

MagCal - Susceptometer Magnets Calibration System

Table of contents

1	INTRODUCTION	4
2	CALIBRATION SYSTEM	5
2.1	Precautions	5
2.2	Process	6
2.3	MagCal Control Software Installation	7
2.3.1	PC System requirements	7
2.3.2	Installation	7
3	MAGCAL CONTROL SOFTWARE	8
3.1	MagCal Control Settings	9
3.2	Password protection	9
3.3	Installation code inquiry	9
3.4	Settings overview	10
3.5	Comparator Settings	11
3.5.1	Comparator installation process	12
3.5.2	Troubleshooting	12
3.6	Process Settings	12
3.7	Administration settings	13
3.8	Geometry settings	14
3.8.1	Calibration of spacer	10
3.9	Save settings	10
5.10	Save settings	10
4	MEASUREMENT	17
4.1	Comparator and magnet measurement conditions	17
4.2	Performing the measurement	17
4.2.1	Define process parameters	18
4.2.2	Starting the measurement	18
5	REPORT	19
6	THEORY & CALCULATIONS	20
6.1	Calculation formulas	21
6.2	Air density	21
6.3	Gravitational force constant	23
7	TERMS AND WARRANTY OF SOFTWARE	24
7.1.1	General terms of warranty and license for software	24
7.1.2	Scope and use	24
7.1.3	Copies	24
7.1.4	Warranty	24
7.1.5	Confidentiality	25
7.1.6	Duration	25
7.1.7	Transferability	25
7.1.8	Applicable law, venue	25

8	INDEX		
---	-------	--	--

1. Introduction

In purchasing this calibration set for Susceptometer magnets, you have chosen a talented, highly professional calibration system. Combining METTLER TOLEDO's worldclass weighing sensor technology with the software application and measurement technology - new dimension to determination of magnetic properties is achieved.

2. Calibration system

The MagCal Set comprises (see Figure 1):

- 1 4 labeled Neodymium magnets in dimension 5 x d 5mm Especially coated for long-term stability and corrosion resistance with magnetic polarization of approx. 0.1 A/m²
- 2 Calibrate able spacer to decrease the attraction forces during the measurement.
- 3 Tweezers for appropriate magnets handling
- 4 Wooden box for safe storage and transportation
- 5 The Microsoft[®] Windows[®] Excel[®] based MagCal Control software for automatic data reading and calculation

Figure 1 Overview content of MagCal System

2.1. Precautions

The supplied magnets are of very high magnetism and need extra care in handling. Contact in between the magnets must be avoided. Protect each single magnet against self-movement (By attraction to other magnets or ferrite materials.

Do not allow magnets in the near vicinity of weights or other sensitive materials or measurement equipment. They might get magnetized in case of contact or near vicinity to the magnets.

2.2. Process

The magnets polarization is determined by inter comparing the 4 magnets in a defined distance (Spacer) and measuring the attraction forces in between. With multiple equations, the single magnets polarizations are calculated. All single measurements are performed with differential measurement method to eliminate influence of comparator drifting.

Figure 2 Process of magnets measurements

2.3. MagCal Control Software Installation

2.3.1. PC System requirements

The software requires MS Office 2003 or higher and Windows XP or more recent to run. In case the software is to be installed on a 64 bit systems please inquire with <u>metrology@mt.com</u> for further information's.

2.3.2. Installation

Preconditions: For the installation, you need to have administrator rights.

Process: 1. Insert the supplied CD ROM in the drive and open Windows explorer.

- 2. Select the file MagCal_Control_Ver_1_0_0.msi and double-click it
- 3. The software will install automatically. Please do not change the values set as default.

4. Go to the installation directory of the installed MagCal Control Software and generate a desktop link

3. MagCal Control Software

The MagCal Control Software fully controls the comparator during the polarization measurements. Within the software, numerous settings are defined and the process is conducted fully automatic.

