
Programming Manual

METTLER TOLEDO MultiRange

Weighing terminals ID20 / ID20 TouchScreen

ID20 Programming Manual METTLER TOLEDO

2 00 506 141G 01 / 2001

METTLER TOLEDO ID20 Programming Manual

00 506 141G 01/ 2001 3

While every precaution has been taken in the preparation of this manual, METTLER TOLEDO
ALBSTADT assumes no responsibility for errors or omissions. Neither any liability is assumed for
damages resulting from the use of the information contained here.

Terms and product names mentioned in this manual are trademarks, registered trademarks or
service marks of their respective owners. Use of a term should not be regarded as affecting the
validity of any registered trademark, trademark, or service mark.

Windows is a registered trademark of Microsoft Corporation.

Copyright by Mettler-Toledo (Albstadt) GmbH 2000-2001.

All rights reserved.

Printed in Germany.

ID20 Programming Manual METTLER TOLEDO

4 00 506 141G 01 / 2001

1. Contents

1. CONTENTS..4

2. INTRODUCTION...8

2.1. THIS MANUAL ... 8
2.2. OPERATION FIELDS... 9
2.3. PROGRAMMERS SUPPORT.. 9

IMPORTANT GUIDELINES ..10

3.1. APPLICATIONS SUBJECTED TO LEGAL CONTROL .. 10
3.2. ALIBI FILE... 10

4. ID20-SOFTWARE ARCHITECTURE ...11

4.1. STRUCTURE .. 11
4.1.1. Weighing interface software .. 12

4.1.2. Scale driver program .. 12

4.1.3. Software interface ... 13

4.1.4. Application program... 13

4.2. DRIVER INTEGRATION FOR AUTOMATIC START UP .. 15
4.3. SOFTWARE DOWNLOAD TO WEIGHING INTERFACE WI-ISA.. 15

5. HOW TO PROGRAM THE ID20 ..17

5.1. SUPPORTED LANGUAGES ... 17
5.2. HOW TO BUILD APPLICATIONS .. 18
5.2.1. Example in Borland C++ Builder 4.0 (under Windows NT).. 19

5.2.2. Example in Microsoft Visual Basic 4.0 (under Windows98) .. 23

5.3. PROGRAMMING GUIDELINES FOR WINDOWS ... 27

6. SOFTWARE COMMANDS..28

6.1. GENERAL SYSTEM COMMANDS ... 28
6.1.1. MEMTRACE .. 29

6.1.2. SYS_VERSION .. 30

6.1.3. WI_VERSION .. 31

6.2. BASIC WEIGHING COMMANDS .. 32
6.2.1. WI_WEIGHT ... 33

METTLER TOLEDO ID20 Programming Manual

00 506 141G 01/ 2001 5

6.2.2. WI_ZERO ... 34

6.2.3. WI_SET_TARE .. 35

6.2.4. WI_SCALE .. 36

6.2.5. WI_SCALE_INFO... 37

6.2.6. WI__GET_WEIGHT_STATE .. 38

6.2.7. WI__GET_GROSS, WI__GET_NET, WI__GET_TARE (consistent)....................................... 39

6.2.8. WI_GROSS, WI_NET, WI_TARE (not consistent) .. 40

6.2.9. WI__GET_HIGHRES (consistent)... 41

6.2.10. WI_HIGHRES (not consistent) ... 42

6.2.11. WI_PRINT_VALUE ... 43

6.2.12. WI__GET_TIME_STAMP... 44

6.2.13. WI__GET_AUTHENTIFICATION ... 45

6.2.14. WI_USER_DATA .. 46

6.3. SPECIAL WEIGHING COMMANDS ... 47
6.3.1. Additional information to weighing filter commands:.. 48

6.3.2. WI_ADAPT_VIBRATION.. 49

6.3.3. WI_ADAPT_PROCESS ... 50

6.3.4. WI_ADAPT_STABILITY_DETECT ... 51

6.3.5. WI_SCALE_MODE... 52

6.3.6. WI_IDENTBLOCK.. 53

6.3.7. WI_AUTOTARE_ON ... 54

6.3.8. WI_AUTOTARE_OFF .. 55

6.3.9. WI_AUTOZERO_ON... 56

6.3.10. WI_AUTOZERO_OFF .. 57

6.3.11. WI_RESTART_ON.. 58

6.3.12. WI_RESTART_OFF... 59

6.4. SYSTEM COMMANDS .. 60
6.4.1. SYS_WI.. 61

6.4.2. WI_BEEP ... 62

6.4.3. WI_KEYBOARD_ON .. 63

6.4.4. WI_KEYBOARD_OFF ... 64

6.4.5. WI_SERVICE_AUTARK... 65

6.5. PARALLEL I/O CONTROL .. 66
6.5.1. OPT94_VERSION.. 67

6.5.2. OPT94_WRITE ... 68

6.5.3. OPT94_READ... 69

6.5.4. SYS_PORT_OUT ... 70

6.5.5. SYS_PORT_IN .. 71

ID20 Programming Manual METTLER TOLEDO

6 00 506 141G 01 / 2001

7. BASIC CONTROL APPLICATIONS...72

7.1. WINSCALE APPLICATION FOR MS-WINDOWS 95/98/NT .. 72
7.1.1. Structure... 72

7.1.2. Translating or editing texts in WinScale ... 73

7.1.3. INI-File of WinScale .. 74

7.1.4. User weighing program .. 74

7.1.5. Service functionality.. 75

7.1.6. Integrated text editor ... 76

7.1.7. Options.. 76

7.2. SCALE APPLICATION FOR MS-DOS... 78
7.2.1. SCALE.EXE ... 78

7.2.2. Features ... 78

7.3. SERVICE APPLICATION FOR MS-DOS .. 79
7.3.1. SERVICE.EXE .. 79

7.3.2. Features ... 79

7.4. ALIBI FILE AUTHENTICATION ... 80

METTLER TOLEDO ID20 Programming Manual

00 506 141G 01/ 2001 7

ID20 Programming Manual METTLER TOLEDO

8 00 506 141G 01 / 2001

2. Introduction

2.1. This manual
The goal of this programming manual is to help you learn all necessary issues
about weighing with the ID20 as fast as possible. It shows you how easy it is,
to write applications for the ID20. Although it is a programming manual with
very basic examples, this is not a handbook for programming newcomers.

When you start working with the ID20, we recommend to go through all the
chapters step by step in the existing order. After that you ought to be fully aware
of the weighing specific hard- and software and the ID20´s easy programming.

The chapters of this manual are built up in this order:

Introduction Theory Practice Documentation ID20-Tools

What’s up ? What to know
about Weighing

Guidelines,
ID20 weighing
specific Hard-
and Software

How to program
the ID20 with the

different pro-
gramming lan-

guages

All the program-
ming commands

to control the
ID20

Useful applica-
tions, examples

and
ID20 – Tools

METTLER TOLEDO ID20 Programming Manual

00 506 141G 01/ 2001 9

2.2. Operation fields
The ID20 represents the integration of an industrial standard PC architecture
and a weight- and measures approved weighing terminal, prepared to be used
in harsh industrial environment. It can be used to:
• replace or enhance today's existing applications where separate PCs and

weighing-terminals were used
• for completely new weighing solutions or
• simply as an industrial PC in all kinds of applications.

Functions are made easier and more readable than in other products to give
non-weighing specialists a good base for application writing.

ID20 ID20-IPC*

* The Industrial-PC-Version of the ID20 is the ID20-IPC. The ID20-IPC is not
equipped with an integrated weighing capability (no Weighing Interface and no
secondary display). Hence you can program the IPC like every other computer,
but without the weighing specific command set, described in this manual.

2.3. Programmers support
METTLER TOLEDO’ s goal is to provide software developers with the combina-
tion of the well known standard-PC platform and an easy access to weighing
specific data.

Software designers are supported with a collection of very comfortable software
functions. Using these functions, you can rapidly create professional weighing
applications. To support as many programmers as possible, METTLER TOLEDO
offers various kinds of different software languages for different operating sys-
tems.

These functions will help the programmer in practically every weighing-specific
operation. For example, all calculations of gross-, net- and tare-values or the
setting of permissible boundaries are taken over by the functions. The return
code tells the programmer easily, if the call was successful or why the com-
mand has not been executed.

Additionally, most subjects in the context of approval issues are handled by the
METTLER TOLEDO hard- and software. Only very few regulations have to be ob-
served in order to write applications that fulfill the approval requirements (see
guidelines on the following page).

ID20 Programming Manual METTLER TOLEDO

10 00 506 141G 01 / 2001

3. Important Guidelines

3.1. Applications subjected to legal control
The ID20 terminal is approved for applications subject to legal control.
Due to the innovative conception of the terminal, legal requirements to be met
by the application software are easy to fulfill. Nevertheless, it is important to ob-
serve subjects relevant to legal control when handling the software commands.

For legal verification purposes it has to be possible at anytime to reconstruct all
weighing results printed or registered. This data has to be stored in the ID20 in-
ternal alibi file, according to the procedures in this document. To allow a correct
reconstruction of complete data sets, weighing results have to be printed or
registered together with date and time.

3.2. Alibi file
One of the big benefits of the ID20 is that you do not need a paper printer for the
documentation of weighing results in applications subject to legal control. Most
printers cannot be used in harsh, filthy or wet environment and in addition han-
dling of paper is critical.

For this purpose, a special file, called MEMORY.MTA has been put on the ID20-
harddisk. Weighing results that are printed or registered in accordance to legal
verification have to be stored in this internal alibi memory. The file has a special
compressed format, so it is not possible to read this file with a standard editor
or tool. Every record is secured separately with a high-security and ID20-unique
check-sum, so any manipulation will be detected.
The only possibility to verify the alibi file is the “SCALE” option in the scale driver
program LIGHT.EXE (see chapter “Alibi File Authentication” on page 80). The
editor performs a self-test when starting up, so manipulations are detected.

The alibi memory is physically represented by the 24MB file “MEMORY.MTA” on
the harddisk. The user and the software developer are responsible for the correct
use and state of this file. The size of 24 MB results from the approval authority
guideline which demands, that weighing results have to be stored for at least 3
months:

It is possible to perform every 12 seconds – up to three months, 24 h around
the clock - a new print into the alibi file, without overwriting the first entry! If the
capacity of the alibi file is reached, the oldest entry will be overwritten.

Please note: Access to
• the scale-driver LIGHT.EXE,
• the operation of the scale,
• the editor program LIGHT SCALE to verify the certification and
• the stored values in the alibi file
must be possible at any time !

The programmer for applications subject to legal control has to observe all
regulations described in the chapter “Basic weighing commands”.
It is not allowed to delete or modify the content of the file MEMORY.MTA !

i

!

METTLER TOLEDO ID20 Programming Manual

00 506 141G 01/ 2001 11

4. ID20-Software architecture

4.1. Structure
The diagram shows the connected modules and the interfaces between the user
application program and the weighing instrument:

Software Interface
DLL-FILE
(NT_BC.DLL, VB32_MEM.DLL...)

Scale Driver
LIGHT.EXE
LIGHT.EXE for DOS, WIN3.11/95/98,
LIGHT_NT.EXE for WIN NT4.0,
MEMORY.EXE for old Weighing Interface

 and DOS, Win3.11/95/98

Weighing
interface
WI-ISA

IDNet-Protocol
(legal approved)

ISA-Bus-Protocol
(legal approved)

Software language
dependent function call
(language specific pa-
rameter handling)

Standard function call
(standardized parameter handling)

Approved world
Programmer has

no control

Programmers world
Programmer has
complete control

IDNet Scale

Harddisk
Contains alibi file

LCD-Display
Displays approved
weight values

ID20 Programming Manual METTLER TOLEDO

12 00 506 141G 01 / 2001

4.1.1. Weighing interface software
The software on the weighing interface WI-ISA is responsible for the communi-
cation between the scale and the PC-based scale driver program. The software
itself is located in an Electrically Erasable Programmable ROM (EEPROM). This
technology makes it possible to download a new release direct from the ID20
harddisk into the weighing interface without opening the terminal.

In older Weighing Interface hardware versions the weighing interface software is
located in an EPROM, so for software updates you have to open the ID20 to
change the EPROM.

4.1.2. Scale driver program

Overview
The table shows an overview which kind of scale driver program has to be
used, depending on the existing hardware and operating system:

Old weighing interface New weighing interface WI-ISA

MEMORY.EXE LIGHT.EXE LIGHT_NT.EXE
MS-DOS X X -
Win 3.1/95/98 X X -
Win NT - - X

For MS-DOS, Windows 3.11, Windows 95 and Windows 98:
When the operating system MS-Windows 3.11, 95 or 98 is used with the
weighing interface WI-ISA, the scale driver program LIGHT.EXE has to run as a
memory resident DOS-based background program.

