
7.17 ⊪	O visor mostra o fator de calibração de inclinação S e o fator o

7.5.2.1 Modo Automático

Coloque o eletrodo na solução buffer e pressione a tecla [ENTER] para começar a calibração.

O visor mostra o buffer que o transmissor reconheceu (Ponto 1) e o valor medido.

or muda e pede para você colo-

a tecla [ENTER] para prosseguir

u (Ponto 2) e o valor medido.

a muda para mostrar o fator S de ÍO.

cão bem-sucedida é confirmada ão serão armazenados no sensor.

one Enter» na tela. Depois de

tra o buffer que o transmissor ara continuar.

mostra o buffer que o transmissor ara continuar.

le calibração de deslocamento Z.

Selecione Sim para salvar os valores de calibragem e a Calibração bem-sucedida é confirmada na tela. Se um sensor ISM for conectado, os dados de calibração serão armazenados no sensor.

O usuário recebe a mensagem «Reinstale o sensor» e «Pressione Enter» na tela. Depois de pressionar «Enter» o M300 retorna ao modo de medição.

A	9.68	РH	
A	20.1	°C	
еН Са Туре	alibration = Process	ŕ	
в	9.68	РH	
в	20.1	°C	
Press B	ENTER to C PH = 9.68	apture PH ↑	
A	9.68	PH	1
A	20.1	°C	
B	7.00 25.0	Ha Do H	
A	9.68		1.1
A	20 4	PH	
	20.1	°C	
A Poi A	int1 = 9.220 PH = 9.68	'₽H ₽H ↑	
	9.68	РH	
	20.1	°C	
PH S= Save	=100.0 % Z= Calibration	:6.547⊳H \Yes ↑	

7.5.3 Calibração do processo

Selecione Calibração do Processo. Com sensores de pH a calibração de processo é sempre executada como uma calibração de deslocamento.

Colha uma amostra e pressione a tecla [ENTER] novamente para gravar o Valor da medição atual. Para mostrar o processo de calibração em andamento, A ou B (dependendo do canal) exibido no canto superior esquerdo.

Após determinar o valor de pH da amostra, pressione a tecla [CAL] novamente para continuar a calibração.

Insira o valor de pH da amostra e pressione [ENTER] para iniciar o cálculo dos resultados da calibração.

Após a calibração, o fator de calibragem de declive S e o fator de calibração de descompensação Z são exibidos. Selecione Sim para salvar os novos valores de calibração e a Calibração bem-sucedida é confirmada na tela. Se um sensor ISM for conectado, os dados de calibração serão armazenados no sensor. O A resp. B no canto superior esquerdo desaparece após 20 segundos.

7.5.4 Calibração de mV (não na versão ISM)

Entre no Modo de Calibração de mV como descrito na seção 7.1 «Digitar Modo de Calibração».

Digite o valor do Ponto 1. O fator de calibração de deslocamento é calculado usando o valor do Ponto 1 em vez do valor medido (linha 4, mV =....) e é exibido na próxima tela.

Z é o novo fator de calibração de compensação calculado. O fator de calibração de declive S é sempre 1 e não entra no cálculo.

Selecione Sim para salvar os novos valores de calibração e a Calibração bem-sucedida é confirmada na tela.

O usuário recebe a mensagem «Reinstale o sensor» e «Pressione Enter» na tela. Depois de pressionar «Enter» o M300 retorna ao modo de medição.

A 1 25 µS/can A 25.00 °C Calibrate Sensor Channel B mV . 1.25 µS/cm A 25.00 °C B Point1 = 11.06 mV = 10.04в . A 1.25 µS/cm 25.00 °C B Point1 = 11.06

mV = 10.04

.

Calibração de ORP (apenas na versão ISM) 7.5.5

Se um sensor de pH com aterramento de solução baseado na tecnologia ISM for conectado ao transmissor, o M300 ISM dá a opção de fazer uma calibração de ORP também.

Acesse o modo de calibração de ORP como descrito na seção 7.1 «Digitar Modo de в 7.00ΡН Calibração». в 25.0 <u>ە</u>د Calibrate Sensor Channel B ORP Digite o Ponto 1. Além disso o ORP real é exibido. в 7.00ΡН 25.0 Pressione [ENTER] para continuar. °C B Point1 = 0.050 mV B ORP = 0.100 mV * O visor mostra o fator de calibração de inclinação S e o fator de calibração de deslocamento Z. 7.00 ΡН 25.0۰c firmada na tela. Os dados de calibração serão armazenados no sensor. mV S=1.00000 Z=-100.00 Save Calibration Yes ↑

Selecione Sim para salvar os novos valores de calibração e a Calibração bem-sucedida é con-

O usuário recebe a mensagem «Reinstale o sensor» e «Pressione Enter» na tela. Depois de pressionar «Enter» o M300 retorna ao modo de medição.

7.6 Calibração da temperatura do sensor (não na versão ISM)

Entre no Modo de Calibração como descrito na seção 7.1 «Digitar Modo de Calibração» e selecione Temperatura.

7.6.1 Calibração de temperatura do sensor de 1 ponto (não na versão ISM)

Selecione Calibração de um ponto. Declive ou Compensação pode ser selecionado com a calibragem de um ponto. Selecione Declive para calcular novamente o fator M (Multiplicador) ou uS/cr Compensação para calcular novamente o fator de calibração de compensação A (Somador). 25.00 °C Temperature Calibration

Insira o Valor do Ponto 1 e pressione [ENTER].

A uS/cm A 25.00 °C mp M=1.00001 A=0.00000 Save Calibration Yes

Type = 1 point Slope

1.25

25.00

A Point1 = 25.02 °C T = 25.00 °C uS/cm

°C

.

O novo valor calculado – M ou A – é exibido. Selecione Sim para salvar os novos valores de calibração e a Calibração bem-sucedida é confirmada na tela.

O usuário recebe a mensagem «Reinstale o sensor» e «Pressione Enter» na tela. Depois de pressionar «Enter» o M300 retorna ao modo de medição.

A

A

A

A

7.6.2 Calibragem da temperatura do sensor de dois pontos (não na versão ISM)

Selecione 2 pontos como o Tipo de calibração.

Insira o Valor do Ponto 2 e pressione [ENTER].

Insira o Valor do Ponto 1 e pressione [ENTER].

Os novos valores M e A calculados são exibidos. Selecione Sim e pressione [ENTER] para salvar os novos valores de calibração e a Calibração bem-sucedida é confirmada na tela.

O usuário recebe a mensagem «Reinstale o sensor» e «Pressione Enter» na tela. Depois de pressionar «Enter» o M300 retorna ao modo de medição.

7.7 Editar constantes de calibração do sensor (não na versão ISM)

Entre no modo de Calibração como descrito na seção 7.1 «Entrar no Modo de Calibração» e selecione Editar, Editar pH ou Editar mV.

Todas as constantes de calibração do canal de sensor selecionado são exibidas. As constantes de medição primária (p) são exibidas na Linha 3. As constantes de medição secundária (temperatura) (s) do sensor são exibidas na Linha 4.

As constantes de calibração podem ser alteradas nesse menu.

Selecione Sim para salvar os novos valores de calibração e a Calibração bem-sucedida é confirmada na tela.

NOTA: Cada vez que um novo sensor de condutividade for conectado ao transmissor M300 será necessário inserir a constante de calibração exclusiva localizada no rótulo do sensor.

ve Calibration Yes

Verify Cal:Channel A Ch A 1.820 MΩ 1.097 KΩ

7.8 Verificação do sensor

Entre no modo de Calibração como descrito na seção 7.1 «Digitar Modo de Calibração» e selecione Verificar.

Os sinais medidos na medição primária e secundária nas unidades elétricas são mostrados. Os fatores de calibração do medidor são usados ao calcular esses valores.

Use a tecla \blacktriangle ou ∇ para alternar entre o canal A e B*.

* Somente na versão de canal duplo.

8 Configuração

(CAMINHO: Menu/Configurar)

8.1 Acesse o modo de Configuração

Enquanto no modo de Medição, pressione a tecla \blacktriangleleft . Pressione a tecla \blacktriangle ou ∇ para navegar até o menu Configurar e pressione [ENTER].

8.2 Medição

(CAMINHO: Menu/Configurar/Medição)

Acesse o modo de configuração como descrito na Seção 8.1 «Entrar no Modo de Configuração.»

Pressione a tecla [ENTER] para selecionar esse Menu. Os seguintes submenus podem ser agora selecionados: Configuração de Canal, Fonte de Temperatura*, Comp/pH/O2** e Definir média.

- * Não na versão ISM.
- ** para transmissores de canal único M300 e M300ISM o termo na tela não mostra Comp/pH/02, mas sim Resistividade ou pH ou 02. O termo depende da versão do transmissor M300 relativo ao sensor ISM que foi conectado ao transmissor M300 ISM.

8.2.1 Configuração de Canal

(CAMINHO: Menu/Configurar/Medição/Configuração de Canal).

Pressione a tecla [ENTER] para selecionar o Menu «Configuração de canal».

NOTA: A seleção depende do tipo de transmissor.

А 7.00 рн А 25.00 сс Menu Configure А

7.00

25.00

pН

°C

.

A

Configure

asurement

Sensores analógicos:

A 7 00 ъH °C A Sensor Type = pH/ORP B Sensor Type = Cond(2)▲ Selecione Tipo de sensor e pressione [ENTER]. Os Tipos de sensor disponíveis são: = pH ou ORP pH/ORP

- Cond (2) = condutividade de 2 eletrodos Cond (4)
 - = condutividade de 4 eletrodos
 - = Oxigênio dissolvido (ppm)
 - = Oxigênio dissolvido (exceto 58037221, somente modelos Thornton)
 - = Oxigênio dissolvido 58037221 (somente modelos Thornton)
 - = Ozônio Dissolvido (somente modelos Thornton)

Sensores ISM: pН

 O_2 hi $0_{2}(I)$

 $O_2(V)$ 03

O₂ hi

pH/ORP	= pH ou ORP
pH/pNa	= pH e ORP (co

- m eletrodo pH/pNa) = Oxigênio dissolvido (ppm)
- Cond (2) = sensor Cond 2-e (somente modelos Thornton)
- Cond (4) = sensor Cond 4-e
 - = O transmissor reconhece automaticamente o sensor conectado

Auto: Se você selecionar um parâmetro específico em vez de automático, o transmissor somente aceitará o tipo de parâmetro selecionado.

As quatro linhas da tela podem agora ser configuradas com o canal de sensor «A» ou «B» para cada linha da tela, além de medições e multiplicadores de unidades. Pressionar a tecla [ENTER] irá exibir a seleção das linhas c e d.

Pressionar a tecla [ENTER] novamente fará aparecer a caixa de diálogo Salvar alterações. Selecionar Não irá descartar os valores inseridos e retornar à tela de medição; selecionar Sim salvará as alterações feitas.

8.2.2 Medições derivadas (somente modelos Thornton)

Há três medições derivadas disponíveis para configuração com dois sensores de condutividade: %Rej (% de Rejeição), pH Cal (pH calculado) e CO₂ Cal (CO₂ calculado). Para configurar aualquer das medicões derivadas, configure primeiros as duas medicões de conectividade primárias, que serão usadas para calcular a medição derivada. Defina as medições primárias como se fossem leituras independentes. Em seguida, a medição derivada pode ser definida.

NOTA: É importante usar as mesmas unidades em ambas as medições.

8.2.2.1 Medição da % de rejeição

Para aplicações de osmose reversa (RO), a porcentagem de rejeição é medida com condutividade para determinar a relação de impurezas removidas do produto ou saturar a água até o total de impurezas na água de alimentação de entrada. A fórmula para obter a Porcentagem de rejeição é:

[1 – (Produto/Alimentação)] X 100 = % de rejeição

Em que Produto e Alimentação são os valores de condutividade medidos pelos respectivos sensores.

A Figura 4.1 mostra o diagrama de uma instalação de RO com sensores instalados para Porcentagem de rejeição.

Figura 4.1: % de rejeição

NOTA: O sensor de monitoramento do produto deve estar no canal que medirá a porcentagem de rejeição. Se o sensor de condutividade do produto estiver instalado no canal A, a porcentagem de rejeição deverá ser medida no canal A.

8.2.2.2 pH calculado (somente aplicações em usinas de geração de energia)

O pH calculado pode ser obtido com bastante precisão a partir de valores de condutividade de cátions e específicos nas amostras de usina de geração de energia quando o pH estiver entre 7,5 e 10,5 devido a amônia ou aminas e quando a condutividade específica for significativamente maior do que a condutividade cátion. Esse cálculo não é adequado onde houver níveis significativos de fosfatos presentes. O M300 utiliza esse algoritmo quando pH CAL estiver selecionado como uma medição.

O pH calculado deve ser configurado no mesmo canal que a condutividade específica. Por exemplo, configure a medição «a» no canal A para ser condutividade específica, a medição «b» no canal B para ser condutividade cátions, a medição «c» no canal A para ser pH calculado e a medição «d» no canal A para ser temperatura. Configure o modo de compensação de temperatura para «Amônia» na medição «a» e para «Cátion» na medição «b».

NOTA: Se a operação ficar fora das condições recomendadas, é necessária medição de pH com eletrodo de vidro para obter um valor preciso. Por outro lado, quando as condições da amostra estiverem dentro dos intervalos indicados acima, o pH calculado fornece um padrão preciso para calibração trim de um ponto da medição de pH no eletrodo.

8.2.2.3 CO₂ calculado (somente aplicações em usinas de geração de energia)

O dióxido de carbono pode ser calculado a partir de medições da condutividade de cátions e condutividade de cátions desgaseificados nas amostras de usinas de geração de energia usando tabelas da norma ASTM D4519. O M300 tem essas tabelas armazenadas na memória, as quais utiliza quando unidades de CO₂ CAL são selecionadas.

A medição de CO₂ calculado pode ser configurada para o mesmo canal que a condutividade de cátions. Por exemplo, configure a medição «a» no canal A para ser condutividade de cátions, a medição «b» no canal B para ser condutividade de cátions desgaseificada, a medição «c» no canal A para ser CO₂ calculado e a medição «d» no canal B para ser temperatura.

Configure o modo de compensação de temperatura para «Cátion» nas duas medições de condutividade.

8.2.3 Fonte de temperatura (não na versão ISM)

(CAMINHO: Menu/Configurar/Medição/Fonte de temperatura).

Digite o modo de Configuração como descrito na seção 8.1 «Digitar Modo de Configuração» e selecione o menu de Medição (veja a seção 8.2 «Configuração/Medição»).

Vá para o menu Fonte de temperatura usando a tecla ▲ ou ▼. Pressione a tecla [ENTER] para selecionar esse Menu. As seguintes opções podem ser escolhidas: «Fixo»: permite que um valor de temperatura específico seja inserido.

NOTA: A seleção depende do tipo de transmissor. Para ter uma visão geral detalhada, consulte as especificações na seção 16 «Especificação»..

«Use este Ch Pt1000»	: A entrada de temperatura será tomada do sensor anexado.
«Use este Ch Pt100»:	A entrada de temperatura será tomada do sensor anexado.
«Use este NTC22K»:	a temperatura será tomada do sensor anexado.
«Fixo = 25°C»:	permite que um valor de temperatura específico seja inserido
«Use outro canal»:	a entrada de temperatura será tomada no sensor anexado ao outro ca-
	nal (somente na versão de canal duplo)

NOTA: Se a fonte de temperatura for definida como Fixa, a temperatura aplicada durante a calibração de um e/ou de dois pontos dos eletrodos de pH pode ser ajustada dentro do procedimento de calibração correspondente. Após a calibração a temperatura fixa definida neste menu de configuração é válida novamente.

Pressionar a tecla [ENTER] fará aparecer o diálogo Salvar alterações

Selecionar Não irá descartar os valores inseridos e retornar à tela de medição; selecionar Sim salvará as alterações feitas.

8.2.4 Configurações Relacionadas ao Parâmetro

(CAMINHO: Menu/Configurar/Medição/Comp/pH/O2)

Parâmetros tradicionais de medição e calibração podem ser definidos para cada parâmetro; condutividade, pH e O2.

NOTA: Use o menu de pH para definições dos sensores de pH/pNa.

Digite o modo de Configuração como descrito na seção 8.1 «Digitar Modo de Configuração» e selecione o menu de Medição (veja a seção 8.2 «Configuração/Medição»).

Para dispositivos de canal duplo: O menu Comp/pH/O2 pode ser selecionado usando a tecla ▲ ou ▼. Então use a tecla ► para ir até o próximo campo de entrada e selecionar o parâmetro usando a tecla ▲ ou ▼. As opções são Resistividade (para medição de condutividade), pH e O2. Pressione [ENTER]

Para dispositivos de canal único: O menu pode ser selecionado usando a tecla ▲ ou ▼. Dependendo do sensor ISM conectado resp. o transmissor M300 usado, o seguinte termo é mostrado na tela: Resistividade (para medição de condutividade), pH ou O2. Pressione [ENTER]

Para obter mais detalhes, consulte as explicações a seguir dependendo dos diferentes parâmetros.

8.2.4.1 Compensação de temperatura de condutividade/ resistividade

NOTA: A seleção de Compensação de temperatura completa está disponível somente nos transmissores modelo Thornton. Todos os outros modelos oferecem a compensação Padrão, Linear 25°C ou Linear 20°C.

Selecione Resistividade e pressione [ENTER].

