IND780 Shared Data Variable Access Using
Allen-Bradley Remote 1/O

General Description

This document was produced to assist the PLC programmer in setting up their programto access
Shared Data Variables within the Mettler Toledo IND780 Weigh Terminal. For a list of Shared
Data Variablesthat can be accessed using this method, please referto the 64059110 - IND780
Terminal Shared Data Reference.

The program documented in this document, and available for download

IND780_ARIO _FLT _SDA RC20 VO01.ACD, waswrittenin ControlLogix5000, version 20. Itis
highly recommended that the program be read from a ControlLogix Editor since the
presentation in this document must be limited out of the necessity for brevity and simplicity.

The Shared Data mode PLC communications mode is not available with the Allen-Bradley
Remote I/O option. Consequently, Block Transfers are used instead.

Commands from the PLC tothe IND780to read from or write to Shared Data Variablesare
handled by the Block Transfer Write. The PLC program must set up the Block Transfer Write
buffer with the desired command to the IND780.

Responses from the IND780 Terminal are handled by the Block Transfer Read. The PLC program
must read the data returnedin the Block Transfer Read buffer to determine what the result of
the command was.

We'll briefly describe the sequence here, and then cover it in more detail later in the document.

February 22, 2013 Pagel of 15

ftp://ftp-static.mt.com/pub/indmkg/IND780_Qi/Documentation/IND780 Q.i Manuals/Shared Data/64059110_R01_IND780_SDREF_EN.pdf
ftp://ftp-static.mt.com/pub/indmkg/IND780_Qi/Documentation/IND780 Q.i Manuals/Shared Data/64059110_R01_IND780_SDREF_EN.pdf
ftp://ftp-static.mt.com/pub/indmkg/IND780_Qi/Engineering/PLC Sample Programs/IND780_ARIO_FLT_SDA_RC20_V01.ACD

IND780 Shared Data Variable Access Using

Allen-Bradley Remote 1/O

Reading a Value from the IND780

Note that for all examples below, the 8-byte Shared Data variable field code is the Shared Data
Variable name in ASCIl with two spaces preceding it.

Below is the Block Transfer Write table definition as it appears in the IND780’s PLC Manual.

Base#| O 2 s a | 5] [8 9
N#:0 Display 16 Byte Display String: sent from PLC to terminal shared data 8 Byte>>
- Mode* if preceding word is non-zero value and discrete display bits are set to 7 ASCII
s :<<F_'°°""° FON :VI:ZFV‘:'I"W Floating Point Write | 8 Bye ASCII String Write Field Code: shows | 40
will be loaded Value where the next value will be loaded Byte>>
N#:20 <<40 Byte String Data. Note: if string is shorler than 40 bytes it must be left justified and null-terminated >>
N#:30 << 40 Byte String Data. Note: if string is shorter than 40 byles it must be left-justified 8 Byte>>
’ (and null-ferminated)>> ASCII
s <<Floating Point Read Field 8 Byte (ASCII) String Read Field Code: requests
40 Code: requests FP value for BTR string value for BTR Reserved
N#:50 Reserved
N#:60 Reserved

To tell the IND780toreturn a floating point variable, such as AJ0101, the variable’s name needs

to be writteninto the table starting at word 39 as shown below.

Step 1: Send Shared Data Name to be 9 10 11 12 13 14
read via a Block Transfer Write 15 6 17 8 0 20
21 22 23 24 25 26
27 28 29 30 31 32
8 Byte 33 34 35 36 37 38
Shared Data cwmp] 39 40 41 42 43 44
Name 45 46 47 48 49 50
51 52 53 54 55 56
57 58 59 60 61 62
Write Block Transfer — Word Map

Below is the Block Transfer Readtable as shown in the PLC manual. Thisis where the response
from the IND780 will be returnedto the PLC.

February 22, 2013

Page 2 of 15

IND780 Shared Data Variable Access Using
Allen-Bradley Remote 1/O

Base#| o0 [1 | 2 | 3 4 | 5 6 | 72 | 8 | 9
8 Byte (ASCIl) Floating Point Read Field Floating Point Read | 8 Byte (ASCII) Sting Read Field Code:
N#:0 ¢ p) 0
Code: name of value sent in next field Value nome of string sent in next field

N#:10 40 Byte Data String>>

N#:20 <<40 Byte String Data. Note: if string is shorter than 40 bytes it must be left-justified (and null-terminated)>>
N#:30 Reserved

N#:40 Reserved

N#:50 Reserved

N#:60 Reserved

The requested Shared Data Variable name will be returned in the first four words, and the 2
word (4 byte) floating point value will immediately follow it as shown below.