The driver is responsible for the communication between the weighing interface
software and the software interface (library) and the user application program
respectively. The electrical communication between the new weighing interface
and the CPU is done via a security protocol over the PC-ISA bus.

For the old weighing interface, the older scale driver program MEMORY.EXE has
to be used ! MEMORY.EXE can not run under Windows NT.

For Windows NT:
When the operating system MS-Windows NT is used, the scale driver program
has to run as a server task. Therefore, under Windows NT the program
LIGHT_NT.EXE has to be used (call LIGHT_NT SERVER).

METTLER TOLEDO ID20 Programming Manual

00 506 141G 01/ 2001 13

4.1.3. Software interface
The software library defines a standardized interface between the different pro-
gramming languages and the scale driver program.

Internals:
All parameters to the scale driver have to be passed in the processor registers
AX, BX, CX and DX. After that, a command-specific software interrupt has to be
performed. AX contains the number of the function which has to be carried out.
BX and DX (BX:DX) contain the pointer to an input string - if necessary. If inte-
ger values have to be handled, value 1 is in BX, value 2 in CX and value 3 is in
DX. After the software interrupt, the return value can be found in the corre-
sponding registers. During the software interrupt, the command blocks the ap-
plication until the end. So, if e.g. a tare has to be carried out, the application
stops until the tare function returns.

Note:
For the programmer in a high level language, these internals are not very im-
portant. All what’s to do, is to link the correct software library (.LIB) into the
project and to make sure that the correct dynamic link library (.DLL) is placed in
the application program directory or in the windows system directory.

Programming hint:
Every result, coming from and going to the scale driver, are saved in a single
static and space-saving buffer area. Therefore, the application programmer
must save all results immediately in his application memory area. In other
words, pointers to results should not be used because the memory content can
change, so always copy results in variables: integers or fields for strings.

4.1.4. Application program
Applications can be programmed without any restriction on the ID20, which
means it is possible to use all features of a modern PC like full graphics, full
speed, multitasking (except multiple access to the weighing interface), internet
connections, etc.

So it is possible to run e.g. a weighing program with a touch screen user inter-
face in the foreground and an OLE or OPC connected application like MS-
ACCESS or MS-EXCEL in the background as a data base.

Note:
Access to weighing data can be managed completely via the ID20-software
commands, described in this manual. The only restriction concerns applications
subjected to legal control.

If there is such a need for legal correct documentation, the programmer has to
take care that each important weighing result is stored in the alibi file.

This has to be done by the call of two successive Weighing Interface com-
mands: WI_WEIGHT() reads the actual weighing results and the proceeding
WI_PRINT_VALUE() does the alibi print. Both commands do not need any pa-
rameters, so they are really easy to handle !

ID20 Programming Manual METTLER TOLEDO

14 00 506 141G 01 / 2001

METTLER TOLEDO ID20 Programming Manual

00 506 141G 01/ 2001 15

4.2. Driver integration for automatic start up
To avoid any problem when starting applications, it is necessary to install the
specific scale driver for the concerned operating system in the correct way:

For MS-DOS, Windows 3.11, Windows 95 and Windows 98:
Under these DOS-based operating systems, LIGHT.EXE has to be placed and
started in the autoexec.bat. It is not possible to start the driver program in a
DOS-box under Windows, because the Windows application has no information
about tasks in parallel running DOS-boxes.

Please note, that it is not allowed to run the LIGHT.EXE twice, because access to
the weighing interface is only allowed by one scale driver program !

Please note that LIGHT.EXE is already installed correctly, if you receive a new
ID20 with installed Windows 3.11, Windows 95 or Windows 98 from MET-
TLER-TOLEDO!

For Windows NT:
LIGHT_NT.EXE has to be placed in the registry for automatic startup !
In new systems, this can be done by performing GENPORT.BAT, which is lo-
cated in the root directory of the harddisk once.

Please note that LIGHT_NT.EXE is already correctly installed, if you receive a
new ID20 with installed Windows NT from METTLER-TOLEDO!

4.3. Software download to weighing interface WI-ISA
If it is necessary to update a new weighing interface WI-ISA with a new firm-
ware, this can be done by proceeding the following steps:

1. Go to MS-DOS or open a DOS-Box in Windows and select the
root directory C:\ :

Note:
If your ID20 runs under Windows NT, please replace all - calls in the
following actions with - calls !

2. Close an eventually running scale driver program
by entering: or

3. Start the download of your new file AW010XXX (xxx is the Version No.)
In this example AW010132.MTA:

Now the screen informs about the download progress. The process is fin-
ished, after 1024 blocks are passed down into the weighing interface
and the following success message appears:

!

ID20 Programming Manual METTLER TOLEDO

16 00 506 141G 01 / 2001

During the download process, the message “Download active” is displayed
on the approval LC - Display.

Note:
Never interrupt the download by switching power off or other manipulations!
The boot loader in the weighing interface can be damaged, so the weighing
interface has to be changed completely! If an error appears, exit from your
DOS box, shut down windows and restart the ID20. Then, the boot loader
mode will be active (see approval display). DOS will ask you for the down-
load file, if windows starts up again, proceed another download.

4. Generate a new approval key. After a new software version was down-
loaded, a new approval key has to be created. This key is used later to
generate a secret authentication code for each record in the alibi file.
Note: The following call of light control will overwrite the alibi file
MEMORY.MTA. So make sure, that you have saved the alibi file before !

To make this key unique, the 7-digit serial number of the ID20 has to be
entered with the control option of the Light driver:
 (replace xxxxxxx with ID20-Ser.Nr. !)

After a short time the success
message appears :

5. Ready ! Leave DOS-box by typing in t to go back to Windows.
Now shut down Windows and switch off the ID20. When switching on
again, the little secondary LCD-Display shows the version of the new soft-
ware for a few seconds.
After booting the scale driver appears as shown, when installed correctly :
(In Windows, click on the task symbol in the task bar to enlarge this window
and click on to make it small again)

Note:
If no approval key was created with “LIGHT control”, you will retrieve this
message . Then please go back to point 5 above.

!

!

METTLER TOLEDO ID20 Programming Manual

00 506 141G 01/ 2001 17

5. How to program the ID20

5.1. Supported languages

METTLER TOLEDO supports software developers with the following program-
ming languages / software interfaces for the different operating systems:

The mentioned terms are the corresponding ID20s directories:

16 Bit systems
Do not use for new projects

32 bit systems
Recommended for new projectsProgramming

language MS-DOS MS-Win 3.11 MS-Win 98 MS-Win NT
MS-Turbo Pascal TP6_DOS - - -
MS-C MSC6_DOS - - -

Borland C BORL_C - - -

MS-Visual Basic - WIN_VB WIN95_VB NT_VB

MS-Visual C - WIN_VC WIN95_VC NT_VC / -VC5

Borland C++ Builder - WIN_BC WIN95_BC NT_BC

Borland Delphi - DELPHI DELPHI2 NT_DEL

Supported programming languages and where the libraries are located on the ID20.

Example:
You want to create an application with MS Visual Basic under Windows NT .
As a result, you will find all the necessary files in the directory :
After you have copied all these files in your own application directory, you can
start the implementation !

Development and support for special operating systems like OS/2 and UNIX has
been stopped approx. 1996. That means, that the software interfaces for these
operating systems, which are still located on the ID20 harddisk, are not on the
current state. Support or any modifications are not possible any more.

Note:
a) For new projects METTLER TOLEDO recommends the use of 32-bit software

libraries due to better performance and optimum support !
b) Please do not use operating systems like OS/2 or UNIX for new projects !

!

ID20 Programming Manual METTLER TOLEDO

18 00 506 141G 01 / 2001

5.2. How to build applications
Creating weighing specific applications for DOS or Windows is very easy with
the use of the METTLER TOLEDO software interface.

All necessary files for each supported programming language can be found on
the ID20 harddisk. You can get the directory names from the table on page 17.

In the following chapters, you’ll find step-by-step instructions for program de-
velopers for two common programming languages:

The general processing should be similar if you are using other C- or Basic
compilers / interpreters or if you are using Pascal / Delphi.

In case of problems, do not hesitate to contact your local METTLER TOLEDO
dealer for support.

METTLER TOLEDO ID20 Programming Manual

00 506 141G 01/ 2001 19

5.2.1. Example in Borland C++ Builder 4.0 (under Windows NT)

Preparing for work
First, we create a working
directory for our new
C++ project on the ID20
harddisk C:\PROJECTS\CPP.

In this directory, we have to copy the necessary METTLER TOLEDO Software-
Interface files. To determine, where the files are located, a lookup in the software
interface directory table on page 17 is helpful.

Due to the use of Borland C++ as programming language and Windows NT as
operating system, the files located in the directory “C:\NT_BC“ are needed.

So the next preparation step is to
copy these files into our project
directory C:\PROJECTS\CPP :

The header file has to be in-
cluded into our source code later.
This file automatically includes the
three other header files. The library file has to be linked into the new project,
the dynamic link library will be loaded automatically during run time of the
application.

Installing the Software Interface
Start the Borland C++ - Compiler.
Select a new application by choosing
FILE/NEW PROJECT...

After arranging the windows, you will see a screen similar to this:

If not all windows are visible, open them with F11 , Ctrl+Alt+F11 , or use the
window list editor by pressing Alt + O.

i

Form window

OOObbbjjjeeecccttt
IIInnnssspppeeeccctttooorrr
wwwiiinnndddooowww

Source code editor

PPPrrrooojjjeeecccttt
MMMaaannnaaagggeee---

mmmeeennnttt
wwwiiinnndddooowww

ID20 Programming Manual METTLER TOLEDO

20 00 506 141G 01 / 2001

First of all, we will save
the new project. Choose
FILE/SAVE PROJECT...
As path, select the newly
created project directory
C:\PROJECTS\CPP :

The first window asks for
a file name for the Unit file
(our source code).
Please type in :

The second window asks
for the project name,
please type in :

As the next step, we will
link the METTLER TOLEDO
library to our project.

In the menu bar, choose
PROJECT/ADD...

In the appearing file selector window choose “Library files” as file type. Now
the library is displayed and can be added to our project with a click on :

The library is now included in our project.

Before we can really start to implement
our application code, we have do the
last preparation step, which is to
include the header file into our source
unit. So, in the source code editor
please type in :

Ready ! Now we have constructed everything necessary to communicate with
the METTLER TOLOEDO weighing interface. In the following steps, we will finally
implement a small weighing application.

METTLER TOLEDO ID20 Programming Manual

00 506 141G 01/ 2001 21

Programming the application in C++
The goal is to create a little applica-
tion, where we can see the con-
nected scale and the actual weigh-
ing result. We need a possibility to
tare the scale and set it to zero. Ad-
ditionally, we want to have a button
to close the application.

We select our form window FORM1 by clicking on it. In
the object inspector, which now displays the properties,
enter the settings as follows:

PROPERTY SETTING
BORDER STYLE: bsSizeable
CAPTION: ID20 Demo
HEIGHT: 150
POSITION: poDesktopCenter
WIDTH: 330

Now, out of the component palette, we add the following objects / compo-
nents into the form and set their properties in the object inspector:

Example:
To add the first label, click in the component bar. The symbol changes its
shape to . Now, click on the desired place in the form area to place the new
label. In the Object Inspector type in the caption
and select the desired font with a click on:

Label1
Property Setting
Caption Scale
Font Arial, Bold, 18
Top 24
Left 16

Label2
Property Setting
Caption Weight
Font Arial, Bold, 18
Top 24
Left 104

Button1
Property Setting
Caption Zero
Top 80
Left 16
Height 25
Width 73

Timer1
Property Setting
Enabled True
Interval 250
Name Timer1

Button2
Property Setting
Caption Tare
Top 80
Left 104
Height 25
Width 73

Button3
Property Setting
Caption Close
Top 80
Left 232
Height 25
Width 73

ID20 Programming Manual METTLER TOLEDO

22 00 506 141G 01 / 2001

Now, we will add own code to our application:

1. Double-click on the “Zero” button, and add this code to the OnClick handler:
void __fastcall TForm1::Button1Click(TObject *Sender)
{

WI_ZERO(); // set scale to zero
}

2. Double-click on the “Tare” button, and add this code to the OnClick handler:
void __fastcall TForm1::Button1Click(TObject *Sender)
{

WI_SET_TARE(""); // tare the scale
}

3. Double-click on the “Close” button, and add this code to the OnClick handler:
void __fastcall TForm1::Button3Click(TObject *Sender)
{
 Close();
}

4. Because we want to display the updated weight value online, we have in-
cluded the timer component. Double-click on the Timer symbol, and add this
code to the OnTimer handler:
void __fastcall TForm1::Timer1Timer(TObject *Sender)
{
 WI_WEIGHT(); // read gross/net/tare
 Label2->Caption = WI__GET_NET(); // display net value
}

The function WI__GET_NET returns consistent weight values regarding the
WI_WEIGHT call. WI_WEIGHT updates gross, net and tare weighing values.
Please note the two underlines in WI__GET_NET !