A	2.50	mS∕cm
A	18 4	or

Measurement Setup Comp/pH/02 Resistivity †

A	2.50	mS∕cm
A	18.4	°C

a Compensation=Standard b Compensation=Standard† O modo de compensação de temperatura para qualquer das quatro linhas de medição pode ser selecionado. A compensação de temperatura deve ser correspondente às características da aplicação. As opções são «Nenhum»*, «Padrão», «Light 84»*, «Padrão 75°C»*, «Linear 25°C», «Glicol 0,5»*, «Glicol 1)»*, «Cátion»*, «Álcool»*, »Amônia»* e «Linear 20°C».

A compensação padrão inclui compensação de efeitos de alta pureza não linear, além de impurezas convencionais de sal neutro e conforma-se às normas ASTM D1125 e D5391.

* A compensação Padrão 75°C é o algoritmo de compensação Padrão referenciado para 75°C.
 Essa compensação pode ser preferível ao medir Água ultrapura a uma temperatura elevada.
 (A resistividade da água ultrapura compensada a 75 °C é 2,4818 Mohm-cm.

^a 2.5 ^{ns/cm} ^a 18.4 ∘c

a Compensation=Lin 25°C b Compensation=Standard† de 25 °C). Use somente se a amostra tiver um coeficiente de temperatura linear bem caracterizado. A configuração padrão de fábrica é 2,0%/°C.

A compensação Lin 25 °C ajusta a leitura por um fator expresso como uma «% por °C» (desvio

* A Compensação Glicol 0,5 corresponde às características de temperatura de 50% etileno glicol em água. As medições compensadas usando essa solução podem ficar acima de 18 Mohm-cm.

* A Compensação Glicol 1 corresponde às características de temperatura de 100% etileno glicol. As medições compensadas podem ir bem acima de 18 Mohm-cm.

* A Compensação de cátions é usada em aplicações no setor de energia medindo a amostra após um trocador de cátions. Ela leva em conta os efeitos da temperatura na dissociação de água pura na presença de ácidos.

* A compensação de álcool fornece as característica de temperatura de uma solução 75% de álcool isopropílico em água pura. As medições compensadas usando essa solução podem ir acima de 18 Mohm-cm.

* A compensação Light 84 corresponde aos resultados da pesquisa de água de alta pureza do Dr. T.S. Light publicados em 1984. Use somente se a sua instituição padronizou esse trabalho.

* A compensação de amônia é usada em aplicações da indústria de energia para condutividade específica medida em amostras usando amônia e/ou tratamento de água ETA (etanolamina). Ela leva em conta os efeitos da temperatura na dissociação de água pura na presença dessas bases.

A	2.5	mS∕cm
A	18.4	°C
a Co b Co	ompensation=L ompensation=S	in 20°C landard†
A	2.50	mS∕cm
A	18.4	°C
a:Co	omp= 02.0 %∕°(÷ ,

A compensação Lin 20 °C ajusta a leitura por um fator expresso como uma «% por °C» (desvio de 20 °C). Use somente se a solução tiver um coeficiente de temperatura linear bem caracterizado. A configuração padrão de fábrica é 2,0%/°C.

Se modo de compensação «Lin 25 °C» ou «Lin 20 °C» for selecionado, o fator de ajuste da leitura pode ser modificado após pressionar [ENTER] (Se estiver trabalhando na linha de medição a ou b, pressione [ENTER] duas vezes).

Pressione [ENTER] para exibir a caixa de diálogo Salvar alterações. Selecionar Não irá descartar os valores inseridos e retornar à tela de medição; selecionar Sim salvará as alterações feitas.

* Somente em modelos Thornton.

8.2.4.2 Parâmetros de pH/ORP

Selecione pH e pressione [ENTER].

Selecione o controle de desvio da calibração como Automático (os critérios de estabilização e de tempo devem ser atendidos) ou Manual (o usuário pode decidir quando o sinal está estável o suficiente para concluir a calibração) seguido pela tabela de buffer relevante para o reconhecimento de buffer automático. Se a taxa de desvio for inferior a 0,8 mV em um intervalo de 20 segundos, a leitura está estável e a calibração é feita usando a última leitura. Se o critério de desvio não for atendido dentro de 300 segundos, a calibração atinge o tempo limite e a mensagem «Calibração não realizada» é exibida. Pressione [ENTER].

Para o reconhecimento de buffer automático durante a calibração, selecione o conjunto de soluções de buffer que será usado: Mettler-9, Mettler-10, NIST Tech, NIST Std, HACH, CIBA, MERCK, WTW, JIS Z 8802 ou Nenhum. Consulte a Seção 20 «Tabelas de buffer» para obter os valores de buffer. Se o recurso de buffer automático não for usado ou se os buffers disponíveis forem diferentes dos indicados acima, selecione Nenhum. Pressione [ENTER].

 \bigcirc

A

Α

A

A

A

7.00

25.00

7.00

25.00

A:Drift Contron = Auto

B:Drift Control =Manual

7.00

25.00

A:pH Buffer= Mettler-9

B:pH Buffer= Mettler-10A

Measurement Setu Comp/pH/O2 pH ъH

°C

.

pН

°C

рH

°C

NOTA: Para eletrodos de pH de membrana dupla (pH/pNa) somente está disponível o buffer Na+ 3.9M (veja a seção 19.2.1 «Buffers Mettler-pH/pNa»).

STC é o coeficiente de temperatura da solução em unidades de pH/°C referenciado a 25°C (Padrão = 0,000 na maioria das aplicações). Para águas puras, uma configuração de -0,016 pH/°C deve ser usado. Para amostras de usinas de geração de energia de baixa condutividade próximas de pH 9, deve ser usada uma configuração de -0,033 pH/°C. Esses coeficientes negativas compensam a influencia negativa da temperatura sobre o pH dessas amostras. Pressione [ENTER].

IP é o valor do ponto isotérmico (Padrão = 7,000 na maioria das aplicações). Para requisitos de compensação específicos ou valor de buffer interno não padrão, esse valor pode ser alterado.

Pressione [ENTER].

В 7.00 рн В 25.00 °C	STC RefTemp define a temperatura à qual a compensação de temperatura da solução é referen- ciada. O valor exibido e o sinal de saída são referenciados a STC RefTemp. Selecionar «Não» significa que a compensação da temperatura da solução não é usada. A temperatura de refe- rência mais comum é 25 °C. Pressione [ENTER].
^в 7.00 ⊮ ^в 25.00 ∘с	Podem ser escolhidas as unidades do declive e ponto zero que serão mostradas na tela. A con- figuração padrão da unidade do declive é [%] e pode ser mudada para [pH/mV]. Para o ponto zero a configuração padrão da unidade é [pH] e pode ser mudada para [mV]. Use a tecla ► para ir até o campo de entrada e selecionar a unidade usando a tecla ▲ ou ▼.
cal info slope :[%] cal info offset:[PH] ↑	Pressionar [ENTER] novamente irá exibir a caixa de diálogo Salvar as alterações. Selecionar Não irá descartar os valores inseridos e retornar à tela de medição; selecionar Sim salvará as alterações feitas.
	8.2.4.3 Parâmetros de Oxigênio Dissolvido
 P 21.7 %sat P 25.0 ∘c Measurement Seture 	Selecione O ₂ e pressione [ENTER]
^A 21.7 _{*sat} ^A 25.0 ∘c	Insira a Pressão de Calibração. O valor padrão de CalPres é 759,8 e a unidade padrão é mmHg. Pressione [ENTER]
A 21.7 %sat A 25.0 ∘c B: CalPres = 759.8 mmH9 ★	Entre com a Pressão do Processo. As unidades em ProcPres e CalPres não precisam ser as mesmas. Pressione [ENTER]
BiProcPres= 755:8 MinHe ↑ A 21.7 %sat A 25.0 °C BiProcCalPres=CalPres ↑	Para o algoritmo de calibração do processo, a pressão aplicada (ProcCalPres) deverá ser definida. Tanto o valor da pressão do processo (ProcPres) como a pressão de calibração (CalPres) pode ser utilizada. A respectiva pressão aplicável durante o processo de calibração deverá ser utilizada para o algoritmo; e pressione [ENTER].
^в 21.7 _{%аіг} ^в 25.0 «с	Selecione o Controle de Desvio requerido do sinal de medição durante o procedimento de cali- bração. Selecione Manual se o usuário puder decidir quando o sinal está estável o suficiente para concluir a calibração. Selecione Auto e um controle automático de estabilidade do sinal do sensor será feito durante a calibração através do transmissor. Pressione [ENTER]
Hiprift control =Huto ★ A 21.7 %sat A 25.0 °c B:Salinity = 0.000 g/Kg	Na próxima etapa a salinidade da solução medida pode ser modificada. Pressione [ENTER]
B:Salinity = 0.000 g⁄Kg↑	

A

A:RelativeHumid = 100% B:RelativeHumid = 100% *

Além disso a umidade relativa do gás de calibração também pode ser digitada. Os valores permitidos da umidade relativa estão no intervalo de 0% a 100%.

Pressionar a tecla [ENTER] novamente fará aparecer a caixa de diálogo Salvar alterações. Selecionar Não irá descartar os valores inseridos e retornar à tela de medição; selecionar Sim salvará as alterações feitas.

8.2.5 Definir média

(CAMINHO: Menu/Configurar/Medicão/Definir média).

Pressione a tecla [ENTER] para selecionar esse Menu. O método de média (filtro de ruído) de cada linha de medição pode agora ser selecionado. As opções são Especial (Padrão), Nenhum, Baixo, Médio e Alto:

		Nen
▲ 0.28	µS/cm	Baix
A 21 97		Méc
24.31	°C	Alto
a Average = None		Fen
o Average = High	A	Loh

ent Setup

Set Averaging

uS/cm

00

A	0.2	28	µS/can
A	24.	97	°C
Save	Change	Yes &	Exit
Pres	s ENTER	to Ex:	it 🔺

enhum = nenhuma média ou filtragem = equivalente a uma média móvel de 3 pontos aixo lédio

= equivalente a uma média móvel de 6 pontos

= equivalente a uma média móvel de 10 pontos

special = a média depende de mudança de sinal (normalmente média Alta, mas média Baixa para grandes alterações no sinal de entrada)

Pressionar a tecla [ENTER] novamente fará aparecer a caixa de diálogo Salvar alterações. Selecionar Não irá descartar os valores inseridos e retornar à tela de medição; selecionar Sim salvará as alterações feitas.

8.3 Saídas Analógicas

(CAMINHO: Menu/Configurar/Saídas analógicas)

Entre no modo de configuração como descrito na Seção 8.1 «Entrar no Modo de Configuração» e navegue até o menu «Saídas analógicas» usando a tecla ▲ ou ▼.

Pressione a tecla [ENTER] para selecionar esse menu, que permite configurar as duas (4 na versão de canal duplo) Saídas analógicas.

Após selecionar as saídas analógicas, use os botões ◀ e ► para navegar entre os parâmetros configuráveis. Ao selecionar um parâmetro, a sua configuração pode ser selecionada na sequinte tabela:

Quando um valor de alarme for selecionado, a saída analógica irá para esse valor se ocorrer alguma condição de alarme.

Parâmetro Valores selecionáveis Aout: 1, 2, 3* ou 4* (padrão é 1) a, b, c, d ou em branco (nenhum) (o padrão é em branco) Medição: Valor do alarme: 3,6 mA, 22,0 mA ou Desligado (o padrão é Desligado)

* Somente na versão de canal duplo.

A

O tipo Aout pode ser Normal, Bi-linear, Intervalo automático ou Logarítmico. O intervalo pode ser 4–20mA ou 0–20mA. Normal fornece escalonamento linear entre os limites de escalonamento mínimo e máximo e é a configuração padrão. Bi-linear também pedirá um valor de escalonamento do ponto médio do sinal e permite dois segmentos lineares diferentes entre os limites de escalonamento mínimo e máximo.

Insira o valor mínimo e máximo de Aout.

0.28

uS/cn

Aout1 max1=20.00 MΩ-cm ▲

O valor do modo Hold pode ser configurado para conter o Último valor ou pode ser definido para um valor Fixo.

Se Intervalo automático foi selecionado, Aout max1 pode ser configurado. Aout max1 é o valor

máximo do primeiro intervalo em Intervalo automático. O valor máximo do segundo intervalo

em Intervalo automático foi definido no menu anterior. Se Intervalo logarítmico foi selecionado,

também será solicitado o número de décadas como «Nº Aout1 de Décadas =2».

Pressionar a tecla [ENTER] novamente fará aparecer a caixa de diálogo Salvar alterações. Selecionar Não irá descartar os valores inseridos e retornar à tela de medição; selecionar Sim salvará as alterações feitas.

8.4 Pontos de Definição

(CAMINHO: Menu/Configurar/Pontos de Definição)

A 0.28 µS/cm A 25.00 °c Configure Set Points A

Acesse o modo de configuração como descrito na Seção 8.1 «Entrar no Modo de Configuração.»

Pressione a tecla [ENTER] para selecionar esse Menu.

4 (6 para a versão de canal duplo) pontos de ajuste podem ser configurados em qualquer das medições (a até d). Os tipos de ponto de ajuste de possíveis são Desligado, Alto, Baixo, Externo e Entre. Os modelos Thornton também incluem tipos, %USP, %EP PW e %EP WFI para configuração com sensores de condutividade.

Um ponto de ajuste «Externo» causará uma condição de alarme toda vez que a medição for acima do limite alto ou abaixo do limite baixo. Um ponto de ajuste «Entre» causará a ocorrência de uma condição de alarme toda vez que a medição estiver entre os limites alto e baixo.

Os pontos de ajuste USP e EP nos modelos Thornton fornece um alarme alto usado para monitoramento de água farmacêutica com medidas de condutividade compensadas sem temperatura. A seção <645> da USP (United States Pharmacopoeia) e European Pharmacopoeia exigem que a condutividade compensada sem temperatura de águas farmacêuticas deve estar abaixo de um limite das tabelas baseadas na temperatura da amostra. Em outras palavras, os requisitos farmacêuticos de temperatura compensam o limite em vez de a medição.

O Mettler Toledo Thornton M300 tem essas tabelas de limites farmacêuticos na memória e determina automaticamente o limite de condutividade com base na temperatura medida. Os pontos de ajuste USP e EPWFI (água para injeção) usam a Tabela 8.1. O limite é o valor de condutividade correspondente à etapa de temperatura de 5°C imediatamente abaixo ou igual ao valor da temperatura medida. Os limites EP Água *Altamente* Purificada são idênticos aos limites EP WFI.

Os pontos de ajuste EP PW (água purificada) usam a Tabela 8.2. O limite nesse caso é o valor de condutividade interpolado para a temperatura medida. O M300 cuida disso automaticamente.

O valor do ponto de ajuste farmacêutico inserido no M300 é a margem de segurança percentual *abaixo* dos limites para ativar o ponto de ajuste. Por exemplo, o limite de condutividade da tabela USP a 15°C é 1,0 μ S/cm. Se o valor do ponto de ajuste for definido para 40%, o ponto de ajuste ativará toda vez que a condutividade subir acima de 0,6 μ S/cm a 15°C. Tabela 8.1: USP Seção <645> Estágio 1, EP WFI (água para injeção) e Limites de condutividade de água altamente purificada EP como função da temperatura.

Temperatura (°C)	Limite de condutividade (µS/cm)
0	0.6
5	0.8
10	0.9
15	1.0
20	1.1
25	1.3
30	1.4
35	1.5
40	1.7
45	1.8
50	1.9
55	2.1
60	2.2
65	2.4
70	2.5
75	2.7
80	2.7
85	2.7
90	2.7
95	2.9
100	3.1

Tabela 8,2: EP PW	(água purificada)	Limites de	condutividade	como funç	ção da tem	peratura
-------------------	-------------------	------------	---------------	-----------	------------	----------

Temperatura (°C)	Limite de condutividade (µS/cm)
0	2.4
10	3.6
20	4.3
25	5.1
30	5.4
40	6.5
50	7.1
60	8.1
70	9.1
75	9.7
80	9.7
90	9.7
100	10.2

R3 State = Normal

Estado

Os contatos do relé estão no estado normal até o ponto de ajuste associado ser excedido, em seguida o relé é ativado e os estados de contato mudam.

Selecione «Invertido» para inverter o estado operacional normal do relé (ou seja, os contatos normalmente abertos estão em estado fechado e os contatos normalmente fechados estão em estado aberto até o ponto de ajuste ser excedido). A operação de relé «Invertido» está funcional quando a força for aplicada ao transmissor M300.

Pressionar a tecla [ENTER] novamente fará aparecer a caixa de diálogo Salvar alterações. Selecionar Não irá descartar os valores inseridos e retornar à tela de medição; selecionar Sim salvará as alterações feitas.

8.5 Alarme/Limpar

(CAMINHO: Menu/Configurar/Alarme/Limpar)

Acesse o modo de configuração como descrito na Seção 8.1»Entrar no Modo de Configuração.»

Esse Menu permite a configuração da funcionalidade Alarme e Limpar.

8.5.1 Alarme

Para selecionar «Configurar alarme», pressione a tecla 🔺 ou 🔻 para que «Alarme» fique piscando.

Usando os botões < e Þ, navegue até «Usar relé nº». Usando as teclas 🛦 ou 🛡, selecione um relé para ser usado para o Alarme e pressione [ENTER].