Q 8 c @ [} g) 2o
% &5 % TS5 Step 2: Confirm that the Shared Data
0GPz <2a> name matches the requested name,
then read the data.
A A
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49
50 51 52 53 54 55 56 57 58 59
60 61 62 63 Read Block Transfer — Word Map

Writing a Value to the IND780

Writing a value is actually simpler than reading one, because all that has to be done is to setup
the Block Transfer Write buffer. For instance, to write a 1 to the Integer Shared Data Variable
Al0101 the PLC program would need to write the name of the Shared Data Variable (Al0101) to
words 9 thru 12, followed by the desired Integer valuein Word 13 as shown below.

February 22, 2013 Page 3 of 15

IND780 Shared Data Variable Access Using

Allen-Bradley Remote 1/O

Base#| o0 [1 | 2 | 3 | 4 | s | e | 71 | 8 | 9
N#-0 Display 16 Byte Display String: sent from PLC to terminal shared data 8 Byte>>
S Mode* if preceding word is non-zero value and discrete display bits are set to 7 ASCII
<< i Nrite Fi
il d:";‘:(’)’:ggf?;}';’(:’;ﬁ fvi’ﬁe Floating Point Write | 8 Byte ASCII String Write Field Code: shows | 40
S SIS e Value where the next value will be loaded Byte>>
will be loaded
N#:20 <<40 Byte String Data. Nofe: if string is shorier fhan 40 byles it must be left justified and null-terminated >>
N#-30 << 40 Byle String Data. Note: if string Is shorter than 40 byfes it must be lefi-justified 8 Byle>>
’ (ond null-terminated)>> ASCII
y <<Floating Point Read Field 8 Byte (ASCII) String Read Field Code: requests
WE:AD Code: requests FP value for BTR shing value for BTR Fesacved
N#:50 Reserved
N#:60 Reserved

The table below may be a little easier to understand.

28 g2 289
me T g n 0T
© 5 0z ~N E>
A
9 10 11 12 13 14
15 16 17 18 19 20
21 22 23 24 25 26
8 Byte 27 28 29 30 31 32
Shared Data 33 34 35 36 37 38
Name here | 39 40 41 42 43 44
too! 45 46 47 48 49 50
51 52 53 54 55 56
57 58 59 60 61 62
Write Block Transfer — Word Map

Note that it is also necessary to repeat the name of the Shared Data variable in words 39 thru 42
so that the subsequent Block Transfer Read will get a response from the IND780and not time-

out.

String Reads and Writes work the same way, but must access the String fields in the Block
Transfer buffers instead of the Floating Point fields.

February 22, 2013

Page 4 of 15

IND780 Shared Data Variable Access Using
Allen-Bradley Remote 1/O

The PLC Program Description

Main Routine

Read the Scale

Below is the logic used to Read the Main Scale when using Remote /0. Note thatit
does not go through the Block Transfers used for the Shared Data Variable Access.

IND780 PLC Communications Configuration:
Wode Address = Decimal 2, Start Quarter = 1, Last Rack = Enabled, Data Rate = 115.2 KBaud, Block Transfer = Enabled

Format = Floating Point, Byte Order = Word Swap, Message Slot 1 = Scale 1, All other Message Slots are empty

This Rung gets the Weight Data from the unit and stores it in FP_VWeight. But it must check that the Data Integrity bit states match and that the Data OK bit is on. If the Data Integrity bits do NOT match,
ignore the reading. If the Data OK bit is off, indicate an Error by putting -9999.0 into the Weight value.

Run the Block Transfers

Data OK Data Integrity 1 Data Integrity 2
IND780:1.Datal3].15 INDT80:LData[0].13 INDTE0:1.Data[3].14 (o] MOV
0 5 [1 E 5 Copy File ——— Move
. Source IND780:.Data[1] Source FP_Weight
Data Integrity 1 Data Integrity 2 Dest FP_Weight 1358.0 €
IND780:LData[0].13 IND780:1Data[3].14 Length -y Dest FP_Weight
] [] [1358.0 &
Data OK
IND780:1.Data[3].15 MOV————
JE Hove
Source -9999.0
Dest FP_Weight
1358.0 €

The block transfers must not run at the same time, hence the logic on the rung ahead of
each one. Inthis program, we’re letting the Block Transfers run as fast as possible.