5. As last step, we want to determine at pro-
gram start-up, which scale (scale number) is
connected. Therefore, we can use the com-
mand WI_SCALE_INFO.

So activate Form1 with a click on it. In the Ob-
ject Inspector, select the Events tab
and double-click on the ONSHOW event.
Add this code to the handler:
void __fastcall TForm1::FormShow(TObject *Sender)
{
 char cRet[5];
 strcpy(cRet, WI_SCALE_INFO()); // read scale(s) number
 // read scale numbers and actual scale string position:
 Label1->Caption = "Scale" + (String) cRet[cRet[0]-48] + ":";
}

The little calculation is necessary, because WI_SCALE_INFO returns the scale
number in a string, where the first character is the position of the actual scale in
the string. So, if e.g. “213” is returned, the scales with number 1 and 3 are
connected (second and third character). The actual scale (first character), is on
second position, that means in this case that the active scale has number 3.

6. Congratulations - that’s all ! Don’t forget to
save the project with FILE/SAVE ALL, and then
start the compiler and linker with the F9 key.
Enjoy your first self made ID20 C++ - project !

i

i

METTLER TOLEDO ID20 Programming Manual

00 506 141G 01/ 2001 23

5.2.2. Example in Microsoft Visual Basic 4.0 (under Windows98)

Preparing for work
First, we create a working
directory for our new
Visual Basic project on the
ID20 harddisk C:\PROJECTS\VB.

In this directory, we have to copy the necessary METTLER TOLEDO Software-
Interface files. To determine, where the files are located, a lookup in the software
interface directory table on page 17 is helpful.

Due to the use of MS Visual Basic as programming language and Windows 98
as operating system, the files located in the directory “C:\WIN95_VB“ are needed.

So the next preparation step is to
copy these files into our project
directory C:\PROJECTS\VB :

The .BAS file has to be linked
into the new project. The next step is, to copy the dynamic link library into the
Windows System directory . This DLL will be loaded later
during run time of the application.

Installing the Software Interface
Start the MS - Visual Basic compiler.
Select a new application by choosing
FILE / NEW PROJECT :

After arranging the windows, you will see a screen similar to this:

If not all windows are visible, open them with F7 , Shift+F7 , F4 , & Ctrl+R .
If the toolbox isn’t visible, select VIEW / TOOLBOX.

i

Form window

PPPrrrooopppeeerrr tttiiieeesss wwwiiinnndddooowww

Source code editor

Project window

ID20 Programming Manual METTLER TOLEDO

24 00 506 141G 01 / 2001

First of all, we will save
the new project. Choose
FILE / SAVE PROJECT.
As path, select the newly
created project directory
C:\PROJECTS\VB :

The first window asks for a
file name for the Unit file
(our source code).
Please type in :

The second window asks
for the project name,
please type in :

As the next step, we will
include the METTLER
TOLEDO software interface
into our project:

In the properties window mark the first entry by a
click on it. Now click with the right mouse button
and choose :

In the appearing file selector window choose
“VB files” as file type. Mark the
file and add it to the project with a click on :

The Visual Basic Interface file is now included in our project .

Ready ! Now we have done everything necessary to communicate with the
METTLER TOLOEDO weighing interface. In the following steps, we will finally
implement a small weighing application.

METTLER TOLEDO ID20 Programming Manual

00 506 141G 01/ 2001 25

Programming the application in VB
The goal is to create a little applica-
tion, where we can see the con-
nected scale and the actual weigh-
ing result. We need a possibility to
tare the scale and set it to zero. Ad-
ditionally, we want to have a button
to close the application.

We select our form window FORM1 by clicking on it. In
the object inspector, which now shows the properties,
enter the settings as follows:

PROPERTY SETTING
BORDER STYLE: 2 -Sizeable
CAPTION: ID20 Demo VB
HEIGHT: 2000
WIDTH: 4400

Now, from the toolbox , we add the following objects /
components into the form and set their properties in the
properties window:

E
x
a
m
p
l
e

:

Example:
To add the first label, select in the toolbox. Now,
click on the desired place in the form area and hold
the left mouse button down. Draw a rectangle to
place the new label . In the properties window type
in the caption and select the font with a click on :

Label1
Property Setting
AutoSize True
Caption Scale
Font Arial,Bold,18
Top 24
Left 16

Label2
Property Setting
AutoSize True
Caption Weight
Font Arial,Bold,18
Top 24
Left 104

Timer1
Property Setting
Enabled True
Interval 250
Name Timer1

Button1
Property Setting
Caption Zero
Top 80
Left 16
Height 25
Width 73

Button2
Property Setting
Caption Tare
Top 80
Left 104
Height 25
Width 73

Button3
Property Setting
Caption Close
Top 80
Left 232
Height 25
Width 73

ID20 Programming Manual METTLER TOLEDO

26 00 506 141G 01 / 2001

Now, we will add own code to our application:

1. Double-click on the “Zero” button, and add this code to the Click handler:
Private Sub Command1_Click()

WI_ZERO ‘set scale to zero
End Sub

2. Double-click on the “Tare” button, and add this code to the Click handler:
Private Sub Command2_Click()

WI_SET_TARE ("") ‘tare the scale
End Sub

3. Double-click on the “Close” button, and add this code to the Click handler:
Private Sub Command3_Click()

End 'Close application
End Sub

4. Because we want to display the updated weight value online, we have in-
cluded the timer component. Double-click on the Timer symbol, and add this
code to the OnTimer handler:
Private Sub Timer1_Timer()

WI_WEIGHT 'read gross/net/tare
Label2.Caption = WI__GET_NET 'display net value

End Sub

The function WI__GET_NET returns consistent weight values regarding the
WI_WEIGHT call. WI_WEIGHT updates gross, net and tare weighing values.
Please note the two underlines in WI__GET_NET !

5. As last action, we want to determine at pro-
gram start-up, which scale (scale number) is
connected. Therefore, we can use the com-
mand WI_SCALE_INFO.

So activate Form1 with a click on it. In the Ob-
ject Inspector, select the Events tab
and double-click on the ONSHOW event :

Private Sub Form_Load()
cScaleInfo = WI_SCALE_INFO 'read scale(s) number
cActive = Mid(cScaleInfo, 1, 1) 'acive scale position
Label1.Caption = "Scale" & Mid(cScaleInfo, CInt(cActive) + 1, 1)

End Sub

The little calculation is necessary, because WI_SCALE_INFO returns the scale
number in a string, where the first character is the position of the actual scale in
the string. So, if e.g. “213” is returned, the scales with number 1 and 3 are
connected (second and third character). The actual scale (first character), is on
second position, that means in this case that the active scale has number 3.

6. Congratulations - that’s all ! Don’t forget
to save the project with FILE/SAVE PROJECT,
and then start the compiler and linker with
the F5 key.
Enjoy your first self made ID20 VB - project !

i

i

METTLER TOLEDO ID20 Programming Manual

00 506 141G 01/ 2001 27

5.3. Programming guidelines for Windows

If you develop a new program for MS-Windows, it is good style to consider the
Microsoft Windows programming guidelines. You can find actual information in
the internet: http://msdn.microsoft.com/winlogo/default.asp.

It is not only to “serve” Microsoft standards, but to serve your customers.
A user will “feel at home” in your new application, when he has the “Look &
Feel” like in other standard Windows programs he knows, like MS-Word™ or
MS-Excel™.

Win95 Logo
Your application should fulfill at least the specifications for the Win95-Logo.
If the program is certified to be conform, you can get the Win95-Logo from Mi-
crosoft. For this, please check the following points:

• The program files have to be in the PE-format (Portable Executable Format)
• The Microsoft conventions for user interfaces have to be observed

• The application should run under Win95 and WinNT if technical possible.
Actually, this is not really feasible when you integrate weighing functions,
because of the programming language - and operating system - dependant
construction of the software interface.

• Provide the application with context menus for the right mouse button.
• Use the registry data base instead of ini-files (ini files are used only for very

specific program data)

• Provide your symbols for data types and applications in the 16x16 and
32x32 format

• Use the standard navigation elements and standard dialog windows
• Use the standard system colors

• Support long file names
• Support Plug & Play

ID20 Programming Manual METTLER TOLEDO

28 00 506 141G 01 / 2001

6. Software commands

6.1. General system commands

In this section you’ll find all commands to get general information like weighing
system availability and about software versions, installed on the ID20 system.

Command Short description

1. MEMTRACE Checks, if scale driver is already installed

2. SYS_VERSION Version of scale driver software

3. WI_VERSION Version of weighing interface software

i

METTLER TOLEDO ID20 Programming Manual

00 506 141G 01/ 2001 29

6.1.1. MEMTRACE

Function Checks, if scale driver is already installed.
MEMTRACE returns ok, if the scale driver program runs
properly. Use this function to decide if your application
can start or not.

Note MEMTRACE is the most important command at all.
If the scale driver program LIGHT.EXE or LIGHT_NT.EXE
isn’t running, you never get any weighing results !

Syntax C
VC++

int MEMTRACE (void);

BASIC
VBASIC

Function MEMTRACE () As Integer

PASCAL
DELPHI

Function MEMTRACE: integer

Return Integer 0: Scale driver is not running
1: Scale driver is running

Example #include c__mem.h

void main ()
{

int Ret; // return value

Ret = MEMTRACE();
if (Ret)
{

printf(“Driver loaded\n”);
//... start of application

}
else
{

printf(“Driver not loaded\n”);
return;

}
//...

}

?

@

*

!

ID20 Programming Manual METTLER TOLEDO

30 00 506 141G 01 / 2001

6.1.2. SYS_VERSION

Function Version of scale driver software
Reads the software version of the scale driver program
LIGHT.EXE or LIGHT_NT.EXE

Syntax C
VC++

char* SYS_VERSION (void);

BASIC
VBASIC

Function SYS_VERSION () As String

PASCAL
DELPHI

Function SYS_VERSION: string

Return String Max. length 8 bytes
Example: “3.09”

Example #include c__mem.h

void main ()
{

char Ret[9]; // return value

strcpy (Ret, SYS_VERSION());
printf(“Driver version: %s\n”, Ret);
return;

}

?

@

*

METTLER TOLEDO ID20 Programming Manual

00 506 141G 01/ 2001 31

6.1.3. WI_VERSION

Function Version of weighing interface software
Reads the software version of the program in the
Weighing Interface WI-ISA

Syntax C
VC++

char* WI_VERSION (void);

BASIC
VBASIC

Function WI _VERSION () As String

PASCAL
DELPHI

Function WI _VERSION: string

Return String Max. length 16 bytes
Example: “AW01-0-0120 ”
The last 3 digits show the version: 1.20

Example #include c__mem.h

void main ()
{

char Ret[17]; // return value

strcpy (Ret, WI_VERSION());
printf(“WI version: %s\n”, Ret);

return;
}

?

@

*

ID20 Programming Manual METTLER TOLEDO

32 00 506 141G 01 / 2001

6.2. Basic weighing commands

In this section you’ll find commands to get and handle weighing results.

Command Short description

1. WI_WEIGHT Get complete weighing data set

2. WI_ZERO Sets scale to zero

3. WI_SET_TARE Tares the scale

4. WI_SCALE Change actual active scale

5. WI_SCALE_INFO Get info about connected scales

6. WI__GET_WEIGHT_STATE Get the actual scale state

7. WI__GET_GROSS/NET/TARE Get a single weight value
(values are consistent)

8. WI_GROSS/NET/TARE Get a single weight value
(values are not consistent)

9. WI__GET_HIGHRES Get high resolution value (cons.)

10. WI_HIGHRES Get high resolution value (not co.)

11. WI_PRINT_VALUE Generate a harddisk alibi print

12. WI__GET_TIME_STAMP Get time stamp of last WI_WEIGHT

13. WI__GET_AUTHENTIFICATION Get auth. code of last alibi print

14. WI_USER_DATA Enters user data string for alibi file

i

METTLER TOLEDO ID20 Programming Manual

00 506 141G 01/ 2001 33

6.2.1. WI_WEIGHT

Function Get complete weighing data set G/N/T/HR
Reads a complete weighing result data set with gross,
net, tare and high-resolution value from the Weighing
Interface WI-ISA.

Note After calling WI_WEIGHT, it is possible to get consistent
single weight values by using the commands:
WI__GET_GROSS, WI__GET_NET and WI__GET_TARE.
Therefore you should not call WI_WEIGHT between one
of these functions !