Um dos seguintes eventos pode ser avisado pelo alarme:

- 1. Falta de força
- 2. Falha de software
- 3. Diagnóstico Rg resistência da membrana de vidro de pH (somente para sensores de pH; os diagnósticos de pH/pNa Rg detectam vidros de membrana tanto de pH quanto de pNa)
- 4. Diagnóstico Rr resistência de referência de pH (somente para sensores de pH; exceto pH/pNa)
- 5. Célula Cond aberta (somente para sensores cond)
- 6. Célula Cond em curto (somente para sensores cond)
- 7. Canal A desconectado (somente para sensores ISM)
- 8. Canal B desconectado (somente para sensores ISM e versão de canal duplo)

Se algum desses critérios for definido para Sim e forem dadas as condições de um alarme, o símbolo pulsante $\mathbb A$ será mostrado na tela, uma mensagem de alarme será registrada (consulte também o capítulo 12.1 Mensagens; CAMINHO: Info/Mensagens) e o relé selecionado será ativado. Além disso, um alarme poderá ser indicado pela saída de corrente se esse parâmetro tiver sido definido (consulte o capítulo 8.3 «Saídas analógicas»; CAMINHO: Menu/Configurar/Saídas analógicas)

- 1. houver uma falha de força ou reinicialização
- 2. o watchdog do software executar uma reconfiguração
- 3. Ra estiver fora da tolerância por exemplo, eletrodo de medicão quebrado (somente pH; os diagnósticos de pH/pNa Rg detectam vidros de membrana tanto de pH quanto de pNa)
- 4. Rr estiver fora da tolerância por exemplo, eletrodo de referência revestido ou esgotado (somente pH)
- 5. Se o sensor de condutividade estiver no ar (por exemplo, em um tubo vazio)
- 6. Se o sensor de condutividade tiver um atalho
- 7. Se nenhum sensor estiver conectado no canal A (somente para sensores ISM)
- 8. Se nenhum sensor estiver conectado no canal B (somente para sensores ISM e versão de canal duplo)

Para 1 e 2 o indicador de alarme será desligado quando a mensagem de alarme for limpa. Ele reaparecerá se a forca estiver constantemente em reinicialização ou se o watchdog estiver repetidamente reconfigurando o sistema.

Somente para sensores de pH

Para 3 e 4 o indicador de alarme será desativado se a mensagem for limpa e o sensor for substituído ou reparado, de forma que os valores Rg e Rr estejam dentro da especificação. Se a mensagem Rg ou Rr for limpa e Rg ou Rr ainda estiver fora de tolerância, o alarme permanecerá ligado e a mensagem aparecerá novamente. O alarme de Rg e Rr pode ser desativado en-

0.28

25.00

Setup Alarm Use Relay # 2 µS/cm

°C

.

A

trando neste menu e definindo Diagnósticos de Rg e/ou Rr como Não. A mensagem pode então ser limpa e o indicador de alarme será desligado, embora Rg ou Rr esteja fora de tolerância.

Cada Relé de alarme pode ser configurado no estado Normal ou Invertido. Selecione «Invertido» para inverter o estado operacional normal do relé (ou seja, os contatos normalmente abertos estão em estado fechado e os contatos normalmente fechados estão em estado aberto até um alarme soar). A operação de relé «Invertido» está funcional quando a força for aplicada ao transmissor M300.

Além disso, pode ser definido um Atraso para a ativação. Insira o tempo de atraso em segundos. Um tempo de atraso necessita que o alarme soe continuamente durante o intervalo de tempo especificado antes de ativar o relé. Se o alarme desaparecer antes de o período de atraso terminar, o relé não será ativado.

Se falha de energia estiver ligada, somente o estado invertido será possível e não pode ser mudado.

Pressionar a tecla [ENTER] novamente fará aparecer a caixa de diálogo Salvar alterações. Selecionar Não irá descartar os valores inseridos, selecionar Sim tornará os valores inseridos os atuais.

Observe que existem alarmes adicionais, que estarão indicados na tela. Consulte no capítulo 14 «Solução de problemas» as diferentes listas de avisos e alarmes.

8.5.2 Limpeza

Configure o relé a ser usado para o ciclo de limpeza.

O valor padrão é Relé 1.

O Intervalo de Limpeza pode ser definido entre 0,000 e 999,9 horas. Configurar para 0 desativa o ciclo de limpeza. O tempo de limpeza pode ser de 0 a 9999 segundos e deve ser menor do que o Intervalo de Limpeza.

Selecione o estado de relé desejado: Normal ou Invertido.

Pressionar a tecla [ENTER] novamente fará aparecer a caixa de diálogo Salvar alterações. Selecionar Não irá descartar os valores inseridos e retornar à tela de medição; selecionar Sim salvará as alterações feitas.

8.6 Display

(CAMINHO: Menu/Configurar/Display)

Esse menu permite a configuração dos valores a serem exibidos e também a configuração da própria Display.

.

uS/cr

°C

.

Relay State = Normal

A

25.

Configure Display

0.28

25.00

0.28

25.00

Line 3 = c Line 4 = d

Line 2 = b

Display Setup Measurement

uS/cm

°C

.

uS/cm

°C

.

A

A

A

A

8.6.1 Medição

A tela tem quatro linhas. Linha 1 na parte superior e linha 4 na inferior.

Selecione os valores (Medição a, b, c ou d) a serem exibidos em cada linha da tela.

A seleção dos valores de a, b, c, d precisa ser feita em Configuração/Medição/Configuração de canal.

Selecione o modo «Tela de erros». Se estiver definido para «Ligado» quando um alarme ocorrer, será exibida a mensagem «Falha – Pressione Enter» na linha 4 guando ocorrer um alarme no modo de medição normal.

Pressionar a tecla [ENTER] novamente fará aparecer a caixa de diálogo Salvar alterações. Selecionar Não irá descartar os valores inseridos, selecionar Sim tornará os valores inseridos os atuais.

8.6.2 Resolução

Esse menu permite configurar a resolução de cada valor exibido.

As configurações possíveis são 1, 0, 1, 0, 01, 0, 001 ou Automático.

Pressionar a tecla [ENTER] fará aparecer o diálogo Salvar alterações

8.6.3 Luz de fundo

Esse menu permite configurar as opções de luz de fundo da tela.

As configurações possíveis são Ligado, Ligado 50% ou Desligado Automático 50%. Se Desliado Automático 50% for selecionado, a luz de fundo diminuirá para 50% após 4 minutos se não houver atividade no teclado. A luz de fundo voltará automaticamente se uma tecla for pressionada.

Pressionar a tecla [ENTER] fará aparecer a caixa de diálogo Salvar alterações.

.

Backlight On

0.28

25.00

0.01 b = 0.1c = 0.1 d = 0.1 uS/cm

°C

.

A

7.00 pH

25.00 °C

8.6.4 Nome

Esse menu permite a configuração de um nome alfanumérico que é exibido nos 9 primeiros caracteres das linhas 3 e 4 da tela. O padrão é nada (em branco).

Se um nome estiver inserido na linha 3 e/ou 4, uma medição ainda pode ser exibida na mesma linha.

Use as teclas ◀ e ► para navegar entre os dígitos que serão alterados. Usando as teclas ▲ e ▼ para alterar o caractere a ser exibido. Após inserir todos os dígitos dos dois canais da tela, pressione [ENTER] para exibir a caixa de diálogo Salvar alterações.

A tela resultante no modo de medição aparece nas linhas 3 e 4 à frente das medições.

8.7 Reter saídas analógicas?

(CAMINHO: Menu/Configurar/Retenção de saídas)

B METTLER

B TOLEDO

Acesse o modo de configuração como descrito na Seção 8.1 «Entrar no Modo de Configuração.»

A função **«Retenção de saídas»** aplica-se durante o processo de calibração. Se «Retenção de saídas» for definido para Sim, durante o processo de calibração a saída analógica, o relé de saída e a saída USB estarão no estado de retenção. O estado de retenção depende da configuração. Para obter as configurações de retenção possíveis, consulte a lista a seguir. As seguintes opções são possíveis:

Reter saídas? Sim/Não

A função **«DigitalIn»** aplica-se o tempo todo. Assim que o sinal estiver ativo na entrada digital, o transmissor vai para o estado de retenção e os valores da saída analógica, os relés de saída e a saída USB estarão no estado de retenção.

DigitalIn1/2* Estado = Desligado/Baixo/Alto

NOTA: DigitalIn1 é para reter o canal A DigitalIn2 é para reter o canal B

* Somente na versão de canal duplo.

Estados de retenção possíveis

zsiduos de reienção possíveis:						
Relés de saída:	Ligado/Desligado	(Configuração/Ponto de definição)				
Saída Analógica:	Último/Fixo	(Configuração/Saída analógica)				
JSB:	Último/Desligado	(Sistema/USB)				
Relé PID:	Último/Desligado	Configuração/Modo de PID)				
PID analógico:	Último/Desligado	Configuração/Modo de PID)				

9 Sistema

(CAMINHO: Menu/Sistema)

No modo Medição, pressione a tecla ◀. Pressione a tecla ▼ ou ▲ para navegar até «Sistema» – Menu e pressione [ENTER].

9.1 Definir idioma

(CAMINHO: Menu/Sistema/Definir idioma)

Esse Menu permite a configuração do idioma da tela.

As seguintes opções são possíveis:

inglês, francês, alemão, italiano, espanhol, russo, português e japonês.

Pressionar a tecla [ENTER] fará aparecer o diálogo Salvar alterações

9.2 USB

(CAMINHO: Menu/Sistema/USB)

Esse menu permite configurar a função de retenção da USB.

A Retenção da USB pode ser definida para Desligada ou Últimos valores. Um dispositivo host externo pode sondar o M300 à procura de dados. Se a Retenção da USB estiver definida para Desligada, valores atuais são retornados. Se a Retenção da USB estiver definida para Últimos valores, os valores presentes no momento em que a condição de retenção foi estabelecida são retornados.

Pressionar [ENTER] irá exibir a caixa de diálogo Salvar alterações.

A 0.28µS/cm A 25.00°C System USB .

Α

9.3 Senhas

(CAMINHO: Menu/Sistema/Senhas)

Esse menu permite configurar as senhas do Operador e do Administrador, além da configuração de uma lista de menus permitidos para o Operador. O Administrador tem direitos de acessar todos os Menus. Todas as senhas padrão dos novos transmissores são «00000».

O menu Senhas é protegido: Insira a senha do administrador para acessar o menu.

9.3.1 Troca de senhas

Consulte a Seção 9.3 «Senhas» para saber como acessar o menu Senhas. Selecione Mudar o administrador ou Mudar o operador e defina a nova Senha.

Pressione a tecla [ENTER] e confirme a nova senha. Pressione [ENTER] novamente para chamar a caixa de diálogo Salvar alterações.

9.3.2 Configurando o acesso do operador aos menus

Consulte a Seção 9.3 «Senhas» para saber como acessar o menu Senhas. Selecione Configurar operador para configurar a lista de acesso do operador. É possível conceder/negar direitos aos seguintes menus: Tecla de Cal, Configuração rápida, Configuração, Sistema, Configuração do PID e Serviço.

Escolha Sim ou Não para conceder/negar acesso aos Menus acima e pressione [ENTER] para avançar para os próximos itens. Pressionar a tecla [ENTER] após configurar todos os menus fará aparecer a caixa de diálogo Salvar alterações. Selecionar Não irá descartar os valores inseridos, selecionar Sim tornará os valores inseridos os atuais.

9.4 Configurar/limpar bloqueio

(CAMINHO: Menu/Sistema/Definir/limpar bloqueio)

Esse menu ativa/desativa a funcionalidade Bloqueio do transmissor. Será solicitada uma senha ao usuário antes de ser permitido o acesso a qualquer menu se a funcionalidade Bloqueio estiver ativada.

.

uS/cm

°C

µS/cm

°C

0.28

Cal Key Yes Quick Setup Yes

A

Re-enter password New Password = 00000

A

O menu Bloqueio é protegido: Insira a senha do administrador e selecione SIM para ativar ou NÃO para desativar a funcionalidade Bloqueio. Pressionar a tecla [ENTER] após a seleção fará aparecer a caixa de diálogo Salvar alterações. Selecionar Não irá descartar o valor inserido, selecionar Sim tornará o valor inserido o atual.

9.5 Reconfigurar

(CAMINHO: Menu/Sistema/Reconfigurar)

Esse menu permite acessar as seguintes opções: Reconfigurar sistema, Reconfigurar Cal do Medidor*, Reconfigurar Dados de Cal**.

- * Não na versão ISM.
- ** Somente para sensores de versão ISM de Cond 2-e.

9.5.1 Reconfigurar Sistema

Esse menu permite reconfigurar o medidor para as configurações padrão de fábrica (Pontos de ajuste desligados, saídas analógicas desligadas etc.). A calibração do medidor e a calibração da saída analógica não são afetadas.

Pressionar a tecla [ENTER] após a seleção fará aparecer uma tela de confirmação. Selecionar Não retornará o usuário ao modo Medição sem qualquer alteração. Selecionar Sim fará a reconfiguração do medidor.

9.5.2 Reconfigurar calibração do medidor (não na versão ISM)

Esse menu permite reconfigurar os fatores de calibração do medidor para os últimos valores de calibração de fábrica.

Pressionar a tecla [ENTER] após a seleção fará aparecer uma tela de confirmação. Selecionar Não retornará o usuário ao modo Medição sem qualquer alteração. Selecionar Sim fará a reconfiguração dos fatores de calibração do medidor.

Are you sure? Yes

0.28

A

9.5.3 Reconfigurar Calibração Analógica

Esse menu permite reconfigurar os fatores de calibração da Saída analógica para os últimos valores de calibração de fábrica.

Pressionar a tecla [ENTER] após a seleção fará aparecer uma tela de confirmação. Selecionar Não retornará o usuário ao modo Medição sem qualquer alteração. Selecionar Sim irá reconfigurar a calibração da Saída analógica.

9.5.4 Reconfigurar Dados de Calibração do Sensor para as Configurações de Fábrica

Se um sensor Cond 2-e baseado na tecnologia ISM estiver conectado ao transmissor, este menu estará disponível. O menu permite reconfigurar os dados de calibração (M resp. A) dos sensores para as configurações de fábrica.

Pressionar a tecla [ENTER] após a seleção fará aparecer uma tela de confirmação. Selecionar Não retornará o usuário ao modo Medição sem qualquer alteração. Selecionar Sim reconfigura os dados de calibração do sensor para as configurações de fábrica.

NOTA: Para assegurar melhores resultados de medição, uma nova calibração do sensor é recomendada depois de uma reconfiguração dos dados de calibração para as configurações de fábrica. Dependendo da aplicação, a calibração pode ser executada temporariamente como uma calibração de processo, porém o recomendado é fazer uma calibração de um ponto (veja o capítulo 7.2 «Calibração de Condutividade/Resistividade»).

9.5.5 Reconfigurar Dados de Calibração do Sensor Eletrônico para as Configurações de Fábrica

Se um sensor Cond 2-e baseado na tecnologia ISM estiver conectado ao transmissor, este menu estará disponível. O menu permite reconfigurar os dados de calibração da avaliação eletrônica do sensor para as configurações de fábrica.

O procedimento para esta função está descrito no manual do sensor.
10 Configuração de PID

(CAMINHO: Menu/Configuração do PID)

O controle do PID é uma ação de controle proporcional, integral e derivativa que pode permitir a regulagem sem dificuldades de um processo. Antes de configurar o transmissor, as características de processo a seguir devem ser identificadas.

Identifique a direção de controle do processo

- Condutividade:

Diluição – atuação direta onde aumentar a medição produz aumento de saída de controle, como controlar a alimentação de água de diluição de baixa condutividade para enxaguar tanques, torres de resfriamento ou caldeiras

Concentração – atuação inversa onde aumentar a medição produz diminuição da saída de controle, como controlar a alimentação química para alcançar uma concentração desejada.

- Oxigênio dissolvido:

Desaeração – atuação direta onde aumentar a concentração de DO produz maior saída de controle, como controlar a alimentação de um agente redutor para remover oxigênio da água de alimentação da caldeira

Aeração – a atuação inversa onde aumentar a concentração de DO produz menor saída de controle, como controlar a velocidade de um soprador aerador para manter uma concentração desejada de DO na fermentação ou no tratamento de águas servidas.

– pH/ORP:

Somente alimentação ácida – atuação direta onde o aumento do pH produz maior saída de controle, também para alimentação do reagente redutor do ORP Somente alimentação básica – atuação inversa onde o aumento do pH produz menor saída de controle, também para alimentação do reagente oxidante do ORP Alimentação ácida e básica – atuação direta e inversa

- Ozônio:

Destruição de ozônio – atuação direta onde a maior concentração de ozônio produz maior saída de controle, como aumentar a intensidade da lâmpada UV Ozonização – atuação inversa onde a maior concentração de ozônio produz menor saída de controle para diminuir a saída de um ozonizador.

Identificar o tipo de saída de controle com base no dispositivo de controle a ser usado:

Freqüência de pulsos – usado com bomba de medição da entrada de pulsos

Comprimento do pulso - usado com válvula solenóide

Analógico – usado com dispositivo de entrada de corrente como unidade de acionamento elétrico, bomba de medição de entrada analógica ou conversor de corrente para pneumático (I/P) para válvula de controle pneumático

As definições de controle padrão fornecem controle linear, que é apropriado para condutividade, oxigênio dissolvido e ozônio. Portanto, ao configurar o PID para esses parâmetros (ou simples controle do pH) ignore as definições da zona neutra e pontos de canto na seção Ajustando o parâmetro na seção a seguir. As definições de controle não linear são usadas para situações de controle de pH/ORP mais difíceis.