Magnets Dipole Measurement			Business Area Metrology Version 1.00				
			MET	LER TOLEDO			
				Settings	Application Close		
Choose equipment in use			_				Provide a station of station
							Process settings section
Calibration Number :	Define Cal. Nr.	CalNr					All settings of customer and system
Remarks :	Define remarks	None					All bottings of bubtomor and bybtom
Signature :	Define User		-				
Environment data							
Insert values from sensors readings							Environment cottings costion
Air pressure P	Write value	985	[hPa]				Environment settings section
Air temperature T _a	Write value	20	[°C]				Entering of environmental data for
Air relative humidity RH	Write value	45	[96]				
Air CO2 content CO;	2 Write value	0.0004	[1]	CIPM 2007 p	1. 166 242 [kg/m	n ³]	air density and Z ₀
Z0 Z0	Write value	18	[mm]				.,
				Start measuremer	t 📐		Action buttons
							ACTION DUITONS
Mass values							
Magnet 1 on balance, North pole up	Measurement 1 for IF12 Measurement 2 for IE12			[mg]			Massurament section
Magnet 2 off the spacer	Measurement 3 for IE12 & IE13			[mg]			Measurement Section
Magnet 3 on spacer, North pole up	Measurement 4 for IF13			[mg]			Mass readings from comparator
Magnet 3 off the spacer	Measurement 5 for IF13 & IF14			[mg]			indee readinge nom oomparator
Magnet 4 on spacer, North pole up	Measurement 6 for IF14			[mg]			are implemented
Magnet 4 off the spacer	Measurement 7 for IF14			[mg]			
Magnet 2 on holonge, North polo up	Monouromont 9 for IE22	1 1		Imal			
Magnet 3 on spacer. North pole up	Measurement 9 for IF23			límal			
Magnet 3 off the spacer	Measurement 10 for IF23 & IF24			[mg]			
Magnet 4 on spacer, North pole up	Measurement 11 for IF24			[mg]			
Magnet 4 off the spacer	Measurement 12 for IF24			[mg]			
Magnet 3 on balance, North pole up	Mageurament 13 for IE34	1 1		Imol			
Magnet 4 on spacer. North pole up	Measurement 14 for IF34			limol			
Magnet 4 off the spacer	Measurement 15 for IF34			[mg]			
Mass values	1	1 1	Imal		0	_	B 14 41
Force values 1 & 2	1712		[mg]	li D	9	_	Results section
Force values 1 & 3	1713		[mg]	[9		Final requilt of foress and
Force values 1 & 4	1714		[mg]	1	4]		Final result of forces and
Force values 2 & 3	1723		[mg]	[f	9		nolarizations
Force values 2.8.4	1/124	-	[mg]		۹ <u>)</u> n		polarizationo
Porce values 3 d. 4	1234		[m81	Į	9		
	Result						
	Magnetic dipole moment	of Magnet 1	_	md ₁	[A/n	n²l	
	Magnetic dipole moment	of Magnet 2	_	md ₂	[A/n	n^2	
	Magnetic dipole moment	of Magnet 3	_	md ₂	[A/n	n^2	
	Magnetic dipole moment	of Magnet 4	-	md₄	[A/n	n ²]	
					1010		

Figure 3 MagCal Control Software main screen

3.1. MagCal Control Settings

Within the settings all required process definitions are made. See following chapters for full details.

3.2. Password protection

The settings section is password protected to ensure high data security. The initial password is "magnet". Please see section 3.7 to change password

Enter Password	
Please enter password administration level	to unlock
magnet	
Cancel	ОК

Figure 4 Password check

3.3. Installation code inquiry

The software is licensed and is verifying this by checking the connected comparator with the model type and the serial number in combination with a supplied code.