Syntax C
VC++

char* WI_WEIGHT (void);

BASIC
VBASIC

Function WI _WEIGHT () As String

PASCAL
DELPHI

Function WI _WEIGHT: string

Return String Length: 44 bytes
Example:
“031/ 123.4567/ 000.0000/ 000.0000/123.45678/”

Example #include c__mem.h

void main ()
{

char cRet[45]; // return value

strcpy (cRet, WI_WEIGHT());
printf(“Result: %s\n”, cRet);

return;
}

Weighing data set structure:

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
S D U / S G G G . G G G G / S N N N . N N N N / S T T T . T T T T / S H H H . H H H H /

Gross value
[7digit+dec.point]

Net value
[7digit+dec.point]

Tare value
[7digit+dec.point]

High res. value
[8digit+dec.pnt]

Sign
[‘-‘ or space]

Sign
[‘-‘ or space]

Sign
[‘-‘ or space]

Sign
[‘-‘ or space]

Unit 0=g
1=kg
2=lb
3=ozt

gram
kilogram
pound
troy ounce

4=oz
5=tl
6=GN
7=dwt

ounce
tael
grain
pennyweight

 8=ct
 9=C.M.
 A= -
 B= -

carat
carat metrical
reserved
reserved

 C=PCS
 D=STK
 E=%
 F=

Pieces
Stück
per cent
no unit

Decimal point position (numbers after decimal point) of weighing data (not HighRes!) (e.g. 1234.567 kg à D=3)

State 0=stable, 1=dynamic, 2=overload, 3=underload, 4=invalid

?

@

!

*

ID20 Programming Manual METTLER TOLEDO

34 00 506 141G 01 / 2001

6.2.2. WI_ZERO

Function Sets scale to zero
Sets the Gross-, Net-, Tare- and High-Resolution value
of the actual scale to zero if the scale is in the permissi-
ble zero setting range.

Info The zero setting range of standard scales is ± 20% of
full load range. That means, that a 600kg scale, which
starts up with a max. load of 120kg, can be set to zero.

Syntax C
VC++

char* WI_ZERO (void);

BASIC
VBASIC

Function WI _ ZERO () As String

PASCAL
DELPHI

Function WI _ ZERO: string

Length: 2 bytesReturn String
“ZB”
“Z+”
“Z-”
“ZI”

Zero setting done correctly
Zero setting out of positive range
Zero setting out of negative range
Command cannot be executed

Example #include c__mem.h

void main ()
{

char cRet[3]; // return value

strcpy (cRet, WI_ZERO());
printf(“Result: %s\n”, cRet);

return;
}

?

@

*

METTLER TOLEDO ID20 Programming Manual

00 506 141G 01/ 2001 35

6.2.3. WI_SET_TARE

Function Tares the scale
Tare with actual weight or with a user-specified value.
Option: erase the actual tare value.

Syntax C
VC++

char* WI_SET_TARE (char* val);

BASIC
VBASIC

Function WI_SET_TARE (ByVal val As String)
As String

PASCAL
DELPHI

Function WI_SET_TARE (val: string) : string

Tare the scale with value “val”

“” (empty)
“ ” (space)

Tare with actual weight
Erase actual tare value

Input String

“ xx.yyy uuu” Tare with value: xx.yyy
and with unit: uuu

Note If you tare manually, do not forget the space before the
value, the space between value and unit and the
unit after the value:
Wrong: WI_SET_TARE (“1.20”);
Correct: WI_SET_TARE (“ 1.20 kg”);

Length: 2 bytesReturn String
“TB”
“T+”
“T-”
“TI”

Tare setting done correctly
Tare setting out of positive range
Tare setting out of negative range
Command cannot be executed

Example #include c__mem.h

void main ()
{

char cRet[3]; // return value

// tare with actual weight
strcpy (cRet, WI_SET_TARE(“”));
printf(“Result: %s\n”, cRet);

// erase actual tare value
strcpy (cRet, WI_SET_TARE(“ “));
printf(“Result: %s\n”, cRet);

// tare with 100 kg
strcpy (cRet,

WI_SET_TARE(“ 100.00 kg”));
printf(“Result: %s\n”, cRet);

return;
}

?

@

*

1

!

ID20 Programming Manual METTLER TOLEDO

36 00 506 141G 01 / 2001

6.2.4. WI_SCALE

Function Change active scale
Changes from the actual scale to the scale with the
specified number.

Syntax C
VC++

char* WI_SCALE (int num);

BASIC
VBASIC

Function WI_SCALE (ByVal num As Integer)
As String

PASCAL
DELPHI

Function WI_SCALE (num: integer) : string

Scale number where to switchInput Integer
1
2
3

Change to scale with number 1
Change to scale with number 2
Change to scale with number 3

Length: 2 bytesReturn String
“SB”
“SI”

Scale switch executed correctly
Scale not available

Example #include c__mem.h

void main ()
{

char cRet[3]; // return value

// select scale 2
strcpy (cRet, WI_SCALE(2));
printf(“Result: %s\n”, cRet);

return;
}

?

@

*

1

METTLER TOLEDO ID20 Programming Manual

00 506 141G 01/ 2001 37

6.2.5. WI_SCALE_INFO

Function Get info about connected scales
Returns actual active scale and all available scales.

Syntax C
VC++

char* WI_SCALE_INFO (void);

BASIC
VBASIC

Function WI_SCALE_INFO () As String

PASCAL
DELPHI

Function WI_SCALE_INFO : string

Length: 4 bytes
Format: “PXYZ”

Return String

P

X
Y
Z

Position of actual active scale
(‘1’=X, ‘2’=Y, ‘3’=Z)
First connected scale number
Second connected scale number
Third connected scale number

If no scale is connected, a zero and three
spaces is returned (“0 “).

Example #include c__mem.h

void main ()
{

char cRet[5]; // return value

// Example:
// Two scales are connected:
// - first scale has No 2
// - second scale has No 3
// - scale 3 is actually active

// Return: “223”
// Means: Scales 2 and 3 are available
// Second of this scales is active(No3)

strcpy (cRet, WI_SCALE_INFO());
printf(“Result: %s\n”, cRet);

return;
}

?

@

*

ID20 Programming Manual METTLER TOLEDO

38 00 506 141G 01 / 2001

6.2.6. WI__GET_WEIGHT_STATE

Function Get the actual scale state
Returns the state of the actual active scale.

Note The scale state is not the actual scale state at the mo-
ment when the command has been called !
The result corresponds to the scale state at the last call
of WI_WEIGHT !

Syntax C
VC++

char* WI__GET_WEIGHT_STATE (void);

BASIC
VBASIC

Function WI__GET_WEIGHT_STATE () As
String

PASCAL
DELPHI

Function WI__GET_WEIGHT_STATE : string

Length: 2 bytesReturn String

‘D’
‘ ‘ (Space)

‘I+’
‘I-’
‘II’

Scale value was dynamic
Scale value was stable
Scale value was overloaded
Scale value was underloaded
Scale value was invalid

Example #include c__mem.h

void main ()
{

char cRet[3]; // return value

strcpy (Ret, WI__GET_WEIGHT_STATE());
printf(“Result: %s\n”, cRet);

return;
}

?

@

!

*

METTLER TOLEDO ID20 Programming Manual

00 506 141G 01/ 2001 39

6.2.7. WI__GET_GROSS, WI__GET_NET, WI__GET_TARE (consistent)

Function Get a single weight value
(values are consistent)
Returns gross, net or tare value as a complete string,
including sign and unit. The value is consistent to a pre-
vious call of WI_WEIGHT.

Note The weight value is not the actual value at the moment
when the command has been called !
The result corresponds to the weight value at the last
call of WI_WEIGHT, that means that the formula
Net = Gross + Tare is always true.
Please note the two underlines in WI__... !

Syntax C
VC++

char* WI__GET_GROSS (void);
char* WI__GET_NET (void);
char* WI__GET_TARE (void);

BASIC
VBASIC

Function WI__GET_GROSS () As String
Function WI__GET_NET () As String
Function WI__GET_TARE () As String

PASCAL
DELPHI

Function WI__GET_GROSS : string
Function WI__GET_NET : string
Function WI__GET_TARE : string

Return String Length: 13Bytes
Format: “sxxx.yyyy zzz”
(s=Sign, x.y=Value, z = Unit)
Example: “-1234.000 kg ”

Example #include c__mem.h

void main ()
{

char cRet[14]; // return value

WI_WEIGHT(); // get all values

strcpy (cRet, WI__GET_GROSS());
printf(“Result: %s\n”, cRet);

strcpy (cRet, WI__GET_NET());
printf(“Result: %s\n”, cRet);

strcpy (cRet, WI__GET_TARE());
printf(“Result: %s\n”, cRet);

return;
}

?

@

!

*

ID20 Programming Manual METTLER TOLEDO

40 00 506 141G 01 / 2001

6.2.8. WI_GROSS, WI_NET, WI_TARE (not consistent)

Function Get a single weight value
(values are not consistent)
Returns actual gross-, net- or tare value as a complete
string, including sign and unit. The value is not consis-
tent to a previous call of WI_WEIGHT !

Note The weight value is the actual value at the moment
when the command has been called !
The formula Net = Gross + Tare is not true, if the scale
value changes between the calls !

Syntax C
VC++

char* WI_GROSS (void);
char* WI_NET (void);
char* WI_TARE (void);

BASIC
VBASIC

Function WI_GROSS () As String
Function WI_NET () As String
Function WI_TARE () As String

PASCAL
DELPHI

Function WI_GROSS : string
Function WI_NET : string
Function WI_TARE : string

Return String Length: 13Bytes
Format: “sxxx.yyyy zzz”
(s=Sign, x.y=Value, z = Unit)
Example: “-1234.000 kg ”

Example #include c__mem.h

void main ()
{

char cRet[14]; // return value

strcpy (cRet, WI_GROSS());
printf(“Result: %s\n”, cRet);

strcpy (cRet, WI_NET());
printf(“Result: %s\n”, cRet);

strcpy (cRet, WI_TARE());
printf(“Result: %s\n”, cRet);

return;
}

@

!

*

?

METTLER TOLEDO ID20 Programming Manual

00 506 141G 01/ 2001 41

6.2.9. WI__GET_HIGHRES (consistent)

Function Read high resolution weight value (consistent)
Returns the high resolution weight value, including sign
and unit. The value is consistent to a previous call of
WI_WEIGHT.

Note The weight value is not the actual value at the moment
when the command has been called !
The result corresponds to the weight value at the last
call of WI_WEIGHT.
Please note the two underlines in WI__... !

Syntax C
VC++

char* WI__GET_HIGHRES (void);

BASIC
VBASIC

Function WI__GET_HIGHRES () As String

PASCAL
DELPHI

Function WI__GET_HIGHRES : string

Return String Length: 14 Bytes
Format: “sxxx.yyyyy zzz”
(s=Sign, x.y=Value, z = Unit)
Example: “-123.45678 kg ”

Example #include c__mem.h

void main ()
{

char cRet[15]; // return value

WI_WEIGHT(); // get all values

strcpy (cRet, WI__GET_HIGHRES());
printf(“Result: %s\n”, cRet);

return;
}

?

@

!

*

ID20 Programming Manual METTLER TOLEDO

42 00 506 141G 01 / 2001

6.2.10. WI_HIGHRES (not consistent)

Function Read high resolution weight value
Returns the high resolution weight value, including sign
and unit. The value is not consistent to a previous call of
WI_WEIGHT.

Note The weight value is the actual value at the moment
when the command has been called !

Syntax C
VC++

char* WI _HIGHRES (void);

BASIC
VBASIC

Function WI_HIGHRES () As String

PASCAL
DELPHI

Function WI_HIGHRES : string

Return String Length: 14 Bytes
Format: “sxxx.yyyyy zzz”
(s=Sign, x.y=Value, z = Unit)
Example: “-123.45678 kg ”

Example #include c__mem.h

void main ()
{

char cRet[15]; // return value

strcpy (cRet, WI_HIGHRES());
printf(“Result: %s\n”, cRet);

return;
}

?

@

!

*

METTLER TOLEDO ID20 Programming Manual

00 506 141G 01/ 2001 43

6.2.11. WI_PRINT_VALUE

Function Generate a harddisk alibi print
Generates an alibi print on the harddisk.

Note In applications subject to legal control this function re-
places the need for an external alibi printer !
It is very important to observe following rule:

 1. Get complete weighing data set with WI_WEIGHT
 2. Check if value is stable: WI__GET_WEIGHT_STATE
 3. If stable, generate alibi print with WI_PRINT_VALUE

Please note, that WI_PRINT_VALUE only writes stable
weighing results into the alibi file !