February 22, 2013

Aliow the Block Transfers between the PLC and the IND780 to run “"Free-Wheel" so that they happen as fast as possible.
Count the errors so0 we can see when there is a problem.
Block Transfer Write Block Transfer Read Block Transfer Write
to INDTE0 of INDTE0 to INDT20
BTW_IND7E0.EN BTR_IND780.EN I
JE =/ Message = EN
Message Control BTW_IND730 [] [DN}>—
HER—
Block Transfer Read Block Transfer Write Block Transfer Read
of IND7E0 to IND780 of IND780
BTR_IND780.EN BTW_INDTBO.EN 1
=d= JE Message HCEN S ——
Message Control BTR_IND7S0 [[DN)==
[HER—
Block Transfer Read Count the Block
of INDTE0 Transfer Read Errors
BTR_INDT80.ER TU:
7 E Count Up Sgwl)
Counter CTU_BTR_Errors
Preset S000 €~ DN—
Accum 04
Count the Block
Block Transfer Write Transfer Write
to IND720 Errors
BTW_IND780.ER TU-
JE Count Up HCou
Counter CTU_BTW_Errors
Preset 5000 €~ DN—

Page5 of 15

IND780 Shared Data Variable Access Using
Allen-Bradley Remote 1/O

Shared Data Read Triggers

Each of the rungs below are used to trigger a different kind of read. Note thatthe MOV
instructions in each rung are used to display the results of the Read action and have no
effect on the program’slogic. To trigger each of the actions, merely set the
corresponding “bRead” tagtoTrue.

Read a Floating Point Variable (AJ0101)

Floating Point Value
Read from INDTE0
Shared Data

Read a Floating
Point Shared Data

Wariable
bRead_FP_SDV MO JSR
2 1 E Move 4‘ Jump To Subroutine ’»
Source FP_Read Value Routine Name Read_Floating_Point_SDV
B4 &
Dest FP_Read_Value
B4 &

Read an Integer Variable (A10101)

Integer Value Read
from IND720 Shared

Read an Integer
Shared Data Variable Data
bRead_Integer_SDW MO ISR
3] E Move 4‘ Jump To Subroutine ’»
Source Integer_Read_Value Routine Name Read_Integer_SDV
5 ¢
Dest Integer_Read_Value
5 e

Read a String Variable (4K0101)

String Read from String Read from String Read from

IND780 BTR - Note IND780 BTR - Note IND780 BTR - Note
Read a String Shared that the Bytes must that the Bytes must that the Bytes must
Data Variable be swapped be swapped! be swapped
bRead_String_SDV MO MO o) J5R:
4 7 E Move — Move — Move Jump To Subrouting
Source Read_String[0] Source Read_String[1] Source Read_String[2] Routine Name Read_String_SDV
25928 € 27756 €| 0#

Dest Read_String[0] Dest Read_String[1] Dest Read_String[2]

25928 € 27756 €| 0#

Shared Data Write Triggers

Each of the rungs below are used to trigger a different kind of write. Again, note that
the MOV instructions in each rung are used to display the results of the Write action and
have no effect on the program’slogic. To trigger each of the actions, merely set the
corresponding “bWrite” tag to True.

February 22, 2013 Page6 of 15

IND780 Shared Data Variable Access Using

Write a value to a
Shared Data Floating
Point Variable

Allen-Bradley Remote 1/O

Write a Floating Point Variable with the value shown in the MOV (AJ0101)

Floating Point Value
to write to IND780
Shared Data Variable

1SR

Write a valueto a
Shared Data Integer
Wariable
bWrite_Integer_SDV

Source FP_Write_Value

MO F
Jump To Subroutine
Routine Name Write_Floating_Point_SDV
5.4 €

FP_Write_Value
5.4 €

‘Write an Integer Variable with the value shewn in the MOV (AI0101)

Integer Value to
Vyrite to the INDTE0
Shared Data

’>

2R

JE
& 1k

Write a string to a
String Shared Data

MO
Move Jump To Subroutine
Source INT_Write_Value Routine Name Write_Integer_SDV

S5«
Dest INT_Write_Value
S5«

‘Write a String Variable with the values shown in the MOV's (AKD0101)