Please inquire for the installation code with Mettler Toledo AG for final installation Please send following information to <u>metrology@mt.com</u>

:

•

•

- Customer Institute Customer position Customer Name, Surname Customer address City including ZIP Country Customer phone number Customer Email Customer web Page Balance Model Serial number Latitude of City: Attitude of installation
- Remarks: The software can control following models only XP6U, XP6, XS3DU, UMX5, MX5 UMT5, MT5

3.4. Settings overview

Settings			×
Settings SuscCal Cont	rol		
Comparators		Geometries	
Comparator model family	AX 9600,N,8,1,N	Latitude	45
Com Port comparator 1	1 Search Reset selec	Altitude	310
Comparator 1 connected	UT5	Local g Force	9.805242296
Serial number comparator 1	799757	Lambda	60
Resolution [mg]	0.0001	Magnet height	5
Max Load [g]	5.1	Llear definition	1
Zeropoint [g]		User definition	
Repeatability [g]	0.0004	User 1	
Stabilization Time [s]	1	User 2	
Enter installation code 1	stUspS	User 3	
System Name Comparator 1	None	User 4	
D		User 5	
Process settings		User 6	
Select Language	English	User /	
Pre label	None	User 8	
Report save directory	C:\Data		
Administration			
Administrator password	magnet		Cancel OK
Print to default printer	Γ		
Print to PDF	v		

Figure 5 Settings screen

The settings is split in 4 sections

- Comparator settings
- Process settings
- Administration

- Geometries
- User settings

3.5. Comparator Settings

In the first section the comparator is defined. Major parameters are defined by the system automatically.

Comparators			
Comparator model family	AX 💌	9600,N,8	,1
Com Port comparator 1	1	Search	Reset selec
Comparator 1 connected			
Serial number comparator 1			
Resolution [mg]	0.0001		
Max Load [g]	1109		
Zeropoint [g]			
Repeatability [g]	0.07		
Stabilization Time [s]	12		
Enter installation code 1	itJPQYn		
System Name Comparator 1	XP6U		

Figure 6 Comparator settings

Comparator model family Select out of XP, AX or AT according comparator to be connected

XP6U, XP6, XS3DU → XP
UMX5, MX5 🔿 AX
UMT5, MT5 🔿 AT
Adjust the serial port settings of the connected comparator as
shown in the right field. If settings are not identical on the
comparator as shown, no communication can be established.
Settings of Susceptometer control software (must be set on
comparator)

Model Family	Baud	Parity	Data Bits	Stop Bit	Handshake
XP:	9600	None	8	1	No Handshake
AX	9600	None	8	1	No Handshake
AT	2400	Even	7	1	No Handshake

Com port comparator Search	Serial communication port RS232 for comparator communication Starts the communication to comparator and retrieving model type and serial number				
Reset	Resets all settings of the balance communication to default.				
Comparator connected	Indication of connected comparator model. Information retrieved automatically from comparator				
Serial number comparato	or Serial number of connected comparator. Information retrieved automatically from comparator				
Resolution comparator	mg] Indication of comparator resolution / readability. Information is automatically set, but can be changed.				
Max Load comparator	[g] Maximum load of comparator. Information is automatically set, but can be changed. Indicates the maximum applicable load according data sheet				
Zero point [g]	Load of the comparator when turned on including the under water weighing pan. Value is set automatically at comparator installation				
Comparator repeatability	[mg] Repeatability of comparator. Used for calculation of uncertainty contribution of comparator repeatability to combined uncertainty.				
Stabilization time [s]	Time required to stabilize after load is applied. Value is set automatically, but can be changed.				

Enter installation code Code for enable software to run. Please see more details in section 3.3 System name comparator Define name of the system (e.g. Susc_VGR_003)

3.5.1. Comparator installation process

- 1. Connect comparator with serial cable to control computer
- 2. Select comparator model family (XP, AX, AT)
- 3. Adjust comparator serial port settings according shown definitions (Factory settings)

	XP	AX	AT
Baud rate	9600	9600	2400
Parity	No	No	Even
Data bits	8	8	7
Stop bit	1	1	1
Handshake	No	No	No

Remarks:

Set the handshake for XP, AX and AT comparators to off Other software's of Mettler Toledo use following settings

Susceptometer Control	AT	2400 baud, 7 data bits, 1 stop bit, even parity, no handshake
	AX	9600 baud, 8 data bits, 1 stop bit, no parity, no handshake
MCLink	AT	2400 baud, 7 data bits, 1 stop bit, even parity, handshake pause
	AX	9600 baud, 8 data bits, 1 stop bit, no parity, no handshake