Info If you want to use the same data which was written into
the alibi file for special use in your application (e.g. for
data bases, parallel documentation in a text file, printout
on paper etc.), use the following commands after the
call of WI_WEIGHT:

 1. WI__GET_TIME_STAMP to get date and time
 2. WI__GET_AUTHENTIFICATION to get key code
 3. WI__GET_GROSS / NET / TARE for single results

Syntax C
VC++

void WI_PRINT_VALUE (void);

BASIC
VBASIC

Function WI_ PRINT_VALUE ()

PASCAL
DELPHI

Function WI_ PRINT_VALUE

Example #include c__mem.h

void main ()
{

char cSta[3]; // stability
char cTim[18]; // time stamp
char cGro[14]; // gross value
char cNet[14]; // net value
char cTar[14]; // tare value
int iAut; // auth. code
WI_WEIGHT(); // read G/N/T
strcpy (cSta, WI__GET_WEIGHT_STATE());

// alibi print, if value was stable
if (!strcmp (cSta, “ ”))
{

WI_PRINT_VALUE();
iAut =
WI__GET_AUTHENTIFICATION());
strcpy (cTim,
WI__GET_TIME_STAMP());

strcpy (cGro, WI__GET_GROSS());
strcpy (cNet, WI__GET_NET());
strcpy (cTar, WI__GET_TARE());

}
return;

}

?

@

i

!

ID20 Programming Manual METTLER TOLEDO

44 00 506 141G 01 / 2001

6.2.12. WI__GET_TIME_STAMP

Function Get time stamp of last WI_WEIGHT call
Reads time stamp (time and date) of the last data
set returned by the call of WI_WEIGHT. Use this in-
formation for authentication of receipts, delivery
notes etc.

Info Please note that the command is related to the
moment of the last call of WI_WEIGHT – not to the
moment, when you call WI__GET_TIME_STAMP !
ð Please note the two underlines WI_ _ GET

Syntax C
VC++

char* WI__GET_TIME_STAMP (void);

BASIC
VBASIC

Function WI__GET_TIME_STAMP () As
String

PASCAL
DELPHI

Function WI__GET_TIME_STAMP: string

Length: 17 bytes
Format: “DD.MM.YY hh:mm:ss”

Return String

DD
MM
YY

Day
Month
Year

hh
mm
ss

hour
minute
second

Example #include c__mem.h

void main ()
{

char cSta[3]; // stability
char cTim[18]; // time stamp
int iAut; // auth. code

WI_WEIGHT(); // read G/N/T
strcpy (cSta,
WI__GET_WEIGHT_STATE());

// alibi print, if value was stable
if (!strcmp (cSta, “ ”))
{

WI_PRINT_VALUE();
iAut =
WI__GET_AUTHENTIFICATION());

strcpy (cTim,
WI__GET_TIME_STAMP());

}

return;
}

*

?

@

i

METTLER TOLEDO ID20 Programming Manual

00 506 141G 01/ 2001 45

6.2.13. WI__GET_AUTHENTIFICATION

Function Get authentication code of last alibi print
Reads authentication key of the last measuring
value, saved with the last call of WI_WEIGHT.
You can use this information for additional authenti-
cation of receipts, delivery notes etc.

Syntax C
VC++

int WI__GET_AUTHENTIFICATION (void);

BASIC
VBASIC

Function WI__GET_ AUTHENTIFICATION
() As Integer

PASCAL
DELPHI

Function WI__GET_ AUTHENTIFICATION :
integer

Return Integer Length: 2 bytes
Example –46804

Example #include c__mem.h

void main ()
{

char cSta[3]; // stability
char cTim[18]; // time stamp
int iAut; // auth. code

WI_WEIGHT(); // read G/N/T
strcpy (cSta,
WI__GET_WEIGHT_STATE());

// alibi print, if value was stable
if (!strcmp (cSta, “ ”))
{

WI_PRINT_VALUE();

iAut =
WI__GET_AUTHENTIFICATION());

strcpy (cTim,
WI__GET_TIME_STAMP());

}

return;
}

*

?

@

ID20 Programming Manual METTLER TOLEDO

46 00 506 141G 01 / 2001

6.2.14. WI_USER_DATA

Function Enters user data string for storing in alibi file
Additional user data can be written into the alibi file
(MEMORY.MTA). This string is protected against
manipulation.

Note The string will be saved in the alibi file not until when
WI_PRINT_VALUE() is called !

Syntax C
VC++

void WI_USER_DATA (char * val);

BASIC
VBASIC

Function WI_USER_DATA (ByVal As String)

PASCAL
DELPHI

Function WI_USER_DATA (val: string)

Input String Length: max. 20 Bytes, incl. zero sign
Example: “Terminal-No. 001”

Example #include c__mem.h

void main ()
{

// write additional data in alibi file
WI_USER_DATA(“Terminal-No. 001”));
WI_PRINT_VALUE(); // make alibi print

Return;
}

?

@

!

1

METTLER TOLEDO ID20 Programming Manual

00 506 141G 01/ 2001 47

6.3. Special weighing commands

In this section you’ll find commands for advanced weighing options .

Command Short description

1. WI_ADAPT_VIBRATION Set environment vibration parms

2. WI_ADAPT_PROCESS Set weighing process parameters

3. WI_ADAPT_STABILITY_DETECT Set stability flag parameters

4. WI_SCALE_MODE Set scale update rate

5. WI_IDENTBLOCK Read Ident-block of actual scale

6. WI_AUTOTARE_ON Switch auto tare function on

7. WI_AUTOTARE_OFF Switch auto tare function off

8. WI_AUTOZERO_ON Switch auto zero function on

9. WI_AUTOZERO_OFF Switch auto zero function off

10. WI_RESTART_ON Switch auto restart function on

11. WI_RESTART_OFF Switch auto restart function off

i

ID20 Programming Manual METTLER TOLEDO

48 00 506 141G 01 / 2001

6.3.1. Additional information to weighing filter commands:

To optimize your customer-specific application, concerning speed and resolu-
tion it is possible to use the WI_ADAPT - command set.

1
.

WI_ADAPT_VIBRATION Vibration adapter

2. WI_ADAPT_PROCESS Process adapter
3. WI_ADAPT_STABILITY_DETECT Automatic stability detection

Overview:

Understanding the WI_ADAPT command set

METTLER TOLEDO

∼ 120.200 kg
∆+∆ 1

è VIBRATION ADAPTER
Set corner frequency for activation of cell-internal digital filter

Environment vibrations

Individual weighing process

è WEIGHING PROCESS ADAPTER
Set signal amplitude size for

activation of cell- internal
digital filter

è AUTO STABILITY DETECT
Amount of equal digital

data values

Weighing data stability flag

Analog signal

Digital signal

Analog signal

Digital signal

METTLER TOLEDO ID20 Programming Manual

00 506 141G 01/ 2001 49

6.3.2. WI_ADAPT_VIBRATION

Function Set environment vibration parameters
Adapts load cell to customers environment vibration.

Note When using low values for the vibration adapter, the
scale works fast and is very sensitive for external effects.
When using high values for the vibration adapter, the
scale works slow and is not sensitive for external effects.

Info You can read the possible parameters and the actual
setting by using the command WI_IDENTBLOCK(“10”).

Syntax C
VC++

char* WI_ADAPT_VIBRATION (int num);

BASIC
VBASIC

Function WI _ ADAPT_VIBRATION
(ByVal num As Integer) As String

PASCAL
DELPHI

Function WI _ ADAPT_VIBRATION
(num: integer) : string

Value of vibration adapter (* = Standard)Input Integer
1
2*
3

Calm environment
Normal environment
Disturbed environment

Length: 3 bytesReturn String
“AVB”
“AVI”

Setting done, OK
Setting was invalid, no change

Example #include c__mem.h

void main ()
{

char cRet[4]; // return value

// calm, stable environment
strcpy (cRet, WI_ADAPT_VIBRATION(1));
printf(“Result: %s\n”, cRet);

// high disturbed environment
strcpy (cRet, WI_ADAPT_VIBRATION(3));
printf(“Result: %s\n”, cRet);

return;
}

?

@

!

*

1

i

ID20 Programming Manual METTLER TOLEDO

50 00 506 141G 01 / 2001

6.3.3. WI_ADAPT_PROCESS

Function Set weighing process parameters
Adapts load cell to individual customers weighing
goods, e.g. for oscillating objects.

Info You can read the possible parameters and the actual
setting by using the command WI_IDENTBLOCK(“11”).

Syntax C
VC++

char* WI_ADAPT_PROCESS (int num);

BASIC
VBASIC

Function WI _ ADAPT_ PROCESS
(ByVal num As Integer) As String

PASCAL
DELPHI

Function WI _ ADAPT_ PROCESS
(num: integer) : string

Value of process adapter (* = Standard)Input Integer
1
2*
3

Fine dosing (Fluids, fine bulk goods)
Universal weighing
Absolute weighing (Solids, animals)

Length: 3 bytesReturn String
“APB”
“API”

Setting done, OK
Setting was invalid, no change

Example #include c__mem.h

void main ()
{

char cRet[4]; // return value

// weighing oscillating goods
strcpy (cRet, WI_ADAPT_PROCESS(1));
printf(“Result: %s\n”, cRet);

// weighing calm goods
strcpy (cRet, WI_ADAPT_PROCESS(3));
printf(“Result: %s\n”, cRet);

return;
}

?

@

*

1

i

METTLER TOLEDO ID20 Programming Manual

00 506 141G 01/ 2001 51

6.3.4. WI_ADAPT_STABILITY_DETECT

Function Set stability flag parameters
Adjusts weighing speed and reproducibility of load cell.

Info The ASD-function sets the stability flag, depending of the
amount of equal digital weighing data, coming up from
the load cell. The number of equal data can be set with
the input parameter.
You can read the possible parameters and the actual
setting by using the command WI_IDENTBLOCK(“12”).

Syntax C
VC++

char* WI_ADAPT_STABILITY_DETECT
(int num);

BASIC
VBASIC

Function WI _ ADAPT_ STABILITY_DETECT
(ByVal num As Integer) As String

PASCAL
DELPHI

Function WI _ ADAPT_ STABILITY_DETECT
(num: integer) : string

Value of vibration adapter (* = Standard)Input Integer
0

1
2*
3
4

Automatic Stability Detect disabled
(ASD disabling is only possible in
non legal applications !)
Speed Reproducibility
 Fast Good

 Slow Very good

Length: 3 bytesReturn String
“ASB”
“ASI”

Setting done, OK
Setting was invalid, no change

Example #include c__mem.h

void main ()
{

char cRet[4]; // return value

// fast weighing
strcpy (cRet,

WI_ADAPT_STABILITY_DETECT(1));
printf(“Result: %s\n”, cRet);

// slow weighing
strcpy (cRet,

WI_ADAPT_STABILITY_DETECT(4));
printf(“Result: %s\n”, cRet);

return;
}

?

@

*

1

i

ID20 Programming Manual METTLER TOLEDO

52 00 506 141G 01 / 2001

6.3.5. WI_SCALE_MODE

Function Set scale update rate
Sets scale data update rate.

Info This function may be used only with load cells, which
support update rate setting (e.g. PikBrick).
You can read the possible parameters and the actual
setting by using the command WI_IDENTBLOCK(“14”).

Syntax C
VC++

char* WI_SCALE_MODE (char* val);

BASIC
VBASIC

Function WI_SCALE_ MODE (ByVal val As
String) As String

PASCAL
DELPHI

Function WI_SCALE_ MODE (val: string) :
string

Input String “5” + “xx”
(“5”: fix, “xx”: update rate in updates/sec)
Example: “515”: 15 updates/second

Length: 2 bytesReturn String
“MB”
“MI”

Setting done, OK
Setting was invalid, no change
or command not supported.

Example #include c__mem.h

void main ()
{

char cRet[3]; // return value
char cUpd[26]; // actual updates

strcpy(cUpd, WI_IDENTBLOCK(“14”));
// returns e.g. “10 6 10 15 20”
// means: actual update rate is 10/s
// possible settings: 6, 10,15 and 20

// now set 6 updates/s
strcpy (cRet, WI_SCALE_MODE(“56”));
printf(“Res: %s\n”, cRet);// ok

// now set 20 updates/s
strcpy (cRet, WI_SCALE_MODE(“520”));
printf(“Res: %s\n”, cRet);// ok

// now set 13 updates/s
strcpy (cRet, WI_SCALE_MODE(“513”));
printf(“Res: %s\n”, cRet);// failed

return;
}

?

@

*

1

i

METTLER TOLEDO ID20 Programming Manual

00 506 141G 01/ 2001 53

6.3.6. WI_IDENTBLOCK

Function Read Ident block of actual scale
Returns basic load cell parameters.