Se desejado, identifique a não linearidade do processo de pH/ORP. Um melhor controle pode ser obtido se a não linearidade estiver acomodada com uma não linearidade oposta no controlador. Uma curva de titulação (gráfico de pH ou ORP vs. volume de reagente) feita em uma amostra de processo fornece as melhores informações. Geralmente há sensibilidade ou ganho de processo muito alto perto do ponto de ajuste e ganho menor mais longe do ponto de ajuste. Para contrabalançar isso, o instrumento permite controle não linear ajustável com definições de uma zona neutra em torno do ponto de ajuste, pontos de inflexão mais distanciados e limites proporcionais nas extremidades de controle como mostrado na figura a seguir. Determine as definições apropriadas para cada um desses parâmetros de controle com base na forma da curva de titulação do processo de pH.

10.1 Digite a Configuração de PID

(CAMINHO: Menu/Configuração do PID)

No modo Medição, pressione a tecla ◀. Pressione a tecla ▲ ou ▼ para navegar até o menu Configuração do PID e pressione [ENTER].

10.2 PID Automático/Manual

(CAMINHO: Menu/Configuração do PID/PID A/M)

A 0.28 μS/cm A 25.00 °c PID Setup PID λ/M Manual Δ Esse menu permite a seleção da operação Automática ou Manual. Selecionar operação Automática ou Manual. Pressionar a tecla [ENTER] fará aparecer o diálogo Salvar alterações

10.3 Modo

(CAMINHO: MENU/Configuração do PID/Modo)

Esse menu contém a seleção dos modos de controle usando relés ou saídas analógicas. Pressione [ENTER].

10.3.1 Modo de PID

Esse menu atribui relés ou saída analógica para a ação de controle do PID, além de detalhes da sua operação. Com base no dispositivo de controle que estiver sendo usado, selecione um dos três parágrafos a seguir para usar com válvula solenóide, bomba de medição da entrada de pulsos ou controle analógico.

Comprimento do pulso – Se estiver usando uma válvula solenóide, selecione «Relés» e «PL», Comprimento do pulso. Escolha a posição do primeiro relé como nº 3 (recomendado) e/ou a posição do segundo relé como nº 4 (recomendado) e o Comprimento do pulso (PL) de acordo com a tabela a seguir. Um comprimento do pulso mais longo reduzirá o desgaste na válvula solenóide. A % de tempo «ativo» no ciclo é proporcional à saída de controle.

NOTA: Todos os relés de nº 1 a nº 6 podem ser usados para a função de controle.

	1⁵ Posição do relé (nº 3)	2 nd Posição do relé (nº 4)	Comprimento do pulso (PL)
Condutividade	Controlando a alimentação do reagente de concentração	Controlando a água de diluição	Curto (PL) fornece alimentação mais uniforme. Ponto inicial sugerido = 30 segundos
pH/ORP	Alimentando base	Alimentando ácido	Ciclo de adição de reagente: O PL curto permite uma adição mais uniforme do reagente. Ponto inicial sugerido = 10 segundos
Oxigênio dissolvido	Ação de controle inversa	Ação de controle de atuação direta	Tempo do ciclo de alimentação: curto (PL) fornece alimentação mais uniforme. Ponto inicial sugerido = 30 segundos
Ozônio dissolvido	não recomendado	não recomendado	

Freqüência de pulsos – Se estiver usando uma bomba de medição de entrada de pulsos, selecione «Relés» e «PF» (Freqüência de pulsos). Escolha a posição do primeiro relé como nº 3 e/ ou a posição do segundo relé como nº 4 de acordo com a tabela a seguir. Defina a freqüência de pulsos para a freqüência máxima permitida para a bomba específica que estiver sendo usada, normalmente 60 a 100 pulsos/minuto. A ação de controle produzirá essa freqüência na saída de 100%.

NOTA: Todos os relés de nº 1 a nº 6 podem ser usados para a função de controle.

CUIDADO: Definir a freqüência de pulsos muito alta pode causar superaquecimento da bomba.

	1 st Posição do relé = nº 3	Posição do 2º relé = nº 4	Feqüência de pulsos (PF)
Condutividade	Controlando a alimentação química de concentração	Controlando a água de diluição	Máx. permitido para a bomba usada (normalmente 60–100 pulsos/minuto)
pH/ORP	Alimentando base	Alimentando ácido	Máx. permitido para a bomba usada (normalmente 60–100 pulsos/minuto)
Oxigênio dissolvido	Ação de controle inversa	Ação de controle de atuação direta	Máx. permitido para a bomba usada (normalmente 60–100 pulsos/minuto)
Ozônio dissolvido	não recomendado	não recomendado	

Analógico – Se estiver usando controle Analógico, troque «Relés» por «Analogout» usando as teclas de seta para cima/para baixo. Escolha a posição do primeiro Analogout como nº1 e a posição do segundo Analogout como nº 2 de acordo com a tabela a seguir. Selecione o intervalo de corrente de saída analógica exigida pelo dispositivo de controle, 4–20 ou 0–20 mA. Pressione [ENTER].

	1 st Posição Analogout = nº 1	Posição do 2° Analogout = nº 2
Condutividade	Controlando a alimentação química de concentração	Controlando a água de diluição
pH/ORP	Alimentando base	Alimentando ácido
Oxigênio dissolvido	Ação de controle inversa	Ação de controle de atuação direta
Ozônio dissolvido	Controlando a ozonização	Controlando a destruição do ozônio

10.4 Parâmetros de ajuste

(CAMINHO: Menu/Configuração do PID/Parâmetros de ajuste)

Esse menu atribui controle a uma medição e define o ponto de ajuste, os parâmetros de ajuste e as funções não lineares do controlador por meio de uma série de telas.

© 01/2016 Mettler-Toledo GmbH, CH-8606 Greifensee, Suíça Impresso na Suíça

0.28

25.00

0.28

25.00

0.28

Man Ctrl Out 0.0%

.00

7.00 pH

PID Display Yes

11S/cm

°c

.

uS/cm

°C

۸

uS/cm

°c

A

A

A

A

A

A

в

PID Setup PID Display Setup **10.4.4 Pontos de inflexão** Insira os pontos de inflexão superior e inferior em condur

Insira os pontos de inflexão superior e inferior em condutividade, pH, oxigênio dissolvido ou unidades de ozônio dissolvido e os valores de saída respectivos de -1 a +1, mostrados na figura como -100 a +100%. Pressione [ENTER].

Insira os limites proporcionais inferior e superior - o intervalo no qual é necessário ação de

controle. Certifique-se de incluir o multiplicador de unidades µ ou m para condutividade.

10.5 Tela do PID

(CAMINHO: Menu/Configuração do PID/Configuração da tela do PID)

Essa tela permite exibir o status de controle do PID no modo de medição normal.

Quando Tela do PID for selecionado, o status (Man ou Automático) e a saída de controle (%) serão exibidos na linha inferior. Se estiver controlando o pH, o reagente também será exibido. Além disso, para a tela ser ativada, uma medição deve ser atribuída em Ajustar parâmetros e um relé ou uma saída analógica deve ser atribuída em Modo.

Em Manual, a saída de controle pode ser ajustada com as teclas de seta para cima e para baixo. (A função de tecla «Info» não está disponível em Manual.)

10.4.1 Atribuição e ajuste do PID

Atribua a medição a, b, c ou d a ser controlada após «PID on». Defina o Ganho (sem unidade), Integral ou Tempo de reconfiguração Tr (minutos) e Taxa ou Tempo derivativo Td (minutos) necessários para o controle. Pressione [ENTER]. Ganho, Reconfigurar e Taxa são ajustados mais tarde por tentativa e erro com base na resposta do processo. Sempre comece com Td em zero.

10.4.2 Ponto de ajuste e Zona neutra

Limites proporcionais

Insira o ponto de ajuste e a zona neutra desejados em torno do ponto de ajuste, onde nenhuma ação de controle proporcional ocorrerá. Certifique-se de incluir o multiplicador de unidades µ ou m para condutividade. Pressione [ENTER].

10.4.3

Pressione [ENTER].

A

MENU Service

A

A

Service

Diagnostics

0.28

25.00

0.28

uS/cm

°C

.

uS/cm

°C

.

11 Manutenção

(CAMINHO: Menu/Serviço)

11.1 Entrar no Menu de Manutenção

No modo Medição, pressione a tecla ◀. Pressione a tecla ▲ ou ▼ para navegar até o menu Serviço e pressione [ENTER]. As opções de configuração de sistema disponíveis estão detalhadas a seguir.

11.2 Diagnóstico

(CAMINHO: Menu/Serviço/Diagnóstico)

Entre no Menu de Manutenção como descrito na seção 11.1 «Entrar no Menu de Manutenção» e pressione [ENTER].

Este menu é uma ferramenta valiosa para a resolução de problemas e fornece funcionalidade de diagnóstico para os seguintes itens: Modelo/Revisão de software, Entrada digital, Display, Teclado, Memória, Definir relés, Ler relés, Definir saídas analógicas, Ler saídas analógicas.

11.2.1 Revisão de modelo/software

Informação essencial para toda chamada de Serviço é o modelo e o número da revisão de software. Esse menu mostra o número da peça, o modelo e o número de série do transmissor. Utilizando a tecla é possível navegar para adiante nesse submenu e obter informações adicionais, como a versão atual do software implementado no transmissor (Master V_XXXX e Comm V_XXXX); e – se um sensor ISM estiver conectado - a versão do firmware do sensor (Sensor FW V_XXX) e do hardware do sensor (Sensor HW XXXX).

Pressione [ENTER] para sair dessa tela.

A

A

11.2.2 Entrada digital

O menu Entrada digital mostra o estado das entradas digitais. Pressione [ENTER] para sair dessa tela.

11.2.3 Display

0.28

25.00

0.28

25.00

Key press =(MENU) Press ENTER to Continue

A

A

A

A

Diagnostics Keypad Todos os pixels da tela acenderão durante 15 segundos para permitir a solução de problemas da tela. Após 15 segundos o transmissor retornará ao modo de Medição normal ou pressione [ENTER] para sair mais cedo.

11.2.4 Teclado

Para diagnóstico do teclado, a tela indicará qual tecla está pressionada. Pressionar [ENTER] retornará o transmissor ao modo de Medição normal.

11.2.5 Memória

Se Memória for selecionado, o transmissor executará um teste de memória RAM e ROM. Os padrões de testes serão gravados e lidos de todos os locais da memória RAM. A soma de verificação da ROM será calculada e comparada ao valor armazenado na ROM.

Digital Input 2 = 0

0.28

25.00

µS/cm

°C

.

µS/cm

°c

.

uS/cm

°C

11.2.6 **Definir relé**

O menu de diagnóstico Definir relé permite abrir ou fechar cada relé manualmente. Para acessar os relés 5 e 6, pressione [ENTER].

0 = abre o relé

1 = fecha o relé

Pressione [ENTER] para retornar ao modo Medição.

11.2.7 Ler Relés

O menu de diagnóstico Ler relés mostra o estado de cada relé como definido a seguir. Para exibir os relés 5 e 6, pressione [ENTER]. Pressione [ENTER] novamente para sair dessa tela.

Relay3 = 0 Relay4 = 0

0 = Normal

1 = Invertido.

A 0.28uS/cm A 25.00°C Diagnostics

Read Analog Outputs

Impresso na Suíça

11.2.8 Definir saídas analógicas

Esse menu habilita o usuário a definir todas as saídas analógicas para qualquer valor de mA dentro do intervalo de 0-22 mA. Pressione [ENTER] para sair dessa tela.

Ler saídas analógicas 11.2.9

Esse menu mostra o valor de mA das Saídas analógicas. Pressione [ENTER] para sair dessa tela.

.

11.3 Calibrar

(CAMINHO: Menu/Serviço/Calibrar)

Entre no Menu de Manutenção como descrito na seção 11.1 «Entrar no Menu de Manutenção», selecione Calibrar e pressione [ENTER].

Esse menu oferece as opções de calibrar o transmissor e as saídas analógicas e também permite desbloquear a funcionalidade de calibração.

11.3.1 Calibrar medidor (não na versão ISM)

O transmissor M300 é calibrado na fábrica dentro das especificações. Normalmente não é necessário realizar recalibração do medidor a menos que condições extremas causem uma operação fora das especificações mostrada pela Verificação de calibração. Poderá ser necessário fazer verificação/recalibração periódica para atender os requisitos de Q.A. A calibração do medidor pode ser selecionada como Resistência (1-5, usada para condutividade) Corrente (usada para a maioria de oxigênio dissolvido e ozônio dissolvido), Tensão, Diagnóstico Rg, Diagnóstico Rr (usado para pH e oxigênio dissolvido 58037221) e Temperatura (usada para todas as medições).

11.3.1.1 Resistência

O medidor é equipado com cinco (5) intervalos internos de medição em cada canal. Cada intervalo de resistência e cada temperatura é calibrado separadamente, com cada intervalo de resistência consistindo em uma calibração de dois pontos.

A seguir há uma tabela mostrando os valores de resistência de todos os intervalos de calibração.

Intervalo:	Ponto 1	Ponto 2	Ponto 3
Resistividade 1	1,0 Mohms	10,0 Mohms	-
Resistividade 2	100,0 Kohms	1,0 Mohms	-
Resistividade 3	10,0 Kohms	100,0 Kohms	-
Resistividade 4	1,0 Kohms	10,0 Kohms	-
Resistividade 5	100 Ohms	1,0 Kohms	-
Temperatura	1000 Ohms	3,0 Kohms	66 Kohms

É recomendável que a calibração e a verificação sejam realizadas usando o Acessório do módulo calibrador do M300 (consulte a lista de acessórios na Seção 15). As instruções de uso desse acessório são fornecidas com o módulo calibrador.

A 0.28 µS/cm A 25.00 °c Calibrate Meter Channel A Resistance 1 A

A 0.28µS/cn A °C = 1.0000 MΩ A Point1 $R1 = 0.0000 \Omega$ A . A 0.28uS/cn A 25.00°C A Point2 = $10.000 M\Omega$ $R1 = 0.0000 \Omega$. A

Navegue até a tela Calibrar medidor e selecione Canal A ou B e Resistência 1, designando que o transmissor esteja pronto para calibrar o resistor do primeiro intervalo. Essa resistência pode ser alterada, selecionando o intervalo 1 a 5. Cada intervalo de resistência consiste em uma calibração de dois pontos.

Pressione [ENTER] para iniciar o processo de calibração.

A primeira linha de texto pedirá o valor de resistência do Ponto 1 (isso corresponderá ao valor de resistência 1 mostrado no Acessório do módulo de calibração). A segunda linha de texto mostrará o valor de resistência medido. Quando o valor estabilizar, pressione [ENTER] para realizar a calibração.

A tela do transmissor pedirá para o usuário inserir o valor do Ponto 2 e R1 exibirá o valor de resistência medido. Quando esse valor estabilizar, pressione [ENTER] para calibrar esse intervalo e chamar uma tela de confirmação.

Selecione Sim para salvar os valores de calibração e a Calibração bem-sucedida é confirmada na tela. O transmissor retornará ao modo de Medição em aproximadamente 5 segundos.

Quando os pontos 1 e 2 estiverem calibrados, retorne à tela Calibrar medidor. Movimente o cursor para alterar para Resistência 2, designando o segundo intervalo de calibração. Continue com o processo de calibração de dois pontos como realizado para o primeiro intervalo. Esse mesmo processo deverá ser seguido para completar a calibração de resistência de todos os 5 intervalos.

11.3.1.2 Temperatura

A temperatura é realizada como uma calibração de três pontos. A tabela acima mostra os valores de resistência desses três pontos.

Navegue até a tela Calibrar medidor e escolha calibração de Temperatura no canal A ou B.

Pressione [ENTER] para iniciar o processo de calibração de temperatura

A primeira linha de texto pedirá o valor de resistência de temperatura do Ponto 1 (isso corresponderá ao valor Temperatura 1 mostrado no Acessório do módulo de calibração). A segunda linha de texto mostrará o valor de resistência medido. Quando o valor estabilizar, pressione [ENTER] para realizar a calibração.

A tela do transmissor pedirá para o usuário inserir o valor do Ponto 2 e T2 exibirá o valor de resistência medido. Quando esse valor estabilizar, pressione [ENTER] para calibrar esse intervalo.

Repita essas etapas para o Ponto 3.

Pressione [ENTER] para exibir uma tela de confirmação. Selecione Sim para salvar os valores de calibração e a Calibração bem-sucedida é confirmada na tela.

83

A 0.28 μS/cm A 25.00 °c Calibrate Meter Channel A Current A A 0.28 μS/cm

Pressionar a tecla [ENTER] após inserir o Ponto 2 fará aparecer uma tela de confirmação. Selecione Sim para salvar os valores de calibração e a Calibração bem-sucedida é confirmada na tela. O transmissor retornará ao modo de Medição em aproximadamente 5 segundos.

O transmissor retornará ao modo de Medição em aproximadamente 5 segundos.

A calibração de Corrente é realizada como uma calibração de dois pontos.

Navegue até a tela Calibrar medidor e selecione Canal A ou B e Corrente.

A segunda linha da tela mostrará a corrente medida. Pressione

[ENTER] para iniciar o processo de calibração.

A segunda linha da tela mostra a corrente medida.

Insira o valor do Ponto 1, em miliampères, da fonte de corrente conectada à entrada.

Insira o valor do Ponto 2, em miliampères, da fonte de corrente conectada à entrada.

11.3.1.4 Voltagem

11.3.1.3 Corrente

A calibração de Tensão é realizada como uma calibração de dois pontos.

Navegue até a tela Calibrar medidor e selecione Canal A ou B e Tensão.

Insira o valor do Ponto 1 em volts, conectado à entrada. A segunda linha da tela mostrará a tensão medida. Pressione [ENTER] para iniciar o processo de calibração.

Insira o valor do Ponto 2, em volts, da fonte conectada à entrada. A segunda linha da tela mostra a tensão medida.