- 4. Enter number of Serial com port on the computer (If doubt, try 1 .. 9 until communication established)
- 5. Click on search button to verify connection
- 6. Change defined comparator parameters according local performance and requirements
- 7. Enter acquired installation code of the connected comparator
- 8. Define System name (Appears in report files)

The comparator is installed and ready to communicate to the controlling computer

3.5.2. Troubleshooting

Issue: Solution:	If the serial port settings of the comparator are not set the above defined settings, communication can not be established.
Issue:	No communication can be established due to wrong serial port number
Solution:	Enter different number in field "Com Port Comparator"
Remarks:	Set the handshake to none

3.6. Process Settings

Within the process settings, customer and process specific settings are defined

Process settings	
Select Language	English 🔹
Pre label	None
Report save directory	C:\Data

Figure 7 Process settings

Select language	Select out of selectable languages. If the selected language is not available, please inquire with us.	
Pre Label	Label to be integrated in file name at foremost position. Standard restrictions regarding use of special characters for file names apply. Label = MagCal_Control → File Name MagCal_Control_34582.xls	
File name definitio	n: The file name is built up of - Pre Label - Calibration number as defined in the measurement settings	
If one of the above	is not defined, the content is disregarded	
Report save direct This can be	ory Select with the button the desired saving directory of your reports.	

a network drive or local hard disk

3.7. Administration settings

Within administration basic program display settings are defined.

Administration		
Administrator password	magnet	
Print to default printer		
Print to PDF		v

Figure 8 Administration settings

Administrator password Enter desired password to protect administration section. Password is inquired as described in section 3.1

Password history:

Date:	Password:	
Initial	magnet	

Print to default printer	Select to print the report to the default printer
Print to PDF	Select to save the report as PDF File.
	To allow this function, the PDF creator or similar must be installed
PDF Creator:	Free of charge PDF printer.
	Download under http://sourceforge.net/projects/pdfcreator/

3.8. Geometry settings

Within geometry settings, the gravitational force constant factors are defined and calculated. Magnets and spacer dimensions are defined.

Geometries	
Latitude	45
Altitude	250
Local g Force	9.80542753714106
Lambda	60
Magnet height	5

Figure 9 Geometry settings

Latitude	[°]	Define latitude of the location of the Susceptometer
Altitude	[m]	Define altitude of the location of the Susceptometer
Local g Force	[m/s ²]	Calculated g force constant according 6.3
Lambda	[mm]	Define height of spacer
Magnet height	[mm]	Define height of magnet

3.8.1. Calibration of spacer

The length of the spacer (λ) is a main factor for the determination of the magnetic polarization. Therefore it must be measured / calibrated accurately with suitable measurement equipment.

Figure 10 Definition spacer measurement

The length Lambda of the spacer is in between the rest of the magnet and the contact ring (contacting the surface of the platform of the Susceptometer).

To measure the length accurately and traceable, the use of calibrated micrometers is strongly recommended.

Figure 11 Micro meter for accurate determination of spacer length

3.9. User Settings

Within user settings up to 8 users can be predefined for selection at process start. Enter desired name / definition within white fields.

User definition	
User 1	User 1
User 2	User 2
User 3	
User 4	
User 5	
User 6	
User 7	
User 8	

Figure 12 User settings

3.10. Save settings

To save the defined settings, select "Save settings". To reject changes, select cancel.

Cancel	Save Setting

Figure 13 Save settings

4. Measurement

4.1. Comparator and magnet measurement conditions

The comparator must be in standard operation conditions. Mettler Toledo recommends to perform some warm up measurements prior the measurement to enable best possible performance of the comparator.

To do so, install magnet Nr.1 on the pedestal of on the comparator and close the lid over the ultra micro balance. Ensure the magnet is placed firmly on the lower rest of the recess and is flat.