Syntax C
VC++

char* WI_IDENTBLOCK (char* val);

BASIC
VBASIC

Function WI_ IDENTBLOCK (ByVal val As
String) As String

PASCAL
DELPHI

Function WI_ IDENTBLOCK (val: string) :
string

Length: 3 bytesInput String

“00”
“01”
“02”
“03”
“04”
“05”
“06”
“07”
“08”
“09”
“10”
“11”
“12”
“13”
“14”
“15”
“16”
“Ri”

Application of weighing platform
Country code
Language
First unit
Maximum load
Minimum load
Maximum tare
Maximum pre set tare
Proved resolution
Minimum reproducibility
Vibration adapter parameters
Weighing process adapter par.
Automatic stability control par.
Auto Zero state
Value update frequency
Software version of load cell
Load cell Identcode
Ranges and resolutions (i = 0..9)

Maximum length: 25 bytes
Content depends of called function.
Example:

Return String

Input:
“04”
“10”
“15”

Return:
“60.000 kg”
”2123”
“IZ05-0-0222 ”

Example #include c__mem.h

void main ()
{

char cRet[26]; // return value

// read first unit of load cell
strcpy(cRet, WI_IDENTBLOCK(“03”));
// returns e.g. “kg”
printf(“Res: %s\n”, cRet);

return;
}

?

@

1

*

ID20 Programming Manual METTLER TOLEDO

54 00 506 141G 01 / 2001

6.3.7. WI_AUTOTARE_ON

Function Switch auto tare function on
Scale tares after weight is detected on the scale.

Info This command is processed by the Weighing-
Interface, not the scale itself.
If auto tare function is activated, the weighing-
display shows a corresponding symbol
in the lower line:

Syntax C
VC++

char* WI_AUTOTARE_ON (void);

BASIC
VBASIC

Function WI_ AUTOTARE _ON () As String

PASCAL
DELPHI

Function WI_ AUTOTARE _ON : string

Length: 4 bytesReturn String
“ATYB”
“ATYI”

Auto tare is activated
Invalid, not executed

Example #include c__mem.h

void main ()
{

char cRet[5]; // return value

// switch auto tare function on
strcpy (cRet, WI_AUTOTARE_ON());
printf(“Result: %s\n”, cRet);

return;
}

*

?

@

i

METTLER TOLEDO ID20 Programming Manual

00 506 141G 01/ 2001 55

6.3.8. WI_AUTOTARE_OFF

Function Switch auto tare function off
Scale does not tare automatically any more after weight
is detected on the scale.

Info This command is processed by the Weighing-
Interface, not the scale itself.

Syntax C
VC++

Char* WI_AUTOTARE_OFF (void);

BASIC
VBASIC

Function WI_ AUTOTARE _OFF () As String

PASCAL
DELPHI

Function WI_ AUTOTARE _OFF : string

Length: 4 bytesReturn String
“ATNB”
“ATNI”

Auto tare is deactivated
Invalid, not executed

Example #include c__mem.h

void main ()
{

char cRet[5]; // return value

// switch auto tare function off
strcpy (cRet, WI_AUTOTARE_OFF());
printf(“Result: %s\n”, cRet);

return;
}

*

?

@

i

ID20 Programming Manual METTLER TOLEDO

56 00 506 141G 01 / 2001

6.3.9. WI_AUTOZERO_ON

Function Switch auto zero function on
Scale starts up automatically with zero. This eliminates
drift effects of the load cell electronics.

Info Auto zero function can be switched on or off only with
not approved scales. In approved scales, auto zero is
always active !
The auto zero function only works if:
1. The scale displays zero
2. The zero point has to be corrected with max 0.5 e/s
3. The act. zero point is within ±2% of full load range

Syntax C
VC++

char* WI_AUTOZERO_ON (void);

BASIC
VBASIC

Function WI_ AUTOZERO _ON () As String

PASCAL
DELPHI

Function WI_ AUTOZERO _ON : string

Length: 4 bytesReturn String
“AZYB”
“AZYI”

Auto zero is activated
Invalid, not executed

Example #include c__mem.h

void main ()
{

char cRet[5]; // return value

// switch auto zero function on
strcpy (cRet, WI_AUTOZERO_ON());
printf(“Result: %s\n”, cRet);

return;
}

*

?

@

i

METTLER TOLEDO ID20 Programming Manual

00 506 141G 01/ 2001 57

6.3.10. WI_AUTOZERO_OFF

Function Switch auto zero function off
Disables automatically zero setting feature at start up of
non approved load cells.

Info Auto zero function can be switched on or off only with
not approved scales. In approved scales, auto zero is
always active !

Syntax C
VC++

char* WI_AUTOZERO_OFF (void);

BASIC
VBASIC

Function WI_ AUTOZERO _OFF () As String

PASCAL
DELPHI

Function WI_ AUTOZERO _OFF : string

Length: 4 bytesReturn String
“AZNB”
“AZNI”

Auto zero is deactivated
Invalid, not executed

Example #include c__mem.h

void main ()
{

char cRet[5]; // return value

// switch auto zero function off
strcpy (cRet, WI_AUTOZERO_OFF());
printf(“Result: %s\n”, cRet);

return;
}

*

?

@

i

ID20 Programming Manual METTLER TOLEDO

58 00 506 141G 01 / 2001

6.3.11. WI_RESTART_ON

Function Switch auto restart function on
Switch on the automatic function to restore zero point
and tare value of a scale after a power off. The weight
value after Power Up will be the same as before Power
Down (if nothing has changed on the scale).

Info If restart is switched on, the weighing-
display shows a corresponding symbol
in the lower line:

Syntax C
VC++

char* WI_RESTART_ON (void);

BASIC
VBASIC

Function WI_ RESTART _ON () As String

PASCAL
DELPHI

Function WI_ RESTART _ON : string

Length: 4 bytesReturn String
“RSYB”
“RSYI”

Auto restart function enabled
Invalid, not executed

Example #include c__mem.h

void main ()
{

char cRet[5]; // return value

// switch auto restart function on
strcpy (cRet, WI_RESTART_ON());
printf(“Result: %s\n”, cRet);

return;
}

*

?

@

i

METTLER TOLEDO ID20 Programming Manual

00 506 141G 01/ 2001 59

6.3.12. WI_RESTART_OFF

Function Switch auto restart function off
Switch off the automatic function to restore zero point
and tare value of a scale after a power off. The weight
value is set to zero after Power Up.

Syntax C
VC++

char* WI_RESTART_OFF (void);

BASIC
VBASIC

Function WI_ RESTART _OFF () As String

PASCAL
DELPHI

Function WI_ RESTART _OFF : string

Length: 4 bytesReturn String
“RSNB”
“RSNI”

Auto restart function disabled
Invalid, not executed

Example #include c__mem.h

void main ()
{

char cRet[5]; // return value

// switch auto restart function off
strcpy (cRet, WI_RESTART_OFF());
printf(“Result: %s\n”, cRet);

return;
}

*

?

@

ID20 Programming Manual METTLER TOLEDO

60 00 506 141G 01 / 2001

6.4. System commands

In this section you’ll find all commands concerning functions of the
ID20 system itself.

Command Short description

1. SYS_WI Sets or reads special system modes

2. WI_BEEP Generates a beep

3. WI_KEYBOARD_ON Enable ID20 foil keyboard

4. WI_KEYBOARD_OFF Disable ID20 foil keyboard

5. WI_SERVICE_AUTARK Starts scale service mode

i

METTLER TOLEDO ID20 Programming Manual

00 506 141G 01/ 2001 61

6.4.1. SYS_WI

Function Sets or reads special system modes
Sets special parameters in the weighing interface Wi-ISA

Syntax C
VC++

char* SYS_WI (char func);

BASIC
VBASIC

Function SYS_WI (ByVal func As String) As
String

PASCAL
DELPHI

Function SYS_WI (func : string) : string

WI-Function and corresponding switch
Format: “FFS”
FF S Function

Input String

“00”
“00”
“01”
“07”
“07”
“!!”
“!!”

“0”
“1”
“0”
“0”
“1”
“0”
“1”

Keyboard repeat function off
Keyboard repeat function on
Returns ID20 serial number.
Disable BIU
Enable BIU
Enable Quick weight Mode
Disable Quick weight Mode

Length depends of function, max. 13 bytes.
Format: “XFFS”
(“X”: Fix, “FF”: Function, “S”: Switch)
“XI” if addressed function was invalid
Example (successful returns)

FF S Return string:

Return String

“00”
“01”
“07”
“!!”

“0”
“0“
“0”
“1”

“X000”
“X01 1234567”
“X070”
“X!!1”

Example #include c__mem.h

void main ()
{

char cRet[14]; // return value
char cSer[14]; // serial number

// enable BIU
strcpy (cRet, SYS_WI(“071”));
printf(“Result: %s\n”, cRet);

// disable BIU
strcpy (cRet, SYS_WI(“070”));
printf(“Result: %s\n”, cRet);

// read ID20 serial number
strcpy (cSer, SYS_WI(“010”));
printf(“Serial number: %s\n”, cSer);

return;
}

*

?

@

1

ID20 Programming Manual METTLER TOLEDO

62 00 506 141G 01 / 2001

6.4.2. WI_BEEP

Function Generates a beep
Generates an acoustic signal (beep) with specified
length on the weighing interface board.

Syntax C
VC++

char* WI_BEEP (int iLen);

BASIC
VBASIC

Function WI_BEEP (ByVal iLen As Integer) As
String

PASCAL
DELPHI

Function WI_BEEP (iLen: integer) : string

Signal length in steps of 10ms.
Shortest time 10ms, longest time 2,55 s

Input Integer

1
2
...
255

Beep 10 ms
Beep 20 ms
...
Beep 2550 ms

Length: 2 bytesReturn String
“BB”
“BI”

Command executed correctly
Maximum time step exceeded

Example #include c__mem.h

void main ()
{

char cRet[3]; // return value

// beep 100ms
strcpy (cRet, WI_BEEP(10));
printf(“Result: %s\n”, cRet);

return;
}

*

?

@

1

METTLER TOLEDO ID20 Programming Manual

00 506 141G 01/ 2001 63

6.4.3. WI_KEYBOARD_ON

Function Enable ID20 foil keyboard
Switches the ID20 foil keyboard on.

Syntax C
VC++

char* WI_KEYBOARD_ON (void);

BASIC
VBASIC

Function WI_ KEYBOARD_ON (ByVal cRes
As String)

PASCAL
DELPHI

Function WI_ KEYBOARD_ON : string

Length: 3 bytesReturn String
“KYB”
“KYI”

Keyboard function enabled
Invalid, not executed

Example #include c__mem.h

void main ()
{

char cRet[4]; // return value

// switch keyboard on
strcpy (cRet, WI_KEYBOARD_ON());
printf(“Result: %s\n”, cRet);

return;
}

*

?

@

ID20 Programming Manual METTLER TOLEDO

64 00 506 141G 01 / 2001

6.4.4. WI_KEYBOARD_OFF

Function Disable ID20 foil keyboard
Switches the ID20 foil keyboard off

Syntax C
VC++

char* WI_KEYBOARD_OFF (void);

BASIC
VBASIC

Function WI_ KEYBOARD_OFF (ByVal cRes
As String)

PASCAL
DELPHI

Function WI_ KEYBOARD_OFF : string

Length: 3 bytesReturn String
“KNB”
“KNI”

Keyboard function disabled
Invalid, not executed

Example #include c__mem.h

void main ()
{

char cRet[4]; // return value

// switch keyboard off
strcpy (cRet, WI_KEYBOARD_OFF());
printf(“Result: %s\n”, cRet);

return;
}

*

?

@

METTLER TOLEDO ID20 Programming Manual

00 506 141G 01/ 2001 65

6.4.5. WI_SERVICE_AUTARK

Function Starts the scale service mode
After the start of the scale service mode, the weighing
interface takes control over all actions until the user
ends the service mode, that means that the command
does not return until the user leaves the service mode
with F11.

Note Neither the operating system nor the application has any
control during the time in the service mode !

Syntax C
VC++

void WI_SERVICE_AUTARK (void);

BASIC
VBASIC

Function WI_ SERVICE_AUTARK ()

PASCAL
DELPHI

Function WI_ SERVICE_AUTARK

Example #include c__mem.h

void main ()
{

// start the service mode

WI_SERVICE_AUTARK());

// now service mode is finished

return;
}

?

@

!

ID20 Programming Manual METTLER TOLEDO

66 00 506 141G 01 / 2001

6.5. Parallel I/O control

In this section you’ll find all commands concerning the parallel I/O possibilities
of the ID20 system, like the Option194* and the Binary Interface Unit* (BIU).

Command Short description

1. OPT94_VERSION Read parallel I/O device info

2. OPT94_WRITE Set outputs of parallel I/O device

3. OPT94_READ Reads inputs of parallel I/O device

4. SYS_PORT_OUT Set single output of parallel I/O device

5. SYS_PORT_IN Reads single input of parallel I/O device

* Additional accessory, optional

i

METTLER TOLEDO ID20 Programming Manual

00 506 141G 01/ 2001 67

6.5.1. OPT94_VERSION

Function Read parallel I/O device info
Returns information about connected parallel I/O (Op-
tion194 and Binary Interface Unit BIU).