A

A

A

A

A

A

A

A

A

A

0.28

25.00

0.28

25.00

A Point1 = 30.000 MΩ Rg = 572.83 Ω

0.28

25.00

A Point2 = 500.00 MΩ Rg = 572.83 Ω

0.28

25.00

Save Calibration Yes Press ENTER to Exit

Calibrate Meter Channel A Rg Diagnostic

µS/cm

°C

µS/cm

°C

.

uS/cm

°C

.

µS/cm

°C

.

Pressionar a tecla [ENTER] após inserir o Ponto 2 fará aparecer uma tela de confirmação. Selecione Sim para salvar os valores de calibração e a Calibração bem-sucedida é confirmada na tela. O transmissor retornará ao modo de Medição em aproximadamente 5 segundos.

11.3.1.5 Diagnóstico Rg

O Diagnóstico Rg é realizado como uma calibração de dois pontos. Navegue até a tela Calibrar medidor e selecione Canal A ou B e Diagnóstico Rg.

Insira o valor do Ponto 1 da calibração de acordo com o resistor conectado na entrada de medição do eletrodo de vidro de pH. Pressione [ENTER] para iniciar o processo de calibração.

Insira o valor do Ponto 2 da calibração de acordo com o resistor conectado na entrada de medição do eletrodo de vidro de pH.

Pressionar a tecla [ENTER] após inserir o Ponto 2 fará aparecer uma tela de confirmação. Selecione Sim para salvar os valores de calibração e a Calibração bem-sucedida é confirmada na tela. O transmissor retornará ao modo de Medição em aproximadamente 5 segundos.

11.3.1.6 Diagnóstico Rr

O Diagnóstico Rr é realizado como uma calibração de dois pontos. Navegue até a tela Calibrar medidor e selecione Canal A ou B e Diagnóstico Rr.

Insira o valor do Ponto 1 da calibração de acordo com o resistor conectado na entrada de medição de referência de pH. Pressione [ENTER] para iniciar o processo de calibração.

Insira o valor do Ponto 2 da calibração de acordo com o resistor conectado na entrada de medição de referência de pH.

A

A

A

A

A

A

A

A

A

A

0.28

0.28

25.00

Aoutl 20mA Set 45000 Press ENTER when Done

0.28

25.00

0.28

25.00

Save Calibration Yes Press ENTER to Exit

0.28

25.00

Calibrate Unlock

Aoutl 4mA Set 08800 Press ENTER when Done

Calibrate Analog Analog Output 1 uS/cm

°C

.

uS/cm

°C

.

uS/cm

°C

.

µS/cn

°C

.

uS/cm

°C

Pressionar a tecla [ENTER] após inserir o Ponto 2 fará aparecer uma tela de confirmação. Selecione Sim para salvar os valores de calibração e a Calibração bem-sucedida é confirmada na tela. O transmissor retornará ao modo de Medição em aproximadamente 5 segundos.

11.3.2 Calibrar Analógica

Selecione a Saída analógica que deseja calibrar. Cada saída analógica pode ser calibrada em 4 e 20 mA.

Conecte um medidor de miliampères preciso aos terminais de saída analógica e ajuste o número de cinco dígitos na tela até o medidor de miliampères mostrar uma leitura de 4,00 mA e repita para 20,00 mA.

À medida que o número de cinco dígitos aumenta a corrente de saída aumenta e à medida que o número diminuiu a corrente de saída diminui. Assim, alterações grosseiras na corrente de saída podem ser feitas alterando os dígitos dos milhares ou das centenas e alterações finas podem ser feitas alterando os dígitos das dezenas ou das unidades.

Pressionar a tecla [ENTER] após inserir os dois valores fará aparecer uma tela de confirmação. Selecionar Não irá descartar os valores inseridos, selecionar Sim tornará os valores inseridos os atuais.

11.3.3 Calibrar Destravar

Selecione esse menu para calibrar o menu CAL (veja capítulo 7 «Calibração do Sensor»).

Selecionar Sim significa que o menu de calibração do Medidor (veja capítulo 11.3.1 «Calibrar Medidor») e o menu de calibração da Saída Analógica (veja capítulo 11.3.2 «Calibrar Analógica») poderão ser selecionados no menu CAL. Selecionar Não significa que somente a calibragem do sensor está disponível no menu CAL. Pressione [ENTER] após a seleção para exibir uma tela de confirmação.

11.4 Serviço técnico

(CAMINHO: Menu/Serviço técnico)

Nota: Nota: Este menu é somente para uso dos técnicos de manutenção da Mettler Toledo.

12 Info

12.1 Menu de Informações

Pressionar a tecla ▼ exibirá o menu Info com as opções Mensagens, Dados de calibração e Modelo/revisão de software.

12.2 Mensagens

(CAMINHO: Info/Mensagens)

Entre no Menu de Informações como descrito na seção 12.1 «Menu Info» e pressione [ENTER].

A mensagem mais recente é exibida. As teclas de seta para cima e para baixo permitem percorrer as últimas quatro mensagens que ocorreram.

Limpar mensagens limpa todas as mensagens. As mensagens são adicionadas à lista de mensagens quando a condição que gera a mensagem ocorre pela primeira vez. Se todas as mensagens forem limpas e uma condição de mensagem ainda existir e tiver sido iniciada antes da limpeza, ela não aparecerá na lista. Para essa mensagem ter uma nova ocorrência na lista, a condição deverá desaparecer e reaparecer.

12.3 Dados de calibração

(CAMINHO: Info/Dados de calibração)

Impresso na Suíça

Entre no Menu de Informações como descrito na seção 12.1 «Menu Info», selecione Dados de Calibração e pressione [ENTER].

O menu exibe as constantes de tiver sido iniciada de cada sensor. Use as teclas de seta para cima e para baixo para alternar entre os canais «A» e «B».

Clear Messages

°C

.

© 01/2016 Mettler-Toledo GmbH, CH-8606 Greifensee, Suíça

µS/cm

°C

A

A

PN XXXXXXXX VX.XX SN XXXXXXXXX

S = constantes de calibração da medição secundária

Pressione [ENTER] para sair dessa tela.

12.4 Revisão de modelo/software

(CAMINHO: Info/Modelo/Revisão de software)

Entre no Menu de Informações como descrito na seção 12.1 «Menu Info», selecione Modelo/ Revisão de Software e pressione [ENTER].

Selecionar Modelo/Revisão de Software exibirá o número da peça, o modelo e o número de série do transmissor. Utilizando a Utilizando a tecla é possível navegar para adiante nesse menu e obter informações adicionais, como a versão atual do software implementado no transmissor (Master V_XXXX e Comm V_XXXX); e – se um sensor ISM estiver conectado - a versão do firmware do sensor (Sensor FW V_XXX) e do hardware do sensor (Sensor HW XXXX).

As informações exibidas são importantes para qualquer chamada de serviço. Pressione [ENTER] para retornar ao modo de medição normal.

12.5 Informações do sensor ISM (somente versão do ISM)

(CAMINHO: Info/Informações do Sensor ISM)

В 7.00 рн В 25.0 °C ↑ ISM Sensor Info C ↑ В 7.00 рн В 25.0 °C Entre no Menu de Informações como descrito na seção 12.1 «Menu Info», selecione Informações do Sensor ISM e pressione [ENTER].

Após conectar um sensor ISM, as informações a seguir sobre o sensor serão mostradas nesse menu. Utilize as setas para cima e para baixo para percorrer o menu.

Tipo:Tipo de sensor (p.ex. InPro 3250)Data Cal:Data da última calibraçãoNo. de série:Número de série do Sensor conectadoN.º de Peça:No. de código do Sensor conectado

ChB Type: InPro3250 ChB Cal Date:08/01/01 ↑

13 Manutenção

13.1 Para obter suporte técnico

Para obter suporte técnico e informações do produto Transmissores M300 Thornton, entre em contato com:

Mettler-Toledo Thornton, Inc. 36 Middlesex Turnpike Bedford, MA 01730 USA Fone: 781-301-8600 ou 800-510-PURE Fax: 781-271-0214 E-mail: service@thorntoninc.com

Ou: O escritório ou representante Mettler-Toledo local.

13.2 Limpeza do painel frontal

Limpe o painel frontal com um pano macio úmido (somente água, sem solventes). Esfregue a superfície com delicadeza e seque com um pano macio.

14 Solução de problemas

Se o equipamento for usado de maneira não especificada pela Mettler-Toledo Thornton, Inc., a proteção fornecida pelo equipamento poderá ser prejudicada.

Revise a tabela a seguir para saber as causas possíveis de problemas comuns:

Problema	Causa possível	
A tela está em branco.	 Sem energia para M300. Fusível queimado. Contraste da tela LCD ajustado incorretamente. Falha de hardware. 	
Leituras de medição incorretas.	 Sensor instalado incorretamente. Multiplicador de unidades incorreto inserido. Compensação de temperatura definida incorretamente ou desativada. Sensor ou transmissor precisa de calibração. Cabo do sensor ou de reparo com defeito ou maior que o comprimento máximo recomendado. Falha de hardware. 	
Leituras de medição não estáveis.	 Sensores ou cabos instalados muito perto de equipamento que gera alto nível de ruído elétrico. Comprimento de cabo recomendado excedido. Média definida muito baixa. Cabo do sensor ou de reparo com defeito. 	
Exibido \land está piscando.	 Ponto de ajuste está em condição de alarme (ponto de ajuste excedido). O alarme selecionado (veja capítulo 8.5.1 »Alarme»), ocorreu. 	
Não é possível alterar as definições de menu.	 Usuário bloqueado por motivos de segurança. 	

14.1 Trocando o Fusível

Certifique-se de que o cabo esteja desconectado da rede antes de trocar o fusível. Essa operação deve ser realizada somente por técnicos familiarizados com o transmissor e que estejam qualificados para esse trabalho.

Se o consumo de força do transmissor M300 for muito alto ou se um defeito produzir um curtocircuito, o fusível será queimado. Nesse caso, remova o fusível e substitua-o por um especificado na Seção 15 «Acessórios e Peças sobressalentes.»

14.2 Mensagens de erro de pH/ Lista de alarmes e avisos

14.2.1 sensores de pH exceto eletrodos de pH de membrana dupla

Avisos	Descrição
Aviso de inclinação de pH >102%	Declive muito grande
Aviso de inclinação de pH < 90%	Declive muito pequeno
Aviso de pH Zero >7,5 pH	Compensação zero muito grande
Aviso de pH Zero < 6,5 pH	Compensação zero muito pequena
Advertência de mudança de pHGIs < 0,3	Resistência do eletrodo de vidro alterada acima do fator 0,3
Advertência de mudança de p HGIs > 3	Resistência do eletrodo de vidro alterada mais que o fator 3
Advertência de mudança de pHRef < 0,3	Resistência do eletrodo de referência alterada mais que o fator 0,3
Advertência de mudança de pHRef > 3	Resistência do eletrodo de referência alterada acima do fator 3
Alarmes	Descrição
Tempo limite do watchdog	Falha de sistema/SW
Erro de slope de pH >103%	Slope muito grande
Erro de slope de pH < 80%	Slope muito pequeno
Erro de pH Zero >8,0 pH	Compensação zero muito grande
Erro de pH Zero < 6,0 pH	Compensação zero muito pequena
Erro de pH Ref Res >150 K Ω^*	Resistência do eletrodo de referência muito grande (rompimento)
Erro de pH Ref Res < 2000 Ω^{**}	Resistência do eletrodo de referência muito pequena (curta)
Erro de pH GIs Res > 2000 M Ω^{**}	Resistência do eletrodo de vidro grande demais (rompimento)
Erro de pH GIs Res <5 MΩ**	Resistência do eletrodo de vidro muito pequena (curta)

* Sensores ISM apenas

** De acordo com os parâmetros do transmissor (veja o capítulo 8.5.1 «Alarme»; CAMINHO: Menu/Configure/Alarm/Clean/Setup Alarm)

14.2.2 Eletrodos de pH de membrana dupla (pH/pNa)

Advertências	Descrição
Advertência de slope de pH >102%	Slope muito grande
Advertência de slope de pH < 90%	Slope muito pequeno
Advertência de pH Zero > 8,0	Deslocamento de zero grande demais
Advertência de pH Zero < 6,0	Deslocamento de zero pequeno demais
Advertência de mudança de pHGIs < 0,3*	Resistência do eletrodo de vidro alterada acima do fator 0,3
Advertência de mudança de pHGIs > 3*	Resistência do eletrodo de vidro alterada mais que o fator 3
Advertência de mudança de pNaGIs < 0,3*	Resistência do eletrodo de vidro alterada acima do fator 0,3
Advertência de mudança de > 3*	Resistência do eletrodo de referência alterada acima do fator 3

Alarmes	Descrição
Tempo limite do watchdog	Falha de sistema/SW
Erro de slope de pH >103%	Slope muito grande
Erro de slope de pH < 80%	Slope muito pequeno
Erro de pH Zero > 9,0 pH	Deslocamento de zero grande demais
Erro de pH Zero < 5,0 pH	Deslocamento de zero pequeno demais
Erro de pNa GIs Res > 2000 M Ω^*	Resistência do eletrodo de vidro grande demais (rompimento)
Erro de pNa GIs Res < 5 M Ω^*	Resistência do eletrodo de vidro muito pequena (curta)
Erro de pH GIs Res > 2000 M Ω^*	Resistência do eletrodo de vidro grande demais (rompimento)
Erro de pH GIs Res < 5 M Ω^*	Resistência do eletrodo de vidro muito pequena (curta)

* De acordo com os parâmetros do transmissor (veja o capítulo 8.5.1 «Alarme»; CAMINHO: Menu/Configure/Alarm/Clean/Setup Alarm)

14.2.3 Mensagens de ORP

Avisos*	Descrição
Advertência ORP ZeroPt > 30 mV	Deslocamento de zero grande demais
Advertência ORP ZeroPt <-30 mV	Deslocamento de zero pequeno demais

Alarmes*	Descrição
Tempo limite do watchdog	Falha de sistema/SW
Erro de ORP ZeroPt > 60 mV	Deslocamento de zero grande demais
Erro de ORP ZeroPt <-60 mV	Deslocamento de zero pequeno demais

* Sensores ISM apenas

Avisos	Descrição
Aviso O2 Inclinação <-90 nA	Declive muito grande
Aviso O2 Inclinação >-35 nA	Declive muito pequeno
Aviso O ₂ ZeroPt > 0,3 nA	Compensação zero muito grande
Aviso O ₂ ZeroPt <-0,3 nA	Compensação zero muito pequena
Alarmes	Descrição
Alarmes Tempo limite do watchdog	Descrição Falha de sistema/SW
Alarmes Tempo limite do watchdog Erro O ₂ Inclinação <-110 nA	Descrição Falha de sistema/SW Declive muito grande
Alarmes Tempo limite do watchdog Erro O2 Inclinação <-110 nA	Descrição Falha de sistema/SW Declive muito grande Declive muito pequeno
Alarmes Tempo limite do watchdog Erro O2 Inclinação <-110 nA	Descrição Falha de sistema/SW Declive muito grande Declive muito pequeno Compensação zero muito grande

14.3 Mensagens de erro de O2/Lista de alarmes e avisos

14.4 Cond Mensagens de erro / Aviso- e Lista de alarmes

Alarmes	Descrição
Tempo limite do watchdog	Falha de sistema/SW
Cond Célula aberta*	Célula esgotando (sem solução de medição) ou os fios estão quebrados
Cond Célula em curto*	Curto-circuito causado por sensor ou cabo

* De acordo com os parâmetros do transmissor (veja o capítulo 8.5.1 «Alarme»; CAMINHO: Menu/Configure/Alarm/Clean/Setup Alarm)

14.5(I) Mensagens de erro de O2/ Lista de alarmes
e avisos (somente modelos Thornton)

Avisos	Descrição
Aviso inclinação de OD <-460 nA	Declive muito grande
Aviso inclinação de OD <-250 nA	Declive muito pequeno
Aviso ZeroPt OD > 0,5 nA	Compensação zero muito grande
Aviso ZeroPt OD <-0,5 nA	Compensação zero muito pequena

Alarmes	Descrição
Tempo limite do watchdog	Falha de sistema/SW
Erro instalação Jumper O2	Instalação errada do jumper
Erro inclinação de OD <-525 nA	Declive muito grande
Erro inclinação de OD >-220 nA	Declive muito pequeno
Erro ZeroPt OD >1,0 nA	Compensação zero muito grande
Erroo ZeroPt OD <-1,0 nA	Compensação zero muito pequena

14.6 (V) Mensagens de erro de O₂/ Lista de alarmes e avisos (somente modelos Thornton)

Avisos	Descrição
Aviso inclinação de OD >1.50	Declive muito grande
Aviso inclinação de OD < 0,65	Declive muito pequeno
Aviso ZeroPt OD >15 μV	Compensação zero muito grande
Aviso ZeroPt OD <-15 μV	Compensação zero muito pequena
·	
Alarmes	Descrição
Alarmes Tempo limite do watchdog	Descrição Falha de sistema/SW
AlarmesTempo limite do watchdogAviso inclinação de OD < 2,00	Descrição Falha de sistema/SW Declive muito grande
AlarmesTempo limite do watchdogAviso inclinação de OD < 2,00	DescriçãoFalha de sistema/SWDeclive muito grandeDeclive muito pequeno
AlarmesTempo limite do watchdogAviso inclinação de OD < 2,00	Descrição Falha de sistema/SW Declive muito grande Declive muito pequeno Compensação zero muito grande

14.7 Mensagens de erro de ozônio / Lista de alarmes e avisos (somente modelos Thornton)

Avisos	Descrição
Aviso O₃ Inclinação >1,83 nA	Declive muito grande
Aviso O₃ Inclinação <0,73 nA	Declive muito pequeno
Aviso O ₃ ZeroPt > 0,5 nA	Compensação zero muito grande
Aviso O₃ ZeroPt <-0,5 nA	Compensação zero muito pequena

Alarmes	Descrição
Tempo limite do watchdog	Falha de sistema/SW
Erro O_3 Inclinação > 2,75 nA	Declive muito grande
Erro O₃ Inclinação <0,65 nA	Declive muito pequeno
Erro O ₃ ZeroPt >1,0 nA	Compensação zero muito grande
Erro O_2 ZeroPt <-1,0 nA	Compensação zero muito pequena

14.8 Indicação de aviso e alarme na tela

14.8.1 Indicação de aviso

Se houver condições que gerem uma advertência, a mensagem será registrada pelas Mensagens de menu (veja capítulo 12.1 «Mensagens»; CAMINHO: Info/Messages). Conforme os parâmetros do transmissor, a indicação «Falha – Pressione Enter» será mostrada na linha 4 da tela se uma advertência ou um alarme ocorreu (veja o capítulo 8.6 «Display»; CAMINHO: Menu/Configure/Display/Measurement).