Figure 14 Magnet correct placement

With older models of the Susceptometer, the recess for the magnet might be too tight. Please widen up with mechanical drilling or lathe on turning lathe to a diameter of 5.1mm + 0.05/-0.00

Place the platform of the Susceptometer and place the spacer into the center hole on it. Install the magnet Nr.2 into the spacer. Remove magnet Nr.2 and place again for 3... 5 times.

4.2. Performing the measurement

Define the required parameters of the measurement. Ensure the settings are defined according your local requirements.

Environment data					
Insert values from sensors re	adings				
Air pressure	P Write value	985 [hPa]			
Air temperature	T _a Write value	20 [°C]			
Air relative humidity	RH Write value	45 [%]			
Air CO2 content	CO ₂ Write value	0.0004 [1]	CIPM 2007	ρa	1. 166 242 [kg/m ³]
ZO	Z0 Write value	18 [mm]			

4.2.1. Define process parameters

Step	Parameter	Description	Required for
1.	Air pressure	Enter air pressure	Calculation of air density
2.	Air temperature	Enter air temperature	Calculation of air density
3.	Air relative humidity	Enter relative air humidity	Calculation of air density
4.	Air CO2 content	Enter CO ₂ content	Calculation of air density
5.	Z ₀	Distance platform – center magne	t Calculation of magnetism

Remarks: The values for the air density are not taken into any calculation, but are defined as reference for further analysis.

4.2.2. Starting the measurement

Click on the Start measurement button to start the communication with the connected comparator.

Start measurement	
-------------------	--

Figure 16 Start button

- Click on "Start measurement" System establishes communication and follows measuring process as defined in the default settings
- Follow information's given by software and display of comparator. See chapter 2.2 for application flow of process

Comparator Control		X
Magnets Dipole Measurement		
		x
	Esc	• 0.0048
System starting		

Figure 17 MagCal Control communication panel

- 8. In case no communication can be established to the comparator, verify again the settings.
- 9. At finalizing the process, report is generated automatically and saved to the defined directory. Report
- 10. Print out the report for your archive as PDF and / or paper by clicking on the print button

5. Report

In the report section all the defined and measured parameters are listed including the intermediate and final results.

Susceptometer magnet calibration

Calibration Number :	CalNr	
Date :	31.Aug 2010	
Remarks :	None	
Signature :	0	
Environment data		
	Þ	085 [bPo]
Air temperature	т	20 [°C]
Air relative humidity	RH	45 [%]
Air CO2 content	60.	0 0004 [1]
Air density	002	1 166242 [kg/m ³]
Local g Eorce	Pa 0	9 805427537 [kg/m ²]
Lambda	λ	60 [mm]
Z0	Z0	18 [mm]
Magnet height	L	5 [mm]
		- ()
Mass values		
Measurement 1 for IF12	0.0	[mg]
Measurement 2 for IF12		0.0 [mg]
Measurement 3 for IF12 & IF13	0.0	[mg]
Measurement 4 for IF13		0.0 [mg]
Measurement 5 for IF13 & IF14	0.0	[mg]
Measurement 6 for IF14		0.0 [mg]
Measurement 7 for IF14	0.0	[mg]
Measurement 8 for IF23	0.0	[mg]
Measurement 9 for IF23		0.0 [mg]
Measurement 10 for IF23 & IF24	0.0	[mg]
Measurement 11 for IF24		0.0 [mg]
Measurement 12 for IF24	0.0	[mg]
Measurement 13 for IF34	0.0	[mg]
Measurement 14 for IF34		0.0 [mg]
Measurement 15 for IF34	0.0	[mg]
Force values		
Force values 1 & 2	I _{F12}	[mg]
Force values 1 & 3	I _{F13}	[mg]
Force values 1 & 4	I _{F14}	[mg]
Force values 2 & 3	I _{E23}	[mg]
Force values 2 & 4	I _{F24}	[mg]
Force values 3 & 4	I _{F34}	[mg]
L		
Result		
Magnetic dipole moment of Magnet 1	md1	[A/m ²]
Magnetic dipole moment of Magnet 2	md2	[A/m ²]
Magnetic dipole moment of Magnet 3	mas	[A/m²]
wagnetic dipole moment of Magnet 4	md4	[A/m ⁻]

Calculation generated with SuscCal Control software Ver. 1.00

Figure 18 Report

6. Theory & Calculations

By measuring the forces in between the pairs of magnets the magnetic dipole can be calculated.