Note It isn’t allowed to mix Option194 and BIU’s in a system !

Syntax C
VC++

char* OPT94_VERSION (int iNum);

BASIC
VBASIC

Function OPT94_VERSION (ByVal iNum As
Integer) : As String

PASCAL
DELPHI

Function OPT94_VERSION (iNum : integer) :
string

Input Integer iNum: always 0 (zero) !

Return String Information about number of available par-
allel I/O outputs / inputs.

Length: 12 bytes
Format: “IKdd-0-0vvvv”
(d = device number, v = WI-Version)
IK15...: 1 x Option194-ISA or

1 x BIU
IK16...: 2 to 8 BIU’s

Example: “IK16-0-0132”:
2 or more BIU’s, WI-Version: 132

Example #include c__mem.h

void main ()
{

char cRet[13]; // return value

strcpy (cRet, OPT94_VERSION(0));
printf(“Result: %s\n”, cRet);

return;
}

*

?

@

!

1

ID20 Programming Manual METTLER TOLEDO

68 00 506 141G 01 / 2001

6.5.2. OPT94_WRITE

Function Set outputs of parallel I/O device simultaneous
Switches all outputs of an option194 (Opt194-ISA with
8 outputs) or a Binary Interface Unit (one BIU with 8
outputs, two BIU’s with 16 outputs) simultaneously to
logical on or off.

Note It isn’t allowed to mix Option194 and BIU’s in a system !

Info The command is fully compatible between the low-
power switching option 194 and the power switching
Binary Interface Unit (also called BIU or Relay-Box).
The input parameter iNum exists because of historical
reasons. Always set it to 0 !

Syntax C
VC++

void OPT94_WRITE (int iNum, char* cOut);

BASIC
VBASIC

Function OPT94_WRITE (ByVal iNum As
Integer, ByVal cOut As String)

PASCAL
DELPHI

Function OPT94_WRITE (iNum : integer;
cOut : string)

Input Integer,
String

First parameter: always 0 (zero)
Sec. parameter: 16 bytes output bit pattern
Format: “XXXXXXXXXXXXXXXX”

Example:
OPT94_WRITE (0,“1010101010101010”);

Example #include c__mem.h

void main ()
{

// reset all 8 outputs of option 194
OPT94_WRITE (0, “0000000000000000”);

// set all 8 outputs of option 194
OPT94_WRITE (0, “1111111100000000”);

// set output 1 of option 194
OPT94_WRITE (0, “1000000000000000”);

return;
}

?

@

1

i

X X X X X X
0

X
0

X
0

X X X X X X X X
Option194 / BIU 1 BIU 2

Output 8Output 0

!

METTLER TOLEDO ID20 Programming Manual

00 506 141G 01/ 2001 69

6.5.3. OPT94_READ

Function Reads inputs of parallel I/O device simultaneous
Reads the logical states of all inputs of an option194
(Opt194-ISA with 6 inputs) or a Binary Interface Unit
(one BIU with 6 of 8 inputs, two BIU’s with 12 of 16
inputs) simultaneously.

Note It isn’t allowed to mix Option194 and BIU’s in a system !

Info The command is fully compatible between the low-
power switching option 194 and the power switching
Binary Interface Unit (also called BIU or Relay Box).
The input parameter iNum exists because of historical
reasons. Always set it to 0 !

Syntax C
VC++

char* OPT94_READ (int iNum);

BASIC
VBASIC

Function OPT94_ READ (ByVal iNum As In-
teger) As String

PASCAL
DELPHI

Function OPT94_ READ (iNum : integer) :
string

Input Integer Parameter always 0 (zero)

Return String State of the parallel I/O inputs
Length: 12 bytes
Format: “XXXXXXXXXXXX”

Example #include c__mem.h

void main ()
{

char cInp[13]; // input state

// if option 194 is installed
// read the 6 inputs of option 194
strcpy (cInp, OPT94_READ (0);

// if 1 BIU is installed
// read the first 6 inputs of BIU
strcpy (cInp, OPT94_READ (0);

// if 2 BIUs are installed
// read the 2 x 6 inputs of the BIUs
strcpy (cInp, OPT94_READ (0);

return;
}

Input 0

*

?

@

1

i

X X X X X X X X X X X X

BIU-1 or
Option194-1

Input 5

!

BIU-2 or
Option194-2

Input 11

ID20 Programming Manual METTLER TOLEDO

70 00 506 141G 01 / 2001

6.5.4. SYS_PORT_OUT

Function Set single output of parallel I/O device
Switches a single output of an option194 (Opt194-ISA
with 8 outputs) or alternatively a Binary Interface Unit
(maximum 8 BIU’s, each 8 outputs) to logical on or off.

Note It isn’t allowed to mix Option194 and BIU’s in a system !

Info If you want to control multiple outputs simultaneously,
you can use the command OPT94_WRITE, described on
page 68.
If you want to use the BIU, first enable the BIU with the
SYS_WI command on page 61 for one time.

Syntax C
VC++

int SYS_PORT_OUT (int iPort, int iState);

BASIC
VBASIC

Function SYS_PORT_OUT (ByVal iPort As
Integer, ByVal iState As Integer) : As integer

PASCAL
DELPHI

Function SYS_PORT_OUT (iPort : integer;
iState : integer) : integer

Integer 1: Output port address
Integer 2: 1=on, 0=off

Port address
4
5
...
11
12
13
...
19
20
...
75

Physical port
Option194, output 0
Option194, output 1

...
Option194, output 7

BIU 1, output 0
BIU 1, output 1

...
BIU 1, output 7
BIU 2, output 0

...
BIU 8, output 7

Input Integer1,
Integer2

Example: Switch on output 0 of first BIU:
SYS_PORT_OUT (12,1);

Return Integer 0
-1

Output port set successfully
Selected port not available

Example #include c__mem.h
void main ()
{

int iState; // return value

SYS_WI(“071”); // Enable BIU
// switch on output 2 of BIU 5
iState = SYS_PORT_OUT(46,1);
printf(“Result: %i\n”, ciState);

return;
}

?

@

i

!

1

*

METTLER TOLEDO ID20 Programming Manual

00 506 141G 01/ 2001 71

6.5.5. SYS_PORT_IN

Function Read single output of parallel I/O device
Reads a single input of an option194 (Opt194-ISA with
8 outputs) or alternatively a Binary Interface Unit
(maximum 8 BIU’s, each 8 outputs).

Note It isn’t allowed to mix Option194 and BIU’s in a system !

Info If you want to read multiple inputs simultaneously, you
can use the command OPT94_READ, described on
page 69 (only up to 16 inputs).
If you want to use the BIU, first enable the BIU with the
SYS_WI command on page 61 for one time.

Syntax C
VC++

int SYS_PORT_IN (int iPort);

BASIC
VBASIC

Function SYS_PORT_IN
(ByVal iPort As Integer) : As integer

PASCAL
DELPHI

Function SYS_PORT_IN
(iPort : integer) : integer

Input port address

Port address
4
5
...
9

10-11
12
13
...
20
...
75

Physical port
Option194, input 0
Option194, input 1

...
Option194, input 5

not available
BIU 1, input 0
BIU 1, input 1

...
BIU 2, input 0

...
BIU 8, input 7

Input Integer

Example: read input 0 of first BIU:
SYS_PORT_IN (12);

Input stateReturn Integer

 0
 1
-1

Low
High
Selected port not available

Example #include c__mem.h
void main ()
{

int iState; // return value
SYS_WI(“071”); // Enable BIU
// read input 0 of BIU 4
iState = SYS_PORT_IN(36);
printf(“Result: %i\n”, ciState);
return;

}

?

@

i

!

1

*

ID20 Programming Manual METTLER TOLEDO

72 00 506 141G 01 / 2001

7. Basic control applications

7.1. WinScale application for MS-Windows 95/98/NT
WinScale is designed as a complete solution for all the different people, who are
working for and with the ID20.

It supports
• our customers as an Easy-To-Use basic weighing program
• our service technicians as a complete system diagnostic tool
• our sales personal as an demonstration program for sales purposes.

Last, but not least, also application programmers can get an idea about the
possibilities, when they create applications for the ID20.

WinScale for ID20

By the way:
WinScale is installed free of charge on every new ID20. It supports the most
common languages: English, German, French, Spanish, Italian, Dutch and
Russian. WinScale can be copied free and used without charges !

7.1.1. Structure
WinScale has a very open structure. That means, all texts, most of the graphics,
colors as well as a lot of parameters can be changed very easily:

Because all this data can be manipulated in standard text files with any text
editor (or the integrated editor in WinScale) – without changing or recompiling
any source code - it is very easy to translate WinScale in special languages or
modify WinScale texts in customers standard expressions.

METTLER TOLEDO ID20 Programming Manual

00 506 141G 01/ 2001 73

It is also very easy to modify the user surface, e.g. by including the customers
logo and company colors so that the customer can work with WinScale in his
Corporate Identity (CI) Look-And-Feel.

All files relating to WinScale are included in the ID20-directory C:\WinScale:

File structure of WinScale

When WinScale.exe is started, it decides -depending on the running operating
system- which WinScale version has to be started. There are two different com-
piled versions of the same software, because of the need of different software
interfaces for Windows95/98 and WindowsNT.

7.1.2. Translating or editing texts in WinScale
All texts, which are used in WinScale, are editable in standard ASCII files. They
can be edited with every standard editor (e.g. the integrated WinScale editor or
Notepad.exe). That means, translations in other languages or the exchange of
terms are very simple. The language files are loaded “online” in WinScale.

If a translation for a special language has to be created, the file “MyLang.txt”
(my language) should be used. If you do so, this new language can be
reached over the menu point “Language->MyLanguage”. Normally, “My-
Lang.txt” is only a simple copy of the English text file “English.txt”.

Translate simply by exchanging the right-side expressions of every line. The left
expression is used by WinScale to identify the text. The example shows you,
how to translate an English term into a French one

The terms on the left side are used to identify the text, so never change them !

WinScale.exe starts WSWin98 or WSWinNT

WinScale for Windows 95 and Windows 98

WinScale for Windows NT

Graphic bitmaps

Weighing protocol file in ASCII format
WinScale initialization file in ASCII format
Dynamic link library for Windows 95/98
Dynamic link library for Windows NT

Language text files in standard text format

True type fonts Mettler-Toledo-Standard

ID20 Programming Manual METTLER TOLEDO

74 00 506 141G 01 / 2001

It is possible to test the modifications “online” if you run an editor and WinScale
parallel. If you save the edited text file in your editor, reload the corresponding

language in WinScale to see
the modifications
immediately.

This method is very helpful to
check the sense of the new
text and if the text length still
fits in WinScale.

7.1.3. INI-File of WinScale
The basic settings of WinScale are located in the WINSCALE.INI file. Normally it
isn’t necessary to do changes manually, because all important settings can be
reached comfortable in WinScale using the menu point EXTRAS/OPTIONS. The ex-
ception is the exchange of bitmaps. If you e.g. want to exchange the company
logo, the path to the new bitmap has to be changed in the block [image],
point LOGO.

The initialization file of WinScale must be handled with care.
Incorrect changes can lead to program mistakes or other serious errors !
The INI file also contains the system passwords for Mastermode and Options.

7.1.4. User weighing program
The user surface of WinScale consists of these basic regions:

A standard user can do his work completely with the use of the 8 function keys
of the foil keypad. There is no need to use specialties in the menu bar when
processing normally.

Menu bar,
for special use only
(Service, Initialization, Edit)

Information field,
Weight values and
weight graph

Function key
level

Basic scale buttons,
always visible

Function keys,
dependent of selected level

Info bar,
Information about last step,
actual scale, actual time

!

METTLER TOLEDO ID20 Programming Manual

00 506 141G 01/ 2001 75

WinScale can be also used as an emergency program, while the customer ap-
plication is not finished or actually not working. If weighing results are printed in
the alibi file or on a printer with F3, they are also saved in a standard ASCII file,
called WINSCALE.DAT. This makes it possible to get all weighing specific data
later back into data bases or in other programs as MS-Excel etc.

7.1.5. Service functionality
With the integrated service functionality of WinScale (only reachable over the
menu bar), it is possible to check hard- and software of the ID20.
With the menu point “Scale” you can reach the MASTERMODE and the
SERVICEMODE.

The Mastermode informs about scale parameters and allows the service techni-
cian to change them, like vibration adapter, weighing process adapter, auto-
matic stability control, auto-tare and restart – option. The access to the Master-
mode can be prevented by a password, to enable in EXTRAS/OPTIONS/SECURITY.

The Servicemode is only accessible for METTLER TOLEDO service technicians
with a special password. Here it is possible to change weighing relevant scale
data. Any change, which is saved, increments the scale identcode, that means,
that the system is not longer approved any more !