String to Write to
the IND780 - Note
that the Bytes must

String to Write to
the INDTB0 - Note
that the Bytes must

String to Write to
the INDT80 - Note
that the Bytes must

’>

’>

Wariable be swapped! be swapped' be swapped
b\Write_String_SDV MO MO MO ISR
7 1 E Move ——— Move ——— Move 4‘ Jump To Subroutine
Source Write_String[0] Source Write_String[1] Source Write_String[2] Routine Name Write_String_SDV
25928 & 2TTEG + 114
Dest ‘Write_String[0] Dest Write_String[1] Dest Write_String[2]
25928 & 2TTEG + 114

(End)

Shared Data Variable Name Constants

Itis useful to define constants containing the Shared Data Variable names that will be used
throughout the program. Since the charactersin the names need to be transposed before

transmitting to the IND780, they can be transposed in the constants without requiring PLC logic.

This can provide a significant simplification of the program.

Below are the constants defined for this program. Note that the charactershave been swapped.

February 22, 2013

— AlDioT [---1 [...]|asci INT[4] Integer Shaved Diats name Sting for AJI101 - NOTE that Bytes ave SWAFPED.
+ AT v sl INT Integer Shared Diata name Shing for 20101 - NOTE thal Bultes ar= SWAPPED.
+-AI001(1] "IA a5l INT Integer Shared Data name Sting for AJ0101 - NOTE thal Byles are SWAFFED.
+ AI001(2] "10 ascil INT Integer Shared Diats name Sting for AJ010T - NOTE that Butes are SWAPPED.
+ AI001(3] "100 ascil INT Integer Shared Diala name Sting for AJ0101 - NOTE thal Byles are SwAFFED.
= AJo1o [---1 [...]|AsCll INTE4] Floaling Foint Shared Data name Stiing for AJ0101 - NOTE that Bytes are SWAFFED.
+ A0101[0] - ascil INT Flasling Paint Shared Data nare Sting for AJT101_- NOTE that Bytes are SWAPPED
+A0T07(1] "an ascil INT Floaling Foin! Shared Dala name String for J0101 - NOTE that Bytes are SWAFFED.
4 A010112] "10 ascil INT Floaling Point Shared Data name Stiing for J0101_-NOTE that Bytes are SWAPPED.
+ A0 r10° sl INT Flaaling Paint Shared Data narne Sting for 0101 - NOTE that Bytes are SWAPPED.
= AKOI01 [---1 {...] [psci I Stiing Shared D.ala name Stiing for AJ0101 - NOTE thal Bytes are SWAPFED!
-+ AKOT01[0] - astil INT Sting Shared D212 name Sting for AJ0101 - NOTE that Bytes are SWAPPED!
+ AKOTOI[] "ER sl INT Sting Shared Daata name Sting for AJ0101 - NOTE that Bytes are SWAPPED!
+ AKOT0T[2] r10 a5l INT Stiing Shared Dala name Stiing for AJ0101 - NOTE thal Bytes are SWAFFED:
- AROT01[3] "100 ascil INT Stiing Shared D2tz name Sting for AJ0101 - NOTE that Bytes are SWAPFED!

Page7 of 15

IND780 Shared Data Variable Access Using
Allen-Bradley Remote 1/O

Read_Floating Point_SDV Routine

To Read a Floating Point variable, the PLC must first populate the BTW buffer starting at word 39
with the desired Shared Data Variable name (note the byte order). Since the Block Transfers are
freewheeling, that is running constantly, nothing else needs to happen except to wait for the
result from the IND780.

“ AJ0101”
ASCIl —» e ‘AJ ‘or’ ‘01’
Hex — And

Swap Bytes —> 0x2020 0x4A41 0x3130 0x3130
1p 1 1p 13 14
1p 1¢ 17 1B 19 20
2 22 B 2% 25 26
2 2 2p 3p 31 32
3y 37 38
39 40 41 42 43 44
45 46 47 48 49 50
51 52 53 54 55 56
57 58 59 60 61 62

Write Block Transfer — Word Map

When the PLC reads that the requested Shared Data Variable name (AJ0101) is present in the
Block Transfer Read buffer, it can now go get the resulting value.

“ AJO101”

= 3.1416
sen —s 2 A oD o> |
Hex-And__y, Coeom) (o) (oe10) @ Hex ~Dont
0 1 2 3 4 5
10 11 12 13 14 15

6 7 8 9

16 17 18 19
20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49
50 51 52 53 54 55 56 57 58 59
60 61 62 63 Read Block Transfer — Word Map

Below is the corresponding PLC code the performs the above sequence. Note the FLL
instructions which zero out the BTR and BTW buffers before issuing the command.