With measuring all possible combinations of pairs of the 4 magnets, a closed system of equations can be used to calculate each single magnetic dipole of the magnets.

Parameters

λ	Height of pedestal		[mm]
Z ₀	Distance platform to center of magnet	on weighing pan	[mm]
L	Height of magnet		[mm]
μ_0	Magnetic permeability in vacuum	1.257 x 10 ⁻⁶ Vs/Am = 1.2	257 x 10 ⁻⁶
H/m			
F12	Force measured in between magnet 1	and 2	
F13	Force measured in between magnet 1	and 3	
F14	Force measured in between magnet 1	and 4	
F23	Force measured in between magnet 2	and 3	
F24	Force measured in between magnet 2	and 4	
F34	Force measured in between magnet 3	and 4	

The base distance for the calculation is the distance in between the magnets centers.

Figure 19 Spacer / Susceptometer dimensions

6.1. Calculation formulas

$$m^{2}_{d1} = (Z_{0} + \lambda + \frac{L}{2})^{4} \left(\frac{4\pi}{6\mu_{0}}\right)_{3}^{3} \sqrt{\frac{F_{12}^{2}F_{13}^{2}F_{14}^{2}}{F_{23}^{2}F_{24}^{2}F_{34}^{2}}}$$
$$m^{2}_{d2} = (Z_{0} + \lambda + \frac{L}{2})^{4} \left(\frac{4\pi}{6\mu_{0}}\right)_{3}^{3} \sqrt{\frac{F_{12}^{2}F_{23}^{2}F_{24}^{2}}{F_{13}^{2}F_{14}^{2}F_{34}^{2}}}$$
$$m^{2}_{d3} = (Z_{0} + \lambda + \frac{L}{2})^{4} \left(\frac{4\pi}{6\mu_{0}}\right)_{3}^{3} \sqrt{\frac{F_{13}^{2}F_{23}^{2}F_{34}^{2}}{F_{12}^{2}F_{14}^{2}F_{24}^{2}}}$$
$$m^{2}_{d4} = (Z_{0} + \lambda + \frac{L}{2})^{4} \left(\frac{4\pi}{6\mu_{0}}\right)_{3}^{3} \sqrt{\frac{F_{14}^{2}F_{24}^{2}F_{34}^{2}}{F_{12}^{2}F_{14}^{2}F_{24}^{2}}}$$

Figure 20 Formulas calculation of magnetic dipole

6.2. Air density

The air density is calculated according CIPM 2007, which is the updated (argon content of air) version of the CIPM 81/91 stated in the OIML R111 2004 Annex E.1

$$\rho_a = \frac{pM_a}{ZRT} \left[1 - x_v \left(1 - \frac{M_v}{M_a} \right) \right]$$

Figure 21 Air density according CIPM 2007

- P Pressure;
- M_a Molar mass of dry air;
- Z Compressibility;
- R Molar gas constant (CIPM 2007 constant defined to 8.314472)
- T Thermodynamic temperature using ITS-90;
- xv Mole fraction of water vapor; and
- M_v Molar mass of water (CIPM 2007 constant defined to 0.1801528)

$$M_{a} = \left[28.96546 + 12.011 \left(x_{CO_{2}} - 0.0004\right)\right] \times 10^{-3}$$

Figure 22 Air density molar mass of dry air

X_{co2} Mole fraction of carbon dioxide

$$x_{v} = (hr)f(p,t)\frac{p_{sv}(t)}{p}$$

Figure 23 Air density mole fraction of water vapor

- mole fraction of water vapor Xv
- relative humidity expressed as a fraction; hr
- Р pressure;
- temperature in degrees Celsius; t
- p_{sv}(t) saturation vapor pressure of moist air; and
- dew-point temperature. tr