Access to Master- and Servicemode should only be done by METTLER
TOLEDO service technicians ! Incorrect settings can lead to wrong results
and malfunctions!

With the menu point “Extras” you can reach the hardware test and setting
functionality. It is possible to test:
• Serial interface ports
• Parallel interface ports

(Binary Interface Unit BIU
and Option194)

• Harddisk
• TFT-Display
• Foil keyboard
• Beeper

With the menu point EXTRAS / SYSTEM INFORMATION, you can get an overview over
your computers system configuration , regarding the ID20 as a

standard industrial PC. This can be helpful, when integrating the ID20 into cus-
tomers networks or locating system overload errors.

!

ID20 Programming Manual METTLER TOLEDO

76 00 506 141G 01 / 2001

The last point in the Extras is the version info.
Here you can get a fast overview, which
METTLER TOLEDO specific hard- and software
is installed.

This is important, if you want to check, if an
update was successful or not.

The version info also informs about scale
software versions ,connected to the ID20.

7.1.6. Integrated text editor
The integrated standard text editor makes it
possible to edit the weighing result data file
or to edit or translate any language file with-
out having access to a Windows editor.

Open the editor with FILE/OPEN and close it
again with FILE/CLOSE.

7.1.7. Options
The are a lot of options, to set WinScale individually to customers needs. For
example, you can prevent the access to the master mode or to this complete
option menu:

With a click to the standard button, all option points are set to the most com-
mon settings and also the colors of WinScale are set to factory setting.

In the option menu, register tab WEIGHING, you can also give the scales an indi-
vidual, more useful name. This name will be displayed in the info bar, so that
the user can identify the actual chosen scale much more easily.

The first field informs the user about the last event, e.g. the result of a tare
function and also displays error messages. The last field shows the actual
time.

METTLER TOLEDO ID20 Programming Manual

00 506 141G 01/ 2001 77

ID20 Programming Manual METTLER TOLEDO

78 00 506 141G 01 / 2001

7.2. Scale application for MS-DOS

7.2.1. SCALE.EXE
The application program SCALE.EXE is a simple weighing program, which runs
under MS-DOS or in a DOS-Box in Windows95 or Windows98.
Please note that the program does not run in a DOS-Box under WindowsNT.

For WindowsNT, and also the other Windows versions, use the Windows-based
program WinScale. WinScale is a replacement for SCALE.EXE and SERVICE.EXE.

SCALE.EXE can be started with a simple click on É and j on the foil key-
board. This starts the batch file “1.BAT”. Depending on the used weighing inter-
face, the scale driver program MEMORY.EXE or LIGHT.EXE will be also auto-
matically loaded if necessary.

7.2.2. Features
Besides the basic weighing functions, SCALE.EXE has some useful features, so
that it can be used as an emergency weighing program.

Identification keys
There are 4 identification keys, which can be labeled by the user. If the user
presses an ID key, a free text can be entered.

Weighing data export
When weighing results are printed to the alibi file, this data as well as the actual
texts from the identification keys are printed simultaneously into a standard text
file (C:\BORL_C\SCALE.DAT). This makes it possible to take over the results later
in an evaluation program or into the normal application program. Additionally, it
is also possible to printout the weighing data on a GA46 printer.

Serial ports configuration
The serial ports can be configured in four configurations:
• Serial port not used
• GA46: if a GA46 printer is attached, for printouts
• Barcode: for text entries into the identification keys with a barcode reader
• Command/Response: Remote control / communication with the ID20

METTLER TOLEDO ID20 Programming Manual

00 506 141G 01/ 2001 79

7.3. Service application for MS-DOS

7.3.1. SERVICE.EXE
The application program SERVICE.EXE is a simple weighing program, which
runs under MS-DOS or in a DOS-Box in Windows95 or Windows98.
Please note that the program does not run in a DOS-Box under WindowsNT.

For WindowsNT, and also the other Windows versions, use the Windows-based
program WinScale. WinScale is a replacement for SCALE.EXE and SERVICE.EXE.

SERVICE.EXE can be started with a simple click on Ê and j on the foil key-
board. This starts the batch file “2.BAT”. Depending on the used weighing inter-
face, the scale driver program MEMORY.EXE or LIGHT.EXE will be also auto-
matically loaded if necessary.

7.3.2. Features
Information
SERVICE.EXE gives information about the installed soft- and hardware versions.
Please note that the scale driver program is displayed always as MEMORY.EXE,
even when the LIGHT.EXE is running with a new Weighing Interface.

Mastermode, Servicemode
In the Mastermode, the settings of the vibration adapter, the weighing process
adapter and the automatic stability control can be manipulated. The password-
protected Servicemode enables service technicians to calibrate the load cell etc.
Please note, that changes in the Servicemode increase the scale’s Ident-Code,
so the system will loose it’s legal validation !

Hardware test
This option allows the test of basic harddisk function, display pixel control, MF-
II keyboard test, foil keyboard test, test of serial ports (with loopback connector)
and the test of the parallel I/Os: Option 194 and the BIU (Binary Interface Unit).

ID20 Programming Manual METTLER TOLEDO

80 00 506 141G 01 / 2001

7.4. Alibi file authentication
The only way to authenticate the alibi file for purposes subject to legal control is
the integrated scale program / editor as part of the scale driver LIGHT.EXE re-
spectively LIGHT_NT.EXE.

To start the DOS-based program, please
open a DOS-Box and proceed as follows:

If Windows95 or Windows98 is running,
please enter:

If WindowsNT is running, please enter:

The following menu appears on your screen. Select the desired function of the
scale program via the function keys F1 to F8:

To validate the alibi file, choose “CONTROL” by pressing F7.

In the next screen, choose between controlling the alibi file by pressing É or
making an example authentication print by pressing Ê now:

If an example print is made, the
gross/net/tare value and the date /
time stamp and the individual
authentication key is printed in
the alibi file on the harddisk.

F8 returns to the previous menu.

Zero
 scale

Tare
 scale

Leave
program

Scale
Ident-
code

Choose
scale

Start
Service-
mode

Verify
legal

programs

METTLER TOLEDO ID20 Programming Manual

00 506 141G 01/ 2001 81

To control the alibi file entries, press É. The screen with 10 new data sets
appears similar as follows:

With scroll up/down now step to the page until the desired data set to verify is
shown. With press on F1, the cursor jumps into the data field. Now select the
desired record with the cursor up/down keys or F4/F5.

Another push on F1 now checks the integrity of the data record. If the data set is
correct, the state is displayed as “OK”. If the record was manipulated, the state
is “FALSE”. If the data set is unused, the state is displayed as “FREE”.

For documentation purposes, it is possible to realize a printout of chosen data
sets with F2 into a standard text file. The file can be found in C:\MEMORY.PRT.

This special METTLER TOLEDO editor is legal approved to check the integrity of
the compressed data sets in the ID20 alibi file. The encryption is realized with a
special, secret algorithm to control the correctness of weight, date and time data
corresponding to the authentication code. Every manipulation will be detected.

Jump
to alibi file

start
(Pos. 0)

Verify
records

Leave
verify
mode

Jump to
alibi file

end (Pos.
666666)

Scroll
up

one step

Scroll
down

one step

Decrease
step width

(Min.
10 sets)

Increase
step width

(Max.
100000)

Print
records in

text file

Search a
record

(date or
code)

Scroll
down

one step

Verify
selected
record

Leave
verify
mode

Scroll
up

one step

ID20 Programming Manual METTLER TOLEDO

82 00 506 141G 01 / 2001

Notes

METTLER TOLEDO ID20 Programming Manual

00 506 141G 01/ 2001 83

Notes

ID20 Programming Manual METTLER TOLEDO

84 00 506 141G 01 / 2001

Mettler-Toledo (Albstadt) GmbH
D-72423 Albstadt, Germany
Tel. +49 7431 140, Fax +49 7431 14373
Internet: http://www.mt.com

AT Mettler-Toledo Ges.m.b.H., A-1100 Wien
Tel. (01) 604 19 80, Fax (01) 604 28 80

AU Mettler-Toledo Ltd., Port Melbourne, Victoria 3207
Tel. (03) 9646 4551, Fax (03) 9645 3935

BE n.v. Mettler-Toledo s.a., B-1651 Lot
Tél. (02) 334 02 11, Fax (02) 378 16 65

BR Mettler-Toledo Indústria e Comércio Ltda.
São Paulo, CEP 06465-130
Tel. (11) 421 5737, Fax (11) 725 1962

CA Mettler-Toledo Inc., Ontario L7R3Y8,
Tel. (905) 681 7011, Fax (905) 681 1481

CH Mettler-Toledo (Schweiz) AG,
CH-8606 Greifensee
Tel. (01) 944 45 45, Fax (01) 944 45 10

CN Mettler-Toledo Changzhou Scale Ltd.
Changzhou City, Jiangsu 213001
Tel. (519) 664 20 40, Fax (519) 664 19 91

CZ Mettler-Toledo, spol, s.r.o., CZ-12000 Praha 2
Tel. (2) 22 51 69 52, Fax (2) 22 51 81 92

DE Mettler-Toledo GmbH, D-35353 Giessen
Tel. (0641) 50 70, Fax (0641) 52 951

DK Mettler-Toledo A/S, DK-2600 Glostrup
Tel. (43) 27 08 00, Fax (43) 27 08 28

ES Mettler-Toledo S.A.E., E-08038 Barcelona
Tel. (03) 223 22 22, Fax (03) 223 02 71

FR Mettler-Toledo s.a., F-78222 Viroflay
Tél. (01) 309 717 17, Fax (01) 309 716 16

HK Mettler-Toledo (HK) Ltd., Kowloon HK,
Tel. (852) 2744 1221, Fax (852) 2744 6878

HR Mettler-Toledo, d.o.o., CR-10010 Zagreb
Tel. (1) 660 2189, Fax (1) 660 3009

HU Mettler-Toledo Kft, H-1173 Budapest
Tel. (1) 257 9889, Fax (1) 257 7030

IN Mettler-Toledo India Pvt Ltd, Mumbai 400 072
Tel. (22) 857 08 08, Fax (22) 857 50 71

IT Mettler-Toledo S.p.A., I-20026 Novate Milanese
Tel. (02) 333 321, Fax (02) 356 29 73

JP Mettler-Toledo K.K., Shiromi, J-Osaka 540
Tel. (6) 949 5901, Fax (6) 949 5945

KR Mettler-Toledo (Korea) Ltd., Seoul (135-090)
Tel. (82) 2 518 20 04, Fax (82) 2 518 08 13

MY Mettler-Toledo (M) Sdn.Bhd., 47301 Petaling Jaya
Tel. (603) 703 2773, Fax (603) 703 8773

MX Mettler-Toledo S.A. de C.V., Mexico CP 06430
Tel. (5) 547 5700, Fax (5) 541 2228

NL Mettler-Toledo B.V., NL-4000 HA Tiel
Tel. (0344) 638 363, Fax (0344) 638 390

NO Mettler-Toledo A/S, N-1008 Oslo
Tel. (22) 30 44 90, Fax (22) 32 70 02

PL Mettler-Toledo, Sp. z o.o., PL-02-929 Warszawa
Tel. (22) 651 92 32, Fax (22) 42 20 01

RU Mettler-Toledo AG, 10 1000 Moskau
Tel. (095) 921 68 12, Fax (095) 921 63 53

SE Mettler-Toledo AB, S-12008 Stockholm
Tel. (08) 702 50 00, Fax (08) 642 45 62

SEA Mettler-Toledo (SEA), Sdn.Bhd., 47301 Petaling Jaya
Tel. (603) 704 1773, Fax (603) 703 1772

SG Mettler-Toledo (S) Pte. Ltd., Singapore 139959
Tel. (65) 890 0011, Fax (65) 890 0012

SK Mettler-Toledo, service s.r.o., SK-83103 Bratislava
Tel. (7) 525 2170, Fax (7) 525 2173

SI Mettler-Toledo, d.o.o., SI-1236 Trzin
Tel. (016) 162 18 01, Fax (061) 162 17 89

TH Mettler-Toledo (Thailand), Bangkok 10310
Tel. (662) 719 6480-7, Fax (662) 719 6479

TW Mettler-Toledo Pac Rim AG, Taipei
Tel. (886) 2 2579 5955, Fax (886) 2 2579 5977

UK Mettler-Toledo Ltd., Leicester, LE4 1AW
Tel. (0116) 235 0888, Fax (0116) 236 5500

US Mettler-Toledo, Inc., Columbus, Ohio 43240
Tel. (614) 438 4511, Fax (614) 438 4900

Subject to unannounced changes. Made by EEK.  Mettler–Toledo (Albstadt) GmbH 2000-2001
Printed in Germany. 00 506 141G

 00506141G