14.8.2 Indicação de alarme

Os alarmes serão mostrados na tela por um símbolo pulsante 🛆 e registrados pelo menu Mensagens (veja capítulo 12.1 «Mensagens»; CAMINHO: Info/Mensagens).

Além disso, a detecção de alguns alarmes pode ser ativada ou desativada (veja capítulo 8.5 «Alarme/Limpar»; CAMINHO: Menu/Configurar/Alarme/Limpar) para uma indicação na tela. Se um destes alarmes ocorrer e a detecção estiver ativada, o símbolo piscando \triangle será mostrado na tela. A mensagem será registrada pelo menu Mensagens (veja capítulo 12.1 «Mensagens»; CAMINHO: Info/Mensagens).

Os alarmes causados por uma violação da limitação de um ponto de ajuste ou do intervalo (consulte o capítulo 8.4 «Pontos de definição; CAMINHO: Menu/Configurar/Ponto de ajuste) serão mostrados por um símbolo pulsante \triangle e registrados pelo menu Mensagens (veja capítulo 12.1 «Mensagens»; CAMINHO: Info/Mensagens).

Conforme os parâmetros do transmissor, a indicação «Falha – Pressione Enter» será mostrada na linha 4 da tela se um aviso ou alarme ocorrer (consulte também o capítulo 8.6. «Tela»; CAMINHO: Menu/Configurar/Exibir/Medição).

15 Acessórios e peças de reposição

Entre em contato com o escritório ou representante Mettler-Toledo local para obter detalhes sobre acessórios adicionais e peças de reposição.

Para o M300 Thornton

Descrição	Pedido nº
Kit de montagem no tubo para modelos 1/2DIN	52 500 212
Kit de montagem no painelo para modelos 1/2DIN	52 500 213
Painel do adaptador – M300 para recorte 200/2000	58 083 300
Módulo calibrador de condutividade do M300	58 082 300
Substituição de fusível de força 5x20 mm, 1 A, 250 V, intervalo de tempo, Littlefuse ou Hollyland	58 091 326
Blocos de terminais para M300	52 121 504

Para o M300

Descrição	Pedido nº
Kit de montagem no tubo para modelos 1/2DIN	52 500 212
Kit de montagem no painelo para modelos 1/2DIN	52 500 213
Capela de proteção para modelos 1/2DIN	52 500 214
Blocos de terminais para M300, M400	52 121 504

16 Especificações

16.1 Especificações gerais

Especificações de condutividade/resistividade	
Intervalo 0,01 cm ⁻¹ sensor constante	0,002 a 200 μS/cm (5000 Ω x cm a 500 MΩ x cm)
Intervalo 0,1 cm ⁻¹ sensor constante	0,02 a 2000 $\mu\text{S/cm}$ (500 Ω x cm a 50 M Ω x cm)
Intervalo 10 cm ⁻¹ sensor constante	10 a 40,000 μS/cm (25 Ω x cm a 100 KΩ x cm)
Exibir intervalo do sensor 2-e	0 a 40.000 mS/cm (25 Ω x cm a 100 M Ω x cm)
Exibir intervalo do sensor 4-e	0,01 a 650 mS/cm (1,54 Ω x cm a 0,1 MΩ x cm)
Curvas da concentração química	NaCl: $0-26\%$ @ 0°C a $0-28\%$ @ +100 °C NaOH: $0-12\%$ @ 0°C a $0-16\%$ @ +40 °C a $0-6\%$ @ +100 °C HCl: $0-18\%$ @ -20 °C a $0-18\%$ @ 0 °C a $0-5\%$ @ +50 °C HNO3: $0-30\%$ @ -20 °C a $0-30\%$ @ 0 °C a $0-8\%$ @ +50 °C H2SO4: $0-26\%$ @ -12 °C a $0-26\%$ @ $+5$ °C H3PO4: $0-35\%$ @ $+5$ °C a $+80$ °C
Intervalos de TDS	NaCl, CaCO3
Entrada de temperatura*	Pt1000
Intervalo de medição da temperatura	-40 a + 200,0 °C
Distância máxima do sensor	Analógico 2-e: 61 m (200 pés), Analógico 4-e: 15 m (50 pés), ISM 2-e: 90 m (300 pés) ISM 4-e: 80 m (260 pés),
Resolução de Cond/Res	Automático /0,001/0,01/0,1/1 (pode ser selecionado)
Precisão de Cond/Res**	$\pm 0.5\%$ de leitura ou 0,25 Ω , o que for maior
Repetitividade de Cond/Res**	$\pm 0,25\%$ da leitura ou 0,25 ohm, o que for maior
Resolução de temperatura	Automático/0,001/0,01/0,1/1 °C (pode ser selecionado)
Precisão da temperatura**	±0,25°C
Repetitividade da temperatura**	±0,13°C
Especificações do pH	
Intevalo de pH	—1,00 a 15,00 pH
Intervalo de mV	–1500 a 1500 mV
Entrada de temperatura*	Pt1000 (Pt100 com adaptador)
Intervalo de medição da temperatura	–30 a 130 °C
Distância máxima do sensor	Analógico: 10 a 20 m dependendo do sensor ISM: 80 m (260 pés)
Resolução do pH	automático/0,01/0,1/1 (pode ser selecionado)
Precisão do pH**	±0,03 pH
Resolução de mV	1 mV
Precisão de mV	±2 mV
Resolução de temperatura	Automático/0,001/0,01/0,1/1 °C (pode ser selecionado)
Precisão da temperatura**	±0,25 °C

* Não exigido nos sensores ISM

** Para sinal de entrada analógico (o sinal ISM não causa erro adicional)

Definições de buffers disponíveis:

Buffers MT-9, buffers MT-10, Buffers técnicos NIST,

Buffers Padrão NIST (DIN 19266:2000–01), buffers JIS Z 8802, buffers Hach, buffers CIBA (94), Merck Titrisols-Reidel Fixanals, buffers WTW

Buffers de eletrodos de pH de membrana dupla (pH/pNa)

Buffers Mettler-pH/pNa (Na+ 3,9M)

Especificações de oxigênio dissolvido		
Medindo o intervalo de corrente	0 a 900 nA	
Intervalo de concentração	0,00 a 50,00 ppm (mg/l)	
Entrada de temperatura*	NTC 22 kΩ	
Intervalo de medição da temperatura	−10 a 80 °C	
Distância máxima do sensor	Analógico: 20 m (65 pés) ISM: 80 m (260 pés)	
Resolução de OD	Automático/0,001/0,01/0,1/1 (pode ser selecionado)	
Precisão de DO**	±0,5% de leitura da escala total	
Resolução de temperatura	Automático/0,001/0,01/0,1/1 °C (pode ser selecionado)	
Precisão da temperatura**	±0,25 °C	
Voltagem de polarização	-674 mV (para sensores analógicos)	
Especificações de ozônio dissolvido		
Intervalo de ozônio	0–5.000 ppb, 0–5 ppm	
Resolução de ozônio	1 ppb, 0,001 ppm	
Precisão relativa	$\pm 2\%$ de leitura ou ± 3 ppb, sistema	
Entrada da temperatura	Pt1000	

* Não exigido nos sensores ISM

** Para sinal de entrada analógico (o sinal ISM não causa erro adicional)

 $\langle \mathcal{P} \rangle$

16.2 Especificações elétricas para as versões 1/2DIN e 1/4DIN

	
Requisitos de energia	100 a 240 V CA ou 20 a 30 V CC, 10 VA; AWG 14 < 2,5 mm²
Freqüência	50 a 60 Hz
Sinais de saída analógica	4 (2 para versão de canal único) saídas de 0/4 a 22 mA, isoladas galvanicamente da entrada e do aterramento
Erro de medição nas	<±0,05 mA no intervalo de 1 a 22 mA,
saídas analógicas	$<\pm0,1$ mA no intervalo de 0 a 1 mA
Configuração da saída analógica	Linear, Bi-linear, Logarítmica, Intervalo automático
Carga	Μάχ. 500 Ω
Terminais de conexão	Terminais de parafusos destacáveis
Comunicação digital	Porta USB, conector tipo B
Controlador de processo do PID	Comprimento do pulso, freqüência de pulsos ou controle analógico
Tempo do ciclo	Cals
Terminais de conexão	Terminais de parafusos destacáveis
Entrada digital	1 (2 para versão de dois canais) com limites de comutação 0,00 V CC a 1,00 V CC para baixo nível 2,30 VCC a 30,00 VCC para alto nível
Fusível da rede elétrica	Fusão lenta 1,0 A tipo FC
Relés	 2-SPDT mecânico 250 V CA, 30 V CC, 3 Amps 2-SPST mecânico classificado para 250 VCA, 3 Amps (somente para canal duplo) 2-Reed 250 V CA ou CC, 0,5 A, 10 W
Atraso do relé de alarme	0–999 s
Teclado	5 teclas táteis de retorno
Display	LCD iluminado, quatro linhas

NOTA: Este é um produto de 4 cabos com uma saída analógica ativa de 4 a 20 mA. Não alimente nos pinos Pin1-Pin6 do TB2.

16.3 Especificações mecânicas para a versão 1/4DIN

Dimensões (alojamento – A x L x D)*	96 x 96 x 140 mm (modelo 1/4DIN)
Painel frontal – (H x W)	102 x 102 mm
Profundidade max.	125 mm (exclui conectores de plug-in)
Peso	0,6 kg (1,5 lb)
Material	ABS/policarbonato
Classificação do ingresso	IP 65 (frontal)/IP 20 (alojamento)

* H = Altura, W = Largura, D = Profundidade

16.4 Especificações mecânicas para a versão 1/2DIN

Dimensões (alojamento – A x L x D)*	144 x 144 x 116 mm
Painel frontal – H x W	150 x 150 mm
Max. D – montado no painel	87 mm (exclui conectores de plug-in)
Peso	0,95 kg (2 lb)
Material	ABS/policarbonato
Classificação do ingresso	IP65 (quando a tampa traseira estiver presa)

* H = Altura, W = Largura, D = Profundidade

16.5 Especificações ambientais para as versões 1/2DIN e 1/4DIN

Temperatura de armazenamento	–40 a 70 °C
Intervalo operacional da temperatura ambiente	−10 a 50 °C
Umidade relativa	0 a 95% sem condensação
Emissões	De acordo com EN55011 Classe A
UL Ambiente elétrico	Instalação (sobretensão) categoria II

17 Tabelas padrão

17.1 M300 ISM (instrumentos de 1 canal)

Parâmetro	Sub-parâmetro	Valor	Unidade
Alarme	Relé	2	
	Falta de força	Não	
	Falha de software	Não	
	Diagnóstico de Rg	Não	
	Diagnóstico Rr	Não	
	Cond Célula aberta	Não	
	Cond Célula em curto	Não	
	Desconectar ChA	Não	
	Modo de Retenção*	Último	
	Atraso	1	Seg
	Histerese	0	
	Estado	Invertido	
Limpo	Relé	1	
	Modo de Retenção*	Último	
	Intervalo	0	h
	Tempo de limpeza	0	Seg
	Estado	Normal	
	Atraso	0	
	Histerese	0	
Idioma		Inglês	
Senhas	Administrador	00000	
	Operador	00000	
Todos os relés (a menos que especificado de outro modo)	Atraso	10	Seg
/	Histerese	5	%
	Estado	Normal	
	Modo de Retenção*	Último	
Bloqueio	Sim/Não	Não	
Tela	Linha 1	a	
	Linha 2	b	
	Linha 3	c (não disponível)	
	Linha 4	d (não disponível)	
Saída analógica	1	a	
	2	b	
Todas as saídas analógicas	Modo	4–20 mA	
	Тіро	Normal	
	Alarme	Desligado	
	Modo de Retenção	Último Valor	

Parâmetro	Sub-parâmetro	Valor	Unidade
Condutividade		0.1	µS/cm
Resistividade	Valor 4 mA	10	MΩ-cm
		10	uS/cm
	Valor 20 mA	20	MΩ-cm
02	Valor 4 mA	0	% sat
	Valor 20 mA	100	% sat
рН	Valor 4 mA	2	рН
	Valor 20 mA	12	рН
Temperatura	Valor 4 mA	0	°C
	Valor 20 mA	100	°C
Ponto de definição 1	Medição	a	
	Тіро	Desligado	
Condutividade	Valor Alto	0	µS/cm
Resistividade		0	MΩ-cm
	Valor Daiyo	0	µS/cm
		0	MΩ-cm
O ₂	Valor Alto	50	% sat
	Valor Baixo	0	% sat
рН	Valor Alto	12	рН
	Valor Baixo	0	рН
Relé 3	Ponto de ajuste	1	
Ponto de definição 2	Medição	b	
	Тіро	Desligado	
	Valor Alto	0	°C
	Valor Baixo	0	°C
Relé 4	Ponto de ajuste	2	
Resolução		Auto	
Condutividade <i>Resistividade</i>	Compensação	Standard	
02	Polarização V**	-675	mV
	CalPres	759.8	mmHg
	ProcPres	759.8	mmHg
	ProcCalPres	CalPres	
	Salinidade	0.0	g/Kg
	Umidade	100	%
рН	Controle de desvio	Auto	
·	IP	7.0	рН
	STC	0.000	pH/°C
	FixCalTemp	Não	
	Buffer de pH	Mettler-9	
	Cal info inclinação	[%]	
	Cal info		
	compensação		

Para sinal de saída analógico se o relé for acionado
 Não ajustável

Itálico = Valores padrão se a resistividade for escolhida em vez da condutividade.

17.2 M300 ISM (instrumentos de 2 canais)

Parâmetro	Sub-parâmetro	Valor	Unidade
Alarme	Relé	2	
	Falta de força	Não	
	Falha de software	Não	
	Diagnóstico de Rg	Não	
	Diagnóstico Rr	Não	
	Cond Célula aberta	Não	
	Cond Célula em curto	Não	
	Desconectar ChA	Não	
	Desconectar CHB	Não	
	Modo de Retenção*	Último	
	Atraso	1	Seg
	Histerese	0	
	Estado	Invertido	
Limpo	Relé	1	
	Modo de Retenção*	Último	
	Intervalo	0	h
	Tempo de limpeza	0	Seg
	Estado	Normal	
	Atraso	0	
	Histerese	0	
Idioma		Inglês	
Senhas	Administrador	00000	
	Operador	00000	
Todos os relés (a menos que especificado de outro modo)	Atraso	10	Seg
	Histerese	5	%
	Estado	Normal	
	Modo de Retenção*	Último	
Bloqueio	Sim/Não	Não	
Tela	Linha 1	α	
	Linha 2	b	
	Linha 3	С	
	Linha 4	d	
Saída analógica	1	α	
	2	b	
	3	С	
	4	d	
Todas as saídas analóaicas	Modo	4–20 mA	
5	Тіро	Normal	
	Alarme	Desligado	
	Modo de Retenção	Último Valor	
Condutividade <i>Resistividade</i>	Valor 4 mA	0,1 <i>10</i>	μS/cm <i>MΩ-cm</i>
	Valor 20 mA	10 <i>20</i>	μS/cm <i>MΩ-cm</i>
02	Valor 4 mA	0	% sat
	Valor 20 mA	100	% sat

Parâmetro	Sub-parâmetro	Valor	Unidade
рН	Valor 4 mA	2	pН
	Valor 20 mA	12	pH
Temperatura	Valor 4 mA	0	0°
· · ·	Valor 20 mA	100	°C
Ponto de definição 1	Medição	a	
	Тіро	Desligado	
Condutividade		0	µS/cm
Resistividade		0	MΩ-cm
		0	µS/cm
		0	MΩ-cm
02	Valor Alto	50	% sat
	Valor Baixo	0	% sat
рН	Valor Alto	12	рН
	Valor Baixo	0	рН
Relé 3	Ponto de ajuste	1	
Ponto de definição 2	Medição	С	
	Тіро	Desligado	
Condutividade	Valor Alto	0	µS/cm
Resistividade		0	MΩ-cm
	Valor Baixo	0	µS/cm
-		0	MΩ-cm
02	Valor Alto	50	% sat
	Valor Baixo	0	% sat
рН	Valor Alto	12	рН
	Valor Baixo	0	рН
Relé 4	Ponto de ajuste	2	
Resolução		Auto	
Ponto de definição 3	Medição	(nenhum)	
	Тіро	Desligado	
	Relé	(nenhum)	
Ponto de definição 4	Medição	(nenhum)	
	Тіро	Desligado	
	Relé	(nenhum)	
Condutividade Resistividade	Compensação	Standard	
02	Polarização V**	-675	mV
	CalPres	759.8	mmHg
	ProcPres	759.8	mmHg
	ProcCalPres	CalPres	
	Salinidade	0.0	g/Kg
	Umidade	100	%
рН	Controle de desvio	Auto	
	IP	7.0	pН
	STC	0.000	pH/°C
	FixCalTemp	Não	
	Buffer de pH	Mettler-9	
	Cal info inclinação	[%]	
	Cal info	ΓΗα]	
	l compensação	Lb 7	

* Para sinal de saída analógico se o relé for acionado ** Não ajustável

Itálico = Valores padrão se a resistividade for escolhida em vez da condutividade.