The mole fraction of water vapor x_v is calculated as follows

$$\boldsymbol{x}_{v} = \boldsymbol{h} \left(\boldsymbol{\alpha} + \boldsymbol{\beta} \boldsymbol{p} + \boldsymbol{\gamma} t^{2} \right) \cdot \left[\frac{\boldsymbol{e}^{\left(\boldsymbol{A} \boldsymbol{\tau}^{2} + \boldsymbol{B} \boldsymbol{\tau} + \boldsymbol{C} + \frac{\boldsymbol{D}}{\boldsymbol{\tau}} \right)}}{\boldsymbol{p}} \right]$$

Figure 24 Air density more fraction of water vapor details

where:

h	Relative humidity [%]
Р	Station pressure [Pa]
Т	Temperature [°C]

T Temperature	[°K]
---------------	------

Constants follow 1991 recommendations (2007 is identical):

-1

α	1.00062
β	3.14 x 10-8 Pa -1
γ	5.6 x 10-7 K ⁻²
À	1.2378847 x 10 ⁻⁵ K ⁻²
В	-1.9121316 x 10 ⁻² K ⁻¹
С	33.93711047

D -6.3431645 x 10³ K

The compressibility (Z) is calculated as follows

$$Z = 1 - \frac{p}{T} \Big[a_0 + a_1 t + a_2 t^2 + (b_0 + b_1 t) x_v + (c_0 + c_1 t) x_v^2 \Big] + \frac{p^2}{T^2} \Big(d + e x_v^2 \Big)$$
Figure 25

~

Air density compressibility

where:	
Р	Station pressure in KPa
Т	Temperature in K (273.15 + t)
Т	Temperature in °C
Xv	Mole fraction of water vapor (from above)
Constants fo	llow 1991 (CIPM 2007 identical) recommendations:
a 0	1.58123 x 10 ⁻⁶ KPa ⁻¹
a ₁	-2.9331 x 10 ⁻⁸ K ⁻¹ Pa ⁻¹
a ₂	1.1043 x 10 ⁻¹⁰ Pa ⁻¹
b ₀	5.707 x 10 ⁻⁶ KPa ⁻¹
b ₁	-2.051 x 10 ⁻⁸ KPa ⁻¹

C 0	1.9898 x 10 ⁻⁴ KPa ⁻¹
C1	-2.376 x 10 ⁻⁶ KPa ⁻¹
d	1.83 x 10 ⁻¹¹ KPa ⁻²
е	-0.765 x 10 ⁻⁸ KPa ⁻²

6.3. Gravitational force constant

The gravitation is calculated according WELMEC formula with standard gravitation γ_a according

GRS80 of 9.780 327 m/s²

$$\begin{split} g_0(\varphi) &= \gamma_a \left(1 + c_1 \cdot \sin^2(\varphi) + c_2 \cdot \sin^4(\varphi) + c_3 \cdot \sin^6(\varphi) + c_4 \cdot \sin^8(\varphi) \right) \\ g(\varphi, h) &= g_0(\varphi) \cdot \left(1 - \left(k_1 - k_2 \cdot \sin^2(\varphi) \right) \cdot h + k_3 h^2 \right) \end{split}$$

 $g_0(\phi)$ Gravitation on latitude ϕ

 $g(\phi,h)$ Gravitation on latitude ϕ and height h

- h Height of weighing pan of comparator at Susceptometer location [m]
- γ_a Standard gravitational acceleration 9.780 327 m/s²
- φ Latitude of weighing position

c₁ 5.279 041 4 10⁻³

 $c_2 \qquad 2.327 \ 18{\cdot}10^{-5}$

- c₃ 1.262 · 10⁻⁷
- $c_4 = 7 \cdot 10^{-10}$
- k₁ 3.157 04 * 10 ⁻⁷/ m
- k₂ 2.102 69 * 10 ⁻⁹/ m
- k_3 7.374 52 * 10 ⁻¹⁴/ m²

7. Terms and warranty of software

MagCal control is sold as software and therefore is subject to the general warranty and software terms of Mettler Toledo AG. Following is an extract from the document " General terms of warranty and license for software" dated 1998.