February 22, 2013 Page 8 of 15

IND780 Shared Data Variable Access Using
Allen-Bradley Remote 1/O

Inttialize the Floating Point Read sequence by filing both the BTW and the BTR buffers with Zeroes. Then, copy the variable name that we want to read (A4J0101) to the Block Transfer Write buffer's Floating Point Shared Data name.
NOTE that we must reverse the bytes in the Shared Data name!

The Read a Floating The Read a Floating

Foint varialbe Foint varialbe
routine has been Floating Point READ Read FP Shared Data routine has been
started Display Mode SDV Name Bytes 142 Name Bytes 142 started
bRead_FP_SDV_Started 1L LL- 0 bRead_FP_SDV_Started
0 JE FillFile —— FilFie ——— copy Fie L

Source o Source 0 Source AJ0101[0]
Dest BTW_TO_IND730[0] Dest BTR_FROM_IND780[0] Dest BTW_TO_IND780[39]
Length 3 Length 63 Length 4

After the Read Sequence has been inttialized, wait for the Block Transfer Read to see the requested variable name come back in the response from the IND780

When we see that AJ0101 is being returned, grab the value from the returned BTR buffer.

The Read a Fioating The Read a Floating
Point varialbe Floating Point Valus Read a Floating Point varialbe
routine has been Floating Point READ Floating Point READ Floating Point READ Read from IND780 Point Shared Data routine has been
started SDV Name Bytes 38 4 SDV Name Bytes 58 6 SDV Name Bytes 7 & 8 Shared Data Variable started
bRead_FP_SDV_Started EQL- EQU EQU- OP- bRead FP_SDV bRead_FP_SDV_Started
1 JE Equal —— Eaual 1 Equal Copy File i) U

Source A BTR_FROM_IND7S0[1] Source A BTR_FROM_IND780(2] Source A BTR_FROM_IND780[3] Source BTR_FROM_IND780[4]

A e 10 ¢ 0 Dest FP_Read_Value
Source B AJ01[1] Source B AlN012] Source 8 AJDM013] Length 1

19002 ¢ 12592 ¢ 12592 ¢

The EQU instructions wait for the Block Transfer Read to show that the IND780 s returning the
same variable name that was requested. When the compares pass, the result is copied into the
floating point variable, and the Read Request flag is cleared.

Read_Integer_SDV Routine

To Readan Integer variable, the PLC must first populate the BTW buffer starting at word 39 with
the desired Shared Data Variable name (note the byte order). Again, since the Block Transfers
are freewheeling, that is running constantly, nothing else needs to happen except to wait for the
result from the IND780.

“ Al0101”

ASCII > ‘L ‘Al ‘01 ‘01

Hex — And
Swap Bytes —> 0x2020 0x4941 0x3130 0x3130
1p 1 1p 13 14
1p 1 7 1B 19 20
21 2 2B 24 25 26
2 2 2p 3 31 32
37 38
39 40 41 42 43 44
45 46 47 48 49 50
51 52 53 54 55 56
57 58 59 60 61 62
V5 Write Block Transfer — Word Map

February 22, 2013 Page9 of 15

IND780 Shared Data Variable Access Using
Allen-Bradley Remote 1/O

When the PLC reads that the requested Shared Data Variable name (Al0101) is present in the

Block Transfer Read buffer, it can now go get the resulting value.

“ Al0101” = 1
ascll —p Cod CAD Cor) (o)
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49
50 51 52 53 54 55 56 57 58 59
60 61 62 63 Read Block Transfer — Word Map

Below is the corresponding PLC code the performs the above sequence. Note the FLL
instructions which zero out the BTR and BTW buffers before issuing the command.

Initialize the Integer Read sequence by filing both the BTW and the BTR buffers with Zeroes. Then, copy the variable name that we want to read (AI0101) to the Block Transfer Write buffer's Floating Point Shared Data name.

NOTE that we must reverse the bytes in the Shared Data name!