17.3 M300 Condutividade (instrumentos de 1 canal)

Parâmetro	Sub-parâmetro	Valor	Unidade
Alarme	Relé	2	
	Falta de força	Não	
	Falha de software	Não	
	Cond Célula aberta	Não	
	Cond Célula em curto	Não	
	Modo de Retenção*	Último	
	Atraso	1	Seg
	Histerese	0	
	Estado	Invertido	
Limpo	Relé	1	
	Modo de Retenção*	Último	
	Intervalo	0	h
	Tempo de limpeza	0	Seg
	Estado	Normal	
	Atraso	0	
	Histerese	0	
Idioma		Inglês	
Senhas	Administrador	00000	
	Operador	00000	
Todos os relés (a menos que especificado de outro modo)	Atraso	10	Seg
,	Histerese	5	%
	Estado	Normal	
	Modo de Retenção*	Último	
Bloqueio	Sim/Não	Não	
Tela	Linha 1	a (Condutividade)	S/cm
	Linha 2	b (Temperatura)	0°
	Linha 3	c (não disponível)	
	Linha 4	d (não disponível)	
Constantes de cal	Cond/Res	M = 0, 1 A = 0,0	cm ⁻¹ Ω
	Temperatura	M = 1,0, A = 0,0	Ω
Saída analógica	1	a (Resistividade)	
	2	b (Temperatura)	
Todas as saídas analógicas	Modo	4–20 mA	
	Тіро	Normal	
	Alarme	Desligado	
	Modo de Retenção	Último Valor	
Condutividade Resistividade	Valor 4 mA	0.1 <i>10</i>	μS/cm <i>MΩ-cm</i>
	Valor 20 mA	10 <i>20</i>	μS/cm <i>MΩ-cm</i>

Parâmetro	Sub-parâmetro	Valor	Unidade
Temperatura	Valor 4 mA	0	°C
	Valor 20 mA	100	0°
Ponto de definição 1	Medição	a	
	Тіро	Desligado	
	Valor Alto	0 <i>0</i>	μS/cm MΩ-cm
	Valor Baixo	0 <i>0</i>	μS/cm <i>MΩ-cm</i>
Relé 3	Ponto de ajuste	1	
Ponto de definição 2	Medição	b	
	Тіро	Desligado	
	Valor Alto	0	°C
	Valor Baixo	0	°C
Relé 4	Ponto de ajuste	2	
Resolução		Auto	
Condutividade Resistividade	Compensação	Standard	

* Para sinal de saída analógico se o relé for acionado

Itálico = Valores padrão se a resistividade for escolhida em vez da condutividade.

17.4 M300 O₂ (instrumentos de 1 canal)

Parâmetro	Sub-parâmetro	Valor	Unidade
Alarme	Relé	2	
	Falta de força	Não	
	Falha de software	Não	
	Modo de Retenção*	Último	
	Atraso	1	Seg
	Histerese	0	
	Estado	Invertido	
Limpo	Relé	1	
	Modo de Retenção*	Último	
	Intervalo	0	h
	Tempo de limpeza	0	Seg
	Estado	Normal	
	Atraso	0	
	Histerese	0	
Idioma		Inglês	
Senhas	Administrador	00000	
	Operador	00000	
Todos os relés (a menos que especificado de outro modo)	Atraso	10	Seg
	Histerese	5	%
	Estado	Normal	
	Modo de Retenção*	Último	

Parâmetro	Sub-parâmetro	Valor	Unidade
Bloqueio	Sim/Não	Não	
Tela	Linha 1	a (02)	% sat
	Linha 2	b (Temperatura)	°C
	Linha 3	c (não disponível)	
	Linha 4	d (não disponível)	
Constantes de cal	02	S = -70,00 A = 0,0	nA nA
	Temperatura	M = 1,0 A = 0,0	Ω
Saída analógica	1	a (02)	
	2	b (Temperatura)	
Todas as saídas analóaicas	Modo	4–20 mA	
0	Тіро	Normal	
	Alarme	Desligado	
	Modo de Retenção	Último Valor	
02	Valor 4 mA	0	% sat
	Valor 20 mA	100	% sat
Temperatura	Valor 4 mA	0	°C
	Valor 20 mA	100	°C
Ponto de definição 1	Medição	a	
	Тіро	Desligado	
	Valor Alto	50	% sat
	Valor Baixo	0	% sat
Relé 3	Ponto de ajuste	1	
Ponto de definição 2	Medição	b	
	Тіро	Desligado	
	Valor Alto	0	°C
	Valor Baixo	0	°C
Relé 4	Ponto de ajuste	2	
Resolução		Auto	
02	Polarização V**	-675	mV
	CalPres	759.8	mmHg
	ProcPres	759.8	mmHg
	ProcCalPres	CalPres	
	Salinidade	0.0	g/Kg
	Umidade	100	%

Para sinal de saída analógico se o relé for acionado
 Não ajustável

17.5 M300 pH (instrumentos de 1 canal)

Parâmetro	Sub-parâmetro	Valor	Unidade
Alarme	Relé	2	
	Falta de força	Não	
	Falha de software	Não	
	Diagnóstico de Rg	Não	
	Diagnóstico Rr	Não	
	Modo de Retenção*	Último	
	Atraso	1	Seg
	Histerese	0	
	Estado	Invertido	
Limpo	Relé	1	
	Modo de Retenção*	Último	
	Intervalo	0	h
	Tempo de limpeza	0	Seg
	Estado	Normal	
	Atraso	0	
	Histerese	0	
Idioma		Inglês	
Senhas	Administrador	00000	
	Operador	00000	
Todos os relés (a menos que especificado de outro modo)	Atraso	10	Seg
	Histerese	5	%
	Estado	Normal	
	Modo de Retenção*	Último	
Bloqueio	Sim/Não	Não	
Tela	Linha 1	a (pH)	рН
	Linha 2	b (Temperatura)	٥°
	Linha 3	c (não disponível)	
	Linha 4	d (não disponível)	
Constantes de cal	рН	S = 100 Z = 7,0	% рН
	Temperatura	M = 1,0 A = 0,0	Ω
Saída analógica	1	a (pH)	
	2	b (Temperatura)	
Todas as saídas analógicas	Modo	4–20 mA	
	Тіро	Normal	
	Alarme	Desligado	
	Modo de Retenção	Ultimo Valor	
рН	Valor 4 mA	2	рН
	Valor 20 mA	12	рН
Temperatura	Valor 4 mA	0	°C
	Valor 20 mA	100	°C

Parâmetro	Sub-parâmetro	Valor	Unidade
Ponto de definição 1	Medição	a	
	Тіро	Desligado	
	Valor Alto	12	рН
	Valor Baixo	0	рН
Relé 3	Ponto de ajuste	1	
Ponto de definição 2	Medição	b	
	Тіро	Desligado	
	Valor Alto	0	°C
	Valor Baixo	0	°C
Relé 4	Ponto de ajuste	2	
Resolução		Auto	
рН	Controle de desvio	Auto	
	IP	7.0	
	STC	0.000	pH/°C
	Fixar CalTemp	Não	
	Buffer de pH	Mettler-9	
	Cal info inclinação	[%]	
	Cal info compensação	[pH]	

* Para sinal de saída analógico se o relé for acionado
17.6 M300 Multiparâmetros (instrumentos de 2 canais)

Parâmetro	Sub-parâmetro	Valor	Unidade
Alarme	Relé	2	
	Falta de força	Não	
	Falha de software	Não	
	Diagnóstico de Rg	Não	
	Diagnóstico Rr	Não	
	Cond Célula aberta	Não	
	Cond Célula em curto	Não	
	Modo de Retenção*	Último	
	Atraso	1	Seg
	Histerese	0	
	Estado	Invertido	
Limpo	Relé	1	
	Modo de Retenção*	Último	
	Intervalo	0	h
	Tempo de limpeza	0	Seg
	Estado	Normal	
	Atraso	0	
	Histerese	0	
Idioma		Inglês	
Senhas	Administrador	00000	
	Operador	00000	
Todos os relés (a menos que especificado de outro modo)	Atraso	10	Seg
	Histerese	5	%
	Estado	Normal	
	Modo de Retenção*	Último	
Bloqueio	Sim/Não	Não	
Tela	Linha 1	α	
	Linha 2	b	
	Linha 3	С	
	Linha 4	d	
Constantes de cal	Cond/Res	M = 0, 1 A = 0,0	cm ⁻¹ Ω
	02	S = -70,00 Z = 0,00	nA nA
	02(I)***	S = -350,00 Z = 0,00	nA nA
	02(V)***	S = 1.000 Z = 0	μV
	рН	S = 100 Z = 7,0	% рН
	03***	S = -1.000 M = 0,000	nA
	Temperatura	M = 1,0 A = 0,0	Ω

Parâmetro	Sub-parâmetro	Valor	Unidade
Saída analógica	1	α	
	2	b	
	3	С	
	4	d	
Todas as saídas analógicas	Modo	4–20 mA	
	Тіро	Normal	
	Alarme	Desligado	
	Modo de Retenção	Último Valor	
Condutividade <i>Resistividade</i>	Valor 4 mA	0.1 <i>10</i>	μS/cm MΩ-cm
	Valor 20 mA	10 <i>20</i>	μS/cm <i>MΩ-cm</i>
O ₂	Valor 4 mA	0	% sat
	Valor 20 mA	100	% sat
рН	Valor 4 mA	2	рН
	Valor 20 mA	12	рН
02(l)***	Valor 4 mA	0	ppb
	Valor 20 mA	100	ppb
02(V)***	Valor 4 mA	0	ppb
	Valor 20 mA	100	ppb
Ozônio Dissolvido***	Valor 4 mA	0.000	ppb
	Valor 20 mA	20.00	ppm
Temperatura	Valor 4 mA	0	°C
	Valor 20 mA	100	°C
Ponto de definição 1	Medição	α	
	Тіро	Desligado	
Condutividade <i>Resistividade</i>	Valor Alto	0 <i>0</i>	μS/cm <i>MΩ-cm</i>
	Valor Baixo	0 <i>0</i>	μS/cm <i>MΩ-cm</i>
02	Valor Alto	50	% sat
	Valor Baixo	0	% sat
рН	Valor Alto	12	рН
	Valor Baixo	0	рН
02(l)***	Valor Alto	40.00	ppb
	Valor Baixo	0.000	ppb
02(V)***	Valor Alto	0.000	ррb
	Valor Baixo	0.000	ррb
Ozônio Dissolvido***	Valor Alto	0.000	ppb
	Valor Baixo	0.000	ppb
Relé 3	Ponto de ajuste	1	
Ponto de definição 2	Medição	С	
	Тіро	Desligado	
Condutividade <i>Resistividade</i>	Valor Alto	0 <i>0</i>	μS/cm <i>MΩ-cm</i>
	Valor Baixo	0 <i>0</i>	μS/cm <i>MΩ-cm</i>
02	Valor Alto	50	% sat

Parâmetro	Sub-parâmetro	Valor	Unidade
	Valor Baixo	0	% sat
рН	Valor Alto	12	рН
	Valor Baixo	0	рН
02(l)***	Valor Alto	40.00	ppb
	Valor Baixo	0.000	ppb
02(V)***	Valor Alto	0.000	ppb
	Valor Baixo	0.000	ppb
Ozônio Dissolvido***	Valor Alto	0.000	ppb
	Valor Baixo	0.000	ppb
Relé 4	Ponto de ajuste	2	
Resolução		Auto	
Ponto de definição 3	Medição	(nenhum)	
	Тіро	Desligado	
	Relé	(nenhum)	
Ponto de definição 4	Medição	(nenhum)	
	Тіро	Desligado	
	Relé	(nenhum)	
Condutividade Resistividade	Compensação	Padrão	
02	Polarização V**	-675	mV
	CalPres	759.8	mmHg
	ProcPres	759.8	mmHg
	ProcCalPres	CalPres	
	Salinidade	0.0	g/Kg
	Umidade	100	%
рН	Controle de desvio	Auto	
	IP	7.0	рН
	STC	0.000	pH/°C
	FixCalTemp	Não	
	Buffer de pH	Mettler-9	
	Cal info inclinação	[%]	
	Cal info	[pH]	

* Para sinal de saída analógico se o relé for acionado

** Não ajustável

*** Somente modelos Thornton

Itálico = Valores padrão se a resistividade for escolhida em vez da condutividade.

17.7 M300 Condutividade (Instrumentos de canal único, somente modelos Thornton)

Parâmetro	Sub-parâmetro	Valor	Unidade
Alarme	Relé	2	
	Falta de força	Não	
	Falha de software	Não	
	Cond Célula aberta	Não	
	Cond Célula em curto	Não	
	Modo de Retenção*	Último	
	Atraso	1	Seg
	Histerese	0	
	Estado	Invertido	
Limpo	Relé	1	
	Modo de Retenção*	Último	
	Intervalo	0	h
	Tempo de limpeza	0	Seg
	Estado	Normal	
	Atraso	0	
	Histerese	0	
Idioma		Inglês	
Senhas	Administrador	00000	
	Operador	00000	
Todos os relés (a menos que especificado de outro modo)	Atraso	10	Seg
,	Histerese	5	%
	Estado	Normal	
	Modo de Retenção*	Último	
Bloqueio	Sim/Não	Não	
Tela	Linha 1	a (Resistividade)	Ω-cm
	Linha 2	b (Temperatura)	0°
	Linha 3	c (Resistividade)	Ω-cm
	Linha 4	d (Temperatura)	0°
Constantes de cal	Cond/Res	M = 0,1 A = 0,0	cm ⁻¹ Ω
	Temperatura	M = 1,0 A = 0,0	Ω
Saída analógica	1	a (Resistividade)	
	2	b (Temperatura)	
	3	c (Resistividade)	
	4	d (Temperatura)	
Todas as saídas analógicas	Modo	4–20 mA	
-	Тіро	Normal	
	Alarme	Desligado	
	Modo de Retenção	Último Valor	

Parâmetro	Sub-parâmetro	Valor	Unidade	
Condutividade <i>Resistividade</i>	Valor 4 mA	0.1 <i>10</i>	μS/cm <i>MΩ-cm</i>	
	Valor 20 mA	10 20	μS/cm <i>MΩ-cm</i>	
Temperatura	Valor 4 mA 0 °C		°C	
	Valor 20 mA	100	°C	
Ponto de definição 1	Ponto de definição 1 Medição a (Resistividade)			
	Тіро	Desligado		
Condutividade <i>Resistividade</i>	Valor Alto	0 μS/cm 0 <i>MΩ-cm</i>		
	Valor Baixo	0 <i>0</i>	μS/cm <i>MΩ-cm</i>	
Relé 3	Ponto de ajuste	1		
Ponto de definição 2	Medição	С		
	Тіро	Desligado		
Condutividade <i>Resistividade</i>	Valor Alto	0 <i>0</i>	μS/cm <i>MΩ-cm</i>	
	Valor Baixo	0 <i>0</i>	μS/cm <i>MΩ-cm</i>	
Relé 4	Ponto de ajuste	2		
Resolução		Auto		
Ponto de definição 3	Medição	(nenhum)		
	Тіро	Desligado		
	Relé	(nenhum)		
Ponto de definição 4	Medição	(nenhum)		
	Тіро	Desligado		
	Relé	(nenhum)		
Condutividade <i>Resistividade</i>	Compensação	Standard		

* Para sinal de saída analógico se o relé for acionado

Itálico = Valores padrão se a resistividade for escolhida em vez da condutividade.

18 Garantia

A METTLER TOLEDO garante que este produto não tem desvios significativos de material e mão-de-obra durante o período de um ano a partir da data de compra. Se for necessário algum reparo que não seja resultado de abuso ou uso incorreto e dentro do período de garantia, devolva com frete pago e as correções serão feitas sem qualquer custo. O Departamento de Atendimento ao Cliente da METTLER TOLEDO determinará se o problema com o produto é devido a desvios ou abuso do cliente. Produtos fora da garantia serão reparados na base de troca com custo.

A garantia acima é a única garantia oferecida pela METTLER TOLEDO e substitui todas as outras garantias, expressas ou implícitas, incluindo, sem limitação, garantias implícitas de comercialização e adequação a uma finalidade específica. A METTLER TOLEDO não será responsável por qualquer prejuízo, reclamação, despesas ou danos causados, com a contribuição ou resultantes dos atos ou omissões do comprador ou terceiros, seja por negligência ou outra causa. Em nenhuma situação a responsabilidade da METTLER TOLEDO por qualquer causa de ação será superior ao custo do item que der motivo à reclamação, seja baseado em contrato, garantia, indenização ou ato ilícito (incluindo negligência).

19 Certificado

A Mettler-Toledo Thornton, Inc., 36 Middlesex Turnpike, Bedford, MA 01730, USA obteve classificação dos Transmissores modelo M300 na lista do Underwriters Laboratories. Eles ostentam a marca cULus Listed, indicando que os produtos foram avaliados segundo as normas ANSI/UL e CSA aplicáveis para uso nos EUA e Canadá.

