In this example, ReactIR is able to identify key intermediates and show that a coupling agent generates highly reactive acyl imidazolium intermediates, which in turn, react to form amide-group containing compounds with little or no epimerization. While sampling for offline HPLC identified the final product, offline sampling did not detect these key intermediates.
Transient Intermediate Detection in Action
Eliminate Hold Time
In a multi-step batch process, it is important to move a synthesized intermediate compound to the next phase of the process and avoid hold times, which can be accompanied by decomposition. In the example presented in this video, the scientists needed to form an enantiomer-pure product from an enantiomer-pure reagent. The stereogenic center of the product is unstable and epimerizes. To achieve their goals, it was necessary to carefully control the reaction so that the levels of both the pure enantiomer product and the unwanted impurity were both achieved. In situ FTIR measurement of the conversion of starting material to product captured the end point of the reaction, and eliminated the hold time incurred from offline HPLC analysis. Product yield and purity targets were met and the time required for this process was reduced.

Espectroscopia FTIR
Espectroscopia no Infravermelho com Transformada de Fourier (FTIR) para Monitoramento das Reações Químicas em Tempo Real

Informações das Reações em Cada Experimento
Este artigo apresenta cinco exemplos extraídos de artigos de periódicos recentes nos quais o HPLC por si só não foi suficiente para dar as informações que os cientistas precisavam. Em todos os casos, a análise in situ complementou a análise por HPLC, resultando em etapas de síntese melhoradas.