Read an integer

Read an Integer

Shared Data Variable Floating Point READ Read FP Shared Data Shared Data Variable
Routine Started Display Mode SDV Name Bytes 1 &2 Name Bytes 1 &2 Routine Started
bRead_INT_SOV_Started FLL FLL- op. bRead_INT_SDV_Started
0 JE Fill Fils —— FilFie ——— Copy File L
Source 0 Source 0 Source AI0101[0]
Dest BTW_TO_IND780[0] Dest BTR_FROM_ND730{0] Dest BTW_TO_IND720[39]
Length Length 83 Length 4

Read an Integer
Shared Data Variable Floating Point READ Floating Point READ Floating Point READ

After the Read Sequence has been initialized, wait for the Block Transfer Read to see the requested variable name come back in the response from the IND780.

‘When we see that AI0101 is being returned, grab the value from the returned BTR buffer.

Integer Value Read
from IND780 Shared
Data

op.

Read an Integer
Read an Integer Shared Data Variable
Shared Data Variable Routine Started
bRead_nteger_SDV bRead_INT_SDV_Started
U)

Routine Started SDV Name Bytes 38 4 SDV Name Bytes S &6 SOV Name Bytes 7 & 8
bRead_INT_SOV_Started QU £QU EQU
1 JE Equal —— Equal —— Eaual
Source A BTR_FROM_IND780[1] Source A BTR_FROM_IND780[2] Source A BTR_FROM_IND780{3]
KA+ 104 10 e
Source B AB101[1] Source B A010112] Source 8 AIB101[3]
187534 12592 ¢ 12592 ¢

Copy Fiie
Source BTR_FROM_ND780[4]
Dest Integer_Read_Value
Length 1

The EQU instructions wait for the Block Transfer Read to show that the IND780 s returning the
same variable namethat was requested. When the compares pass, the result is copied into the

Integer Readvariable, and the Read Request flag is cleared.

February 22, 2013

Page 10 of 15

IND780 Shared Data Variable Access Using
Allen-Bradley Remote 1/O

Read_String_SDV Routine

To Reada String variable, the PLC must first populate the BTW buffer starting at word 43 with
the desired Shared Data Variable name (note the byte order). Again, since the Block Transfers
are freewheeling, that is running constantly, nothing else needs to happen except to wait for the
result from the IND780.

“ AK0101”
ASCIl —» ‘01 ‘or’ o0 AK’
Hex — And
Swap Bytes > 0x3130 0x3130 0x2020 0x4B41
1p 11 12 1B 1k
1b 1b 17 18 1P 20
2y 2, 29 30 31 3
3 3 35 36
41 42 43 44
45 46 47 48 49 50
51 52 53 54 55 56
o7 58 59 60 61 62
Write Block Transfer — Word Map

When the PLC reads that the requested Shared Data Variable name (AK0101) is present in the
Block Transfer Read buffer (Starting at Word 6), it can now go get the resulting string.

“ AK0101”"
ASCII—} T ‘0+0
Hex — And
Hex — And Swap Bytes @ @ @
Swap Bytes_> 0x6548 0Xx6C6C 0X006F
A A A
6' 7 8 d
16 17 18 19

i 2 3 4 5
10 11 12 13 14 15
20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49
50 51 52 53 54 55 56 57 58 59
60 61 62 63 Read Block Transfer — Word Map

Below is the corresponding PLC code the performs the above sequence. Note the FLL
instructions which zero out the BTR and BTW buffers before issuing the command.

February 22, 2013 Page 11 of 15

IND780 Shared Data Variable Access Using
Allen-Bradley Remote 1/O

Initialize the String Read sequence by filing both the BTW and the BTR buffers with Zeroes. Then, copy the variable name that we want to read (AK0101) to the Block Transfer WWrte buffer's Flaating Point Shared Data name.

Read a String Shared
Data Variable

MOTE that we must reverse the bytes in the Shared Data name!

Floating Point READ

Read String Shared
Data Name Bytes 1 &
2

Read a String Shared
Data Variable
Routine Started
bRead_String_SDV_Started
L

Routine Started Display Mode SDV Name Bytes 1 &2
bRead_String_SDV_Started LL- LL- 0
0 =/ Fill File: Fill File: Copy File
Source 0 Source 0 Source AKD101[0]
Dest BTW_TO_IND780[0] Dest BTR_FROM_ND780[0] Dest BTW_TO_IND780[43]
Length 83 Length 63 Length 4

After the Read Sequence has been inftialized, watt for the Block Transfer Read to see the requested variable name come back in the response from the IND780

When we see that AKD101 is being returned, grab the string from the returned BTR buffer.
String Read from
IND7E0 BTR - Note
that the Bytes must
be swapped!