20 Tabelas de buffer

Os transmissores M300 têm a capacidade de fazer reconhecimento automático de buffer de pH. As tabelas a seguir mostram buffers padrão diferentes que são reconhecidos automaticamente.

20.1 Buffers de pH padrão

20.1.1 Mettler-9

Temp (°C)	pH das soluções	de buffer		
0	2,03	4.01	7.12	9.52
5	2,02	4.01	7.09	9.45
10	2,01	4.00	7.06	9.38
15	2,00	4.00	7.04	9.32
20	2,00	4.00	7.02	9.26
25	2,00	4.01	7.00	9.21
30	1,99	4.01	6.99	9.16
35	1,99	4.02	6.98	9.11
40	1,98	4.03	6.97	9.06
45	1,98	4.04	6.97	9.03
50	1,98	4.06	6.97	8.99
55	1,98	4.08	6.98	8.96
60	1,98	4.10	6.98	8.93
65	1,98	4.13	6.99	8.90
70	1,99	4.16	7.00	8.88
75	1,99	4.19	7.02	8.85
80	2,00	4.22	7.04	8.83
85	2,00	4.26	7.06	8.81
90	2,00	4.30	7.09	8.79
95	2,00	4.35	7.12	8.77

	[
Temp (°C)	pH das soluções	de buffer		
0	2,03	4.01	7.12	10,65
5	2,02	4.01	7.09	10,52
10	2,01	4.00	7.06	10,39
15	2,00	4.00	7.04	10,26
20	2,00	4.00	7.02	10,13
25	2,00	4.01	7.00	10,00
30	1,99	4.01	6.99	9,87
35	1,99	4.02	6.98	9,74
40	1,98	4.03	6.97	9,61
45	1,98	4.04	6.97	9,48
50	1,98	4.06	6.97	9,35
55	1,98	4.08	6.98	
60	1,98	4.10	6.98	
65	1,99	4.13	6.99	
70	1,98	4.16	7.00	
75	1,99	4.19	7.02	
80	2,00	4.22	7.04	
85	2,00	4.26	7.06	
90	2,00	4.30	7.09	
95	2,00	4.35	7.12	

20.1.2 Mettler-10

20.1.3 Buffers técnicos NIST

Temp (°C)	C) pH das soluções de buffer				
0	1,67	4,00	7,115	10,32	13,42
5	1,67	4,00	7,085	10,25	13,21
10	1,67	4,00	7,06	10,18	13,01
15	1,67	4,00	7,04	10,12	12,80
20	1,675	4,00	7,015	10,07	12,64
25	1,68	4,005	7,00	10,01	12,46
30	1,68	4,015	6,985	9,97	12,30
35	1,69	4,025	6,98	9,93	12,13
40	1,69	4,03	6,975	9,89	11,99
45	1,70	4,045	6,975	9,86	11,84
50	1,705	4,06	6,97	9,83	11,71
55	1,715	4,075	6,97		11,57
60	1,72	4,085	6,97		11,45
65	1,73	4,10	6,98		
70	1,74	4,13	6,99		
75	1,75	4,14	7,01		
80	1,765	4,16	7,03		
85	1,78	4,18	7,05		
90	1,79	4,21	7,08		
95	1,805	4,23	7,11		

 $\langle \mathcal{P} \rangle$

Temp (°C)	pH das soluções	de buffer		
0				
5	1.668	4.004	6.950	9.392
10	1.670	4.001	6.922	9.331
15	1.672	4.001	6.900	9.277
20	1.676	4.003	6.880	9.228
25	1.680	4.008	6.865	9.184
30	1.685	4.015	6.853	9.144
35	1.694	4.028	6.841	9.095
40	1.697	4.036	6.837	9.076
45	1.704	4.049	6.834	9.046
50	1.712	4.064	6.833	9.018
55	1.715	4.075	6.834	8.985
60	1.723	4.091	6.836	8.962
70	1.743	4.126	6.845	8.921
80	1.766	4.164	6.859	8.885
90	1.792	4.205	6.877	8.850
95	1.806	4.227	6.886	8.833

20.1.4 Buffers padrão NIST (DIN e JIS 19266: 2000–01)

NOTA: Os valores de pH(S) das cargas individuais dos materiais de referência secundária são documentados em um certificado de um laboratório credenciado. Esse certificado é fornecido com os materiais de buffer respectivos. Somente esses valores de pH(S) serão usados como materiais de buffer de referência secundária. De forma correspondente, esse padrão não inclui uma tabela com valores de pH padrão para uso prático. A tabela acima fornece exemplos de valores de pH(PS) somente para orientação.

20.1.5 Buffers Hach

Valores de buffer de até 60°C como especificado pela Bergmann & Beving Process AB.

Temp (°C)	pH das soluções de buffer			
0	4.00	7.14	10.30	
5	4.00	7.10	10.23	
10	4.00	7.04	10.11	
15	4.00	7.04	10.11	
20	4.00	7.02	10.05	
25	4.01	7.00	10.00	
30	4.01	6.99	9.96	
35	4.02	6.98	9.92	
40	4.03	6.98	9.88	
45	4.05	6.98	9.85	
50	4.06	6.98	9.82	
55	4.07	6.98	9.79	
60	4.09	6.99	9.76	
65	4.09*	6.99*	9.76*	
70	4.09*	6.99*	9.76*	
75	4.09*	6.99*	9.76*	
80	4.09*	6.99*	9.76*	
85	4.09*	6.99*	9.76*	
90	4.09*	6.99*	9.76*	
95	4.09*	6.99*	9.76*	

Temp (°C)	pH das soluções	de buffer		
0	2,04	4,00	7,10	10,30
5	2,09	4,02	7,08	10,21
10	2,07	4,00	7,05	10,14
15	2,08	4,00	7,02	10,06
20	2,09	4,01	6,98	9,99
25	2,08	4,02	6,98	9,95
30	2,06	4,00	6,96	9,89
35	2,06	4,01	6,95	9,85
40	2,07	4,02	6,94	9,81
45	2,06	4,03	6,93	9,77
50	2,06	4,04	6,93	9,73
55	2,05	4,05	6,91	9,68
60	2,08	4,10	6,93	9,66
65	2,07*	4,10*	6,92*	9,61*
70	2,07	4,11	6,92	9,57
75	2,04*	4,13*	6,92*	9,54*
80	2,02	4,15	6,93	9,52
85	2,03*	4,17*	6,95*	9,47*
90	2,04	4,20	6,97	9,43
95	2,05*	4,22*	6,99*	9,38*

20.1.6 Buffers Ciba (94)

* Extrapolado

20.1.7 Merck Titrisole, Riedel-de-Haën Fixanale

Temp (°C)	pH das soluçõ	es de buffer			
0	2.01	4.05	7.13	9.24	12.58
5	2.01	4.05	7.07	9.16	12.41
10	2.01	4.02	7.05	9.11	12.26
15	2.00	4.01	7.02	9.05	12.10
20	2.00	4.00	7.00	9.00	12.00
25	2.00	4.01	6.98	8.95	11.88
30	2.00	4.01	6.98	8.91	11.72
35	2.00	4.01	6.96	8.88	11.67
40	2.00	4.01	6.95	8.85	11.54
45	2.00	4.01	6.95	8.82	11.44
50	2.00	4.00	6.95	8.79	11.33
55	2.00	4.00	6.95	8.76	11.19
60	2.00	4.00	6.96	8.73	11.04
65	2.00	4.00	6.96	8.72	10.97
70	2.01	4.00	6.96	8.70	10.90
75	2.01	4.00	6.96	8.68	10.80
80	2.01	4.00	6.97	8.66	10.70
85	2.01	4.00	6.98	8.65	10.59
90	2.01	4.00	7.00	8.64	10.48
95	2.01	4.00	7.02	8.64	10.37

Temp (°C)	pH das soluções de buffer				
0	2,03	4,01	7,12	10,65	
5	2,02	4,01	7,09	10,52	
10	2,01	4,00	7,06	10,39	
15	2,00	4,00	7,04	10,26	
20	2,00	4,00	7,02	10,13	
25	2,00	4,01	7,00	10,00	
30	1,99	4,01	6,99	9,87	
35	1,99	4,02	6,98	9,74	
40	1,98	4,03	6,97	9,61	
45	1,98	4,04	6,97	9,48	
50	1,98	4,06	6,97	9,35	
55	1,98	4,08	6,98		
60	1,98	4,10	6,98		
65	1,99	4,13	6,99		
70		4,16	7,00		
75		4,19	7,02		
80		4,22	7,04		
85		4,26	7,06		
90		4,30	7,09		
95		4,35	7,12		

20.1.8 Buffers WTW

20.1.9 Buffers JIS Z 8802

Temp (°C)	pH das soluções de buffer				
0	1,666	4,003	6,984	9,464	
5	1,668	3,999	6,951	9,395	
10	1,670	3,998	6,923	9,332	
15	1,672	3,999	6,900	9,276	
20	1,675	4,002	6,881	9,225	
25	1,679	4,008	6,865	9,180	
30	1,683	4,015	6,853	9,139	
35	1,688	4,024	6,844	9,102	
38	1,691	4,030	6,840	9,081	
40	1,694	4,035	6,838	9,068	
45	1,700	4,047	6,834	9,038	
50	1,707	4,060	6,833	9,011	
55	1,715	4,075	6,834	8,985	
60	1,723	4,091	6,836	8,962	
70	1,743	4,126	6,845	8,921	
80	1,766	4,164	6,859	8,885	
90	1,792	4,205	6,877	8,850	
95	1,806	4,227	6,886	8,833	

20.2 Buffers do eletrodo de pH de membrana dupla

20.2.1 Buffers Mettler-pH/pNa (Na+ 3.9M)

Temp (°C)	pH das soluções de buffer				
0	1,98	3,99	7,01	9,51	
5	1,98	3,99	7,00	9,43	
10	1,99	3,99	7,00	9,36	
15	1,99	3,99	6,99	9,30	
20	1,99	4,00	7,00	9,25	
25	2,00	4,01	7,00	9,21	
30	2,00	4,02	7,01	9,18	
35	2,01	4,04	7,01	9,15	
40	2,01	4,05	7,02	9,12	
45	2,02	4,07	7,03	9,11	
50	2,02	4,09	7,04	9,10	

METTLER TOLEDO Organizações de Marketing

Vendas e Servicos:

Alemanha

Mettler-Toledo GmbH ProzeBanalytik Ockerweg 3 DE-35396 Gießen +49 641 507 444 Tel. e-mail prozess@mt.com

Austrália

Mettler-Toledo I imited 220 Turner Street Port Melbourne, VIC 3207 Australia +61 1300 659 761 Tel info.mtgus@mt.com e-mail

Áustria

Mettler-Toledo Ges.m.b.H. Laxenburger Str. 252/2 AT-1230 Wien +43 1 607 4356 Tel e-mail prozess@mt.com

Brasil

Mettler-Toledo Ind. e Com. Ltda. Avenida Tamboré, 418 Tamboré BR-06460-000 Barueri/SP +55 11 4166 7400 Tel e-mail mettler@mettler.com.br service@mettler.com.br

Canadá

Mettler-Toledo Inc. 2915 Argentia Rd #6 CA-ON L5N 8G6 Mississauga Tel +1 800 638 8537 Proinsidesales@mt.com e-mail

China

Mettler-Toledo International Trading (Shanghai) Co. Ltd. 589 Gui Ping Road Cao He Jing CN-200233 Shanghai +86 21 64 85 04 35 Tel. e-mail ad@mt.com

Cingapura

Mettler-Toledo (S) Pte. Ltd. Block 28 Aver Rajah Crescent # 05-01 SG-139959 Singapore Tel. +65 6890 00 11 e-mail mt.sg.customersupport@mt.com

Coréia do Sul

Mettler-Toledo (Korea) Ltd. 1&4F, Yeil Building 21 Yangjaecheon-ro 19-ail SeoCho-Gu Seoul 06753 Korea Tel. +82 2 3498 3500 Sales_MTKR@mt.com e-mail

Sistema de Administração certificado de acordo com ISO 9001/14001

Croácia

Mettler-Toledo d.o.o. Mandlova 3 HR-10000 Zagreb +385 1 292 06 33 Tel mt.zagreb@mt.com e-mail

Dinamarca

Mettler-Toledo A/S Naverland 8 DK-2600 Glostrup +45 43 27 08 00 Tel. info.mtdk@mt.com e-mail

Eslováquia

Mettler-Toledo s.r.o. Hattalova 12/A SK-83103 Bratislava +421 2 4444 12 20-2 Tel predaj@mt.com e-mail

Eslovénia

Mettler-Toledo d.o.o. Pot heroja Trtnika 26 SI-1261 Ljubljana-Dobrunje Tel +386 1 530 80 50 e-mail keith.racman@mt.com

Espanha

Mettler-Toledo S.A.E. C/Miguel Hernández, 69-71 ES-08908 L'Hospitalet de Llobregat (Barcelona) +34 902 32 00 23 Ìel. mtemkt@mt.com e-mail

Estados Unidos

METTLER TOLEDO Process Analytics 900 Middlesex Turnpike, Bld. 8 Billerica, MA 01821, USA +1 781 301 8800 Tel. Tel. gratis +1 800 352 8763 e-mail mtprous@mt.com

França

Mettler-Toledo Analyse Industrielle S.A.S. 30, Boulevard de Douaumont FR-75017 Paris +33 1 47 37 06 00 Tel. e-mail mtpro-f@mt.com

Hungria

CE C_{N315}

Mettler-Toledo Kereskedelmi KFT Teve u. 41 HU-1139 Budapest Tel. +36 1 288 40 40 e-mail mthu@axelero.hu

Índia

Mettler-Toledo India Private Limited Amar Hill, Saki Vihar Road, Powai IN-400 072 Mumbai +91 22 2857 0808 Tel sales.mtin@mt.com e-mail

Indonésia

PT. Mettler-Toledo Indonesia GRHA PERSADA 3rd Floor JI. KH. Noer Ali No.3A. Kayuringin Jaya Kalimalang, Bekasi 17144, ID +62 21 294 53919 Tel e-mail mt-id.customersupport@mt.com

Inglaterra

Mettler-Toledo LTD 64 Boston Road, Beaumont Leys GB-Leicester LE4 1AW Tel +44 116 235 7070 enguire.mtuk@mt.com e-mail

Itália

Mettler-Toledo S.p.A. Via Vialba 42 IT-20026 Novate Milanese +39 02 333 321 Tel customercare.italia@mt.com e-mail

Japão

Mettler-Toledo K.K. Process Division 6F Ikenohata Nisshoku Bldg. 2-9-7, Ikenohata, Taito-ku JP-110-0008 Tokyo Tel. +81 3 5815 5606 e-mail helpdesk.ing.jp@mt.com

Malásia

Mettler-Toledo (M) Sdn Bhd Bangunan Electroscon Holding, U 1-01 Lot 8 Jalan Astaka U8 / 84 Seksyen U8, Bukit Jelutong MY-40150 Shah Alam Selangor Tel. +60 3 78 44 58 88 e-mail MT-MY.CustomerSupport@mt.com

México

Mettler-Toledo S.A. de C.V. Ejército Nacional #340 Polanco V Sección C.P. 11560 MX-México D.F. Tel. +52 55 1946 0900 e-mail mt.mexico@mt.com

Noruega

Mettler-Toledo AS Ulvenveien 92B NO-0581 Oslo Norway +47 22 30 44 90 Tel. info.mtn@mt.com e-mail

Polônia

Mettler-Toledo (Poland) Sp.z.o.o. ul. Poleczki 21 PL-02-822 Warszawa +48 22 545 06 80 Tel e-mail polska@mt.com

República Checa

Mettler-Toledo s.r.o. Trebohosticka 2283/2 CZ-100 00 Praha 10 Tel. +420 2 72 123 150 sales.mtcz@mt.com e-mail

Rússia

Mettler-Toledo Vostok ZAO Sretenskij Bulvar 6/1 Office 6 RU-101000 Moscow +7 495 621 56 66 Tel e-mail inforus@mt.com

Suécia

Mettler-Toledo AB Virkesvägen 10 Box 92161 SE-12008 Stockholm +46 8 702 50 00 Tel e-mail sales.mts@mt.com

Suíca

Mettler-Toledo (Schweiz) GmbH Im Lanaacher, Postfach CH-8606 Greifensee +41 44 944 47 60 Tel e-mail ProSupport.ch@mt.com

Tailândia

Mettler-Toledo (Thailand) Ltd. 272 Soi Soonvijai 4 Rama 9 Rd., Bangkapi Huay Kwang TH-10320 Bangkok +66 2 723 03 00 Tel. e-mail MT-TH.CustomerSupport@mt.com

Turauia

Mettler-Toledo Türkiye Haluk Türksoy Sokak No: 6 Zemin ve 1. Bodrum Kat 34662 Üsküdar-Istanbul, TR Tel. +90 216 400 20 20 e-mail sales.mttr@mt.com

Vietname

Mettler-Toledo (Vietnam) LLC 29A Hoang Hoa Tham Street, Ward 6 Binh Thanh District Ho Chi Minh City, Vietnam +84 8 35515924 Tel. e-mail MT-VN.CustomerSupport@mt.com

© Mettler-Toledo GmbH, Process Analytics 01/2016 Impresso na Suíça. 52 121 392

Mettler-Toledo GmbH, Process Analytics Im Hackacker 15, CH-8902 Urdorf, Suíça Tel. +41 44 729 62 11, Fax +41 44 729 66 36

www.mt.com/pro