The listed terms of warranty and license for software are subject to change. Please refer to <u>www.mt.com</u> for most recent version.

7.1.1. General terms of warranty and license for software

By accepting the accompanying software the licensee of this METTLER TOLEDO software (hereinafter "the User") concludes with Mettler-Toledo GmbH, Im Langacher, CH- 8606 Greifensee,

Switzerland (hereinafter "METTLER TOLEDO") a license agreement comprising the following terms and conditions.

If the User does not accept the terms of the agreement, he is required to notify METTLER TOLEDO by registered letter, enclosing the software (return of the product) and documentation, within 10 days of receiving the software. Different or additional provisions must be expressly agreed in writing.

7.1.2. Scope and use

METTLER TOLEDO grants to the User the non-exclusive and non-transferable right to use the METTLER TOLEDO software (hereinafter "the software") and the related documentary material in connection with a METTLER TOLEDO instrument. The User acquires no other rights by this agreement, in particular no right to ownership of the software or the documentary material.

7.1.3. Copies

The User is entitled to make a copy of the software for purposes of data back-up, but not if the software is protected against reproduction and bears the words "Copy protected". The User

is entitled to copy the documentary material to the extent necessary for the use agreed. All copies and partial copies of the software and the documentary material remain the property

of METTLER TOLEDO. The User undertakes to keep records of the number and location of all copies.

7.1.4. Warranty

Within one year of delivery METTLER TOLEDO will make good any significant deficiencies in the software free of charge, or at its discretion supply a replacement, provided the User reports

the deficiencies immediately after they are discovered. If the deficiencies cannot be remedied by METTLER TOLEDO, the User may withdraw from this agreement, in which case at most

the single license fee will be refunded. Deficiencies within the meaning of this warranty exist if the

software does not conform to the specifications agreed in writing and thereby is not, or only to a severely reduced extent, suitable for the use agreed. The warranty extends only to reproducible deficiencies. METTLER TOLEDO disclaims all other liability relating to use of the software (including loss of data) and for the results obtained, in particular any liability for consequential damage.

7.1.5. Confidentiality

The User declares that the software and the documentary material will not, either wholly or in part, be made accessible in any form to third parties, made public or utilized to an extent beyond the use agreed. The User makes sure by means of instructions, agreements and other suitable precautions that all persons having access to the software and the documentary material abide by this declaration.

7.1.6. Duration

This agreement becomes effective on receipt by the User of the subject of the agreement, and remains in force for as long as the software is used. The agreement can be terminated by the User at any time, whereupon no claim arises for a refund of the license fee.

METTLER TOLEDO can terminate the agreement at any time without notice if the User violates its terms or conditions, particularly that of confidentiality.

7.1.7. Transferability

The User is not entitled to transfer or surrender any rights or obligations arising from this agreement without the prior and written consent of METTLER TOLEDO.

7.1.8. Applicable law, venue

The contractual relationship between the parties is subject exclusively to Swiss substantive law. The place of jurisdiction is Zurich, Switzerland. However, METTLER TOLEDO is at liberty to seek redress at the appropriate court at the User's place of domicile.

8. Index

Administration settings	13
Air density	21
CD ROM	7
Comparator Settings	11
Confidentiality	25
Copies	24
Installation code inquiry	9
law	25
license	24
Password	9

PC System requirements	7
Process Settings	13
Report	18
Save settings	16
software	24
Starting the measurement	18
Transferability	25
Uncertainty environmental sense	ors16
User Settings	16
Warranty	24

Software subject to technical and program changes and to the availability. © 2012 Mettler Toledo AG

Mettler-Toledo AG

Mettler-Toledo AG Laboratory & Weighing Technology CH-8696 Greifensee, Switzerland Phone: +41-44-944 22 11, Fax: +41-1-944 23 70 E-mail: metrology@mt.com

Subject to technical changes. © Mettler-Toledo AG 03/2012 30042013