Read a String Shared
Data Variable
Routine Started
bRead_String_SOV_Started

Read a String Shared
Data Variable

Siring READ SOV Name
Byles3& 4

String READ SDV Name
Bytes5&6

String READ SDV Name
Byles7&38

EQU

op. bRead_String_SDV
)

Read a String Shared
Data Variable
Routine Started
bRead_String_SDV_Started

1 JE Equal —— Equal ——— Eoual Copy File)
Source A BTR_FROM_IND730[7] Source A BTR_FROM_INDTS0[3] Source A BTR_FROM_IND780[9] Source BTR_FROM_IND780[10]
"S00500" <] 500500 500500+ Dest Read_String[0]
source B AKDT0[1] Source B AKD101(2] Source B AKO101[3] Lenath 20
19265 € 12592 ¢ 12582 ¢
(End)

The EQU instructions wait for the Block Transfer Read to show that the IND780 s returning the
same variable name that was requested. When the compares pass, the result is copied into the
String Read array, and the Read Request flag is cleared.

Write_Floating Point_SDV Routine

The Write Floating Point sequence is more simple than the read because the only thing that
needs to be done is to populate the Block Transfer Write Buffer with the Shared Data variable
name and the Floating Point value desired as the diagram below shows. Note that the Shared
Data Variable nameis also copied to the Floating Point Read request at word 39.

“ AJO101” = 3.1416

AsCll —p (ot A o o / \
Hex — And Hex — Don’t
Swap Bytes — 0x2020 Ox4A41 0x3130 0x3101 0x4049) (OXOFF9 Swap Bytes

9 10 11 12 1 14

15 16 17 18 19 20

21 22 23 24 25 26

| 27 | 28 | 29 | 30 31 32

33 * 34 * 35 * 36 37 38

39 40 41 42 43 44

45 46 47 48 49 50

51 52 53 54 55 56

57 58 59 60 61 62

% Write Block Transfer — Word Map

February 22, 2013 Page 12 of 15

IND780 Shared Data Variable Access Using
Allen-Bradley Remote 1/O

Below is the corresponding PLC code the performs the above sequence. Note the FLL
instruction which zeroout the BTW buffer before issuing the command. Also note that the
Shared Data Variable name s copied to the Floating Point Read Request to preventan Error on
the subsequent Block Transfer Read.

Copy the AJ0101 variable to the BTW buffer's Floating Point Write section. Note that we also have to write it to the Floating Point Read portion of the buffer or the BTR wil error out (because the IND780 doesn't respond with anything). After that, copy the Fioating Point Write value to the
Write Buffer - right behind the AJ0101 name string.
Write a value to a
‘Write FP Shared Data Read FP Shared Data FP Write Value Word Shared Data Floating
1

Display Mods Name Bytes 1 &2 Name Bytes 142 Point Variable
FLL op o op. bWrke_FP_SDV
0 Fil File 1 copy File —— copy File ——— copy File o)
Source 0 Source AlD101]0] Source Al0101[0] Source FP_Wrie_Vals

Dest BTW_TO_IND780{0] Dest BTW_TO_IND780{9] Dest BTW_TO_IND780{38] Dest BTW_TO_IND780[13]
Length 63 Length 4 Length 4 Length 2

(End) |

Of course, it is probably advisable for the PLC program to readthe Floating Point value back to
ensure that the proper action has taken place. Since the Floating Point Shared Data variable has
already been populated, this would be a fairly simple addition to the program (just read words 4
& 5 of the Block Transfer Read buffer).

Write_Integer_SDV Routine

Again, the Write Integer sequence is simpler thanthe read because the only thing that needs to
be done is to populate the Block Transfer Write Buffer with the Shared Data variable name and
the Floating Point value desired as the diagram below shows. Note that the Shared Data
Variable name is also copied to the Floating Point Read request at word 39.

“ Al0101” = 1
ASCII > “L ‘Al ‘01’ ‘01’
Hex — And ,
—> 0x2020 0x4941 0x3130 0x3130 0x0001 Hex — Don't
Swap Bytes Swap Bytes
9 10 11 12 1 14
15 16 17 18 19 20
21 22 23 24 25 26
| 27 | 28 | 29 | 30 31 32
(433 [434 [J35 |36 37 38
39 40 41 42 43 44
45 46 47 48 49 50
51 52 53 54 55 56
57 58 59 60 61 62
Vi Write Block Transfer — Word Map

February 22, 2013 Page 13 of 15

IND780 Shared Data Variable Access Using
Allen-Bradley Remote 1/O

Below is the corresponding PLC code the performs the above sequence. Note the FLL
instruction which zeroout the BTW buffer before issuing the command. Also note that the
Shared Data Variable name is copied to the Floating Point Read Request to prevent an Error on
the subsequent Block Transfer Read.

Copy the AI0101 variable to the BTW buffer's Floating Point Write section. Note that we also have to write it te the Floating Point Read portion of the buffer or the BTR will error out (because the INDT80 doesn't respond with anything). After that, copy the Integer Write value to the Write
Buffer - right behind the AI0101 name string.
Wirite a value to a
Write FP Shared Data Read FP Shared Data FP Wirite Value Word Shared Data Integer
Display Mode Name Bytes 1 &2 Name Bytes 1 &2 1 Variable
LL- Ol 0l 0 bWrite_Integer_SOV
U

Fill File ——{ Copy File | copyFie ———1 Copy File
Source 0 Source AI0101[0] Source AID101[0] Source INT_Write_Value
Dest BTW_TO_ND780(0] Dest BTW_TO_IND780(3] Dest BTW_TO_IND780[39] Dest BTW_TO_IND780[13]
Length 6 Length 4 Length 4 Length 1

Again, it is probably advisable for the PLC programto read the Integer value back to ensure that
the proper action has taken place. Since the Floating Point Shared Data variable name has

already been populated, this would be a fairly simple addition to the program (just read word 4
of the Block Transfer Read buffer).

Write_String SDV Routine

The General Form for the string Write looks like this.

=)
0 ('7_) oz
AL
9 10 11 12 13 14
15 16 17 18 19 20 40 Byte
21 22 23 24 25 26 ity
27 28 29 30 31 2 VEle
8 Byte 33 34 35 36 37 38
Shared Data 39 40 41 43 a2
Name here ! 45 46 47 48 49 50
too! 51 52 53 54 55 56
57 58 59 60 61 62
Write Block Transfer — Word Map

The String Shared Data Variable nameis put in starting at word 15. It also needs to be
populated starting at word 43 so that the Block Transfer Read will not generateanError. The

string canbe an array of up to 40 bytes starting at word 19 (note that all strings must have their
bytes swapped within the word for the string to transmit correctly to the IND780).

February 22, 2013 Page 14 of 15

IND780 Shared Data Variable Access Using
Allen-Bradley Remote 1/O

Again, the Write String sequence is simpler than the read because the only thing that needs to
be done is to populate the Block Transfer Write Buffer with the Shared Data variable name and
the String Array desired as the diagram below shows.

“ AK0101” “HeIIo"

o, Q : : @
Hex — And : :
—> 0x006F
Swap Bytes X058

Wi 7 Wi "”””/M// //’f’//////////////‘ WY ////// Y ///

19

21 /24 FJO 9 N 4} r4¢]
27 / 28 /29 s [TSssa 32
33 |/ 34 |/ 35 36 NA37 N, 38
39 40 N, 41 42 43 44
45 46 47 48 49 50
51 52 53 54 55 56
57 58 59 60 61 62
e Write Block Transfer — Word Map

Below is the corresponding PLC code to accomplish this.

Copy the AK0101 variable to the BTW buffer's String Write section. Note that we also have to write it to the String Read portion of the buffer or the BTR will error out (because the IND780 doesn't respond with anything). After that, copy the String Write buffer to the Write Buffer - right
benind the AKD101 name string,
‘Write String Shared Read String Shared Write a string to a

Data Name Bytes 1 & Data Name Bytes 1 & Wirite String Bytes 1 String Shared Data
D\splay r.mua H H 82 Variable
0 0 o bWrte_String_SDV
Fill File ——— Copy File ——— Copy File ——— Copy File)
Source Source AKD101[0) Source AKD101[0) Source Write_String[0]
Dest BTW_TO. wmsn[o] Dest BTW_TO_IND7B0[15 1 Dest BTW_TO, INDTBU[43] Dest BTW_TO, INDTBUHB]
Length Length Length Length

Again, it is probably advisable for the PLC programto read the string back to ensure that the
proper action has taken place. Since the String Shared Data variable name has already been

populated, this data would already be available to the program in the Block Transfer Read Buffer
starting at word 10.

February 22, 2013 Page 15 of 15

